

Software development process improvements -

Case QPR Software Plc

Lidia Zalevskaya

 Master’s Thesis

 Degree Programme in

 Information Systems Management 2019

http://www.haaga-helia.fi/en/students-guide/degree-programmes/degree-programme-information-systems-management-pasila-campus-master-education

 Abstract

 Date: 2019.11.24

Author(s)
Lidia Zalevskaya

Degree programme
Information Systems Management, Master’s Degree

Thesis title

Software development process improvements -

 Case QPR Software Plc

Number of pages
and appendix pages

98 + 26

 Initially this study was planned as an effort to improve on a software development process
within an existing team using an existing product code and systems. However, the situation
changed and a new team (DevApps team) was established and given a new project, which
created an opportunity to build a new type of team, product, process, and tools pipeline from
scratch utilizing the improvement ideas. An Action Research framework was adopted as the
theoretical approach for the study, while the Scrum methodology served as a framework for
the development practices.
 The study began by summarizing previously identified problems in the software
development process at QPR Software Plc and formulating improvement ideas focused on
the coding workflow and Scrum practices. These were then tested in practice by the new
DevApps scrum team. The research analysis centres on the process of choosing and setting
up the new team’s development tools, figuring out ways of working, and implementing several
iterations to find the best suitable development process.
 The most valuable empirical outcomes were the creation of a branching strategy and Git
workflow for the DevApps team, the team members’ practical experience of working with Git
and with the Azure DevOps developer services. A key outcome was the shift in many
verification activities to earlier phases. Moreover, verification was enforced automatically by
adopting the practice of changes being ‘pulled’ into the main development branch, rather than
the previous practice of ‘pushing’ changes there. As well as understanding of the importance
of integrating smaller code changes at a time, and learning to define and plan smaller work
items.
 Adopting the Azure DevOps service to manage the development flow enabled much more
convenient inline code reviewing. Another important outcome was the understanding of need
to improve Product Backlog Grooming, which meant adding and enforcing stricter criteria for
user stories, such as Definition of Ready for Implementation, and Definition of Done.
 The Agile Software Development is an iterative process, which is consistent with the report
structure of Action Research. At the time of writing this report, the practical implementation
has been ongoing for 3.5 months. The team were able to set up an initial process and tools,
though further improvements are expected to follow in subsequent iterations. The preliminary
observations have been shared with the rest of R&D at QPR Software, though it will take
more time to crystalize the lessons learnt and to plan for other teams to utilize and apply
those findings.

Keywords
Software development best practices, Scrum, software development workflow, git workflow,
branching strategy, version control

Abbreviations

CD - continuous deployment

CI - continuous integration

DoD - definition of done

E2E - end to end (usually about UI automatic tests)

MVP - minimal viable product

QA - quality assurance

R&D - research and development, in QPR Software called also Products & Technologies.

SDLC - software development life cycle

SDT - software development task (work item in issue tracking system)

SW - software

TA - test automation

UI - user interface

VCS - Version control system

WIP - work in progress

Table of contents

ABBREVIATIONS ... 3

TABLE OF CONTENTS .. 4

TABLE OF FIGURES .. 7

FOREWORD ... 8

1 INTRODUCTION AND BACKGROUND .. 8

1.1 THE COMPANY AND THE PRODUCT ... 8

1.2 PERSONAL CONTEXT .. 8

1.3 AIMS AND OBJECTIVES ... 9

1.3.1 Initial plan - main tasks (08.2019) ... 12

1.4 CHALLENGES ... 13

1.5 STRUCTURE OF THE STUDY .. 14

2 ITERATION 1: METHODOLOGICAL FRAMEWORK, LITERATURE REVIEW, AND INITIAL PLAN 15

2.1 METHODOLOGICAL FRAMEWORK AND STRATEGY .. 15

2.1.1 Theory: action research.. 15

2.1.2 Methods used in the study ... 17

2.2 LEADING CHANGE .. 17

2.2.1 Theory: Leading Change. John Kotter (1995) ... 17

2.2.2 Theory: “Island of freedom” ... 18

2.2.3 Theory: Main principles leading the process change effort ... 18

2.2.4 Current process, workflow and branching strategy ... 20

2.2.5 Empirical: What needs to change and why .. 22

2.3 INITIAL SCRUM PRACTICES: AUGUST - SEPTEMBER 2019 ITERATION .. 30

2.3.1 Theory: Tuckman's stages of group development ... 30

2.3.2 Team kick-off: Create a cultural manifesto for the DevApps scrum team ... 32

2.3.3 Team kick-off: Create working contract for the Scrum team ... 34

2.3.4 Practical plan: Initial Scrum process setup ... 34

2.4 THEORY: VERSION CONTROL SYSTEM AND THE DEVELOPMENT WORKFLOW .. 38

2.4.1 What are version control systems (VCS) and how do they compare? .. 38

2.4.2 Choosing a version control system and provider, CI/CD system (tools pipeline).. 40

3 RETROSPECTIVE .. 43

3.1 Retrospective comments analysis 29.07-6.09.2019 ... 44

3.2 Agreed adjustments ... 46

4 ITERATION 2: SEPTEMBER 2019 ... 48

4.1 ORGANIZE ISSUE TRACKING AND WORK MANAGEMENT (BACKLOG, EPICS, STORIES, TASKS) 48

4.1.1 Epic - Feature - Story/Topic - Task .. 48

4.2 AGREE ON THE CODING WORKFLOW AND BRANCHING STRATEGY .. 49

4.2.1 Questions and Conceptual decisions to make .. 50

4.2.2 Theory: Available Git workflow options ... 56

4.2.3 Practical outcome: Initial suggestion for git flow in the DevApps team .. 65

4.2.4 Step-by-step Git flow HowTo ... 68

4.3 RETROSPECTIVE .. 69

4.3.1 Retrospective comments analysis 9.09 - 27.09.2019 ... 69

4.3.2 Agreed adjustments ... 71

5 ITERATION 3: OCTOBER 2019 .. 72

5.1 AGREE ON COMMON TERMS TO SPEAK A COMMON LANGUAGE (9.10.2019) ... 72

5.2 SCRUM.. 74

5.2.1 Daily cafe, improving daily stand-ups .. 74

5.3 DEFINE METRICS FOR THE SW DEVELOPMENT TEAM.. 74

5.3.1 Theory: Goal - Question - Metric framework ... 74

5.3.2 Previously used metrics .. 75

5.3.3 Practical application: DevApps team metrics - an initial proposal .. 76

5.4 RETROSPECTIVE .. 78

5.4.1 Retrospective comments analysis for the period 30.09-18.10.2019 .. 78

5.4.2 Retrospective comments analysis 21.10-8.11.2019 ... 81

5.4.3 Agreed adjustments ... 86

5.5 FURTHER DEVELOPMENT .. 88

5.5.1 Scrumban? Kanban? .. 88

5.5.2 Coding workflow and branching strategy .. 88

5.5.3 Metrics to consider down the line .. 88

6 CONCLUSION .. 91

7 DISCUSSION .. 93

7.1.1 How to achieve a better process that is less reliant on self-discipline? ... 93

7.1.2 Smaller and better-defined user stories or features .. 94

7.1.3 Tuckman's stage .. 94

8 REFERENCES .. 95

9 APPENDICES.. 100

9.1 APPENDIX 1. TERMS AND DEFINITIONS GIVEN BY DEVAPPS TEAM ... 100

9.2 APPENDIX 2. TEAM KICK-OFF MEETING SCRIPT (MANIFESTO) .. 104

9.3 APPENDIX 3. TEAM KICK-OFF MEETING SCRIPT (TEAM CONTRACT) .. 105

9.4 APPENDIX 4. NEW DEVAPPS TEAM’S MANIFESTO ... 106

9.5 APPENDIX 5. SPRINT RETROSPECTIVES MEETING SCRIPT AND QUESTIONS .. 110

9.6 APPENDIX 6. GOAL-QUESTION-METRIC MATRIX ... 112

9.7 APPENDIX 7. GIT WORKFLOW INSTRUCTION ... 121

7

Table of Figures

Figure 1. Good Process vs Bad Process ... 10

Figure 2. Action Research .. 16

Figure 3. Intended path vs path people actually take .. 19

Figure 4. Previously used SVN branches and workflow ... 21

Figure 5. The larger the chunks are, the harder it is to integrate them ... 23

Figure 6. Smaller changes are easier to integrate ... 23

Figure 7. A case where faults introduced by feature A were masked by other changes..................... 25

Figure 8. Development phases and the cost of bugs shown from earliest to latest phase 27

Figure 9. Software Cost-to-fix increasing 10-fold per project phase.. ... 27

Figure 10. Tuckman’s stages of group development. .. 31

Figure 11. Why it is so important to row in the same direction ... 33

Figure 12. DevApps’s Manifesto .. 33

Figure 13. Rebasing the feature branch onto master. .. 53

Figure 14. Merging two branches together .. 54

Figure 15. Git Flow .. 58

Figure 16. Simplified Git flow drafted following the Contribyte workshop ... 60

Figure 17. Git Hub Flow summary ... 61

Figure 18. Simplified Gitflow strategy proposal for DevApps Team@QPR .. 68

Figure 19. Git workflow diagram. ... 69

8

Foreword

I started conceiving and planning my thesis a little over two years ago when I arrived at QPR

Software. I want to say a few words of gratitude to my colleagues who have inspired me continuously

and given me plenty of food for thought. I want to thank all my team-mates, especially Guðni Ólafsson

and Pekka Kyllönen for their support and ideas. I'm also deeply thankful to Heikki Sjöblom for his

supervision, thorough reviews, and advice.

I would also like to thank my tutors and supervisors at Haaga-Helia, Kasper Valtakari and Jouni

Soitinaho, who have so ably supported and encouraged me.

I also couldn't complete this work without a jillion discussions with my husband Den - thank you!

And I want to give my warm gratitude to Mark Phillips for polishing my English.

1 Introduction and background

1.1 The company and the product

QPR Software Oyj is a Finnish software company that provides management software products (QPR

Software, 2019). Its main products are solutions for strategy execution, process mining, enterprise

architecture, and performance and process management. QPR UI and QPR UI 2.0 are web

applications for visualizing business analytics data to help customers gain insights to inform their

decision-making and improve their competitive advantage (QPR Software Plc, About QPR - Overview

| QPR, 2019).

QPR UI 2.0 is an application serving the same purposes as QPR UI, but is being built from scratch

within the scope of a technology renewal project. The project is implementing an application

framework that is new to this UI product and is targeted at a more efficient delivery of custom QPR UI

applications.

1.2 Personal context

I work inside a new software development team (created in the summer of 2019 and adopting the

name DevApps) at QPR Software (https://www.qpr.com/) as a QA lead and Scrum master. My role is

to facilitate software development, to support programmers, and to control product quality. I also work

with the code base, so I’m fully involved on a daily basis in the development process.

https://en.wikipedia.org/wiki/QPR_Software
https://www.qpr.com/company/overview
https://www.qpr.com/

9

For me personally, this study was a great opportunity to learn more about contemporary software

development best practices and to try to apply those to a specific company’s situation and to generate

significant know-how. In undertaking this project, the aim was to build experience and knowledge that

could be applied in subsequent projects to improve or initiate from scratch a software development

process. The theoretical learning and practical know-how gained can be used as an aid in similar

future projects aimed at software development improvements.

1.3 Aims and objectives

As a background to this study, information from previously conducted surveys in the company, from

team sprint retrospective meetings (in my previous team), and from individual discussions with team

members had highlighted difficulties and obstacles in the software development workflow, leading to

frustrations and disappointment among engineers, with some practices clearly showing room for

improvement. Hence, the aim of the study was:

Firstly, to gather all available information about previously known issues with the software

development process at QPR Software. Information about known issues was gathered from R&D

teams in the company and was complemented with the author’s extensive experience working in one

of QPR’s development teams prior to working in DevApps. During the period August–September

2019, an external consultant performed a “QPR 360 assessment” and the final report made numerous

suggestions for improving the productivity around the business value creation process within QPR’s

product development. The consultant’s report was used to cross-check with the issues and

improvement ideas already highlighted in previous data gathering and to add more weight to the

process change that was being planned to address those issues.

And secondly to define priorities - what processes and action plans need to be changed or improved.

The aim was to iteratively implement the highlighted priorities in a newly established development

team. Experience from working with the previous team was brought to bear in setting up a new pilot

team, which was considered experimental and if successful would to serve as a positive example to

other teams to change and improve their software development process. The new team were given

more freedom to experiment with different tools and processes, thus paving the way for greater

changes.

The study included an assessment of the current tools in use - how well do they serve or support the

desired development process. Current tools included: a task and issue tracking system (Axosoft), tools

and systems serving the development processes (dealing with coding, code review, version control

etc.) and development documentation (e.g. working instructions or product technical documentation).

10

Alternative tools were assessed and compared with those currently in use within QPR Software so as

to identify the best way to support the desired new practices.

The experimental team set up a project to develop a new product, for which we defined principles for

the development process and followed the “best-practice” processes identified, with a view to paving

the way for their application within the company’s entire R&D. The aim was to minimise the reliance on

self-discipline in following the best practices and the desired process, so we set up automatic

constraints to ensure everyone followed the agreed and desired workflow. We also defined criteria for

critical events, defined core guidance principles, and minimised as much as possible the reliance on

self-discipline in following what the process dictates. As an example of how this work is being

extended, the new team is setting up quality gates for selected best practices and coding standards,

by setting up Azure DevOps and code linting for Visual Studio Code. These ideas were inspired by a

blog by John Cutler (Cutler, 2018) and Figure 1 from that blog summarises the good and bad traits of

the process.

Figure 1. Good Process vs Bad Process (Cutler, 2018)

During the various iterations of the process change, best practices from the software development

industry were studied to elicit suggestions on what could be improved and how. I decided to write the

report in a Zipper data structure format to reflect how the study was going, while seeking theoretical

insights and trying ideas in practice on the fly. The aim was to test the improvement ideas through

applications in practice within a new experimental development team working on a QPR UI renewal

project. To this end, I set up metrics for the experimental team’s software development process. After

https://cutle.fish/blog/good-process-vs-bad-process
https://en.wikipedia.org/wiki/Zipper_(data_structure)

11

having completed the first practical changes and assessing the development process improvements,

future steps will be to plan for sustainability in the changes implemented by this team and, where it

seems useful, to start encouraging other teams to adopt the same tools and process modifications

(beyond the scope of this study).

Below is given an overlay matrix to help match the research questions to the chapters in this thesis,

matching the theory to outcomes.

Table 1. Overlay matrix

Research questions Theory Results

What are the key changes
needed in the development
process to gain more value
from the use of the Scrum
framework?

“Initial Scrum practices”

“Organize issue tracking and

work management (backlog,

epics, stories, tasks)”

“Scrum: What to change and

how?”

“Practical plan: Initial Scrum

process setup”

“Daily cafe, improving daily

stand-ups”

What key initial changes need
to be made to the
development workflow?

“Theory: Main principles leading

the process change effort”

“Theory: Version control system

and development workflow”

“Branching: Why, What and How

to change?”

“Coding Workflow: What to

change and how?”

Assessment of current tools in
use

“Choosing a version control

system and provider, CI/CD

system (tools pipeline).”

“Organize issue tracking and

work management (backlog,

epics, stories, tasks)”

What are the most popular
coding workflows used in the
software development
industry?

“Theory: Available Git workflow

options”

12

What would be the optimal
and simplest coding workflow
for this team and this product?

“Agree on coding workflow and

branching strategy”

“Practical outcome: Initial

suggestion for git flow in the

DevApps team”

“Step-by-step Gitflow How-to”

Which metrics would be most
useful at the initial stage when
the new team is setting up
tools and processes and
working on a new product
prototype?

“Theory: Goal - Question - Metric

framework”

“Practical application: DevApps

team metrics - an initial

proposal”

How to minimise the reliance
on self-discipline in following
the best practices and desired
process? Or how to make our
tools developer-friendly, so
the process is followed
naturally and cannot be
violated?

“Main principles leading the

process change effort”

“Discussion: How to achieve a

better process that is less reliant

on self-discipline?”

1.3.1 Initial plan - main tasks (08.2019)

A very rough preliminary idea about initial tasks when starting a new team and new product

development:

Kickstart: Create Scrum Team Cultural Manifesto and Team Contract (working agreement).

Plan Scrum practices (start with following the Scrum guide and iterate to adjust & improve).

Organize a hierarchy of work items and issue tracking: backlog, epics, stories, tasks.

Choose a version-control system and provider.

Choose CI/CD and building system (tools pipeline).

Agree on coding workflow and branching strategy.

Define metrics for development team and for business objectives.

Beyond the scope of this study: Integrate code version control with CI&CD and automated testing.

Partially beyond the scope of this study: Define and document best practices, guidelines, and

standards for application engineering.

13

1.4 Challenges

The first challenge faced was ensuring that developers and others would buy into the process change

and the change process itself: to some people, the need for change is obvious, while others may be

more comfortable with familiar ways of working and existing tools.

Too many changes happening too quickly brings with it a risk of people becoming change weary, from

having to deal with uncertainties and the greater need to assess every little step every day when

making many decisions.

Many simultaneous operational changes divert resources away from product development, while

business pressures may still be high, creating a risk of not meeting the change objectives fully.

Moreover, it may be difficult to evaluate the success of an individual change when so many elements

change: Scrum adjustments, new team building, new processes and tools, as well as systems change.

Extensive competence development is also likely required, as well as continuous coaching for team

members in how to change work habits. Training is necessary for some people to learn about the Git

workflow and good Git practices. Internal resources can be utilised for this if there are volunteers who

know Git well enough and have appropriate practical experience. Longer-term support is needed to

ensure the desired work habits really do stick and the change is sustainable.

Changing the development workflow leads to changes in several tools at once (version control, build

and TA systems), hence some time is needed to familiarise with these tools and find effective ways of

working. Migration to a new tool also implies a need to assess the future of tools, to consider future

expectations: which tools will be developed and supported in the future, and support for which

products is likely to be terminated or minimized? For other teams who would move their existing

product code and development processes to new systems, the costs of data migration need to be

considered.

A geographical split between the teams in Helsinki and Oulu can lead to a risk of disconnect, with the

possibility for tighter collaboration within sites and weaker interaction and information-sharing between

sites - the so-called space barrier. Virtual teams face challenges involving trust, effective

communication, cohesiveness - as well as the bond between team members (Ale Ebrahim et al.,

2009). Cascio (Cascio, 2000) declared that there are five main disadvantages to a virtual team: a lack

of physical interaction, the loss of face-to-face synergies, a lack of trust, a greater concern with

predictability and reliability, and a lack of social interaction.

14

On a personal level, my main difficulty has been keeping the study within a reasonably limited scope,

so that the study would not become too broad.

1.5 Structure of the study

Previously collected feedback was analysed, workshops were organized to identify further problems,

improvement suggestions were collected, and further actions planned, with selected improvements

then utilized by the new experimental team.

The text is organized according to a zipper structure, meaning the theoretical framework and the

empirical part are intertwined, reflecting the action research paradigm used in the study. Over the

course of this study, the new team went through several sprint iterations, represented in the “iteration”

chapters (1–3). The team worked through 3-week sprint iterations, matched approximately to a

calendar month for simplification. At the end of every sprint, the team held a sprint retrospective

meeting, where team members reflected together and planned improvements.

The first iteration started with the initial research data collected over the course of 2018 and 2019:

which included the results of questionnaires implemented in the R&D department (some organised

through an external consultant, some carried out internally by the department during the previous two

years), and the outcomes of workshops organized during an internal R&D conference at QPR called

Developers Days. The data also included the author’s observations gathered from daily work in one of

the development teams. A light analysis of the existing development processes and internal

documentation was done to help compare the current state with the desired state. More focused

measurements were made during the autumn of 2019 to set benchmarks for the new development

team and to support the team in seeking appropriate and optimal best practices and processes.

15

2 Iteration 1: Methodological framework, literature review, and initial plan

This chapter provides background for setting up the new development team and the new product. It

covers the methodology of the study, the principles guiding the change in processes, the theoretical

background, and a preliminary list of the most critical changes to be implemented.

2.1 Methodological framework and strategy

Agile software development happens by means of iterations, where actions are planned, implemented,

evaluated and analysed and lessons learned along the way are then used in the next iteration. Given

that the aims of the study were to seek out optimal best practices and to identify a process change for

developing a new software product, action research was a suitable choice as a methodological

framework.

2.1.1 Theory: action research

The purpose of action research is to solve a particular problem and to produce guidelines for best

practices (Action research, 2019). It was chosen in this organizational development context because it

also serves as a framework for iterative improvements (spiral of steps: planning, action and fact-

finding about the results of actions).

Action research implies that all stakeholders actively participate, which should support adoption and

reinforce usage of new tools and practices. The action research methodology (see Figure 2) in my

opinion also aligns very well with the Scrum improvement cycles: “planning action” matches with sprint

planning, “taking action” corresponds with Scrum’s sprint phase, and “evaluating action” corresponds

well with the sprint retrospective.

https://en.wikipedia.org/wiki/Action_research

16

Figure 2. Action Research (Action Research, 2019. Wikipedia) CC BY-SA 4.0

A change is most successful when done with everyone involved: Kurt Lewin believed that the

motivation to change is strongly related to action: If people are active in decisions that affect them,

they are more likely to adopt new ways. "Rational social management proceeds in a spiral of steps,

each of which is composed of a circle of planning, action and fact-finding about the result of action"

(Lewin, 1958). This connects well with a key aim of this study, which was to affect habits and culture

so that they would drive development processes from the bottom up, such that the process would be

frequently challenged and improved by the team, rather than being imposed from the top down.

“Action research is about taking action, researching the action, and learning from the process” (Jean

McNiff, 2016). McNiff sees action research as evaluating your practice to check whether it is as good

as you would like it to be, identifying any areas that you feel need improving, and finding ways to

improve them. Action research can be summarised in 3 steps: defining what we want to improve,

doing it, and describing (and making it public) what has been done, how, and why. You discover

existing knowledge and create new knowledge that people may not have been aware of before. The

application of existing knowledge to new practices—while at the same time establishing a process and

tool pipeline for a new team and new development project—is itself a research process and it

generates procedural subjective knowledge: that is, know-how for a specific team, project, or product

in a specific company. Learning a skill is also a form of subjective knowledge acquisition. Claiming that

you can explain what you are doing in your practice implies that you have generated a theory of

practice (Jean McNiff, 2016). As Horton and Freire describe, “[s]ometimes you create the road by

walking it” (Horton and Freire, 1990).

https://creativecommons.org/licenses/by-sa/4.0

17

2.1.2 Methods used in the study

Many development teams who are trying to follow the Scrum framework cannot take full advantage of

Scrum (What is ScrumBut?, n.d.). In keeping with the iterative nature of the research and the goal of

seeking continuous improvement, Scrum events were chosen as a key unit of analysis for

understanding the effects of process changes (includes planning and retrospective stages, and daily

status checks, i.e. inspect and adjust).

Workshops and reviews were also organized. Questionnaires were used to further clarify specific

elements that arose during the research and to obtain feedback from the team.

2.2 Leading Change

This section describes the main ideas and principles that inspired and guided this work.

2.2.1 Theory: Leading Change. John Kotter (1995)

Typically, each change phase requires a considerable length of time to fully implement, but it is a

natural human tendency to move too quickly, impatiently, and to want to achieve rapid results. The

change process goes through a series of phases that would typically require a considerable length of

time to be fully realised. Skipping steps creates the illusion of speed, but not a satisfying result (Kotter,

1995).

John Kotter’s eight steps for a successful change were used to inform this study:

1. Establish a sense of urgency

2. Form a powerful guiding coalition

3. Create a Vision (+ Strategy)

4. Communicate the Vision (use every possibility)

5. Empower others to act on the Vision (remove obstacles, make changes to systems, encourage risk-

taking, consider non-traditional ideas and actions)

6. Plan for and create short-term wins (recognize and reward)

https://www.scrum.org/resources/what-scrumbut

18

7. Consolidate improvements and produce still more change

8. Institutionalize new approaches.

2.2.2 Theory: “Island of freedom”

The QPR UI renewal project constituted an experiment carried out inside an established company with

a long history and with long-lived products. The newly created team (DevApps) were given freedom to

experiment with their work practices and development processes and tools, such that it closely

resembled a start-up inside a corporation (see Ries’s work on lean start-ups) (Ries, 2011).

Ries highlights the importance of the minimal viable product (MVP) and how to develop it using fast

feedback cycles of “Build - Measure (customer response) - Learn” (Ries, 2011). In applying this

principle to developing our new QPR UI 2.0 prototype, we decided to seek customer feedback as soon

as we had something to show, to experiment as much as possible, and to use validated learning. The

suggestion was to start from a simple basic solution and to automate it when it is clear what creates

value.

Ries emphasised the importance of learning what attributes customers care about. Customers do not

care how much time it takes to build something, they care only if it serves their needs. To this end, it is

good to set quantitative targets for recording progress and to utilize qualitative research to find ways to

improve. Questions need to be formulated about the product and empirical tests carried out to find

answers to those questions; with a "just do it" approach, a product is shipped and you wait to see what

happens. Behind this approach is the idea that if you cannot fail, you cannot learn! In other words,

encourage trials and failures. Customers often do not know what they want, so we should not take

what customers think they want for granted, but rather test and find out what they really need. Value is

providing benefit to the customer, and anything else is a waste, so when in doubt - simplify. Avoid

overbuild and overpromise.

