

Integration of Maventa electronic invoicing web service into

PlanMill business application suite.

Gavin Van Dok

 25.11.2011

 Abstract

 Date of presentation 6.10.2011

Business Information Technology

Author or authors
Gavin Van Dok

Group or year of
entry
2008

Title of report
Integration of Maventa electronic invoicing web service to
PlanMill business application suite

Number of
pages and
appendices

Teacher/s or supervisor/s
Zahid Anwar

PlanMill Cloud is an online, subscription-based B2B product which supports service-
based companies‟ business processes such as project management, employee time
reporting and customer billing. PlanMill recognized a need for more efficient generic
automation within its infrastructure. With increasing demands, especially in northern
Europe for businesses to use electronic invoicing there was urgency for an automated
setup and configuration of PlanMill‟s online services with a reliable electronic invoicing
operator.

As a part of the 14.1 Version release on 22.9.2011 PlanMill‟s goal was to completely
automate the registration, settings, verification and enabling of electronic invoice
sending (which includes printing and other services offered by the operators). The
chosen operator was „Maventa‟ – a locally based and emerging player in the e-Invoice
market. The integration would take advantage of Maventa‟s comprehensive open API
web service (Bravo version).

This report describes the architecture and explains the methods to be used. It then
follows the requirements gathering, creation of user stories and corresponding
Behaviour Driven Development models (BDD‟s), selection and requirements testing
of the API methods and Maventa‟s class libraries with JSP tools, data mapping
between to the two systems, and finally the refinement of the development BDD‟s into
useful cross-browser test cases. Due to some resource restrictions and the version
release deadline the project made some compromises for a less functional first-release
of the feature.

An appropriate new UI would need to be designed to implement the BDD‟s within
PlanMill‟s Java-based factory model architecture. The Java implementation was to be
primarily undertaken by a senior developer utilizing the results of the JSP tests and in
accordance to the BDD‟s. Any UI layer applied business rules would be handled by
JavaScript and be the responsibility of the author.

Keywords
web service integration, e-invoicing, API, PlanMill, Maventa

Table of contents

1 Introduction .. 1

1.1 Background .. 1

1.2 PlanMill‟s service segment customer base ... 1

1.3 Current methods, processes and resources .. 2

2 SaaS model launch goals ... 3

2.1 Limits of current sales model .. 3

2.2 Preparing for larger customer base with increased automation 3

2.3 Customization versus self-service features .. 4

2.4 Feasibility studies and profitability .. 4

2.5 Implication of research results - reorganization of resources 6

3 Working Methods for project ... 7

3.1 Scrum backlog, sprint of shippable product .. 7

3.2 Behaviour Development Design BDD artefacts .. 9

3.3 Kanban production process system .. 9

4 Architecture of PlanMill .. 10

4.1 Factory method design model ... 10

5 Existing functionality and the need for further development 12

5.1 Invoicing and limited e-invoice functions.. 12

5.2 Need for generic functionality for a multi-branched wizard 13

6 User stories and Behavioural Development cases ... 13

6.1 User stories to describe the desired functionality ... 13

6.2 Selection of functionality to be built in first Sprint .. 14

6.3 Acceptance criteria for user stories ... 15

6.4 First draft BDD definitions ... 16

7 Requirement gathering process .. 17

7.1 Research of API methods to match the user stories .. 17

7.2 Collection of important concepts, method responses and errors 18

7.3 Research of the Maventa UI and infrastructure .. 19

7.4 Clarification of registration process into state diagram .. 20

8 Database requirements .. 21

8.1 New code fields for recording states .. 22

8.2 New columns required in the existing Account object table 22

8.3 Design of a new Keystore table .. 22

9 UI design ... 23

9.1 BDD cases to wireframes .. 23

9.2 Wizard design considerations .. 24

10 Rationalization phase ... 25

10.1 Reduction of scope for first sprint .. 25

10.2 Assumptions made for unnecessarily complicated preferences 26

11 Finalization of Design specifications ... 27

11.1 Refinement of BDDs .. 27

11.2 Creation of clear additional specifications linked to BDD‟s Business rules 27

11.3 Data mapping .. 28

12 Implementation .. 29

12.1 System specification .. 29

12.2 Distribution of implementation across PlanMill architecture 29

12.2.1 Server side implementation .. 29

12.2.2 Client side implementation... 30

12.2.3 Production-use JSP tool for adding keys directly to the Keystore 30

12.2.4 Script-handled behaviour design requirements ... 33

12.3 Communication ... 33

13 Acceptance testing and documentation .. 34

13.1 Evolution of BDD cases into Acceptance test cases ... 34

13.2 Documentation of completed functionality .. 36

14 Learning outcomes ... 38

14.1 Checklist for integration of an application with a third-party web service........ 38

Bibliography ... 40

Attachments ... 1

Appendix 1 - User stories ... 1

Appendix 2 – CONFIDENTIAL Error! Bookmark not defined.

