
 

 

Juha Järvi  

Comparison of mobile application development technol-

ogies 

 

Thesis 
Spring 2020 
SeAMK Technology 



1 

 

SEINÄJOKI UNIVERSITY OF APPLIED SCIENCES 

Thesis abstract 

Faculty: Seinäjoki University of Applied Sciences 

Degree programme: Information technology 

Specialisation: Software Engineering 

Author: Juha Järvi 

Title of thesis: Comparison of Mobile Application Development Technologies 

Supervisor: Marko Hietamäki 

Year: 2020  Number of pages: 36  

The purpose of this thesis was to explore the differences and limitations of native, 
hybrid and progressive web application development in a mobile environment. The 
aim was also to find out which projects these techniques are applicable and what 
should be considered. 

tools used to develop examples and test these techniques were Android Studio and 
Visual Studio Code. The native application used Java as the programming lan-
guage. In the hybrid and progressive web applications, JavaScript was used as the 
programming language. The Ionic 4 framework was also used in the hybrid applica-
tion. 

The result of this thesis was to find out what to take into consideration when choos-
ing a technology for a new project and what kind of limitations certain choices bring. 
By comparing the differences, one could draw conclusions as to which technology 
is right for which application. 

  

Keywords: Native, Hybrid, PWA, progressive web application, mobile application, 
Java, JavaScript, HTML, CSS, Angular, cross-platform 



2 

 

SEINÄJOEN AMMATTIKORKEAKOULU  

Opinnäytetyön tiivistelmä 

Koulutusyksikkö: Seinäjoen Ammattikorkeakoulu 

Tutkinto-ohjelma: Tietotekniikka 

Suuntautumisvaihtoehto: Ohjelmistotekniikka 

Tekijä: Juha Järvi 

Työn nimi: Mobiilisovellusten kehitystekniikoiden vertailu 

Ohjaaja: Marko Hietamäki 

Vuosi: 2020  Sivumäärä:  36  

Opinnäytetyön tavoitteena oli selvittää natiivin, hybridin ja progressiivisen verkko-
sovelluksen eroavaisuudet ja rajoitukset mobiilisovelluskehityksessä. Tavoitteena 
oli myös selvittää millaisiin projekteihin kyseiset tekniikat soveltuvat ja mitä tulee 
ottaa huomioon. 

Vertailussa käytettiin kehitysympäristönä Android Studioa ja Visual Studio Codea, 
joilla luotiin esimerkkejä ja testattiin kyseisiä tekniikoita. Natiivi sovelluksessa ohjel-
mointikielenä käytettiin Javaa. Hybridissä ja progressiivisessa verkkosovelluksessa 
ohjelmointikielenä käytettiin JavaScript. Hybrid sovelluksessa käytettiin myös Ionic 
4 puitteita. 

Opinnäytetyön tuloksena saatiin selvitettyä mitä tulee ottaa huomioon tekniikka va-
littaessa uuteen projektiin ja millaisia rajoituksia tietyt valinnat tuovat. Eroavaisuuk-
sia vertailemalla voitiin vetää johtopäätöksiä siitä, mikä tekniikka on millekin käyttö-
tarkoitukselle oikea. 

 

 

  

Avainsanat: Natiivi, Hybridi, PWA, progressiivinen verkkosovellus, mobiilisovellus, 
Java, JavaScript, HTML, CSS, Angular, cross-platform 



3 

 

TABLE OF CONTENTS 

Thesis abstract .................................................................................... 1 

Opinnäytetyön tiivistelmä ..................................................................... 2 

TABLE OF CONTENTS ...................................................................... 3 

Figures ................................................................................................ 5 

Tables ................................................................................................. 6 

Terms and abbreviations ..................................................................... 7 

1 INTRODUCTION ............................................................................ 8 

1.1 Thesis background ...................................................................................... 8 

1.2 Research aim and objectives ...................................................................... 9 

2 NATIVE APPLICATION ................................................................ 10 

2.1 What is native applications ........................................................................ 10 

2.2 Android Studio........................................................................................... 11 

3 HYBRID APPLICATION ................................................................ 14 

3.1 What is hybrid application ......................................................................... 14 

3.2 Hybrid application components ................................................................. 14 

3.2.1 Cordova .......................................................................................... 15 

3.2.2 AngularJS ....................................................................................... 16 

3.2.3 WebView ......................................................................................... 17 

3.3 What is Ionic.............................................................................................. 17 

3.4 History of Ionic .......................................................................................... 18 

3.5 Security ..................................................................................................... 19 

3.6 Ionic tools .................................................................................................. 20 

3.6.1 Ionic Creator ................................................................................... 20 

3.6.2 Ionic Studio ..................................................................................... 20 

3.6.3 Ionic DevApp ................................................................................... 21 

3.6.4 Ionic Lab ......................................................................................... 22 

4 PROGRESSIVE WEB APP ........................................................... 23 

4.1 What is PWA ............................................................................................. 23 

4.2 PWA Advantages ...................................................................................... 24 

4.3 Disadvantages of PWA ............................................................................. 24 



4 

 