2.2.3 Theory: Main principles leading the process change effort

A good process is said to be adaptable, frequently challenged and improved, flexible to local

concerns, and guided by core principles. It encourages conversations and collaboration, is co-created

by the team, increases confidence in outcomes, achieves the desired consistency with minimal impact

on resiliency (Cutler, 2018). With this co-creation in mind, the new team explored automating the

workflow to follow good practices and to pave the way for good work habits. We also explored best

http://theleanstartup.com/

19

practices to identify the good habits that we wanted to support. As Scrum master, I wanted to minimise

the reliance on self-discipline in following the new best practices and the desired process. The aim

therefore was to change the process such that it is not the process that dictates what and how things

should be done, but the toolchain that leads the developer as much as possible, making it easy to

follow the process.

Within the DevApps team, the process was defined and written down, yet there may still be the

possibility for deviations (“Unauthorized process mutation”) in daily work practices. An improvement

would be to make deviations impossible (for example, reviewing before merging into the main

development branch) or to make following the process the easiest way to go, so people naturally do

things the right way, without trying to find workarounds. We therefore sought to "automate" the best

practices as far as possible by setting up a tool pipeline to lead our workflow (guide, navigate, remind),

and to set up gates that would not allow us to move to the next step until conditions were met. The

idea that people often choose the easiest or more convenient path when not restricted by a “fence” is

illustrated by Figure 3 (below).

Figure 3. Intended path vs path people actually take (Chuwa (Francis) flickr.com) (CC BY-SA 2.0)

It is useful to consider how developers deviate from the most-desired process and why, and then try to

address the causes of those deviations, but not by relying entirely on self-discipline. It is better to

create a cultural shift and encourage the team to acquire new good habits, and to let go of bad habits.

The idea that “culture eats strategy for breakfast” can also be applied to software development’s daily

work practices, since it is the work culture that drives behaviour (Teasdale, 2002,195-196.)

Another critical and potentially beneficial change identified within QPR software was to shift quality

assurance (QA) efforts leftwards in the process chain (to earlier stages) to make the main

development branch stable and mostly functional (unlike previously). We identified another major goal

https://hackernoon.com/good-process-vs-bad-process-bb8425c085c8
https://www.flickr.com/photos/chuwa/20895106386
https://creativecommons.org/licenses/by-sa/2.0/

20

to be ensuring automated tests and environments were stable, so as to provide developers with

valuable feedback every day, although this improvement remains outside of the scope of this study.

Having frequent iterations that customers can use and comment on by means of an active feedback-

loop helps team members to build an understanding of the customer.

2.2.4 Current process, workflow and branching strategy

In existing R&D teams at QPR Software, we used one "main development branch" in the workflow

named “trunk” – a branch that serves as the base for all current development work. It included all the

latest code changes that had been prepared for the next release as well as some unfinished features

still under construction and earmarked for future release. All teams tracked the code changes via a

central SVN repository. By default, new functionality was implemented through local copies of “trunk”

and an SVN commit was used to publish a change to the common mainline. Running any kind of

verification before publishing was entirely the developer’s responsibility and decision, so it was

common enough that no tests were run or the test build was not run locally before new code was

published. The main testing and quality assurance activities were carried out after the code was

published to the “trunk”, so all necessary fixes were added to the already published, and possibly

reused, code.

Anyone could commit changes to the trunk branch without barriers, and the release-branch policy was

that the QA-lead either gave permission to merge a feature for release or the QA-lead would do that

themselves.

To promote code to the release branch, all revisions needed to be cherry-picked from the trunk branch

and added to the release branch, which created a second (re)integration stage (additional to

integration in trunk). This second stage happened significantly later in the process, which led to merge

conflicts (large deviations between code in the trunk and the release branch) and unforeseen

dependencies would quite often be revealed at this point, which is arguably too late in the process. To

illustrate, the trunk would have, for example, features A, B and C, where A and C are ready for

release, while work on feature B is still in progress. In this case, the trunk and release branches would

have different integration results: in the trunk branch are A, B and C, and in the release branch, there

are A and C only. Figure 4 illustrates how the mentioned features would be promoted to the release

branch.

21

Figure 4. Previously used SVN branches and workflow

Since features may have been under development for some time (weeks or months), it was not rare to

find in QPR’s existing process that a long-lived feature like A would become dependent on another big

feature B. As a result, they could not be merged with the release branch independently: Either all

revisions for both features had to be merged into the release branch together or only in a specific

order.

In cases where a branch on the SVN server was created as part of developing some bigger or

experimental feature in that branch, we would still have to pick revisions one by one to merge into the

trunk branch, and then we would need to do the same again to merge them into the release branch.

During development, the feature branch receives updates from the trunk and conflicts are resolved.

However, it is a new task again to resolve issues when merging with the release branch.

This is quite similar to how things work in a Centralized Workflow, which according to Atlassian, is

great for teams transitioning from SVN, but it does not leverage the distributed nature of, for example,

Git (Atlassian, Git Workflow, n.d.). Atlassian was not suitable for us because it did not change the

process and so the same problems and conflict resolutions would continue to be a bottleneck as the

https://www.atlassian.com/git/tutorials/comparing-workflows#centralized-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows#centralized-workflow

22

team gets bigger. The current approach where multiple teams are working with the same code leads

to merge conflicts and a bottleneck is caused by the heavy workload during periods when a lot of

merges from the trunk to the release branch take place.

2.2.5 Empirical: What needs to change and why

All components in the software development process are extremely intertwined, so it is very difficult to

draw lines between different areas of the whole process - between tools and systems. Many changes

affect several systems or aspects, which is why it was decided that the current study should cover not

just the branching strategy and coding workflow, but also Scrum practices, product (features)

planning, and work tracking processes. The following sections present a selection of the most

important problems to solve, excluding some that fall outside the scope of this study, such as test

automation stability. Study data were collected over the course of 2018 and 2019 in the form of

questionnaire data gathered from personnel in the R&D department, as well as data from workshops

organized during Developers Days (an internal R&D conference at QPR). The data were further

augmented by the author’s observations from previous roles with the company’s existing development

teams.

2.2.5.1 Branching: Why, What and How to change?

This section deals with the arguments and justifications for suggesting a change in the branching

strategy (model).

When multiple developers from several teams work on the same code base and are not actively

working on integrating their changes with other developers’ changes, complicated merge conflicts are

inevitable, which leads to delays in code being promoted from the development stage to release. This

also makes it hard to identify bugs due to concurrent refactoring. It also matters how often integration

happens - it is poor practice to make changes in large chunks and for them to accumulate in a local

branch over a long period. Figure 5 illustrates a merge conflict involving significant overlaps in code

changes.

23

Figure 5. The larger the chunks are, the harder it is to integrate them

It is clearly much easier to integrate smaller changes, since there is less chance of large overlaps, and

where there is an overlap, the common area remains small and manageable (see Figure 6).

Figure 6. Smaller changes are easier to integrate

During the pre-release merge window, a lot of changes are waiting to be merged into the release

branch, creating a bottleneck in the code promotion process. A solution would be a strategic shift from

24

larger releases towards continuous delivery (CD), with smaller value increments happening more

often. Since the release branch would be created as a copy of the current main development branch, it

would not require any new integration, since all integration happens when the pull requests to the

main development branch are accepted.

In QPR Software, we have struggled with non-informative results from automated tests (TA) run on the

main development branch (trunk) that rarely passed and often led to many failures, often with different

causes. One negative effect of the constant failures was that developers were not motivated to

monitor the TA status, which created a vicious cycle. Another consequence was that one faulty

change used to break the environment that other developers were also using. An obvious

improvement is to have a review process and tests carried out before the change is accepted into the

main branch, which would help maintain TA stability. An automatically enforced requirement to run

tests on any small change offered for integration into the main development branch would force us to

maintain the TA every day, thus improving TA stability.

Previously, having only one main branch with an automatically enabled build and test execution for all

developers has led to bottlenecks, where developers have to wait for queued changes to be tested in

the trunk before seeing the results of their change. One might think that delays would be intermittent,

but in practice, changes used to come without interruption and so it made seeing the effect of one’s

own changes nearly impossible. A lot of time was wasted in attempts to identify and fix faults, for

example: changes A, B and C may contribute to issues in the trunk, and it was hard to identify causes.

Compiling non-finished features (works in progress) together in one common development branch (the

trunk) also used to create unwanted dependencies. A fix for feature A could easily become dependent

on some code change in feature B. This was good for early integration testing and for sharing useful

common components, but it created merge conflicts and prevented the independent promotion of

individual features. Figure 7 shows the trunk, where the oldest revision is at the bottom and the

newest is at the top. By following the history of changes from the bottom up, it is possible to see that A

causes both a build break and TA failure. Repairing the broken build took one whole day, but

investigating the TA failure was further complicated by changes made previously to the environment

and changes B and C, neither of which were tested separately, so it took a week to identify the cause

of the TA failure and to fix it.

25

Figure 7. A case where faults introduced by feature A were masked by other changes

A majority of these problems can be solved by switching from SVN to Git and by implementing a

simple and effective branching strategy. The major difference for code promotions to the release

branch would be that instead of cherry-picking features from the trunk for promotion to the release

branch, we will simply branch off every new release branch from the HEAD of “develop” in the Git

workflow (equivalent of the trunk in SVN), so if there are features under development and not ready to

release, they would have to be hidden using specific techniques. “Since many organizations new to

Git have no conventions for how to work with it, their repositories can quickly become messy. The

biggest problem is that many long-running branches emerge that all contain part of the changes.

People have a hard time figuring out which branch has the latest code, or which branch to deploy to

production.” (Introduction to GitLab Flow | GitLab, n.d.)

2.2.5.2 Coding Workflow: What to change and how?

To avoid merge conflicts and to provide new code for everyone as soon as possible in DevApps,

we will aim to develop in small increments with frequent integration. In the ideal situation, each

increment consists of tiny independent self-contained changes accompanied by tests that establish

https://docs.gitlab.com/ee/workflow/gitlab_flow.html

26

there is no apparent regression and that the introduced functionality is working as stated in the

description of the change.

Updating the work-in-progress (WIP) feature branch with the latest changes from "the main

development branch" (to be named ‘develop’) also often helps to avoid merge conflicts. In addition, we

would need to build and run TA for every feature branch. It makes sense also to encourage early Pull

Requests with the aim of getting preliminary feedback.

To have a stable working code base for everyone to build new functionality on, we need to avoid

broken code getting into the main development branch (typically called ‘master’ in Git). We need to

eliminate cherry-picking single commits or revisions from the development branch to add to the

release branch, as was done with SVN. Rather, a feature needs to be rebased on top of the main

development branch. The responsibility for pulling the change into the main development branch is

passed from the author of the changes to a group of authorities that consists of the team members

reviewing and (manually) testing the change, the CI/CD pipeline doing the static code analysis, the

automated testing, and the style and consistency checks. A direct push to the main development

branch (as was possible with the trunk) can be blocked by setting up an automatic branch policy. As a

result of using Pull Requests, base commits & fixes are promoted as one logical bundle, which

hopefully should lead to a neat commit history and make promotion (merging) easier.

I would expect and recommend our pull request practice to emphasize early testing efforts and

involve developers more in QA and to make them feel responsible (and proud) for the quality created.

Code documentation can be handled variously in the code itself, in the descriptions of user stories, in

architecture documents, and also in the history of commits and by means of clear commit

messages. This can be handled as part of the new Git workflow.

2.2.5.3 QA: What to change and how?

Theory: Testing - Shift Left

Why build early, why do static analysis early, why test early, why review early? The reasoning is that if

verification during the early development stages is not automated, some actions may be forgotten or

skipped, leading to lost time and higher costs in fixing faults. For example, if change B depends on a

previously completed change A, and verification is planned to be done after integration of both

features, and change A has inbuilt design defects, it will be found only after verification is done (after

integration), so not only change A but also change B would need to be rewritten - the effort to fix

issues is effectively doubled due to verification being carried out later rather than earlier.

27

Numbers may vary, but all researchers agree that it is cheaper to find and fix a bug earlier in the

development process. Data taken from (Tassey, 2002) is summarized in Figure 8.

Figure 8. Development phases and the cost of bugs shown from earliest to latest phase

A quick search of the software engineering literature yields many charts illustrating the idea that

defects become exponentially more expensive to fix in later design phases. “Often they show the

same power of ten per development phase multiplier we found in [the] hardware development

literature.” (The cost of bugs – System Semantics, 2014)

Figure 9 shows one of the most demonstrative and self-explanatory visualizations, taken from the

book “Software Testing” by Ron Patton:

Figure 9. Software Cost-to-fix increasing 10-fold per project phase. (Patton, 2006).

https://pdfs.semanticscholar.org/9b68/5f84da00514397d9af7f27cc0b7db7df05c3.pdf
http://systemsemantics.com/2014/08/the-cost-of-bugs/
https://www.oreilly.com/library/view/software-testing-second/0672327988/ch01.html

28

Empirical: QA aspects for the new team to focus on

Author observations, discussions and questionnaire responses all made clear that the two most critical

areas in QA to improve are the trustworthiness of TA and the focus on testing efforts. Previously we

struggled with unstable and unreliable TA results, so developers lost trust in it - it ceased to be useful.

A second problem was that testing efforts were not focused sufficiently on user-specific use cases and

data, so we needed to add more exploratory and experimental testing that was done independently of

the development team. Tests need to be prioritized such that most of the resources are spent

checking the most crucial functionality and requirements (efficient test coverage). We likewise

envisaged running the most critical tests often and quickly, while setting up less critical or time-

consuming testing to execute on-demand (more efficient use of time and resources for testing).

These two changes are quite extensive changes in themselves, so they were left out of the scope of

the current study.

While changing the development workflow and process we sought to emphasize early testing efforts –

the so-called “Shift left”. This shift left includes creating Pull Request from the feature branch to the

main development branch and doing most of the testing on the feature branch before the Pull Request

is approved.

Also considered was a renewal of review practices. It was suggested that the Pull Request annotation

(cover letter, review record) could be used to emphasize early testing efforts and to involve developers

more in QA, helping to make them feel responsible and proud of the quality achieved. The initial idea

is that developers would give a summary for pull requests (PRs):

- summary of the change,

- engineering testing log,

- regression tests = “test to fail”,

- impact (regression analysis), what needs special attention,

- "technical debt" analysis like "Watch out for this thing I made, since I cut corners as discussed by the

rest of the team to make a minimum iteration. But in future we should ..."

This can be encouraged by setting up a Pull Request template in Azure DevOps.

Since the beginning of the new QPR UI 2.0 development project, special effort has been made within

DevApps to ensure the CI&TA cycle is fast and short, so developers do not have to wait too long to

get their change tested and to see if any fixes are needed.

29

Scrum: What to change and how?

Encourage planning granularity: the idea is to have a hierarchy of work items [Epic – Feature –

User Story - Tasks] and to divide the User Story into small tasks. This will likely improve estimation,

since one of the main features of a great team is predictability. Smaller tasks help to split work and to

deliver value increments (to use the Scrum jargon) more often. Smaller user stories and tasks also

help avoid merge conflicts, since smaller user stories inherently involve smaller code changes. Small

tasks are easier to complete and build confidence and pride. It brings satisfaction when small things

are being completed every day. This creates positive reinforcement for learning. Well-defined tasks

increase transparency in the daily work, as well as decreasing the "bus factor": it should be possible

for different team members to work on the same task or to pick a task and continue the work on it.

The definition of done (DoD) needs to be defined, as well as what it means when the User Story is

“ready for sprint” (i.e. what is the ‘definition of ready’?). The definition then needs to be consistently

applied and upheld, without violations. Don’t pick items for sprint User Stories that are not ready

according to the definition of ready.

Commit to less (Better to promise and deliver rather than to over-promise and fail). Define the

minimum of “must have” items for the sprint.

Ensure that every item has an owner who takes responsibility to complete it.

Have more iterations with customers, define customer persona, know and understand your

customer.

2.2.5.4 Contribyte “QPR 360 assessment” report Aug-Sept 2019

In 2019, an external consultant was invited to assess the QPR product development process, and

their findings are listed here in brief (taken from their presentation). Main improvement areas (as

relevant to this study) are as follows:

Gaining customer insight. This is aimed at increasing your awareness of your customers. Customer

insight is generally poor at QPR and understood by a small number of people. Customer

understanding within R&D is especially limited. Create user-personas for your products.

Tune the R&D engine. Take into use tools to support modern development – that is set up a ‘toolset

configuration’, which improves transparency. Start recording and updating task progress in the

appropriate tools, and ensure that progress is updated at least once a day. Provide access to your

progress information. Refactor both the products and the testing environments. Your current toolset

configuration doesn’t support transparency and progress sharing, and the tools do not optimally

support the team.

https://en.wikipedia.org/wiki/Bus_factor

30

Scrum upgrade. Focus on improving team-level processes by increasing teamwork efficiency and

creating customer value. Guide your progress with data – start using your data and making decisions

based on it. Use daily cafes instead of daily stand-ups. “You are not getting the full value from Scrum.

You don’t have goals for your releases and Sprints, estimates are subjective and not tracked. Stories

are not appropriately defined (no acceptance criteria, no definition of ready, often too big) and are not

verified against Definition of Done. The focus of Sprint planning is off target, and you don’t keep your

backlogs in shape.” Include sprint pre-planning and backlog grooming into your process.

Revising testing strategies. Quality and testing needs to focus on revising the testing strategies,

reconsidering the testing methods and addressing the technical debt in both your products and your

testing platform. Experimental testing needs to be increased, with a focus on effective and affordable

defect identification.

Knowledge sharing. Aim to harness the collective knowledge and wisdom of QPR and to address

the challenge of personal knowledge. Form professional guilds and dissolve personal silos – harness

your collective wisdom and share it.

2.3 Initial Scrum practices: August - September 2019 Iteration

QPR Software uses the Scrum framework to manage the software development process, but as with

many process elements, Scrum is not applied that strictly. As a part of organising the new team’s

development process, the author set out to refresh everyone’s knowledge about Scrum and to adjust

our working practices to extract more benefits from the Scrum framework.

2.3.1 Theory: Tuckman's stages of group development

Tuckman's stages of group development are briefly described in Wikipedia: “these phases are all

necessary and inevitable in order for the team to grow, face up to challenges, tackle problems, find

solutions, plan work, and deliver results.” (Tuckman’s stages of group development, 2019) Figure 10

shows all the stages from the formation of the group up to the break-up of the team.

https://en.wikipedia.org/wiki/Tuckman's_stages_of_group_development

31

Figure 10. Tuckman’s stages of group development. Source: wikimedia.org (CC BY-SA 4.0)

Forming phase: Why we are together? What is expected of us? What is expected of me? The team is

focusing on its purpose and tasks.

Storming phase: sense of familiarity, frustration arises, active and passive conflicts. So, raise your

voice asap. It takes about 3-4 sprints to arrive at the next stage.

Norming phase: solving conflicts, balancing mutual expectations, agreeing on norms, values and

rules. It takes about 2 more sprints to arrive at the next stage.

Performing phase: safety in the team, no more fear of mistakes, and a shared sense of what is

important and what is not, constructive work. Team members stand in for missing buddy.

Adjourning phase: say goodbye.

 (Tuckman’s stages of group development, 2019)

10 practical things to do to start (Verwijs, 2019) No rush through phases!

★ Reserve time for the Kickstart - foundation of the team. Setting up a Product Backlog.

★ Teach Scrum team to be on the same page.

★ Formulate a Team Vision - What it means to be a good team? Create a team manifest. Norms,

values and principles on how people want to work together.

★ Getting to know each other. Break the ice and to get people out of their comfort zones. Use

team-building games.

★ Create a Team Contract. Define roles and tasks: Who is responsible for what?

How do we register the team’s success? What are the working rules?

https://commons.wikimedia.org/wiki/File:Modelo_de_Tuckman.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://medium.com/the-liberators/how-to-kickstart-a-great-scrum-team-10-practical-things-to-do-2143bdde1a8d
https://medium.com/the-liberators/how-to-kickstart-a-great-scrum-team-10-practical-things-to-do-2143bdde1a8d
http://www.barryovereem.com/the-team-manifesto-the-foundation-every-team-needs/

32

★ Pick a Team Name. People more easily associate themselves with a group if you give them

something small to identify with. Especially when there are other teams close by.

★ Set expectations. It will take time to normalize, we should expect the first few sprints to be

challenging.

★ Retrospectives - as an opportunity to grow, learn and improve. Never skip it. Try different

approaches to streamline routines.

★ Involve management to support the Kickstart. A Scrum Team will be dealing with a lot of

complexity, both internally and externally. When kickstarting a new Scrum Team, it helps to ask

management to come and show their support for the process.

★ "Bring it to the team" - The role of the Scrum Master is not to solve the problems for a team,

but to help the team solve the problem themselves. Let the team come up with solutions themselves.

2.3.2 Team kick-off: Create a cultural manifesto for the DevApps scrum team

The name of the new experimental team to refresh the software development process and start the

new product development was chosen by voting on alternatives suggested by everyone and

“DevApps” received the most votes. It is an intended pun combining the idea of application

development and the DevOps approach.

A workshop was organised, and the team created the manifesto.

What is a Team Manifesto? - A shared vision about teamwork and the required quality standards.

Common norms, values and principles are agreed among the team members. Figure 11 below

illustrates very well why a common understanding of goals and values is important.

33

Figure 11. Why it is so important to row in the same direction (How do leaders create inspiring

visions?, 2015)

Why create a manifesto? - Values give direction to our work, our behaviour, and our actions.

“Members of truly cohesive teams trust one another, engage in unfiltered conflict around ideas,

commit to decisions and plans of actions, hold one another accountable for delivering against those

plans and focus on the achievement of collective results” (Overeem, 2014).

A common understanding of what Quality means to us helps to tap into the team’s sense of

professional pride. It’s self-enforcing. Since the team came up with it, individuals are more likely to

behave responsibly and encourage others to do the same. Figure 12 shows the Manifesto created by

the DevApps Team.

Figure 12. DevApps’s Manifesto (08.2019)

http://www.leaderslab.co.uk/how-do-leaders-create-inspiring-visions
http://www.leaderslab.co.uk/how-do-leaders-create-inspiring-visions
http://www.barryovereem.com/the-team-manifesto-the-foundation-every-team-needs

34

2.3.3 Team kick-off: Create working contract for the Scrum team

“The purpose of the working agreement is to ensure the Agile Team shares responsibility in defining

expectations for how they will function together and to enhance their self-organization process. It

creates an awareness of both positive (and negative) behaviours that can impact the Team and

empowers the Scrum Master to keep them accountable” (Establishing an Agile Team Working

Agreement - Tech at GSA, n.d.).

The team-working contract defines the “ground rules” for how the team will work together – it

expresses the shared understanding of responsibilities and expectations. I decided to use The Role

Expectations Matrix activity which is inspired on the Give and take matrix form the ‘Gamestorming’

book by Dave Gray, Sunni Brown and James Macanufo. (“Role Expectations Matrix | Fun

Retrospectives,” n.d.)

This action was postponed for a later stage after which team members would have some practical

experience of working together and would be able to see in practice what they expect from others and

what others expect from them. It was planned to this after several sprints had passed.

2.3.4 Practical plan: Initial Scrum process setup

With the help and contributions of other team members, I made a summary of the main Scrum

concepts and put those to the team’s wiki pages, so anyone could go and check information about the

main Scrum concepts and events in short form. Here I present a condensed version of these wiki

pages.

The initial setup for Scrum was based mostly on the Scrum Guide (Scrum Guide | Scrum Guides,

2018).

Scrum values

Every element of Scrum entails a goal. It is not recommended to change the core design of Scrum, to

leave out elements, to not play the game by its base rules, since this has the effect of covering up

problems and limits the benefits of using Scrum and any additions to Scrum, even to the point of

rendering it completely useless. For this reason, it is important to repeatedly remind the team about

the Scrum values:

1. Commitment - from previous experience I’ve noticed that commitment is often confused with “a

promise to deliver”, though in fact commitment means dedication to quality and effort. And the focus is

https://tech.gsa.gov/guides/agile_team_working_agreement/
https://tech.gsa.gov/guides/agile_team_working_agreement/
http://www.funretrospectives.com/role-expectations-matrix/
http://www.funretrospectives.com/role-expectations-matrix/
https://www.amazon.com/Gamestorming-Playbook-Innovators-Rulebreakers-Changemakers/dp/0596804172
https://www.amazon.com/Gamestorming-Playbook-Innovators-Rulebreakers-Changemakers/dp/0596804172
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf

35

on forecasting, on getting predictable outcomes. It was the useful therefore to shift the focus from

promises to forecasting.

2. Focus - time-boxing activities and staying on-topic during meetings, focusing on the team’s

common goals and priorities, rather than on individual ones.

3. Openness (transparency)

4. Respect (diversity, consumer)

5. Courage (passion)

From an article by Gunther Verheyen, author of "Scrum - A pocket guide" (Verheyen, 2013)

Scrum events: Daily stand-up

I would argue that one of the biggest issues with daily stand-ups is routine. In order to fatigue with

routines, I collected additional questions to ask occasionally during daily meetings:

● Are there any pull requests waiting for review?

● Any ad-hoc side tasks (not initially planned for the sprint)?

● Share gotchas and helpful findings, retrospective notes, fun facts.

● Do you need any help?

● How can I help the team’s progress towards the sprint goal?

● Are we focused on reaching the sprint goal?

● Compliment your buddy, or give other kinds of feedback

Another important issue that needs follow up is transparency about daily progress, meaning that the

team needs to have visibility about progress with tasks and it should be verified during the daily stand-

up. If an update has been missed, they it should do it before the next daily.