Appendix 3 – CONFIDENTIAL Error! Bookmark not defined.

Appendix 4 - Acceptance BDD test case for Submit Registration form 2

1

1 Introduction

1.1 Background

PlanMill has been operating in its current form since 2001 though it has a longer legacy

as a Project management tool. The business suite now supports Project management,

Customer relations management, and some ERP processes such as invoicing. Its

strength is its focus on service-based industries that invoice mainly on a time-reporting

basis, and often in a project driven environment. PlanMill appears to fill a demand that

applications like Microsoft‟s Dynamics Navision (which support more product-based

ERP processes) are not satisfying.

One important feature of PlanMill Cloud is the ability to directly create invoices from

the project revenues and sales orders in support of the complete sales process.

However research carried out by the author had confirmed that with their currently

manual configuration PlanMill could not profitably support new customers with less

than 5 users. Thus PlanMill recognized its need to continually develop towards a better

„SaaS‟ (Software as a Service) mass-configuration and automation leveraging model to

have any growth in this potent „micro‟ segment.

1.2 PlanMill’s service segment customer base

PlanMill specializes in SME‟s within the broad category of service-based businesses.

These vertical segments of these groups include IT services, IT software project

companies, Media, and Accounting, and Financial Services.

PlanMill‟s current online infrastructure and segmentation is geared to mainly medium

sized business with 20-50 users though they have several clients supporting over 250

users. PlanMill still services a small market share in larger on-premise solutions. These

were out of scope and not directly considered in this project. However the current

2

function rich architecture and more complex configurations and setup processes are a

result of this larger corporation heritage.

1.3 Current methods, processes and resources

Currently any customizations and connections to third-party services require manual

configurations, custom stored procedures and business layer coding by consultants and

developers. There is a waiting list for these customizations, they can be costly and there

always the risk of mistakes in the requirements gathering and implementation of the

code. The major problem is of course growing liability of managing and maintaining

the many thousands of lines customer specific code, parameters and scripts throughout

continual evolution of the business suite. In a multi-tenanted architecture such as

PlanMill, direct customizations create risks of failures in the customer instances each

time the regular version upgrades are launched. The thankfully smaller group of highly

customised instances must be considered and tested thoroughly each upgrade.

Business process support model

PlanMill is about supporting the business processes of customers in its target

segments. The most commonly used function is the time reporting function for

employees as they report billable or non-billable hours to projects, tasks and requests.

These activity entities may or may not be attached to revenues with billing rules. In the

case that revenues are generated they will in turn require invoicing of their

corresponding customers‟ accounts which are managed in the CRM functions.

Sales order based invoicing facilities were introduced to PlanMill in 2010 by popular

demand, although invoicing in general had been available since 2006. These functions

completed the support of the clients' business process in a holistic approach from

prospect to quote to order and then implementation through to sending invoices to

customer and to accounting software. By encouraging efficiency with data

3

centralization and best practice models PlanMill seeks to grow its customers in a

mutually beneficial manner.

2 SaaS model launch goals

2.1 Limits of current sales model

PlanMill has a proven strength in the mid-sized company segments as it offers

customizations and higher standards of service.

The PlanMill online application suite known as „PlanMill Cloud‟ is a push towards the

low capital outlay cloud architectures that more and more companies are seeking.

Cloud application solutions offer quick start-up, subscription based fees and lower

maintenance issues – leaving the backups and recovery planning to the vendors.

The time of this project the sales and setup processes at PlanMill actually only

profitably supported accounts with at least 5 users. The pre-sales time with the

processes was preclusive of anything smaller due in no small part to the function-

richness of the product and the many questions that arise from prospects. The SaaS

model strategy of providing a no-obligation, free trial-period access to the working

product was impossible due to the manual setup and configurations required to get

started.

2.2 Preparing for larger customer base with increased automation

This project was a part of a longer term parent project to redesign the business

application software, as well as improving the support software such as helpdesks, to

prepare better for capturing the „long-tail‟ of the business spectrum. In other words,

the longer term strategy is the to make these smaller customers a more viably profitable

option for inclusion in the target market as well as develop better processes for

handling the larger segments such as 10-20 users companies. With better nurturing of

prospects and empowerment of customers to self-service, supported by well-designed

4

automation, both the conversion rate of prospects to subscription members and the

growth of existing customer could be expected to increase.

