

Esa Pyykölä

Creating a chat room using Unity Game Development Tool

Opinnäytetyö
KESKI-POHJANMAAN AMMATTIKORKEAKOULU
Tietotekniikan koulutusohjelma
Huhtikuu 2011

Yksikkö
Ylivieska

Aika
Huhtikuu 2011

Tekijä/tekijät
Esa Pyykölä

Koulutusohjelma
Tietotekniikka, insinööri

Työn nimi
Creating a chat room using Unity Game Development Tool

Työn ohjaaja
Hannu Puomio

Sivumäärä
35

Työelämäohjaaja
-

Tahdoin tutustua Unity Game Development Toolin tarjoamiin Internet-mahdollisuuksiin, joten
tein keskusteluhuoneen käyttäen Unityä itseään. Tämä kaikki oli mielekkäämpää kun oli jokin
päämäärä, joka tässä tapauksessa oli keskusteluhuone. Oman projektini lisäksi työni sisältää tietoa
Unitystä.

Lisäksi halusin välttää käyttämästä kolmannen osapuolen serveriohjelmistoja ja toteuttaa kaiken
Unityn itsessän tarjoamilla työkaluilla. Tämän lisäksi ohjelman piti pysyä mahdollisimman pienenä,
joten se ei veisi niin paljon tilaa muistitikulta. Ohjelmalla voi liittyä tai luoda keskusteluhuoneen,
joten dedikoitua palvelinta ei tarvitse.

Toisessa kappaleessa käyn läpi Unity-kehitysympäristön historiaa, ominaisuuksia ja työkaluja.
Kolmannessa esittelen tärkeimmät Unity:n verkkofunktiosta. Neljäs kappale koostuu
tietoliikennetermeistä. Viides ja viimeinen kappale sisältää kertomukseni keskusteluhuone-
projektistani.

Asiasanat
Chat room, game programming, keskusteluhuone, networking, peliohjelmointi, Unity

CENTRAL OSTROBOTHNIA

UNIVERSITY OF APPLIED

SCIENCES

Date
April 2011

Author

Esa Pyykölä

Degree programme

Information Technology Programme

Name of thesis

Creating a chat room using Unity Game Development Tool

Instructor

Hannu Puomio

Pages
35

Supervisor

After working on Unity for nearly half a year the interest in its networking capabilities and the
possibilities of making multiplayer games and/or applications grew. Therefore creating a chat
room using Unity was an excellent opportunity to create something useful while learning the
basics of Unity multiplayer programming.

The first requirement was to avoid using third party servers and focus solely on Unity's own
networking functions and processes. The second requirement was to keep the program as small
as possible, so that it could be taken on a USB flash drive and used where ever one wanted to. The
third requirement was to make it so that a player can create a server or connect as a client with
the same software.

In the second chapter the reader shall be given information about Unity Technologies’ Unity game
development tool. It will include Unity’s history, its technological abilities and its various tools. In
the third chapter three of Unity’s networking functions are introduced. In the fourth chapter
there is some information on data communications to help with the terms used and an
introduction to a chat room service. The fifth chapter focuses on the development steps of my
project including planning, development and further development plans. The sixth and the
seventh chapters consist of the additional appendixes and the sources used.

Key words
Chat room, game programming, keskusteluhuone, networking, peliohjelmointi, Unity

Terms and Abbreviations

NAT: Network Address Translation, used for modifying the information datagram packet headers

Server: A computer program that services clients or a computer running multiple such services

Client: An application or system that connects to a server to access a remote service

RPC: Remote Procedure Call, permits calling a function or a procedure on another computer

Fillrate: Tells how many pixels a graphics card can render and write to video memory in one

second

TABLE OF CONTENTS
1 INTRODUCTION .. 1

2 UNITY GAME DEVELOPMENT TOOL ... 3

 2.1 History of Unity .. 3

 2.2 Licensing ... 4

 2.3 Rendering ... 5

 2.4 Lightning ... 6

 2.5 Terrains ... 7

 2.6 Physics ..10

 2.7 Audio ..11

 2.8 Programming ..13

 2.9 Editor ..14

 2.10 Networking ...16

 2.10.1 Master Server ..17

3 UNITY INTERNET FUNCTIONS ...18

 3.1 NetworkView ..18

 3.2 RPC – Remote Procedure Call ..18

 3.3 OnSerializeNetworkView ..20

4 DATA COMMUNICATIONS ..21

 4.1 Server..21

 4.2 Client ...21

 4.3 NAT - Network Address Translation ...22

 4.4 Chat Room ..22

5 MY PROJECT ...23

 5.1 Idea ...23

 5.2 Planning ..23

 5.3 Obstacles ..24

 5.4 Implementation ..24

 5.5 Further Development ...29

 5.6 Chat room code examples ..30

6 Sources ..32

7 Appendixes ..35

1

1 INTRODUCTION

After working on Unity for nearly half a year the interest in its networking capabilities and the

possibilities of making multiplayer games and/or applications grew. Writing this thesis on a

subject which was familiar and interesting served as a significant motivator. That led to an idea to

create a chat lobby where one can invite people to play games and chat with other players.

The first requirement was to avoid using third party servers and focus solely on Unity's own

networking functions and processes. The second requirement was to keep the program as small

as possible, so that it could be taken on a USB flash drive and used where ever one wanted to. The

third requirement was to make it so that a player can create a server or connect as a client with

the same software. This way people can make their own servers on the fly and invite the people

they want e.g. for a quick game for the duration of a lunch break. On the other hand, it is possible

to use a dedicated computer to run the server around the clock to provide a proper server.

This thesis includes the basics for creating a multiplayer software with Unity. The thesis focused

on the chat lobby alone. It does not include the creation of a game for this chat room service as

that would have doubled or tripled the software development duration. This chat room service

does not include support for third party servers because that is not the first step for me to take

when exploring the networking capabilities for Unity.