Scrum events: Product backlog refinement

Product backlog refinement (also referred to as backlog grooming) is intended to prioritise user stories

and break them down into smaller tasks. This happened mostly in meetings involving all team

members and where the PO was “giving a task to the team”. The aim is to shift towards more

individual work before the backlog grooming meeting and encourage participants to take the initiative

in discussing and challenging what is suggested initially. Also, it was recommended we move from

backlog refinement that only takes place in scheduled meetings towards a more continuous process.

https://guntherverheyen.com/2013/05/03/theres-value-in-the-scrum-values/

36

“This activity is all about interaction between the Product Owner, Development Team and

stakeholders. If you were expecting a blueprint for a ‘ready’ item, you clearly need to do some

homework on agility” (van Rooden, (1/3), 2016).

Scrum events: Sprint Planning

We aim to focus on the Definition of Ready for product backlog items and to pick for the sprint only

those user stories that are groomed and defined well enough so that the team could start working on

them.

The purpose of each Sprint is to deliver Increments of potentially releasable functionality that adhere

to the Scrum Team’s current “Definition of Done". As an outcome of the Sprint Planning, the team

should be able to answer the following:

• What is this Sprint’s Goal? What can we deliver in this upcoming sprint? - Forecast.

• How will the work that is needed to deliver the Increment be achieved? - Tasks.

(“Scrum Guide | Scrum Guides” 2018)

Scrum events: Sprint Review

We used to skip the Sprint Review with the previous team where I worked. Now we will bring it back

as a way to present achievements to customers, to celebrate the progress we have made, and to

check what wasn’t done and why, and how we can adjust the Product Backlog.

Result: revised Product Backlog ready for Sprint Planning.

(“Scrum Guide | Scrum Guides” 2018)

Scrum events: Sprint Retrospective

Retrospective - this is an opportunity to grow, learn and improve. It should never be skipped. It is one

of the most crucial parts of the Scrum iteration cycle, being an opportunity to reflect and discuss what

was good and what was not so good. The main thing is to plan action points to improve the situation. It

is the responsibility of the Scrum master to follow up and make sure actions are carried out and

changes happen.

For the beginning I used the Mad Sad Glad game, which “frames discussion around the emotional

journey of your team during the previous sprint” (Mad Sad Glad Retrospective,” n.d.).

https://www.scrum.org/resources/blog/product-backlog-refinement-explained-13
https://www.scrumguides.org/scrum-guide.html#events-planning
https://www.scrumguides.org/scrum-guide.html#events-review
https://www.teamretro.com/techniques/mad-sad-glad-retrospective/

37

In future, we will also regularly review the working agreement (Team contract), once we have it in

place, especially in the event of any changes or if a member consistently breaks one of the ground

rules.

To minimize routine and facilitate discussion we will explore different approaches and new formats for

the retrospective. This will be implemented in future springs, but in the initial stages, I will stick to Mad

Sad Glad.

Estimation and Velocity

“Teams use t-shirt sizes, the Fibonacci sequence, or planning poker to make proper estimations”

(Atlassian, User Stories, n.d.).

We used to estimate time for completing features measured in hours and it was too fine-grained and

almost never matched the actual time spent on feature development, which might easily be double or

more.

“The social and psychological aspects of estimation: using units such as story points and emphasizing

relative difficulty over absolute duration relieves some of the tensions that often arise between

developers and managers around [time] estimations: for instance, [when] asking developers for an

estimate then holding them accountable as if it had been a firm commitment.” (Agile Alliance, What

are Story Points?, 2015)

The intention with DevApps is to try to forget about real time and use story points - coarse-grained and

relative measures for estimating the effort required. We will put the focus on learning the team’s

velocity in abstract points, and monitor and based on that adjust our estimations regularly. We will add

up the effort estimates associated with user stories that were completed during the previous iteration -

this gives a value for the velocity of the team (What is Velocity in Agile? | Agile Alliance, n.d.). This

metric will then be used as a maximum limit for the next sprint. With continuing iterations, velocity

would be expected to stop oscillating and become more or less stable. The aim is to be able to give a

forecast and state that pre-refined user story X will take Y story points, which can be approximately

related to the sprint schedule. We also intend to learn how to limit our sprint plan, so we first would

learn to focus on a sprint goal and complete and achieve what was planned. “Better [to] promise and

deliver rather than over-promise and fail.” (Pilone and Miles, 2008)

https://www.teamretro.com/techniques/mad-sad-glad-retrospective/
https://www.teamretro.com/techniques/mad-sad-glad-retrospective/
https://www.atlassian.com/agile/project-management/user-stories
https://www.agilealliance.org/glossary/points-estimates-in/
https://www.agilealliance.org/glossary/points-estimates-in/
https://www.agilealliance.org/glossary/velocity/
https://books.google.fi/books?hl=en&lr=&id=QAr82w_eSi8C&oi=fnd&pg=PR9&dq=head+first+software+development&ots=KnLj069cxY&sig=Cba0E_pjRxFXaEgch1VfEVb_8vQ&redir_esc=y#v=onepage&q=head%20first%20software%20development&f=false

38

2.4 Theory: Version control system and the development workflow

2.4.1 What are version control systems (VCS) and how do they compare?

“Configuration management” (CM) is also used as a synonym for version control. “CM refers to a

process by which all artefacts relevant to your project, and the relationships between them, are stored,

retrieved, uniquely identified, and modified.” Those artefacts may include source code, database

definitions, documentation, build scripts, tests etc. The decision to use one specific version control tool

is the first step in developing a configuration management strategy (Humble and Farley, 2010).

“Version control systems (VCS), also known as source control, source code management systems, or

revision control systems, are mechanism for keeping multiple versions of your files” (Humble and

Farley, 2010). The source control is an essential tool for multi-developer projects. Source or version

control systems allow developers to collaborate on code and track changes made to the code

base.

Subversion and Git are among the most popular version control systems currently (Humble and

Farley, 2010).

Git versus Subversion (SVN)

In the case of QPR Software, no other VCSs were in use to provide a comparison other than the

currently used SVN, along with Git as the desired alternative, so the question boils down to Git vs

SVN. I focused only on the differences most relevant to the QPR work environment.

First of all, it has to be mentioned that SVN is a centralized VCS, which has a main repository on a

single server, while Git is a distributed VCS, where each user keeps a self-contained repository on

their computer. “Every local repository is effectively a branch in its own right, and there is no mainline”

(Humble and Farley, 2010). Nevertheless, it is conventional to agree on which branch to run code

integration (CI). It should also be noted that since Git is distributed, not everything related to a project

must be stored in the same location, so it needs some level of discipline to have all the important bits

of code on one server.

The Atlassian documentation argues that using Git to power your development workflow presents a

few advantages over SVN. First, it gives every developer their own local copy of the entire project.

This isolated environment allows each developer to work independently of all other changes to a

project (Atlassian, Git Workflow, n.d.). SVN also allows developers to have a local copy and to work

independently, but those changes are not checked in and not backed up until they are sent to the

central server. The difference centres on registering the change and sending it - in SVN when you

make a commit, the revision immediately goes to the server, so you must also be online. However, in

https://books.google.fi/books?hl=en&lr=&id=6ADDuzere-YC&oi=fnd&pg=PT30&dq=continuous+delivery+jez+humble+david+farley&ots=-vvqOSO6nc&sig=hIimfUO9rck080P8UDodsPfgGxU&redir_esc=y#v=onepage&q=continuous%20delivery%20jez%20humble%20david%20farley&f=false
https://books.google.fi/books?hl=en&lr=&id=6ADDuzere-YC&oi=fnd&pg=PT30&dq=continuous+delivery+jez+humble+david+farley&ots=-vvqOSO6nc&sig=hIimfUO9rck080P8UDodsPfgGxU&redir_esc=y#v=onepage&q=continuous%20delivery%20jez%20humble%20david%20farley&f=false
https://books.google.fi/books?hl=en&lr=&id=6ADDuzere-YC&oi=fnd&pg=PT30&dq=continuous+delivery+jez+humble+david+farley&ots=-vvqOSO6nc&sig=hIimfUO9rck080P8UDodsPfgGxU&redir_esc=y#v=onepage&q=continuous%20delivery%20jez%20humble%20david%20farley&f=false
https://books.google.fi/books?hl=en&lr=&id=6ADDuzere-YC&oi=fnd&pg=PT30&dq=continuous+delivery+jez+humble+david+farley&ots=-vvqOSO6nc&sig=hIimfUO9rck080P8UDodsPfgGxU&redir_esc=y#v=onepage&q=continuous%20delivery%20jez%20humble%20david%20farley&f=false
https://books.google.fi/books?hl=en&lr=&id=6ADDuzere-YC&oi=fnd&pg=PT30&dq=continuous+delivery+jez+humble+david+farley&ots=-vvqOSO6nc&sig=hIimfUO9rck080P8UDodsPfgGxU&redir_esc=y#v=onepage&q=continuous%20delivery%20jez%20humble%20david%20farley&f=false
https://books.google.fi/books?hl=en&lr=&id=6ADDuzere-YC&oi=fnd&pg=PT30&dq=continuous+delivery+jez+humble+david+farley&ots=-vvqOSO6nc&sig=hIimfUO9rck080P8UDodsPfgGxU&redir_esc=y#v=onepage&q=continuous%20delivery%20jez%20humble%20david%20farley&f=false
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows

39

Git you first choose which change you wish to add to be committed. You then make a local commit

(possible even offline) and after that you can push it to server. The "staging area" or "index" allows

you to quickly stage some of your files and commit them without committing all the other modified files

in your working directory. Gone are the days of making two logically unrelated modifications to a file

before you realized that you forgot to commit one of them. Now you can just stage the change you

need for the current commit and stage the other change for the next commit.” (Git - Book, n.d.).

The possibility to register code changes as commits to a local repository also enables developers to

“easily modify, reorder, or batch up” commits locally (Humble and Farley, 2010).

A further point made by the Atlassian documentation was that Git “gives you access to [a] robust

branching and merging model. Unlike SVN, Git branches are designed to be a fail-safe mechanism

for integrating code and sharing changes between repositories.” Git also provides recovery tools for

handling branch management failures. Git lets you create highly focused commits, even if you have

made a lot of local changes (Atlassian, Git Workflow, n.d.).

Git supports collaboration on a branch: Since the system is distributed and all branches are equal, it is

possible to pull changes from different branches and to collaborate without touching the main

repository until it is needed (Humble and Farley, 2010).

Git helps to encourage engineers to frequently commit and rebase their work - Git makes pull and

rebase easy. As detailed in the Pro Git book, written by Scott Chacon and Ben Straub: “The Git

feature that really makes it stand apart from nearly every other SCM out there is its branching model.”

It also allows frictionless context switching, role-based codelines, feature-based workflow, disposable

experimentation. Git is fast, providing multiple backups, and able to handle any workflow (About - Git

n.d.).

Joel Spolsky, author of “Joel on Software” (Spolsky, 2004) and co-founder of Trello and Fog Creek

Software, and CEO of Stack Overflow, advocates for Git in an article as follows. “Many Subversion

users have told me the following story: ‘We tried to branch our code, and that worked fine. But when it

came time to merge back, it was a complete nightmare and we had to practically reapply every

change by hand.’ With distributed version control, merges are easy and work fine. If you are using

Subversion, stop it. Just stop. Subversion = Leeches. Mercurial and Git = Antibiotics.” (Spolsky, 2010).

Scott Chacon (the author of the Pro Git book by Apress) is another Git advocate: “I have done this for

branches with one commit containing a one line change. The process is simple, straightforward,

scalable and powerful. You can do it with feature branches with 50 commits on them that took 2

weeks, or 1 commit that took 10 minutes. It is such a simple and frictionless process that you are not

annoyed that you have to do it even for 1 commit, which means people rarely try to skip or bypass the

process unless the change is so small or insignificant that it just doesn’t matter.” (Chacon, 2011)

https://git-scm.com/book/en/v2
https://books.google.fi/books?hl=en&lr=&id=6ADDuzere-YC&oi=fnd&pg=PT30&dq=continuous+delivery+jez+humble+david+farley&ots=-vvqOSO6nc&sig=hIimfUO9rck080P8UDodsPfgGxU&redir_esc=y#v=onepage&q=continuous%20delivery%20jez%20humble%20david%20farley&f=false
https://www.atlassian.com/git/tutorials/comparing-workflows
https://books.google.fi/books?hl=en&lr=&id=6ADDuzere-YC&oi=fnd&pg=PT30&dq=continuous+delivery+jez+humble+david+farley&ots=-vvqOSO6nc&sig=hIimfUO9rck080P8UDodsPfgGxU&redir_esc=y#v=onepage&q=continuous%20delivery%20jez%20humble%20david%20farley&f=false
https://git-scm.com/book/en/v2
https://git-scm.com/about/small-and-fast
https://git-scm.com/about/
https://git-scm.com/about/
https://www.joelonsoftware.com/about-me/
https://www.amazon.com/gp/product/1590593898?ie=UTF8&tag=joelonsoftware&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590593898
https://www.joelonsoftware.com/2010/03/17/distributed-version-control-is-here-to-stay-baby/
http://scottchacon.com/about.html
https://www.amazon.com/Pro-Git-Scott-Chacon/dp/1484200772?ie=UTF8&camp=1789&creative=9325&creativeASIN=1430218339&linkCode=as2&tag=git-sfconservancy-20
http://scottchacon.com/2011/08/31/github-flow.html

40

2.4.2 Choosing a version control system and provider, CI/CD system (tools pipeline).

We decided to try Git with the new DevApps team at QPR to be able to compare the two based not

only on theory, but also on real-world usage experience.

Reviewed options were:

● GitLab

● GitHub

● BitBucket (Atlassian)

● Phacility/Phabricator

● Azure DevOps

● EficodeRoot

● Git server hosted internally at QPR

● SVN internal server (currently used)

Criteria for assessment were:

❏ Price to get the service

❏ Good value/money ratio: employee’s working hours vs price to pay for service

❏ IPR handling policy,

❏ ICT requirements (user management via AD)

❏ Finances, billing matters (add accounts under enterprise billing system)

❏ Possibilities to migrate to another service (vs lock-in)

❏ Tools integration

❏ Support for agile development (small changes, fast feature branch lifecycle)

❏ Developer’s experience

41

❏ Branching experience – easy branching and fast branch lifecycle

❏ Convenient review tool (visual, more collaborative - show a diff and put comments there, have

discussion)

❏ Has Review (discussion) history

❏ version control + review + static code analysis + build + TA integration

❏ Prohibit direct commits to master - is it possible?

❏ Support for Review “before merge”

❏ Pull/Merge Request or patch-set annotation to make review easier

❏ Easily review any branches

❏ Support for static code analysis + code style check “before merge”

❏ Build every development branch/commit “before merge”

❏ Support for running TA “before merge”

❏ TA must be able to run on branch/commit

❏ TA must run super-parallel fast

❏ Packaging and deployment

❏ Support for tests prioritization / classification and grouping to run on different stages.

❏ Use different method (file system) to provide resulting build package to users (to avoid problem

with reserved folder)

❏ Requirements – issue tracking system – code – tests traceability

❏ Hook: Automatically register commit in issue tracking system

Decision:

Based on the criteria listed above, we chose Azure, since it fulfilled the ICT requirements (can use AD

access management), while the development tools pipeline seemed to have most of the required

42

blocks already integrated, such that we would not need to create and maintain special scripts to make

systems work together and enable information to flow through the systems.

It was also chosen due to its expansion capabilities (Basic + Test Plans) and relatively low cost (being

cost-effective to run & maintain). It also enables us to take into use a more comprehensive set of tools

related to work management, product backlog and sprint backlog management. The full ecosystem

comes with integration with other popular services: work management, wiki, repository code, branches

and pull requests, while TA&CI seem to be well integrated.

Some remaining questions centred on test management and requirements management. However,

we can probably distribute the job of fulfilling those needs among several systems and tools. The Git

database can be moved just as easily as from any other provider. Azure has Git history visualization -

developers can see the commits in topological order as a graph. The review tool allows developers to

see diff and comment inline, as well as the history, which covers our basic needs. It is possible to

review any branches and make comments to commits. The possibility is also there to prohibit direct

commits to the master branch.

Azure DevOps represents the evolution of Visual Studio Team Services (VSTS). It provides an

integrated set of features that you can access through your web browser or IDE client

● Azure Repos (Code) provides Git repositories or Team Foundation Version Control (TFVC)

for source control of your code

● Azure Pipelines (Build & Release) provides Continuous integration and continuous delivery

(CI/CD) that works with any language, platform, and cloud.

● Azure Boards (Work) delivers a suite of Agile tools to support planning and tracking of work,

code defects, and issues, using Kanban and Scrum, or a combination of methods.

● Azure Test Plans (Test) provides several tools to test your apps, including manual/exploratory

testing and continuous testing

● Azure Artifacts (Packages) allows teams to share Maven, npm, and NuGet packages from

public and private sources and integrate package sharing into your CI/CD pipelines

● Collaboration tools that include customizable team dashboards with configurable widgets to

share information, progress and trends; built-in wikis for sharing information; configurable notifications

and more.

The Azure DevOps online documentation can be accessed via: https://docs.microsoft.com/en-

us/azure/devops/

https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops

43

3 Retrospective

As part of the Scrum process we held sprint retrospectives - meetings where the team could reflect on

and discuss what went well and what needs to be improved. I used the “Mad-Sad-Glad” format to

frame the discussion and collect feedback (Mad Sad Glad Retrospective, n.d.).

 I analysed comments from the sprint retrospective meetings by classifying them into themes, taking

into account how many times an issue was mentioned. Some bits of information or answers were

either ignored or remained unidentified. I then identified classes within the data and listed examples of

how informants mentioned each class. See meeting details in Appendix 5.

Some of the classes matched very well with the attributes of good teamwork as defined in the Team

Manifesto (they could be considered the team values):

Fun & personal connection, Respect

Cooperation, Collaboration

Feedback

Common goals

Trust

Innovation & Experimentation

UX & Customer (satisfaction, need) focused

Expectations - set and met

I like it! (developer’s perspective)

Commitment to Effort, we do our best

Additional classes (team values) were identified and added from the sprint retrospective discussions:

Agility of process

Feeling of accomplishment (achieving)

Usability of documentation and chats

Involvement, ownership

Freedom vs stability/certainty

Meeting efficiency

https://www.teamretro.com/retrospectives/mad-sad-glad-retrospective/
https://www.teamretro.com/retrospectives/mad-sad-glad-retrospective/

44

Tools satisfaction

3.1 Retrospective comments analysis 29.07-6.09.2019

In this section I combine the feedback gathered from the retrospective meetings held after each of the

first two sprints: 29.07-16.08.2019 and 19.08-6.09.2019, as these two sprints included more planning

and learning to prepare for the real development work.

The following themes were reflected on by the team as being positive in the first two sprints (Glad):

Innovation & Experimentation (mastery and autonomy) - team members were happy to learn new

things, to investigate, to invent and come up with ideas. It was mentioned how good it feels to take

part in the beginning of (green field) development.

Fun & personal connection, respect - many of us felt inspired, enthusiastic and commented on the

good spirit. We took responsibility, had a good atmosphere and had fun.

Agility of process - the Scrum practices seemed to be already better than in previous teams; not

getting bogged down with old manual processes felt good, as did the feeling of flexibility, informality,

freedom, and a chance to self-organize.

Involvement and ownership - it was felt that team members had a lot more say in what to do and

how, while feeling involved lead to caring more about the outcomes.

Feeling of accomplishment (achieving): things were progressing well. Decisions were made, the

development environment was seen to be emerging, everybody felt we were moving forward, we had

almost met the sprint goals, and things were also getting clearer, we understood our target better and

implemented the “Hello World” App!

Common goals - planning the “critical path” (high-priority tasks) for the sprint was considered a very

useful practice.

Tools satisfaction - the first trials using Azure DevOps gave an impression that it is an attractive set

of integrated tools, and ideas about the team’s workflow started to evolve.

Some comments on what made team members glad after the first two sprints:

45

- The start-up phase is the best a developer can attend, the atmosphere is good, a promising start,

enjoying it.

- Flexibility in day-to-day work (currently), informality, no strict rules about following tasks; feeling of

freedom; time to invent, learn and have ideas.

- Being involved in setting the vision, brainstorming, hence caring more, increased ownership.

- Learning new skills (React, node, git etc).

- Possibility to create something totally new!

- Things are getting clearer and the common goal is more visible, and we get to know and understand

what our target is.

- Things are progressing, people are delivering useful stuff, and we almost completed the sprint goal

- Good team spirit and atmosphere, work is almost fun, things are progressing

- We have a kind of Hello World!

Points for improvement, worries or concerns mentioned (Sad&Mad):

Usability of the documentation and chats - the Microsoft Teams chat seemed for some of us too

messy and too noisy. Information was scattered everywhere across different systems and locations,

so some team members had difficulties in finding documents. We also did not yet have agreed

instructions for the development work.

Common goals - we did not define the sprint goal. In the beginning, we were not sure how and where

to create the product backlog and so we started initial development without a backlog. The team was

not yet taking enough ownership of user stories, not enough work was being done in reducing user

stories, not everyone was able to participate in the common setup tasks (setting up practices,

environments, TA&CI).

Freedom vs stability or certainty - it felt overwhelming, like we had too many things to do at once,

too many changes happening at the same time, many decisions needed to be made and the team felt

a bit slow in making decisions.

Feeling of accomplishment (achieving) - not all planned tasks were completed.

46

Cooperation, Collaboration - the risk of collective responsibility morphing into no one’s responsibility

was brought up, the desire to create a prototype sooner led to neglecting documentation and

communication.

Meeting efficiency - it felt like we had too many meetings.

Agility of process - a worry about throwing away good established working practices was raised. Not

documenting our decisions risked undermining the possibility to learn in the future and made it more

difficult to serve as a case study and example for other development teams. The term "user story" was

confusing for some team members.

Some comments on what made team members sad or mad after the first two sprints:

- “There are so many balls up in the air”

- “So many things to do that it’s overwhelming, we need to focus and prioritize”

- “Feeling a bit slow with making decisions, too worried about risks.”

- “Lots of things to be decided”

- “Not aggressive enough in reducing user stories”

- “Some tasks are not yet finished”

- “There were good established working practices (Entice and MEA) that were refined over many

years, aren’t we throwing them away?”

- “Co-creation (creating together, collaboration) is great, but sometimes shared responsibility

leads to irresponsibility. Collective responsibility leads to no one’s responsibility.”

- “Transparency: If we want to see the total work remaining for reach a sprint goal, then we need

to have an initial estimate and work done (marked every day, so we can track daily progress).”

3.2 Agreed adjustments

As a result of reflection on the first two sprints, the team agreed to:

Document our decisions.

47

Continue aiming to follow the Scrum framework better than before, but not to make too detailed time

allocations for team members and allow flexibility instead.

Estimate and plan work in abstract units - story points.

Treat the sprint plan as a forecast, but not as a promise.

Aim to organize, refine and prioritise the backlog.

Aim at reducing or splitting stories.

Define the sprint goal and aim to complete sprint tasks as a first priority.

Assign all tasks, so every task would have a responsible owner.

Set up and use a calendar reminder for dotting i's and crossing t's - finalizing tasks neatly.

Make a wiki page to store links and accompany them with short summaries.

Keep valuable old practices such as specifying and planning work items (user story or SDTs) before

starting to implement, adding a description to a user story or SDT, write up the requirements, create a

more detailed specification in a work item if needed (in many cases it is indeed necessary). Everyone

in the Team must have a good understanding of the task: what will be done, what not, what is the

“guesstimate”, any known grey areas (should not be too large), regression and other risks, test plan,

support materials.

Treat the user story as the main "working document", i.e. centralize all related information and links to

other systems.

48

4 Iteration 2: September 2019

Continue following the initial plan, while considering previous observations and conclusions.

4.1 Organize issue tracking and work management (backlog, epics, stories, tasks)

First we tried to create a hierarchy of epics, user stories and tasks in Axosoft, though it does not

adequately support this kind of approach. We therefore turned to Azure DevOps, which provides work

tasks management that integrates well with the development process. Another significant shortcoming

is that Axosoft is very slow in usage, with the overall subjective user experience appearing to be bad

according to what I have read and heard. A comparison between Axosoft and alternatives can be

found at slant.co (“Slant - 20 best alternatives to Axosoft as of 2019,” n.d.)

4.1.1 Epic - Feature - Story/Topic - Task

Initiatives are collections of epics that drive toward a common goal. Themes are large focus areas

that span the organization. And an Epic is a story that can be considered as a goal to be attained by

the team. An epic describes end-user behaviour or drives change in end-user behaviour. Quite

typically, an epic describes a task or job an end-user wants to accomplish, such as clarifying and

reporting the state of a business unit in the corporation (Atlassian, Epics, Stories, Themes, and

Initiatives,n.d.). An epic comprises a collection of related and interdependent user stories. How the

user stories are related to each other becomes evident from a user story map that is defined as part of

the epic. An epic may take several sprints to complete. An epic is never entered as a reference in a

commit (Epic, Story, Task and Bugs - Developer Wiki - Confluence, n.d.).

User story (value added looking from the user’s perspective)

The story is the smallest unit of work that brings value to the customer. It is explained in a few

sentences in simple (not technical) language. The story helps to keep the focus on the user and on

solving problems for the user, rather than being focused only on a list of tasks. Stories enable

collaboration when several people work on the same goal doing different tasks.