5 COMPARISON OF TECHNOLOGIES .......................................... 25 

5.1 Comparative analysis results .................................................................... 26 

5.2 Results of the study ................................................................................... 27 

5.2.1 Native applications .......................................................................... 29 

5.2.2 Hybrid applications .......................................................................... 29 

5.2.3 Progressive web applications .......................................................... 30 

6 Conclusions .................................................................................. 32 

6.1 Native application ...................................................................................... 32 

6.2 Hybrid application ...................................................................................... 32 

6.3 PWA application ........................................................................................ 33 

REFERENCES .................................................................................. 34 

 



5 

 

Figures  

Figure 1 Popularity of smartphone usage (Mobile usage) ....................................... 9 

Figure 2 Native application principle ..................................................................... 10 

Figure 3 selecting a project template .................................................................... 12 

Figure 4 Android Studio user interface with dark theme ....................................... 13 

Figure 5 Hybrid application ................................................................................... 15 

Figure 6 Model view controller (MVC) ................................................................... 16 

Figure 7 History of Ionic (Javatpoint) .................................................................... 18 

Figure 8 Ionic WebView (Ionic WebView) ............................................................. 19 

Figure 9 Ionic Studio ............................................................................................. 21 

Figure 10 Ionic Lab ............................................................................................... 22 

Figure 11 Ionic Lab styles ..................................................................................... 22 

Figure 12 The new Lifecycle (Maximiliano Firtman) .............................................. 23 

  

  



6 

 

Tables  

Table 1 Comparative analysis comparison of technologies (Comparative analysis, 

[referred 20.1.2020) 

Table 2 Comparison of development technologies 

 



7 

 

Terms and abbreviations 

API Application Programming Interface 

App Store  Apple’s application market 

Cross-platform System that can work across multiple types of platforms or 

operating environments. 

Framework  Platform for developing software application  

Google Play Google’s application market 

Hybrid Application that runs inside browsers WebView 

IDE  Integrated Development Environment 

MVC Model View Controller means a design pattern that is com-

monly used for developing user interfaces. 

Native  Software that is developed for use on a particular platform 

or device. 

PWA Website that displays like a mobile application. 



8 

 

1 INTRODUCTION 

This thesis focuses on android mobile application development and compares na-

tive, hybrid and progressive web applications. The first mobile applications on An-

droid were created for information and daily purposes as reading mails, calculating, 

creating calendar events and checking forecast. These were great features for a 

smartphone back then, but nowadays people are doing a lot more with them. The 

wide variety of features that smartphones offer today are the main reason for high 

usage today and this is why there is such a need for more professional programmers 

to implement their ideas. A smartphone is more like a pocket computer. It is clear 

that smartphones have come closer to people’s daily life in the past 10 years, it’s 

the tool that many people find hard to live without.  

1.1 Thesis background 

In the year 2009 the first iPhone was born and around the same time first Android 

phones were released. Figure 1 shows that smartphones’ popularity has grown a lot 

in the past 10 years. Today people use more their phones to make daily work easier. 

The increased use of mobile devices has also increased the demand for applica-

tions. Nearly every week I hear someone having a good mobile application idea, but 

they do not have skills to create one or motivation to learn how to do it.  

Developing a mobile application requires basic coding but nowadays there are many 

frameworks to choose from. Frameworks make it easier to get started with the de-

velopment. 

 



9 

 

 
Figure 1 Popularity of smartphone usage (Mobile usage) 

A common way to create mobile applications is native java coding for android or 

using swift for IOS. There is also a way to create a simple cross-platform application 

with web technologies. These cross-platform apps are using the same code base, 

so if you are familiar with creating websites or know something about JavaScript, it 

should be pretty easy.  

1.2 Research aim and objectives 

The aim of the study is to find out differences between the mobile application devel-

opment technologies and help the programmer to decide which technology suits 

best their needs and the resources they have. 

 What are native, hybrid and PWA?  

 Why Hybrid and PWA might be the ways in the future of mobile applications? 

 What are the benefits and disadvantages of cross-platform applications?  

 How complex the technology or language is? 



10 

 

2 NATIVE APPLICATION 

This chapter focuses on the native Android application. Native applications on An-

droid use Java programming language and I have chosen Android Studio IDE to 

show some examples of the environment. Apple users can also use swift as the 

programming language and XCode IDE to create IOS native applications. 

2.1 What is native applications 

Natives are standalone applications and they are made for a certain mobile platform 

with the official programming language of the specific platform. For example, An-

droid is using Java, and IOS is using Swift. Native applications communicate straight 

with the operating system (figure 2). With the straight connection, native application 

gets access to an application programming interface and through it can access the 

camera, sensors, and other components (comparative analysis, [referred 

5.12.2019). Because of a simple straight connection between the application and 

operating system, the application performs as fast and smoothly as possible. Also 

publishing the final application in the App Store has been made very simple with 

native applications.  

 
Figure 2 Native application principle 



11 

 

The biggest downsides of native mobile applications are probably developing and 

maintenance costs, because the application is made for a specific operating system. 

Native application development requires knowledge on both Android and IOS plat-

forms.  

2.2 Android Studio 

Google has developed its own Android Development Environment Android Studio. 