Having no experience in Unity networking, everything had to be learned from the scratch. The

following things had to be learned: How to make a server and connect to it, how to list players

while keeping server security by separating client and server information, how to create the GUI

so that it would support chatting and listing players, and how to invite a player for a game and

send messages between clients.

Unity Technologies' own site was used as a source as they have the most up-to-date information

on their corporation and technologies. A good amount of information was found on their main

page and reference manual. For other subjects English Wikipedia was used. Wikipedia was chosen

because there is up-to-date basic information on the subjects and crowding this thesis with

technical specifications and standards was not wanted.

2

In the second chapter the reader shall be given information about Unity Technologies’ Unity game

development tool. It will include Unity’s history, its technological abilities and its various tools. In

the third chapter three of Unity’s networking functions are introduced. In the fourth chapter

there is some information on data communications to help with the terms used and an

introduction to a chat room service. The fifth chapter focuses on the development steps of my

project including planning, development and further development plans. The sixth and the

seventh chapters consist of the additional appendixes and the sources used.

3

2 UNITY GAME DEVELOPMENT TOOL

 2.1 History of Unity

The development of Unity started in 2001 and the first version was launched at Apple's

WWDC(Worldwide Developers Conference) in 2005. During the 2006 Unity was named a runner-

up in the Apple Design Awards for ”Best use of Mac OS X Graphics”. This occasion was the first

time a game development tool received a merit of high standing. (Unity home page 2011.)

In 2007 Unity 2.0 was released and the first Annual Unite Developer Conference was held by Unity

Technologies. During the year 2008 Unity Technologies had tripled in size. Along with this feat

Unity for iPhones was released and Unity Technologies became an authorized middleware

provider for the Nintendo Wii and, also Cartoon Network released a game called FusionFall which

has been played over 8 million times. Overall the year 2008 was a good one for Unity

Technologies as their product was a finalist in Game Developer magazine's Front Line award.

(Unity home page 2011.)

In 2009 the big change came and Unity Technologies released a free version of Unity at Unity

Technologies' Developers Conference. Again this year Unity Technologies tripled in size and

received a 5.5 million dollar investment. Award wise 2009 was a good year for Unity Technologies.

They were named as ”One of the Top Five Game Companies of the Year” by game developers '

website Gamasutra. Develop Magazine credited them starting a ”Tech Revolution”. Again in 2009

they were a finalist for the Front Line Award by Game Developer magazine. To top it all Unity

Technologies' CTO Joachim Ante was recognized with an individual award of making it into

Develop Magazines ”30 under 30” list. (Unity home page 2011.)

In February 2010 Unity had reached 100,000 developers and the next version of Unity was

previewed in March at Game Developers Conference(GDC). A major technical advancement was

made in Web player development for Google's Chrome browser as it no longer requires Unity

Web player to be installed. Later that year a big game corporation Electronic Arts announced a

deep partnership with Unity Technologies. During the fourth fiscal quarter the latest version of

Unity was released which included many new technologies and the popularity of Unity was

growing exponentially with Unity developers hitting 250,000 by October and Unity Web Player

was installed over 35 million times. An Asset Store was released for Unity at Unity Technologies’

4

Developers Conference(Unite) in November which allows Unity developers to sell their assets to

other Unity developers. During this conference a new unit called Union in Unity Technologies was

created which helps Unity games reach broader audiences.(Seyler 2010.) (Unity home page 2011.)

In 2010 Unity Technologies won many prizes and recognitions. To mention a few they won the

Wall Street Journal's ”Technology Innovation Award”, Develop Magazine's ”Grand Prix Award”

and ”Technical Innovation Award” and yet again they were finalists in Game Developer magazines

Front Line Award. (Unity home page 2011.)

Currently Unity has many major companies as registered users such as Cartoon Network, Disney,

Microsoft, Coca-Cola, NASA and LEGO. Alongside with these are game studios of varying sizes and

individual developers. (Unity home page 2011.)

2.2 Licensing

Unity focuses on creating a technology that is usable and powerful and making it as easy to use as

possible. Unity features a large array of graphics technologies from real-time lightning rendering,

built-in physics to AAA-title light mapping and occlusion culling. Currently Unity supports most

platforms that are in wide use such as PC, Mac and Web. In addition to computers Unity supports

handheld devices like Apple's iPhone and iPad and mobile phones using Google's Android. Unity

also supports the seventh generation consoles Xbox 360 and Nintendo Wii with Playstation 3

support coming in the future. (Unity home page 2011.)

There are many different licenses available for Unity. The free version of Unity contains only

PC/MAC and Web Player deployment and lacks the most advanced graphics technologies such as

Depth of Field. Unity Pro features the full arsenal of graphics technologies and adds a debugging

profiler which allows the developer to debug the software more efficiently. Unity Pro is required

for iOS Pro, Android Pro and Asset Server licenses. (Unity home page 2011.)

There is a standard version of iOS license which is stripped of some technologies such as video

playback/streaming and multiplayer assets compared to iOS Pro. For Google's Android there is

only the Pro version but standard Android license has been announced. (Unity home page 2011.)

5

Other licenses such as educational or game console licenses have to be negotiated with Unity

sales representatives. (Unity home page 2011.)

2.3 Rendering

Rendering in Unity 3.1 supports Deferred Rendering which allows a large number of dynamic

lights even in browser based games. The advantages of Deferred Rendering are that there are no

limits to how many lights can affect an object. All lights can have cookies and shadows and they

can interact with normal maps, making objects look even better. As lightning cost in this type of

rendering is proportional to the size of the light, small lights are cheap performance wise. There

are disadvantages however. These include no real anti-aliasing or semi-transparent object support

and lightning model support is limited which means one cannot have drastically different lightning

models on different objects. Deferred Rendering requires Unity Pro and a graphics card that

supports Shader Model 3.0 or higher. It is not supported on mobile platforms yet. (Unity home

page 2011.)