User stories are often misunderstood as lightweight requirements given by the business stakeholders

to the delivery team. To be clear, if a team passively receives documents in a hand-over, regardless of

what they are called or whether they are written on paper, in a wiki or in a ticketing system, that's not

https://www.axosoft.com/
https://www.slant.co/options/22030/alternatives/~axosoft-alternatives
https://www.atlassian.com/agile/project-management/epics-stories-themes
https://www.atlassian.com/agile/project-management/epics-stories-themes
https://wiki.onap.org/display/DW/Epic%2C%2BStory%2C%2BTask%2Band%2BBugs

49

really working with user stories. Organizations with such a process will not achieve the full benefits

of iterative delivery (Atlassian, Epics, Stories, Themes, and Initiatives, n.d.).

To define a story we agreed that:

A story must be written as a user story (i.e. “As a <kind of user> I want <feature> so that <benefit>”)

It is clear for whom – specify the user (if they are several different users then it may be another story)

Get feedback from the user (to check if you defined story correctly)

We agreed that we want requirements to be specified

Performance criteria and other non-functional requirements exist

Design sketches exist, where appropriate, and are understood according to the team’s Definition of

done

Tasks and sub-tasks

Acceptance criteria exist and are understood by team

Story has been estimated by the team and time to implement is less than one sprint

The team understands how to demo the feature

Anyone can pick a task and start working on it

New user stories and tasks can be identified and created by anyone in the team. Their prioritization is

decided (mainly) by the product owner after discussing the business needs and technical feasibility, as

well as other possible factors, with the relevant stakeholders and the team.

Tasks - small tasks that can be assigned to one person (like a UX or test or implementing some part

of functionality). Task represents a technical activity, such as being asked to design a diagram, code a

functionality, test a device, or prepare a dataset (Epic, Story, Task and Bugs - Developer Wiki -

Confluence, n.d.).

4.2 Agree on the coding workflow and branching strategy

What is a branching strategy? It means all distributed branches of code are under control and to know

how changes in code will be promoted from the first commit to public release. It is useful to ask what

the rules will be for moving from one stage to the next. A branching strategy needs to be crafted. It

covers which branches we are going to have, how code moves from one to another, and what are the

rules (policy) for each branch.

https://www.atlassian.com/agile/project-management/epics-stories-themes
https://wiki.onap.org/display/DW/Epic%2C%2BStory%2C%2BTask%2Band%2BBugs
https://wiki.onap.org/display/DW/Epic%2C%2BStory%2C%2BTask%2Band%2BBugs

50

Azure DevOps: Git branching guidance:

“Distributed version control systems like Git give individuals wide flexibility in how they use version

control to share and manage code. Your team should find a balance between this flexibility and the

need to collaborate and share code in a consistent manner” (Adopt a Git branching strategy, 2018).

 “Since many organizations new to Git have no conventions for how to work with it, their repositories

can quickly become messy. The biggest problem is that many long-running branches emerge that all

contain part of the changes. People have a hard time figuring out which branch has the latest code, or

which branch to deploy to production” (“Introduction to GitLab Flow | GitLab,” n.d.).

4.2.1 Questions and Conceptual decisions to make

- What would be the optimal and simplest coding workflow for this team and this product?

- How to make our tools developer-friendly?

- Which branches make sense to have for our needs?

- Branch naming convention:

 Story branch, topic branch or feature branch? Git flow uses the “feature/” prefix, we probably

won’t use it to simplify our flow in the beginning.

- Which kinds of environments do we need for testing - “staging”, “testing”, “nightly”, “development”,

“release”, “pre-production” or “production”?

To Fork or not to fork?

 Atlassian: forking-workflow is often used in public open source projects when each contributor has

two Git repositories: a private local one and a public server-side one (which is a fork of the main

upstream project repository). (Atlassian, Forking Workflow, n.d.)

Shared Repository Model (no forks) uses a single server-side repository acting as the “central”

codebase.

For QPR UI development we want to pursue as light as possible a method for working with branches

and repositories, so at this point there seems to be no need for forks from the main repository.

https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.gitlab.com/ee/workflow/gitlab_flow.html
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow

51

Pull Requests

Starting to use Pull Requests (PR) is one of the main, if not the most crucial change in the

development process. It was actively discussed and agreed to be a good mechanism to enforce

verification before a code change from a developer could be accepted into the main development

branch (previously named “trunk”, now named “develop”)

PR is a great code review system, not just a way to promote your change to the master branch. You

can use them to say “I need help on or a review of this” in addition to “Please merge this in” (Chacon,

2011).

 “You can open a (WIP) Pull Request at any point during the development process: when you have

little or no code but want to share some screenshots or general ideas, when you're stuck and need

help or advice, or when you're ready for someone to review your work. You can also continue to push

to your branch in light of discussion and feedback about your commits” (Understanding the GitHub

flow · GitHub Guides, n.d.).

In the GitLab terminology the request to integrate a change into the master branch is called a “Merge

Request”, rather than a “Pull Request”, which for our purposes is the same thing. GitLab.com about

testing before merging: “In old workflows, the continuous integration (CI) server commonly ran tests on

the master branch only. Developers had to ensure their code did not break the master branch. When

using GitLab flow, developers create their branches from this master branch, so it is essential that the

master never breaks. Therefore, each merge request must be tested before it is accepted....There is

one drawback to testing merge requests: the CI server only tests the feature branch itself, not the

merged result. Ideally, the server could also test the master branch after each change. However,

retesting on every commit to [the] master is computationally expensive and means you are more

frequently waiting for test results. Since feature branches should be short-lived, testing just the branch

is an acceptable risk. If new commits in master cause merge conflicts with the feature branch, merge

master back into the branch to make the CI server re-run the tests. As said before, if you often have

feature branches that last for more than a few days, you should make your issues smaller.”

(“Introduction to GitLab Flow | GitLab,” n.d.). This is relevant to the current QPR UI 2.0 project

development in AzureDevOps: in order to minimize the chances of a conflict, a developer needs to

rebase on the latest develop branch before making a PR, but while the PR is going through review

and approval time goes by, there may be another PR merged into the develop branch, which creates a

potential risk of merge conflicts or some failures as a result of integration. For now, while we have a

fast build & test cycle and until we find a better way to overcome the risk of conflict and the integration

problem, we will be retesting on every commit to the develop branch.

https://scottchacon.com/2011/08/31/github-flow.html
https://scottchacon.com/2011/08/31/github-flow.html
https://guides.github.com/introduction/flow/index.html
https://guides.github.com/introduction/flow/index.html
https://docs.gitlab.com/ee/workflow/gitlab_flow.html#testing-before-merging
https://docs.gitlab.com/ee/workflow/gitlab_flow.html#testing-before-merging
https://docs.gitlab.com/ee/workflow/gitlab_flow.html#testing-before-merging

52

Feature branches vs Continuous Integration contradictions

Feature-driven development , feature branches and cherry-picking features for release may lead to

merge conflicts if the branch stays isolated for too long and diverges too much from the mainline.

Martin Fowler (author of a half-a-dozen books on software development) says: “Fear of big merges

also acts as a deterrent to refactoring”. As a result, “teams using feature branches shy away from

refactoring”. That’s why he considers Feature Branching to be a bad idea compared to CI (Fowler,

2009).

GitLab provided an answer to a discussion about the size of changes introduced by a feature branch

and its life-time: “Most feature branches should take less than one day of work. If your feature

branches often take more than a day of work, try to split your features into smaller units of work”

(Introduction to GitLab Flow | GitLab, n.d.).

To my mind, the argument about branches versus CI boils down to talk about the divergence between

main development branch and the feature branch. Every team probably needs to find their own

optimal pace to integrate new changes into the master branch. Moreover, rapid integration is

necessary for sharing and reusing blocks of code, but also for seeing how different development

efforts (different features) depend on each other, which enables developers to agree on how to

collaborate and how to make the code modular to lessen intersections. “By looking at both their

features they can come up with a better design that affects both their work-streams. With the isolated

feature branches our developers don't discover this till late, probably too late to do much about it”

(Fowler, 2009).

Merge vs Rebase

What is best, to Merge or Rebase? The answer is not so straightforward.

In an Atlassian Git blog, Nicola Paolucci discusses merge vs rebase (Git team workflows: merge or

rebase?, 28.10. 2013). She discusses the best way to incorporate implemented new functionality back

into your main line of development. The topic is controversial and there is a lot of heated online debate

between the two camps: always rebase vs. always merge.

Merge and Rebase are designed to integrate changes from one branch into another branch - they just

do it in very different ways. Rebase gets the latest updates from one branch (usually the master) and

then puts all changes made in another branch (the feature branch) as the new commits on top of what

was there in master. In other words, rebasing works by abandoning some commits and creating new

ones (Atlassian, Bitbucket: Git fast forwards and branch management, n.d.).

https://en.wikipedia.org/wiki/Feature-driven_development?source=post_page---------------------------
https://martinfowler.com/aboutMe.html
https://martinfowler.com/books/
https://martinfowler.com/bliki/FeatureBranch.html
https://martinfowler.com/bliki/FeatureBranch.html
https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://martinfowler.com/bliki/FeatureBranch.html
https://www.atlassian.com/blog/git/git-team-workflows-merge-or-rebase
https://www.atlassian.com/blog/git/git-team-workflows-merge-or-rebase
https://confluence.atlassian.com/bitbucket/git-fast-forwards-and-branch-management-329977726.html

53

Rebasing is like saying, “I want to add my changes on top of what everyone else has already done.”

(Paolucci, 2014). Figure 13 explains how rebasing your feature branch in master looks like.

Figure 13. Rebasing the feature branch onto master (Atlassian, Merging vs. Rebasing, n.d.) (CC BY

2.5 AU).

https://www.atlassian.com/blog/git/simple-git-workflow-is-simple
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://creativecommons.org/licenses/by/2.5/au/
https://creativecommons.org/licenses/by/2.5/au/

54

Figure 14 explains how merging your feature branch with the master looks like.

Figure 14. Merging two branches together (Atlassian, Merging vs. Rebasing, n.d.) (CC BY 2.5 AU)

Merge ties two branches together by creating a merge commit and preserving their history. Merge

enables better traceability (at the expense of readability and clarity) compared to Rebase. But if

development is very active, the merge commits can pollute the branch’s history (Atlassian, Merging vs

Rebasing, n.d.).

There is obviously an agreement that it is good to rebase when you are developing locally to keep the

history tidy. It is good practice to rebase your feature branch on top of the main development branch

when it has not yet published (pushed to the server). Rebasing will keep your history neat and linear.

With an interactive rebase you can clean up your feature-in-progress development history by

eliminating the insignificant commits (merge can’t do that). Overall, Rebase seems to be beneficial

when used with care (keeping in mind that rebasing may be destructive). The tradeoffs are safety and

traceability.

Rebasing may involve the side effect that you have to resolve similar conflicts again and again

(Introduction to GitLab Flow | GitLab, n.d.) - in this case, it is good to reuse recorded resolutions -

rerere. Also, when a local branch is pushed to the server, it is made public and the Golden Rule says

you should not rebase anymore, since other developers may now check out your branch and commit

changes to it (Atlassian Git tutorials: Merging vs Rebasing). After the branch was published, any

changes from other developers need to be incorporated with git merge instead of git rebase. However,

if you can agree with colleagues on how to collaborate on your branch and pull new changes from

https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://creativecommons.org/licenses/by/2.5/au/
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://docs.gitlab.com/ee/workflow/gitlab_flow.html
https://git-scm.com/docs/git-rerere
https://git-scm.com/docs/git-rerere
https://git-scm.com/docs/git-rerere
https://www.atlassian.com/git/tutorials/merging-vs-rebasing

55

each other, and if you know what you are doing and you coordinate your actions with other

contributors to your branch, then it may work satisfactorily.

Force-Pushing: If you try to push the rebased X branch back to a remote repository, Git will prevent

you from doing so because it conflicts with the remote X branch. But you can force the push using the

“--force” flag. It overwrites the remote X branch to match the rebased one from your local repository.

This is safe to do if you are the only one who contributes to this branch and others only review.

It therefore appears to be a good idea to avoid merge commits, but not to eliminate them. In the event

of merging, the history represents what has actually happened in detail. But an explicit merge commit

may be useful to mark the point when the feature "graduated" to release (Paolucci, 2013).

In our workflow we want the codebase to be clean and the history to represent what happened on a

general level, so we will aim to rebase when possible during development in the branch. When

development in a feature branch is complete, we intend to rebase/squash all the work down to the

minimum number of meaningful commits and integrate the functionality that is ready into the main

code base with fast-forward.

Fast-Forward vs Non-Fast-Forward

A non-fast-forward merge is a merge where the master branch has had intervening changes between

the branch point and is merged back into the master. In this case, a user can simulate a fast-forward

by rebasing rather than merging (Git fast forwards and branch management - Atlassian

Documentation, n.d.). As stated in the Introduction to GitLab Flow on GitLab Docs, a merge strategy

called “no fast-forward” in Git, using –no-ff flag – merge (pull) requests, always creates a merge

commit, even when the branch could be merged with a fast-forward (FF) without creating a merge

object.

An FF strategy implies that pull requests must be rebased on the latest develop branch before being

accepted. In this way, only FF merges are accepted into the develop branch.

If a pull request (PR) with change A happens to be accepted and merged into the master between the

moment when the branch with change B was rebased on the latest master and the moment when PR

with B is merged, then the result of integrating A + B may break the master, since this code

combination was not verified. It would therefore be reasonable to ask how to prevent making a pull

request merge without rebasing to the latest master. I see two means available in Azure DevOps, one

being a timeout for the build result - when the pull request is initially created, the build and test runs

are done on an integration of the feature branch and master branch, though this result becomes

https://www.atlassian.com/blog/git/git-team-workflows-merge-or-rebase
https://confluence.atlassian.com/bitbucket/git-fast-forwards-and-branch-management-329977726.html
https://confluence.atlassian.com/bitbucket/git-fast-forwards-and-branch-management-329977726.html
https://docs.gitlab.com/ee/workflow/gitlab_flow.html

56

invalidated after a given time. If it takes too long to approve a PR, then we will have to trigger another

build and test run on a new integration result. Another solution is to run the build and tests on every

commit in the master branch and to roll back the latest commit in the event of a failure. It remains to

be seen how this will be set up.

4.2.2 Theory: Available Git workflow options

o Git flow - with the typical practices explained and if we eliminate the master and hotfix

branches, it seems like it could meet our needs quite nicely. It may also be practical to rename

our develop branch to master for more convenience with default Git tools settings.

o Github flow - maybe add one more quality gate and deploy first to pre-production.

o Gitlab flow - similar to Github flow, plus environment branches (deploy-on-merge).

o Atlassian basic Git flow for continuous delivery - similar to Github flow with rebase during

development and explicit merge –no-ff.

o AzureDevOps Microsoft Git flow.

o Trunk-based development with Gerrit.

Considerations and criteria of assessment

There is no one-size-fits-all Git workflow. We want to begin with the simplest workflow to avoid

unnecessary complexity and to minimize unnecessary cognitive overhead to the team.

The chosen strategy should provide a clear set of actions to guide the workflow so as to minimize

mistakes. It needs to be easy to undo mistakes. We want the workflow to support and reinforce usage

of short-lived branches that correspond to tasks in progress. We intend to proactively prevent merges

that will have to be reverted by a build and test run (in an ideal situation) on a Pull Request.

Atlassian’s article on “Comparing Git workflows” recommends choosing “a Git workflow that is a

productivity enhancement for your team. In addition to team culture, a workflow should also

complement the business culture. Git features like branches and tags should complement your

business’s release schedule” (Atlassian, Git Workflow, n.d.). Since we want to be CD-friendly from the

very beginning, we need to choose a workflow that supports continuous delivery.

https://trunkbaseddevelopment.com/
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows

57

GitFlow

Atlassian: GitFlow workflow assigns very specific roles to different branches and defines how and

when they should interact. It uses individual branches for preparing, maintaining, and recording

releases. The master branch stores the official release history with tags (an abridged version of the

project history), and the develop branch serves as an integration branch for features. Feature

branches are pushed to the central repository for backup/collaboration. When a feature is complete, it

gets merged back into the develop branch (Atlassian, Git Workflow, n.d.).

In 2010 Vincent Driessen claimed that GitFlow is a “workflow that helps developers keep track of

features, hotfixes and releases in bigger software projects” (A successful Git branching model, 2010).

Figure 15 gives an overview of the flow:

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows
https://nvie.com/posts/a-successful-git-branching-model/

58

Figure 15. Git Flow, by Vincent Driessen. Driessen, 2010) (CC BY-SA 3.0)

Jeff Kreeftmeijer (2018) writes that “Git-flow makes it easy to work on multiple features at the same

time by using feature branches” (Kreeftmeijer, 2010).

“It’s complicated enough that a big helper script was developed to help enforce the flow. Though this is

cool, the issue is that it cannot be enforced in a Git GUI, only on the command line, so the only people

who have to learn the complex workflow really well, because they have to do all the steps manually,

http://nvie.com/posts/a-successful-git-branching-model/
https://creativecommons.org/licenses/by-sa/3.0/
https://jeffkreeftmeijer.com/git-flow/
https://github.com/nvie/gitflow

59

are the same people who aren’t comfortable with the system enough to use it from the command line.

This can be a huge problem” (Chacon, 2011).

Known issues with Git Flow are well described in an article by Scott Chacon “GitHub Flow” in 2011: “If

you’re not doing versioned releases, Vincent’s git workflow and the git-flow library might not be a right

fit for you.” The git-flow process is designed largely around the “release”, but we (the DevApps team at

QPR) are moving towards continuous deployment (CD) (Chacon, 2011).

In Git Flow the development happens on the develop branch, moves to a release branch, and is finally

merged into the master branch. When the master is used by many tools as a default, the first problem

is that developers must use the develop branch and not the master (master is for production), so

developers have to switch to another branch. But this can be tweaked in Azure DevOps at least, since

the develop branch can be set as the default for making pull requests to.

“The second problem is the complexity introduced by the hotfix and release branches. These

branches can be a good idea for some organizations, but are overkill for the vast majority of them.

Nowadays, most organizations practice continuous delivery, which means that your default branch can

be deployed. Continuous delivery removes the need for hotfix and release branches, including all the

ceremony they introduce.” We could simplify Git Flow for our needs and simply not use the hotfix and

master branches, but rather stick to only one branch per deliverable value increment (“release of a

user story”) and make bug fixes (hotfixes) directly to it, and set a tag on it if needed.

GitLab summarises the criticism of Git Flow: "Git flow is too complicated for most use cases"

(Introduction to GitLab Flow | GitLab, n.d.).

Git Flow explained by Contribyte (in a workshop):

Contribyte recommends using:

1. “feature” or “user-story” branches (same as Git Flow)

2. “develop” or “master” branch (same as Git Flow)

3. “release” + tags + hotfixes all in one short-lived branch - one per “release of a user story”. The

master is used as a branch for tags and the releases history will not be used in our case. This is a

simplified version of Git Flow. Figure 16 illustrates the branches and code changes flow.

http://scottchacon.com/2011/08/31/github-flow.html
http://scottchacon.com/2011/08/31/github-flow.html
http://scottchacon.com/2011/08/31/github-flow.html
https://docs.gitlab.com/ee/workflow/gitlab_flow.html
https://docs.gitlab.com/ee/workflow/gitlab_flow.html
https://contribyte.fi/
https://contribyte.fi/

60

Figure 16. Simplified Git flow drafted following the Contribyte workshop

GitHub Flow

“We can use the exact same process to address hotfixes (or any other changes) as we do to handle

normal or even large feature development” (Chacon, 2011).

Simple GitHub flow rules:

● The master branch is stable - anything in the master branch is deployable at least within

hours. If you push something to master that is not tested or breaks the build, you break the social

contract of the development team.

● To work on something new, create a descriptively named branch off master.

● Commit to that branch locally and regularly push your work to the same named branch

on the server. This is also a way to back up your work in case of laptop loss or hard drive failure and

a way to have constant communication and transparency.

http://scottchacon.com/2011/08/31/github-flow.html

61

● When you need feedback or help long before you actually want the branch to be merged, or

you think the branch is ready for merging, open a pull request - a kind of branch conversation view.

● After someone else has reviewed and signed off on the feature, you can merge it into master.

● Once it is merged and pushed to master, you can and should deploy immediately

Additionally, you could have a “deployed” branch that is updated only when you deploy. Figure 17

illustrates the branches and code changes flow.

Figure 17. Git Hub Flow summary

“GitHub Flow has only feature branches and a master branch. Merging everything into the master

branch and frequently deploying means you minimize the amount of unreleased code, which is in line

with lean and continuous delivery best practices. However, this flow still leaves a lot of questions

unanswered regarding deployments, environments, releases, and integrations with issues.”

(“Introduction to GitLab Flow | GitLab,” n.d.)

http://help.github.com/send-pull-requests/
http://help.github.com/send-pull-requests/
https://docs.gitlab.com/ee/topics/gitlab_flow.html

62

 “Git itself is fairly complex to understand, making the workflow that you use with it more complex than

necessary is simply adding more mental overhead to everybody’s day. I would always advocate using

the simplest possible system that will work for your team and doing so until it doesn’t work anymore

and then adding complexity only as absolutely needed.” And “for teams that have set up a culture of

shipping, who push to production every day, who are constantly testing and deploying, I would

advocate picking something simpler like GitHub Flow.” (Chacon, 2011)

For us the goal to always have a deployable master (develop) branch may be too ambitious initially,

but will remain the long-term target. Regarding the DevApps team’s flow, in the beginning we will try to

do additional pre-production testing on a short-lived release branch, which may include a human

check for visual design, some additional security and performance testing, and more independent

beta-testing by users outside of the development team.

GitLab flow

GitLab flow combines feature-driven development and feature branches with issue tracking. The

assumption is that every time you merge the Feature branch to “master”, you can then deploy. It is

possible with SaaS applications, but not if you cannot control the timing of release (it depends on

something else, e.g. Marketing department plans). GitHub flow also does not work when you have

deployment windows (when deployment cannot happen on every merge to master). In these cases,

you can make a production branch that reflects the deployed code. Then to deploy you need to merge

the master into the production branch. If you need to cherry-pick a commit with a hotfix, it is common

to develop it on a feature branch and merge it into the master with a merge request, and from there to

release (if there is a release branch). This is an “upstream first” policy: merge a fix first into the master

and then cherry-picking into the release (Introduction to GitLab Flow | GitLab, n.d.).

Compared to GitHub Flow, GitLab adds environments to deploy each of the branches: a merge of the

feature branch triggers deployment from the master branch to the staging environment. A merge from

the master branch to the production branch triggers deployment to the production environment.

Optionally there may also be a pre-production branch and environment. Everything is tested in all

environments.

Atlassian basic Git flow for continuous delivery

Nicola Paolucci from Atlassian recommends a strategy similar to that of GitHub Flow, with an explicit

merge using the flag –no-ff. (Paolucci, 2014)

http://scottchacon.com/2011/08/31/github-flow.html
https://www.chromium.org/chromium-os/chromiumos-design-docs/upstream-first
https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://www.atlassian.com/blog/git/simple-git-workflow-is-simple

63

It has two guiding principles:

● The master branch is always production-like and deployable.

● Rebase during the feature development, but make an explicit (non fast-forward) merge when

done.

When development is complete, record an explicit merge (merge using the flag --no-ff). The merge

commit becomes just a marker that stores the contextual information for the feature branch. “This will

preserve the context of the work and will make it easy to revert the whole feature if needed. [It is] also

useful for future binary search to find the faulty commit (Git bisect)”, suggests Fredrik V. Mørken

(Platform Engineer at Spacemaker) in his article “Why you should stop using Git rebase”. (Mørken,

2017).

Azure DevOps Microsoft

Azure DevOps: Git branching guidance recommends:

● Use feature branches for all new features and bug fixes.

● Merge the feature branches into the master branch using pull requests.

● Keep a high quality, up-to-date master branch. The code in your master branch should pass

tests, build cleanly, and always be up to date, so that feature branches created by your team start

from a known good version of code.

“Other branching workflows use Git tags to mark specific commits as [ready] for release. Tags are

useful for marking points in your history as important, but tags introduce extra steps in your workflow

that are not necessary if you are using branches for your releases” (Adopt a Git branching strategy,

2018).

Trunk-based development with Gerrit and verifications in Jenkins

A branching model that originates from SVN could be adapted for git. “Where developers collaborate

on code in a single branch called trunk (master in the Git nomenclature), resist any pressure to create

other long-lived development branches by employing documented techniques. They therefore avoid

merge hell, do not break the build, and live happily ever after.”

https://medium.com/@fredrikmorken/why-you-should-stop-using-git-rebase-5552bee4fed1
https://medium.com/@fredrikmorken/why-you-should-stop-using-git-rebase-5552bee4fed1
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops

64

Trunkbaseddevelopment.com (the site by Paul Hammant, 2017-2018) attempts to collect all the

related facts, rationale and techniques for Trunk-Based Development together in one place: Small

commits are done straight into the trunk, but before that the build is run (must pass). It may however

be extended with short-lived feature branches (maximum of a couple of days) that can be integrated

into the mainline via Pull Requests, which involves code review, style check, build and test runs and

automated tests. People who practice the GitHub-flow branching model will feel that this is quite

similar, but there is one small difference regarding where to release from (Hammant, Paul 2017-2018).