Android Studio is the most common development environment for Android. Android 

Studio is built on the JetBrains IntelliJ development platform. Google itself has a 

great influence on popularity, and the platform is free for everyone. Google re-

sources provide long-term support for Android Studio development, so it is worth-

while to try out. Google also has great documentation of the basics and its popularity 

provides a quick solution to problems (IntellJ idea blog [referred 20.11.2019). There 

are still possibilities to use IntelliJ IDEA, Unreal Engine, and other IDEs but the main 

IDE is Android Studio. The programming language is Java, which uses the Android 

Software Development Kit. Android SDK includes all the libraries for Android devel-

opment. 



12 

 

 
Figure 3 selecting a project template 

Android Studio offers many prebuilt templates to get started with (Figure 3.)  They 

are a great way to get started with Android Studio. The templates contain basic 

elements of Android native applications, like the navigation bar, floating buttons, and 

hamburger menus. Developers can see how those components are made and then 

copy them to their projects or just keep development with the current template. 



13 

 

 
Figure 4 Android Studio user interface with dark theme 

The Android Studio designer mode is useful especially if you are new to mobile 

development. I found myself it easy to see how things work by just playing with the 

designer mode and using a drag and drop method. The designer also made it easy 

to get familiar with the components and naming (Figure 4). 

 



14 

 

3 HYBRID APPLICATION 

Hybrid is getting more popular every day because of its agility. There are plenty of 

different frameworks for creating hybrid applications. In these examples, I am using 

the Ionic 4 framework. This chapter will quickly go through the history, architecture, 

components, and tools which help the developer to get started. It often takes a lot 

of time to find information, but ionic documentation and helpful applications make it 

easy to keep productive workflow.  

3.1 What is hybrid application 

When Android got popular in 2010, native applications were the main option devel-

opers had to create fast and user-friendly, fluid mobile applications for Android, but 

nowadays there are many other options. A hybrid application is the one, which got 

great advantage easily running on different operating systems, so the price and 

maintaining costs have decreased significantly. It is also very easy to get started if 

you have some web developing history because hybrids use JavaScript, HTML, 

CSS and Angular or React. The hybrid applications use frameworks that enable 

creating applications that behave like native ones. These applications are installed 

on the device just like native apps, so they are installed on the phone’s hard drive. 

The fact is that the hybrids got some downsides and they do not always perform as 

well as native applications. (Bakwa D, [referred 10.12.2019). 

3.2 Hybrid application components 

Hybrid applications are always made of one or more components. The ionic frame-

work utilizes AngularJS, JavaScript, HTML and CSS programming technologies.  If 

a developer has previous experience with website development, Ionic may feel very 

much like home (Uudelleenkäytettävä mobiilisovellus, [referred 10.12.2019). 



15 

 

  
Figure 5 Hybrid application 

The hybrid application runs inside webview which is inside the native application 

(Figure 5). The bridge connection between native and webview gives the application 

access to native application features like sensors and notifications.  

3.2.1 Cordova 

Cordova has been developed and maintained by Apace Software Foundation. Cor-

dova is the new PhoneGab, if that sounds more familiar. Ionic 4 is using Cordova 

by deploying the final APK file or installing the software to the device. Cordova uses 

command-line tools for deploying the application and it does not have its developing 

environment. It is usually written with other web developing tools and integrated 

development environments example visual studio code, Atom, Sublime text, etc. 

Cordova creates a full-screen WebView of the native application. The application is 

a standard HTML page, but when Cordova deploys the application into native, it 

creates a bridge between the application and the operating system. With the bridge, 

application can access the camera and other devices. (Ionic Glossary, [04.12.2019)  

Web Content 

Native App 

 

 

 

 

 

 

 
Native Bridge 

WebView 

 

 

 

JavaScript Bridge 

Web Rendering Engine 

Native APIs / Platform 



16 

 

Hybrid apps use a web-to-native abstraction layer. The layer gives access to many 

device-specific capabilities and native APIs that are not generally accessible from 

the mobile web browser alone. There are also many built-in hardware functionalities 

in HTML5 APIs, but sometimes they are not enough. (Ionic WebView [referred 

13.12.2019) 

3.2.2 AngularJS 

The first version of AngularJS was released in 2009. After that Google took the pro-

ject maintenance. AngularJS is nowadays under Google’s maintenance open 

source JavaScript library. AngularJS cannot develop server-side solutions, but it 

provides the MVC architectures (figure 6). AngularJS aims to facilitate application 

development by providing extensions and tests for application development (Angu-

larJS, [referred 4.12.2019). 

 

Figure 6 Model view controller (MVC) 

AngularJS MVC contains model, view and controller. Model in AngularJS is a Ja-

vaScript object without getter or setter methods and defines the structure. It is a 



17 

 

primitive data type such as number, string, boolean or object. View is the user inter-

face which defines display. Controller is collection of JavaScript classes which con-

trols the application logic. Controller receives updates from view and notifies model 

to react (What is MVC in AngularJS, [referred 26.3.2020). 

3.2.3 WebView 

WebView is an embedded browser that displays a "native" application. The browser 

itself is a native application that UI (User Interface) contains an address bar, navi-

gation keys and other components required for use. The other part of the browser 

is an engine similar to WebView. The interface tells WebView what content should 

be displayed in the window and WebView executes it (Understanding WebViews 

[referred 15.12.2019). 

Hybrid applications use WebView to display content. The only "native" thing in hy-

brid applications is maintaining WebView and displaying the required content there. 