Unity also has a plentiful number of built-in shaders from simple Diffuse to Self Illuminated

Bumped Specular. There are five categories of built-in shaders: Normal, Transparent, Transparent

Cutout, Self-Illuminated and Reflective Shader categories. Normal shaders are the most basic and

unspecialized. They are most useful for nonreflective materials such as wood or plastics. (Unity

home page 2011.)

 Transparent shaders are meant for transparent or semi-transparent objects. These shaders use

the alpha channel of the base texture which controls the object’s transparency level. This shader

is excellent for glass surfaces and HUD interfaces. (Unity home page 2011.)

Transparent Cutout shaders are meant for objects that have either fully opaque and fully

transparent parts. It does not support partial transparency. Objects that are ideal for this shader

type include trees, grass and chain fences. (Unity home page 2011.)

Self-Illuminated shaders, as the name suggests, illuminate themselves. This means they do not

need outside lights to shine upon them. These other lights add to the lightning level of the

objects. This shader type is mostly used on light emitting objects such as lights, displays or objects

6

that should be visible regardless of present lightning e.g power-ups or collectibles such as coins.

(Unity home page 2011.)

Reflective shaders are meant for e.g. chrome, liquid surfaces or video monitors. The number of

reflections are based on the alpha channel of the base texture. (Unity home page 2011.)

Unity offers great scalability for high level shaders so that they run well even on lower end

hardware. This is achieved by extensive use of fall backs in the shaders. This allows everyone to

have the best possible experience depending on their hardware. This is further helped by graphics

emulation by Unity editor during development to simplify testing. (Unity home page 2011.)

The latest version of Unity, Unity 3.0, includes Surface Shaders which simplifies the process of

creating shaders for multiple platforms. It does this by giving an option to write a shader code in

Cg / HLSL instead of low level vertex/pixel shader programs. (Unity home page 2011.)

Performance wise Unity offers many technologies to improve rendering efficiency. Unity uses

Batching to minimize draw calls by automatically combining geometry into batches and wields a

custom made GLSL(OpenGL Shading Language) Optimizer which was developed for Unity and it

doubles or even triples the fillrate. Perhaps the most significant performance boost is Occlusion

Culling which was developed for Unity with Umbra Software. It is used to render only those

objects that are visible to the camera and thus needed for example hundreds of crates are not

drawn if they are behind a wall. Unity also includes Frustrum Culling which restricts object

rendering to those objects which are visible in the view angle of the camera, for example objects

behind the camera are not drawn. (Unity home page 2011.)

2.4 Lightning

Unity has the support for realtime shadows. This means objects can cast shadows onto other

objects and the object itself. This greatly enhances the visual quality of a game but also comes

with a cost. They are very expensive to render because the process is two phased. First the

potential shadow casters need to be rendered into the shadow map and then all shadow

receivers are rendered with the shadow map. Due to this it is recommended that one does not

have too many realtime shadows and prefer non-realtime where it is possible. (Unity home page

2011.)

7

Unity Pro includes a Screen Space Ambient Occlusion(SSAO) image effect, which makes the game

look much better by darkening creases, holes and surfaces which are in close proximity. As

realtime shadows, this image effect is expensive to calculate although Unity 3.0's Deferred

Lightning reduces the performance drop from this effect. The performance of this image effect is

dependent on screen resolution and given SSAO parameters. (Unity home page 2011.)

In addition to SSAO Unity contains over twenty other image effect filters which are included in

Unity Pro license. To mention a few there is blur, bloom, color corrections, fish eye, sun shafts and

noise effects. These all can give a game unique effects and visual styles, e.g. using motion blurring

in racing games to enhance the impression of speed or bloom to have shining surfaces. Noise on

the other hand can be used for example in horror games to create a more intense atmosphere.

(Unity home page 2011.)

Perhaps the most effective of Unity's lightning repertoire is the ability to create lightmaps. As

Unity 3.0 supports creating lightmaps, developers do not have to do this inside 3d modeling

software. This allows developers to create their levels inside Unity from blocks if necessary.

Lightmapping in Unity is provided by Illuminate Labs' Beast. Unity's lightmapping supports dual

lightmapping which means one lightmap is used for distant objects and the other one contains

only bounce light. This makes the lightmap look much better as it integrates the main character

well in environments, for example.

(Unity home page 2011.)

2.5 Terrains

Unity offers an excellent tool for creating terrains which are the base for most games. When one

creates a terrain it is a flat piece of land. Then one starts sculpting it with the tools Unity provides.

To roughly modify the terrain one uses raise and lower terrain tools. These either increase the

elevation of the land or decrease it inside the brush area. After using either of these tools the

terrain looks rough. To finish up the terrain one uses the smoothening tool which smoothens the

terrain inside the brush. (Unity home page 2011.)

8

PICTURE 1. Terrain tools. At the Top there are the different tools: Raise/lower terrain, set terrain

height, smooth, paint texture, plant trees, plant grass and rocks and options.

In addition to creating just the land mass for one's games Unity has the tools for creating the

vegetation including trees, bushes and grass. One can paint these on the terrain with a variety of

different brushes just like when modifying the terrain itself. Unity optimizes these trees and

bushes when they are far away by making them billboards which look like 3d objects although in

reality they are 2d sprites. (Unity home page 2011.)

A new feature in Unity 3.0 was the ability to create trees with the tree generator. The tree

generator allows the developer to create trees with many possible options. This tool is excellent

for creating lush forests or jungles with many different looking trees. The trees created with this

tool can be used either as standard game objects or integrated into the terrain engine. (Unity

home page 2011.)

9

PICTURE 2. Fresh terrain. This terrain was just created and is ready for editing.

PICTURE 3. Raise/Lower terrain. Thirty seconds of using raise terrain tool and the rough terrain is

ready.

PICTURE 4. Smooth tool. The quick use of smooth tool gives a less volcanic environment with

eroded hill sides.

10

PICTURE 5. Paint texture. The quick use of the texture tool and the landscape looks much better.

PICTURE 6. Paint trees. Now our landscape is complete with vegetation.