The automation of the registration and configurations for electronic invoicing services

including hands off activation of timed invoicing jobs (known as chrons) which was

undertaken by this project was a flagship implementation. As it was so different to any

pre-existing automation functionality it was hoped to be a model for automated

support of all necessary configurations, settings, instance creations, sample data and

essential data objects to get a new user working with PlanMill with as little manual

„hands-on‟ dependency as possible.

2.3 Customization versus self-service features

One of the proposed benefits of cloud solutions with mass configurable shared

architecture is that the evolution of the product benefits all the users (York 2009). This

is the complete reverse of the situation with the pure customization approach.

Customizations can result in alienation of the customer from subsequent versions

upgrades and functions enhancement as more and more compatibility issues inevitably

surface. There were at the time of writing clear evidence of this in several cases with

clients using old functionality due to their customizations and the sensitivity or risk to

those customizations of failure if subjected to new code paradigms. PlanMill was

actually designed for customization optimization, as we shall see in the architecture

overview section. However, as Web 2.0 shifts demands a new level of user experience

this originally innovative architecture approach simply cannot be relied upon for an

optimal SaaS application

2.4 Feasibility studies and profitability

PlanMill has made a decision to progressively enhance its web-based business

application suite „PlanMill Cloud‟ to allow more self-service facilities for their

customers.

5

Profitability studies carried out by the author strengthened suspicions of the

inefficiency of the manual set up and configuration process. As an illustration a spread

sheet table was created to link the dependencies of number of subscriptions, non-

billable pre-sales time (e.g. setting up a free-trial instance) and conversion rates of lead-

to-subscribing-customer with average cost figures. We considered the SaaS „long tail‟

example cases of 1, 5, and 10 user subscription customers. For a given average

subscription fee of 50 euros per user, a consultant labour cost of 100 euros per hour

and a lead to sales order conversion rate of 10 the „zero point‟ for profit was

determined for the pre-sales time wastage. The results were very interesting for the

consultants involved in these processes.

Taking modest non-billable post sale maintenance post sales For the 10 subscription

user customer group if any more than 3 hours was spent per customer on presales and

just hour per month non-billable on post sales then profits would turn to into negative

liabilities.

For the 5 customer group the figure was correspondingly 1,5 hours and the single

subscription customer would only have to use 20 minutes of a consultant‟s time with

free-trial handling and questions before he would risk eating the company‟s hard-won

profits.

Even more interesting was the consideration that as much as the long tail of micro

customers offers a promise of a mass customer base – it also carries with it a high

exposure to liability. If these large numbers of small subscriptions and profit margins

per account are not managed correctly they risk dragging a company down by a

difference of just minutes spent per customer pre-sales. With just 500 customers won

against a conversion rate of 10. If presales time exceeds 25 minutes then single

subscription customers would have, after one year of paying their subscription,

generated 'profits' of minus 200 000 euros - a very substantial loss despite all that hard

work by the consultants.

6

2.5 Implication of research results - reorganization of resources

PlanMill experienced a growth burst of 100 per cent in the two years preceding this

project with much of that growth over a single financial year. In the aftermath of this

growth burst PlanMill could affirm that they were in possession of a product-service

combination that was in high demand in the SME market while at the same time there

was a realization that their own business processes with the current infrastructure are

limiting any further sustainable growth. They simply could not service the customer

base's needs with their setup and continued customization demands all along with any

possible challenges, bugs etc. that could arise in each case.

The customization demands are both a reflection of the niche market that PlanMill

finds itself in along with a symptom of the lack of inherent self-configuration

functionality in the application. PlanMill's current customers are small enough to be

interested in a non-enterprise ERP system, being precluded from highly priced start-up

costs and unnecessarily complex systems such as SAP and still possibly Microsoft

Dynamics Nav. However many of the customers are mature enough to have complex

business processes that require assistance to set up in PlanMill, and not able to be

modelled without some customizations. It was the situation at the time of writing that

a small group of even more established clients consumed the most resources, all-be-it

billable work, with little or none of that development benefiting any the other

customers directly.

Thus the growing realization across the company from developers through to

management has been that despite the short term profitability which is proffered by

satisfying the current customers with billable customizations - these activities actually

block the finite development resources from:

1) Creating more generic functions that could be reused for all customers

2) Redesigning the architecture to facilitate the support of a multiplied

customer base

7

3) Developing systems that actually leverage the power of automation and

allow PlanMill to reach more of its potential market.

The author had performed his internship at PlanMill being involved with an API

integration of complex customized instance with a then necessarily complex front-end

web application. In addition he also experienced first-hand the day to day demand on

resources which result from the continual flow of smaller customization tasks. The

resource drain affect the process chain in all the areas of request handling, estimates,

requirements, implementation, fixes, billing, and maintenance.

With multiplication of customers you have directly proportional multiplication of load

across the complete spectrum of activities – the exact situation which the SaaS seeks to

avoid.

