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There are millions of people in the world, who suffer from life-threatening diseases 

each year. It has been reported that the magnitude of the disparities of healthcare 

quality worldwide is still significant. In particular, things can lead to high mortality, 

such as inadequate doctor-patient ratio and lack of intelligent medical facilities. 

This situation, however, has been largely alleviated by the rapid developments in 

fields of Computer Aided Design (CAD) and Robotics. For example, the computer-

aided machine can help doctors analyze radiological images and make diagnosis 

more quickly and accurately; the medical automatic system offers patients a broad 

and wide access to medical resources in a more effective way. This project is the 

use of robots for capturing and identifying the patient's expression, through the deep 

learning of the computer to determine the patient's mental state. 

The main research works concludes six contents, face detected by photos, resolved 

by Open Source Computer Vision Library (OpenCV), facial dataset, resolved by 

Kaggle’s Fer2013, the processing training and testing the facial dataset, resolved 

by the model Convolutional Neural Network (CNN), showing the result by a bar 

chart is the next one, resolved by Matplotlib and taking pictures for patients, 

resolved by one of Pepper’s modules, ALPhotoCapture and face detected by the 

robot, resolved by one of Pepper’s modules, ALFaceDetection. 
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1 INTRODUCTION 

 

With the rapid development of society, people are under increasing pressure. 

Nowadays, people, whether children, teenagers, adults or the elderly, are generally 

in a bad state of mind, usually ignored by themselves or ignored by those around 

them. As a Yle survey reported, around 90,000 kids who are all under 13 years old 

suffer from some mental health issues, while a shortage of care providers was 

witnessed through the whole the country. According to words from experts, there 

is a growing group which has been diagnosed and treated for minor or moderate 

mental health issues. At the same time, with the popularization and application of 

artificial intelligence, the method, using this technology reasonably, begins 

popularity to ease the needs for human resources. This project aims at recognizing 

the patients’ mental change, especially at the children’s mental change, as a result 

of it, people can realize the emotional change that they may ignore sometimes. So 

in this project, the module of Convolutional Neural Network is built for training, 

testing and detecting patients’ facial emotion changes, then identifying and 

recognizing the patients’ mental statues with the Pepper Robot. 

1.1 Related Technologies and Development Environment 
 

1.1.1 Deep Learning 
 

Deep Learning, a learning algorithm (Learning Algorithm), is an important branch 

of the field of artificial intelligence. From rapid development to practical 

application, in just a few years, deep learning has upended the algorithm design 

ideas in many fields, such as speech recognition, image classification and text 

comprehension, and gradually formed a new model from the training data, through 

an end-to-end (End-to-end), and then directly output the final results.  

 

The essence of deep learning is to learn useful features via constructing machine 

learning models with many hidden layers and lots of training or testing data, so as 

to improve the accuracy of classification or prediction. Distinguished from the 

traditional shallow learning, the difference in deep learning lies in:  
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i. The depth of the model structure is emphasized, usually, there are 5 layers, 

6 layers, or even 10 layers of hidden layer nodes;  

ii. The importance of feature learning is clearly highlighted. The characteristic 

transformation of the sample in the original space is transformed into a new 

feature space, which makes classification or prediction easier. 

 

Compared with the method of constructing characteristics of artificial rules, using 

big data to learn features and describe the intrinsic information rich in data, at 

present, deep learning has a wide range of applications in search advertising CRT 

prediction, natural language processing, image recognition, speech recognition, and 

unmanned driving. 

 

1.1.2 Artificial Neural Network’s History 
 

In 1943, neurologists and neuron anatomy McCulloch and mathematician Pitts 

published articles in the Journal of Biophysics presenting mathematical 

descriptions and structures of neurons. It is also proved that any computational 

function (M-P model) can be simulated as long as there are enough simple neurons 

that are connected to each other and run synchronously. The pioneering work they 

do is considered to be the starting point of artificial neural networks (ANN). In 

1949, physiologist Hebb published behavioral histology, describing the Hebb 

adjustment rules for neuronal weights. He points out that in neural networks, 

information is stored in connection weights. It is suggested that the connection right 

of neuron A to neuron B is the same as the connection right from B to A.  

 

In 1958, Rosenblatt, a computer scientist, proposed a neural network structure with 

three layers of network characteristics, called a "perception". The perceptron he 

proposed may be the first real artificial neural network in the world. After the sensor 

was put forward, the first craze of neural network research was set off in the 60s. 

Many people think that as long as they use thousands of neurons, they can solve all 

the problems. In 1969, Minsky and Papert, who are among the founders of Artificial 

Intelligence, published a book called "Perceptron," which states that simple neural 

networks can only be used to solve linear problems, and that networks capable of 
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solving nonlinear problems should have hidden layers, In theory, it is not proved 

that it is meaningful to extend the Perceptron model to a multi-layer network. 

 

In June 1987, the first International Neural Network Academic conference was held 

in Santiago, California, USA, where more than 1,600 people were represented. This 

was followed by an annual international academic conference organized jointly by 

the International Society for Neural Networks and the International Institute of 

Electrical Engineers and Electronic Engineers (IEEE). Later than 1987, the neural 

network flourished. Especially in recent years, showing an outbreak trend, neural 

networks began to be used in all areas of life, and a variety of new neural network 

models are constantly proposed. For instance, a variety of image recognition, 

speech recognition records are constantly refreshed. Artificial intelligence has now 

become a popular topic. [1] 

 

1.1.3 Simple Artificial Neural 
 

Artificial neurons are simple simulations of human nerve cells using a mathematical 

model. Human nerve cells have multiple dendrites and an elongated axon, shown 

in Figure 1. The axons of one neuron connect to the dendrites of other neurons and 

transmit nerve pulses to them. A neuron determines whether a nerve pulse is emitted 

from its axons to other neurons based on the signals of several dendrites from it. 

 

 
Figure 1. Biological Neural [2] 
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An artificial neuron is the mathematical modeling of biological neurons. See 

Figure 2. 
 