This whole process of creating a terrain from a flat piece of plane to a textured and flora bearing

landscape took a few minutes. This is an excellent way of demonstrating the power of Unity's

terrain editor.

2.6 Physics

Unity’s physics engine supports rigidbodies, which means one's game objects can act under the

control of physics. This means a game object can be given values in e.g. torque or forces and they

will act correspondingly. Alongside with rigidbodies Unity supports a variety of joints like hinges,

springs and ball-sockets. These enable the developer to create doors, chains or pendulums at

ease. Physics in Unity is handled by NVIDIA’s PhysX. (Unity home page 2011.)

11

In addition Unity also has support for ragdolls, soft bodies, cars and cloth simulation. Ragdolls in

Unity can be created using the Unity’s own ragdoll wizard. To create a ragdoll simply import a 3D

package file which includes skinned meshes and open up the wizard to assign body parts. (Unity

home page 2011.)

The soft bodies feature allows the creation of e.g. semi-deflated beach balls that can interact with

the environment and the cloth feature allows the creation of physically simulated cloth that

interacts with the environment. With the cloth feature it is possible to optimize the clothing the

game characters wear and make them physically accurate. (Unity home page 2011.)

Finally Unity supports wheel physics which makes it easier to create cars. This is achieved by using

a Wheel Collider. It is a special collider designed for ground vehicles. It includes collision

detection, wheel physics and a slip-based tire friction model. (Unity home page 2011.)

2.7 Audio

There are three types of audio objects in Unity, audio sources, audio listeners and audio reverb

zones. Listeners are just objects that receive sound and have no options other than on or off.

Reverb zones are used to gradually distort sound. Audio sources have many options to edit or

filter the sound they send. Editing sound is very simple since all key audio properties are operated

by dragging sliders or changing attenuation curves. (Unity home page 2011.)

12

PICTURE 7. Options for an audio source.

It is possible to edit standard things such as sound pitch, whether the sound should loop and,

what the priority of the sound is if sound channels are limited and volume. Furthermore, there are

3D sound settings in which one can edit pan level, spread, Doppler level and distances, and set roll

off attenuation curve. In 2d sound settings there is only a panning setting. (Unity home page

2011.)

In Unity Pro one can use built-in audio filters which include low pass, high pass, echo filter,

distortion filter, reverb and chorus. These filters are used by applying them into AudioSource or

AudioListener objects. Audio in Unity is provided by FMOD which is a proprietary audio library

from Firelight Technologies. The following formats are supported: MP3, Ogg Vorbis .ogg, AIFF,

WAV, MOD, IT, S3M and XM. (Unity home page 2011.)

13

2.8 Programming

Unity supports three different scripting languages: JavaScript, C# and Boo, which is a dialect of

Python. All these languages support .NET libraries which allows the use of databases, regular

expressions, XML, networking etc.. The performance of these languages in Unity is nearly as good

as C++, and JavaScript implementation is as fast as C# and Boo. All this is run on Mono platform

which is an Open Source .NET platform. (Unity home page 2011.)

Unity supports a great deal of visual properties as all variables defined public in script are shown

in an inspector window. This way one can edit variables by simply using one's mouse to drag

them. This combined to the fact that many operations in Unity require only single line of code,

such as rotating or moving an object. The possibility of referencing objects directly or by creating

tags or even by proximity or touch makes Unity very flexible and easy to use. (Unity home page

2011.)

Unity has full MonoDevelop integration which means one can use an IDE which works completely

on Unity. This allows one to sync one's project with MonoDevelop to gain auto-completion. Using

MonoDevelop one can debug one's Unity scripts as any other software by creating break points,

single stepping line by line and inspecting values. Unity does support Visual Studio so it is possible

to sync a project to it. (Unity home page 2011.)

Last but not least of Unity's programming tools there is the profiler. It allows one to see

performance data visually and in real-time. Shown statistics include CPU usage, rendering and

memory. Under these main categories the toll each process takes from these resources is shown.

For example CPU usage has the following processes: rendering, scripts, garbage collector, physics

and others. The graph is drawn in real-time and by pausing the game one can inspect which

processes cause performance hiccups or any unwanted events. This speeds up the debugging and

final stages of the development. (Unity home page 2011.)

14

2.9 Editor

PICTURE 8. An editor view showing all the basic Unity editor features. The scene window is where

the objects are placed. The game window shows the game view of the scene. The hierarchy

window shows all the game objects in the scene. The project shows all the assets in the project.

The inspector shows the details of a GameObject such as transform, attached components and

scripts.

The editor itself in Unity is one of the reasons which makes it so easy and fast to use. Since the

editor practically is a world builder, it is possible to just drag and drop one's assets into the scene

instead of doing it in code, and all assets can be previewed from 3d models and textures to audio

files. Unity has many built-in features that make building a scene much easier. These include

surface and grid snapping which allows positioning objects very quickly and accurately. Then there

are triggers and gizmos. Certain events are triggered when entering a designated trigger area.

These are very useful when creating e.g. automatic doors or cut scenes. All triggers are visualized

in the editor and can be edited like any other objects by rotating, scaling and moving them

around. Gizmos on the other hand are visual aids used for example in debugging. A gizmo can be

a simple line or a sphere to a preview of the game camera or occlusion culling preview. Gizmos do

not show in the game window nor in the built version of the game. (Unity home page 2011.)

15

PICTURE 9. A trigger and a gizmo. On the left there is a trigger and on the right there is a wire

sphere gizmo.

When the building blocks are in place it is time to test, and in Unity that means pressing the play

button and nothing else. Pressing the play button makes the game run and one can test it then

and there. It functions in the same way as a deployed version and it informs of any errors or

warning in the debugging log in real-time. During the play testing it is possible to pause the game

and go through different variables and the positions of objects. (Unity home page 2011.)

Unity's editor offers unlimited customization as it is possible to create one's own tools in it. This

means one can create tools to rig the AI or manage cut scenes. These custom windows with their

functionality are created inside Unity by referencing EditorWindows instead of MonoBehavior.