This project was thus a positive shift from these existing billable and customer specific

activities to non-billable endeavours. The primary goal was to empower PlanMill‟s

application environment with a seamless setup of e-invoicing. Mutual benefits as

vendor or reseller of the service provided some profit generating motivations but

primarily it was cost-saving driven with a need to reduce the customer care and setup

load generated by interest and implementation, billing and maintenance issues related

to e-invoicing.

3 Working Methods for project

PlanMill draws its working processes from the Agile development model. It takes the

major elements from the Scrum subset of Agile though without strict adherence to the

full practices. Pair programming, user stories, minimal documentation and test driven

development are some of the important aspects that define PlanMill‟s approach.

3.1 Scrum backlog, sprint of shippable product

As a part of the requirements gathering phase discussions with the customer are

focussed on the eliciting a set of clear user stories which describe the expected

8

functionality from the system or feature. These are without exception inclusive of the

following points:

Who wants to do it?

What is wanted to be done?

Why I want to do it?

What are the minimum acceptable behaviours?

User stories are readable by all the stakeholders as well as the developer team. They are

clear and include small enough functionality and complexity to be completed in a single

'sprint' period such as 30 days.

A user story could read like:

“As a manager user of the system I want to get an activity report from a given company so I

can make decisions of which campaigns they would be suitable for.

Acceptance criteria: I can choose the period and it is phased into months.”

The requirements gatherer, if they are not the actual the coder cannot be certain of the

full consequences of a given desired functionality at a code level. This is why the

implementing developer should make an estimate based on the current functionality

and assets as to the time demand of each story. From this estimate the decision of

where to draw the line of a 'shippable product' for that sprint can be made; whether

another story could be included or should the primary one be broken into smaller user

stories.

For the larger projects PlanMill as per the Scrum model maintains a product backlog

comprising of all the stories on the customer's 'wish list' that must wait until

subsequent sprints and for resources, prioritised in order of importance.

The essence of agile development is frequent communication and daily incrementing

through development iterations of committed code. This strict methodology was still

9

not yet fully implemented at the time of writing however good version management

practices had been established.

3.2 Behaviour Development Design BDD artefacts

The User story model from agile development is enhanced by breaking the general

story into elemental steps. Taking the acceptance criteria into account these steps are

then translated into workable Behavioural Development Design (BDD) cases. BDDs

are in fact testable cases and should be completed with all the preceding stories, given

conditions, actions, results, error and useable example data value

The Model for the BDD case is as follows:

Given story and scenario,

Given, when, then. Examples.

3.3 Kanban production process system

The context of the project was the introduction of a production management

environment based on the Kanban system. This is a method developed in Japan in

factory production companies to avoid bottle necks and encourage the smooth

prioritised accomplishment of tasks. It has also been proven to be effective in

intelligent material production like software.

Kanban in a similar spirit to Scrum (which avoids telling the developers HOW to do

the implementation and rather WHAT the feature should do), avoids the traditional

paradigm of assigning of tasks to people. Instead Kanban model puts the onus on the

performer pick the task up from a prioritised waiting list. This allows some level of

choice as the performer matches themselves to the task and also encourages more

ownership in the process. The reason that Kanban has worked for many companies is

that it is simply an excellent system for telling people what to do. (Baudin 2011). It

could also be speculated that workers perform generally better and with more

10

motivation when they only have one or two tasks to consider at a given point in time -

rather than a mounting list of assigned work.

All PlanMill requests for new functions and customizations pass through the following

stages of the Kanban process: Requirements, Coding, Testing, Documentation,

Production release. The principle is that a limited number of tasks should ever be

underway in all of these phases at any one point in time. Jobs are given clarity to be

completed more quickly and no stages of the process are then able to be omitted

intentionally nor forgotten

4 Architecture of PlanMill

The PlanMill online business application suite uses a combination of open source and

propriety software. The programming language used for the primary system is Java,

running on Apache Tomcat servers. The database used is Microsoft SQL Server 2008

(while also supporting SQL Server 2005).

The application is by definition a multi-tenant paradigm with shared server

environment and a default shared client. However each customer instance has its own

partitioned Database instance and own customer specific UI instance which inherits all

the common instance parameters and configurations from the shared client unless

customer parameters exist.

4.1 Factory method design model

PlanMill has been designed according to the Factory method model to allow for more

generic object oriented structure and allow for easier customizations with only a small

increase in overhead of the complexity (Niinioja 2010).

The implementation of this model is through the partitioning into the broad layers of

UI, Interface redirector, Business modules and Database - all of which have relevance

in this project's design definition and specifications.