 
Figure 2. Artificial Neural [3] 

 

𝑃1, 𝑃2, ⋯𝑃𝑛 is the input of artificial neurons. a is the output of an artificial nerve 

element. The artificial nerve element will be entered 𝑃1, 𝑃2, ⋯ 𝑃𝑛 , weighted 

summation is followed by a bias value b, finally applied to a function f, that is:  

𝑎 = 𝑓(𝑛) = 𝑓(∑𝑝𝑖𝑤𝑖

𝑛

𝑖=1

+ 𝑏) = 𝑓((𝑤1, 𝑤2, ⋯𝑤𝑛)

(

 

𝑝1
𝑝2
⋮
𝑝𝑛
)

 + 𝑏)

= 𝑓(𝑊𝑇𝑃 + 𝑏) 

 

 

⑴ 

 

The upper formula is finally the vector form of the formula. P is the input vector, 

W is the weight vector, and B is the bias value scalar, and f is called an "activation 

function." Activation functions can take many forms.  

 

1.1.4 Artificial Neural Network 
 

• Single Layer Neural Network 

In this kind of neural network, the input-output mapping relationship is logical 

regression, as shown in Figure 1.3.  

 

i. 𝑝𝑖 is the input value and b is the bias. 

ii. The connection strength is represented by the weight value 𝑤𝑖 ∈ ℛ. If 𝑤𝑖 >
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0, the connection is activated, else closed. 

iii. ∑ is represented by the weighted sum of each input signal. 

iv. f is represented by a nonlinear transfer function, nonlinear mapping which 

means the output amplitude will be limited to a certain range. 

 

{
𝑛 =∑𝑤𝑖𝑝𝑖

𝑛

𝑖=1

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑛)

 

 

 

⑵ 

 

The threshold function: 

 

f = sng(𝑝 − 𝜃) ⑶ 

 

The commonly used nonlinear activation functions are Sigmoid, Tanh, Relu and so 

on, the sigmoid and tanh functions are more common in the full connection layer, 

the latter Relu is common in the convolution layer. The Sigmoid function: 

 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

⑷ 

 

The function of the Sigmoid function is to compress a real number between 0 and 

1. When x is a very large positive number, 𝑓(𝑥) will approach 1, and when x is a 

very small negative number, 𝑓(𝑥) will approach 0. The use of this compression is 

to think of the activation function as a "probability of classification", for example, 

if the output of the activation function is 0.9, it can be explained that the probability 

of 90% is a positive sample. Therefore, the graph of the Sigmoid function 𝑓(𝑥) is 

represented as following in Figure 3. (the horizontal axis represents the definition 

domain x, and the longitudinal axis represents the value field 𝑓(𝑥)): 
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Figure 3. The Graph of the Sigmoid Function [4] 

 

It was proposed in 1958 that, unlike the MP model, weights were variable so that 

learning could be carried out. It contains a linear accumulator and a two-valued 

threshold element (the activation function is a threshold function), and also includes 

an external deviation b. Single-layer perceptron is designed to classify inputs two, 

when the sensor output + 1 o'clock, the input is a class, and when the output is-1, 

the input is another category. Then there is the single-layer perceptron that applies 

the LMS algorithm, shown in Figure 4.  

 

 
Figure 4. LMS algorithm [5] 
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• Multilayer Perceptron (MLP) 

 

Multilayer perception is to add several hidden layers between the input layer and 

the output layer Because their values cannot be observed in the training sample, it 

is called the hidden layer, shown as Figure 5. 

 

 
Figure 5. Multilayer Perceptron [6] 

 

As shown in Figure 5, the output of one neuron is input to another. Neural networks 

can have a wide variety of topologies. One of the simplest is "multi-layer fully 

connected forward neural network". Its input is connected to each neuron in the first 

layer of the network. The output of each neuron in the previous layer is connected 

to the input of each neuron in the next layer. The output of the last layer of neurons 

is the output of the entire neural network. The calculation of the whole neural 

network can be given in matrix type. A single-layer is given to formula for artificial 

neural networks. The number of neurons per layer is different, the input/output 

dimensions are not the same, the number of matrices and vectors in the formula is 
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not the same, but the form is consistent. Suppose this layer is the first layer. It 

accepts input and has a neuron (output), so the calculation of this layer is shown in 

the following formula: 

 

𝑂𝑖 = (

𝑜1
𝑖

⋮
𝑜𝑛
𝑖
) = 𝑓((

𝑤11
𝑖 ⋯ 𝑤1𝑚

𝑖

⋮ ⋱ ⋮
𝑤𝑛1
𝑖 ⋯ 𝑤𝑛𝑚

𝑖
)(

𝑜1
𝑖−1

⋮
𝑜𝑚
𝑖−1
) + (

𝑏1
𝑖

⋮
𝑏𝑛
𝑖
)) 

 

 

⑸ 

 

In the training of MLP, the random gradient drop of minibatch is generally used, 

and the inverse error conduction algorithm is used to realize the training of 

parameters after the gradient is obtained. The classical neural network training 

algorithm is the reverse propagation algorithm (BP, Back Propagation). BP 

algorithm belongs to the gradient descent method (Gradient Descend) in 

optimization theory. The error e is used as a function of all weights W and all bias 

values B. The purpose of the algorithm is to find the global minimum point of e in 

the independent variable space. 

 

Shown in Figure 6, this illustrates the process about how to train a very simple 

neural network with MATLAB. It has only a single input single output. There are 

two neurons in the input layer and one neuron in the output layer. The entire 

network has 4 weights plus 3 bias. The figure shows the fixed other weights, the 

MSE surface when variables are made only for the weights 𝜔(1,1)
1  and bias 𝑏1

1 of the 

first neuron of the first layer, and the trajectory of the solution as the algorithm 

iterates. [7] 
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Figure 6. A Neural Network with MATLAB [7] 

 

1.1.5 Convolution Neural Network (ConvNet/CNN) 
 

CNN is proposed as a framework for deep learning to minimize data processing 

requirements. The biggest feature of CNN is sparse connectivity and weight 

sharing. Convolution Neural Network is a deep feedforward neural network with a 

local connection, weight sharing, and other characteristics. Convolution Neural 

Network includes convolution layers (conv), pooling layers (pool) and fully-

connected layers (FC). The classical model of convolution neural network is the 

forward conduction process of LeNet-5 implementation to classify handwritten 

digits like shown in Figure 7. 
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Figure 7. CNN Sequence to Classify Handwritten Digits [8] 

 

 

• Convolution  

Convolution is a mathematical operator that generates a third function through two 

functions f and g, characterizing the area of the overlapping part of the function f 

and g that has been flipped and transferred peacefully. The mean of convolution is 

weighted overlay. For instance, the physical meaning of convolution is the weighted 

superposition of one function (for example, Unit response) on another function, 

such as an input signal. 