Besides JavaScript is capable of using a native application programming interface 

within WebView, so the hybrid application is not as limited as the Web App alone 

(Understanding WebViews, [referred 15.12.2019). However, Hybrid applications 

can be referred to as technically native applications for this reason  

3.3 What is Ionic 

There are plenty of different frameworks and every day comes a new one, but they 

all have advantages and disadvantages. The moment when I am writing this thesis, 

Ionic 4 seems a promising choice, so that’s why I picked it up for an example. 

Ionic is a rapidly growing open-source library that provides powerful, high-quality 

system-independent interfaces for mobile devices, websites, and computers. Ionic 

uses JavaScript, AngularJS, HTML and CSS programming languages. Ionic utilizes 

the Cordova framework. The ionic framework focuses on user interfaces such as 

buttons, animations and element placing. Ionic is easy to get started and there is 

plenty of information on the internet (Ionic Intro [referred 15.12.2019). 



18 

 

3.4 History of Ionic 

The Ionic framework is today one of the most popular cross-platform development 

technology and releases some enhancements every six months. New versions of 

Ionic keeps still the same concept, so development doesn’t suffer from this (figure 

7). 

 

Figure 7 History of Ionic (Javatpoint) 

In 2013, Ionic 1 used Angular 1 and its directives. Web components were not in use 

yet (Ionic history, [referred 15.12.2019). 

In 2016, Ionic 2 was released using Angular 2. This was just a newer version of the 

Angular but completely different from the older version, so Ionic 2 was no longer 

compatible with the old Angular (Ionic history, [referred 15.12.2019). 

In 2017, Ionic 3 was released with a lot of new features but mainly focused on An-

gular 4. The Ionic development team found that Ionic 3 is not an optimal environment 

to continue operating as it is entirely limited to Angular (Ionic history, [referred 

15.12.2019). 

In 2019, Ionic 4 was released, focusing on web components. Web components allow 

you to create native application-specific applications that are run in WebView. Ionic 

4 utilizes JavaScript, AngularJS, HTML and CSS Web technologies. It supports all 

browsers that allow access to traditional HTML elements and can be used with any 



19 

 

web framework. Ionic 4 can be now used with any other framework (Ionic history, 

[referred 15.12.2019). 

 

3.5 Security 

You can never fully trust the content you download from a website. However, this 

does not cause any problems with WebView.  

 
Figure 8 Ionic WebView (Ionic WebView) 

The content of WebView is under the control of the developer, so the likelihood of 

malicious code getting inside WebView is low. Because of this, developers have 

been given several different options for override with standard data security settings 

and through this get the web code and native application to talk to each other (Figure 

8). This connection is called a bridge. The bridge enables JavaScript to call the de-

vice API, the device programming interface, and use sensors, storage, contacts, 

and other components (Ionic webview, [referred 15.12.2019). 



20 

 

3.6 Ionic tools 

Ionic offers a lot of helpful tools for hybrid application developers to be more pro-

ductive and speed up things. Programmers act differently and some of them like to 

use only command line tools etc. Anyway, everyone should give a chance for this 

kind of tool because if they are done right, they help to get a job done faster. 

3.6.1 Ionic Creator 

Ionic Creator makes it easy to create applications. The main focus isn’t in the coding. 

The program is built into a web interface where you can directly move components 

with your cursor like drag and drop style, into the application and see the appear-

ance changes in real-time. The application generates HTML code compliant with 

the Ionic framework in the background. Creating an interface is easy. Ionic Creator 

is free for public projects, but you must obtain a license for private and commercial 

use. 

3.6.2 Ionic Studio 

Ionic Studio was created for Ionic hybrid application development. IDE (Integrated 

Development Environment, [referred 20.12.2019) supports TypeScript, automatic 

code completion, de-bugging and more. besides, Ionic Studio offers many pre-pro-

grammed components that can be easily added to your project (figure 9). 



21 

 

 
Figure 9 Ionic Studio 

The idea behind Ionic Studio is to make programming as easy and efficient as pos-

sible over time. Ionic Studio does not offer a free trial version but requires a current 

monthly license, which will vary in price depending on the content (Ionic Studio, 

[referred 20.12.2019). 

3.6.3 Ionic DevApp 

Ionic DevApp is an application designed for Android and IOS that allows you to run 

the application directly on your mobile device in real-time. DevApp uses a network 

connection for data transfer and the devices must be on the same LAN. This is very 

useful if you need to give some demo experience for a customer or someone else. 

Through DevApp, the application can be tested as fast as in the browser using lo-

calhost or Ionic Lab. These ways are much faster, installing the actual APK of the 

app on your phone. 



22 

 

3.6.4 Ionic Lab 

Ionic Lab is an add-on to the Ionic Framework that can emulate Android and IOS 

applications side by side (Figure 10). In the lab, an application can be easily emu-

lated on screens of different sizes.  

