

Mengge Hu

Facial Emotional Recognition With Deep

Learning On Pepper Robot

Technology and Communication

2019

FOREWORD

This is my final thesis about facial emotional recognition with deep learning on

Pepper robot. I would like to express my appreciation to all the people who have

helped me during the period I fulfilled my final project.

The first person I would like to express my appreciation is my tutor Dr. Yang Liu.

During the whole period, he helped me to choose the topic of my project and

discussed with me patiently to ensure the structure and plan which contained the

whole step that I need to follow to fulfill my final project. It is him that gave me the

confidence to learn and design my project with deep learning knowledge. Under his

help and guidance, I have already learned much about the deep learning and the

process to design a complete project.

I am still grateful to my parents who gave me the economic and mental supports to

let me study and live in Finland. Also, I would like to show my appreciation to my

boyfriend who gave me much support to be confident and happy.

Finally, thanks to all the staff in VAMK for their patient guidance and help.

Mengge Hu

Vaasa, Finland

25.05.2019

VAASAN AMMATTIKORKEAKOULU

VAASA UNIVERSITY OF APPLIED SCIENCES

Degree Program in Information Technology

ABSTRACT

Author Mengge Hu

Title Facial Emotional Recognition With Deep Learning

On Pepper Robot

Year 2019

Language English

Pages 59

Name of Supervisor Yang Liu

There are millions of people in the world, who suffer from life-threatening diseases

each year. It has been reported that the magnitude of the disparities of healthcare

quality worldwide is still significant. In particular, things can lead to high mortality,

such as inadequate doctor-patient ratio and lack of intelligent medical facilities.

This situation, however, has been largely alleviated by the rapid developments in

fields of Computer Aided Design (CAD) and Robotics. For example, the computer-

aided machine can help doctors analyze radiological images and make diagnosis

more quickly and accurately; the medical automatic system offers patients a broad

and wide access to medical resources in a more effective way. This project is the

use of robots for capturing and identifying the patient's expression, through the deep

learning of the computer to determine the patient's mental state.

The main research works concludes six contents, face detected by photos, resolved

by Open Source Computer Vision Library (OpenCV), facial dataset, resolved by

Kaggle’s Fer2013, the processing training and testing the facial dataset, resolved

by the model Convolutional Neural Network (CNN), showing the result by a bar

chart is the next one, resolved by Matplotlib and taking pictures for patients,

resolved by one of Pepper’s modules, ALPhotoCapture and face detected by the

robot, resolved by one of Pepper’s modules, ALFaceDetection.

Keywords: PEPPER robot, Convolutional Neural Network, Facial

Emotional Recognition

1

CONTENTS

ABSTRACT

CONTENTS ...1

LIST OF FIGURES AND TABLES ..3

1 INTRODUCTION ..5

1.1 Related Technologies and Development Environment5

1.1.1 Deep Learning ...5

1.1.2 Artificial Neural Network’s History ..6

1.1.3 Simple Artificial Neural ..7

1.1.4 Artificial Neural Network ..8

1.1.5 Convolution Neural Network (ConvNet/CNN)13

1.2 TensorFlow ...17

1.3 Keras ...18

1.4 Pepper Robot ..19

1.4.1 NAOqi Python API ..21

1.4.2 ALTextToSpeech ...22

1.4.3 ALFaceDetection ...22

1.5 OpenCV-Python ...24

1.6 NumPy ..24

1.7 Matplotlib ...24

2 FEASIBILITY STUDY ..25

2.1 Technical Feasibility Study ..25

2.2 Economic Feasibility Study ...27

2.3 Operational Feasibility Study ...28

2.4 Legal Feasibility Study ...28

2

3 SOFTWARE REQUIREMENT ANALYSIS ...29

3.1 Functional Analysis ..29

3.2 System Flowchart ...29

3.3 Data Flowchart ...30

3.3.1 Input Data Flowchart ...30

3.3.2 Dataset Training Flowchart ...30

3.3.3 CNN Structure Module Flowchart ..32

3.3.4 Output Data Flowchart ..32

4 DETAILED DESIGN ...34

4.1 CNN Structure Module ..34

4.2 Training Module ...41

4.3 Predict Model ...43

5 IMPLEMENTATION ...45

5.1 Detecting and Taking Pictures Implementation ...45

5.2 Transferring Pictures Implementation ..47

5.3 Recognizing Face in Pictures Implementation ...48

5.4 Predicting the Pictures Implementation ...49

5.5 Analyzing and Visualizing Result Implementation50

6 IMPROVEMENT AND CONCLUSION ...53

REFERENCE ...55

3

LIST OF FIGURES AND TABLES

Figure 1. Biological Neural [2] 7

Figure 2. Artificial Neural [3] 8

Figure 3. The Graph of the Sigmoid Function [4] 10

Figure 4. LMS algorithm [5] 10

Figure 5. Multilayer Perceptron [6] 11

Figure 6. A Neural Network with MATLAB [7] 13

Figure 7. CNN Sequence to Classify Handwritten Digits [8] 14

Figure 8. A Step of Convolution Process [9] 15

Figure 9. Example of Convolution Process in Picture [10] 15

Figure 10. Example of Pooling [11] 16

Figure 11. TensorFlow Core Graph [12] 18

Figure 12. Keras Modules Structure [14] 18

Figure 13. Pepper Robot [15] 19

Figure 14. Pepper Dimensions [16] 20

Figure 15. Pepper Dimensions [16] 20

Figure 16. The NAOqi process [17] 21

Figure 17. Pepper’s Microphones [16] 22

Figure 18. 2D Cameras in Pepper [16] 23

Figure 19. 3D Sensor in Pepper [16] 23

Figure 20. Finland Mental Health Report [18] 28

Figure 21. System Flowchart 30

Figure 22. Input Date Flowchart 30

Figure 23. Examples Picture of Fer2013 [19] 31

Figure 24. Fec2013.csv 31

Figure 25. Dataset Training Flowchart 32

Figure 26. CNN Structure 32

Figure 27. Output Data Flowchart 33

Figure 28. CNN Detailed Structure 34

Figure 29. Example Codes for Displaying the CNN Structure about convolution

layers 34

Figure 30. Example Codes for Displaying the CNN Structure about convolution

4

and pooling layers 35

Figure 31. Example Codes for Displaying the CNN Structure about fully-

connected layer 35

Figure 32. Data Processing Flowchart 36

Figure 33. CNN Structure after Training 40

Figure 34. Training Module Flowchart 41

Figure 35. Predict Module Flowchart 43

Figure 36. Example Result of model.predic_classes() 43

Figure 37. Example Result of model.predict() 44

Figure 38. The Result of Final Accuracy 44

Figure 39. Project Implementation Flowchart 45

Figure 40. Detecting and Taking Pictures Implementation 47

Figure 41. Transferring Pictures Implementation 48

Figure 42. Recognizing Face in Pictures Implementation 49

Figure 43. Predicting the Pictures Implementation 50

Figure 44. Visualizing Results in Bar Chart 51

Figure 45. Final Result after Analyzing 52

5

1 INTRODUCTION

With the rapid development of society, people are under increasing pressure.