11

Figure 1.0 Architectural layers of PlanMill according to the factory model (Niinioja 2010)

Rather than attempting to explain the full architectural intricacies of the system at this

point - from an unapplied theoretical perspective - we will cover them further in the

context of the project implementation distribution in section.

The multi-tenanted functional design is partitioned by applying access rights to each

subscription and user. Access rights implement access to functionality based on the

subscribed-for services of PlanMill‟s client and the designated role of the user. Each

user is checked for access rights to tools and categories and actions each page load.

Optimization is important to keep the system useable despite its rich functionality.

12

5 Existing functionality and the need for further development

5.1 Invoicing and limited e-invoice functions

The pre-existing functionality of PlanMill included creation of invoices from Sales

order or project generated invoices. For all customers who subscribed to this level of

product group the invoice could simply be outputted in PDF form and handled

manually. A select group of customers, with manual set up and configuration had the

ability to transform the invoice files into the Finvoice-standard xml files for transfer via

an electronic invoicing operator to their customers. This functionality had been setup

originally for an intermediary other than Maventa however a small pilot group of

customers were sending invoices electronically with Maventa by using these Finvoice

files. There existed some technical issues with the current situation as Maventa has a

different model for handling the sending process compared to the original operator.

The desired channel was not always carried out for a given e-invoice address as

Maventa required explicit declarations in the SOAP envelope used for the Finvoice. to

ensure the correct delivery. This issue would need to be solved as a part of this project.

In any case PlanMill had observed there to be a distinct market gap between any

existing software or SaaS offerings that could satisfactorily provide this standardized

service and the SME companies demanding it. Other ERP solutions that can handle

invoicing such as SAP are costly, overly complex for SME's and require substantial

investment in understanding their application to the company's processes. The pilot

projects were attempting to stop-gap meet the need and test for further development

like this project.

Better handling of e-invoicing for a large group of customer demanded some level of

automation of the registration and setting preference process. Maventa had a UI for its

customers in place however PlanMill's goal was to avoid the need for the user to enter

the Maventa environment and be baffled by the setting choices, Maventa's own wizard

as well as the management of access keys

13

5.2 Need for generic functionality for a multi-branched wizard

Automation of the registration process pointed towards a multi-branched wizard type

registration. Initial feasibility for this highlighted the need for several generic type

handlings and functions to be added to the architecture. These included: radio

buttons, long text in forms, popups in forms, links and XHTML parsing in form field

caption. None of these had been necessary before and they are a good example of how

a product is forced to evolve as more powerful and informative interfaces are created.

The form of the primary UI had been suggested to be a wizard however the question

arose as to whether the concept of 'wizard' was really matched correctly to the need. If

the user simply needed to fill out some form details and let the automation handle the

rest then it could simply be a simple form. The existence of a wizard at Maventa

possibly pointed to the need to break down the decision making process for the

customer into phases. However with the integration project a major advantage would

be that much information may already pre-exist in the customer's PlanMill database.

The complications for the integration project arose due to the existence of the

alternative direct registration channel. This fact generated the possible case

combination of pre-existing company registrations and pre-existing user accounts

eventually described as four distinct scenarios in section 13.1. Also account activation

requirement enforced by Maventa created a user-dependent break in the registration

and setup process while trying to abstract it away from the third party.

6 User stories and Behavioural Development cases

6.1 User stories to describe the desired functionality

From initial discussion about the functionality needs and consideration of the pre-

existing resources the project embarks formerly with the creation of the first draft user

stories. Around ten user stories were created and considered for breaking down into

clarified BDD cases. These were formulated from a brainstormed list of possible

14

functionality desires imagined by the stakeholders. The brain-storm wish list included

the following for various actors in a customer company:

1) I want to register my company for e-invoicing so I can send invoices

electronically to my customers

2) I want to add my existing Maventa account to PlanMill for sending e-

invoices direct from PlanMill

3) I want to choose the preferred invoice sending channels for my

customers and let PlanMill set the channel for each customer based on the

available information

4) I want to see a list view of all my customer companies which the

invoice channel for each based on the preferences set and flags possible

missing information.

5) I want to browse and match companies that are listed for e-invoicing to

my own customers in PlanMill

6) I want to add other PlanMill users to be able to send e-invoices via

Maventa

The user stories were formalized according to the model discussed previously in the

Working Methods section and managed from a collaborative wiki space. The primary

user story was selected to be related to the registration process and read as follows:

"As a finance user I want to register my company with Maventa so I can

bill customers using efficient e-invoicing"

The full list of formalised user stories is attached at Appendix 1

6.2 Selection of functionality to be built in first Sprint

 From the user stories the following functionality was selected to be delivered as a

shippable product at the end of the sprint, coinciding with the version release:

15

1) Automated registration and setup of a new Maventa company account

from a PlanMill company account's summary view (including generation

and storage of new Maventa access information)

2) Setting up invoicing in PlanMill with a pre-existing Maventa company

account (mapping of existing account to the corresponding PlanMill

account and storage of existing Maventa access information)

3) Automation of invoicing channel based on preferences.