 
Figure 10 Ionic Lab 

 
Figure 11 Ionic Lab styles 

The Ionic Lab is updated in real-time for both operating systems, so the developer 

can easily track changes he makes. In the picture (figure 11) you can see how the 

Ionic Framework downloads its styles for IOS and Android. (Ionic lab, [referred 

20.12.2019) 

 



23 

 

4 PROGRESSIVE WEB APP 

The third category represents progressive web applications. Web apps act like a 

native mobile application but its really a regular web page. Web apps lack function-

ally if compared to native. There is no bridge access to API which could be used to 

access device components and functionalities. Browsers and web apps are becom-

ing more advanced and now PWA’s can do some similar functionalities as native 

apps. Sending push notifications, access device hardware, vibration and touch ges-

tures. A few years back, PWA’s were supported only by Google Chrome, but now-

adays that’s not a problem anymore Annie Dossey, [referred 20.12.2019).  

4.1 What is PWA 

Progressive Web Applications are web pages that act like a native application and 

gives better user experience than normal websites. Because PWA is just a regular 

website that runs on a server, it will work on all devices regardless of the operating 

system. The main requirement is that the device can run a browser. Updating is 

easy when there is only one codebase and it can be done on the fly (Annie Dossey, 

[referred 20.12.2019). 

 

Figure 12 The new Lifecycle (Maximiliano Firtman)  

New PWA lifecycle prevents iOS reload problems. iOS instance was terminated 

every time the user closed the application and it restarted from scratch. That was 



24 

 

making PWA unusable on iOS but after 12.2 IOS update, this new lifecycle prevents 

that kind of issue (Figure 12). Application stores the current state of the program in 

local storage to retrieve it later in case of a full reload (Maximiliano Firtman, [referred 

20.12.2019). 

4.2 PWA Advantages 

Web apps use the same code base on all devices so maintaining and updating are 

easy and more efficient than native and hybrid apps. Also running the app doesn’t 

really require any specific specs, basically, the only requirement is that the device 

must be able to run with a web browser example Google Chrome. Web apps don’t 

use standard operating system protocols and don’t require approval from the mar-

ketplace, so releasing the application is very simple and makes maintaining easy 

(Maximiliano Firtman, [referred 20.12.2019). 

4.3 Disadvantages of PWA 

Web apps are much more restricted when it comes to features and hardware. That 

affects the overall user experience, because there is less responsiveness, and per-

formance is poor if compared to native apps. There are many more steps to get into 

the web app, because user needs to open a web browser, search the URL and 

maybe log in, if there is no cookie data available. Some people are more familiar 

with these web sites and they know how to save a shortcut on the desktop, but still 

very few do that (Maximiliano Firtman, [referred 20.12.2019). Web apps usually 

have poor discoverability because they are not listed in the app store, but usually, 

this kind of applications are made by companies that already have specific clients. 

So, app marketing is quite easy. 



25 

 

5 COMPARISON OF TECHNOLOGIES 

This chapter handles native, hybrid and PWA technologies and compares my 

thoughts and the results of Comparative analysis research. The results of table 1 

are based on the comparative analysis research article and the results of table 2 are 

based on my thoughts about these technologies. Table 1 and Table 2 differ a little 

bit from each other because I found out that there are still a few important things to 

add, but the basics are the same. 

- Supported mobile platforms, means operating systems of mobile devices on 

which it is possible to install and start an application (Comparative analysis, 

[referred 4.1.2020). 

- Programming languages – languages in which the main code of the applica-

tion is written. They differ depending on the platform for which the application 

is developed (Comparative analysis, [referred 4.1.2020).  

- Official documentation and community of programmers – official documenta-

tion is available on the web sites of the mentioned IDEs and frameworks. 

Detailed documentation is extremely important for programmers, especially 

for those who are beginning to work with a certain technology. Alongside 

documentation, one of the key elements is the community of programmers 

who use the same technologies. In the evaluation of official documentation 

and community, mark 1 means that documentation is not transparent or de-

tailed and that it is difficult to be found, so the community itself is not wide 

and it is almost impossible to find an answer to any question posed (Com-

parative analysis, [referred 4.1.2020). 

- Application installation location – where the application will be installed on 

the device. 

- Complexity of installation – getting started with a new framework or a lan-

guage is always a challenge. Mark 1 means that the language needs a lot of 

training and earlier experience in that specific programming language or 



26 

 

framework. Mark 5 means that basic knowledge of programming is enough 

to get started easily. 

- Application speed – how fast an application performs. Mark 1 means long 

waiting times and slow performance. Mark 5 means responsive and fast per-

formance. 

- User experience – almost the same as application speed. User experience 

focuses more on how the application feels in hand and how native-like the 

app animations and usage are. Mark 1 means lags and stuttering with bad 

responsiveness. Mark 5 means native fluid experience with a fast perfor-

mance like native apps usually have. 

- Development and maintaining cost – The cost of developing the product is 

generally known but maintaining and updating are usually not considered. 

After the product is finally ready for publishing, someone should keep it alive 

and updated as time goes by and that is not cheap. Mark 1 means developing 

and maintaining is very laborious. Mark 5 means easy updates and cost-ef-

fective development. 

5.1 Comparative analysis results 

Comparative analysis research made simple mobile applications with each technol-

ogy. Their goal was to show the principle of functioning of those six different devel-

opment tools and different IDE’s. Computers they used for development was run-

ning Windows 7 professional with 4GB of RAM and OS X Yosemite with 8GB of 

RAM. Computer specs have a major effect on development speed when program-

ming and compiling software. They used Android Studio 2.1, XCode 6.4 and Visual 

Studio Community 2015. Hybrid application development they used Ionic version 

1.7.14 and PhoneGap version 6.3.0 for Android and iOS (Comparative analysis, 

[referred 20.1.2020). 