Nowadays, people, whether children, teenagers, adults or the elderly, are generally

in a bad state of mind, usually ignored by themselves or ignored by those around

them. As a Yle survey reported, around 90,000 kids who are all under 13 years old

suffer from some mental health issues, while a shortage of care providers was

witnessed through the whole the country. According to words from experts, there

is a growing group which has been diagnosed and treated for minor or moderate

mental health issues. At the same time, with the popularization and application of

artificial intelligence, the method, using this technology reasonably, begins

popularity to ease the needs for human resources. This project aims at recognizing

the patients’ mental change, especially at the children’s mental change, as a result

of it, people can realize the emotional change that they may ignore sometimes. So

in this project, the module of Convolutional Neural Network is built for training,

testing and detecting patients’ facial emotion changes, then identifying and

recognizing the patients’ mental statues with the Pepper Robot.

1.1 Related Technologies and Development Environment

1.1.1 Deep Learning

Deep Learning, a learning algorithm (Learning Algorithm), is an important branch

of the field of artificial intelligence. From rapid development to practical

application, in just a few years, deep learning has upended the algorithm design

ideas in many fields, such as speech recognition, image classification and text

comprehension, and gradually formed a new model from the training data, through

an end-to-end (End-to-end), and then directly output the final results.

The essence of deep learning is to learn useful features via constructing machine

learning models with many hidden layers and lots of training or testing data, so as

to improve the accuracy of classification or prediction. Distinguished from the

traditional shallow learning, the difference in deep learning lies in:

6

i. The depth of the model structure is emphasized, usually, there are 5 layers,

6 layers, or even 10 layers of hidden layer nodes;

ii. The importance of feature learning is clearly highlighted. The characteristic

transformation of the sample in the original space is transformed into a new

feature space, which makes classification or prediction easier.

Compared with the method of constructing characteristics of artificial rules, using

big data to learn features and describe the intrinsic information rich in data, at

present, deep learning has a wide range of applications in search advertising CRT

prediction, natural language processing, image recognition, speech recognition, and

unmanned driving.

1.1.2 Artificial Neural Network’s History

In 1943, neurologists and neuron anatomy McCulloch and mathematician Pitts

published articles in the Journal of Biophysics presenting mathematical

descriptions and structures of neurons. It is also proved that any computational

function (M-P model) can be simulated as long as there are enough simple neurons

that are connected to each other and run synchronously. The pioneering work they

do is considered to be the starting point of artificial neural networks (ANN). In

1949, physiologist Hebb published behavioral histology, describing the Hebb

adjustment rules for neuronal weights. He points out that in neural networks,

information is stored in connection weights. It is suggested that the connection right

of neuron A to neuron B is the same as the connection right from B to A.

In 1958, Rosenblatt, a computer scientist, proposed a neural network structure with

three layers of network characteristics, called a "perception". The perceptron he

proposed may be the first real artificial neural network in the world. After the sensor

was put forward, the first craze of neural network research was set off in the 60s.

Many people think that as long as they use thousands of neurons, they can solve all

the problems. In 1969, Minsky and Papert, who are among the founders of Artificial

Intelligence, published a book called "Perceptron," which states that simple neural

networks can only be used to solve linear problems, and that networks capable of

7

solving nonlinear problems should have hidden layers, In theory, it is not proved

that it is meaningful to extend the Perceptron model to a multi-layer network.

In June 1987, the first International Neural Network Academic conference was held

in Santiago, California, USA, where more than 1,600 people were represented. This

was followed by an annual international academic conference organized jointly by

the International Society for Neural Networks and the International Institute of

Electrical Engineers and Electronic Engineers (IEEE). Later than 1987, the neural

network flourished. Especially in recent years, showing an outbreak trend, neural

networks began to be used in all areas of life, and a variety of new neural network

models are constantly proposed. For instance, a variety of image recognition,

speech recognition records are constantly refreshed. Artificial intelligence has now

become a popular topic. [1]

1.1.3 Simple Artificial Neural

Artificial neurons are simple simulations of human nerve cells using a mathematical

model. Human nerve cells have multiple dendrites and an elongated axon, shown

in Figure 1. The axons of one neuron connect to the dendrites of other neurons and

transmit nerve pulses to them. A neuron determines whether a nerve pulse is emitted

from its axons to other neurons based on the signals of several dendrites from it.

Figure 1. Biological Neural [2]

8

An artificial neuron is the mathematical modeling of biological neurons. See

Figure 2.

Figure 2. Artificial Neural [3]

𝑃1, 𝑃2, ⋯𝑃𝑛 is the input of artificial neurons. a is the output of an artificial nerve

element. The artificial nerve element will be entered 𝑃1, 𝑃2, ⋯ 𝑃𝑛 , weighted

summation is followed by a bias value b, finally applied to a function f, that is:

𝑎 = 𝑓(𝑛) = 𝑓(∑𝑝𝑖𝑤𝑖

𝑛

𝑖=1

+ 𝑏) = 𝑓((𝑤1, 𝑤2, ⋯𝑤𝑛)

(

𝑝1
𝑝2
⋮
𝑝𝑛
)

 + 𝑏)

= 𝑓(𝑊𝑇𝑃 + 𝑏)

⑴

The upper formula is finally the vector form of the formula. P is the input vector,

W is the weight vector, and B is the bias value scalar, and f is called an "activation

function." Activation functions can take many forms.

1.1.4 Artificial Neural Network

• Single Layer Neural Network

In this kind of neural network, the input-output mapping relationship is logical

regression, as shown in Figure 1.3.

i. 𝑝𝑖 is the input value and b is the bias.

ii. The connection strength is represented by the weight value 𝑤𝑖 ∈ ℛ. If 𝑤𝑖 >

9

0, the connection is activated, else closed.

iii. ∑ is represented by the weighted sum of each input signal.

iv. f is represented by a nonlinear transfer function, nonlinear mapping which

means the output amplitude will be limited to a certain range.

{
𝑛 =∑𝑤𝑖𝑝𝑖

𝑛

𝑖=1

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑛)

⑵

The threshold function:

f = sng(𝑝 − 𝜃) ⑶

The commonly used nonlinear activation functions are Sigmoid, Tanh, Relu and so

on, the sigmoid and tanh functions are more common in the full connection layer,

the latter Relu is common in the convolution layer. The Sigmoid function:

𝑓(𝑥) =
1

1 + 𝑒−𝑥

⑷

The function of the Sigmoid function is to compress a real number between 0 and

1. When x is a very large positive number, 𝑓(𝑥) will approach 1, and when x is a

very small negative number, 𝑓(𝑥) will approach 0. The use of this compression is

to think of the activation function as a "probability of classification", for example,

if the output of the activation function is 0.9, it can be explained that the probability

of 90% is a positive sample. Therefore, the graph of the Sigmoid function 𝑓(𝑥) is

represented as following in Figure 3. (the horizontal axis represents the definition

domain x, and the longitudinal axis represents the value field 𝑓(𝑥)):

10

Figure 3. The Graph of the Sigmoid Function [4]

It was proposed in 1958 that, unlike the MP model, weights were variable so that

learning could be carried out. It contains a linear accumulator and a two-valued

threshold element (the activation function is a threshold function), and also includes

an external deviation b. Single-layer perceptron is designed to classify inputs two,

when the sensor output + 1 o'clock, the input is a class, and when the output is-1,

the input is another category. Then there is the single-layer perceptron that applies

the LMS algorithm, shown in Figure 4.