An experimental realization of the flow was set up by P.K. (one of the team members) and here is his

description of the flow: “Gerrit is a Git-server plus front-end that supports a “review-before-merge”

approach to feature development. Each commit is sent to “refs/for/master” instead of “master”, which

will be intercepted by Gerrit and a code review is put in place. This means that the commit will be

waiting for approval, while at the same point Jenkins can run code style checks and run also test

automation. If something to repair is found, the original developer is informed about this and will be

able to fix the issues, and then reintroduce the previous commit for the next review round. When all

changes are OK the reviewer can “submit” the changes to the master branch. This also makes it

possible to keep the feature “in flight” instead of merging it to the master for any reason, for example,

to delay it until some other change is merged.”

The mentioned “review-before-merge” approach for feature development can be realized basically in

two ways:

1. The Pull Request model (e.g. Github, Gitlab, Bitbucket, Azure DevOps), where any change is done

on a specially created branch that is then requested to be accepted to master.

2. The Gerrit model, where changes are made directly to the local master branch and they have to go

through a review system by creating a “Change request” on Gerrit, and be approved before they can

land in the master branch on the VCS server.

“The flexibility of Gerrit comes [at] the cost of complexity” claims Marcus Carlsson in Beepsend Tech

Blog (Carlsson, 2016)

We (DevApps team at QPR) rejected the Gerrit option mainly because we decided to go with Azure

DevOps, which was a more ready-made solution where most of the tools are integrated and easy to

set up, so we would not have to employ our internal workforce to set up and maintain Git, Gerrit and

Jenkins.

https://trunkbaseddevelopment.com/
https://www.beepsend.com/2016/04/05/abandoning-gitflow-github-favour-gerrit/

65

4.2.3 Practical outcome: Initial suggestion for git flow in the DevApps team

Constructing an optimal workflow for DevApps-team@QPR is not something I consider feasible within

just a couple of months and then locking down. We came to a very general understanding about the

appropriate branching model and workflow that we can begin with, but it still requires detailing and

polishing. It still may have to adapt to some new needs that become apparent later.

A common concern among the team seems to be the importance of minimizing the change set (code

implemented in a feature branch) that can be integrated into the master (named develop in the

DevApps setup) and this master must be stable and tests must pass always. Minimal change also

implies that it takes very little time to implement and the life span of its branch is short (couple of

days). In most of the described workflows, this minimal code change arrives to the master via a Pull

(or Merge) Request, which serves as the main gate to ensure the quality of the increment and the

stability of code in the master after it is integrated. To have or not have dedicated release branches

will be the decision of a specific team and company to decide on, depending on the pace of release

and planning. We plan to create short-lived release branches per small value increment for delivery to

customers.

The Azure DevOps Git branching guidance recommendations are comprehensive and work well for

us. The Atlassian basic Git flow for continuous delivery is very close to our current needs, but probably

the explicit merge (--no-ff) when integrating a completed feature into the main branch is not currently

essential. Instead of merge (--no-ff), in most cases we would squash all commits from a feature

branch and merge it into the develop branch, so we set up only one commit to the develop branch. Or

we rebase the source branch commits into develop and fast-forward.

It seems reasonable to select the simplest workflow in the beginning, and I expect it to evolve with

time and as needs are clarified or change. Here is the description of the main principles of the

DevApps Git flow:

1) One stable main development branch – though named develop rather than the more

conventional master, for the integration of completed features, which is continuously deployed and

tested, the source code of HEAD always reflects a state with the latest delivered development

changes for the next release.

GitLab docs: this is “in line with lean and continuous delivery best practices.”

2) Each developer does their work in their own (short-lived!) feature branch cloned from the

develop branch and makes a Pull Request back to the develop branch. The feature branch is removed

as soon as it is merged successfully into develop or may live until it is not needed anymore.

A general note about best practices from the GitLab docs: “Commit to feature (story or topic) branch

locally and regularly push your work to the same named branch on the server. This is a way to

https://docs.gitlab.com/ee/workflow/gitlab_flow.html
https://docs.gitlab.com/ee/workflow/gitlab_flow.html

66

backup your work, a way to get feedback or help long before you actually want the branch to be

merged. And use Pull Request as a great code review system, not just a way to promote your change

to master. You can use PR to say “I need help or review on this” in addition to “Please merge this in”.

If the branch has been open for too long and you feel it’s getting out of sync with the master branch,

you can rebase on master and keep going.”

The GitLab Docs discuss the length of life for a feature branch: “Most feature branches should take

less than one day of work. If your feature branches often take more than a day of work, try to split your

features into smaller units of work” (“Introduction to GitLab Flow | GitLab,” n.d.). - we will keep that in

mind and aim to have short-lived fast-merging branches. And “Commit often and push frequently:

Every time you have a working set of tests and code, you should make a commit. Splitting up work

into individual commits provides a context for developers looking at your code later. Smaller commits

make it clear how a feature was developed, and they make it easy to roll back to a specific good point

in time or to revert one code change without reverting several unrelated changes. Committing often

also makes it easy to share your work, which is important so that everyone is aware of what you are

working on. You should push your feature branch frequently, even when it is not yet ready for review.

By sharing your work in a feature branch or a merge request, you prevent your team members from

duplicating work. Sharing your work before it’s complete also allows for discussion and feedback

about the changes, which can help improve the code before it gets to review” (Introduction to GitLab

Flow | GitLab, n.d.).

3) The DevApps team are more likely to use one branch per released increment (user story).

These release branches may be branched off from develop on a just-in-time basis and may receive

bug fixes, but adding features there would be strictly prohibited. Theoretically, we could use a script to

automatically build and roll-out our software to our production servers when the release criteria are

met. But it remains to be seen what the release criteria will be and whether it will be possible to

automate checks of these or will there still be some manual step or collective decision to “push the

button and roll-out” an update.

“After announcing a release branch, only add serious bug fixes to the branch. If possible, first merge

these bug fixes into master, and then cherry-pick them into the release branch. If you start by merging

into the release branch, you might forget to cherry-pick them into master, and then you’d encounter

the same bug in subsequent releases. Merging into master and then cherry-picking into release is

called an ‘upstream first’ policy, which is also practiced by Google and Red Hat” (“Introduction to

GitLab Flow | GitLab,” n.d.).

How to make fixes to the release branch is still an open question - first to merge fixes into develop and

then merge to release X, or first to release X and then cherry-pick back to the develop branch? Scott

https://docs.gitlab.com/ee/workflow/gitlab_flow.html
https://docs.gitlab.com/ee/workflow/gitlab_flow.html
https://docs.gitlab.com/ee/workflow/gitlab_flow.html#mergepull-requests-with-gitlab-flow
https://docs.gitlab.com/ee/workflow/gitlab_flow.html#mergepull-requests-with-gitlab-flow
https://docs.gitlab.com/ee/workflow/gitlab_flow.html
https://docs.gitlab.com/ee/workflow/gitlab_flow.html
https://www.chromium.org/chromium-os/chromiumos-design-docs/upstream-first
https://www.chromium.org/chromium-os/chromiumos-design-docs/upstream-first
https://www.redhat.com/en/blog/a-community-for-using-openstack-with-red-hat-rdo
https://www.redhat.com/en/blog/a-community-for-using-openstack-with-red-hat-rdo
https://docs.gitlab.com/ee/workflow/gitlab_flow.html
https://docs.gitlab.com/ee/workflow/gitlab_flow.html

67

Chacon recommends using “the exact same process to address hotfixes (or any other changes) as

done to handle normal or even large feature development” (Chacon, 2011). We have the possibility to

add something to this process later if needed.

Issue tracking: “Any significant change to the code should start with an issue that describes the goal.

Having a reason for every code change helps to inform the rest of the team and to keep the scope of a

feature branch small. If there is no issue yet, create the issue, [just] as long as the change will take a

significant amount of work, i.e., more than 1 hour” (“Introduction to GitLab Flow | GitLab,” n.d.).

We will connect code changes with work items in Azure DevOps via referencing the work item in the

Pull Request, a policy that can be forced via the settings.

It is totally acceptable to create Pull Requests when work is still in progress for collaboration purposes,

for discussion, and for early reviews; this kind of early PR can be created as a “draft” Pull Request in

Azure DevOps, and later converted to a normal PR that can be approved and merged in the normal

way.

To enforce coding standards, we intend to use linting in Visual Studio Code, branch policies in Azure

DevOps, and hopefully other static code analysis tools later.

We also aim to block direct commits to the develop branch using the branch policies in Azure DevOps.

All that is summarized in the following Figure 18:

http://scottchacon.com/2011/08/31/github-flow.html
https://docs.gitlab.com/ee/workflow/gitlab_flow.html#testing-before-merging
https://docs.microsoft.com/en-us/azure/devops/repos/git/branch-policies-overview?view=azure-devops#adopt-a-git-branching-strategy
https://docs.microsoft.com/en-us/azure/devops/repos/git/branch-policies-overview?view=azure-devops#adopt-a-git-branching-strategy
https://docs.microsoft.com/en-us/azure/devops/repos/git/branch-policies-overview?view=azure-devops#adopt-a-git-branching-strategy

68

Figure 18. Simplified Gitflow strategy proposal for DevApps Team@QPR

4.2.4 Step-by-step Git flow HowTo

A minimalist description and the steps of DevApps team Git workflow can be found in Appendix 7

Git workflow diagram made by A.M. (one of the team members) Figure 19:

69

Figure 19. Git workflow diagram. © QPR Software Plc, used with permission

4.3 Retrospective

For more details see Appendix 5.

4.3.1 Retrospective comments analysis 9.09 - 27.09.2019

This retrospective covered the period from 9.09 to 27.09.2019 - 3rd sprint.

One more topic theme was added: Minimize the sizes of the value increment.

70

The following themes were reflected on by the team as positive in the 3rd sprint (Glad):

Agility of process - process is settling down, "Creative chaos", a bit chaotic, but things get done.

There’s a more “free” feeling. Pull Requests get reviewed quite fast.

Cooperation, Collaboration - good teamwork, good communication about what needs to be done.

Sprint review was inspiring, had nice conversations with all developers.

Feeling of accomplishment (achieving) - delivered first App pages, we achieved results as a team,

we have first App running, I was able to contribute. Progress is good!

Usability of documentation and chats - Wiki is growing, Wiki is easy to edit

Some comments on what made team members glad after the 3rd sprint:

- “I was able to contribute to the team's progress.”

- “Even being distributed geographically, I had nice conversations with all the developers.”

- “Despite the sprint looking a bit chaotic, things get done and I feel there’s good communication

about what needs to be done.”

- “Focus on critical tasks – minimal scope to deliver helps to keep the focus and stay on track.”

Points for improvement, worries or concerns mentioned (Sad&Mad):

Freedom versus stability or certainty: unclear who is going to do what, I don't know what to do,

undefined user stories were picked for sprint, not enough initiative taken in sprint refinements.

Agility of process: A lot of planning, but not much to do. Not enough transparency, no descriptions

in tasks. Documentation may be forgotten.

Cooperation & Collaboration: Related tasks are rather done in isolation. Branching strategy and

workflow is not yet agreed.

Cooperation & Collaboration (expertise silo vs. sharing knowledge): Boring and annoying to

configure. No TA and CI&CD environments, we rely too much on a single person, setting up TA&CD

pipeline hasn’t progressed, TA is missing, changes coming to develop without tests, No environments

to deploy, No CD yet,

Minimize value increment: The subjects for review may be complex, some PR have too many

changes, one user story has grown too big, which led to unplanned work being done.

71

Mad:

unclear who will do what; tasks were too big.

Some comments on what made a team member sad or mad after the 3rd sprint:

- “I didn't have a clear development task for the sprint. A lot of planning, but not much to do. “

- “Not enough initiative in refinements.”

- “Homescreen user story has grown too big and ended up including other (unplanned) user

stories.”

4.3.2 Agreed adjustments

User stories should be split into smaller user stories.

Organize pre-planning among developers, and groom sometimes without PO.

Work in pairs to share expertise on server, client part, tests, CI&CD infrastructure. Have walkthroughs

before making a PR.

Establish small TA&CD group to share competence and get the pipeline implemented.

Add description in the task and some minimal necessary info about progress (daily), so it is possible to

read and pick it up to continue the work if needed.

Try to communicate more and consider every small task as a part of the whole from the first stages of

the work.

72

5 Iteration 3: October 2019

5.1 Agree on common terms to speak a common language (9.10.2019)

When a team is trying new tools and refining working practices, all team members need to be on the

same page regarding terms and definitions if daily communications are to be understandable. To this

end, I made a small questionnaire to elicit how people see the core terms in our work process and

where is there might be a mismatch. I did not use any systematic or scientific approach to listing the

terms: I first listed those that came to mind and invited team-mates to add if they wanted to. I asked

people not to search for definitions via Google, since I wanted to identity what was in our own minds.

Here are the opening remarks from the questionnaire:

“Here are some words…

What you think when you see those words?

Is it a familiar term?

How do you perceive these concepts?

Give a free definition in your own words.

Which terms are missing from my list that we need to define?”

There follow some brief highlights from the responses received. A full list of explanations and

definitions that were given by the DevApps team can be found in Appendix 1.

Work items: Epic, Feature, User story, Task - There was some discussion in responses about the

purpose served by each of the work items, where code changes belong (to features, user stories or

tasks), and how to manage them. The division between a software development task (which includes

product code change) and any other tasks (design, documentation, prototyping, testing etc) in my

opinion seems harmful to a shared team responsibility in meeting the Definition of Done, so

discussions on this issue will need to continue. A work item is needed to bring value to the user in the

end, so it doesn’t matter so much what is changed: code, UI design, or documentation etc.

Feature branch or User Story branch - the naming doesn’t make any difference to us right now.

Currently we use the “feature/” prefix for the git branch that contributes to a User Story

implementation, “fix/” for a bug fix, and “spike/” for experiments. Feature branches are always cloned

from the latest develop branch, though it is important that any branch can be accepted into develop if it

has been approved by reviewers and passed verifications without failures. The user story may receive

code changes via several branches and several pull requests, so the smaller and the shorter-lived the

branch is, the better, since it allows new code to enter a common branch for others to reuse and also

minimizes the possibility of merge conflicts.

73

We had an idea that we would implement a single user story in a single branch, so the user story

would be completed via one Pull Request, but currently, user stories are not small enough, so this

approach would take too much time.

Branching strategy - guidelines on how to do concurrent development, CI and deployment of the

product by utilizing the branching capabilities of the version control system. Questions are centred on

the workflow and which branches to use, how to create and when to delete them, and the reasons to

use certain branches etc.

Commit - a coherent, atomic piece of implementation checked into the version control system, which

has a clear, singular purpose. Naturally, for developers changing from SVN to Git, there was a mix up

between the SVN commit which is always pushed to the server and the possibility to make a local

commit using Git.

Main repository - our central Git repository in the Azure server keeps the public branch copies of

develop, feature, and release.

Mainline - a branch or repository, where all of the approved changes are put. When creating a new

branch, take the latest version from mainline. Or branch where development happens. This is where

branches with finished features are not yet published. The branch on which features are branched

from and merged to. Where changes are integrated for testing.

Codebase - the "sum" of all branches in the main repository. Or a set of all code related to some

product (including tests etc). Codebase does not include third party frameworks and libraries.

Pull Request - a request to review and accept code into some branch. One comment points out that a

“the call for a review before a change can be pushed to some codebase -> term "pull" here is

confusing” - shows that we need to talk about the difference in approach when code is pushed and

when it is pulled.

Continuous deployment - A software engineering model where product increments are deployed as

soon as they meet the team's Definition of Done, or acceptance criteria, quality criteria etc. This may

go through several staging phases to enable e.g. manual testing. The staging phase may take several

days from the initial commit / pull request merge. Or is it a fully automated process to update the

production environment? This needs to be checked.

These terms or concepts were not on my list, but we were discussed over the course of the autumn:

Increment,

Change-set,

Architecture,

74

Specification,

Plan,

Functional specification,

Technical specification,

Exploratory testing,

Test design,

Bug,

Non-Functional Requirements,

Code Reviews,

Definition of Done,

Definition of Ready.

The latter terms discussed over the autumn can be seen to be less about definitions and more about

practices. Nevertheless it is good to understand and clarify what actions are meant when those terms

are used.

5.2 Scrum

5.2.1 Daily cafe, improving daily stand-ups

With a view to reducing time wasted, breaking up routines and encouraging meaningful discussion in a

distributed team, we started to use the Daily Cafe format, though it was not used daily, but rather a

couple of times a week. It is described by the Lean Coffee website as “a structured, but agenda-less

meeting. Participants gather, build an agenda, and begin talking. Conversations are directed and

productive because the agenda for the meeting was democratically generated” (Lean Coffee | Start

one in your city!, n.d.).

5.3 Define metrics for the SW development team

5.3.1 Theory: Goal - Question - Metric framework

“You get what you measure” - Human beings adjust behavior based on the metrics they’re held

against, asserts Dan Ariely in his column “You Are What You Measure” (Ariely, 2010). Keeping that in

mind, we will have to evaluate very carefully what to measure.

Another consideration is the limit beyond which there are too many metrics. “Companies rarely suffer

from having too few measures. More commonly, they keep adding new measures whenever an

http://leancoffee.org/
http://leancoffee.org/
http://leancoffee.org/
https://hbr.org/2010/06/column-you-are-what-you-measure
https://hbr.org/2010/06/column-you-are-what-you-measure
https://hbr.org/2010/06/column-you-are-what-you-measure

75

employee or a consultant makes a worthwhile suggestion, but it is better to focus on the handful of

measures that are most critical” (Kaplan and Norton, 1992).

It’s an old cliché: “What gets measured gets done.” And “If you can measure it, you can manage it.”

meaning that measuring something gives you the information you need in order to make sure you

achieve what you set out to do. For many people, the simple act of measurement increases motivation

to perform because it is a way to determine whether you have won (Henderson, 2015). A measure is a

quantitative number that counts for something. A metric compares the measure to some other

baseline. The motivational metrics and measures create eustress and increase performance.

 “Measure something that needs an action attached to it. The goals and metrics you are measuring

have to align with goals” (“What Gets Measured Gets Done - iSixSigma, 2012). An example of a goal‐

oriented (top-down) software measurement is the Goal Question Metric (GQM) approach (Basili,

1993). GQM is a way to derive and select metrics for a particular task in a top-down and goal-oriented

fashion. It was developed by Basili and Weiss during the 1980s and later extended by Rombach.

Stating goals in advance leads to a selection of only those metrics that are relevant for achieving

these goals. The GQM approach was originally used to improve software products and development

processes (Eusgeld et al., 2008 p.39).

A goal has a purpose (e.g. to improve), implies an object under study (e.g. a software development

process), a specific issue or quality attribute (e.g. developers’ engagement, initiative, satisfaction,

quality of product, usability of tools) and a perspective (e. g. developers, business stakeholders).

Questions refine the goal. By answering questions, it should be possible to conclude whether the goal

has been reached. Measurements provide answers to quantitative questions, and questionnaires can

be used to address qualitative questions. It is good to have a hypothesis and to verify whether the

results match with the hypothesis and then to learn from this comparison. Several metrics can be

defined for each question.

We will choose the metrics that are most critical at this point in the change process, with a view to

modifying or adding later as necessary. It would seem to be useful to set up some motivational metrics

to help achieve goals. Moreover, it is important to ensure our metrics do align with our goals.

5.3.2 Previously used metrics

These metrics were used, or some are still used with other product development teams (not the new

experimental DevApps team).

Work distribution:

https://hbr.org/1992/01/the-balanced-scorecard-measures-that-drive-performance-2?referral=03759&cm_vc=rr_item_page.bottom
https://www.forbes.com/sites/ellevate/2015/06/08/what-gets-measured-gets-done-or-does-it/#1fe6b52713c8
https://www.isixsigma.com/community/blogs/what-gets-measured-gets-done/
http://ssltest.cs.umd.edu/~basili/publications/proceedings/P62.pdf
http://ssltest.cs.umd.edu/~basili/publications/proceedings/P62.pdf
https://books.google.fi/books?hl=en&lr=&id=1blxH-L3DqYC&oi=fnd&pg=PA39&ots=YVwC6I92jT&sig=USwf690uaVzeGe1rFe73g_RFl_g&redir_esc=y#v=onepage&q&f=false

76

Split effort between new features development and defect fixing.

Work distribution by product (main focus on new product, minimal support to other)

Work distribution by work type.

Test automation:

CI cycle time (to run build and automated tests)

Failed case trend,

Status overview

Release failed tests trend

Scrum:

Sprint burndown (not monitored lately)

Sprint forecast accuracy (not monitored lately)

Sprint backlog status.

Defects:

Count of unidentified defects,

Defect severities,

Number of known defects

5.3.3 Practical application: DevApps team metrics - an initial proposal

To come up with some initial metrics I used the Goal/Question/Metric paradigm. Goals should be

measurable, so measurement should be based on a goal. “Measurement is a mechanism for creating

a corporate memory and an aid in answering a variety of questions associated with any software

development” (Solingen and Berghout, 1999).

How it was done:

1. Develop a set of goals. Goal is defined by:

purpose (what object and why),

perspective (what aspect and who), and

environmental characteristics (where, context).

2. Generate questions that define those goals as completely as possible in a quantifiable way.

https://courses.cs.ut.ee/MTAT.03.243/2015_spring/uploads/Main/GQM_book.pdf
https://courses.cs.ut.ee/MTAT.03.243/2015_spring/uploads/Main/GQM_book.pdf

77

3. Specify measures to collect data that answer those questions.

4. Develop mechanisms for data collection.

5. Collect data, analyse data and provide feedback to the project on how to make future

improvements and adjustments.

 See Appendix 6 for the full Goal-Question-Metric matrix.

Goal: To state the success of the iteration (sprint) as a fact and for the development team to feel

satisfaction.

Question: Do we meet sprint goals in the forecasted time?

Created Metric: Listed sprint goals that have been planned and accomplished in a table (in

AzureDevOps/dashboard/QPRUI 2.0/ Sprint goals planned vs accomplished).

Question: Are we going to reach the MVP goal (release) by the end of this year (2019)?

Created Metric: Minimal Viable Product release Burndown chart (in AzureDevOps/dashboard/QPRUI

2.0 / MVP Burndown)

Goal: To improve estimates of Features and User Stories, allow the development team to measure

its own velocity and be able to forecast the outcomes of iterations, then use this velocity to limit

planned work and deliver it. We want to learn how to split features and user stories into smaller

releasable value increments and deliver the increments more often.

Question: How many story points do we use on average in one sprint? We can count the average

velocity retrospectively for autumn 2019, but to see the trend we need a more established

development process, which is possible only after the “foundation stone” of the app and framework is

laid down.

Created Metric: Number of story points completed in each sprint (=velocity). The team’s velocity is

recorded in the AzureDevOps/dashboard/QPRUI 2.0 / DevApps. I expect an oscillation in the velocity

from sprint to sprint, but at some point, we would expect to settle into a relatively steady number of

points per sprint, which would constitute a predictable production output for the team. Another option

would be to count the average velocity retrospectively for autumn 2019, though to see the trend we

need a more established development process, which is possible only after the “foundation stone” of

the app and framework is laid down.

78

Question: Do we remember to spend enough time on backlog refinement, so we would have enough

user stories ready for implementation? Currently tasks under user stories are not defined in sufficient

detail, planning sessions are not efficient, backlog refinement is done mostly in meetings, which is not

the best use of time.

Created Metric: Measure time used for backlog refinement by the team per sprint (should be around

10% of the development Team's capacity).

Goal: Increase developers’ subjective satisfaction with tools and development processes – focus on

the developer’s experience. We want an effortless and painless development workflow through the

tools pipeline. Tools are needed that support and guide the developer (engineer, human) to the correct

workflow.

Question: What is the “mood trend” in the team?

Created Metric: Take a subjective “happiness measure” from the sprint retrospective summaries.

Count the comments in “mad-sad-glad" and see if there is any trend in the number of positive vs

negative comments.

Goal: Improve the efficiency (maximum result with minimal expense) of the code development and

promotions (from development to production). To be efficient in bringing value to users. To “boost

development throughput”.

Question: How difficult and intimidating are the merge conflicts? How often do they take (subjectively)

significant time? Previously at QPR, merge conflicts have been among the most critical problems

delaying code promotions.

Metric: There may be several issues creating difficulty or meeting a target for merging a branch to

develop per day/week, but currently it seems too much hassle to collect data on these issues, so we

rely on a subjective impression coming from the sprint retrospective, as well as daily discussions.

5.4 Retrospective

For more details about meeting and questions see Appendix 5.

5.4.1 Retrospective comments analysis for the period 30.09-18.10.2019

This retrospective covered the period 30.09 to 18.10.2019 - 4th sprint.

79

The following themes were reflected on by the team as positive in the 4th sprint (Glad):

Feeling of accomplishment (achieving): getting closer to accomplishment, progress (3 comments),

practical attitude, good progress, glad that we have some nice-looking views, current sprint’s user

story is very near to completion, (almost) all the tasks from the backlog have been done.

Cooperation & Collaboration: Good teamwork, spirit, co-working going well. Happy to get feedback.

Meeting efficiency: Retrospectives are better than in previous experience.

Agility of process: Pull Requests are fast to review and to complete. Review is thorough.

Tools satisfaction: Familiarization with new environment (Azure DevOps) and tools is going well.

Freedom vs stability/certainty: Free to do small improvements, refactoring. Flexibility.

Some comments on what made team members glad after the 4th sprint:

- “Progress in a creative mess.”

- “Pull Requests are reviewed & completed fast.”

- “I'm not the only one who is doing TA.”