(Unity home page 2011.)

Assets, be they scripts, 3d models or textures, can be imported in almost any format as Unity

supports a wide range of applications and formats. For example 3d models can be imported into

Unity from major commercial products like Maya or 3D Studio Max to freeware Blender. (Unity

home page 2011.)

In Unity it is possible to edit an asset in another software and just press save and it will be

updated in one's project. This means it is not necessary to manually import one's assets every

time they are modified. This easy to use approach is visible in the handling of textures as it is

possible to save multi-layered Photoshop files and Unity automatically compresses them. In

addition it is possible to convert any texture to a normal-map which is done automatically, and

Mipmap generation is supported in three different methods: Detail Fade, Kaiser Filters and

16

Gamma Correction. In addition to textures Unity can handle TrueType fonts. (Unity home page

2011.)

Supported 3D packages are: Full support: Maya(.mb/.ma), 3D Studio Max(.max), Cheetah 3D(.jas),

Cinema 4D(.c4d), Blender(.blend), Carrara, COLLADA, Lightwave, Autodesk FBX(.dae) and XSI 5.x.

Partial support: SketchUp Pro, Wings 3D, 3D Studio(.3ds), Wavefront(.obj), Drawing Interchange

Files(.dxf). (Unity home page 2011.)

For advanced users there is a possibility of post-processing incoming assets using C#. This allows

developers to shape Unity’s importing to their wanted aspects. (Unity home page 2011.)

For larger projects Unity offers an Asset Server which is a version control system. All the actions,

updates, commits etc., are done inside the Unity editor. Asset server is based on PostegreSQL

which is famous for its reliability, data integrity, easy administration and backups. Asset server is

supported on all three platforms: Microsoft Windows, Mac OS X and Linux. (Unity home page

2011.)

The latest addition into the editor is the Asset Store. There developers can sell their assets or buy

from other developers just as in an application store. Asset store contains everything from

tutorials and guides to actual assets such as textures and scripts all the way to complete modules.

(Unity home page 2011.)

2.10 Networking

Unity has plenty of easily available networking functionalities. These include WWW interfaces, a

possibility to include javascript or AJAX, support for .NET socket libraries and third party software

which allows the creation of MMOs(Massively Multiplayer Online). (Unity home page 2011.)

The WWW interface in Unity allows access to web pages and web services. This is done simply in

one function call which starts the downloading from the designated website. WWW-function can

be used for example in retrieving high scores or textures. (Unity home page 2011.)

If the software is deployed in a web player format it can communicate seamlessly with javascript

and AJAX aspects of the container web page. This means the web page can call functions inside

the web player content and the web player content can call functions inside the web page. This

can be used for example in preventing deep linking. (Unity home page 2011.)

17

Unity supports .NET socket libraries for real-time networking by opening TCP/IP sockets or

sending UDP messages. These libraries make speaking XML and connecting to databases typically

easy for Unity. (Unity home page 2011.)

Unity itself does not come with the functionality for creating massively multiplayer games but

other companies have come up with solutions for creating them. These include Electrotank

Universe Platform, which is used for many types of games from social to action games. Photon

Socket Server which is used in a couple of Unity's major games like Paradise Paintball and

Smartfox Server which is used in several Unity games. (Unity home page 2011.)

2.10.1 Master Server

Master server is a separate service which is used to list servers and make them available to a

broader audience. With Master Server it is possible to connect to games if they are unavailable

due to firewall or NAT. In addition a Master Server also hides the player's IP address and port

details. To make a game server available to Master Server it must be registered. To register, the

server must provide a GameType, GameName and a comment. GameType is the defining field of a

server. Games with the same GameType are listed as possible servers to connect, thus they must

not be named Game1 or AwesomeGame. Selecting a GameType like e.g. SuperShooterV2.1.12b

which contains the game's name and its version will be unique and a Master Server knows which

games to pool together. Version number blocks earlier versions of SuperShooter from connecting.

(Unity home page 2011.)

GameName is the name of the server which is shown when a server list is requested. By default

comment row is self-explanatory but if a developer is to modify master server source code it can

be implemented e.g. as a password field. Unity Technologies has a dedicated Master Server which

everyone can use but the source code of Master Server and the Facilitator is available for free as

ready to build project files. Facilitator is used for NAT punch-through and is a separate part of the

Master Server. (Unity home page 2011.)

18

3 UNITY INTERNET FUNCTIONS

3.1 NetworkView

A network view is a gateway to creating multiplayer games in Unity. Network views are very easy

and simple to use but have lots of functionality hidden in them. A network view has the following

properties: State Synchronization, Observed and View ID. (Unity home page 2011.)

State Synchronization has three options: Off, Reliable Delta Compressed and Unreliable. Setting

state synchronization off is best used if only RPCs are used. Reliable Delta Compressed mode only

sends the observed data if it changes. If any packets are lost they are sent again automatically.

This mode is ordered which means if a packet is lost in the middle it will be resent and all later

packets are queued after it. The Unreliable options sends the state at all times and thus uses

more bandwidth but packet loss impact is minimized. (Unity home page 2011.)

Observed property holds the component which is monitored. This can be an animation,

transform, rigidbody or a script. The status of the monitored component is sent across the

network. If the software uses only RPC calls then this property can be left empty. If the observed

object is a script, the data must be explicitly serialized in the script. This is done with the

OnSerializeNetworkView-function. (Unity home page 2011.)

View ID is used to identify different NetworkViews. It has two properties: Scene ID and Type.

Scene ID identifies the NetworkView in that scene and Type defines if the NetworkView is saved

to a scene or if it is allocated at runtime. (Unity home page 2011.)

3.2 RPC – Remote Procedure Call

An RPC(Remote Procedure Call) allows one to call a function on a remote machine. It does not

differ much from calling a normal function but there are some differences. The number of

parameters given to an RPC is practically unlimited but more parameters mean more used

bandwidth. Another difference is that it must be decided who receives that function call through

an RPC. It can be called on all, everyone else but the caller, only the server or a specific player.