Figure 4. LMS algorithm [5]

11

• Multilayer Perceptron (MLP)

Multilayer perception is to add several hidden layers between the input layer and

the output layer Because their values cannot be observed in the training sample, it

is called the hidden layer, shown as Figure 5.

Figure 5. Multilayer Perceptron [6]

As shown in Figure 5, the output of one neuron is input to another. Neural networks

can have a wide variety of topologies. One of the simplest is "multi-layer fully

connected forward neural network". Its input is connected to each neuron in the first

layer of the network. The output of each neuron in the previous layer is connected

to the input of each neuron in the next layer. The output of the last layer of neurons

is the output of the entire neural network. The calculation of the whole neural

network can be given in matrix type. A single-layer is given to formula for artificial

neural networks. The number of neurons per layer is different, the input/output

dimensions are not the same, the number of matrices and vectors in the formula is

12

not the same, but the form is consistent. Suppose this layer is the first layer. It

accepts input and has a neuron (output), so the calculation of this layer is shown in

the following formula:

𝑂𝑖 = (

𝑜1
𝑖

⋮
𝑜𝑛
𝑖
) = 𝑓((

𝑤11
𝑖 ⋯ 𝑤1𝑚

𝑖

⋮ ⋱ ⋮
𝑤𝑛1
𝑖 ⋯ 𝑤𝑛𝑚

𝑖
)(

𝑜1
𝑖−1

⋮
𝑜𝑚
𝑖−1
) + (

𝑏1
𝑖

⋮
𝑏𝑛
𝑖
))

⑸

In the training of MLP, the random gradient drop of minibatch is generally used,

and the inverse error conduction algorithm is used to realize the training of

parameters after the gradient is obtained. The classical neural network training

algorithm is the reverse propagation algorithm (BP, Back Propagation). BP

algorithm belongs to the gradient descent method (Gradient Descend) in

optimization theory. The error e is used as a function of all weights W and all bias

values B. The purpose of the algorithm is to find the global minimum point of e in

the independent variable space.

Shown in Figure 6, this illustrates the process about how to train a very simple

neural network with MATLAB. It has only a single input single output. There are

two neurons in the input layer and one neuron in the output layer. The entire

network has 4 weights plus 3 bias. The figure shows the fixed other weights, the

MSE surface when variables are made only for the weights 𝜔(1,1)
1 and bias 𝑏1

1 of the

first neuron of the first layer, and the trajectory of the solution as the algorithm

iterates. [7]

13

Figure 6. A Neural Network with MATLAB [7]

1.1.5 Convolution Neural Network (ConvNet/CNN)

CNN is proposed as a framework for deep learning to minimize data processing

requirements. The biggest feature of CNN is sparse connectivity and weight

sharing. Convolution Neural Network is a deep feedforward neural network with a

local connection, weight sharing, and other characteristics. Convolution Neural

Network includes convolution layers (conv), pooling layers (pool) and fully-

connected layers (FC). The classical model of convolution neural network is the

forward conduction process of LeNet-5 implementation to classify handwritten

digits like shown in Figure 7.

14

Figure 7. CNN Sequence to Classify Handwritten Digits [8]

• Convolution

Convolution is a mathematical operator that generates a third function through two

functions f and g, characterizing the area of the overlapping part of the function f

and g that has been flipped and transferred peacefully. The mean of convolution is

weighted overlay. For instance, the physical meaning of convolution is the weighted

superposition of one function (for example, Unit response) on another function,

such as an input signal.

On the two-dimensional, there are two ℛ2 → ℛ functions 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦). The

convolution of f and f is a new ℛ2 → ℛ function. Get through the following

formula:

𝑐(𝑥, 𝑦) = ∫ ∫ 𝑓(𝑠, 𝑡) ∗ 𝑔(𝑥 − 𝑠, 𝑦 − 𝑡) 𝑑𝑠 𝑑𝑡
∞

−∞

∞

−∞

⑹

The meaning of this formula is: Traverse all s and t values from negative infinity to

positive infinity and multiply the value of g at position (𝑥 − 𝑠, 𝑦 − 𝑡) with the value

of f at the (s, t), “plus” (in the integral sense) together, that is the value of c in (x,

y). In other words, convolution is a kind of “weighted summation”. With (x, y) as

the center, multiply the value of g from the center (-s, -t) position on the value of f

15

at (s, t) and add it together at last. It is clearer to write the convolution formula in

the discrete form:

𝒞(𝑥, 𝑦) =∑∑ℱ(𝑠, 𝑡) ∗ 𝒢(𝑥 − 𝑠, 𝑦 − 𝑡)

∞

−∞

∞

−∞

⑺

The convolution process shows in Figure 8.

Figure 8. A Step of Convolution Process [9]

The above operation is a discrete convolution operation of digital images, also

known as filtering, called convolution nuclei or filters. Different filters play

different roles. Imagine that if the size of ℱ is 3x3, the value in each lattice is
1

9
 .

Then the filter is equivalent to calculating the grayscale average of 9 image points

in the 3x3 range around it for each point of the original image. This should be a

blur, shown in Figure 9.

Figure 9. Example of Convolution Process in Picture [10]

16

• Pooling

Pooling is the image of simple drawback. CNN’s pooling (image sampling)

methods are many: Mean pooling, Max pooling (maximum sampling),

Overlapping, L2 pooling, Local Contrast Normalization (normalized sampling),

Stochasticpooling, Def-pooling (deformation constraint sampling). One of the most

classic is the maximum pool shown in Figure 10.

Figure 10. Example of Pooling [11]

• Fully-Connected

The full-connection layer plays the role of “classifier” in the whole convolution

neural network. The full-connection layer acts as the “distributed feature

representation” that is learned to map to the sample markup space. In practical use,

the full connection layer can be realized by convolution operation: The full

connection layer with the front layer is fully connected can be converted into

convolution core 1x1, while the front layer is the whole connection layer of the

convolution layer can be transformed into the global convolution with convolution

core as h * w, and h and w are the high and wide of the convolution results of the

17

front layer respectively.

The core operation of full connection is the product of the matrix vector:

𝒴 = 𝒲𝓍 ⑻

In CNN, full connectivity often appears in the last few layers and is used to

weighting and characterize the features of the previous design. For example, LeNet,

the front convolution, and pooling are equivalent to doing feature engineering, the

back of the full connection is equivalent to doing feature weighting. [9]

1.2 TensorFlow

TensorFlow is used to quickly implement various algorithm formulas such as DL

and CNN. Its name itself describes its own execution principle: tensor means an n-

dimensional array, flow (stream) means a calculation based on a stream diagram.

