
1

Abdirahman Ibrahim Mohammed

DATA DRIVEN PROJECTION OF

FUTURE PURCHASING

BEHAVIOUR

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my father and mother for the endless en-

couragement, support and giving me the gift of life, without them, this journey

would not have been possible. I am also grateful to my supervisor Ali Al-towati for

providing me with all the necessary facilities for the research.

I also take this opportunity to express gratitude to all of my friends Jama Ismail and

Lawal Olufowobi and to all of the Department faculty members for their help and

support.

3

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author Abdirahman Ibrahim Mohammed

Title Data Driven Projection of Future Purchasing Behavior

Year 2019

Language English

Pages 40

Name of Supervisor Ali Altowati

Managing personal expenses is a problem for many people for numerous reasons,

however financial status can become even more complicated. Considerable bills

coupled with limited earnings can make money management intensely challenging.

Even though financial pressure can be annoying, there are methods to manage fi-

nances and reclaim financial independence.

Categorization of determined data which organized hierarchy have been done be-

fore. In recent years, apps or software has been used to categorize personal ex-

penses, in order to help the people to stick to spending limits by breaking up their

cash into containers labeled with different spending categories.

The main objective of this project was to design and develop a frontend and backend

web application that provides people reviewing day- to- day transactions including

invoices, sales receipt, payments. The application is built with the lattes Vaadin

framework and Spring Boot together to provide simple and intuitive web interface.

The amount of time needed to implement this project was inaccurately underesti-

mated. Although some improvements have been presented, the application partially

meets all the requirements and requires tremendous amount of work to be fully

functional application.

Keywords Spring Boot, Vaadin, CSV Upload and bank statement

CONTENTS

ABSTRACT

1 INTRODUCTION ... 8

2 TECHNOLOGIES USED ... 9

2.1 Spring Boot .. 9

2.1.1 Auto-configuration ... 9

2.2 Vaadin ... 10

2.2.1 Vaadin Framework ... 10

2.2.2 Server-side architecture .. 11

2.3 Gradle .. 11

2.4 Accessing data with Hibernate and MYSQL in Spring Boot 13

3 ANALYSIS ... 15

3.1 Requirements ... 16

3.1.1 Table of Requirements ... 16

Requirement .. 16

Description .. 16

Priority 16

3.1.2 Bank Statement Management P1 ... 16

3.1.3 Import Statements ... 17

3.1.4 Statement Format .. 17

3.1.5 Retrieving Material ... 18

3.1.6 Classification of Material.. 18

4 APPLICATION DESIGN AND IMPLEMENTATION 21

4.1 Overview .. 21

4.1.2 User Registration .. 21

4.1.3 Login Form .. 22

4.1.4 Uploading File .. 22

4.1.5 Receiving Upload Data ... 23

4.2 Uploading CSV File ... 24

4.2.1 Manipulating CSV File ... 25

4.2.2 Editing CSV file in Text Editor .. 25

4.2.3 Cleaning Up the Data .. 26

5

4.2.4 Data File Preparation .. 26

4.3 Application Implementation .. 27

4.3.1 Project Structure ... 28

4.3.2 Class Diagram ... 29

4.4 Data Persistence .. 30

5 RESULTS ... 31

5.1 Admin Dashboard .. 31

5.1.1 User Interface ... 31

5.1.2 Login .. 31

5.1.3 Admin Page... 32

5.1.4 User Registration ... 33

5.1.5 Upload Interface .. 34

6 TESTING ... 36

7 CHALLENGES AND CONCLUSION .. 38

REFERENCES .. 40

LIST OF FIGURES AND TABLES

Figure 1. An example of Vaadin Flow framework .. 10

Figure 2. Gradle build file for building for Java projects 12

Figure 3. Application properties .. 13

Figure 4. Application Components overview .. 15

Figure 5. CSV file formatted with column headers ... 18

Figure 6. CSV file without column header .. 18

Figure 7. .. Error! Bookmark not defined.