19

(Unity home page 2011.)

Uses for an RPC could be for example a client calling other players that it has received an item or a

server starts the game only after a specific number of people have joined the game. RPCs can be

buffered and this allows an easy way of synchronizing a new player to a game. As the RPC calls are

buffered a new player joins the game and receives all the previous calls in order and is then at the

same level as the other players. (Unity home page 2011.)

RPC function is created by inserting a “@RPC” line before a normal function, this allows it to be

called as RPC. RPCs can take the following parameters in Unity: integers, floats, strings,

NetworkPlayers, NetworkViewIDs, Vector3s and Quaternions. An RPC call looks like this:

networkView.RPC(“MyAwesomeFunction”, RPCMode.Server, “Hello World!”);. First the function

name is given, then to whom it is called and last the parameter is given. The function that RPC

would invoke looks like this:

@RPC

function MyAwesomeFunction(incomingParameter : String)

{

Print(incomingParameter);

}

(Unity home page 2011.)

In this example the function is only called on the server and the server would print “Hello World!”

on its console. In the function itself it is possible to take extra information about the sender of the

RPC by a NetworkMessageInfo struct. Through this struct it is possible to get a timestamp, sender

and networkView information of the sender. It is added into the function like this:

@RPC

function MyAwesomeFunction(incomingParameter : String, senderInformation :
NetworkMessageInfo)

{

Print(IncomingParameter);

}

(Unity home page 2011.)

20

 3.3 OnSerializeNetworkView

This function is used to customize the synchronization of variables in a script which has a network

view attached to it. It automatically detects if the serialized variable should be sent or received.

An example of an OnSerializeNetworkView from Unity script reference:

var currentHealth : int = 0;

function OnSerializeNetworkView(stream : BitStream, info : NetworkMessageInfo) {
 if (stream.isWriting) {
 var healthC : int = currentHealth;
 stream.Serialize(healthC);
 } else {
 var healthZ : int = 0;
 stream.Serialize(healthZ);
 currentHealth = healthZ;
 }
}

(Unity home page 2011.)

http://unity3d.com/support/documentation/ScriptReference/BitStream.html
http://unity3d.com/support/documentation/ScriptReference/NetworkMessageInfo.html

21

4 DATA COMMUNICATIONS

4.1 Server

A server is a computer program that services clients or a computer running multiple such services.

A server is usually dedicated to a task such as a web server, a print server or a database server.

Any computer can be classified as a server if a server software is running in it for example a laptop

which is not created for server purposes can act as a server if proper software is installed onto it.

There are computers that are specifically made for server purposes and these computers have

hardware that is designed for server use. This might include very fast network connections and

high I/O throughput and the lack of audio and USB ports. The parts of a very important server

such as enterprise servers are built with specialized hardware which has very low failure rates to

optimize uptime since the cost of the server might be lower than the cost when the service is

down for five minutes.(Wikipedia 2011.).

There are specialized operating systems for servers. These servers tend to have features unique

for servers such as the lack of a graphical user interface, a possibility to configure and update

software and hardware without rebooting or interrupting the service, excellent back up services,

transparent data transfer between hard drive volumes or hard drives, excellent networking

capabilities and high levels of security. There are various different operating systems for servers

such as Windows Server software family and many distributions of Linux e.g. Suse Linux

Enterprise Server (SLES).(Wikipedia 2011).

4.2 Client

A client is an application or a system that connects to a server to access a remote service. A good

example of a client is a web browser. A web browser connects to a web server and retrieves

information from that server and then displays it, the same thing is with an email client. When

playing a multiplayer game the game itself is usually the client which connects to a server where

other players can be seen and games created. Not always a specific client software is required as

a client can be integrated into a website and thus make a web browser a universal client.(

22

Wikipedia 2011.).

Clients are generally classified into three different categories. The categories are fat clients, hybrid

clients and thin clients. Fat clients are the heaviest as the name suggests and have local storage

and local processing. Hybrid clients have local processing but no storage and a thin client is just a

client with all the storage and processing done on the server side.(Wikipedia 2011.).

4.3 NAT - Network Address Translation

Network address translation is used to modifying network address information in datagram

packet headers in a router device. This is done to remap IP address space to another. The primary

benefit of a NAT is to allow Internet access to many computers on a private network using a single

public IP address. This is especially useful since IP4 address are very limited nowadays.(Wikipedia

2011.)

There are drawbacks in sorting outgoing traffic through a translated address, as computers

behind a NAT cannot have end-to-end connectivity and cannot use certain Internet protocols.

Such services include active FTP, Session Initiation Protocol and Voice over IP. (Wikipedia 2011.)

4.4 Chat Room

The name chat room can be used for a range of different services including real-time online chat,

instant messaging, online forums and graphical social environments. It can be a standalone

software such as IRC client (Internet Relay Chat client) or a service which requires no special

software such as a website or part of a website. Generally in a chat room there is a list of users

currently online, a typing box where the user can type the message to be sent and a larger area

where sent messages are visible. (Wikipedia 2011.)

A chat room can be a visual environment such as Habbo, earlier known has Habbo Hotel, in which

users have avatars and can move around. Chat rooms can also include games such as tic-tac-toe

or scrabble. In some cases a chat room can work as a game lobby where users go to find company

for online games. A good example of such a service is Blizzard Entertainment's Battle.net or the

now defunct MSN Gaming Zone. In these services users connect to a lobby where other players

are listed, sent messages are visible and they create or join games.(Wikipedia 2011.).

23

5 MY PROJECT

5.1 Idea

The aim of this project was to learn the basics of Unity networking. The purpose was to have fun

while learning and so the idea of creating something useful was planned, and thus the idea of

creating a chat lobby where users can talk and invite other users to games was created.

Essentially this is just another game lobby, but the requirement was to create it so that it could be

carried on a USB flash drive and the same client could join and create servers. This way there is no

need for a dedicated server as users can create a server when they need one and invite their

friends over.