The first two functionalities would be implemented by use of a multi-branched wizard.

While the third would be the responsibility of some automated decision logic initiated

by a relevant trigger and based on settings applied in the registration process.

The second sprint would add the functionality to manage subsequent users (add,

update, delete) with the „wish-list‟ suggestion of automatic user creation based on

PlanMill user access rights. The architectural design for the first sprint would still need

to prepare for multiple users despite the delay for that story.

Discussions with CEO and chief project manager defined the acceptance criteria for

the now agreed shippable product of automatic registration. All the other remaining

user stories would comprise the product backlog in appropriate priority.

6.3 Acceptance criteria for user stories

Acceptance criteria encapsulate the extra business rules that are not a simple to define

as a measurable condition. Rather than simply listing all the acceptance criteria we will

discuss some of the important ones that affect the project. Here is an example of an

acceptance criterion needing to be transformed into BDDs:

“When Customer clicks register PlanMill collects all relevant fields for invoicing in addition to the

required fields for registration and fills them with any existing data in the database.”

16

With the form being generated within the PlanMill system and inheriting any known

relevant information the user would not be required to fill out a completely empty

form. So in contrast to the common case of registering to a non-integrated service,

there was the chance to include more fields without creating a so called „churn point‟.

Purpose of this criterion - it both eases the process of registration by avoiding any

unnecessary double-handling of any existing data and at the same time leverages the

opportunity to improve the quality of existing information in PlanMill and prevent

errors later when user tries to create invoices

Another important acceptance criterion was that the keys should be all stored in a new

DB object table called a Keystore in the database for each instance. This would allow

implementation of multiple user key support, as opposed to the current three pilot

customers who were all using an instance bound set of shared and unencrypted

parameters. The keys would need to be encrypted before storage at the database as a

security acceptance criterion. Each key should be protected from misuse because each

user would be accountable for invoices sent with their key and as they had hierarchical

roles that affect the creation and management of more keys and users each user key

and company UUID should be handled carefully.

6.4 First draft BDD definitions

So from the above acceptance criteria the first draft BDD cases were able to be

defined. They would be refined much more clearly later however it was important to

start partitioning the behaviour of the functionality for the requirements research. The

first BDD‟s included the following

1) Register new company account new user

2) Register new company account with existing user.

3) Set up e-invoicing with existing Maventa Account

17

4) Apply company settings for invoicing

For example BDD 1) could read as:

For a given <User>,

And <User.role> („finance‟),

And <Account.Id>,

And <Account.Type> („My Company‟)

When clicking the „Register‟ button

Then Update form fields to the Database and make API call with registration

parameters to Maventa.

Result: If succeful save returned keys to Keystore and notify user of activation email.

The practice is to use the form element id, which for the most part corresponds to DB

column, as much as possible to aid mapping and later possible automation of such

behavioural test cases.

7 Requirement gathering process

7.1 Research of API methods to match the user stories

The documentation for the Maventa Open API lists all the available methods. Each

method includes some example code in Ruby and Python. Neither of these resemble

closely Java however the code was useful to at least determine some required fields for

the methods. Inspection of the user stories and BDDs pointed to a list of possible

useful and essential methods for the first and second sprints. They have been listed

below:

register_company – in case of creating a new company account (BDD case 1 and 2)

company_show, user_show - in case of an existing Maventa account needing be appropriately

mapped to PlanMill (BDD case 3)

18

company_settings_update - for setting the preferred or recommended settings for other invoice

channels such as printing services and email (BDD 4)

set_invoice_receiving - (BDD case 4)

user_create –for adding subsequent users (additional user story)

company_lookup – used for actively determining if a customer is able to accept electronic invoicing

using Maventa as the intermediary (additional user story)

7.2 Collection of important concepts, method responses and errors

As a result of the minimal documentation the JSP test tools were also very useful for

teasing out and recording both the successful response strings and any possible error

messages from each method. These would be essential for string matching at the

implementation stage for the various predictable conditions and were added to the

requirements specifications which supplement each BDD case.

Some important concepts that were established from the API research included:

1) The user API keys and Company UUID needed as access credentials with any

API calls,

2) The use of the email address as Username identifier, and the actual e-invoice

identifier which could be the EDI (OVT in Finland) or a Maventa Id (referred

to more generically as the invoice net address).

3) The vendor key and server address for the API were two additional important

concepts but these were simply common to all users and set in parameters.