Figure 8. Upload Component .. 23

Figure 9. Use Case Diagram .. 27

Figure 10. Directory Structure .. 28

Figure 11. Class Diagram ... 29

Figure 12. Login Form ... 31

Figure 13. Admin Page .. 32

Figure 14. User Registration .. 33

Figure 15. Upload .. 34

Figure 16. Console output .. 36

Figure 17. Console output. The console displays errors, which means that the test

is failed. ... 37

Table 1. Requirements and their descriptions .. 16

Table 2. Bank Statement Error! Bookmark not defined.

7

LIST OF ABBREVIATIONS

UI User Interface

CLI Command Line Interface

JAR Java Archive file, package file format that is used to aggerate java

files into one file for distribution (Wikipedia 2017)

JDBC Java Database Connection

JDK Java Development Kit

DBMS Database Management System

SQL Structured Query Language

GWT Google Web Toolkit

JVM Java Virtual Machine

JPA Java Persistence API

MIME Multipurpose Internet Mail Extensions

1 INTRODUCTION

Categorizing bank transaction is one of the most important and critical jobs for

tracking purchasing behavior. Categorizing bank transaction explains the difference

between the bank balance shown in the statement and the corresponding amount

shown on the person's accounting records on a particular date. It is necessary that a

person’s bank balance and book balance should match, but there might be a differ-

ence between these two. The reason for the difference may be a cheque issued but

not presented for payment, a cheque deposited but not cleared, charges debited by

bank, interest credited by a bank, or error made either by a bank or the person.

Until today, categorizing bank transaction is carried out manually by comparing the

bank passbook or the bank statement issued by the bank to that of entries made in

the system portable. The manual process is time-consuming and drawn to errors.

The advancement in technology especially the internet and information technology

has led a new way of doing business in banking. As a result, now most of the banks

have the provision to generate electronic bank statement’s soft copy, instead of a

traditional paper statement. E-statements look the same as paper statements and

over more value, convenience, and security with benefits, such as anytime, any-

where access.

This thesis project shows the use of e-statements for auto bank categorization in an

application built with the latest technologies. This application is designed to take

the work out of the whole categorization process, making it easy fast and efficient.

With its feature it will only be a few short steps from the clarity that will help to

measure and analyze according to gathered consumer behavior data from the bank

statement.

9

2 TECHNOLOGIES USED

2.1 Spring Boot

Spring Boot is a Spring framework. It makes it easy to create a production-grade

Spring-based Application. It is a brand new framework originally created by the

Pivotal tea, designed to make easy the bootstrapping and development of a modern

Spring Application. The framework proceeds an opinionated approach to configu-

ration, emancipating developers from the demand to give description boilerplate

configuration. As therein, Boot intents to be a front-runner in the ever-growing

rapid application development space. /1/

2.1.1 Auto-configuration

Spring Boot does all the work using Autoconfiguration and will take care of all

internal dependencies that the application needs. Spring Boot auto-configures with

Dispatcher Servlet, if Spring jar or Hibernate jar are in the class paths. It will auto-

configure to the data source. Spring Boot provides pre-configured and selected

Starter Projects to be included as a dependency in the project. /2/

During web application development, jars would be required to use by selecting the

suitable version and connecting them together. For Java developers, is the enormous

framework at which point an application can be easily developed following MVC

architecture. Dependency injection or Inversion Of control characteristics makes

them a part of the others. Spring Boot solves many problems, such as hardship to

setup Hibernate Data source, Entity Manager, and Transaction Management.

Hence, it easily needs to choose the proper version jars and rest of the work will be

done by the spring boot. Thus, it is a fast and simple way of decreasing complexity

for development /2/

2.2 Vaadin

Vaadin is an open source platform widely used for web application development.

