
 
Minh Cao

Implementation and Performance
Analysis of Replicated Load-balanced
Services Pattern in Distributed Systems

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

2 April 2019

Author
Title

Number of Pages
Date

Minh Cao
Implementation and Performance Analysis of Load-
balanced Replicated Services Pattern in Distributed
Systems

35 pages + 0 appendices
2 April 2019

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors Janne Salonen, Head of Department (ICT)

Distributed systems of multiple machines have been on the way to become the de-
factor architecture in digital services that have a big number of user population
because not a single machine could provide such scalability. However, it might be
challenging to design a distributed system that could live up to its expectation. With
the rise of virtualisation and containerisation technologies, tools and methods have
been introduced to help ease the challenge. As a result, design patterns have been
gaining attractions as standardised architectural solutions. The goal of this project is
to demonstrate an implementation of the load-balanced replicated services pattern
and analyse its performance under several scenarios.

The approach taken to carry on this project is to develop a simple web service in
Scala and deploy it under a distributed system environment with the help of
Kubernetes technology as the backbone of the design pattern. Detailed
implementation is documented in chronological order of the project process.

Under different configurations and settings of the pattern, it may have different
performance. Therefore, the research involves inspecting different components and
tuning them for highest performance. As the testing is done in a experimental
environment where the use case is fixed, the data is fake and the users are
simulated, several practical factors in real-life scenarios that may impact the success
of the pattern are also discussed.

The result of the project is theoretical evidence why load-balanced replicated
services pattern is considered to be high-performant and reliable as well as analytical
data to help with tuning different configurations to achieve the best outcome.

Keywords Distributed system, web server, load balancer, cache,
Kubernetes, performance

Contents

List of Abbreviations

1. Introduction 1

2. Theoretical background 2

2.1. Distributed systems 2
2.1.1.Model 2
2.1.2.Virtualisation and containerisation 2

2.2. Replicated load-balanced services pattern 3
2.2.1.Load balancer 4
2.2.2.Caching layer 5

2.3. Performance analysis 6

3. Methods and tools 8

3.1. Project approach 8
3.2. Technology 8

3.2.1. Scala 8
3.2.2. REST 8
3.2.3. Play framework 9
3.2.4. PostgreSQL 9
3.2.5. Kubernetes 10
3.2.6. Varnish 11
3.2.7. Jmeter 12

3.3. Tools 12

4. Implementation 13

4.1. The application 13
4.1.1. Design 13
4.1.2. Play framework integration 15

4.2. Infrastructure and environment 18
4.2.1. Architectural design 18
4.2.2. Minikube setup 19
4.2.3. Application deployment 19
4.2.4. Postgres deployment 21
4.2.5. Horizontal pod autoscaler 22
4.2.6. Varnish 23

5. Performance analysis 26

5.1. Test cases 26
5.2. The number of application pods 26
5.3. The use of caching 29

6. Discussion 30

7. Conclusion 32

References 33

List of Abbreviations

API Application programming interface. A protocol or method to interact with
an application or service.

CPU Central processing unit. The processor that carries out a program’s in-
structions by performing arithmetic, logic, controlling and input/output op-
erations.

DAO Data access object. An object that has access to database layer to do
operations on data of an application.

DNS Domain name system. A naming system for machines connected to the
Internet. Typically consists of different information associated with a web-
site name, most importantly its IP address and other metadata.

HTTP Hypertext Transfer Protocol. An application protocol for information sys-
tems. It is the foundation for communication on the Internet between a
web client and a web server.

ID Identifier. A symbol that uniquely identifies an object or record.

IP Internet Protocol. Numeral label that associates to a device to identify it-
self on a network. It is also the address of the machine to reach to.

I/O Input/output. Input/output devices are hardware devices that enable a
computer to send data (output) or receive data (input) from users.

JVM Java virtual machine. A virtual machine that enables a machine to run any
programs that are compiled to Java bytecode.

OpenJDK Open Java Development Kit. A set of tools that enables the development
of a JVM application.

OS Operating system. System software that manages a machine’s hardware
and software as well as its memory and processes.

RAM Random-access memory. A form of storage that almost takes same
amount of time for any read or write operations.

SSL Secure Sockets Layer. Standard security technology that enables an en-
cryption link between clients and web servers.

URI Uniform Resource Header. A string of characters that identifies a particu-
lar resource, typically on the Internet.

VM Virtual machine. An emulation of a computer system. For example, a
computer can run multiple operating systems by creating multiple virtual
machines.

!1

1. Introduction

The Internet has transformed drastically in the past 30 years. The demand for high-
availability online services with quick response times has grown exponentially during
the course of time. As a result, programs that were designed to run on a single ma-
chine have now been deployed to systems of multiple nodes to meet users’ require-
ments. This has been the standard design in the industry to make sure services scale
up by consuming resources provided by not one but many computers.

But building a distributed system that scales effectively is definitely not trivial. Fortu-
nately, recent technological advances such as virtualisation and the rising popularity of
container-orchestration software have significantly reduced the challenges in building a
distributed system. The concept of containerised software pieces undoubtedly helps
establish a collection of reusable components and design patterns, which are a toolkit
that can be used in order to implement a reliable distributed software.

One of such design patterns is load-balanced replicated services. Burns (2018) asserts
that it is the simplest and most wide-known among all [1, 45]. However, there are dif-
ferent configurations or settings that one could choose for their implementation to opti-
mise the effectiveness of every component. In general, coming up with a high-level ar-
chitecture does not mean that the job is done as there can be unforeseeable shortcom-
ings. Performing analysis as well as studying and making sure each component is con-
figured with the right settings is necessary to have a healthy and maintainable system.

This paper aims to present how to implement load-balanced replicated services pattern
to achieve a secured, high-availability and performant distributed system. Apart from
the background knowledge of characteristics of a distributed system and detailed im-
plementation of the architecture, it also displays different performance analysis con-
ducted and their results to provide some insights on how to bring the best out of the
pattern.

!2

2. Theoretical background

2.1. Distributed systems

2.1.1.Model

A distributed system consists of multiple individual computers that are physically dis-
tributed within geographical area. These machines communicate by passing messages
between their processors inside a computer network. This is enabled due to the wide-
spread of high speed broadband Internet connections. Each machine has its own task
and interacts with others to achieve a common goal. [2, 53.]