PlanMill as a vendor had to manage both a testing and production version of

19

these so it was important to build some functionality that ensured the two were

not mixed between the testing and production release phase.

Company identifier and all the API keys are in actuality each a Universally Unique

Identifier (UUID). The UUID is a 128 bit hexadecimal number that uses among other

things a clock-time based algorithm to generate a globally unique number without the

necessity for any standards control authority. (Leach, Mealling and Salz, 2005)

Continuing with our discussion of important concepts and the user activation and its

impact on the process to achieve a registered-and-verified state was recognized to be

an important issue. The verification emails were noted to possibly distract the user

away from the integrated registration process by offering too much unnecessary

information such as displaying the keys plus an invitation to log into the Maventa UI.

This could confuse the user and raise questions which it was the goal of the integration

project to avoid.

7.3 Research of the Maventa UI and infrastructure

In parallel to the method selection, implementation and testing process the Maventa

UI and direct registration process was inspected for important points. Both Maventa‟s

own registration form and the company settings viewable when logged-in were

considered and tested for behaviours in comparison to the API method results.

 One important point which arose from this was the business rule associated with

handling of VAT numbers in EU excluding Finland (where the VAT number is also

the business identity number where applicable). This one small issue had

consequences for the project UI behaviour and mapping issues - PlanMill reserves a

place in the account for both BID and VAT while Maventa needs only to capture

whichever one is relevant. Some client based script would definitely be required to

20

handle this.

The impact of the invoice channels preferences offered by Maventa were attempted to

be clarified further by navigating through Maventa‟s UI and by using the system. As no

invoices were actually sent on the test server it was difficult to conduct testing of the

delivery method.

Printing services are an important channel in the digital handling of invoicing to reach

the customers that do not yet accept electronic invoices while still increasing the

efficiency of the invoicing company processes. Any invoices marked for printing

service are forwarded by Maventa onto Itella‟s „Ipost‟ service where they print the

attached PDF and deliver them via the local post. The cost for this service at the time

of writing was between 1-2 euros per page.

As a third alternative Maventa also provides online invoice previewing and

downloading of PDFs with notification links to the customers email address. When

not explicitly indicated the invoice method or preferences Maventa tries to deliver the

invoice first as an e-invoice, then email, then finally as printing service. This rose

questions as to how to explicitly predict the sending channel - due to the fact that

PlanMill was using the simpler finvoice_put method rather than the more explicit

invoice_put method available.

7.4 Clarification of registration process into state diagram

To help describe the concept of company registration status from the view-point of

PlanMill a diagram was created encompassing the following states:

Unregistered, Registered – unverified, Registered –no keys, Registered -verified

21

Registration

Attempt

Recover

keys

Update

Settings

No Yes

Figure 3 – State diagram for Registration concept

8 Database requirements

To support the new concepts introduced by the Maventa system requirements some

adjustments would be necessary to the database. These would take the form of changes

at 3 levels of persistency in the structure: code field in a generic table, column additions

to the existing account table and a completely new table.

U

z

Key

Saved?

Registered

– unverified

Registered

– no keys

Registered

– verified

Start

- Unregistered

22

8.1 New code fields for recording states

As mentioned the activation requirement for a new account/user created a need for a

state indicator in the system. Settings could not be updated and invoices sent until the

user had activated the account via the email link.

Rather than impacting the Account table for this status record an integer code would

be saved to the generic code table and thus no unnecessary space would need to be

reserved in the DB. Other concepts would however affect the Accounts table.

8.2 New columns required in the existing Account object table

The currently unsupported concepts still needing to be bound to the company account

were Printing services (or Ipost) region, Ipost type, Sending operator, and finally the

Invoice receiving option. It was decided for management purposes to add these to the

account table as null-allowed columns to be used when applicable.

8.3 Design of a new Keystore table

The access data being bound to both accounts and users and the multi-user acceptance

criterion determine a need for Keystore. This was a service that would have use for all

third-party applications in PlanMill and thus demanded the most persistent handling in

the form of new table.

Concepts that needed reflection in the Keystore included:

1) User bound API key / company bound UUID,

2) User / Company association has many to many multiplicity,

3) initial administrator user immutability (company cannot exist without a user

and user key),

23

4) subsequent users,

5) User roles (ADMIN or USER).

6) Active or Inactive status of users

7) Email used as identifier at Maventa as this was bound to the user API key at

the time of creation.