The Vaadin platform includes a set of features that provide a basic and common

standard component model for the web, a Java web application framework which

is designed to provide assistance for the development of web application including

web services, and range of tools and application initiators. /3/

2.2.1 Vaadin Framework

As a broadly used Web UI framework, Vaadin allows Java developers to create and

maintain a variety of web application rapidly. As for other Java web frameworks,

Vaadin comes along features to simplify and speed up web application develop-

ment. It is also compatible with primary operating systems, browsers, and web serv-

ers. Unlike other Java web frameworks, Vaadin features a server-side architecture,

which means that user interfaces in Java programming can be written without using

client-side-web technologies like HTML and JavaScript. /3/

Figure 1. An example of Vaadin Flow framework

11

2.2.2 Server-side architecture

On the server-side architecture, Vaadin uses JavaScript in the browser to interact

with components on the server side. It is built on Google Web Toolkit, but unlike

a GWT application, Vaadin contains pre-built widgets that can be used to build UI.

Rather than writing components in Java, that are compiled into Java-Script by the

GWT compiler, developers simply use Vaadin classes to construct the UI in the

Java code. At runtime, interaction between the server-side Java code and the JavaS-

cript running in the browser is managed automatically. Therefore, the developers

can access the data and business logic in quicker and simple way. /3/

2.3 Gradle

Gradle is an open source build automation tool that is intended to be pliant enough

to build any type of software. Gradle runs only important tasks that need to run due

to the modification of inputs and outputs and avoids operating unnecessary work.

It can also be also used to build a cache to enable the reprocess or reuse of task

outputs from earlier runs or even from various machines which share build cache.

/4/

Gradle is the next developmental step in Java Virtual Machine based build tools. It

requires JDK version 6 or higher to be installed in the system, because it uses JDK

libraries, which are installed in the system, and then sets to the JAVA_HOME en-

vironmental variable. Gradle ties erudite lesson from established tools, for instance

Ant and Maven and carries their excellence ideas to the next level. In the context of

build-by convention approach, Gradle enables for declaratively forming devel-

oper’s problem domain using an intense and expressive domain-specific lan-

guage(DSL) applied in Groovy in lieu of XML. Because Gradle is inherently JVM,

it allows to write custom logic in the language that developers are most comfortable

with, which can be Java or Groovy. /4/

Figure 2. Gradle build file for building for Java projects

In build file, the remote repositories can be specified to search for dependencies as

Figure 2 illustrates. Gradle understands different repository types and currently

supports for example Maven and Ivy repositories, which access the repository via

HTTP or other protocols to look for dependencies. By default, Gradle does not de-

fine repositories by itself, but instead it needs to be defined at least one. Maven is

central as a dependency source for configuration, for example targets can be refer-

13

enced at once in the configuration to specify each target’s artifacts into the file sys-

tem. Dependency management is applied to automatically download above-men-

tioned artifacts from repository and make them available to the application. /4/

2.4 Accessing data with Hibernate and MYSQL in Spring Boot

Spring Boot has taken away the Spring framework complexity, and dramatically

reduced the configuration and setup time required for spring projects. Projects can

be set up with nearly zero configuration and begin building things that actually mat-

ter in the application. It includes an annotation called @SpringBootApplication ,

this is used particularly in the Application or Main class to enable host features for

example Java-@Configuration (enable Spring Boot’s auto configuration mecha-

nism and inform Spring to automatically configure the current Application based

on the dependencies that have been selected. This is important especially if the de-

veloper favors Java-based configuration over XML configurations, @Compo-

nentScan (scans specifically other components that are specified in the package,

and all the classes written from @Controller are discovered by this annotation), and

@EnableAutoConfiguration. This annotation auto-configures the feature of Spring

Boot, which can automatically do many things for the developers. For example, if

a Spring MVC application is used for writing the web development with Thymeleaf

JAR files on the application class path, then Spring Boot auto-configuration auto-

matically configures the Thymeleaf template resolver, view resolver, and other

more settings. /5/

Spring Boot attempts to auto-configure data if the spring-data-jpa module is imple-

mented in the classpath by reading the database configuration from applica-

tion.properties file. /6/

Figure 3. Application properties

As shown in Figure 3 the application.properties allow grants to be connected to the

database by specifying the datasource username and password properties. In the

above file, the first property is for Hibernate as Spring Boot uses it for default JPA

implementation. Here, spring.jpa.hibernate.ddl-auto is refered to create, it creates

the database every time application is initialized. Because of this, there is no data-

base structure yet. So, after first run, other options could switch it to update or none.