Instead of running a program on a single computer, an application executed in dis-
tributed environment could make use of the resources and the availability of all the
nodes in the network. According to Burns (2018), when structured properly, distributed
systems are inherently more reliable [1, 2]. As each system handles a specific task, in
case one or more tasks are identified as bottleneck(s) of the whole system, it should be
easy to scale the relevant subsystems without the need of handling the entire system.
Not only load scalability is an advantage of distributed systems, one can also benefit
from administrative scalability as the number of different teams that share responsibility
of a single distributed system is flexible and easy to scale, usually divided by business
purposes or just simply a team per subsystem [2, 54].

Unfortunately, these advantages come at a cost. It is more demanding in terms of en-
gineering skills to build a reliable distributed system as it is significantly more compli-
cated to design, build and debug when comparing to a single-machine application [1,
2]. Usually this means more extensive infrastructure which leads to extra labor costs [2,
54].

2.1.2.Virtualisation and containerisation

Virtualisation is the technology that enables running multiple operating systems and
applications (virtual computers) within the same machine. This means all the hardware
components like CPU, OS, I/O devices, etc are emulated to numerous VMs. As a re-
sult, one can simplify infrastructure by consolidating applications onto fewer number of
physical computers which leads to cost reduction and potentially utilising resources
better as there are monitoring methods to help allocate resources efficiently among

!3

VMs [3, 38]. However, this method has one drawback that additional resources are re-
quired from a machine to run multiple operating systems for its VMs.

This leads to the idea of containerisation which essentially is very similar to virtualisa-
tion excluding the overhead of separate operating systems. A container acts as a VM
that operates on a separate runtime using the same host operating system kernel as
described in Figure 1.

Figure 1: Comparison of virtualisation and containerisation

In order to manage containers easily, software acting as a orchestrator was developed
and received much attention in recent years. It helps package applications into sepa-
rate containers and automatically deploy them across a cluster of physical or virtual
machines as well as provides auto-scaling, networking and availability managements.

2.2. Replicated load-balanced services pattern

A replicated load-balanced service consists of multiple identical instances that all are
capable of handling users’ requests. The reason for having duplicates of a server is
twofold. Firstly, it helps achieve high availability as now the system could tolerate in
case one or more, but not all, instances crash at the same time. Secondly, the system
often increases in throughput since it could run parallel processes. In front of them,
there is a component routing the traffic called load balancer. Thanks to the evolutions

!4

of technologies discussed in previous sections, such a pattern can be implemented
without significant complexity because each component can be viewed as a container.

2.2.1.Load balancer

Load balancer is the application that sits between client and server that helps distribut-
ing requests to one or more servers using a specified algorithm to make sure no server
is heavily loaded while the others are being idle or doing little work. As a result, re-
sources utilisation is optimised efficiently because all the nodes in the network are re-
quired to perform relatively equal amount of work. Furthermore, this affects user satis-
faction directly as the request is given to an instance that has high likelihood of fulfilling
that request faster. [4, 3376.]

Figure 2: A load balancer that routes request to a single instance

Figure 2 demonstrates such architecture with a load balancer acting as traffic router.
Whether a load balancer could make the right decision to route a request to the right
server depends significantly on the algorithm it uses. There are two classifications of
load balancing algorithms: static and dynamic. A static algorithm is considered as less
complex as it does not require any information regarding the current state of the server
[4, 3377]. For example, the round robin algorithm forwards a client request to each

!5

server in turn. In contrary, a dynamic algorithm always yields the target server based
on the current status of the system. For example, Ant Colony optimisation technique is
an algorithm that every time a request in initiated, all the nodes are checked one by
one to give out a result [4, 3377].

2.2.2.Caching layer

Often times the requests from users might still take much time even when the load bal-
ancer has given the task to the desired worker because of the internal processing hap-
pening inside the replication. In such a case, it is recommended to consider adding a
caching layer, a component which stores the results of specific expensive requests [2,
49]. If two users conduct two requests asking for the same set of data, only the first
one will go to the server then the result is stored in the cache to serve the other user.
This is extremely helpful in scenarios that it is important to fulfil users’ requests in a fast
manner with little or no harm of possible outdated data. Figure 3 below shows the full
design pattern with load balancer, caching layer and several application replicas.

Figure 3: Caching layer added to the design pattern

Apart from helping with performance, the caching layer could enhance security if inte-
grated with some defence layers. Limiting the rate at which a single user requests from
the service is generally a good idea to avoid servers’ overload or denial-of-service at-
tack. Burns (2018) also suggests to do SSL termination in this layer to offload SSL pro-
cessing from every backend service to improve performance. [2, 54.]

!6

2.3. Performance analysis

The process of using an automated and controlled method to record the repeated im-
plementation of real user’s behaviour as on a tested system is called web performance
testing. The test generator is responsible for simulating the high traffic user’s be-
haviour. It can do so by running hundreds to thousands of Web client software. In a
performance test, the number of virtual users can be set in the generator. Additionally,
between the acts of two tests there can be delay time. [5, 328.]

There are generally three types of web performance testing: stress test, load test and
strength test. Stress test is conducted by increasing the system load gradually and ob-
serve the system performance changes. The ultimate goal is to put load conditions in a
failure state on the system and determine under which conditions the application per-
formance will be unacceptable, therefore discovering bottlenecks in the system. Load
test is generally to perform a specific type of stress test, which is to increase the num-
ber of users, or the load. Through the load test, the system is tested with a variety of
work load, performance indicators are recorded when load is increasing to ultimately
determine the maximum load the system can withstand. Finally, strength test is a load
test or stress test in a longer interval, meaning the system has to endure the test for a
few hours or even days to identify unexpected errors. [5, 329.] According to Huaji and
Huarui (2017), load capability of a web server is a key factor in examining the perfor-
mance of Web applications [6, 1175].