The graphs in the flow diagram are all the directed graphs. There are two basic

elements in this data structure: nodes and edges. These two elements have their own

functions in this data flow diagram. Node is used to represent the mathematical

operation to be performed. All operation has its own input/output, so it can also

represent the end of the input or the entry of the output. Edges are represented by

the relationship between input and output in nodes. A special type of data passes

along with these edges. This particular type of data is called tensor in TensorFlow,

a multidimensional array. When a tensor is put into this diagram, the actions

represented by the node are assigned to the computing device to complete the

calculation, shown in Figure 11.

18

Figure 11. TensorFlow Core Graph [12]

1.3 Keras

Keras is a high-level neural network’s API, written in Python and capable of

running on top of TensorFlow, CNTK, or Theano. It was developed with a focus

on enabling fast experimentation. Being able to go from idea to result with the

least possible delay is key to doing good research.

Figure 12. Keras Modules Structure [14]

19

1.4 Pepper Robot

Pepper is a social humanoid robot, designed for people through friendly

conversations and its tablet, manufactured by SoftBank Robotics, which can

be used for businesses and education. Pepper can create its own experiences

and form real relationships shown in Figure 13, and its dimensions’ parameters

are shown in Figure 14 and Figure 15.

Figure 13. Pepper Robot [15]

20

Figure 14. Pepper Dimensions [16]

Figure 15. Pepper Dimensions [16]

21

1.4.1 NAOqi Python API

NAOqi is the main software to run projects on the robot, under OpenNAO

distribution or computers via many software languages like Python, C++. The

NAOqi Framework is the programming used to develop projects on NAO or

PEEPER robots using all kinds of software languages through different platforms.

NAOqi answers to common robotics need such as parallelism, resources,

synchronization, events.

This framework supports all kinds of communication between different modules

and parts like motion, vision, microphone, video, homogeneous programming, and

homogeneous information sharing. The NAOqi framework can cross many

platforms so that it is able to develop all kinds of projects on the robot with it on

Windows, Linux or Mac. The NAOqi framework also supports many software

languages through an identical API for both C++ and Python to benefit developers.

The NAOqi framework still supports introspection, to know which functions are

available in the different modules and where the functions are.

Figure 16. The NAOqi process [17]

22

1.4.2 ALTextToSpeech

Pepper has four microphones on the head, shown in Figure 17, and the type of

Pepper’s microphone is omnidirectional. These microphones’ sensitivity is

250mV/Pa +/-3dB at 1kHz, while their frequency range is 100Hz to 10kHz (-10dB

relative to 1kHz).

Figure 17. Pepper’s Microphones [16]

The ALTextToSpeech module is one of the NAOqi APIs to let the robot to speak.

The commands about ALTextToSpeech is sent to text-to-speech engine, and then

robot machine will authorize the voice customization, then the result of the

synthesis will be sent to the robot’s loudspeakers to let robot speak the defined

words.

1.4.3 ALFaceDetection

Three cameras are composed in Pepper’s head, two 2D cameras on the top and the

bottom and one 3D sensor in Pepper’s eyes. The 2D cameras are two identical video

cameras which are composed in robot’s forehead, supporting a resolution up to

2560*1920 at 1 frames fps (per second) or 640*480 at 30 fps (per second), shown

in Figure 18.

23

Figure 18. 2D Cameras in Pepper [16]

The ASUS Xtion 3D sensor is still located in Pepper’s forehead, supporting image

resolution up to 320*240 at frames fps (per second), shown in Figure 19.

Figure 19. 3D Sensor in Pepper [16]

24

1.5 OpenCV-Python

OpenCV is a widely used open source toolkit in the field of computer vision, based

on C++, crossing many platforms like Linux, Windows, MacOS, Android, and iOS,

and supporting interfaces in languages such as Python, MATLAB. OpenCV has

rich interfaces, excellent performance and commercially friendly licensing, both in

academia and in the industry, which is very popular. OpenCV first originated from

an Intel Corporation research project in 1998, when Gary Bradski, an engineer at

Intel who worked in computer vision. When Guery Bradsky was visiting some

universities and research groups, it was found that computer vision algorithms were

used between students to implement internal code or libraries in their respective

labs, so that new lab students could quickly get started based on the basic functions

written by their predecessors. So OpenCV aims to provide a high-performance

general library for scientific research and commercial applications for computer

vision.

1.6 NumPy

NumPy (Numerical Python) is an extension library of the Python language that

supports a large number of dimension groups and matrix operations, and also

provides a large library of mathematical functions for array operations.

NumPy is a fast-running mathematical library, mainly used for array computing and

having a powerful N-dimensional array, a broadcast functional function, some tools

of consolidating C, C++ or Fortran code and the functions to create linear algebra,

Fourier transform, random number and so on.

1.7 Matplotlib

Matplotlib is Python's most famous drawing library, which provides a complete set

of command APIs similar to MATLAB and is ideal for interactive mapping. Among

them, Matplotlib's Pyplot module is generally the most commonly used, which can

make it easy for users to quickly draw two-dimensional charts.

25

2 FEASIBILITY STUDY

Feasibility Study refers to the research and evaluation of the projects to be carried

out prior to the study of the project through a large number of market surveys,

including market analysis, market research, target population surveys, technical

surveys, operational guidelines and knowledge of the relevant laws.

2.1 Technical Feasibility Study

Today, the Python language has gradually become one of the mainstream languages

of the editing program, and PyCharm is also the mainstream IDE for Python

language programming. With the popularization of artificial intelligence, machine

learning and deep learning have gradually attracted people’s attention. The

development of robots is also one of the hottest topics today, and robots are used in

a wide range of industries, with the primary aim of reducing unnecessary human

resources and improving the efficiency of life and industries. Technically, through

the platform of the PEPPER robot, the programming design of the Python language

and the construction of the CNN framework in deep learning are applied to the

medical system to analyze the patient’s condition and judge the patient’s mental

state through emotional changes. TensorFlow is also a common package to build a

convolutional neural network.

About the TensorFlow, there are four features of TensorFlow:

• Flexibility. TensorFlow is not a strict neural network library which means

that any calculations can be used as long as they can be represented by a

flow diagram.

• Portability. The underlying core codes of TensorFlow are C++, which can

be run on many devices and provide distributed supports. This feature can

quickly build a deep learning structure.

• Multilingual support. TensorFlow supports Python, C, C++, Java and Go.

• Efficiently. TensorFlow provides the supports for threads, queues and

asynchronous operations, also supporting running on the CPU and GPU to

realize the full potential of the hardware.

26

TensorFlow uses Graph to describe computer tasks, and the nodes in the diagram

are called op. An op can accept 0 or more tensors as input or 0 or more tensors as

output. Any Graph needs to be with the help of context Session to run. Start Graph

through Session and distribute op in Graph to the CPU or GPU, and then with the

help of Session to perform these op. These ops which are executed will return the

resulting tensor. With the feed and fetch operations provided by Session, these ops

are assigned values or get data. In the calculation process, the calculation state is

maintained by variable.