15

3 ANALYSIS

The application allows users to balance their expenses by understanding where the

money goes. It provides the ability to handle both financial goals and budgets. The

application will automatically create categories bank statements or transactions im-

ported from the bank account into expense category. The appraisal involves calcu-

lating an effective analysis from the bank statement of the user. This process re-

quires downloading the bank statement as a CSV file format from online banking

service. The data will be stored in a plain text file and then the downloaded CSV

file will be uploaded from the client to a remote database server. The client reads

the uploaded the contents of the CSV file by executing a callback function to ac-

complish parse operation to populate CSV data into the Vaadin table. /7/

Figure 4. Application Components overview

Upload Import

P
o

p
u

la
te

3.1 Requirements

3.1.1 Table of Requirements

The table of requirements are shown below.

Table 1. Requirements and their descriptions

Requirement Description Prior-

ity

Download Downloading the bank statement from

online

banking service.

P1

Categorize Categorizing according to the table header

From the csv file provided by the bank

P2

Register Enabling users to access the application

 features

P3

Login Logging into application with registered

Username and password

P4

Upload Uploading the csv file contents into the

application

P5

3.1.2 Bank Statement Management P1

It is usually complicated and hard to create a payment entry every time a payment

is made or received and it is intensely time-consuming. Frequently, the date of

certain transaction may not match the payment entry date. Another way to manage

payments might be to create payment entries from bank statements on daily or

weekly basis. The application does not include this characteristic function and is

still under development . In this case, Nordea Online Accountant is used as a case

study, which provided the statement management.

17

3.1.3 Import Statements

Ideally, a mechanism should be provided to connect to the bank account directly,

which provides an access to retrieve the statements automatically, then each one of

the statement transactions should be examined once they are imported and handled

appropriately. At this moment it is not clear whether all the banks provide a simple

method of importing the statements via an API that this application could use. As

mentioned above more work needs to be accomplished in this area to find a right

way of connecting to the bank and importing the statements automatically. So, this

specification handles the second phase, where it is assumed that the statement is

already imported in the csv format manually.

3.1.4 Statement Format

It is an improbable that all online banking services would generate the statements

in the same format. Despite that, it is supposed that all of them will be able to pro-

vide necessary information in csv format. The required data components are:

1. Entry Date

2. Value Date

3. Payment Date

4. Amount

5. Beneficiary

6. Transaction

7. Reference Number

8. Originator’s Reference

9. Message Card Number Receipt

10. Receipt /8/

3.1.5 Retrieving Material

Transactions from year 2017 are retrieved from Nordea online banking data, which

will start storing the statements for up to 6 years from the date registered for online

statements. Data in the files is not filtered or categorized in a reasonable way as

can be seen from Figure 5 and 6 shown below, but rather a duplicated of collective

data which need to be processed. /8/

Figure 5. CSV file formatted with column headers

Figure 6. CSV file without column header

3.1.6 Classification of Material

The actual task is to come up with a sensible classification for account transactions.

Before the import emerges to the application via uploading feature, the system as-

sumes that there is a classification method, which manages the contents of the csv

file, and then returns the list of categorized transactions. This technique maps input

data into two organized categories and potentially duplicates the transactions al-

ready entered manually as illustrated below.

19

Table 2. Data classification in Excel

The illustration shows the relationship between two categories and how each ele-

ment should match the proper category. For each entry from bank statement the

classifier will guess the key word corresponding to the description in Categories.

First all data will be loaded from the csv file and passed to the function to get the

data from this file in a format acceptable to the database. This is basically a list of

double-buffered data each of which contains text and classification. In this case,

the text is the description of the transaction from the bank statement like (DRESS-

MANN 741), and the classification is the category (Clothing) that needs to be as-

signed. As soon as it receives the data, the classification just commands the clas-

sifier method, giving the text to classify.