 

On the two-dimensional, there are two ℛ2 → ℛ functions 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦). The 

convolution of f and f is a new ℛ2 → ℛ  function. Get through the following 

formula: 

𝑐(𝑥, 𝑦) = ∫ ∫ 𝑓(𝑠, 𝑡) ∗ 𝑔(𝑥 − 𝑠, 𝑦 − 𝑡) 𝑑𝑠 𝑑𝑡
∞

−∞

∞

−∞

 
 

⑹ 

 
 

The meaning of this formula is: Traverse all s and t values from negative infinity to 

positive infinity and multiply the value of g at position (𝑥 − 𝑠, 𝑦 − 𝑡) with the value 

of f at the (s, t), “plus” (in the integral sense) together, that is the value of c in (x, 

y). In other words, convolution is a kind of “weighted summation”. With (x, y) as 

the center, multiply the value of g from the center (-s, -t) position on the value of f 
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at (s, t) and add it together at last. It is clearer to write the convolution formula in 

the discrete form: 

𝒞(𝑥, 𝑦) =∑∑ℱ(𝑠, 𝑡) ∗ 𝒢(𝑥 − 𝑠, 𝑦 − 𝑡)

∞

−∞

∞

−∞

 
 

⑺ 

 

 

The convolution process shows in Figure 8. 

 

 
Figure 8. A Step of Convolution Process [9] 

 

The above operation is a discrete convolution operation of digital images, also 

known as filtering, called convolution nuclei or filters. Different filters play 

different roles. Imagine that if the size of ℱ is 3x3, the value in each lattice is 
1

9
 . 

Then the filter is equivalent to calculating the grayscale average of 9 image points 

in the 3x3 range around it for each point of the original image. This should be a 

blur, shown in Figure 9. 

 

 
Figure 9. Example of Convolution Process in Picture [10] 
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• Pooling  

Pooling is the image of simple drawback. CNN’s pooling (image sampling) 

methods are many: Mean pooling, Max pooling (maximum sampling), 

Overlapping, L2 pooling, Local Contrast Normalization (normalized sampling), 

Stochasticpooling, Def-pooling (deformation constraint sampling). One of the most 

classic is the maximum pool shown in Figure 10. 

 

 
Figure 10. Example of Pooling [11] 

 

• Fully-Connected 

The full-connection layer plays the role of “classifier” in the whole convolution 

neural network. The full-connection layer acts as the “distributed feature 

representation” that is learned to map to the sample markup space. In practical use, 

the full connection layer can be realized by convolution operation: The full 

connection layer with the front layer is fully connected can be converted into 

convolution core 1x1, while the front layer is the whole connection layer of the 

convolution layer can be transformed into the global convolution with convolution 

core as h * w, and h and w are the high and wide of the convolution results of the 
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front layer respectively. 

 

The core operation of full connection is the product of the matrix vector: 

 

𝒴 = 𝒲𝓍 ⑻ 

 

In CNN, full connectivity often appears in the last few layers and is used to 

weighting and characterize the features of the previous design. For example, LeNet, 

the front convolution, and pooling are equivalent to doing feature engineering, the 

back of the full connection is equivalent to doing feature weighting. [9] 

 

1.2 TensorFlow  

 

TensorFlow is used to quickly implement various algorithm formulas such as DL 

and CNN. Its name itself describes its own execution principle: tensor means an n-

dimensional array, flow (stream) means a calculation based on a stream diagram. 

The graphs in the flow diagram are all the directed graphs. There are two basic 

elements in this data structure: nodes and edges. These two elements have their own 

functions in this data flow diagram. Node is used to represent the mathematical 

operation to be performed. All operation has its own input/output, so it can also 

represent the end of the input or the entry of the output. Edges are represented by 

the relationship between input and output in nodes. A special type of data passes 

along with these edges. This particular type of data is called tensor in TensorFlow, 

a multidimensional array. When a tensor is put into this diagram, the actions 

represented by the node are assigned to the computing device to complete the 

calculation, shown in Figure 11. 
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Figure 11. TensorFlow Core Graph [12] 

 

1.3 Keras 
 

Keras is a high-level neural network’s API, written in Python and capable of 

running on top of TensorFlow, CNTK, or Theano. It was developed with a focus 

on enabling fast experimentation. Being able to go from idea to result with the 

least possible delay is key to doing good research. 

 

 

Figure 12. Keras Modules Structure [14] 
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1.4 Pepper Robot 
 

Pepper is a social humanoid robot, designed for people through friendly 

conversations and its tablet, manufactured by SoftBank Robotics, which can 

be used for businesses and education. Pepper can create its own experiences 

and form real relationships shown in Figure 13, and its dimensions’ parameters 

are shown in Figure 14 and Figure 15. 

 

 
Figure 13. Pepper Robot [15] 
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Figure 14. Pepper Dimensions [16] 

 

 

Figure 15. Pepper Dimensions [16] 
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1.4.1 NAOqi Python API 
 

NAOqi is the main software to run projects on the robot, under OpenNAO 

distribution or computers via many software languages like Python, C++. The 

NAOqi Framework is the programming used to develop projects on NAO or 

PEEPER robots using all kinds of software languages through different platforms. 

NAOqi answers to common robotics need such as parallelism, resources, 

synchronization, events. 

 

This framework supports all kinds of communication between different modules 

and parts like motion, vision, microphone, video, homogeneous programming, and 

homogeneous information sharing. The NAOqi framework can cross many 

platforms so that it is able to develop all kinds of projects on the robot with it on 

Windows, Linux or Mac. The NAOqi framework also supports many software 

languages through an identical API for both C++ and Python to benefit developers. 

The NAOqi framework still supports introspection, to know which functions are 

available in the different modules and where the functions are. 

 

 

Figure 16. The NAOqi process [17] 

 



22  

 

1.4.2 ALTextToSpeech 
 

Pepper has four microphones on the head, shown in Figure 17, and the type of 

Pepper’s microphone is omnidirectional. These microphones’ sensitivity is 

250mV/Pa +/-3dB at 1kHz, while their frequency range is 100Hz to 10kHz (-10dB 

relative to 1kHz). 

 

 
Figure 17. Pepper’s Microphones [16] 

The ALTextToSpeech module is one of the NAOqi APIs to let the robot to speak. 