Table 1. Related Concepts in TensorFlow
Type Description Use

Session Session The diagram must be executed in a context called a

“session.” The session distributes the OP of the diagram to

calculations such as the CPU or GPU

Graph Describe the

calculation process

Must be started in Session

Tensor Data One of the data types that represent a multidimensional array

op Operation The nodes in the figure are called op, and an op gets 0 or

more Tensor, then performs calculations, and then produces 0

or more Tensor

Variable Variable One of the data types that can be changed during operation to

maintain state

feed Assign a value Assign a value to the tensor of op

fetch Take a value Take a value from the tensor of op

Constant Constant One of the data types, immutable

As for Keras, it is the simplified interface to TensorFlow. The guiding principles of

Keras:

• User friendliness. Keras is an API designed for human beings, not

machines. It puts user experience front and center. Keras follows best

practices for reducing cognitive load: it offers consistent & simple

APIs, it minimizes the number of user actions required for common use

cases, and it provides clear and actionable feedback upon user error.

• Modularity. A model is understood as a sequence or a graph of

standalone, fully configurable modules that can be plugged together

with as few restrictions as possible. In particular, neural layers, cost

functions, optimizers, initialization schemes, activation functions, and

regularization schemes are all standalone modules that you can

combine to create new models.

27

• Easy extensibility. New modules are simple to add (as new classes and

functions), and existing modules provide ample examples. To be able

to easily create new modules allows for total expressiveness, making

Keras suitable for advanced research.

• Work with Python. No separate models configuration files in a

declarative format. Models are described in Python code, which is

compact, easier to debug, and allows for ease of extensibility. [13]

2.2 Economic Feasibility Study

With the improvement of economic development, people’s demand for medical

care is becoming more and more popular, the limited resources of medical

institutions and people’s demand for medical care began to gradually create a gap.

According to the report, shown in Figure 20, there is an increasing number of

children in Finland who need treatment for mental health problems, but analytical

support for the mental state has not increased synchronously. At this time, the use

of an artificial intelligence robot instead of manpower to carry out people’s

emotional changes to make judgment and recognition is particularly important. The

extensive use of this design can alleviate a part of the medical institutions of human

resources, so economic is also feasible.

28

Figure 20. Finland Mental Health Report [18]

2.3 Operational Feasibility Study

This design uses the humanoid robot PEPPER as an analysis of the mental condition

of patients or children. It is done through face recognition of the patient and a series

of captures of the facial expression, then the results are analyzed and summarized

to determine the patient’s current mental state and visualize the results. Therefore,

it is also feasible to operate.

2.4 Legal Feasibility Study

There is no link in this design that violates the provisions of the national law, so

this design is also feasible in law.

29

3 SOFTWARE REQUIREMENT ANALYSIS

Software requirement analysis is a summary of a series of design analyses such as

this project’s functional analysis, processing of data analysis, system flow charts

and so on.

3.1 Functional Analysis

In this project,

• the robot first locates the patient’s face and captures 25 pictures of the

patient’s changing facial expression as “.jpg” type,

• then data of the captured image goes into the native computer.

• CNN is used to build 4 layers of convolution and 2 full-connected layers,

Kaggle’s “fer2013.csv” is used as facial emotional dataset and trained

through the CNN structure, as a result of this, a file of “.h5” type was created

named “model_4layer_2_2_pool” which contains all the special features of

the emotional dataset.

• After receiving the pictures from a robot, these pictures will be trained and

tested through the CNN structure and will be analyzed and recognized via

the pre-trained file.

• Finally, all the analysis of the results will be summarised and visualize of

the display as a bar chart in the values of angry, disgust, fear, happy, sad,

surprise and neutral.

In this project, TensorFlow was used as backend and the Keras was used as the

interface to call the functions of TensorFlow to build the CNN structure.

3.2 System Flowchart

The patient faces the robot with the robot’s voice prompts, and the robot begins a

continuous shot of the facial expression after capturing the human face. When the

local computer accepts the pictures, pictures will be transferred into CNN for

training and recognition, and then visualize the results, shown in Figure 21.

30

Figure 21. System Flowchart

3.3 Data Flowchart

3.3.1 Input Data Flowchart

When the patient's face is identified, a series of the patient’s emotional pictures are

captured, a total of 25 pictures as “.jpg” type. Then a connection with the local

computer is built and these pictures are transferred, as shown in Figure 22.

Figure 22. Input Date Flowchart

3.3.2 Dataset Training Flowchart

In this project, the facial emotional dataset is Kaggle’s Fec2013, which is

compressed at a size of 92 M and the uncompressed version size is 295 M. The

dataset contains 28,000 training photos and 30,000 test photos, shown as Figure 23.

Each photo is stored as 48 x 48 pixels.

31

This dataset contains image pixels (48 x 48 = 2,304 values), facial expressions in

each image, and usage types (used as training or tests). The data file is mainly

“Fec2013.csv”, a total of two columns: emotion, pixels, and usage. There are 7 tags:

0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral. The pixels

column is 48 x 48 pixels, shown in Figure 24.

Figure 23. Examples Picture of Fer2013 [19]

Figure 24. Fec2013.csv

32

“Fec2013.csv” will be transferred into CNN structure to training and testing, and

then output a feature file in “.h5” type which contains all the facial emotional

characteristics, named “model_4layer_2_2_pool”. The flowchart is shown in

Figure 25.

Figure 25. Dataset Training Flowchart

3.3.3 CNN Structure Module Flowchart

In this project, the CNN structure is like “input -> conv 1 -> pool 1 -> conv 2 ->

pool 2 -> conv 3 -> pool 3 -> conv 4 -> pool 4 -> fc 1 -> fc 2 -> out”, which contains

four convolutional layers and two full-connected layers. The structure is shown in

Figure 26.

Figure 26. CNN Structure

3.3.4 Output Data Flowchart

After all the images captured by the robot having been identified by deep learning,

all the results will be aggregated to the average, and finally, the aggregated results

33

will be visualized in the form of a bar chart, shown in Figure 27.

Figure 27. Output Data Flowchart

34

4 DETAILED DESIGN

The detailed design mainly contains some detailed description of the modules of

this project, including the detailed operation process, the structure of each module

and the core codes. This project is divided into three modules: CNN structure

module, training module and predict module.

4.1 CNN Structure Module

This module mainly describes the detailed structure of the CNN framework in this

project and the data analysis process. This CNN structure is built by Keras with

TensorFlow backend, which contains tour convolution layers and two full-

connected layers. The detailed structure is shown as Figure 28 which is written by

python, illustrated in Figure 29, Figure 30 and Figure 31.

Figure 28. CNN Detailed Structure

Figure 29. Example Codes for Displaying the CNN Structure about convolution

layers

35

Figure 30. Example Codes for Displaying the CNN Structure about convolution

and pooling layers

Figure 31. Example Codes for Displaying the CNN Structure about fully-

connected layer

36

In this CNN structure, data will be transferred into CNN and then trained and tested

in the CNN structure, shown in Figure 32.

Figure 32. Data Processing Flowchart

• it will firstly initialize the parameters and transfer the training and testing

dataset from database and then normalize the inputs between 0 to 1.

initialize trainset and testset

x_train, y_train, x_test, y_test = [], [], [], []

transfer train and test set data

for i in range(1, num_of_instances):

 try:

 emotion, img, usage = lines[i].split(",")

 val = img.split(" ")

 pixels = np.array(val, 'float32')

 emotion = keras.utils.to_categorical(emotion, num_classes)

 if 'Training' in usage:

 y_train.append(emotion)

 x_train.append(pixels)

 elif 'PublicTest' in usage:

 y_test.append(emotion)

 x_test.append(pixels)

 except:

 print("", end="")

normalize inputs between [0, 1]

x_train /= 255

37

x_test /= 255

• Then the data will be transfer into CNN structure, which means to first

initialize the CNN and then begin to build four convolution and pooling

layers and two fully connected layers.