Due to time constraints, the technical consideration of implementing this feature is

relatively small. Even though it has to meet all component requirement, bank state-

ment accuracy needs to be checked manually by matching data entry received from

bank feeds. In addition, not all banks provide similar bank statements. So, each

bank manages it is own summary of financial transaction, such as, the list that con-

tains a list of items that have been processed through the bank account.

21

4 APPLICATION DESIGN AND IMPLEMENTATION

4.1 Overview

The application is divided into two primary components. One is the registration

scheme, which shows interfaces to the user, the second is the upload scheme, which

presents interfaces to the users and finally the third component is the application

server, which processes the user’s request before it can proceed a response through

user authentication with suitable credentials.

Modern web applications are seen all throughout growing number of places for user

input. These include web games, online shopping carts, and undoubtedly, website

registration forms. Login, Logout, Sign Up and Register are functionalities seen on

almost every website used in daily life. These functions keep track of which users

are granted the access to admin pages. After logging in or signing in, users are then

redirected to the index page. From an objective prospective some of the items are

not considered here such as applying CSS style attribute.

4.1.2 User Registration

Code Snippet 1.User Registration function

At this step Vaadin UI components are used to capture the user details from the

user’s input. The user puts necessary information using UserCreationForm

username, password, email and phone number before proceeding further to the next

step explained in the Login Form session. When the user is registered, the id will

be verified and all the attributes can be received using getUserByid() . Since this

form does not have any field to recognize the usertype, the user will be saved as a

user not admin. The username and password will be used later as an identifier to

prove that the user is the right person who has been granted a permission to access

the requested resources.

4.1.3 Login Form

Code Snippet 2. Login Function

After the user_account is created from now on the system will recognize the user

by the record form provided under authentication credentials every time login ac-

tivity happens. The login form includes a field for the username and password.

When the user submits the login form it is essential that the code checks that the

credentials are authentic, allowing the user to access the restricted resource. If the

user cannot provide authentic credentials, it will not be possible to carry on passing

the login form.

4.1.4 Uploading File

The Upload component enables the user to transfer data to the server. This feature

has two different approaches controlled with setImmediateModethat influence user

work processes. Immediate which is the default and Non-immediate, but this time

the component is used with immediate upload mode, which displays a file name

23

entry box and a button for selecting or dropping the file. This method requires a

receiver that performs Upload.Receiver in order to provide an output stream to

which the transferring data is written by the server.

Figure 7. Upload Component

4.1.5 Receiving Upload Data

Typically, uploaded files are stored in a file system as files or other common data-

base management systems are used to save files in different formats. Then the next

step applies to the developer how the data is to be saved. The Vaadin framework

provides an Upload component which writes the collected or received data to a

method called OutStream under java.io . The Upload component needs to imple-

ment the Upload.Receiver interface before it is used. Whenever the user clicks the

upload button as is shown in Code Snippet 3, the receiveUpload() method is called.

Once the method is deployed, it returns an Output stream which creates a file or

memory buffer that the stream is written. The method receives the file name in a

MIME type as stated by the browser. /9/

Code Snippet 3. File OutputStream

When getting an upload from the user, ByteArrayOutStream is provided for Vaa-

din. Then the OutputStream interface receives the file name, file type in MIME, and

LineBreakCount, which counts the number of lines in the uploaded file. /9/

4.2 Uploading CSV File

The file structure could be different depending on the file type. In this case, the

Application restricts user only to upload CSV files on a specific page. If the user

attempts to upload a nonsupport file type, the upload fails, and the system resends

a formatting error on the document to the user. Once clicking on the choose file

button, the importer will examine and determine the file and show an error if it

cannot be imported. If everything goes well, the process will be completed success-

fully.

25

4.2.1 Manipulating CSV File

Before CSV file is uploaded to the system a certain formatting must be adhered to

in order to avoid importing problems or receiving error messages. Sometimes the

whole application may break down if there is a missing or irrelevant comma in a

row. Every value after a missing or unneeded data field will be filed into the wrong

column. In the worst case , the database may be debased so critically that it is

necessary to return to an earlier developed version in order to backup, causing a

loss of the recent data modifications.