The commands about ALTextToSpeech is sent to text-to-speech engine, and then 

robot machine will authorize the voice customization, then the result of the 

synthesis will be sent to the robot’s loudspeakers to let robot speak the defined 

words.   

 

1.4.3 ALFaceDetection 

 

Three cameras are composed in Pepper’s head, two 2D cameras on the top and the 

bottom and one 3D sensor in Pepper’s eyes. The 2D cameras are two identical video 

cameras which are composed in robot’s forehead, supporting a resolution up to 

2560*1920 at 1 frames fps (per second) or 640*480 at 30 fps (per second), shown 

in Figure 18. 
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Figure 18. 2D Cameras in Pepper [16] 

 

The ASUS Xtion 3D sensor is still located in Pepper’s forehead, supporting image 

resolution up to 320*240 at frames fps (per second), shown in Figure 19. 

 

 

Figure 19. 3D Sensor in Pepper [16] 



24  

 

1.5 OpenCV-Python 

 

OpenCV is a widely used open source toolkit in the field of computer vision, based 

on C++, crossing many platforms like Linux, Windows, MacOS, Android, and iOS, 

and supporting interfaces in languages such as Python, MATLAB. OpenCV has 

rich interfaces, excellent performance and commercially friendly licensing, both in 

academia and in the industry, which is very popular. OpenCV first originated from 

an Intel Corporation research project in 1998, when Gary Bradski, an engineer at 

Intel who worked in computer vision. When Guery Bradsky was visiting some 

universities and research groups, it was found that computer vision algorithms were 

used between students to implement internal code or libraries in their respective 

labs, so that new lab students could quickly get started based on the basic functions 

written by their predecessors. So OpenCV aims to provide a high-performance 

general library for scientific research and commercial applications for computer 

vision.  

 

1.6 NumPy 

 

NumPy (Numerical Python) is an extension library of the Python language that 

supports a large number of dimension groups and matrix operations, and also 

provides a large library of mathematical functions for array operations.  

 

NumPy is a fast-running mathematical library, mainly used for array computing and 

having a powerful N-dimensional array, a broadcast functional function, some tools 

of consolidating C, C++ or Fortran code and the functions to create linear algebra, 

Fourier transform, random number and so on. 

 

1.7 Matplotlib 

 

Matplotlib is Python's most famous drawing library, which provides a complete set 

of command APIs similar to MATLAB and is ideal for interactive mapping. Among 

them, Matplotlib's Pyplot module is generally the most commonly used, which can 

make it easy for users to quickly draw two-dimensional charts. 
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2 FEASIBILITY STUDY 
 

Feasibility Study refers to the research and evaluation of the projects to be carried 

out prior to the study of the project through a large number of market surveys, 

including market analysis, market research, target population surveys, technical 

surveys, operational guidelines and knowledge of the relevant laws. 

 

2.1 Technical Feasibility Study 

 

Today, the Python language has gradually become one of the mainstream languages 

of the editing program, and PyCharm is also the mainstream IDE for Python 

language programming. With the popularization of artificial intelligence, machine 

learning and deep learning have gradually attracted people’s attention. The 

development of robots is also one of the hottest topics today, and robots are used in 

a wide range of industries, with the primary aim of reducing unnecessary human 

resources and improving the efficiency of life and industries. Technically, through 

the platform of the PEPPER robot, the programming design of the Python language 

and the construction of the CNN framework in deep learning are applied to the 

medical system to analyze the patient’s condition and judge the patient’s mental 

state through emotional changes. TensorFlow is also a common package to build a 

convolutional neural network. 

About the TensorFlow, there are four features of TensorFlow: 

 

• Flexibility. TensorFlow is not a strict neural network library which means 

that any calculations can be used as long as they can be represented by a 

flow diagram. 

• Portability. The underlying core codes of TensorFlow are C++, which can 

be run on many devices and provide distributed supports. This feature can 

quickly build a deep learning structure. 

• Multilingual support. TensorFlow supports Python, C, C++, Java and Go. 

• Efficiently. TensorFlow provides the supports for threads, queues and 

asynchronous operations, also supporting running on the CPU and GPU to 

realize the full potential of the hardware. 
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TensorFlow uses Graph to describe computer tasks, and the nodes in the diagram 

are called op. An op can accept 0 or more tensors as input or 0 or more tensors as 

output. Any Graph needs to be with the help of context Session to run. Start Graph 

through Session and distribute op in Graph to the CPU or GPU, and then with the 

help of Session to perform these op. These ops which are executed will return the 

resulting tensor. With the feed and fetch operations provided by Session, these ops 

are assigned values or get data. In the calculation process, the calculation state is 

maintained by variable. 

 

Table 1. Related Concepts in TensorFlow 
Type Description Use 

Session Session The diagram must be executed in a context called a 

“session.” The session distributes the OP of the diagram to 

calculations such as the CPU or GPU 

Graph Describe the 

calculation process 

Must be started in Session 

Tensor Data One of the data types that represent a multidimensional array 

op Operation The nodes in the figure are called op, and an op gets 0 or 

more Tensor, then performs calculations, and then produces 0 

or more Tensor 

Variable Variable One of the data types that can be changed during operation to 

maintain state 

feed Assign a value Assign a value to the tensor of op 

fetch Take a value Take a value from the tensor of op 

Constant Constant One of the data types, immutable 

 

As for Keras, it is the simplified interface to TensorFlow. The guiding principles of 

Keras: 

• User friendliness. Keras is an API designed for human beings, not 

machines. It puts user experience front and center. Keras follows best 

practices for reducing cognitive load: it offers consistent & simple 

APIs, it minimizes the number of user actions required for common use 

cases, and it provides clear and actionable feedback upon user error. 

• Modularity. A model is understood as a sequence or a graph of 

standalone, fully configurable modules that can be plugged together 

with as few restrictions as possible. In particular, neural layers, cost 

functions, optimizers, initialization schemes, activation functions, and 

regularization schemes are all standalone modules that you can 

combine to create new models. 
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• Easy extensibility. New modules are simple to add (as new classes and 

functions), and existing modules provide ample examples. To be able 

to easily create new modules allows for total expressiveness, making 

Keras suitable for advanced research. 

• Work with Python. No separate models configuration files in a 

declarative format. Models are described in Python code, which is 

compact, easier to debug, and allows for ease of extensibility. [13] 

 

2.2 Economic Feasibility Study 

 

With the improvement of economic development, people’s demand for medical 

care is becoming more and more popular, the limited resources of medical 

institutions and people’s demand for medical care began to gradually create a gap. 