#Main CNN model with four Convolution layer & two fully connected

layer

def baseline_model():

 # Initialising the CNN

 model = Sequential()

In this project,

• the first convolution layer is built by the two-dimensional convolution layer

Conv2D which contains 64 filters. Each filter’s kernel_size is 3 x 3 and the

border_mode is “same”.

 # 1 - Convolution

 model.add(Conv2D(64,(3,3), border_mode='same',

input_shape=(48, 48,1)))

the activation layer of CNN structure is using the “relu” predefined

activation function which means the activation layer exerts an activation

function on the output of a layer.

 model.add(Activation('relu'))

In order to prevent over-fitting, Dropout function is used to randomly

disconnects a certain percentage (𝑝, in this project 𝑝 = 0.25) of the input

neuron connection each time the parameter is updated during training.

 model.add(Dropout(0.25))

The first pooling layer is built by the two-dimensional Man-Pooling layer

MaxPooling2D, which the pool_size is 2 x 2. And the Pooling's role in

CNN is:

i. Invariance. This invariance includes translation, rotation, and scale.

ii. Retain the main features while reducing the parameters (descending

dimension, an effect similar to PCA) and computation, preventing

over-fitting and improving the generalization ability of the mode.

38

 model.add(MaxPooling2D(pool_size=(2, 2)))

• The second convolution layer is built by the two-dimensional convolution

layer Conv2D which contains 128 filters. Each filter’s kernel_size is 5 x 5

and the border_mode is “same”. “relu” activation function is used and the

parameter of Dropout is 0.25. The second pooling layer is built by the two-

dimensional Man-Pooling layer MaxPooling2D, which the pool_size is 2 x

2.

 # 2nd Convolution layer

 model.add(Conv2D(128,(5,5), border_mode='same'))

 model.add(BatchNormalization())

 model.add(Activation('relu'))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.25))

• The third convolution layer is built by the two-dimensional convolution

layer Conv2D which contains 512 filters. Each filter’s kernel_size is 3 x 3

and the border_mode is “same”. “relu” activation function is used and the

parameter of Dropout is 0.25. The second pooling layer is built by the two-

dimensional Man-Pooling layer MaxPooling2D, which the pool_size is 2 x

2.

 # 3rd Convolution layer

 model.add(Conv2D(512,(3,3), border_mode='same'))

 model.add(BatchNormalization())

 model.add(Activation('relu'))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.25))

• The fourth convolution and pooling layer are the same as the third layer.

• Flatten ()'s input data is a bunch of feature diagrams, and the network after

it accepts a one-dimensional feature, so the role of Flatten is to "squash" its

input data into 1D form so that it can be successfully entered into the fully

connected layer.

 # Flattening

 model.add(Flatten())

39

• The first fully connected layer. The fully connected layer in the Keras is

called “Dense”. The connection here is very "dense" and the number of

connections is very large. One of the required parameters of the dense

layer is the number of neurons in the current layer, here are 256 neurons.

The “relu” activation function is used and the parameter of Dropout is

0.25.

 # Fully connected layer 1st layer

 model.add(Dense(256))

 model.add(BatchNormalization())

 model.add(Activation('relu'))

 model.add(Dropout(0.25))

• The second fully connected layer was built. The required parameters of

the dense layer, the number of neurons in the current layer, here are 512

neurons. “relu” activation function is used and the parameter of Dropout

is 0.25.

• The classification layer is to map the feature to the final category and then

map it to the category probability through a “sigmoid” activation

function. The 7 classifications are defined here, so the number of neurons

in the final Dense layer is 7.

 model.add(Dense(num_class, activation='sigmoid'))

After training the data, the CNN structure will be printed out and showed as

Figure33.

40

Figure 33. CNN Structure after Training

41

4.2 Training Module

This module is used to illustrate the process about training the data, shown in Figure

34.

Figure 34. Training Module Flowchart

The compiled CNN model begins to prepare training data. There are two ways to

train models in Keras, model.fit() and model.fit_generator(), and in this project,

model.fit() function is selected for data training. The process of the model.fit()

function can be simply understood as the process of determining the weight of

connections between neurons through test data.

The test data is divided into two parts, the matrix type of input data x, and the

corresponding array type of output y. Neural network training usually uses a reverse

propagation (Backpropagation) algorithm, so the parameters that need to be

specified are the training cycle epochs and the amount of data calculated each time

batch_size. When the training is complete, the history will be used to save the

relevant description after the model training.

The complete model.fit() function is:

fit(x, y, batch_size, epochs, verbose, callbacks=None,

validation_split=0.0, validation_data=None, shuffle=True,

class_weight=None, sample_weight=None, initial_epoch=0)

In this project, parameters of x = X_train, y = y_train, batch_size = batch_size,

epochs = epochs, verbose and validation_split are used to define the testing

function.

• x: Input data. If the model has only one input data, the type of x is numpy

array, and if the model has more than one input data, the type of x will be a

list which element is the numpy array to each input data.

42

X_train, X_test, y_train, y_test = train_test_split(X, Y,

test_size=0.1, random_state=0)

• y: Label. The type of y is numpy array.

y_train = (np.arange(num_class) == y_train[:,

None]).astype(np.float32)

• batch_size: The type is an integer. This parameter is the number of samples

that each batch contains when a gradient drop is specified. During training,

a batch sample is calculated as a gradient drop, allowing the objective

function to be optimized one step at a time.

batch_size = 128

• epochs: The type is an integer. This parameter is the epoch value that

represents the end of the training. The training will stop when the epoch

value is reached, and when no initial_epoch is set, it is the total number of

rounds trained, otherwise, the total number of rounds of training is epochs -

inital_epoch.

epochs = 124

• verbose: This parameter is the control log information. 0 means that the log

information is not output via the standard output stream, and 1 is

represented as the output progress bar record, and 2 is represented as the

output row record for each epoch.

• validation_split: This parameter type is a floating-point number between

0~1 and is used to specify a certain percentage of the training set as a

validation set. Validation sets will not participate in training and test the

indicators of the model after each epoch end, such as loss functions,

accuracy, and so on. validation_split is divided before shuffle, so if the data

itself is ordered, it needs to be manually disrupted before specifying

validation_split, otherwise, the validation set sample may appear uneven.

 model.fit(X_train, y_train,

 batch_size=batch_size,

 epochs=epochs,

 verbose=2,

43

 validation_split=0.1111)

 model_json = model.to_json()

 with open("model_4layer_2_2_pool.json", "w") as json_file:

 json_file.write(model_json)

 # serialize weights to HDF5

 model.save_weights("model_4layer_2_2_pool.h5")

4.3 Predict Model

In this project, the model will predict the probability values for 7 labels for a test

image: anger, disgust, fear, happy, sad, surprise and neutral, shown in Figure 35.

label_map = ['Anger', 'Disgust', 'Fear', 'Happy', 'Sad',

'Surprise', 'Neutral']

Figure 35. Predict Module Flowchart

When making deep network predictions in Keras, there are two common predictive

functions named model.predic_classes(), which predicts a category shown as

Figure 35 and the printed value is the category number and can only be used for

sequence models not for functional models, and model.predict(), which predicts

some values and the output are numpy array of 7 encoded values in real number,

shown as Figure 37. In this project, model.predict() is used to predict the result.

score = model.predict(X_test)

Figure 36. Example Result of model.predic_classes()

44

Figure 37. Example Result of model.predict()

• After predicting the data, the final categorical accuracy will be calculated

by taking labels of having highest probability via the function

np.argmax(), which returns the index of the maximum value along the

axis and np.mean(), and the result is about 0.654, which is shown in

Figure 38.