The columns in a CSV file can appear in any order as far as the sequence is kept.

Simply put, the arrangement in which column headings appear in the first row

should be repeated in the following data rows, in order that the data in every field

can be matched up with appropriate column. Unnecessary columns can be omitted

if not wanted to add or edit data. In fact, it is a good practice to remove unnecessary

columns to simplify data file structure accordingly and decrease the possibility of

introducing errors in the non-required column. Fields required by the Upload tool

cannot be removed, but fields required by the database providing the defaults can

be removed and it is appropriate for all the records that those are being edited or

added. If the default value is not suitable for any records in the data file, then it

should include that column and indicate suitable values for those records.

Objective fields in the database store various versions of the values that are intro-

duced through webpages. In this case, the file is stored in the databases as ‘Ac-

count’. The values are allocated or mapped to each other and converted as data is

uploaded.

4.2.2 Editing CSV file in Text Editor

CSV files are compatible with every sort of text editor, but some spreadsheets may

corrupt the data, so this should be avoided. Text editors are commonly much better

conducted, so those developers who are comfortable keeping the CSV file structure

in text editors can use any text editor they prefer. Many people prefer to use a

spreadsheet program, but the data is vulnerable on import, especially when leading

zeros can be deleted or long numbers changed to standard notation and rounded off,

or on export though irrelevant characters can be added. It might not even be visible

that data has changed until the file exported to CSV and then opened in a text editor.

Characters that were invisible or hidden when the file was viewed via the spread-

sheet application are abruptly visible when the file is viewed through a text editor.

If a spreadsheet needs to be used, then it is important to prepare the spreadsheet in

advance in order to handle numerical values and remove all bad characters in the

output. Before uploading an edited data, it is essential to check it in order to see if

the file exports cleanly.

4.2.3 Cleaning Up the Data

If it is discovered, that bad characters have been inserted into .csv data file by the

spreadsheet application, still this spreadsheet application is useable by providing a

clean- up solution after it by opening .csv data file in a text editor and removing any

undesired characters before proceeding to the data upload. In theory, the data in

each field is enclosed in double straight quotes. If double curly quotes exists in the

file after export, the curly quotes are replaced with double straight quotes by a find

and replace operation. Single curly quotes should also be replaced with single

straight quotes.

4.2.4 Data File Preparation

➢ It is important to carry out some basic data checking before or during im-

porting into CSV file. A proper structure in the CSV file is preserved while elimi-

nating carefully the most common cause of errors.

➢ Correct values and columns have been assigned in upload action as required

by the UPLOAD data tool.

➢ The upload action column should have a value specifying the action needed

to perform on that row. Record where displayed without data can be named by

‘none’, but it is better to remove these rows entirely.

➢ Whenever adding record, it is necessary to check for consistency and any

duplicates to be removed. The receipts database will not allow the same exact name

27

to be entered twice unless the columns and rows data in the field are different then

that time the application will accept , but with different Id.

➢ The common and correct date format is ‘YYYY/MM/DD’ for date-related

fields. The ‘entry_date’, ‘value_date’, and ‘payment_date’ are the exception to this

rule. These fields may include dates for multiple values. Those dates are the same

as a comma delimited string. Dates in other formats will not be denied absolutely

during the validation, but the Upload Data tool will try to force the data into the

‘YYYY/MM/DD’ format, which later would issue in data corruption in the incor-

rectly formatted date fields.

4.3 Application Implementation

The requirements obtained in the requirement table can facilitate to create a use

case diagram for the application.

Figure 8. Use Case Diagram

4.3.1 Project Structure

Figure 9. Directory Structure

The project is defined in Figure 12 by Gradle standards. The folders at the top of

the project are the default project group for the application. For instance, the UI

class has been located to the src directory. The project hierarchy displayed in the

Project Explorer is shown in Account project.