In order to measure performance, a series of performance indicators are chosen. This
paper mainly focuses on three: response time, throughput and availability. Response
time is counted from when the client sends a request to the response from server. Typ-
ically once the user load increases, the response time will be gradually increased as
well because some of the system’s resources are getting exhausted or the number of
concurrent requests exceeds the number of processes or threads the system could af-
ford, leading to accumulated waiting time for upcoming requests to be processed [5,
329]. Throughput is referred as the amount of workload that the server is able to handle
calculated on a period of time, typically requests per second. It is believed to be the
most useful indicator as it resemblances how many concurrent clients or users a web
service could manage in a second. In the initial stage of a load test, the system
throughput should increase as more resources are reinforced until it reaches a peak for
as all resources have been manoeuvred. Servers with slower response times generally
are studied to have lower throughput. [5, 330.] Lastly, availability is the measurement of
how reliable a service could serve to clients over time. It is often calculated as the per-
centage of time that a service is able to provide access over a period of time. Often

!7

times, a server may reject user requests, leading to lower availability, when under
heavy traffic of a big number of users. [6, 1175.]

!8

3. Methods and tools

This section shows methodologies and tools that will be used in order to conduct the
findings.

3.1. Project approach

O’Reilly (2019) suggested that the most common form of a web service is one that is
able to use some type of communication to receive a message calling certain proce-
dures running on a server and return a respectively result [7]. In this project, such a
service is implemented and packaged into a distributed system environment following
the replicated load-balanced services pattern. While the implementation is progressing,
a performance analysis is carried out at specific steps in order to document, compare
and give an idea of how different parts of the pattern affect its performance.

3.2. Technology

3.2.1. Scala

The web service is developed in Scala language (version 2.12.6) as it is a high-level
language that enables quick transformation of data using its excellent collections.
Scala is designed to implement programming patterns in a type-safe and concise man-
ner. Both object-oriented and functional languages’ features are seamlessly integrated
in Scala. Also it is a JVM language so one could take advantage of the reliable
ecosystem and open-source libraries. It is believed to have smaller code sizes when
compared with a similar Java application. Scala is being adopted for many existing
companies to boost their productivity. Twitter, for example, decided to migrate their core
message queue from Ruby to Scala. [8, 2.]

3.2.2. REST

Representational State Transfer, or REST, is an architectural style to guide the defini-
tion of the HTTP and URIs in web development. All resources in a REST system have
defined URIs. Clients access these resources by using GET, POST, DELTE and PUT
as general HTTP interfaces. GET generally returns a representation of the resource.
PUT lets a client replace the resource entirely with a new state while DELETE is used

!9

to remove the resource. POST normally is used to create a new resource. The goal of
REST is to achieve: (1) scalability (2) generality (3) independency (4) intermediary re-
duction of components and (5) reduction in latency, security enforcement and legacy
systems encapsulated. [9, 1.]

An architecture that applies REST principles is called RESTful.

3.2.3. Play framework

Play framework (version 2.6.17) contributes to providing built-in libraries and backbone
to implement a web server. Play is a Java and Scala web application framework de-
signed for high productivity that has integrated components and APIs to develop a
modern web application. It has several built-in modules that help with the development
of REST services or Web Application such as HTTP server, routing mechanism, JSON
parsing handling, etc. Akka and Akka Streams technologies run under the covers to
manage resource consumption for minimal usage. [10.]

Play implements Model-View-Controller (MVC) architecture which is a concept of a
system divided in three components: model that implies the domain knowledge, view
that refers to the interface that user faces and controller that handles view’s updates
[11,1]. Each component is specialised in its own task. In more details, the model holds
the data of application. The view is responsible for visual display of this data or the
model. The controller and the view are always linked. It notifies the view to determine
which resources are being changed by the user and to propagate this information to
model methods that updates new states to these objects. The model handles these
changes and it sends updates to the view. A view is usually associated with a unique
controller while the model can have multiple view-controller pairs. [11, 2.]

Based on the relationship of the three components, Play is believed to have advan-
tages in less coupling and higher cohesion architecture, flexibility in the views, clarity in
design, greater scalability and helps with maintenance facilitation [11, 1].

3.2.4. PostgreSQL

Postgres is chosen as a relational database software that persists data of the service.
Throughout the years, by consistently delivering performant and innovative solutions
with its proven architecture, reliability, data integrity, many robust feature sets, extensi-

!10

bility and the active contribution of open source community, Postgres has gained
tremendous reputation [12].

3.2.5. Kubernetes

Kubernetes is used to simulate a distributed system environment within one single ma-
chine. Kubernetes also provides a considerable amount of components that enable
replications, load-balancing, auto scaling as well as orchestrates the whole system
throughout its lifecycle from deployment to destruction. A Kubernetes cluster consists
of Kubernetes Master which is the controller panel, responsible for managing the clus-
ter state and Kubernetes Nodes, which are the machines (physical servers or VMs,
etc) belonged to the cluster, responsible for running the deployed applications. Typical-
ly, the cluster administrator communicates with Kubernetes Master using command-line
interface “kubectl” when interacting with the cluster.

A Pod is the most fundamental unit in a Kubernetes cluster, representing an encapsu-
lation of application container(s) and their storages, an associated unique IP address
and settings on how the container(s) may run. When having multiple containers in a
Pod, the containers are ensured to be located and scheduled to be on the same physi-
cal or virtual server. Resources and dependencies are shared among these containers
and they could communicate with each other. However, Pods do not heal by them-
selves, meaning if a Pod is scheduled in a Node that is under maintenance or in lack of
resources, it will be deleted. Therefore, Kubernetes uses controllers to manage Pods.
[13.] ReplicaSet is such a controller that is responsible for maintaining a stable number
of replicas of a Pod at any time [14].

A Kubernetes Deployment is a controller that manages state changes for Pods and
ReplicaSet. It has many states in a lifecycle: progressing, complete or failed. A De-
ployment is in progressing phase if a new ReplicaSet is created, a ReplicaSet is scal-
ing up/down or new Pods become available. A Deployment is marked complete if it
could make sure: all updates to the replicas have finished, all replicas are available and
no old replicas are running. On the other hand, any of the errors that prevent the De-
ployment from deploying the newest ReplicaSet would cause the Deployment to get
stuck, or failed, such as: insufficient resources, readiness probe failure, errors in pulling
Docker images, etc [15.]