New_X = [np.argmax(item) for item in score]

y_test2 = [np.argmax(item) for item in y_test]

accuracy = [(x==y) for x,y in zip(new_X,y_test2)]

print(“ Accuracy on Test set : “ , np.mean(accuracy))

Figure 38. The Result of Final Accuracy

• After predicting the pictures taken from Pepper robot, the result will be

transferred to the visualizing result.

Custom = model.predict(x)

emotion_analysis(custom[0],os.path.basename(imgPath))

45

5 IMPLEMENTATION

This part will illustrate the implementation of every detailed module in this project,

including detecting and taking pictures, transferring the pictures, recognizing a face,

predicting the pictures and visualizing the result, shown in Figure 39.

Figure 39. Project Implementation Flowchart

5.1 Detecting and Taking Pictures Implementation

The first thing is to make the connection between the Pepper robot and the computer

via the robot’s ID and port, and then create a proxy on the text-to-speech module,

named ALTextToSpeech, to give some information to patients to look at the robot.

The connection between the computer and the Pepper Robot is Naoqi APIs. About

Naoqi, a real-time application can only be a separate executable file or robot tree,

process tree, module tree. No matter what you choose, the calling method is always

the same. Use IP addresses and ports to connect the executable file to another robot,

and all API methods in other executables are available in the same way as the local

method. NAOqi is a choice between a quick direct call (LPC) and a remote call

(RPC).

The NAOqi executable file running on the robot is a broker. After it starts, it loads

a file named AutoLoad. Each library contains one or more modules that use proxies

to invoke their methods, as shown in Figure 16. Proxies are used to provide a lookup

46

service so that any module in the tree or on the network can find any method that

has been advertised. The loading module forms a method tree attached to the

module, as well as a module tree attached to the agent.

#create a proxy on the text-to-speech module

tts=ALProxy("ALTextToSpeech",robot_ID,PORT)

#modify the voice's speed

tts.setParameter("speed",200)

tts.resetSpeed()

tts.say("Hello, please look at me.")

Then a proxy is created to let the robot detect patient’s face, named

ALFaceDetection, and subscribe to the ALFaceDetection proxy, which means that

the module will write in ALMemory with the given period, finally make a valid

output. After detecting the patient’s face, ALPhotoCapture will be created to take

25 pictures.

#create a proxy to ALFaceDetection

faceProxy=ALProxy("ALFaceDetection",robot_ID, PORT)

Subscribe to the ALFaceDetection proxy

period = 500

faceProxy.subscribe("Test_Face", period, 0.0)

Create a proxy to ALMemory

memoryProxy = ALProxy("ALMemory", robot_ID, PORT)

#crease a proxy to ALPhotoCapture

photoCaptureProxy = ALProxy("ALPhotoCapture", robot_ID, PORT)

photoCaptureProxy.setResolution(2)

photoCaptureProxy.setPictureFormat("jpg")

photoCaptureProxy.takePictures(25,"/home/nao/recordings/cameras/",

"image")

The implementation picture is shown in Figure 40.

47

Figure 40. Detecting and Taking Pictures Implementation

5.2 Transferring Pictures Implementation

A connection with Pepper robot is built via the robot’s username and password to

attain the right to handle the robot’s files which are saved in robot’s memory, and

then the function is used iparamiko.Transport() to transfer the pictures to a local

computer.

 t = paramiko.Transport(("130.232.164.94", 22))

 t.connect(username="nao", password="qwe123")

 sftp = paramiko.SFTPClient.from_transport(t)

 files=sftp.listdir(image_path)

 for f in files:

 print ('')

 print ('##')

 print ('Beginning to download file from %s %s' %

 ("130.232.164.94",datetime.datetime.now()))

 print ('Downloading file:', os.path.join(image_path,f))

sftp.get(os.path.join(image_path,f),os.path.join(local_path,f))

 print ('Download file success %s'%datetime.datetime.now())

 print ('')

 print ('##')

 t.close()

The implementation picture is shown in Figure 41.

48

Figure 41. Transferring Pictures Implementation

5.3 Recognizing Face in Pictures Implementation

OpenCV-Python is used to recognize the face in pictures transferred from robot via

the function cv2.CascadeClassifier() to read a “.xml” file named

“haarcascade_frontalface_default”.

face_patterns=cv2.CascadeClassifier(r"./haarcascade_frontalface_de

fault.xml")

sample_img=cv2.imread(imgPath)

faces=face_patterns.detectMultiScale(sample_img, scaleFactor=1.1,

 minNeighbors=5, minSize=(100,100))

for(x,y,w,h) in faces:

 cv2.rectangle(sample_img, (x,y), (x+w,y+h), (0,255,0), 2)

cv2.imwrite('./detectedFaces/'+os.path.basename(imgPath),sample_im

g)

The implementation picture is shown in Figure 42.

49

Figure 42. Recognizing Face in Pictures Implementation

5.4 Predicting the Pictures Implementation

The principle, process, and codes of this module have been described in the

preceding article. The result of predicting the pictures will be printed as an array

with seven elements which all the elements are 5 encoded values of real numbers.

Every element represents a kind of emotion in the order as:

'angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'

The implementation picture is shown in Figure 43.

50

Figure 43. Predicting the Pictures Implementation

5.5 Analyzing and Visualizing Result Implementation

All the predicting results will be collected together and then make the average value

to improve the predicting accuracy.

sum=np.array(predictData)

averageList=np.mean(sum, axis=0)

The final result will be displayed as bar chart. Firstly a function is created for

drawing bar chart for emotion predictions via matplotlib.pyplot. This function will

receive the predicting results from CNN structure and then draw the bar chart as the

data of predicting result, and then save the bar charts to local place.

objects = ('angry', 'disgust', 'fear', 'happy', 'sad', 'surprise',

'neutral')

y_pos = np.arange(len(objects))

plt.cla()

plt.bar(y_pos, emotions, align='center', alpha=0.5)

plt.xticks(y_pos, objects)

plt.ylabel('percentage')

plt.title('emotion')

51

savefig('./predictImg/'+predictImgName)

The implementation picture is shown in Figure 44 and Figure 45.