- “Collaboration: asking, criticizing, discussing and coming to agreement”

- “Now it is more clear which tasks to do than before (because of pre-planning)”

- “Development team takes responsibility and makes own decisions about what is best for the

application and development progress.”

Points for improvement, worries or concerns mentioned (Sad&Mad):

Common goals: We don’t do planned tasks – no focus or is it bad planning? There were some

distractions from outside the team. Some feature and task creep, so maybe we should focus a bit

more on planned tasks.

Meeting efficiency: Planning sessions are not efficient; refinement is done mostly in meetings.

Meetings could be improved. Probably too many meetings.

Freedom vs stability/certainty: Responsibilities are not clear and not fixed. I didn't have a

programming task to do.

80

Agility of process: E2E test automation took more time than expected. It seems difficult to get the

test design, test code and infra-stuff discussed and reviewed. There are some ready-made tasks that

are there just to exist, "deploy to..." as a result, actual tasks get lost in the crowd. No estimations,

hence no learning, the sprint board is not up to date, some tasks cannot be assigned – unclear

purpose, what and how to do. Tasks under user stories are not sufficiently detailed.

Feeling of accomplishment (achieving): Incomplete things piling up. No CI pipeline, so DoD can't

be fully met, no deployment environments to test a PR. Testing is lagging. Some core questions are

still open.

Cooperation & Collaboration: Communication within the team may be improved: team members are

working disconnected from each other.

Tools satisfaction: Pull Requests for merging conflicts and tests are failing.

Cooperation & Collaboration: Different programming styles - need to agree on a common one. We

have different opinions and can't agree on technologies.

Unclassified: Difficult to choose work items for the Pull Request.

Some comments on what made a team member sad or mad after the 4th sprint:

- “No estimations for user stories and DoD, hence no learning “

- “Processes: tasks under user stories not defined in sufficient detail (better groom and pre-plan).

Planning sessions are not efficient, grooming is done mostly in meetings, which is not the best use of

time”

- “No single User Story DoD is fully met yet.”

- “Incomplete things are piling up”

- “Too much to do at once and everything is needed "yesterday" - load and pressure.”

- “Unprioritized/unfocused TA – spending hours discovering why TA fails on login/logout, TA is

unstable, where a manual test is very simple. Login is done daily by everyone anyway. Why do we do

that?”

Agreed:

Make a developer’s experience questionnaire before the next Retro.

Remind to update the board daily, so tasks would reflect actual status and progress.

81

Focus on improving the backlog refinement practices to get the backlog in order.

Discuss and review test design, test code, and infra-stuff.

Make meetings more efficient by creating an agenda, including individual preparation work, time-

boxing, and ensuring there is focus.

Pay attention to communication, make sure that the two geographical sites do not become

disconnected - keep working in sync.

5.4.2 Retrospective comments analysis 21.10-8.11.2019

Prior to this retrospective, I crafted a questionnaire based on the themes echoed in the previous

retrospectives to collect feedback beforehand and to save time in the face-to-face retrospective

meeting, so we could jump right to the discussion. I asked my teammates to classify their responses

as "mad", "sad" or "glad" to preserve the previously used framework. The list of topics to consider was

sent, with the instruction that they are free to skip any topic and treat the open questions more as a

seeding for open reflection. I also acknowledged that any topic may give rise to positive and negative

comments.

Another positive outcome from creating the questionnaire before the retrospective meeting was that

people had some time to think about the topics and when they came to the meeting they had those

thoughts fresh in their minds and our discussion was very fruitful, active, and focused on the most

important things, according to my own impressions. Doing appropriate “homework” before the meeting

made it more efficient.

Previously identified themes:

From the Team Manifesto From the retrospectives

Fun & personal connection, Respect
Cooperation, Collaboration (transparency)
Feedback
Common goals
Trust (not mentioned in retrospective comments)
Innovation & Experimentation
UX & Customer (satisfaction, need) focused
Expectations - set and met
I like it! (developer’s perspective)
Commitment to Effort, we do our best

Agility of process
Feeling of accomplishment (achieving)
Usability of documentation and chats
Involvement, ownership
Freedom vs stability/certainty
Meeting efficiency
Tools satisfaction
Minimize value increment
Added:
 Long-term planning

82

Many themes elicited contradictory comments and I see that as understandable, since the team and

the new product they are developing are still embryonic and people will continue to learn, and we will

continue to refine the working practices.

From the responses received, I noticed some fatigue with setting up the development infrastructure

and process and I hope that the team could get up to speed with the product development soon. I'm

sensing that some people focus on plain software development tasks, but not on DoD, which includes

documentation, quality control tasks, and requirements management. That means we need to

challenge ourselves more over DoD, discuss what is our "product" and why we have the DoD. Is our

product just an application code? Do we want to have a mechanism to receive feedback about quality,

which may help catch bugs earlier and cut the costs on fixing them? Are we building a framework that

is easy for others to use? What makes it easy to use? In answering those questions, we can come to

a common agreement about what is needed and whether we can drop some criteria in the DoD.

Achieved improvements:

Backlog refinement improved - as soon as we put more time and effort into refinement we were able to

complete the sprint planning in 30 minutes, though 2 hours was reserved for that.

Pipeline to “build-test-deploy” now works only for the develop branch, so adding the possibility to do all

verifications on any development branch before integrating it into develop is the next step. Daily cafes

proved a beneficial practice; there were many positive comments in the responses, for example: “Daily

cafe seems to work nice, allowing us to discuss something important right there and then.” E2E tests,

communication and transparency of tasks-in-progress got better according to the team.

One of the comments was: “Inspiration and enthusiasm [on the] positive side. We just need to get to

the point where our actions are more visible to business, easily reachable and start to discuss

continuously (Business with Products&Technology) how to improve, what are the priorities, use cases

in practice ... also developers need to get into this cycle”

Things requiring further attention:

Completing user stories according to the DoD and taking care of leftovers. There was the “Mad”

comment: “DoD not met in any of the user stories. I use a lot of energy to make mine self-organized as

a process work.” The first user story was completed just before the retrospective, another the week

after, with three stories still in progress.

Development workflow:

Get the development workflow into better shape – start with planning tasks, storybook components,

testing. Unit testing should go hand-in-hand with the task that implements the views and view models.

https://storybook.js.org/

83

We need more debate and disagreements - different opinions and points of view are especially

beneficial.

Fun & personal connection (atmosphere, team spirit) - all good, but there is concern about “an

Oulu/Helsinki split developing. Nothing too concerning though... spirits still seem high.”

Inspiration and enthusiasm – mostly positive. Only one comment “I’m feeling quite inspired and

enthused still.” – that “still” makes me think there is a decline coming, but this would be natural until

some limit is reached, since people cannot exist in a constant state of stress, even if it is a positive

excitement.

Innovation & Experimentation (Learning possibilities and curiosity) – mostly positive comments.

Cooperation & Collaboration (Communication and Transparency):

“Sad that sometimes it's hard to get answers in public [i.e. group] chats, and I'm inclined towards

having more public discussions to share information and towards involving more people in discussion.”

The general perception of transparency is good according to other comments. However, this one I

wanted to highlight as particularly perceptive: “We (as a team and as individuals) are not the only

stakeholders in our tasks. Our ways of working need to change to reflect this. Just because I/We (as

individuals) don’t get tremendous value from an activity personally doesn’t mean that the activity isn’t

worthwhile.”

Long-term planning:

Think and plan together with customers about the longer-term development roadmap, the possible

customizations of the application, who will be the first real customers and what kind of solutions will

they want etc.

Common goals in the operational development (OD):

Involvement of all team members in the operational development (OD) tasks requires more initiative

from everyone. This will build competence and know-how and involve developers in the OD work.

Working in pairs is useful to share knowledge and avoid silos.

One of the comments: “Guide to myself: consider all actions from this perspective:

How does what I am currently doing...

- add value to customer?
- make our product better, more attractive, more useful, ...?
- if this is beneficial, what is the cost-benefit ratio?”

84

Common goals in balancing doing things and documenting or communicating things:

“Too much overhead. “

“I should document more probably. For documentation we should clarify the expected value of the

different documentation tasks... might help with motivation to complete them.”

These two contradictory comments make me think that for any documentation tasks, we need to put

the focus on the purpose and to consider who will likely use that documentation. Think about other

roles in the team and outside of the team, what they would be searching for in the documentation.

Agility of process (a balance between the defined process versus the need to self-organize and

make many decisions daily (creative chaos&freedom versus stability&certainty):

Some comments gave the impression that some people would prefer to do more or could do more if

they were assigned more tasks, or tasks would be distributed. Can it be solved by the practice “if in

doubt, ask the Scrum master”? Or maybe a rule “pick the next task from the sprint backlog”?

Some selected comments:

“Already seeing benefits from changed ways of working. Better shared understanding.”

“Currently, I enjoy the "creative chaos" and I feel it helps me in my work.”

“Creative chaos is calming down a little bit at a time. It is becoming clearer all the time what should be

done and how.”

“I wish we could preserve flexibility, and at the same time be more organized in some areas.”

“Too much overhead still, mostly in process, planning, grooming, defining Azure tasks...

“Rushing and fast and dirty, delivered fast !== agile”

Minimize value increment:

The splitting of user stories and trying to have the smallest possible stories still needs a lot of practice.

“Splitting user stories feels cumbersome. Wouldn't want to do that in multiple iterations. There is much

overhead to create a new user story and copying stuff and editing the original one.” - this comment

shows that we need to talk more about why we need to split and how to do it in the most efficient way.

If a story is split in the early identification stage, then it should not be such a burden.

85

Couple of other comments: “Refinement improved, but there's room for more improvement.” “Tasks

are not defined well enough. Tasks are too big. Many things are done that are not related to any task.

The software development process is slow, productivity is low, total value of the increments are tiny,

quality is low.” Backlog refinement in pairs turned out to be a useful practice, so we will continue it and

bring questions and the present user story into the refinement meeting.

Scrum practices:

“IMO we should drop time-boxing and instead focus on priorities if we are moving towards Continuous

delivery and Kanban. The Kanban philosophy proposes making releases when there is a customer

need, while Continuous Delivery suggest releasing per user story/value. Scrum has nice background

philosophies, such as for backlog management and basic "controls".”

 “Not all tasks were identified before the story was allocated to the sprint for development, some tasks

continue to appear under that user story, which is natural and good, but better to have the majority of

tasks defined earlier, during the refinement phase.”

Setting sprint goals and achieving them:

It was mentioned several times that it is good to set a clear “critical path” and that less "critical" things

can be worked on with less focus. Even if we define some minimum goals, we cannot meet them

100% of the time, either the goal is too general and includes too much to be done, or the focus

somehow goes away from DoD.

Feeling of accomplishment (achieving)

The perception of progress is contested:

 “Too much overhead still.”

“Feels like it’s really starting to become apparent... progress is becoming more visible.”

Number of meetings and efficiency:

“The amount is fine. Efficiency could do with some improvements. Some more assertive pushing of

the agenda could be useful... we’re mostly introverted and need the occasional push to participate.”

“Still quite a lot of meetings. Sometimes seems that the agenda does not get completed and we go a

bit astray.”

“The number of meetings seems to be understandable for the early development phase when we

need to agree on so many things.”

86

“Meetings have been more effective than earlier. More decisions have been made and action points

have been given.”

A bonus question in my questionnaire was: “How to make the process clear, accessible, light and

not reliant on self-discipline or to rely on it as little as possible?” My idea: automate what’s possible,

define criteria, use checklists, set up calendar events and reminders, agree on principles (create Team

Contract) and leave the rest for individuals to decide.

Answers from the team members:

“… instead of a precisely defined process, this kind of "gate" or "criteria" might be better.”

“The fewer documented processes that are needed the better. Maybe we could focus more on the

intended outcome of our activities”

“I like the freedom to choose how to work, but the end result must be the same from each individual's

process.”

“Some kind of general guidelines are needed, but of course it gives flexibility if a person can decide

some things.”

5.4.3 Agreed adjustments

In the first iterations the team was not sure about what to do or how, as expressed in the retrospective;

they raised concerns about the lack of assignment of tasks and it wasn’t clear what to do. “Ensure that

every task has an owner who cares [enough] to complete it” - this wasn’t maybe the best idea. When

we adjusted our refinement practices and discussed and defined user stories in more detail, the need

to have tasks assigned was somewhat diminished, so we decided to put more focus on respecting

priorities and DoD; whenever somebody finishes all his tasks, s/he would take the next task from

sprint backlog and not start something s/he likes more or has a better idea about. By responding more

to the sprint backlog priorities, there is less and less need to assign tasks beforehand.

Add compliments as part of retrospective - in my questionnaire I asked everyone to complement their

teammates and we all enjoyed reading those comments in the retrospective meeting.

In the next retrospective, we will make a short report about what has happened since the last retro to

address the issues identified.

87

Some games would be nice to help generate debate and disagreement, and also to learn how to give

feedback. Some games could also help to facilitate collaboration and get to know each other better.

Idea: Agree on some focused workdays or time of the day, there would be no meetings on those days.

88

5.5 Further development

5.5.1 Scrumban? Kanban?

Sprint boundaries - do we need them or not? Take a peek at Kanban - consider how it may support a

more investigative approach to the product discovery and development.

Some advice from Contribyte was that we should not switch to Kanban only because we failed in

Scrum.

5.5.2 Coding workflow and branching strategy

Next it seems to be useful to consider the potential of the Git history, how to read it? Who needs to

read the history and what kind of information can it provide? What are the “use cases”?

Gatekeeper or integration manager - a single person who commits to the 'blessed' repository. Do

some research to find out if this role might be useful in our development process, how we decide

about publishing new functionality to customers.

Check whether we want to take on an “upstream first” policy or make fixes in the release first. An

“upstream first” policy means making a fix first in a feature branch (as one would do any other

change), merging it into master and then cherry-picking it for release. The question (or topic) will be

relevant when we start creating release branches and publishing updates for customers.

Avoiding and resolving conflicts requires further learning and adjustment of the process. We have

already agreed that updating our own feature branch as often as possible with the latest changes from

the develop branch (git rebase) is one method to help in this. As often as possible was defined as

“every time before making any change in one’s own branch or every time when there a PR is merged

into develop”. Keeping the change sets as small as possible is the other helpful practice to avoid

conflicts, as is further modularization of the product code.

5.5.3 Metrics to consider down the line

Goal: To state the success of the iteration (sprint) as a fact and to enable the development team to

feel satisfaction.

https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows#Integration-Manager-Workflow
https://www.chromium.org/chromium-os/chromiumos-design-docs/upstream-first
https://www.chromium.org/chromium-os/chromiumos-design-docs/upstream-first

89

Question: Are customers and/or users happy?

Metric: Ask about satisfaction from QPR internal customers in free form or open questions. Regular

(sprint) reviews are performed to check if development is going in the right direction and fulfils its

requirements. And after the MVP is released, maybe create a questionnaire.

Question: Does our framework help in developing the customer solution?

Metric: Average time to develop a specific customer solution. This can be measured later when the

development of those solutions that use our framework is started. We aim to minimize that time.

Question: How many story points do we use per average user story? How big or small is the average

user story?

Metric: Average “story size” in points - we want to minimize the scope (and so time to implement) of

user stories.

This will be possible to measure when the team has completed more user stories.

Goal: Improve efficiency (max result with min expense) of code development and promotions (from

development to production) for developers in development teams. To be efficient in bringing value to

users. To “boost development throughput”.

Question: How agile is our code review process? There was an anticipation of risk that pull requests

may accumulate and create a bottleneck in the process, so a metric to track this is needed. However,

the subjective impression (from the sprint retrospectives) currently is that pull requests are being

processed well and fast enough. Hence, we will not implement that kind of metric immediately.

Metric: Pull Requests per day waiting in the review queue.

Metric: Number of findings per review ratio (define finding - comments?).

Metric: Pull Request lifetime: time from initiation of PR to merge.

We will need to create a dashboard to increase the transparency for stakeholders outside of the

development team, so that they could see our progress and forecast around product development.

We want our QA efforts to catch the most critical bugs earlier in the SDLC, so they are cheaper to fix.

Therefore, metrics to monitor the QA efficiency would aim to provide information on the effectiveness

of the Test Automation (bugs found by TA vs bugs found by a human). Has our testing sufficiently

“shifted left” - how many faults are found in the early development stages vs faults found in the

90

released versions, taking into account the severity? The intention is to measure the CI&TA cycle time,

monitor deployment or build failures, test failures, test the stability. We want TA to be useful and to

give fast feedback to the developers – “Did I break something or not with my change?” Moreover, it is

important to monitor how rapidly we move to deployment, to creating a build and solving TA problems,

as well as reacting if delays lead to time wasted.

It would be useful to assess the modularity of the product with the aim of minimizing overlapping code

changes, which would lead to less merge conflicts from having several developers work on the same

file.

 See Appendix 6. for full Goal-Question-Metric matrix.

91

6 Conclusion

Agile development is iterative by definition, and so this study set out to describe and analyse the initial

phases of a new project and to seek further improvements from subsequent iterations, some of which

are beyond the scope of the current study. This was the beginning phase of an experimental project

that is aimed at trialling a different development process and different tools, to provide learning and an

alternative positive example for other R&D teams at QPR Software. The DevApps team and new

product development is still in the early stages, so this analysis can only arrive at preliminary

conclusions.

Healthy development habits play a primary role in the software development process and the specific

tools used are arguably secondary. It is much more crucial (and difficult) to learn good patterns, such

as integrating code often, making small increments, building software continuously, reacting to failures

rapidly, and doing verification during early development stages. Yet without trying various tools in

practice, it is hard to realistically assess which tools serve the desired practices in the best way, so

creating a “Guinea pig” team to run an experiment was a good idea. In making a final decision about

the positive potential of changing the process tools throughout QPR, clearly more time and learning is

needed.

We started by changing to Git from SVN. After 3.5 months it is still difficult to clearly see the effect of

this change since many changes have happened at the same time and it is still difficult to attribute any

single improvement to any single change factor. The behaviour change has begun, but it needs more

time, while competence development and new capacity building also need to continue. Currently, the

team has been able to identify the main questions and problematic areas based on their initial

experiences. These will be addressed in part by focusing on further Git training. Git provides a

convenient means to collaborate - on the feature branch or during a code review (web review tools

typically come with some kind of Git solution).

What is obviously convenient is a new possibility to do code review via the web-based graphical

interface of the Azure DevOps site and to make inline comments. Moreover, the Pull Request brings

with it the possibility to set up several automatically enforced requirements, such as the need to

resolve all code review comments, the need to get approval from a minimum of two reviewers, and the

need to pass for the build and tests. As of now (mid November 2019), the CI pipeline is still evolving:

builds and unit tests, API, integration, automatic E2E tests run on any commit that is added to the

develop branch, meaning the CI automatically verifies changes after the pull request is merged into

the develop branch. Automatic verification of every pull request from the feature branch, including for

the build and automated tests, is being set up as I finalise this study.

92

Scrum improvement efforts were mainly focused on learning how to plan the minimal value increments

(user stories) and to split the stories where possible. This is one of the biggest challenges to continue

progressing with, since many of us have been used to working on bigger change sets (features) and

this habit does not change fast. We have refined the Definition of Ready (for starting implementation)

and Definition of Done for user stories and will continue strengthening the habit in respect to those

criteria. We will continue focusing on grooming and defining the product development backlog together

with business partners, to clarify and use customer needs as our core guidance.

The risk of creating competence silos seems to be significant and should be given further attention.

The Daily Café format proved to be valuable, and we just started including “TED talks” into them on

topics where team members are looking to exchange useful knowledge.

Preliminary observations were shared with the rest of R&D at QPR Software, but it will take some time

to crystalize the lessons learnt and to make a plan on how other teams can utilize and apply those

findings. The results of this study will be used for further improving processes in other development

teams at the QPR Software Plc.

93

7 Discussion

A relaxed process created a feeling of freedom and boosted enthusiasm within the new DevApps

team. The attempts to find new and improved ways of developing the product have proved valuable.

Some questions raised by this process change remain to be clarified, which should happen as the new

process becomes more established. A balance needs to be found between deciding what should be

defined and fixed as rule/process/law and what should be up to the team, or even up to the individual

to decide. The larger theoretical question constantly reappears - why do we need process? One

answer is that process in the form of automatic tool restrictions and a set of criteria for any activity

serve to ensure we are moving in the right direction and that we do it in the most efficient way.

Some agreed best practices cannot be enforced by tools or by criteria and so the challenge is to

articulate those and seek ways to support those practices. One improvement goal for the process that

was clearly emphasised in this study was seeking to lighten the process and make it convenient, such

that people would naturally do it the right way. A concrete example of this would be frequently

rebasing the private developer’s branch on to the develop branch (every time you are going to carry

out a change, or every time you notice a new PR to be merged into the develop branch).

7.1.1 How to achieve a better process that is less reliant on self-discipline?

There may be many reasons for why people deviate from the established process. First people may

not know the process, so the solution would be to make sure everyone is on the same page and

understands why we want to do things in a specific way and not any other way. It is crucial therefore to

mitigate the problem of getting everyone to understand the rationale behind the process. It can be

addressed by involving people in the process creation and having as much discussion as possible

about it. Arranging training may be not the best idea, since people may not pay the necessary

attention. They will likely fare better in learning the process if they understand why we have it in the

first place. It is easy to forget information that is not used, not questioned, and not discussed. To my

mind, it seems more valuable to have a flexible moving process that allows us to be agile and get

things done than to focus on describing the process in detail. Based on the experience gained through

this study, I'd seek to define it in a minimalistic form, as criteria and checklists, and any room left in the

definition would leave space for people to decide how to act on a case by case basis.

The tendency to look at the process only from the perspective of one’s own role needs addressing.

In other words, understanding others may be critical when documenting something - one must think

about a reader and what they would need to receive and understand. Role rotation, when possible,

94

may be very useful in helping team members to understand other people’s perspectives and points of

view.

The accessibility of an established process is another issue. Being able to check what the process

tells us to do requires access to specific resources and the ability to navigate models and to find the

right one. In this, skills in using tools in the toolchain are necessary, where the process is maintained

and all in all, several things would be expected to click into place. In daily use, the process should be

easy to access. If it is more in the form of criteria or a checklist, then it would be right there where

people need it, inside a user story, for example in a template for the user story. And the possibility to

change it without any overhead or delay is also very important, since it keeps the process flexible and

adaptable in the current situation.

The initial idea was to automate or enforce good practices, to make the right process for ensuring the

most convenient way of doing things, such that there would be no urge to search for workarounds.

We address this by defining core guidance principles and leaving as little as possible for self-

discipline to follow what process dictates.

7.1.2 Smaller and better-defined user stories or features

This turned out to be one of the most difficult habits to change. The team had a lot to learn and this of

course continues. In particular, the team is still learning what the user story actually is, how to define it,

how to split it until we have a set of minimal value increments that can be implemented rapidly and

independently of each other. The second aspect of the user story is the amount of details to provide in

written form. It has been discussed that the user story and/or task should hold enough information so

that any team member could pick it up and start working on it. This is important to mitigate the “bus-

factor” – “the risk resulting from information and capabilities not being shared among team members,

derived from the phrase "in case they get hit by a bus."” (“Bus factor,” 2019)

7.1.3 Tuckman's stage

Though not a formal assessment, I think the DevApps team have arrived at the border between the

storming and norming stages in the course of the first 3.5 months. It is easy to state ‘No rush through

phases!’, but it is hard to apply this in practice when the business needs are pressing for the release of

new product functionality. We found ourselves searching for the “sweet spot” between applying effort

and time to learning and setting up tools and processes and the need to deliver a Minimal Viable

Product by the end of 2019.

https://en.wikipedia.org/wiki/Bus_factor
https://en.wikipedia.org/wiki/Bus_factor

95

8 References

About - Git [WWW Document], n.d. URL https://git-scm.com/about/ (accessed 11.10.19).

Action research, 2019. . Wikipedia.

Ale Ebrahim, N., Ahmed, S., Taha, Z., 2009. Virtual Teams: A Literature Review (SSRN Scholarly

Paper No. ID 1501443). Social Science Research Network, Rochester, NY.

Adopt a Git branching strategy, 2018. Git branching guidance - Azure Repos [WWW Document]. URL

https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance (accessed 11.13.19).

Ariely, D., 2010. Column: You Are What You Measure. Harvard Business Review.

Atlassian, n.d. Epics, Stories, Themes, and Initiatives [WWW Document]. Atlassian. URL

https://www.atlassian.com/agile/project-management/epics-stories-themes (accessed 11.10.19a).

Atlassian, n.d. Git Workflow | Atlassian Git Tutorial [WWW Document]. Atlassian. URL

https://www.atlassian.com/git/tutorials/comparing-workflows (accessed 11.10.19b).

Atlassian, n.d. Forking Workflow | Atlassian Git Tutorial [WWW Document]. Atlassian. URL

https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow (accessed 08.20.19c).

Atlassian, n.d. Merging vs Rebasing | Atlassian Git Tutorial [WWW Document]. Atlassian. URL

https://www.atlassian.com/git/tutorials/merging-vs-rebasing (accessed 09.20.19d).

Atlassian, n.d. User Stories | Examples and Template [WWW Document]. Atlassian. URL

https://www.atlassian.com/agile/project-management/user-stories (accessed 11.10.19e).

Basili, V.R., 1993. Applying the Goal/Question/Metric paradigm in the experience factory. Software

Quality Assurance and Measurement: A Worldwide Perspective, 7(4), pp.21-44.Available at

http://ssltest.cs.umd.edu/~basili/publications/proceedings/P62.pdf

Bus factor, 2019. . Wikipedia.