According to the report, shown in Figure 20, there is an increasing number of 

children in Finland who need treatment for mental health problems, but analytical 

support for the mental state has not increased synchronously. At this time, the use 

of an artificial intelligence robot instead of manpower to carry out people’s 

emotional changes to make judgment and recognition is particularly important. The 

extensive use of this design can alleviate a part of the medical institutions of human 

resources, so economic is also feasible. 
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Figure 20. Finland Mental Health Report [18] 

 

2.3 Operational Feasibility Study 
 

This design uses the humanoid robot PEPPER as an analysis of the mental condition 

of patients or children. It is done through face recognition of the patient and a series 

of captures of the facial expression, then the results are analyzed and summarized 

to determine the patient’s current mental state and visualize the results. Therefore, 

it is also feasible to operate. 

 

2.4 Legal Feasibility Study 

 

There is no link in this design that violates the provisions of the national law, so 

this design is also feasible in law. 
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3 SOFTWARE REQUIREMENT ANALYSIS 
 

Software requirement analysis is a summary of a series of design analyses such as 

this project’s functional analysis, processing of data analysis, system flow charts 

and so on. 

 

3.1 Functional Analysis 

 

In this project,  

• the robot first locates the patient’s face and captures 25 pictures of the 

patient’s changing facial expression as “.jpg” type,  

• then data of the captured image goes into the native computer.  

• CNN is used to build 4 layers of convolution and 2 full-connected layers, 

Kaggle’s “fer2013.csv” is used as facial emotional dataset and trained 

through the CNN structure, as a result of this, a file of “.h5” type was created 

named “model_4layer_2_2_pool” which contains all the special features of 

the emotional dataset.  

• After receiving the pictures from a robot, these pictures will be trained and 

tested through the CNN structure and will be analyzed and recognized via 

the pre-trained file.  

• Finally, all the analysis of the results will be summarised and visualize of 

the display as a bar chart in the values of angry, disgust, fear, happy, sad, 

surprise and neutral. 

 

In this project, TensorFlow was used as backend and the Keras was used as the 

interface to call the functions of TensorFlow to build the CNN structure. 

 

3.2 System Flowchart 

 

The patient faces the robot with the robot’s voice prompts, and the robot begins a 

continuous shot of the facial expression after capturing the human face. When the 

local computer accepts the pictures, pictures will be transferred into CNN for 

training and recognition, and then visualize the results, shown in Figure 21. 
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Figure 21. System Flowchart 

 

3.3 Data Flowchart 
 

3.3.1 Input Data Flowchart 

 

When the patient's face is identified, a series of the patient’s emotional pictures are 

captured, a total of 25 pictures as “.jpg” type. Then a connection with the local 

computer is built and these pictures are transferred, as shown in Figure 22. 

 

 

Figure 22. Input Date Flowchart 

 

3.3.2 Dataset Training Flowchart 

 

In this project, the facial emotional dataset is Kaggle’s Fec2013, which is 

compressed at a size of 92 M and the uncompressed version size is 295 M. The 

dataset contains 28,000 training photos and 30,000 test photos, shown as Figure 23. 

Each photo is stored as 48 x 48 pixels.  
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This dataset contains image pixels (48 x 48 = 2,304 values), facial expressions in 

each image, and usage types (used as training or tests). The data file is mainly 

“Fec2013.csv”, a total of two columns: emotion, pixels, and usage. There are 7 tags: 

0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral. The pixels 

column is 48 x 48 pixels, shown in Figure 24. 

 

 

Figure 23. Examples Picture of Fer2013 [19] 

 

 

Figure 24. Fec2013.csv 
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“Fec2013.csv” will be transferred into CNN structure to training and testing, and 

then output a feature file in “.h5” type which contains all the facial emotional 

characteristics, named “model_4layer_2_2_pool”. The flowchart is shown in 

Figure 25. 

 

 

Figure 25. Dataset Training Flowchart 

 

3.3.3 CNN Structure Module Flowchart 

 

In this project, the CNN structure is like “input -> conv 1 -> pool 1 -> conv 2 -> 

pool 2 -> conv 3 -> pool 3 -> conv 4 -> pool 4 -> fc 1 -> fc 2 -> out”, which contains 

four convolutional layers and two full-connected layers. The structure is shown in 

Figure 26. 

 

 

Figure 26. CNN Structure 

 

3.3.4 Output Data Flowchart 

 

After all the images captured by the robot having been identified by deep learning, 

all the results will be aggregated to the average, and finally, the aggregated results 



33  

 

will be visualized in the form of a bar chart, shown in Figure 27. 

 

 

Figure 27. Output Data Flowchart 
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4 DETAILED DESIGN 
 

The detailed design mainly contains some detailed description of the modules of 

this project, including the detailed operation process, the structure of each module 

and the core codes. This project is divided into three modules: CNN structure 

module, training module and predict module. 

 

4.1 CNN Structure Module 
 

This module mainly describes the detailed structure of the CNN framework in this 

project and the data analysis process. This CNN structure is built by Keras with 

TensorFlow backend, which contains tour convolution layers and two full-

connected layers. The detailed structure is shown as Figure 28 which is written by 

python, illustrated in Figure 29, Figure 30 and Figure 31.  

 

 

Figure 28. CNN Detailed Structure 

 

 

Figure 29. Example Codes for Displaying the CNN Structure about convolution 

layers 
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Figure 30. Example Codes for Displaying the CNN Structure about convolution 

and pooling layers 

 

 
Figure 31. Example Codes for Displaying the CNN Structure about fully-

connected layer 
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In this CNN structure, data will be transferred into CNN and then trained and tested 

in the CNN structure, shown in Figure 32. 

 

 

Figure 32. Data Processing Flowchart 

 

• it will firstly initialize the parameters and transfer the training and testing 

dataset from database and then normalize the inputs between 0 to 1.  