29

4.3.2 Class Diagram

Figure 10. Class Diagram

Each one of the classes shown in Figure 13 contains various attributes and methods

or functions. They are interconnected and share data by calling other class attrib-

utes.

The category uses an account to obtain access for the user respectively. It uses a

username as a qualifier to select particular user. The attributes of account class rep-

resent the statement of the bank account which includes account number, amount,

etc.

4.4 Data Persistence

Persisting data in an application can be executed by either storing it on the local

host or transferring it to a webserver through a network connection. This application

is implemented and designed to be server-less. To store the data MYSQL database

was provided, and this is more suited to the project, and it uses indexes to speed up

performance and sort data. /10/

31

5 RESULTS

5.1 Admin Dashboard

5.1.1 User Interface

The application consists of three pages of data entry and upload, the third page gives

users the access and management rights and the opportunity to review the applica-

tion. In this application, there are currently one type of user role, Admin. Admin at

the moment is the main function. At the beginning the system will show the login

page which requires the user to give the username and password. If the information

is correctly given, then it will proceed to the dashboard. A few users are granted the

access that have been stored in the database.

5.1.2 Login

Figure 11. Login Form

First, the login panel will appear as shown in Figure 10. A unique name and pass-

word are required. The username and password can be later changed. If the login

credentials are correct, the admin page as shown in Figure 11 will appear.

5.1.3 Admin Page

Figure 12. Admin Page

If the login information is correct, then main page as shown in Figure 11 will ap-

pear. On the left panel, the upload and login options will be shown. Here the user

admin can see the list of user information that have been saved in advance and later

could be edited or more user information added by clicking the add button. These

users have a set of permissions, which depend on their role and function in the ap-

plication.

33

5.1.4 User Registration

Figure 13. User Registration

It is first necessary to enter personal data into the registration form to make the user

information available on the main page list. This assigns users the access to upload

pages, where each process done by that particular user in the upload will be kept

for the user only, therefore data merging between two users should be intervened.

On the other hand, it allows the user to keep track of its own data activity every

time the user tries to login the application with the same credentials that are regis-

tered in the application as a member. The registration issues a certificate of record-

ing for each username registered. Name and Email fields are mandatory to fill as

shown in the figure, otherwise it will give an error message. Other fields, such as

Phone Number, City , Birthday and Street-code are optional fields.

5.1.5 Upload Interface

Figure 14. Upload

This is an example of seven different CSV file data entries uploaded and imported

into the database with columns and rows, then the stored data is populated and

viewed on the Vaadin container, as shown in Figure 13. The terms on the top of the

table are the ones found in the uploaded file, while the terms found in the field row

are account names. The terms are 11 including the Id field.

Table 3. Bank Statement

Id The unique number that applications to

each importing activity

Entry Date Date that the transaction was handled

by the bank

Value Date Date that the transaction was handled

by the bank

Payment Date Date that the transaction was handled

by the bank

Amount The amount paid in the transaction

Beneficiary Is the bank data which stated In the

BSB code

Account Number The IBAN specified in the payment

35

Reference Number Is the number which is indicated on the

invoice

Originator’s Number Is the number which is indicated on the

invoice

Card Number Is a credit card identification data with

electronic payment orders.

Receipt Payments sent to a receiver with receipt

purpose code

6 TESTING

The methodology used in the development of each module demands a testing pro-

ceeded at each cycle of development where the developer tests all features and en-

sures that everything is working accordingly. Bugs are errors are fixed before pro-

ceeding to the next feature. During the development stage of each module a proper

unit testing and integration testing techniques were applied. To initiate a testing

session the Run and Debug commands are executed on the terminal which created

a temporary configuration and is saved as a configuration dialogue. When the tests

run in the background, it lists the directories and libraries on the console. If the test

runs without errors, it means that the application can proceed to further develop-

ment, but if there is an error, an output which needs to be fixed, then the event log

will display those output directories which do not correspond to existing modules.

These directories need to be cleaned.

Figure 15. Console output

This is a test output displayed on the terminal after the test method is executed on

the application by using a run with a coverage test. This event log shows that eve-

rything is working and all files are up-to-date.