Carlsson, Marcus, Abandoning Gitflow and GitHub in favour of Gerrit, 2016. . Beepsend. URL

https://www.beepsend.com/2016/04/05/abandoning-gitflow-github-favour-gerrit/ (accessed 11.13.19).

Cascio, W.F., 2000. Managing a virtual workplace. AMP 14, 81–90.

https://doi.org/10.5465/ame.2000.4468068

Chacon, Scott, GitHub Flow [WWW Document], 2011 URL http://scottchacon.com/2011/08/31/github-

flow.html (accessed 11.13.19).

https://git-scm.com/about/
https://git-scm.com/about/
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance
https://www.atlassian.com/agile/project-management/epics-stories-themes
https://www.atlassian.com/agile/project-management/epics-stories-themes
https://www.atlassian.com/agile/project-management/epics-stories-themes
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://www.atlassian.com/agile/project-management/user-stories
https://www.atlassian.com/agile/project-management/user-stories
https://www.atlassian.com/agile/project-management/user-stories
http://ssltest.cs.umd.edu/~basili/publications/proceedings/P62.pdf
https://www.beepsend.com/2016/04/05/abandoning-gitflow-github-favour-gerrit/
https://www.beepsend.com/2016/04/05/abandoning-gitflow-github-favour-gerrit/
https://www.beepsend.com/2016/04/05/abandoning-gitflow-github-favour-gerrit/
https://doi.org/10.5465/ame.2000.4468068
https://doi.org/10.5465/ame.2000.4468068
https://doi.org/10.5465/ame.2000.4468068
http://scottchacon.com/2011/08/31/github-flow.html
http://scottchacon.com/2011/08/31/github-flow.html
http://scottchacon.com/2011/08/31/github-flow.html

96

Cutler, John, Good Process vs. Bad Process [WWW Document], 2018 URL

https://cutle.fish/blog/good-process-vs-bad-process (accessed 11.3.19).

Driessen,Vincent, A successful Git branching model [WWW Document], 2010 . nvie.com. URL

http://nvie.com/posts/a-successful-git-branching-model/ (accessed 11.13.19).

Epic, Story, Task and Bugs - Developer Wiki - Confluence [WWW Document], n.d. URL

https://wiki.onap.org/display/DW/Epic%2C%2BStory%2C%2BTask%2Band%2BBugs (accessed

11.10.19).

Establishing an Agile Team Working Agreement - Tech at GSA [WWW Document], n.d. URL

https://tech.gsa.gov/guides/agile_team_working_agreement/ (accessed 11.10.19).

Eusgeld, I., Freiling, F., Reussner, R.H., 2008. Dependability Metrics: GI-Dagstuhl Research Seminar,

Dagstuhl Castle, Germany, October 5 - November 1, 2005, Advanced Lectures. Springer Science &

Business Media.

Fowler, Martin, FeatureBranch [WWW Document], 2009. martinfowler.com. URL

https://martinfowler.com/bliki/FeatureBranch.html (accessed 11.13.19).

Git - Book, Scott Chacon (Author), Ben Straub (Contributor), [WWW Document], n.d. URL https://git-

scm.com/book/en/v2 (accessed 11.10.19).

Git fast forwards and branch management - Atlassian Documentation [WWW Document], n.d. URL

https://confluence.atlassian.com/bitbucket/git-fast-forwards-and-branch-management-329977726.html

(accessed 11.21.19).

Hammant, Paul 2017-2018 Trunk Based Development [WWW Document]. URL

https://trunkbaseddevelopment.com/ (accessed 11.11.19).

Henderson, Ruth, What Gets Measured Gets Done. Or Does It? [WWW Document], Forbes, 2015

URL https://www.forbes.com/sites/ellevate/2015/06/08/what-gets-measured-gets-done-or-does-it/

(accessed 11.13.19).

Horton, M. and Freire, P., 1990. We make the road by walking: Conversations on education and social

change. Temple University Press.

How do leaders create inspiring visions?, 2015. Leaders Lab. URL https://leaderslab.co.uk/how-do-

leaders-create-inspiring-visions/ (accessed 11.08.19).

Humble, J., Farley, D., 2010. Continuous Delivery: Reliable Software Releases through Build, Test,

and Deployment Automation. Pearson Education.

Introduction to GitLab Flow | GitLab [WWW Document], n.d. URL

https://docs.gitlab.com/ee/topics/gitlab_flow.html (accessed 11.3.19).

https://cutle.fish/blog/good-process-vs-bad-process
https://cutle.fish/blog/good-process-vs-bad-process
https://cutle.fish/blog/good-process-vs-bad-process
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://wiki.onap.org/display/DW/Epic%2C%2BStory%2C%2BTask%2Band%2BBugs
https://wiki.onap.org/display/DW/Epic%2C%2BStory%2C%2BTask%2Band%2BBugs
https://wiki.onap.org/display/DW/Epic%2C%2BStory%2C%2BTask%2Band%2BBugs
https://tech.gsa.gov/guides/agile_team_working_agreement/
https://tech.gsa.gov/guides/agile_team_working_agreement/
https://tech.gsa.gov/guides/agile_team_working_agreement/
https://martinfowler.com/bliki/FeatureBranch.html
https://martinfowler.com/bliki/FeatureBranch.html
https://martinfowler.com/bliki/FeatureBranch.html
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://confluence.atlassian.com/bitbucket/git-fast-forwards-and-branch-management-329977726.html
https://trunkbaseddevelopment.com/
https://www.forbes.com/sites/ellevate/2015/06/08/what-gets-measured-gets-done-or-does-it/#7a1a1c2e13c8
https://leaderslab.co.uk/how-do-leaders-create-inspiring-visions/
https://leaderslab.co.uk/how-do-leaders-create-inspiring-visions/
https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://docs.gitlab.com/ee/topics/gitlab_flow.html

97

Jean McNiff, 2016. You and your action research project, 4th ed. Routledge.

Kaplan, R.S., Norton, D.P., 1992. The Balanced Scorecard—Measures that Drive Performance.

Harvard Business Review.

Kotter, J.P., 1995. Leading change: Why transformation efforts fail.

Kreeftmeijer,Jeff, Using git-flow to automate your git branching workflow [WWW Document], 2010

URL https://jeffkreeftmeijer.com/git-flow/ (accessed 11.13.19).

Lean Coffee | Start one in your city!, n.d. URL http://leancoffee.org/ (accessed 11.13.19).

Lewin, K., 1958. Group decision and social change. New York HoIt, Rinehart and Winston.

Mad Sad Glad Retrospective [WWW Document], n.d. . TeamRetro. URL

https://www.teamretro.com/retrospectives/mad-sad-glad-retrospective/ (accessed 11.10.19a).

Mad Sad Glad Retrospective [WWW Document], n.d. . TeamRetro. URL

https://www.teamretro.com/retrospectives/mad-sad-glad-retrospective/ (accessed 11.15.19b).

Mørken, F.V., 2017. Why you should stop using Git rebase [WWW Document]. Medium. URL

https://medium.com/@fredrikmorken/why-you-should-stop-using-git-rebase-5552bee4fed1 (accessed

11.13.19).

Overeem, B., The Team Manifesto: the foundation every team needs – Barry Overeem – The

Liberators, 2014 URL http://www.barryovereem.com/the-team-manifesto-the-foundation-every-team-

needs/ (accessed 11.10.19).

Paolucci, Nicola, Simple Git workflow is simple [WWW Document], 2014. . Work Life by Atlassian.

URL https://www.atlassian.com/blog/git/simple-git-workflow-is-simple (accessed 11.13.19).

Paolucci, Nicola, Git team workflows: merge or rebase? [WWW Document], 2013. . Work Life by

Atlassian. URL https://www.atlassian.com/blog/git/git-team-workflows-merge-or-rebase (accessed

11.01.19).

 Patton, R. (2006). Software Testing (2nd ed.). Available online:

https://learning.oreilly.com/library/view/software-testing-second/0672327988/ch01.html

Pilone, D., Miles, R., 2008. Head First Software Development. O’Reilly Media, Inc.

QPR Software Plc, About QPR - Overview | QPR, 2019 [WWW Document]. URL

https://www.qpr.com/company/overview (accessed 10.30.19).

QPR Software, 2019. . Wikipedia.

https://jeffkreeftmeijer.com/git-flow/
https://jeffkreeftmeijer.com/git-flow/
http://leancoffee.org/
http://leancoffee.org/
https://www.teamretro.com/retrospectives/mad-sad-glad-retrospective/
https://www.teamretro.com/retrospectives/mad-sad-glad-retrospective/
https://www.teamretro.com/retrospectives/mad-sad-glad-retrospective/
https://www.teamretro.com/retrospectives/mad-sad-glad-retrospective/
https://www.teamretro.com/retrospectives/mad-sad-glad-retrospective/
https://www.teamretro.com/retrospectives/mad-sad-glad-retrospective/
https://medium.com/@fredrikmorken/why-you-should-stop-using-git-rebase-5552bee4fed1
https://medium.com/@fredrikmorken/why-you-should-stop-using-git-rebase-5552bee4fed1
https://medium.com/@fredrikmorken/why-you-should-stop-using-git-rebase-5552bee4fed1
http://www.barryovereem.com/the-team-manifesto-the-foundation-every-team-needs/
http://www.barryovereem.com/the-team-manifesto-the-foundation-every-team-needs/
http://www.barryovereem.com/the-team-manifesto-the-foundation-every-team-needs/
https://www.atlassian.com/blog/git/simple-git-workflow-is-simple
https://www.atlassian.com/blog/git/simple-git-workflow-is-simple
https://www.atlassian.com/blog/git/git-team-workflows-merge-or-rebase
https://learning.oreilly.com/library/view/software-testing-second/0672327988/ch01.html
https://www.qpr.com/company/overview
https://www.qpr.com/company/overview
https://www.qpr.com/company/overview

98

Ries, E., 2011. The lean startup : how today’s entrepreneurs use continuous innovation to create

radically successful businesses. Crown.

Role Expectations Matrix | Fun Retrospectives [WWW Document], n.d. URL

http://www.funretrospectives.com/role-expectations-matrix/ (accessed 11.10.19).

Scrum Guide | Scrum Guides [WWW Document], 2018 URL https://www.scrumguides.org/scrum-

guide.html (accessed 11.10.19).

Slant - 20 best alternatives to Axosoft as of 2019 [WWW Document], n.d. . Slant. URL

https://www.slant.co/options/22030/alternatives/~axosoft-alternatives (accessed 11.10.19).

Solingen, R. van, Berghout, E., 1999. The goal/question/metric method: a practical guide for quality

improvement of software development. The McGraw-Hill Companies, London.

Spolsky, Joel, Distributed Version Control is here to stay, baby [WWW Document], 2010. . Joel on

Software. URL https://www.joelonsoftware.com/2010/03/17/distributed-version-control-is-here-to-stay-

baby/ (accessed 11.10.19).

Spolsky, J., 2004. Joel on Software: And on Diverse and Occasionally Related Matters That Will Prove

of Interest to Software Developers, Designers, and Managers, and to Those Who, Whether by Good

Fortune or Ill Luck, Work with Them in Some Capacity, 2004. Corr. 3rd edition. ed. Apress, Berkeley,

CA.

Tassey, G., 2002. The economic impacts of inadequate infrastructure for software testing. National

Institute of Standards and Technology, RTI Project, 7007(011), pp.429-489.

Teasdale, S., 2002. Culture eats strategy for breakfast!. Journal of Innovation in Health Informatics,

10(4), pp.195-196. ResearchGate URL

https://www.researchgate.net/publication/287942641_Culture_eats_strategy_for_breakfast (accessed

11.3.19).

The cost of bugs – System Semantics, Ken Albin, 2014. URL

http://systemsemantics.com/2014/08/the-cost-of-bugs/ (accessed 11.9.19).

Tuckman’s stages of group development, 2019. . Wikipedia.

Understanding the GitHub flow · GitHub Guides [WWW Document], n.d. URL

https://guides.github.com/introduction/flow/index.html (accessed 11.13.19).

van Rooden, Stephan, Product Backlog Refinement explained (1/3) [WWW Document], 2016 .

Scrum.org. URL https://www.scrum.org/resources/blog/product-backlog-refinement-explained-13

(accessed 11.10.19).

http://www.funretrospectives.com/role-expectations-matrix/
http://www.funretrospectives.com/role-expectations-matrix/
http://www.funretrospectives.com/role-expectations-matrix/
https://www.scrumguides.org/scrum-guide.html
https://www.scrumguides.org/scrum-guide.html
https://www.scrumguides.org/scrum-guide.html
https://www.slant.co/options/22030/alternatives/~axosoft-alternatives
https://www.slant.co/options/22030/alternatives/~axosoft-alternatives
https://www.slant.co/options/22030/alternatives/~axosoft-alternatives
https://www.joelonsoftware.com/2010/03/17/distributed-version-control-is-here-to-stay-baby/
https://www.joelonsoftware.com/2010/03/17/distributed-version-control-is-here-to-stay-baby/
https://www.joelonsoftware.com/2010/03/17/distributed-version-control-is-here-to-stay-baby/
https://www.researchgate.net/publication/287942641_Culture_eats_strategy_for_breakfast
https://www.researchgate.net/publication/287942641_Culture_eats_strategy_for_breakfast
https://www.researchgate.net/publication/287942641_Culture_eats_strategy_for_breakfast
http://systemsemantics.com/2014/08/the-cost-of-bugs/
http://systemsemantics.com/2014/08/the-cost-of-bugs/
http://systemsemantics.com/2014/08/the-cost-of-bugs/
https://guides.github.com/introduction/flow/index.html
https://guides.github.com/introduction/flow/index.html
https://guides.github.com/introduction/flow/index.html
https://www.scrum.org/resources/blog/product-backlog-refinement-explained-13
https://www.scrum.org/resources/blog/product-backlog-refinement-explained-13

99

Verheyen, Gunther , There’s value in the Scrum Values, 2013. URL

https://guntherverheyen.com/2013/05/03/theres-value-in-the-scrum-values/ (accessed 11.10.19).

Verwijs, C., 2019. How To Kickstart A Great Scrum Team (10 practical things to do) [WWW

Document]. Medium. URL https://medium.com/the-liberators/how-to-kickstart-a-great-scrum-team-10-

practical-things-to-do-2143bdde1a8d (accessed 11.10.19).

We Make the Road by Walking: Conversations on Education and Social Change - Myles Horton,

Paulo Freire - Google Books [WWW Document], n.d. URL

https://books.google.fi/books?hl=en&lr=&id=zU8uFA4hlY0C&oi=fnd&pg=PR7&dq=horton+maked+the

+road+by+walking&ots=q55lqDr-

nc&sig=hGzFH1RKbt0mY26_B12MGnQc9uk&redir_esc=y#v=onepage&q=horton%20maked%20the

%20road%20by%20walking&f=false (accessed 10.30.19).

What are Story Points?, 2015. . Agile Alliance. URL https://www.agilealliance.org/glossary/points-

estimates-in/ (accessed 11.10.19).

What Gets Measured Gets Done - iSixSigma, 2012. URL

https://www.isixsigma.com/community/blogs/what-gets-measured-gets-done/ (accessed 11.13.19).

What is ScrumBut? [WWW Document], n.d. . Scrum.org. URL https://www.scrum.org/resources/what-

scrumbut (accessed 10.31.19).

What is Velocity in Agile? | Agile Alliance [WWW Document], n.d. URL

https://www.agilealliance.org/glossary/velocity/#q=~(infinite~false~filters~(postType~(~'page~'post~'aa

_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags

~(~'velocity))~searchTerm~'~sort~false~sortDirection~'asc~page~1) (accessed 11.10.19).

https://guntherverheyen.com/2013/05/03/theres-value-in-the-scrum-values/
https://guntherverheyen.com/2013/05/03/theres-value-in-the-scrum-values/
https://guntherverheyen.com/2013/05/03/theres-value-in-the-scrum-values/
https://medium.com/the-liberators/how-to-kickstart-a-great-scrum-team-10-practical-things-to-do-2143bdde1a8d
https://medium.com/the-liberators/how-to-kickstart-a-great-scrum-team-10-practical-things-to-do-2143bdde1a8d
https://medium.com/the-liberators/how-to-kickstart-a-great-scrum-team-10-practical-things-to-do-2143bdde1a8d
https://books.google.fi/books?hl=en&lr=&id=zU8uFA4hlY0C&oi=fnd&pg=PR7&dq=horton+maked+the+road+by+walking&ots=q55lqDr-nc&sig=hGzFH1RKbt0mY26_B12MGnQc9uk&redir_esc=y#v=onepage&q=horton%20maked%20the%20road%20by%20walking&f=false
https://books.google.fi/books?hl=en&lr=&id=zU8uFA4hlY0C&oi=fnd&pg=PR7&dq=horton+maked+the+road+by+walking&ots=q55lqDr-nc&sig=hGzFH1RKbt0mY26_B12MGnQc9uk&redir_esc=y#v=onepage&q=horton%20maked%20the%20road%20by%20walking&f=false
https://books.google.fi/books?hl=en&lr=&id=zU8uFA4hlY0C&oi=fnd&pg=PR7&dq=horton+maked+the+road+by+walking&ots=q55lqDr-nc&sig=hGzFH1RKbt0mY26_B12MGnQc9uk&redir_esc=y#v=onepage&q=horton%20maked%20the%20road%20by%20walking&f=false
https://books.google.fi/books?hl=en&lr=&id=zU8uFA4hlY0C&oi=fnd&pg=PR7&dq=horton+maked+the+road+by+walking&ots=q55lqDr-nc&sig=hGzFH1RKbt0mY26_B12MGnQc9uk&redir_esc=y#v=onepage&q=horton%20maked%20the%20road%20by%20walking&f=false
https://books.google.fi/books?hl=en&lr=&id=zU8uFA4hlY0C&oi=fnd&pg=PR7&dq=horton+maked+the+road+by+walking&ots=q55lqDr-nc&sig=hGzFH1RKbt0mY26_B12MGnQc9uk&redir_esc=y#v=onepage&q=horton%20maked%20the%20road%20by%20walking&f=false
https://books.google.fi/books?hl=en&lr=&id=zU8uFA4hlY0C&oi=fnd&pg=PR7&dq=horton+maked+the+road+by+walking&ots=q55lqDr-nc&sig=hGzFH1RKbt0mY26_B12MGnQc9uk&redir_esc=y#v=onepage&q=horton%20maked%20the%20road%20by%20walking&f=false
https://www.agilealliance.org/glossary/points-estimates-in/
https://www.agilealliance.org/glossary/points-estimates-in/
https://www.agilealliance.org/glossary/points-estimates-in/
https://www.isixsigma.com/community/blogs/what-gets-measured-gets-done/
https://www.isixsigma.com/community/blogs/what-gets-measured-gets-done/
https://www.isixsigma.com/community/blogs/what-gets-measured-gets-done/
https://www.scrum.org/resources/what-scrumbut
https://www.scrum.org/resources/what-scrumbut
https://www.scrum.org/resources/what-scrumbut
https://www.agilealliance.org/glossary/velocity/#q=~(infinite~false~filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'velocity))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/velocity/#q=~(infinite~false~filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'velocity))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/velocity/#q=~(infinite~false~filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'velocity))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/velocity/#q=~(infinite~false~filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'velocity))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/velocity/#q=~(infinite~false~filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'velocity))~searchTerm~'~sort~false~sortDirection~'asc~page~1)

100

9 Appendices

9.1 Appendix 1. Terms and Definitions given by DevApps team

QPR DevApps team specific:

Application template (in QPR UI 2.0 context) - a configurable skeleton or stub of an application,

containing common functionalities and components, that can be used for quick and easy development

of a QPR UI 2.0 solution for specific customer needs. We don’t use word “template” lately, so

Application Framework includes all its meaning. Application Framework (in QPR UI 2.0 context) -

comprises an application template, APIs, a set of reusable components (in a repository), a set of

configurations (as in files), and documentation to enable building of framework based customer

solutions.

Component (in QPR UI 2.0 context) - building block , React-module, UI components, such as

buttons, graphs etc or bigger components that are collections of these small components. There are

also data components that are invisible to the end user, but handle the data processing

Work item: Epic - a large set of related features that describes a business objective achievable by the

application/system, takes months to implement.

Work item: Feature - a collection of related user stories in a product backlog, describes some logical

functionality of an application, usually spans over several sprints to complete. Commits or Pull

Requests don’t refer to features.

Work item: User story - sub-part of a feature, describes changes to be made in the product to bring

minimal value increment to user. It can be implemented in a couple of days, but as maximum limit it

should be possible to complete in one sprint. Can be realized by joint effort of several people. Commit

or Pull Request may refer to it.

Work item: Task - contributes to user story, it can be about some functional change, or any other

related work to complete Definition of Done for user story. Can be assigned and done by one team

member. Commit or Pull Request may refer to it.

There was some discussion in responses about which purpose each of work items serves, where

code changes belong (to features, user stories or tasks), and how to manage them. The division

between software development task (which includes product code change) and any other tasks

(design, documentation, prototyping, testing etc) in my opinion seems harmful for common team

responsibility to meet the Definition of Done, so we will need to continue discussing that. A work item

101

is needed to bring value to the user in the end, so it doesn’t matter much what is changed: code, UI

design, or documentation etc.

Feature branch, User Story branch - don’t make any difference for us right now. Currently we use

“feature/” prefix for git branch which contributes to User Story implementation, “fix/” for a bug fix, and

“spike/” is used for experiments. Feature branches are always started from latest “develop” branch,

important is that any branch can be accepted to “develop” only if it was approved by reviewers and

passed verifications without failures. User Story may get code changes via several branches and

several pull requests, so the smaller and the shorter-living branch is the better, so it allows to get new

code to common branch for others to reuse and minimizes the possibility of merge conflicts.

We had an idea that we would implement a single user story in a single branch, so user story would

be completed via one Pull Request, but currently User stories are not small enough, so this approach

would take too much time.

Branching strategy - guidelines how to do concurrent development, CI and deployment of the

product by utilizing the branching capabilities of the version control system. The workflow, which

branches to use, how to create and when to delete them, the reasons to use certain branches etc.

Coding workflow - the "daily chores" of a developer, from fetching the latest version of source code

from the "develop", making code changes and integrating them to making a deployable and ready for

release product version. Also covers coordination of actions in the team when working together on the

same codebase.

Software development workflow - may be a bit wider than just coding workflow, involving design,

testing, deployment and documentation, but it’s hard to draw a line.

SW development working practices - the agreed on day-to-day ways we develop and test our

software, including development environment set-up, collaboration, branching, agreed common

workflow steps, rules and guidelines.

SW development process - a described process of how software is created, a formal description of a

software development workflow.

SW development standards and principles - a set of best practices, principles, and guidelines the

team commits to so that development and testing can be distributed more efficiently (there is no need

for such guidelines in a one-man show kind of a development). Industry standards and proven

operational models that makes life of SW developers easier. Might be related to actual coding and/or

philosophical matters.

102

Code change annotation - PR comment, summary to help code reviewer explaining what was

changed and why, maybe explaining some technical details of implementation. May also include

regression analysis, mention what may be affected or need special attention.

Commit message - short, descriptive, unique comment to explain what was changed and why.

Commit - a coherent, atomic piece of implementation checked in to version control system, that has a

clear, singular purpose.

Naturally for developers changing from SVN to Git, there was a mix up between SVN commit which is

always pushed to the server and possibility to make local commit using Git.

Base commit vs Fix commit - the first one implements desired change and has meaning for Git

history, the other fixes faults in initial implementation and can be squashed with the first one.

Merge vs Rebase - ways to integrate branches of code. Merge operation preserves history of commits

in integrated branches. Rebase puts one branch on the tip of the other branch creating a set of new

commits and creating a linear history.

Quality gates - a set of manual or automatic criteria at a certain point in development process that the

code must pass before it can be promoted to the next stage (from feature branch to develop, from

develop to release).

Staging - a testing environment for testing the code integrations, to let it mature. Also it can be an

operation to move changes into staging area. It got different answers, but we will see if we age going

to call one of our environments like that and if we need to clarify meaning later.

Production - a stage in the pipeline where the application is used by end-users in live environment. It

was also explained as code or released version of software, as instance which is used by customers,

as a production environment.

Main repository - our central Git repository in Azure server that keeps main public copy of the

develop, feature, release branches of the software.

Master (branch) - is default branch name in git. A branch in Git which has the name “master”, it is

often the default/assumed branch for certain tools and integrations.

Mainline (branch or repository?) - A branch or repository, where all of the approved changes are put.

When creating a new branch, take the latest version from mainline. Or branch where development

happens, there are all finished features that are not published yet. The branch on which features are

branched from and merged to. Where changes are integrated for testing.

103

Codebase - the "sum" of all branches in the main repository. Or a set of all code related to some

product (including tests etc). Codebase does not include third party frameworks and libraries.

Pull Request - a request to review and accept code into some branch. A comment “"call for a review

before changes can be pushed to some codebase" -> term "pull" here is confusing” - shows that we

need to talk about the difference in approach when code is pushed and when it is pulled.

Build - can be either a verb or a noun. Verb: to create an executable and/or running version of the

software, to assemble a working application from source code. Noun: a package, an executable

version of the software based on a specific revision of the "develop" branch.