In Kubernetes, it is necessary to understand the concept of a Service, which is an ab-
straction that targets Pods based on their labels and defines a policy to access those

!11

Pods. To address a particular Service, it is possible to use its record in Kubernetes
DNS server, which is a storage of mappings between a Service’s name and its IP ad-
dress. Therefore, it is sufficient to remember the name of a Service when trying to
communicate with it. For example, a Service with name “my-app” in Namespace “my-
ns” would have a DNS record of “my-app.my-ns" which is then discoverable inside the
cluster. The default mode of proxying the request to a Service’s Pods is called “ipta-
bles”, which essentially chooses a Pod randomly when routing the traffic. The level of
exposure of a Service is determined by its “ServiceType”, which could be one of the
followings: ClusterIP, NodePort, LoadBalancer and ExternalName. ClusterIP is the de-
fault type and only allows the Service to be reachable inside the cluster. NodePort type
proxies the configured port on all Nodes into the Service which allows clients from out-
side the cluster to reach via <NodeIP>:<NodePort>. LoadBalancer type enables a
cloud load balancer to route traffic to the Pods inside the cluster. And finally, External-
Name creates a DNS record that maps that Service’s name to a specified “external-
Name”. [16.]

Horizontal Pod Autoscaler (HPA) is a Kubernetes component that observes CPU utili-
sation of a set of Pods and ensures that the number of Pods is scaled up or down to
match a configure CPU target. Every 15 seconds (default), HPA queries for each tar-
geted Pod’s CPU utilisation from the resource metrics API and calculates a mean value
then compare with the target CPU to define a ratio used to calculate the number of de-
sired replicas. Readiness of a pod and missing metrics are taken into consideration
when computing. [17.]

ConfigMap is a storage object used inside Kubernetes to bind configuration artefacts to
a Pod’s containers. In this way, configuration data is decoupled from the Pod specifica-
tions, which prevents hardcoded values and at the same time shares this configuration
information to any other parties interested in the cluster. [18.]

3.2.6. Varnish

Varnish is a web application accelerator that typically is install in front of a server that
speaks HTTP and is configured to cache specific contents. It is believed to be able to
speed up delivery 300-1000 times faster. A key feature of Varnish is the flexibility in
configurations using its own domain language, VCL. Policies written in VCL help con-
figure what content to be served, where to get the content and modifications to the re-
quest or response. [19.]

!12

3.2.7. Jmeter

Apache Jmeter is an open source software, designed to do load testing and measure
performance. Static or dynamic resources and Web Application could be performance
tested using Jmeter. Different load types can be simulated on a server or group of
servers to test its strength and analyse overall performance. [20.]

Jmeter acts as the main tool responsible for conducting performance testing. Different
configurations are written to adapt with different scenarios.

3.3. Tools

MacOS is the chosen operating system with built-in Terminal used as an interface to
instruct different commands.

Codebase of the web server and deployment files to Kubernetes are maintained in ver-
sion control Github. IntelliJ and Vim serve as main IDE and lightweight text editor re-
spectively.

!13

4. Implementation

4.1. The application

4.1.1. Design

As presented in 3.1, the application is subjected to be a common web service that pro-
vides an interface via RESTful architecture for interested parties to retrieve and save
information. For easy understanding, the application’s context is taken as financial op-
erations in a bank such that it enables retrieving bank account details and depositing
as well as withdrawing.

Figure 4: Relational database model

As shown in Figure 4, a simple model consisted of a customer with multiple bank ac-
counts is implemented in Postgres database.

The interface to talk to the service is in RESTful style as described in the following ta-
ble.

Figure 5: RESTful endpoints of application

Per each request, the application tries to interact with its database and response back.

HTTP Verb Path Usage

GET /accounts/:accountId Get information of the bank
account given accountId

POST /accounts/:accountId/balance Withdraw or deposit money to a
bank account balance

GET /exchanges/eur_usd Get information of EUR_USD
exchange rate

!14

Figure 6: Communication with user in GET /accounts/:accountId endpoint

As seen from Figure 6, given a GET request to /accounts/:accountId, the application
looks up for the respective account from the database and returns response with status
code 200 and account details in Json format if the account is found, status code 404 if
not found and 500 with detailed error for other scenarios.

On the other hand, the POST endpoint is slightly more complicated as it is responsible
for both withdrawing and depositing money to account balance.

Figure 7: Communication with user in POST /accounts/:accountId/balance

Figure 7 shows an addition response 400 Bad request compared to the presented GET
request as the information of the request body can be considered improper if the appli-
cation could not understand or it is logically incorrect to fulfil such request. An example
would be when the balance is insufficient to process a withdraw.

!15

The other GET /exchanges/eur_usd endpoint is a proxy to a public API that provides
exchange rates with continuous updates. Therefore, all the responses are mirrored via
the application. More details about this endpoint will be presented in the following sec-
tion.

4.1.2. Play framework integration

The application is structured according to Play’s guidelines as shown in Figure 8.

Figure 8: Anatomy of the application

Controllers are the modules that call Services and handle requests from users as well
as giving back respective responses. Services interact with DAO layer and apply busi-
ness logic or data transformation before giving back to Controllers. The last layer in the
service communication flow being DAO is responsible for talking with application’s

!16

database. Models are object representations needed by the application to pass around
different layers, most important ones being the data persisted in Postgres. Additionally,
Filters act as a middleware between users and Controllers while Helpers are useful
methods that are used across the application. Database model changes are imple-
mented and version-controlled using Play’s native evolutions.

Given an input, a controller calls services to get respective outputs and ultimately
wraps a response that should meet user’s expectation under defined format.

def getAccount(id: Int) = Action.async { implicit request =>
 accountService.get(id) map {
 case Right(accountOption) =>
 if (accountOption.isDefined) {
 Ok(Json.toJson(accountOption.get))
 } else {
 respondWithError("Not found",
 NOT_FOUND,
 "The account with specified id is not found.")
 }

 case Left(e) =>
 logger.error(s"Error getting account", e)
 respondWithError(
 "Internal Server Error occurred",
 INTERNAL_SERVER_ERROR,
 e.msg)
 } recover {
 case NonFatal(e) =>
 logger.error("Error getting account", e)
 respondWithError(
 "Internal Server Error occurred",
 INTERNAL_SERVER_ERROR,
 e.getMessage)
 }
}

Listing 1. Excerpt of getting an account in Controller

As shown in listing 1, “accountService” is called with an ID to get the respective ac-
count. Controller returns Ok - 200 with the account in Json body if it is found or Not
found - 404 with an explanation. For other reasons that the service fails to complete the
procedure, an Internal server error - 500 is returned with its error message.

def withdraw(id: Int, amount: BigDecimal): Future[Either[RuntimeException,
Unit]] = {
 accountDAO.withdraw(id, amount) map {
 case Right(_) => Right(())
 case Left(e) =>
 if (e.msg.contains("balance_nonnegative")) {
 Left(InsufficientAmountException)
 } else {
 Left(e)
 }
 }
}

Listing 2. Excerpt of withdrawing money in Service

!17

Listing 2 describes some code lines that involve business logic, in this case determin-
ing whether balance has sufficient money to conduct a withdraw, in a Service.