37

Figure 16. Console output. The console displays errors, which means that the test

is failed.

7 CHALLENGES AND CONCLUSION

Each project comes with its own special variety of challenges, and this project is

not an exception. Whether it is data processing or designing management, each

process needs to be well structured and organized. Although all the necessary ideas

and theories for this was project were available, nevertheless more time was needed

in order to achieve project objectives and deliverables. In terms of productivity

sophisticated tools were used to make the application more productive, so that the

workflow would be organized in the most efficient way.

Integration testing revealed errors with interfaces between different program com-

ponents before the deployment. Moreover, testing can demonstrate different issues

which consumes time and effort. Commonly slow applications are not appreciated.

The speed of the application is defined by the requirement of the user. Performances

usually get are weakened by underestimating application requirements and overex-

tending its features.

The knowledge of frameworks or platforms are the beginning for development

methodologies. They facilitate the boost performance. Some of the frameworks are

more complex than others, some are flexible. Skills and have a clear understanding

of their functionalities is required.. As this project was done individually without

collaboration from an external assistant, the Spring Boot and Vaadin framework

were needed to get familiar before using them.

39

The main objective of this project was to provide an opportunity on account data

solution. An application is built and the reason is to make personal finance easier

to manage using the mechanization of regular steps that people go through when

doing a budgeting. Particular design and implementation challenge we addressed,

emphasizing the key context and technical knowledge that was obtained in order to

overcome the challenges.

The purpose of the project was to create an application that implemented an instinc-

tive way to display and manage personal finance and precisely predict a user future

transactions foundation on their history.

The limitation of the project was receiving a clean CSV file without corrupted data

inside it. The file needs to be opened in an editor before importing into database,

and to manipulate the data to remove any unnecessary fields in order to get the best

result. On the other hand, throughout the development new technologies and tech-

niques were studied continuously. The time needed to implement this project was

underestimated. Despite the fact some improvements have been introduced, but the

application partially meets all the requirements and requires enormous number of

works to be a completely functional application.

 REFERENCES

/1/ Spring Boot framework. Accessed 18.5.2019.https://spring.io/services

/2/ Auto-configuration. Accessed 18.5.2019. https://docs.spring.io/spring-

boot/docs/current/reference/html/using-boot-auto-configuration.html

/3/ Vaadin Vaadin-architecture. Accessed 18.5.2019. https://vaadin.com/compo-

nents

/4/ Gradle. Accessed 18.5.2019. https://gradle.org/features/#build-scans

/5/ Accessing data with Hibernate and MYSQL in Spring Boot. Accessed

18.5.2019. https://spring.io/guides/gs/accessing-data-mysql/

/6/ Spring Boot application.properties file (JPA) . Accessed 18.5.2019.

https://docs.spring.io/spring-boot/docs/current/reference/html/common-applica-

tion-properties.html

/7/ Vaadin Framweork Data binding. Accessed 18.5.2019. https://vaadin.com/fo-

rum/category/1007558/04-framework

/8/ Nordea Bank statement as CSV file format. Accessed 18.5.2019.

https://solo1.nordea.fi/nsp/login

/9/ Receiving Vaadin Upload. Accessed 18.5.2019. https://vaadin.com/compo-

nents/vaadin-upload/java-examples

/10/ Data persistence. Accessed 18.5.2019. https://dzone.com/articles/what-is-per-

sistent-data

https://spring.io/services
https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-auto-configuration.html
https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-auto-configuration.html
https://vaadin.com/components
https://vaadin.com/components
https://gradle.org/features/#build-scans
https://spring.io/guides/gs/accessing-data-mysql/
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://vaadin.com/forum/category/1007558/04-framework
https://vaadin.com/forum/category/1007558/04-framework
https://solo1.nordea.fi/nsp/login
https://vaadin.com/components/vaadin-upload/java-examples
https://vaadin.com/components/vaadin-upload/java-examples
https://dzone.com/articles/what-is-persistent-data
https://dzone.com/articles/what-is-persistent-data