# initialize trainset and testset 

x_train, y_train, x_test, y_test = [], [], [], [] 

# transfer train and test set data 

for i in range(1, num_of_instances): 

    try: 

        emotion, img, usage = lines[i].split(",") 

 

        val = img.split(" ") 

 

        pixels = np.array(val, 'float32') 

 

        emotion = keras.utils.to_categorical(emotion, num_classes) 

 

        if 'Training' in usage: 

            y_train.append(emotion) 

            x_train.append(pixels) 

        elif 'PublicTest' in usage: 

            y_test.append(emotion) 

            x_test.append(pixels) 

    except: 

        print("", end="") 

 

# normalize inputs between [0, 1] 

x_train /= 255   
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x_test /= 255 

 

• Then the data will be transfer into CNN structure, which means to first 

initialize the CNN and then begin to build four convolution and pooling 

layers and two fully connected layers.  

#Main CNN model with four Convolution layer & two fully connected 

layer 

def baseline_model(): 

    # Initialising the CNN 

    model = Sequential() 

 

In this project,  

• the first convolution layer is built by the two-dimensional convolution layer 

Conv2D which contains 64 filters. Each filter’s kernel_size is 3 x 3 and the 

border_mode is “same”. 

    # 1 - Convolution 

    model.add(Conv2D(64,(3,3), border_mode='same', 

input_shape=(48, 48,1))) 

 

the activation layer of CNN structure is using the “relu” predefined 

activation function which means the activation layer exerts an activation 

function on the output of a layer.  

    model.add(Activation('relu')) 

 

In order to prevent over-fitting, Dropout function is used to randomly 

disconnects a certain percentage (𝑝, in this project 𝑝 = 0.25) of the input 

neuron connection each time the parameter is updated during training.  

    model.add(Dropout(0.25)) 

 

The first pooling layer is built by the two-dimensional Man-Pooling layer 

MaxPooling2D, which the pool_size is 2 x 2.  And the Pooling's role in 

CNN is: 

i. Invariance. This invariance includes translation, rotation, and scale. 

ii. Retain the main features while reducing the parameters (descending 

dimension, an effect similar to PCA) and computation, preventing 

over-fitting and improving the generalization ability of the mode. 



38  

 

    model.add(MaxPooling2D(pool_size=(2, 2))) 

 

• The second convolution layer is built by the two-dimensional convolution 

layer Conv2D which contains 128 filters. Each filter’s kernel_size is 5 x 5 

and the border_mode is “same”. “relu” activation function is used and the 

parameter of Dropout is 0.25. The second pooling layer is built by the two-

dimensional Man-Pooling layer MaxPooling2D, which the pool_size is 2 x 

2. 

    # 2nd Convolution layer 

    model.add(Conv2D(128,(5,5), border_mode='same')) 

    model.add(BatchNormalization()) 

    model.add(Activation('relu')) 

    model.add(MaxPooling2D(pool_size=(2, 2))) 

    model.add(Dropout(0.25)) 

 

• The third convolution layer is built by the two-dimensional convolution 

layer Conv2D which contains 512 filters. Each filter’s kernel_size is 3 x 3 

and the border_mode is “same”. “relu” activation function is used and the 

parameter of Dropout is 0.25. The second pooling layer is built by the two-

dimensional Man-Pooling layer MaxPooling2D, which the pool_size is 2 x 

2. 

    # 3rd Convolution layer 

    model.add(Conv2D(512,(3,3), border_mode='same')) 

    model.add(BatchNormalization()) 

    model.add(Activation('relu')) 

    model.add(MaxPooling2D(pool_size=(2, 2))) 

    model.add(Dropout(0.25)) 

 

• The fourth convolution and pooling layer are the same as the third layer. 

• Flatten ()'s input data is a bunch of feature diagrams, and the network after 

it accepts a one-dimensional feature, so the role of Flatten is to "squash" its 

input data into 1D form so that it can be successfully entered into the fully 

connected layer. 

    # Flattening 

    model.add(Flatten()) 
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• The first fully connected layer. The fully connected layer in the Keras is 

called “Dense”. The connection here is very "dense" and the number of 

connections is very large. One of the required parameters of the dense 

layer is the number of neurons in the current layer, here are 256 neurons. 

The “relu” activation function is used and the parameter of Dropout is 

0.25. 

    # Fully connected layer 1st layer 

    model.add(Dense(256)) 

    model.add(BatchNormalization()) 

    model.add(Activation('relu')) 

    model.add(Dropout(0.25)) 

 

• The second fully connected layer was built. The required parameters of 

the dense layer, the number of neurons in the current layer, here are 512 

neurons. “relu” activation function is used and the parameter of Dropout 

is 0.25. 

• The classification layer is to map the feature to the final category and then 

map it to the category probability through a “sigmoid” activation 

function. The 7 classifications are defined here, so the number of neurons 

in the final Dense layer is 7. 

    model.add(Dense(num_class, activation='sigmoid')) 

 

After training the data, the CNN structure will be printed out and showed as 

Figure33. 
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Figure 33. CNN Structure after Training 
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4.2 Training Module 

 

This module is used to illustrate the process about training the data, shown in Figure 

34. 

 

 

Figure 34. Training Module Flowchart 

 

The compiled CNN model begins to prepare training data. There are two ways to 

train models in Keras, model.fit() and model.fit_generator(), and in this project, 

model.fit() function is selected for data training. The process of the model.fit() 

function can be simply understood as the process of determining the weight of 

connections between neurons through test data.  

 

The test data is divided into two parts, the matrix type of input data x, and the 

corresponding array type of output y. Neural network training usually uses a reverse 

propagation (Backpropagation) algorithm, so the parameters that need to be 

specified are the training cycle epochs and the amount of data calculated each time 

batch_size. When the training is complete, the history will be used to save the 

relevant description after the model training.  

 

The complete model.fit() function is:  

fit( x, y, batch_size, epochs, verbose, callbacks=None, 

validation_split=0.0, validation_data=None, shuffle=True,  

class_weight=None, sample_weight=None, initial_epoch=0) 

 

In this project, parameters of x = X_train, y = y_train, batch_size = batch_size, 

epochs = epochs, verbose and validation_split are used to define the testing 

function.  