The last layer in the flow of fulfilling a user request is the DAO methods. Below shows
an example when trying to communicate with database to withdraw money of a bank
account.

def withdraw(id: Int, amount: BigDecimal): Future[Either[DatabaseException,
Int]] =
 Future {
 Try {
 db.withConnection { implicit connection =>
 SQL("UPDATE account SET a_balance = a_balance - {amount} WHERE a_cus-
tomer_id = {id}")
 .on(
 "id" -> id,
 "amount" -> amount
)
 .executeUpdate()
 }
 }.toEither.left.map { e =>
 DatabaseException(e.getMessage)
 }
 }

Listing 3. Excerpt of withdrawing money in the DAO

def get(id: Int): Future[Either[DatabaseException, Option[Account]]] =
 Future {
 Try {
 db.withConnection { implicit connection =>
 SQL("SELECT * FROM account WHERE a_customer_id = {id}")
 .on(
 "id" -> id
)
 .as(parser.*)
 .headOption
 }
 }.toEither.left.map { e =>
 DatabaseException(e.getMessage)
 }
 }

Listing 4. Excerpt of getting bank account in the DAO

Anorm, Play’s database library, enables giving instructions to the database using plain
SQL language and transforms results into Scala classes as seen in listing 3 and 4.

!18

4.2. Infrastructure and environment

4.2.1. Architectural design

Design of how components communicate with each other is demonstrated in Figure 9
below.

Figure 9: High-level architecture

User request typically comes outside of Kubernetes and firstly passes by Varnish which
then checks if this request is configured to be cached and gives back already stored
response if possible. If not, the request then will directly try to reach the web applica-
tion which is routed randomly by the load balancer, which essentially is Kubernetes
Service. The number of application pods is determined by the mechanism of Kuber-
netes horizontal pod autoscaler that tries to ensure not any single pod has CPU utilisa-
tion over a configured target. Finally, the application processes the request and com-
municates with Postgres database to give back an HTTP response.

!19

4.2.2. Minikube setup

The process of installing Minikube is easiest using Homebrew on macOS with some
dependencies setup such as Virtualbox and kubectl [21].

 minikube start --cpus 2 --memory 4048

Listing 5. Starting minikube

Listing 5 shows a simple command line to issue a local Kubernetes cluster - minikube.

To check whether minikube is running without any problems, a command shown in list-
ing 6 is necessary.

minikube status

Listing 6. Checking minikube status

4.2.3. Application deployment

The application is packaged into a Docker image with the help of external library called
“sbt-native-packager”. Once installed properly, configurations of the image are defined
in sbt configuration file as shown in listing 7.

lazy val dockerSettings = Seq(
 dockerBaseImage := "openjdk:8-slim",
 dockerExposedPorts := Seq(9000)
)

lazy val root = (project in file("."))
 .settings(commonSettings:_*)
 .settings(dockerSettings:_*)
 .settings(libraryDependencies ++= libraries)
 .enablePlugins(PlayScala, JavaAppPackaging)

Listing 7. Docker settings in build.sbt

The most important setting being “dockerBaseImage” which is set to a light OpenJDK
image.

Given this setup, a simple sbt command could compile Scala classes to byte codes
and link the Docker process to JVM execution that runs the application. That Docker
image is then ready to be deployed into Kubernetes pods without much difficulty. De-

!20

clarative object configuration is chosen as the sole method to create resources in Ku-
bernetes cluster because changes to these configuration files could be stored in source
control system like Git. Such a configuration file is constructed following a Kubernetes
template which depends on the kind of resource and is possible to be customised with
different arguments and variables.

kubectl apply -f deploy/

Listing 8. Applying the resource configurations to cluster

Once the files are ready, the management of their resources are applied to minikube
using kubectl tool like shown in listing 8.

The application needs a Deployment template, which most importantly defines the
Docker image needed to be deployed for each pod and its pod configs as shown in list-
ing 9. Number of replicas and resources request/limit are modified extensively during
performance analysis.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 run: http-server
 name: http-server
spec:
 replicas: 1
 selector:
 matchLabels:
 run: http-server
 template:
 metadata:
 labels:
 run: http-server
 spec:
 containers:
 - image: simpleserver:0.8
 imagePullPolicy: Never
 name: http-server
 ports:
 - containerPort: 9000
 protocol: TCP
 resources:
 requests:
 memory: "800Mi"
 cpu: "0.2"
 limits:
 memory: "1200Mi"
 cpu: "0.4"

Listing 9. Application deployment file

Each of the pods then is associated with a Kubernetes service which is meant to en-
able communication with other pods inside the cluster.

!21

apiVersion: v1
kind: Service
metadata:
 labels:
 run: http-server
 name: http-server
spec:
 type: NodePort
 ports:
 - port: 9000
 protocol: TCP
 targetPort: 9000
 selector:
 run: http-server

Listing 10. Application service file

Listing 10 demonstrates a service configuration file where the associated pods are
matched using their labels, pod’s port inside container and service pod inside cluster is
linked up. This service is then exposed to the outside world at a static port on its
Node’s IP, meaning one is able to access this service via <NodeIP>:<NodePort>, which
is necessary in order to conduct load tests on the application using a software.