Figure 44. Visualizing Results in Bar Chart

52

Figure 45. Final Result after Analyzing

The complete implementation video link is:

https://www.youtube.com/watch?v=pbwMU2AFOv0

https://www.youtube.com/watch?v=pbwMU2AFOv0

53

6 IMPROVEMENT AND CONCLUSION

The main thing which needs to be improved in this project is to prevent overfitting.

Overfitting refers to the problem in the process of fitting model parameters. Because

the training data contains sampler errors, and complex model, which contains four

convolution layers and two fully connected layers in this project, takes the sample

errors in the training process, and the sample errors are also well fitted. The concrete

performance is that the final model works well on the training set, and the effect on

the test set is poor. The model generalization ability is poor. Dropout is used in this

project to solve this problem, but the effect is not so good. There are some other

improvement methods in the future:

i. Get more data.

There are many ways to get more data. For instance, in this project, taking

several pictures continuously (25) to get more data from the source of data

has been taken to prevent overfitting. However, a significant increase in the

number of taking pictures is not easy for a robot to fulfill. In addition, it is

impossible to know how much data is enough in this project. The feasible

method to get more data to prevent overfitting in the future is using the

technology, Data Augmentation, which means to expand the data with

certain rules.

ii. Use a suitable model

Overfitting is mainly caused by two reasons, too little data, and too complex

model. So using a model in the appropriate complexity to fit the real rules

is also a way to avoid fitting too many sample errors, for instance, early

stopping, regularization and increasing noise.

iii. Combine multiple models

Train multiple models to collect all the output of each model and then the

average output as the final result, for instance, Bagging, Boosting and

Dropout, which has been used in this project.

In this project, the understanding of the structure and principle of artificial neural

networks in deep learning, as well as the learning of related knowledge of

convolutional neural network are all very core part. In the process to build a CNN

54

structure, there are many factors that influence the accuracy of the deep learning

result and the speed of training, like the number of convolution layers and fully

connected layers, the activation function, the dropout and so on.

As for the Pepper robot, there is no doubt that the humanoid robot is the best choice

to replace human resource to detect and take pictures for patients. With the rapid

technological development, the research of fields related to Robotics and Computer

Aided Design (CAD), such as healthcare robotics and relevant visual computing

direction, becomes more and more popular to help hospital take care about patients.

During the development of this project, it is difficult to find a suitable convolutional

neural network to train and test the Kaggle’s Fec2013 dataset so I trained several

times for different structures from two convolution layers up to five convolution

layers. Finally, four convolution layers had been chosen because of the highest

accuracy. Excluding the overfitting, the limit of facial emotional categories is also

a part which needs to be improved. The dataset, which this project used, only have

7 kinds of emotions to let computer study and predict. In the future, other kinds of

facial emotion still need to be added and the size of the dataset also needs to be

enriched.

In this project, most of the module has been implemented. Users can look at Pepper

robot to let it take several pictures for him and these pictures can be transferred to

the local computer successfully. Convolutional Neural Network can receive these

pictures to predict the facial emotion by comparing with the feature file and the

final accuracy is about 0.67. After averaging all the results, the final result is

displayed as a bar chart to illustrate the user’s mental stature with 7 labels: angry,

disgust, fear, happy, sad, surprise, neutral.

In this thesis, the history and process of related technologies and development

environments like a neural network, convolution neural network, and the Pepper

robot are all introduced, also the whole working process of this project having been

illustrated via several flowchart and codes.

55

REFERENCE

[1] M. J. Z. H.-d. Y. Jing-jing, "Application and prospect of Artificial Neural

Network," Electronic Design Engineering, p. 4, 2011.

[2] L. Shu, "Popular Science: Artificial neural network VS biological neural

network? " 24 05 2018. [Online]. Available:

http://share.shautonews.com/blog/39.

[3] J. R. F. Manag, "Equalizing Seasonal Time Series Using Artificial Neural

Networks in Predicting the Euro–Yuan Exchange Rate," Journal of Risk

and Financial Management— Open Access Journal, vol. 12, no. 2, 2019.

[4] Y. .. Blog, "Speeding up sigmoid function by approximating exponential

function," 20 03 2011. [Online]. Available:

http://ybeernet.blogspot.com/2011/03/speeding-up-sigmoid-function-

by.html.

[5] Y. W. Y. C. S. L. Y. W. Songsong Cheng, "A universal modified LMS

algorithm with iteration order hybrid switching," ISA Transactions, vol. 67,

pp. 67-75, 03 2017.

[6] H. N. a. N. M. Teijiro Isokawa, "Quaternionic Multilayer Perceptron with

Local Analyticity," Information — Open Access Journal, vol. 3, no. 4,

2012.

[7] J. Zhang, "Introduction of Convolution Neural Network," Zhihu, 26 05

2018. [Online]. Available: https://zhuanlan.zhihu.com/p/25249694.

[8] S. Saha, "A Comprehensive Guide to Convolutional Neural Networks — the

ELI5 way," Medium, 2018.

[9] X. Qiu, "Neural Network and deep learning," 04 04 2019. [Online].

Available: https://nndl.github.io/chap-

%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91

%E7%BB%9C.pdf.

[10] T. Dettmers, "Understanding Convolution in Deep Learning," 26 03 2015.

[Online]. Available: https://timdettmers.com/2015/03/26/convolution-deep-

56

learning/.

[11] cs321n, "Convolutional Neural Networks (CNNs / ConvNets)," CS231n

Convolutional Neural Networks for Visual Recognition, [Online].

Available: https://cs231n.github.io/convolutional-networks/.

[12] A. Sachan, "TensorFlow Tutorial: 10 minutes Practical TensorFlow lesson

for quick learners," CV-Tricks.com, [Online]. Available: https://cv-

tricks.com/artificial-intelligence/deep-learning/deep-learning-

frameworks/tensorflow-tutorial/.

[13] “Keras Document,” [Online]. Available: https://keras.io/.

[14] S. Krishnamurthy, "MXNet - Keras Integration Design," Confluence, 08 06

2018. [Online]. Available:

https://cwiki.apache.org/confluence/display/MXNET/MXNet+-

+Keras+Integration+Design.

[15] J. Engel, "SoftBank Taps Affectiva to Boost Pepper Robot’s Emotional

IQ," Xconomy, 28 08 2018. [Online]. Available:

https://xconomy.com/boston/2018/08/28/softbank-taps-affectiva-to-boost-

pepper-robots-emotional-iq/.

[16] "SOFTBANK ROBOTICS DOCUMENTATION," SOFTBANK

ROBOTICS , [Online]. Available: http://doc.aldebaran.com/2-

5/family/pepper_user_guide/index_pepper_user.html.

[17] "NAOqi Framework," [Online]. Available: http://doc.aldebaran.com/1-

14/dev/naoqi/index.html.

[18] "Children in Finland increasingly treated for mental health issues," yle, 28

11 2018. [Online]. Available:

https://yle.fi/uutiset/osasto/news/children_in_finland_increasingly_treated_

for_mental_health_issues/10529653.

[19] J. Liang, "Design of an Automatic Facial Expression Detector," 26 01 2018.

[Online]. Available: https://uwaterloo.ca/applied-

mathematics/sites/ca.applied-

mathematics/files/uploads/files/jian_liangs_essay_final_version.pdf.