• x: Input data. If the model has only one input data, the type of x is numpy 

array, and if the model has more than one input data, the type of x will be a 

list which element is the numpy array to each input data.  
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X_train, X_test, y_train, y_test = train_test_split(X, Y, 

test_size=0.1, random_state=0) 

 

• y: Label. The type of y is numpy array. 

y_train = (np.arange(num_class) == y_train[:, 

None]).astype(np.float32) 
 

 

• batch_size: The type is an integer. This parameter is the number of samples 

that each batch contains when a gradient drop is specified. During training, 

a batch sample is calculated as a gradient drop, allowing the objective 

function to be optimized one step at a time. 

batch_size = 128 

 

• epochs: The type is an integer. This parameter is the epoch value that 

represents the end of the training. The training will stop when the epoch 

value is reached, and when no initial_epoch is set, it is the total number of 

rounds trained, otherwise, the total number of rounds of training is epochs - 

inital_epoch. 

epochs = 124 

 

• verbose: This parameter is the control log information. 0 means that the log 

information is not output via the standard output stream,  and 1 is 

represented as the output progress bar record, and 2 is represented as the 

output row record for each epoch. 

• validation_split: This parameter type is a floating-point number between 

0~1 and is used to specify a certain percentage of the training set as a 

validation set. Validation sets will not participate in training and test the 

indicators of the model after each epoch end, such as loss functions, 

accuracy, and so on. validation_split is divided before shuffle, so if the data 

itself is ordered, it needs to be manually disrupted before specifying 

validation_split, otherwise, the validation set sample may appear uneven. 

    model.fit(X_train, y_train, 

              batch_size=batch_size, 

              epochs=epochs, 

              verbose=2, 
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              validation_split=0.1111) 

    model_json = model.to_json() 

    with open("model_4layer_2_2_pool.json", "w") as json_file: 

        json_file.write(model_json) 

    # serialize weights to HDF5 

    model.save_weights("model_4layer_2_2_pool.h5") 

 

4.3 Predict Model 
 

In this project, the model will predict the probability values for 7 labels for a test 

image: anger, disgust, fear, happy, sad, surprise and neutral, shown in Figure 35. 

label_map = ['Anger', 'Disgust', 'Fear', 'Happy', 'Sad', 

'Surprise', 'Neutral'] 

 

 

Figure 35. Predict Module Flowchart 

 

When making deep network predictions in Keras, there are two common predictive 

functions named model.predic_classes(), which predicts a category shown as 

Figure 35 and the printed value is the category number and can only be used for 

sequence models not for functional models, and model.predict(), which predicts 

some values and the output are numpy array of 7 encoded values in real number, 

shown as Figure 37. In this project,  model.predict() is used to predict the result.  

score = model.predict(X_test) 

 

 

Figure 36. Example Result of model.predic_classes() 
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Figure 37. Example Result of model.predict() 

• After predicting the data, the final categorical accuracy will be calculated 

by taking labels of having highest probability via the function 

np.argmax(), which returns the index of the maximum value along the 

axis and np.mean(), and the result is about 0.654, which is shown in 

Figure 38. 

New_X = [ np.argmax(item) for item in score ] 

y_test2 = [ np.argmax(item) for item in y_test] 

accuracy = [ (x==y) for x,y in zip(new_X,y_test2) ] 

print(“ Accuracy on Test set : “ , np.mean(accuracy)) 
 

 

 

Figure 38. The Result of Final Accuracy 

 

• After predicting the pictures taken from Pepper robot, the result will be 

transferred to the visualizing result. 

Custom = model.predict(x)    

emotion_analysis(custom[0],os.path.basename(imgPath)) 
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5 IMPLEMENTATION 
 

This part will illustrate the implementation of every detailed module in this project, 

including detecting and taking pictures, transferring the pictures, recognizing a face, 

predicting the pictures and visualizing the result, shown in Figure 39. 

 

 

Figure 39. Project Implementation Flowchart 

 

5.1 Detecting and Taking Pictures Implementation 

 

The first thing is to make the connection between the Pepper robot and the computer 

via the robot’s ID and port, and then create a proxy on the text-to-speech module, 

named ALTextToSpeech, to give some information to patients to look at the robot. 

The connection between the computer and the Pepper Robot is Naoqi APIs. About 

Naoqi, a real-time application can only be a separate executable file or robot tree, 

process tree, module tree. No matter what you choose, the calling method is always 

the same. Use IP addresses and ports to connect the executable file to another robot, 

and all API methods in other executables are available in the same way as the local 

method. NAOqi is a choice between a quick direct call (LPC) and a remote call 

(RPC). 

 

The NAOqi executable file running on the robot is a broker. After it starts, it loads 

a file named AutoLoad. Each library contains one or more modules that use proxies 

to invoke their methods, as shown in Figure 16. Proxies are used to provide a lookup 
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service so that any module in the tree or on the network can find any method that 

has been advertised. The loading module forms a method tree attached to the 

module, as well as a module tree attached to the agent. 

#create a proxy on the text-to-speech module 

tts=ALProxy("ALTextToSpeech",robot_ID,PORT) 

 

#modify the voice's speed 

tts.setParameter("speed",200) 

tts.resetSpeed() 

tts.say("Hello, please look at me.") 

 

Then a proxy is created to let the robot detect patient’s face, named 

ALFaceDetection, and subscribe to the ALFaceDetection proxy, which means that 

the module will write in ALMemory with the given period, finally make a valid 

output. After detecting the patient’s face, ALPhotoCapture will be created to take 

25 pictures. 

#create a proxy to ALFaceDetection 

faceProxy=ALProxy("ALFaceDetection",robot_ID, PORT) 

 

# Subscribe to the ALFaceDetection proxy 

period = 500 

faceProxy.subscribe("Test_Face", period, 0.0 ) 

# Create a proxy to ALMemory 

memoryProxy = ALProxy("ALMemory", robot_ID, PORT) 

 

#crease a proxy to ALPhotoCapture 

photoCaptureProxy = ALProxy("ALPhotoCapture", robot_ID, PORT) 

photoCaptureProxy.setResolution(2) 

photoCaptureProxy.setPictureFormat("jpg") 

photoCaptureProxy.takePictures(25,"/home/nao/recordings/cameras/",

"image") 

 

The implementation picture is shown in Figure 40. 
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Figure 40. Detecting and Taking Pictures Implementation 

 

5.2 Transferring Pictures Implementation 

 

A connection with Pepper robot is built via the robot’s username and password to 

attain the right to handle the robot’s files which are saved in robot’s memory, and 

then the function is used iparamiko.Transport() to transfer the pictures to a local 

computer. 

   t = paramiko.Transport(("130.232.164.94", 22)) 

   t.connect(username="nao", password="qwe123") 

   sftp = paramiko.SFTPClient.from_transport(t) 

   files=sftp.listdir(image_path) 

   for f in files: 

       print ('') 

       print ('##############################################') 

       print ('Beginning to download file from %s %s' %  

       ("130.232.164.94",datetime.datetime.now())) 

       print ('Downloading file:', os.path.join(image_path,f)) 