4.2.4. Postgres deployment

Similarly, Postgres’ configurations are managed in the same Deployment template with
minor differences as can be seen in listing 11.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 annotations:
 deployment.kubernetes.io/revision: "1"
 labels:
 run: postgres
 name: postgres
spec:
 replicas: 1
 selector:
 matchLabels:
 run: postgres
 template:
 metadata:
 labels:
 run: postgres
 spec:
 containers:
 - image: postgres:10.0
 name: postgres
 ports:
 - containerPort: 5432
 protocol: TCP
 resources:
 requests:
 memory: "800Mi"
 cpu: "0.2"
 limits:

!22

 memory: "1200Mi"
 cpu: "0.4"

Listing 11. Postgres deployment file

And its companion Kubernetes service is required to make it accessible within the clus-
ter as in listing 12.

apiVersion: v1
kind: Service
metadata:
 labels:
 run: postgres
 name: postgres
spec:
 type: NodePort
 ports:
 - port: 5432
 protocol: TCP
 targetPort: 5432
 selector:
 run: postgres

 Listing 12. Postgres service file

Pods inside the cluster now could communicate with Postgres by requesting to post-
gres:5432

4.2.5. Horizontal pod autoscaler

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: hpa
spec:
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: http-server
 minReplicas: 1
 maxReplicas: 10
 targetCPUUtilizationPercentage: 50

Listing 13. HorizontalPodAutoscaler configuration file

The configuration of auto scaling of an application as described in listing 13 simply con-
tains minimum and maximum number of pods as well as a target CPU utilisation where
Kubernetes tries to ensure that the average of CPU metric across all pods reaches the
target by scaling up or down.

!23

4.2.6. Varnish

As the cache is placed in front of the application, certain configurations written in VCL
language have to instruct Varnish to follow the request to the correct service as well as
its cache behaviour as shown below in listing 14 where the backend to be sending traf-
fic to is “http-server” and associated port 9000, which is the port of Service http-server
inside the cluster. Upon receiving a request, Varnish will assess in subroutine
“vcl_recv” whether to pass directly to the backend (pass) or to modify and process later
(hash). Here a request with method GET and header X-cache_enabled would suffice to
be a candidate for caching. From there, Varnish will lookup for a cached response; if
successful, it will return the cached response right away in subroutine “vcl_deliver”; if
not, the request will be forwarded to the respective backend for a response and arrives
at “vcl_backend_response” which creates a cached data with time-to-live of 30 min-
utes.

vcl 4.0;
backend default {
 .host = "http-server";
 .port = "9000";
}

sub vcl_recv {
 if (req.method == "GET" && req.http.X-cached-enabled) {
 return (hash);
 }
 return (pass);
}

sub vcl_backend_response {
 if (beresp.ttl <= 0s ||
 beresp.http.Set-Cookie ||
 beresp.http.Surrogate-control ~ "no-store" ||
 (!beresp.http.Surrogate-Control &&
 beresp.http.Cache-Control ~ "no-cache|no-store|private") ||
 beresp.http.Vary == "*") {
 /*
 * Mark as "Hit-For-Pass" for the next 0.5 minutes
 */
 set beresp.ttl = 30m;
 set beresp.uncacheable = true;
 }
 return (deliver);
}

sub vcl_deliver {
 if (obj.hits > 0) {
 set resp.http.X-Cache = "HIT";
 } else {
 set resp.http.X-Cache = "MISS";
 }
 return (deliver);
}

Listing 14. Varnish configuration in VCL language

!24

As the endpoint to be cached itself is refreshed every hour, it is necessary that each
cached response is set to be expired less than that to make sure application could get
access to newest data. In this case, it is set to be 30 minutes as the maximum afford-
able delay.

In order to have these configurations accessible inside Kubernetes cluster, a Con-
figmap is deployed alongside with Varnish as shown in listing 15.

apiVersion: v1
data:
default.vcl: "vcl 4.0;\nbackend default {\n .host = \"http-server\";\n .port
=\"9000\";\n}\n\nsub vcl_recv {\n if (req.method == \"GET\" && req.http.X-
cached-enabled){\n\treturn (hash);\n}\n return (pass);\n}\n\nsub vcl_back-
end_response{\n if (beresp.ttl <= 0s ||\n beresp.http.Set-Cookie ||\n
beresp.http.Surrogate-control~ \"no-store\" ||\n(!beresp.http.Surrogate-Con-
trol &&\n beresp.http.Cache-Control ~ \"no-cache|no-store|private\") ||\n
beresp.http.Vary == \"*\") {\n/*\n* Mark as \"Hit-For-Pass\" for the next 2
minutes\n */\n set beresp.ttl = 30m;\n set beresp.uncacheable = true;\n }\n
return (deliver);\n}\n\nsub vcl_deliver {\n if (obj.hits > 0) {\n
set resp.http.X-Cache = \"HIT\";\n\} else {\n set resp.http.X-Cache =
\"MISS\";\n}\n return (deliver);\n}\n\n"
kind: ConfigMap
metadata:
 creationTimestamp: null
 name: varnish-config
 selfLink: /api/v1/namespaces/default/configmaps/varnish-config

Listing 15. Varnish configuration in Configmap

This Configmap is mounted as a volume in Varnish pod.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: varnish-cache
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: varnish-cache
 spec:
 containers:
 - name: cache
 resources:
 requests:
 # We'll use two gigabytes for each varnish cache
 memory: 1Gi
 image: brendanburns/varnish
 command:
 - varnishd
 - -F
 - -f
 - /etc/varnish-config/default.vcl
 - -a
 - 0.0.0.0:8080
 - -s
 # This memory allocation should match the memory request above
 - malloc,1G

!25

 ports:
 - containerPort: 8080
 volumeMounts:
 - name: varnish
 mountPath: /etc/varnish-config
 volumes:
 - name: varnish
 configMap:
 name: varnish-config

Listing 16. Varnish deployment file

Listing 16 demonstrate a similar deployment file for Varnish where daemon “varnishd”
is passed a path to get VCL configuration.

!26

5. Performance analysis

5.1. Test cases

In order to achieve a high-performant design, it is vital to conduct testing with changing
configurations, to define what is the most effective arrangement of components and
their settings. Two main test cases are presented: (1) Number of application pods and
(2) The use of caching. All tests are done using the same machine with the following
specifications: MacBook Pro 2017, macOS High Sierra, 2.3 GHz Intel Core i5, 16 GB
2133 MHz LPDDR3 of memory and 256 GB of SSD. Fake test data (account informa-
tion and their bank details) are generated with 1000 records each. Jmeter is used as
performance testing software that directly sends out HTTP requests to the web service
then collects results and produces a consistent summary report.

5.2. The number of application pods

This first test is about how significant a performance improvement it is when increasing
number of application pods. Jmeter simulates a heavy traffic with 1000 concurrent
users retrieve random bank account balances then deposit and withdraw money from
their accounts. To increase reliability, each round is looped 10 times. All traffics are sent
to the application’s REST API with respectively GET “/accounts/:accountId” to get bank
details then POST “/accounts/:accountId/balance” to change account’s balance (or in
other words deposit/withdraw).