Requirements management - elicitation of needed software functionality from customer research /

feedback, writing down formal descriptions of said functionality prioritizing the functionality. Definition,

prioritization, evaluation, cutting off duplicates, rejecting, and maintenance of a "requirements

database" that can consist of several kinds of artefacts: documents, diagrams, mockups, designs etc.

Especially, linking the artefacts to the product backlog items. Involves a system (tools) and activities.

Requirement - a statement or other form of description for a functional or non-functional characteristic

of the software. Definition of what the software or some functionality should do, not how, black box

view: it should be most-ly from the user/customer perspective.

Toolchain or Tools pipeline - a selection of software engineering tools used typically together in a

sequential fashion to support and serve software development process.

Continuous deployment - A software engineering model where product increments deployed as

soon as they meet the team's Definition of Done, acceptance criteria and quality criteria. May go

through several staging phases for enabling e.g. manual testing. The staging phase can take several

days from the initial commit / pull request merge. Or is it fully automated process to update production

environment?

Commit-release pipeline - an ordered set of activities and tools required to push a single commit all

the way to production deployment. Includes a bunch of automation ideally.

Unit tests - tests developers do to their code before having the code reviewed, covering the

functionality of a single module, such as a function, or a component. Automated Tests that exercise a

single unit of code (typically inside a single file) with all other dependencies mocked. They are a

development aid and should not be thought of as tests in the classical sense. 99% unit test coverage

with no other testing and your application is essentially untested.

Integration tests - tests that cover interaction and cooperation between modules or make sure the

software works with the environment and other software it was meant to work with.

104

E2E tests - cover end-user interactions in the application. They test end-to-end functioning of the

application from UI actions to database or external APIs from users point of view.

API tests - tests that are written to test functionality of the API. Making requests to API and expecting

data or errors as responses, depending on the request. API testing is a type of software testing that

involves testing application programming interfaces (APIs) di-rectly and as part of integration testing to

determine if they meet expectations for functionality, reliability, performance, and security. A kind of

E2E tests focused on server API endpoints (Imagining the server as a complete application in it’s own

right).

9.2 Appendix 2. Team Kick-Off meeting script (Manifesto)

Set expectations: show forming_storming_norming_performing

 ------1.------------------15min What is manifesto?

Manifesto - a shared vision about teamwork and the required quality standards, agreed way of working
among the team members.

Norms, values and principles on how people want to work together.

Write down on post-it note "What does team mean to you?" or "What it means to be a good team?"
or "Is – Is not – Does – Does not" - Sometimes, it’s easier to describe something by telling what this
thing is not or does not.

You may imagine the worst possible team and the best possible team.

Gather all notes and ask the team members to read out loud and stick to the board.

Cluster the ideas by themes,

name cluster and prioritize the themes by voting:

X clusters / 3 = Z votes for one team member. All your votes can go to one theme.

Count votes and make a sorted list

Select the top 5 themes

---------------------------------- 15min "what does quality mean to you?"

repeat clustering exercise

---------------------------------- 10-20 min. Build Manifesto

Team Values (top 5) poster and the other for the Quality definition (retain order).

Give the team some time to brainstorm about the other extreme of the earlier defined themes.

For example: the extreme of ‘fun’ might be ‘boring’.

Write down all the extremes on the right side of the poster.

105

Invite everyone to sign below each of the posters.

Tip: If certain members are reluctant to sign the posters, find out why. It may be that the team needs to
revisit certain points on the posters.

Make sure the team manifesto is well visible in the team area. Refer back to manifesto the regularly.

9.3 Appendix 3. Team Kick-Off meeting script (Team contract)

What is Team Contract? - “ground rules” and team disciplines. How we will work together –
responsibilities and expectations.

1 part 30 min: Define roles and tasks - who is responsible for what? Fill in Roles-Expectations Matrix.

2 part 30 min: Formulate “team disciplines” = “ground rules” by asking for example:

Where do we save team meeting notes?

When are the Scrum Events? And which? Who is expected to be present there?

What happens when someone’s late to a Scrum Event, or unable to join altogether?

When are we — as a team — happy with a Sprint? Sprint success is - what?

We want to communicate gotchas and helpful/harmful patterns - how?

Have a closer connection to CustomerCare and users - how?

How do we address risks like missing domain knowledge, unfamiliar tools, unfamiliar people, previous
habits to be changed.

If we find that we need to make changes to the sprint – how we do it in a controlled manner?

Note positive (and negative) behaviors that can impact the Team.

Examples of team disciplines we could agree on:

don’t be afraid to ask,

be on time for meetings,

think about “future generations to come after us”,

be open about any problems,

share all what may be useful,

any changes to the sprint should be agreed with X? and recorded to be discussed in retro

Definition of done for SDT (Story?)

Define and adhere to Version Control rules

Define and adhere to coding standards

Update Backlog before Standup daily

106

Respect your team member’s time

Review working agreement (Team contract) regularly, especially in case of any changes or if a
member breaks one of the ground rules (esp. if consistently).

These are some references for understanding Agile Team Working Agreements:

● Agile Team Working Agreements How To Guide

● Creating a Team Working Agreement

● Forming, Storming, Norming, and Performing: Understanding the Stages of Team Formation

● How to Create Agile Team Working Agreements

● Team ground rules and working agreements

● What is a team ground rule or team working agreement

● Work Agreements for a Scrum Team

9.4 Appendix 4. New DevApps Team’s Manifesto

A shared vision about teamwork and the required quality standards. Common norms, values and

principles agreed among the team members. Because they give direction to our work, to our behavior,

and our actions.

Definition of the Team: "What it means to be a good team?“

Fun and personal connection & Respect:

● Team is a group of people with shared values

● Good spirit (= trust and friendliness)

● Pizza Perjantai 2 notes

● Personal connection (= understanding and fun)

● Understanding (also common terms) – 2 notes

● Supportive, easy-going atmosphere

● Familiar people

● Willing to chat about anything

● Helping each other

● Flexible and tolerant attitude (we all make mistakes)

● Power of vulnerability

● Respect and trust, Respect each other, Respect

Cooperation & Collaboration, Feedback:

● Solve real problems together

http://www.payton-consulting.com/agile-team-working-agreements-guide/
http://www.gettingagile.com/2008/05/02/creating-a-team-working-agreement/
https://www.mindtools.com/pages/article/newLDR_86.htm
https://www.scrumalliance.org/community/articles/2015/march/how-to-create-agile-team-working-agreements
https://nomad8.com/team-ground-rules/
https://agilefaq.wordpress.com/2007/11/21/what-is-a-team-ground-rule-or-team-working-agreement/
https://www.scrumalliance.org/community/articles/2014/january/work-agreements-for-a-scrum-team

107

● Promote cooperation and learning

● Share knowledge – 2 notes

● Support each other - 3 notes

● Cooperation & collaboration - 3 notes

● Effectiveness = cooperation + good spirit

● Share resources

● Frequent feedback and interaction

● Respectful feedback

● Prize others, give compliments

Shared / Common Goals:

● Team is a group of people with the same goal (working together to meet common goals)

● Rowing in the same direction

● Common definition of done

● Shared vision

Trust inside the team and outside:

● Trust (knowing people in the team) 2 notes

● Everyone does their own part

● Trust that people know what they are doing, but verify

● Tools cover 90% (?) of process, and little left for self-discipline

● Delivering what is promised

● Team takes responsibility on delivering value

● Team is acknowledged and appreciated by business and customers

● Empowered to solve problems in best possible ways

● Authority, Mastery, Purpose (D. H. Pink)

Innovation & Experimenting:

● Promoting personal and professional growth

● Be curious and nurture the culture of innovation and experimentation

● Continuous learning

● Trying new different things

● Ability to identify and adjust, and change things that don’t work well

Diversity:

● Diversity is a good source of different ideas and suggestions

https://www.ted.com/talks/dan_pink_on_motivation?language=enhttps://www.ted.com/talks/dan_pink_on_motivation?language=en

108

● Different perspectives (personality) compliment each other 1+1>2

● Different experience (skills) compliment each other 1+1>2

Responsibility:

● Team really owns and drives the product vision

● Takes pride in its work

● Drive for excellence (in everything we see important)

● Sharing passion for quality

● Self-organizing team

Rewarding:

● Shared glory (and shame)

● Win as a team

● Prize and glory

Openness & Transparency:

● Openness and transparency

● No destructive competitiveness

● Don’t steal ideas

● … is not secretive

● Informative daily scrum messages

● Common language (terms)

● Common definition of done

 Definition of Quality: “What does quality mean to you?"

UX & Customer needs&satisfaction focused:

● Safe, productive, achieving the best results possible with the continued focus to improve for

the customer and company.

● It means doing the job completely and accurately the way the customer wants it.

● Happy paying user

● Quality thing fits to the purpose of it: ketchup resistant shirt when eating fries

● Look and Feel is “premium”, feels up to date

● Product is easy to use:

● There are no interruptions to work/use of the product, be it from crashes, slowness, or some

other hindrance.

● There’s no need for cumbersome workarounds.

109

● You don’t need to stop and wonder why something works like it does.

● Quality is right things happening on right place on correct time, continuously

● When something breaks, it's easy to fix

● Mistakes can be undone easily

● Performance is smooth.

● UI is intuitive and easily discoverable

● Compliance to customer needs (just enough)

Expectations Set&Met:

● Predictability and reliability both in the product and process space. Whatever that means..

● Promise: product or service will meet the minimum requirements for certain purpose

● Standard

● Agreed quality levels

● what to expect from a product or service of chosen quality level

● Evaluation of product or service based on certain criteria

● Set of evaluation criteria

● Reality is never perfect, so Q. is defined by given time and resources

● Compliance to customer needs (just enough)

● Great software: what is needed, on time and on budget.

● Things just work

● Cost vs benefit ratio

“I like it!” (dev perspective):

● I’d want to use this product myself

● Safe, productive, achieving the best results possible with the continued focus to improve for

the customer and company.

● Bugs are rare

Commitment to Effort, we do our best:

● Doing things at it very best and nothing less.

● As a member of product development, delivering good quality product feels good, like we’ve

achieved something special.

● Taking the necessary steps and time to reach the level of standard we set for ourselves, not

cutting corners for short term gains, as cutting corners leads to paying the price later.

● Continuity: Product or service needs to continuously maintain its quality level

● Take extra day now, but save time in the long run

110

9.5 Appendix 5. Sprint retrospectives meeting script and questions

In all 5 retrospective meetings I asked everyone to classify their responses to the following categories:

MAD – List the things that are driving you crazy, what made you feel frustrated or annoyed. What is

stopping you from performing at your best?

SAD – What are some of the things that have disappointed you or that you wished could be improved?

GLAD – What makes you happy or proud when you think about this sprint? What are the elements

that you enjoy the most?

A questionnaire before the 5th retrospective meeting:

To save time in face-to-face retrospective meeting, I'd like to collect your "mad"/"sad"/"glad"

beforehand.

Here is the list of topics to consider. You are free to skip any topic if you want. These are just open

questions for open reflection.

Naturally any topic may have something good to say and some negative things to mention.

Please classify each of your comment in the answer as mad/sad/glad, so I could connect results with

previous retrospectives.

You can still edit after you submit you answers.

Questions:

How do you feel about balance between defined process vs need to self-organize while searching for

a new better process? Balance between freedom vs stability&certainty. Is "creative chaos" (flexibility,

no strict rules) working well right now? How much energy do you have to make many decisions daily?

Bonus question (no need for "mad"/"sad"/"glad"): How to make process clear, accessible, light and

not rely on self-discipline (or rely as little as possible)? What about getting rid of process as text

document? Some part can be automated, some regulated by criteria (like DoD), check-lists, set up

calendar events and reminders, agree on principles and leave the rest for individual to decide - what

do you think about this idea?

Utilizing Scrum framework and practices. What we already do well or better than before, and what we

need to improve?

What has improved since last Retro? In any area.

111

What was so good that we need to make sure it persists?

Do you see any risks right now?

Do you enjoy a selection of tasks you have on your plate?

Compliment your buddy, or give any other feedback.

Were any side tasks added to the sprint (after sprint plan was agreed) which affected the schedule?

Highlights from Contribyte report – what would you like to bring up?

Involvement of all team members in OD tasks – what's the situation now, what's the trend?

Reducing or splitting user stories - any comments?

Agility of process: we agile doing ...what? We are slow, bureaucratic … doing what?

Meetings amount and efficiency – comments, any trend?

What is your subjective feeling about Teams (chats) noise vs signal ratio? Have you found ways to

sort and filter information flows?

How is the experience with documentation? Can you find info that you need? How is editing

experience?

Any trend or change in feelings of inspiration and enthusiasm?

What can you say about learning possibilities and curiosity at the moment?

Atmosphere, team spirit, personal connection at the moment?

What is your experience of having arguments, agreeing or disagreeing about anything?

Perception of progress – any trend, comments?

Are you happy with sprint goals? Do we define them well enough?

What can you say about us meeting our sprint goals?

What about amount of tasks and workload?

How do you feel about a balance between doing things and documenting or communicating things?

Do you get enough information from others? General transparency related comments.

112

Finalization of tasks properly and neatly: is calendar reminder for dotting i's and crossing t's useful?

Free comments about Life, Death and the Universe!

9.6 Appendix 6. Goal-Question-Metric Matrix

 Discussion and

motivation

Mechanism for data

collection - how?

Goal Purpose

Issue

Object

Viewpoint

& Context

To state the fact of

success

of the iteration

and the development

team to feel satisfaction

 Question

Metric

Do we meet sprint

goals in a forecasted

time?

Sprint goals planned vs

accomplished

 Gut feeling and count

AzureDevOps/dashboa

rd/QPRUI 2.0 / Sprint

goals planned vs

accomplished

 Question

Metric

Are we going to reach

MVP goal (release) by

the end of this year

(2019)?

MVP Burndown

 AzureDevOps/dashboa

rd/QPRUI 2.0 / MVP

Burndown

 Question

Metric

Are users happy?

Ask about satisfaction

from PMSM (QPR

internal customers) in

free form or open

questions.

 Regular (sprint)

reviews to check if

development fulfils

requirements.

And after MVP is

released maybe create

a questionnaire.

https://dev.azure.com/qprsoftware/QPR%20UI%202.0/_dashboards/dashboard/0a097f4c-cce4-4493-8193-5090012bef7f

113

 Question

Metric

Does our framework

help in customer

solution development?

Average time to
develop a specific
Customer
solution.(minimize)

 When the development

of customer solutions

on the basis of our

framework is started.

Goal Purpose

Issue

Object

Viewpoint

& Context

To improve

estimates

of Features & User

stories

and allow development

team learn its velocity

and be able to forecast

outcomes of iterations -

to limit planned work

and deliver it.

 Question

Metric 1

Metric 2

How small are user

stories which we

manage to define and

work on?

Average size (time

from creating a branch

to moment when it’s

merged to develop) of

user story completed in

the sprint (minimise).

Average time worked

on user story - hours

worked on all of

development tasks

(from Axosoft) per

number of user stories

completed during

August-November

2019 (managed in

AzureDevOps)

(minimize)

We want to learn how to

split features and user

stories into smaller

releasable value

increments, and deliver

smaller increments but

more often.

 Manually.

Can be taken and

calculated manually,

when there are some

user stories completed.

114

 Question

Metric

What is one story point

in our experience? If

we assume that one

point is minimal story.

TBD

 Question

Metric

How many story points

we use per average

user story? How big or

small average user

story is?

Average “Story size” in

points.

 Question

Metric

How many story points

we use on average in

one sprint?

Average number of

points completed in

sprint. (=velocity)

We can count average

velocity retrospectively

for autumn 2019, but to

see the trend we need

more established

development process

running, which is

possible after

“foundation stone” of the

app and framework is

laid down.

AzureDevOps/dashboa

rd/QPRUI 2.0 / velocity

guidance

 Question

Metric

Do we remember to

spend enough time for

backlog refinement, so

we would have enough

user stories ready for

implementation?

Measure time used for

grooming by the team

per each sprint.

Tasks under user stories

not defined in necessary

detail, planning sessions

are not efficient (better

groom and pre-plan),

grooming is done mostly

in meetings, which is not

the best use of time.

115

 (should be around 10%

of development Team's

capacity).

Can be taken from

Axosoft.

Goal Purpose

Issue

Object

Viewpoint

& Context

Increase

subjective developers

satisfaction

with tools and

development

processes

– “developer’s

experience”

We want effortless and

painless development

workflow through tools

pipeline. Tools to support

and guide developer

(engineer, human) to the

correct workflow.

"Automate" the best

practices as far as

possible by setting up

tool pipeline so it has

gates which won't let

anyone to move to the

next step until conditions

are met.

 Question

Metric

What is the “mood

trend” in the team?

Happiness measure

from Sprint

Retrospective

.Count comments

“mad-sad-glad" and

see if there is any trend

in number of positive vs

negative comments.

Manually

116

Goal Purpose

Issue

Object

Viewpoint

& Context

Improve efficiency

 (max result with min expense)

of code development

and promotions (from

development to

production)

for developers

in development teams.

To be efficient in bringing

value to users. To “boost

development

throughput”.

 Question

Metric

What is the time of full

CI&TA cycle?

Time from build start to

the end of last

automated test

execution. (minimize)

We want short feedback

loop for developers

working on user story

branches.

Taking into account

coverage(number of

tests?) and resources to

run executions.

 Question

Metric 1

Metric 2

Metric 3

How agile is our code

review process?

Pull Requests in a

queue waiting for

review per day.

Number of findings per

one reviews ratio

(define finding -

comments?).

Pull Request lifetime:

time from initiation of

PR to merge.

We want to keep Pull

Requests queue minimal,

get review asap, but also

be review thorough.

AzureDevOps/dashboa

rd/QPRUI 2.0 / Pull

Requests

Manually.

Manually.

117

 Question

Metric

How often main branch

(develop) build fails?

Number of failed builds

on main development

branch per day or

week.

Number of days without

a build failure.

We want stable builds.

Consider different kinds

of failure causes.

 Question

 Metric

How fast problems with

build are solved?

Time from first failure to

problem

identified/fixed.

 Question

 Metric

How often main branch

(develop) tests are

broken (not working)?

Number of failed TA

cycles on Dev per day

We want stable TA

 Question

 Metric

How trustworthy is TA

result?

False failures to true

TA failures ratio (on

first run, no reruns)

We want TA to be useful

and informative for

developers – “Did I break

something or not by my

change?”

 Question

Metric

How fast problems with

TA are solved?

Time from first failure to

problem

identified/fixed.

 Guessing this could be

registered only

manually, no way to

automate?

118

 Question

Metric

How often main branch

(develop) deployment

fails?

Do we need some

deployment to pre-

production statistics?

Number of failed

deployments on Dev

per day

Or nr of successful

deployments in a

row.(maximize)

We want reliable

deployment

Hopefully this can be

registered automatically

 Question

Metric

How fast problems with

build are solved?

Time from first failure to

problem

identified/fixed.

 Guessing this could be

registered only

manually, no way to

automate?

 Question

Metric

How bad and scary

merge conflicts are?

How often do they take

significant time (define

significant)?

It could be a number of

issues with merging a

branch to develop per

day/week, but currently

it seems too much

hassle to collect these

data, so we rely on

sprint retrospective and

daily discussions.

We want less merge

conflicts.

Good selling point for

other teams to follow

DevApps.

119

 Question

Metric

How modular is product

code? Is it often easy

to work on different

parts of code and avoid

conflicts?

Is it possible to

measure? Static code

analysis maybe?

Modularity of product

may minimize

overlappings (conflicts

when several ppl work on

the same file).

 Question

Metric

How big is delivered

increment?

How often we deploy?

Epic or Feature (or

Story?) development

time from backlog to

release (deployment to

X). (minimize)

NB actual working time

vs calendar time (both

may matter, but not

always)

 Question

Metric

How many user stories

per sprint team can

complete (DoD)?

Team velocity for user

stories. Trend of the

velocity

How many “bananas” we

can eat per sprint?

We can count average

velocity retrospectively

for autumn 2019, but to

see the trend we need

more established

process and “foundation

stone” laid down to build

on top of.

AzureDevOps/dashboa

rd/QPRUI 2.0

120

Goal Purpose

Issue

Object

Viewpoint

&

Context

To improve

quality of

released product

for the users

(consultants and end

customers)

We want our QA efforts

to catch most critical

bugs earlier in SDLC, so

they are cheaper to fix.

 Question

Metric

How successful

(effective) are our QA

efforts?

Is TA effective?

Is our testing shifted

left enough?

Bugs found in

development vs bugs

found on released

versions. (taking into

account severity)

Test strategy section:

Product quality and test

process metrics

Formula is needed to

calculate ~

dev.bug/rel.bug

*severity

 Effectiveness of TA:

bugs found by TA vs

bugs found by humans

(taking into account

severity)

 difficult to implement,

needs everyone to be

organized and

motivated to collect

data.

 findings /per each code

review – ratio (see

under development

efficiency goal)

121

Goal Purpose

Issue

Object

Viewpoint

& Context

To maximise

Transparency

of development

progress

towards business as

well as customers

 Public radiator showing

the roadmap / Kanban

board at user story /

epic level.

Public radiator showing

epic burndown chart.

"Epic burndown

velocity" if there is such

a thing. Maybe as a

number of stories

(and/of story points)

WIP and done for

burndown?

Make sure that business

knows what we are doing

currently and what we

will pursue next.

Azure DevOps

Stakeholders view

9.7 Appendix 7. Git workflow instruction

All changes done to this project are committed through feature-branches - see Branching strategy.

Workflow in short

Start:

git checkout develop
git pull
git checkout -b feature/<name> develop
git status
git add filename

122

git commit -m "descriptive commit message"
git pull --rebase origin develop
git push --set-upstream origin feature/<name>

Create PR, do rework, commit, update PR:

git pull --rebase origin develop
git status
git add filename
git commit -m "descriptive commit message"
git push origin/my-branch-where-pull-request-was-made --force-with-lease

When finished remove the branch:

git checkout develop
git branch -D feature/<name>
git remote update origin --prune

Workflow in more details with explanations

Update your local develop using standard git commands

git checkout develop
git pull <--- or fetch (pull ~ fetch&merge)

Creating feature using standard git commands

1. Start feature branch from develop and checkout to your branch by:

git checkout develop

git checkout -b feature/<name> develop <--- prefix all feature branches with "feature/"

There is no origin/<name> yet, [git push --set-upstream origin feature/<name>] will create remote
branch.

2. Start making your changes and committing

git status

git add filename

git commit -m "descriptive commit message"

3. Rebase on develop branch as often as possible = every time you are going to do some change or
every time when there is PR merged to develop.

git pull --rebase origin develop <--- By default, the git pull performs a merge, but you can force it to
integrate the remote branch using --rebase option.

Rebasing allows you to avoid merge commits in feature branches.

OR

git fetch

git rebase origin/develop

123

Now resolve conflicts if there are any.

git status

git add fixed_conflicted_filename

git rebase --continue

git add another_fixed_conflicted_filename

git commit -m "fixed conflict in filenames"

and optionally git push

4. When changes are committed push your feature branch into Azure for (preliminary) code review by:

git push --set-upstream origin feature/<name> <--- now your local feature/<name> will track remote
branch origin/<name>.

General advice is to avoid using git rebase after creating the pull request, if you use pull requests as
part of your code review process. Because now your branch is public and others can make changes
on it. Re-writing its history will make it impossible for Git and your teammates to track any follow-up
commits added to the feature. (Atlassian: merging-vs-rebasing)

But this is possible to workaround:

A. if you are the only one contributor to this branch you can continue rebasing and pushing with
flag --force.
B. Or it’s perfectly legal to rebase onto a remote branch if your local branch fall behind.

5. Run TA & build to pass on your branch. Do necessary fixes (reiterate through steps 2, 3 & 4)

Create Pull Request and get code review

When feature branch is pushed to remote go to Azure DevOps:

❏ Repos (in left side menu)

❏ Pull requests (under the Repos)

❏ Press button New Pull request from top right corner

❏ Create Pull request from your feature branch into develop

 You may create PR as a draft and publish later.

You can update the pull request by committing and pushing your feature branch.

git push origin/my-branch-where-pull-request-was-made --force-with-lease

Check git push --help for `--force-with-lease` option.

It’s perfectly legal to rebase onto a remote branch X instead of develop. This is needed when
collaborating on the same feature with another developer and you need to incorporate their changes
into your repository.

For Pull Request reviewer

https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://git-scm.com/docs/git-push

124

git checkout develop

git pull

git branch -r <--- will give you a list of remote branches (-a shows all), branches which aren’t pulled
down are listed in red.

git fetch origin feature/<name>

git checkout remotes/origin/feature/<name> <--- and you checkout to the one you want.

and then you can build the application and test the feature and check how the UI looks.

Collaboration on a public feature branch

git fetch <--- to update your remote-tracking branches under refs/remotes/<remote>/

git branch -r <--- to see all remote branches and select the one you are interested in.

git checkout remotes/origin/feature/<feature-name>

git checkout -b feature/<feature-name> origin/feature/<feature-name> <--- creating local branch for
remote public branch.

git rebase develop

Make changes and commit. Finally:

git push

Finish the feature with standard git commands

PR can be accepted to Dev when:
 +1 Code builds
 +1 TA passes
 +2 from two other reviewers (or +2 from one reviewer).

 We don't do automatic merging now, we want to have a human making final decision for the
beginning.

After PR is approved:

1. In azure press Complete on top right corner on your Pull request

2. You may want to remove your local branch with:

 git checkout develop

 git branch -D feature/<name>

3. Update your list of remote branches by running:

 git remote update origin --prune