27 

 

Table 1 Comparative analysis comparison of technologies (Comparative analysis, 
[referred 20.1.2020)  

 

 

Referring to the comparative analysis research, native Android applications are not 

as good as Hybrid Ionic framework applications. The difference is not that big, but 

the hybrid is still much more agile, and it uses generic web application technologies, 

so many programmers might find it easy to get started with (Table 1). The speed 

and complexity of installation and also development is slower on a native applica-

tion. Running and testing a native application is also slower because Android Studio 

converts the application APK and installs it into the device. Hybrid apps run real-

time on the web page, so all changes can be seen immediately after saving the 

modified files. 

5.2 Results of the study 

Table 2 compares the basic differences between native, hybrid and PWA program-

ming technologies. There are minor differences in the application speed between a 

native, hybrid and PWA but It will directly affect the user experience which is one of 

the most important things in the application.  



28 

 

Table 2 Comparison of development technologies 
 Native Android  Hybrid Ionic PWA 

 

Programming language Java JavaScript JavaScript 

Supported mobile plat-

forms 

Android Android, iOS Android, iOS 

Application installation 

location 

Local Local Web browser 

Access to API Full access  Full access Lacks access to NFC, 

contacts and proximity 

sensors 

Getting started /  

Complexity of installa-

tion 

3 4 4 

Complexity of develop-

ment 

3 4 2 

Application speed  5 4 3 

User experience 5 3 2 

Official documentation 

and community 

4 4 3 

Development and main-

taining cost 

2 4 5 

Security 5 4 3 

 

Official documentation and overall documentation have a great impact on the devel-

opment and maintaining costs if the developer team does not have earlier experi-

ence in the framework or current language. Access to API restricts using PWA if the 

application needs access to the gyroscope or some API specific sensors. This 

makes it difficult to evaluate different technologies because there are so many fac-

tors that affect it. However, this comparison is made from a beginner programmer’s 

perspective. 



29 

 

5.2.1 Native applications 

Native applications behave the same way on Android and iOS. The native applica-

tion is made with a specific programming language and runs on a certain operating 

system, for example, Apple iOS and other manufacturers like Samsung, LG and 

Google use Android. Apple uses swift and objective-C with XCode IDE. Android 

uses Java programming language with Android Studio. That is why it is the most 

inefficient way to create apps for multiple platforms. However, a native application 

performs and gives the best user experience of all these technologies and it is hard 

to start arguing about it when everything works fast and smoothly without problems. 

The native applications will be installed on the local hard drive of a phone so offline 

usage is also possible. A local install speeds up the loading times because it is not 

dependent on internet speed or connection quality. One of the most important ben-

efits in the native application is straight communication with API, which permits to 

use a gyroscope and other device sensors. I noticed that setting up the Android 

Studio environment was easy but after that there were hard times with Android API. 

According to the Comparative analysis research (Comparative analysis, [referred 

22.1.2020), getting started was not so difficult as with hybrids and PWA but I disa-

gree. Maybe because I am used to working with Web development technologies 

and frameworks, it was hard to get started with native programming. However, eve-

rything makes much more sense in Java architecture if compared to JavaScript 

which is used by the hybrids and PWAs. About the security, a native has often been 

seen as the most secure option. That is because all the development has been done 

into the infrastructure of the app, encrypted and obfuscated (What about security, 

[referred 22.1.2020). 

5.2.2 Hybrid applications  

Hybrid applications use JavaScript programming language, so it’s is easy to get 

started with if the developer has some previous experience in web development 

because most hybrids use JavaScript as the programming language. JavaScript has 

a large community and Ionic documentation is good. Problems are usually easy to 

solve just using Google. 



30 

 

The hybrid application will be installed in a local storage, so it takes some space but 

nowadays, that is not a problem because of the large hard drives that phones have. 

Local install gives also the opportunity to use the app in an offline mode without an 

internet connection. Hybrids are cross-platform apps, so the codebase is the same 

on android and iOS. Cross-platform apps are easier to update and maintain because 

there is no need to have multiple knowledge of different languages or frameworks 

like native applications have. If Programmer have earlier experience in web tech-

nologies like HTML, SASS, JavaScript and bootstrap framework it may feel like a 

home with Ionic framework.  

Hybrid applications perform very well nowadays. A user might not even notice the 

difference between a hybrid and native. The programmer does not need to think 

about the different styles for iOS and Android. All animations and application themes 

come automatically from the Ionic framework if the HTML has been done right. Ionic 

tools that I tested were Ionic Creator, Ionic Studio and Ionic DevApp. Those tools 

help a lot in the development process. DevApp was a great tool to see real-time 

changes on the device and made the user interface designing fun and easy. In my 

opinion the only reason to create native applications might be the requirements to 

use all the functions of the mobile device through the API. There are still some func-

tionalities that hybrids cannot perform but natives can. 

5.2.3 Progressive web applications 

A progressive web application runs on a web page in a web view. That means it i 

has not been installed inside the phone's local memory and it does not take any 

space. That is why PWA is dependent on the internet connection to work properly. 