 Figure 10: Result of test with 1 pod

As shown in Figure 10, with only 1 pod, the average elapsed time to retrieve, deposit
then withdraw per user was 2292 ms. Most importantly, the web service processed 270
requests per second with 6.3 % error rate, which resulted from timed out operations
because the application could not response back in time.

!27

Figure 11: Result of test with 2 pods

Observed from Figure 11, when switching to having 2 pods at the same time, the web
service performance favoured from a great 35% increase in throughput (366.8/sec
compared to 270.1/sec) and a 43.65% decrease in error rate (3.55% compared to
6.3%). This improvement was expected as there were twice as many resources to fulfil
the requests.

Figure 12: Result of test with 3 pods

Similarly in Figure 12, the throughput tremendously increased to a 517.2 requests per
second when applying 3 pods, which was roughly 41% improvement in comparison
with 2 pods’ result while error rate dropped down to 1.19%.

Figure 13: Comparison of results in graph

0rps
150rps
300rps
450rps
600rps

0 %
1,75 %
3,5 %

5,25 %
7 %

1 pod 2 pods 3 pods

Error rate Throughput

!28

From Figure 13, it can be seen that the performance of the web service is linear to the
number of replicas of the application. The more resources available to scale up, the
more replicas could be spawn which means as user traffic increases in a day, it is pos-
sible to use autoscaling mechanism, like HPA provided by Kubernetes, to adapt based
on the change. This means the amount of resources being consumed by the web ser-
vice would change according to how the demand requires and directly leads to efficient
resources allocation in the cluster.

Given a target CPU utilisation of 50%, minimum 1 pod and maximum 3 pods config-
ured in HPA, running the same test again, the number of pods automatically increased
to 3 to satisfy heavy traffic then reduced back to 1 after the test as shown in Figure 14.

Figure 14: Pods autoscaling logs from HPA

Under HPA configuration, the performance was a bit less than having consistent 3 pods
(448.9 RPS in Figure 15) but resources are free after traffic is reduced. This essentially
means that not much administration effort has to be spent in order to cope with fluctuat-
ing web traffic throughout the day and still ensure the resources are allocated efficiently
within the overall system.

Figure 15: Result of test with HPA configuration

!29

5.3. The use of caching

As discussed in Theoretical background section, responses are often cached to help
with performance if they are consistent and do not change often. The API to get cur-
rency exchange rate “/exchanges/eur_usd” is such one as the source of the data only
updates its information every 60 minutes. Varnish is configured to save the response
and keep it alive for 30 minutes, meaning in the worst case it takes 30 minutes to get
the latest update from the source but the performance should be greatly significant as
an advantageous tradeoff. In this scenario, it is assumed that a possible delay of 30
minutes is acceptable to the business.

In this test, Jmeter proceeded to simulate 100 users for 10 rounds and tried to get ex-
change rate from the web server.

 Figure 16: Result of test without cache

Figure 17: Result of test with cache

As observed from both Figure 16 and Figure 17, with the cache in place, the perfor-
mance was considerably better with 0% error rate, 1 ms response time in average and
50.5 RPS.

!30

6. Discussion

Though not mentioned in the performance analysis, it is probably fundamentally clear
that given an environment with fixed amounts of power (CPU, RAM, etc), having more
replications (more pods, each pod has smaller resources) might decrease performance
since the machine has some overheads of using its power to run abstraction processes
created by the applications. At the essence of a computer, the number of cores of a
processor enables parallelism processing. However, it might be that a single applica-
tion already understands how to take advantages of multi-core processor, hence
achieving maximum potentials. Therefore, having more applications may not mean bet-
ter parallelism but create overheads for the machine. In order to have a better under-
standing in regards to this theory, it might make sense to perform load tests and an-
alyse at the low-level processes/threads of the machine to see the impact.

In practice, the fact that having more replications, each having the same resources,
increases performance already assumes that the system has additional resources to
rescue under heavy load. In that sense, autoscaling the number of pods is a powerful
method to ensure high performance but minimised cost in a distributed system, assum-
ing that the whole system is similar to a virtual machine that could agilely scale up/
scale down, which is usually a feature that cloud providers like Amazon Web Service
supports. Although the HPA configuration used in this research takes average CPU util-
isation as a method to calculate the number of replicas, it is also possible to have cus-
tom metrics that may be more relevant in a practical context. It may take metrics that
actually impact the business. For example: a service has SLI (Service Level Indicator),
which is the measurement of service to reach its business goal, of 95% of user re-
quests have response time less than 200ms may be taken as a variable in autoscaling
algorithm.

Generally, it is recommended to have a minimum number of replicas larger than one
without consideration of performance. Because it may increase the availability or fault-
tolerance of the system. For example, an application with 50% failure rate may get up
to 25% failure rate when having another replica. Or when rolling out a new version of
the application, it is undoubtedly necessary to make sure there are some replicas run-
ning to still serve the clients while some are getting updated to the newer version. An-
other good reason to have multiple replicas is to place them in different geographical
locations in order to have better chances of having a server that is closer to a client,
meaning the request may reach a server faster and the client gets faster response.
Coming up with a balanced minimum number of replications that provides best out-

!31

come of both throughput and reliability probably requires extensive testing (load test,
strength test, etc) under different conditions.

As mentioned when discussing load balancers in section Two, different algorithms of
choosing where to route traffic to could also have an impact in performance. Since Ku-
bernetes 1.9, a feature in beta testing called “ipvs” is a new proxy-mode for its Service.
It is promised to be faster and more importantly, provides different options for load bal-
ancing algorithms. The analysis conducted in this paper used a random strategy, which
may not provide the best outcome. Testing with different algorithm, especially ones that
take into account the states of the applications before making a decision where to go to
may have a promising outcome.

!32

7. Conclusion

All in all, the replicated load-balanced services pattern is considered reliable and high-
performant for three reasons. Firstly, it ensures high availability through replications of
the service. Secondly, loads among these instances are distributed equally by load
balancers. Thirdly, heavy computations possibly do not have to happen in the services
frequently thanks to the caching layer. The implementation of such design pattern is
facilitated by the rapid development of virtualisation and containerisation technologies.