       

sftp.get(os.path.join(image_path,f),os.path.join(local_path,f)) 

       print ('Download file success %s'%datetime.datetime.now()) 

       print ('') 

       print ('##############################################') 

   t.close() 

 

The implementation picture is shown in Figure 41. 
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Figure 41. Transferring Pictures Implementation 

 

5.3 Recognizing Face in Pictures Implementation 

 

OpenCV-Python is used to recognize the face in pictures transferred from robot via 

the function cv2.CascadeClassifier() to read a “.xml” file named 

“haarcascade_frontalface_default”.  

face_patterns=cv2.CascadeClassifier(r"./haarcascade_frontalface_de

fault.xml") 

sample_img=cv2.imread(imgPath) 

faces=face_patterns.detectMultiScale(sample_img, scaleFactor=1.1, 

       minNeighbors=5, minSize=(100,100)) 

for(x,y,w,h) in faces: 

    cv2.rectangle(sample_img, (x,y), (x+w,y+h), (0,255,0), 2) 

cv2.imwrite('./detectedFaces/'+os.path.basename(imgPath),sample_im

g) 

 

The implementation picture is shown in Figure 42.  
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Figure 42. Recognizing Face in Pictures Implementation 

 

5.4 Predicting the Pictures Implementation 

 

The principle, process, and codes of this module have been described in the 

preceding article. The result of predicting the pictures will be printed as an array 

with seven elements which all the elements are 5 encoded values of real numbers. 

Every element represents a kind of emotion in the order as:  

'angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral' 

 

The implementation picture is shown in Figure 43. 

 



50  

 

 

Figure 43. Predicting the Pictures Implementation 

 

5.5 Analyzing and Visualizing Result Implementation 

 

All the predicting results will be collected together and then make the average value 

to improve the predicting accuracy. 

sum=np.array(predictData) 

averageList=np.mean(sum, axis=0) 

 

The final result will be displayed as bar chart. Firstly a function is created for 

drawing bar chart for emotion predictions via matplotlib.pyplot. This function will 

receive the predicting results from CNN structure and then draw the bar chart as the 

data of predicting result, and then save the bar charts to local place. 

objects = ('angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 

'neutral') 

y_pos = np.arange(len(objects)) 

plt.cla() 

plt.bar(y_pos, emotions, align='center', alpha=0.5) 

plt.xticks(y_pos, objects) 

plt.ylabel('percentage') 

plt.title('emotion') 
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savefig('./predictImg/'+predictImgName) 

 

The implementation picture is shown in Figure 44 and Figure 45. 

 

 

Figure 44. Visualizing Results in Bar Chart 
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Figure 45. Final Result after Analyzing 

 

The complete implementation video link is: 

https://www.youtube.com/watch?v=pbwMU2AFOv0 

 

 

 

 

 

 

 

 

 

 

 

https://www.youtube.com/watch?v=pbwMU2AFOv0
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6 IMPROVEMENT AND CONCLUSION 
 

The main thing which needs to be improved in this project is to prevent overfitting.  

Overfitting refers to the problem in the process of fitting model parameters. Because 

the training data contains sampler errors, and complex model, which contains four 

convolution layers and two fully connected layers in this project, takes the sample 

errors in the training process, and the sample errors are also well fitted. The concrete 

performance is that the final model works well on the training set, and the effect on 

the test set is poor. The model generalization ability is poor. Dropout is used in this 

project to solve this problem, but the effect is not so good. There are some other 

improvement methods in the future: 

i. Get more data.  

There are many ways to get more data. For instance, in this project, taking 

several pictures continuously (25) to get more data from the source of data 

has been taken to prevent overfitting. However, a significant increase in the 

number of taking pictures is not easy for a robot to fulfill. In addition, it is 

impossible to know how much data is enough in this project. The feasible 

method to get more data to prevent overfitting in the future is using the 

technology, Data Augmentation, which means to expand the data with 

certain rules. 

ii. Use a suitable model 

Overfitting is mainly caused by two reasons, too little data, and too complex 

model. So using a model in the appropriate complexity to fit the real rules 

is also a way to avoid fitting too many sample errors, for instance, early 

stopping, regularization and increasing noise. 

iii. Combine multiple models 

Train multiple models to collect all the output of each model and then the 

average output as the final result, for instance, Bagging, Boosting and 

Dropout, which has been used in this project. 

 

In this project, the understanding of the structure and principle of artificial neural 

networks in deep learning, as well as the learning of related knowledge of 

convolutional neural network are all very core part. In the process to build a CNN 
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structure, there are many factors that influence the accuracy of the deep learning 

result and the speed of training, like the number of convolution layers and fully 

connected layers, the activation function, the dropout and so on.  

 

As for the Pepper robot, there is no doubt that the humanoid robot is the best choice 

to replace human resource to detect and take pictures for patients. With the rapid 

technological development, the research of fields related to Robotics and Computer 

Aided Design (CAD), such as healthcare robotics and relevant visual computing 

direction, becomes more and more popular to help hospital take care about patients. 

During the development of this project, it is difficult to find a suitable convolutional 

neural network to train and test the Kaggle’s Fec2013 dataset so I trained several 

times for different structures from two convolution layers up to five convolution 

layers. Finally, four convolution layers had been chosen because of the highest 

accuracy.  Excluding the overfitting, the limit of facial emotional categories is also 

a part which needs to be improved. The dataset, which this project used, only have 

7 kinds of emotions to let computer study and predict. In the future, other kinds of 

facial emotion still need to be added and the size of the dataset also needs to be 

enriched.  

 

In this project, most of the module has been implemented. Users can look at Pepper 

robot to let it take several pictures for him and these pictures can be transferred to 

the local computer successfully. Convolutional Neural Network can receive these 

pictures to predict the facial emotion by comparing with the feature file and the 

final accuracy is about 0.67. After averaging all the results, the final result is 

displayed as a bar chart to illustrate the user’s mental stature with 7 labels: angry, 

disgust, fear, happy, sad, surprise, neutral. 

 

In this thesis, the history and process of related technologies and development 

environments like a neural network, convolution neural network, and the Pepper 

robot are all introduced, also the whole working process of this project having been 

illustrated via several flowchart and codes. 
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