The application can run from a browser cache, but all functionalities are not available 

then. The programming language is JavaScript with HTML and CSS. PWA is also 

easy to get started especially if the programmer has some earlier experience in web 

development. A PWA application runs inside the browser so any device with a 

browser can run the application. There is only one codebase like in hybrid applica-

tions and the app runs on a server-side, so updating is done there.  Users do not 

need to download any updates on their phones. 



31 

 

PWA is lacking API access. There is no Bluetooth connection, NFC, proximity sen-

sor, ambient light, wake lock or access to contacts (Stack Overflow, [referred 

18.1.2020). User experience on PWA is good but not as good as with native or 

hybrid. Responsiveness and overall performance are slower than those of the na-

tive. There are so many ways to create progressive web applications with all avail-

able frameworks that documentation may be messy when the programmer starts 

the learning process. Documentation depends on the path that the programmer 

chooses. A hybrid application wrapper gives almost the same security capabilities 

as native. Progressive web applications are often seen as a less secure option if 

compared to native applications. This is because the hybrid apps run inside a con-

tainer. The container is essentially a normal web browser which can be exposed to 

some of the features of the underlying platform. PWA’s security is better than that 

of normal web applications because of HTTPS. Security protocols ensure that there 

are no exchanges between the server and the client. Still PWA is less secure than 

hybrid and native applications (PWA vs Native App, [referred 18.1.2020). 

 



32 

 

6 Conclusions 

It is often difficult to decide which the technology to use for developing an applica-

tion. Programmers often choose the language or framework that is familiar to them, 

so the project can be started quickly. That is understandable, of course, but later 

this may bring problems and cause big expenses in maintenance. Therefore, it is 

really important to determine which are the requirements before starting a project. 

What kind of customer group the application will be targeted to, which operating 

system it should run on and which resources are available? 

6.1 Native application 

A native application is the best option if the application is planned to run only on a 

particular operating system. Native apps are faster and more responsive because 

they are usually built lightweight and run on that specific platform. The app will have 

access to all device components, for example, a camera, gyroscope and Bluetooth 

and NFC through API. 

If the application needs to be run on multiple operating systems, then native devel-

opment cost is significantly higher compared to hybrid and progressive web appli-

cations, because the application needs specific programmers and knowledge for 

different platforms and languages. Also maintaining and updates must be done sep-

arately for each platform. However, native applications are the most secure ones 

and provide the best user experience after all, so If money is not a problem, a native 

application can still be an option. 

6.2 Hybrid application 

Hybrid applications are quite close to the native ones today. There are plenty of 

frameworks that are based on web development technologies. Most hybrid frame-

works use JavaScript and AngularJS or React. That helps a lot to get started if the 

developer has earlier experience in web development. Nowadays it is easy to find 



33 

 

people to carry out such a project because the web is everywhere. Documentation 

is good and that is why it is easy to solve problems. 

The ionic framework brings many useful tools to help developing. The application is 

updating real-time on the web browser or a real smartphone with an ionic dev tool 

installed. These things are small but speed up developing when programmer can 

see responsiveness and UI updating in real-time. Hybrids use the same code base 

on every operating system. Therefore, maintaining and updating the application is 

cost-effective and easy. Studying JavaScript gives an opportunity to try several 

other frameworks that are available. 

6.3 PWA application 

The development team only needs to build the software for a single operating sys-

tem.  There is no need to hire multiple different programmers to create software with 

different languages. The development team only needs to build it for a single oper-

ating system, which helps a lot with updates, testing and maintaining. The same 

code base runs on all operating systems so maintaining is efficient and powerful. 

Users do not need to download updates, because the application runs on a web 

site. 

Apps can be used on any device that runs a web browser regardless of the operating 

system as long as there is internet connectivity. Unlike conventional applications, 

PWAs can be easily shared with a URL-link and they give the user a quick access 

to test the application anywhere. 

PWAs are cross-platform apps and use the same codebase on all operating sys-

tems. The content on web applications can be customized to match different oper-

ating systems and frameworks, like Ionic loads automatically current operating sys-

tem native animations and fonts, so depending on the running device, the applica-

tion gets the native look.  

 

 



34 

 

REFERENCES 

Angular Docs v.1.7. Angular Modules [Online publication]. [Ref. 3. December 
2019]. Available at: https://docs.angularjs.org/guide/module 

Angular Docs. Architecture Overview [Online publication]. [Ref. 15 December 
2019]. Available at: https://angular.io/guide/architecture 

Annie Dossey. 20.7.2019. A Guide to Mobile App Development :Web vs. Native 
vs. Hybrid [Online publication]. [Ref. 4. January 2020]. Available at: 
https://clearbridgemobile.com/mobile-app-development-native-vs-web-vs-hy-
brid/ 

Bakwa D. Dunka, Dr.Edim A. Emmanuel, Dantala O Oyeyinka. December 2017. 
Hybrid mobile application based on ionic framework technologies [Online publi-
cation]. [Ref. 1. December 2019]. Available at: https://www.re-
searchgate.net/publication/322397904_HYBRID_MOBILE_APPLICA-
TION_BASED_ON_IONIC_FRAMEWORK_TECHNOLOGIES 

Comparative analysis. Vilček,T. Tomislav, J. Faculty of Humanities and Social Sci-
ences, Osijek, Croatia. Comparative analysis of tools for development of native 
and hybrid mobile applications. [Online publication]. [Ref. 10.11.2019. Available 
at: https://ieeexplore.ieee.org/. Requires access. 