In order to achieve the optimal performance using this pattern, it is essential to ac-
knowledge that the more application pods, the more throughput they provide. However,
it is probably wise to apply some autoscaling mechanism to both ensure a high
throughput and at the same time cut down unnecessary resources during low-traffic
time.

The use of caching is a great tool to offload heavy processing in the backend and pro-
vides high performance but it comes with a cost of potentially losing latest data. In that
case, configuring a sensible time-to-live while understanding the business impact if in
worst case scenarios would bring out the best values of caching and mitigate possible
risks.

!33

References

1. Brendan Burns. Designing distributed systems [online]. California, USA: O’Reilly
Media, Inc; 2018 Available from: https://www.cbronline.com/wp-content/uploads/
dlm_uploads/2018/04/Designing_Distributed_Systems.pdf [Accessed 3 October
2018].

2. Kamble A.L, Shinde T.K, Kothiwale N., Khot S.S. Real Time And Distributed
Computing Systems. Second International Conference on Emerging Trends in
Engineering (SICETE). 2013; Vol.3: pp.53-56.

3. Anu Kaul, Meena Gupta, Khushwant Kaur. Using virtualisation for distributed
computing. International Journal of Advances in Electronics and Computer Sci-
ence. July, 2015; Vol.2; Issue 7: pp.37-39.

4. T. Deepa, Dhanaraj Cheelu. A comparative study of static and dynamic load bal-
ancing algorithms in cloud computing. International Conference on Energy,
Communication, Data Analytics and Soft Computing . Aug 2017; pp.3375-3378

5. Kunhua Zhu, Junhui Fu, & Yancui Li. (2010). Research the performance testing
and performance improvement strategy in web application. 2010 2nd In-
ternational Conference On Education Technology And Computer. Shanghai,
2010, pp. V2-328-V2-332.

6. Z. Huaji and W. Huarui, Research on web application load testing model. 2017
IEEE 2nd Information Technology, Networking, Electronic and Automation Control
Conference (ITNEC), Chengdu, 2017, pp. 1175-1178.

7. O’Reilly (2019). Programming Web Services with SOAP. [online] Available at:
https://learning.oreilly.com/library/view/programming-web-services/0596000952/
ch01.html [Accessed 11 Feb. 2019].

8. M. S. Bhat, D. G. Nair, D. Bansal and J. Vaishnavi, "Data structure based perfor-
mance evaluation of emerging technologies — A comparison of Scala, Ruby,
Groovy, and Python," 2012 CSI Sixth International Conference on Software Engi-
neering (CONSEG), Indore, 2012, pp. 1-5

https://www.cbronline.com/wp-content/uploads/dlm_uploads/2018/04/Designing_Distributed_Systems.pdf
https://www.cbronline.com/wp-content/uploads/dlm_uploads/2018/04/Designing_Distributed_Systems.pdf
https://www.cbronline.com/wp-content/uploads/dlm_uploads/2018/04/Designing_Distributed_Systems.pdf
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8379907
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8379907
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8379907

!34

9. H. Li, "RESTful Web service frameworks in Java," 2011 IEEE International Con-
ference on Signal Processing, Communications and Computing (ICSPCC), Xi'an,
2011, pp. 1-4.

10. Play framework documentation (2019). What is Play? [online] Available at: https://
www.playframework.com/documentation/2.7.x/Introduction [Accessed 30 March
2019].

11. D. M. Selfa, M. Carrillo and M. Del Rocio Boone, "A Database and Web Applica-
tion Based on MVC Architecture," 16th International Conference on Electronics,
Communications and Computers (CONIELECOMP'06), Puebla, Mexico, 2006,
pp. 48-48.

12. ProgreSQL documentation (2019). About PostgreSQL. [online]. Available at:
https://www.postgresql.org/about/ [Accessed 31 March 2019].

13. Kubernetes.io. (2019). Kubernetes pods. [online] Available at: https://kuber-
netes.io/docs/concepts/workloads/pods/pod-overview/ [Accessed 31 March
2019].

14. Kubernetes.io. (2019). Kubernetes ReplicasSet. [online] Available at: https://ku-
bernetes.io/docs/concepts/workloads/controllers/replicaset/ [Accessed 31 March
2019].

15. Kubernetes.io. (2019). Kubernetes deployments. [online] Available at: https://ku-
bernetes.io/docs/concepts/workloads/controllers/deployment/ [Accessed 31
March 2019].

16. Kubernetes.io. (2019). Kubernetes services. [online] Available at: https://kuber-
netes.io/docs/concepts/services-networking/service/ [Accessed 1 April 2019].

17. Kubernetes.io. (2019). Kubernetes Horizontal Pod Autoscaler. [online] Available
at: https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/ [Ac-
cessed 1 April 2019].

18. Google Cloud. (2019). Kubernetes Configmap [online] Available at: https://cloud.-
google.com/kubernetes-engine/docs/concepts/configmap [Accessed 1 April
2019].

https://www.postgresql.org/about/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://cloud.google.com/kubernetes-engine/docs/concepts/configmap
https://cloud.google.com/kubernetes-engine/docs/concepts/configmap

!35

19. Varnish (2017). Varnish introduction. [online] Available at: https://varnish-
cache.org/intro/index.html#intro [Accessed 31 March 2019].

20. Jmeter (2019) [online] Available at: https://jmeter.apache.org/ [Accessed 31
March 2019].

21. Kubernetes.io. (2019). Install Minikube. [online] Available at: https://kuber-
netes.io/docs/tasks/tools/install-minikube/ [Accessed 25 Feb. 2019].

https://varnish-cache.org/intro/index.html#intro
https://varnish-cache.org/intro/index.html#intro
https://jmeter.apache.org/

	Introduction
	Theoretical background
	Distributed systems
	Model
	Virtualisation and containerisation
	Replicated load-balanced services pattern
	Load balancer
	Caching layer
	Performance analysis
	Methods and tools
	Project approach
	Technology
	Scala
	REST
	Play framework
	PostgreSQL
	Kubernetes
	Varnish
	Jmeter
	Tools
	Implementation
	The application
	Design
	Play framework integration
	Infrastructure and environment
	Architectural design
	Minikube setup
	Application deployment
	Postgres deployment
	Horizontal pod autoscaler
	Varnish
	Performance analysis
	Test cases
	The number of application pods
	The use of caching
	Discussion
	Conclusion
	References