 As this was a project to learn basic Unity networking, the intention was not to develop this to a

ready-for-shipping product. Due to this some features had to be dropped such as making an

example game, custom graphics for the GUI and master server support. Adding these into the

project would have at least tripled the development time which was not desired.

5.2 Planning

The first thing after coming up with the idea was to draw the GUI. As, when developing something

I personally want to create the base onto which I build the features. This way it is possible to keep

track of what needs to be done and what needs to go where without looking at the concept

papers, and it is invigorating to see the project proceed. When the GUI was drawn, step by step

work was started to get the planned features implemented. These features included: creating a

server, joining a server, listing users, sending messages, displaying messages and game invites.

24

5.3 Obstacles

Since this was a learning project the first thing to do was to read the Unity forums for tips and

tricks and look for tutorials about Unity networking. A very good Unity networking tutorial

created by M2H Game Studio was processed first. From this tutorial it was possible to gather

plenty of information on Unity networking. After every tutorial step time was spent working on

the script to see how things really work and to memorize the commands and functions. This

information gathering phase took around one and a half weeks.

5.4 Implementation

The first step in the project was to ensure connectivity. This included several lines of code and

two buttons. One was for joining a server and the other was for creating one. After the

connection had been established between the clients developing the GUI for the chat room itself

started. The chat room has three main components: a message display box, a message type box

and listed users. The message display box is as the name suggests, an area where the user

messages are displayed. The message type box is where the users type their message to be sent

for others to see. Finally, the listed users area lists the connected users in the order they have

connected. In addition to this the listed users area includes the game invite buttons which can be

used to invite another player to a game.

To create a server the user only has to click the Create-button in the startup menu and the server

is ready to go. To join, the user has to enter an IP address, port and his/her desired name.

The chat room itself works as any other. A user types a message he or she wants to send and hits

the enter-key or send-button on the GUI. There is a spam prevention check which prevents a user

from flooding the message screen. Users are listed in the order they connect to the server and

they have game invite buttons on their right side in the listed users display. The message display

area shows if a user leaves or enters, and displays the messages the users have sent.

If a user wants to invite another person to a game, he or she can click the invite-button next to

the other one’s name. This opens a dialog where one can choose a game to which the other is

25

invited. Clicking OK in this dialog will send a game request for the invited user. The user who

invited will be shown an information box which informs that their invitation is being processed by

the invited user. If the invited user declines a game session, the invitation sender will receive a

message about the declined invitation. Should the invited user accept the game invitation, both

users will load the game automatically.

PICTURE 10. After the start up the user has to select whether to create or join a server.

26

PICTURE 11. Selecting the server creates the server and it is ready to use.

PICTURE 12. User joining a server. An IP address, port and name is required to join in.

27

PICTURE 13. Two users have joined in and started to chat.

PICTURE 14. User Esa is inviting Elmeri to a game.

28

PICTURE 15. After sending the invitation, Elmeri receives a dialog where he could accept or

decline it. The sender receives a response window to see that his invitation has been successfully

sent.

29

5.5 Further Development

As mentioned, this version lacks several features which would add value for the project and the

project has not been thoroughly tested. Master server support would allow dedicated servers

where users could connect behind NATs and public servers could be made. Now the joining

process requires an IP address and the port of the server which is not very good for mass access.

To make the application look more desirable it would require custom made user interface

graphics as the default boxes and buttons are rather bland. Creating custom graphics is not

something I myself can create, at least to the point where they would be any improvement from

the default graphics.

Creating a multiplayer game for the chat room as an example of what needs to be sent to the

game from the server to game level is something that needs to be done if this is to be developed

any further. A simple game such as tic-tac-toe or a card game would suit this purpose well and

would take about a month to develop. This would be the logical first step for further development

since the chat room itself is not a service that people would use over the other dozens and dozens

of chat rooms. Thus creating a simple game could attract users to the product.

If the project is developed further, the first step would be to create a game for the chat room.

First it should be decided whether to include the game inside the client or to stream the game for

the users after they decide which game to play. Both have their pros and cons. Having the games

inside the client would reduce load times as no streaming is required and when no streaming is

done the server computer will not be a bottleneck. Having games included in the client would

however drastically increase the client size. Including the games in the client would require

optimizing the games to take as little space as possible. If the games were to be streamed from

the server to the clients, the server would have to have a very fast Internet connection or

otherwise joining in the game would be painfully slow. The advantages of this are that only the

server has to have the updated versions of the games played and the client size would stay small.

Finally, the user interfaces would need redesign to have a proper pattern and good usability, and

proper testing would be required to grind out possible bugs. Now they are just created to work

and very little time has been spent on considering how good they look or how easy they are to

use. All in all, a lot is needed to make this a viable product but in essence the core functions are

30

ready and the main goal, which was to learn Unity networking, was indeed accomplished.

5.6 Chat room code examples

Creating a server in Unity is very simple and can be achieved by a single line of code:

 Network.InitializeServer(64,25000);

This creates a server which listens to port 25000 and allows 64 simultaneous connections.
Connecting to a server is not much harder:

 Network.Connect("127.0.0.1", 25000);

The above function connects to a server at 127.0.0.1 in port 25000. Establishing connection on
Unity is as simple as that.

When a chat room is created, an admin is also created:

function OnServerInitialized() {

 //--- Create "Admin" chatter
 playerName = "Server";
 var newPlayer = new ServerPlayersConnected();
 newPlayer.networkPlayer = Network.player;
 newPlayer.playerName = "Server";
 serverPlayers.Add(newPlayer);
 networkView.RPC("ShowPlayers", RPCMode.OthersBuffered, "Server",
Network.player);

}

In the above code the player is given a default name and his or hers connection information is
stored in a ServerPlayersConnected object and this object is then added to an ArrayList which
keeps track of the players who are connected to the server. The last line of code buffers the
creation of this server player, so that when other players join the server they are automatically
informed.