Harnil Oza. 17.3.2019. Google Launches Android Studio 3.5 [Online publication]. 
[Ref. 12 December 2019]. Available at: https://www.hyperlinkinfosys-
tem.com/blog/google-launches-android-studio-35-whats-new 

https://stackoverflow.com/questions/55693406/can-pwa-access-contacts-gps-or-
use-the-phone-camera 

Ilpo Andström. 2.5.2016. Hybridimobiilisovelluksen kehitys [Online publication]. 
[Ref. 12 December 2019]. Available at: https://www.theseus.fi/bitstream/han-
dle/10024/114497/ilpo_andstrom.pdf?sequence=1&isAllowed=y 

IntellJ Idea Blog. 16.3.2013. IntellJ. [Online publication]. [Ref. 11 December 2019]. 
Available at: https://blog.jetbrains.com/idea/2013/05/intellij-idea-and-android-
studio-faq/ 

Ionic Docs. 09.12.2019. UI Components [Online publication]. [Ref. 14 December 
2019]. Available at: https://ionicframework.com/docs/components 

Ionic Glossary 29.01.2020 Cordova [Online publication]. [Ref. 20 February 2020]. 
Available at: https://ionicframework.com/docs/faq/glossary#cordova 



35 

 

Ionic Intro 11.02.2020 Cordova [Online publication]. [Ref. 24 February 2020]. 
Available at: https://ionicframework.com/docs/intro 

Ionic Lab. 11.2014. Introducing Ionic Lab [Online publication]. [Ref. 16 December 
2019]. Available at: https://ionicframework.com/blog/ionic-lab/ 

Ionic Studio. 2019. Visual Mobile App Development [Online publication]. [Ref. 10. 
January 2020]. Available at: https://ionicframework.com/studio 

Ionic WebView. 09.12.2019. WebView [Online publication]. [Ref. 5 January 2020]. 
Available at: https://ionicframework.com/building/webview 

Javatpoint. Ionic history [Online publication]. [Ref. 22 December 2019]. Available 
at: https://www.javatpoint.com/ionic-history 

Matti Väkiparta. Spring 2017. Android sovelluskehityksen perusteet Android Stu-
diolla. [Online publication]. [Ref. 10. November 2019]. Available at: 
https://www.theseus.fi/bitstream/handle/10024/123499/Matti_Vakiparta_Opin-
naytetyo.pdf?sequence=1&isAllowed=y 

Maximiliano Firtman. 26.3.2019. What’s new on iOS 12.2 for Progressive Web 
Apps [Online publication]. [Ref. 12. November 2019]. Available at: https://me-
dium.com/@firt/whats-new-on-ios-12-2-for-progressive-web-apps-
75c348f8e945 

Mobile usage. 26.9.2019. 75 Mobile statistics to get you amped for 2020 [Online 
publication]. [Ref. 20. March 2020]. Available at: https://www.highervisibil-
ity.com/blog/mobile-statistics/ 

MVC. 18.3.2019. Model view controller example [Online publication]. [Ref. 10. De-
cember 2019]. Available at: https://developer.mozilla.org/en-US/docs/Glos-
sary/MVC  

PWA vs Native App. 17.8.2018. Security. [Online publication]. [Ref. 10. January 
2020]. Available at: https://blog.magestore.com/pwa-vs-native-app/ 

Stack overflow 18.8.2016 What features do Progressive Web Apps have vs Native 
apps and vice-versa, on Android [Online publication]. [Ref. 15. February 2020]. 
Available at: https://stackoverflow.com/questions/35504194/what-features-do-
progressive-web-apps-have-vs-native-apps-and-vice-versa-on-an 

Stack Owerflow. 30.9.2019. PWA access [Online publication]. [Ref. 17. January 
2020]. Available at: Angular Docs v.1.7. Angular Modules [Online publication]. 
[Ref. 3. December 2019]. Available at: https://docs.angularjs.org/guide/module 



36 

 

Technology stacks. 25.9.2019. Do you have a technology stack to create your mo-
bile apps [Online publication]. [Ref. 13. January 2020]. Available at: http://naija-
techninja.blogspot.com/2015/09/do-you-have-technology-stack-to-create.html 

Timo Salola. Spring 2016. Uudelleenkäytettävä mobiilisovellus. [Online publica-
tion]. [Ref. 10. December 2019]. Available at: https://www.theseus.fi/bit-
stream/handle/10024/110261/Salola_Timo.pdf?sequence=1&isAllowed=y 

Understanding WebViews. WebView 101 [Online publication]. [Ref. 27 December 
2020]. Available at: https://www.kirupa.com/apps/webview.htm 

What about security. 14.3.2018. Hybrid or native: but what about security. [Online 
publication]. [Ref. 5. may. 2020]. Available at: https://blog.onegini.com/native-
vs-hybrid-apps 

What is MVC in AngularJS. 4.12.2019. AngularJS MVC Architecture. [Online publi-
cation]. [Ref. 26. may. 2020]. Available at: https://intellipaat.com/blog/tuto-
rial/angularjs-tutorial/mvc-angularjs/ 

 