Listing the connected users is done by going through all the ServerPlayerConnected objects in an
ArrayList. This same method is used in client side listing and also when listing the game invite
buttons. The example below is server side player listing:

if(Network.isServer)
 {
 for(var entry : ServerPlayersConnected in serverPlayers)
 {
 if(counterServer < serverPlayers.Count)
 {
 GUI.Label(Rect(5,25*counterServer,100,25), entry.playerName);
 counterServer++;
 }
 }
 userCounter = counterServer;
 counterServer = 0;
 }

31

Large parts of the code revolved around creating ArrayLists of objects which were handled in for-
loops. These include player and message storing, game invites and creating UI elements. These
lists made it easy to handle those procedures and kept them neatly organized.

32

6 Sources

Battle.net
http://en.wikipedia.org/wiki/Battle.net. Read on Janaury 2011.

Chat room
http://en.wikipedia.org/wiki/Chat_room. Read on January 2011.

Client (computing)
http://en.wikipedia.org/wiki/Client_%28computing%29. Read on January 2011.

Habbo
http://en.wikipedia.org/wiki/Habbo. Read on January 2011.

MSN Games
http://en.wikipedia.org/wiki/MSN_Games. Read on January 2011.

Network address translation
http://en.wikipedia.org/wiki/NAT. Read on January 2011.

SUSE Linux Enterprise Server
http://en.wikipedia.org/wiki/SUSE_Linux_Enterprise_Server. Read on January 2011.

Server (computing)
http://en.wikipedia.org/wiki/Server_%28computing%29. Read on January 2011.

Seyler,B. 2010. Marketwire: Unity Technologies Unveils 'Union'
http://www.marketwire.com/press-release/Unity-Technologies-Unveils-Union-New-Division-Headed-by-
Brett-Seyler-1350973.htm. Read on January 2011.

UNITY
http://unity3d.com/unity/editor/. Read on January 2011.

UNITY: Android
http://unity3d.com/unity/publishing/android. Read on January 2011.

UNITY: Asset Pipeline
http://unity3d.com/unity/editor/importing. Read on January 2011.

UNITY: Asset Server
http://unity3d.com/unity/editor/asset-server. Read on January 2011.

UNITY: Asset Store
http://unity3d.com/unity/editor/asset-store. Read on January 2011.

UNITY: Audio
http://unity3d.com/unity/engine/audio. Read on January 2011.

UNITY: Built-in Shader Guide
http://unity3d.com/support/documentation/Components/Built-in%20Shader%20Guide.html. Read on
January 2011.

33

UNITY: Deferred Lightning Rendering
http://unity3d.com/support/documentation/Components/RenderTech-DeferredLighting.html. Read on
January 2011.

UNITY: Extending the Editor
http://unity3d.com/support/documentation/Components/gui-ExtendingEditor.html. Read on January
2011.

UNITY: Fast Facts
http://unity3d.com/company/fast-facts. Read on January 2011.

UNITY: Image Effect Scripts
http://unity3d.com/support/documentation/Components/comp-ImageEffects.html. Read on January 2011.

UNITY: Lightmapping
http://unity3d.com/support/documentation/Components/class-LightMapping.html. Read on January 2011.

UNITY: Networking
http://unity3d.com/unity/engine/networking. Read on January 2011.

UNITY: Occlusion Culling
http://unity3d.com/support/documentation/Manual/Occlusion%20Culling.html. Read on January 2011.

UNITY: Physics
http://unity3d.com/unity/engine/physics. Read on January 2011.

UNITY: Programming
http://unity3d.com/unity/engine/programming. Read on January 2011.

UNITY: Ragdoll Wizard
http://unity3d.com/support/documentation/Components/wizard-RagdollWizard.html. Read on January
2011.

UNITY: Rendering
http://unity3d.com/unity/engine/rendering. Read on January 2011.

UNITY: Scene Construction
http://unity3d.com/unity/editor/scenes. Read on January 2011.

UNITY: Screen Space Ambient Occlusion
http://unity3d.com/support/documentation/Components/script-SSAOEffect.html. Read on January 2011.

UNITY: Shadows in Unity
http://unity3d.com/support/documentation/Manual/Shadows.html. Read on January 2011.

UNITY: Shop
https://store.unity3d.com/shop/. Read on January 2011.

UNITY: Terrains
http://unity3d.com/unity/engine/terrains. Read on January 2011.

UNITY: Tree Creator Guide

34

http://unity3d.com/support/documentation/Components/class-Tree.html. Read on January 2011.

UNITY: Wheel Collider
http://unity3d.com/support/documentation/Components/class-WheelCollider.html. Read on January
2011.

UNITY: Writing Surface Shaders
http://unity3d.com/support/documentation/Components/SL-SurfaceShaders.html. Read on January 2011.

Unity - Building the Master Server/Facilitator on your own
http://unity3d.com/support/documentation/Components/net-MasterServerBuild.html. Read on January
2011.

Unity - Master Server
http://unity3d.com/support/documentation/Components/net-MasterServer.html. Read on January 2011.

Unity - Network View
http://unity3d.com/support/documentation/Components/class-NetworkView.html. Read on January 2011.

Unity - RPC Details
http://unity3d.com/support/documentation/Components/net-RPCDetails.html. Read on January 2011.

Unity - Unity Web Player and browser communication
http://unity3d.com/support/documentation/Manual/Unity%20Web%20Player%20and%20browser%20co
mmunication.html. Read on January 2011.

Unity Script Reference - Gizmos
http://unity3d.com/support/documentation/ScriptReference/Gizmos.html. Read on January 2011.

Unity Script Reference - MonoBehaviour.OnSerializeNetworkView
http://unity3d.com/support/documentation/ScriptReference/MonoBehaviour.OnSerializeNetworkView.ht
ml. Read on January 2011.

Unity Script Reference - WWW
http://unity3d.com/support/documentation/ScriptReference/WWW.html. Read on January 2011.

35

7 Appendixes