These concepts were encapsulated in a simple excel table with some example data

rows which established unique key sets for each company /user combination. This

table would be used as a model for an iterative implementation of the Keystore by

an SQL creation script. The primary design of the table was as follows:

Key store table design

Id PersonId AccountId AppName KeyName KeyData

2776100 2689817 2776096 Maventa user_api_key ############

2776102 2689817 2776096 Maventa company_uuid ############

2776116 2689817 2776096 Maventa user_role ADMIN

2776117 2689817 2776096 Maventa email_address test@test.com

9 UI design

9.1 BDD cases to wireframes

By combining the draft BDD cases, PlanMill acceptance requirements and Maventa

requirements with the research knowledge gathered the UI could begin to be described

in „wireframe‟ form. This was actually a process that occurred in parallel to the

research of the methods to help visualize the user experience and clarify complexities.

A multi-branch wizard that started with a choice of new registration or adding existing

account keys would now need to be implemented.

24

Figure 4. Wizard navigation first draft version

The most important page for the user would be the registration form. It would have

the responsibility of collecting any information already existing for the company in

PlanMill and demand any missing information to be completed before proceeding to

perform the API call. The wireframe image for this page has been included at the end

of this section at Figure 5.

The wireframes were also excellent tools for clarification discussions with the

stakeholders in regards to the acceptance criteria such as messages to clients. As they

are only a starting point for design the UI there is no need to retain them as artefacts at

the end of the project -they may not resemble anything like the final UI. Thus Figure 5

the only wireframe included in this document.

9.2 Wizard design considerations

Research on UI and wizard design highlighted several important points described

here as a checklist (Constantine and Lockwood 1999):

1) Question and choices should be worded as the intentions of user to make the

consequences as clear as possible. (For example a „Register me‟ button rather

than generic „Next‟ or „Submit‟.)

2) Upon launch inform the scope of the wizard to the user

3) Maintain state where possible between steps if wizard is aborted before

completion.

Start page

Register new

account

Add existing

keys

Invoice channels

+ email activate

message

Invoice

channels

Finish

25

4) Keep the user informed, and use simple language

Figure 5 – Wireframe draft example of Registration form in PlanMill wizard

Best attempts were made to satisfy the discussed design recommendation as shown in

the preliminary wireframe design example at Figure 5. Notice the inclusion of

navigation breadcrumbs, checkboxes using intent wording-structure captions, and the

contextually named buttons - all specific design optimization choices.

10 Rationalization phase

10.1 Reduction of scope for first sprint

The requirements phase took more time than expected partly due to lack of

documentation and also raised some complications for modelling the multi branching

26

choices. The time restrictions and the requirement to have a shippable product at the

end of the sprint forced a re-evaluation of the scope of user stories. The project was

consolidated to now only implement the „Registration of a new company‟ story in the 14.1

version wizard. This was of course the primary story. The second story would still need

to be covered but instead of within a multi-branched wizard it would now be

implemented in a JSP tool as stop-gap solution. This persistent need for the second

story was driven by three known and pressing cases of existing Maventa accounts

owners – namely the pilot customers which had been setup manually using customer

instance residing parameters (as semi-generic customizations).

Clarification was made that the multiuser supported design would need to bypass

handling of the user binding and point to a single administrator keys until the

implementation of the creating and manage user story in the next sprint.

10.2 Assumptions made for unnecessarily complicated preferences

The invoice channels settings offered by Maventa risked overly complex logic in the

product backlog automations of customer account billing settings. After producing

extensive BPMN decision modelling it was decided to be in the interests of stake

holders to make some useful assumptions of settings:

The default values for Printing-services were for enablement to the world and

economy post. These were now promoted to assumptions removing any user choice

concerning these. Assumed preferences were to now be presented to the user as

simplified channel choices available at the individual customer account level. The

choices were reduced to only the e-invoicing or printing services for this sprint. The

third option at the customer account would be to override the Maventa channels by

selecting the currently available channel option „email‟. This rationalization explicitly

ignored the Maventa available channel of emailing the invoices to the customer.

27

The basis for these decisions was experience with the current pilot group‟s members.

Consultants had generally found that clients preferred PlanMill to choose a

recommended configuration rather than be presented with a multi-faceted set of

preference choices.

11 Finalization of Design specifications

11.1 Refinement of BDDs

Communication of the requirements research results amount to refined, normalized

inheritance explicit, and ordered BDD cases and scenarios. This means that in theory

every action should be represented by a BDD or scenario. An example of this

refinement was the addition of a „Load registration form‟ BDD case just for the correct

behaviour of the system when the user clicked „Set up e-invoicing‟. This BDD would

be responsible for describing the access rights and the relevant form fields to be

loaded. The subsequent „Registration of new account‟ BDD case would inherit the

access rights and correct fields and then only need to test the registration dependent

data such as Business Id and country.

Example data was supplied for unit testing purposes in the implementation iterations.

11.2 Creation of clear additional specifications linked to BDD’s Business rules

Any complex business rules that could not be encapsulated in scenarios were added to

supplementary specification tables. Examples of these business rules included the

country dependent submission of the VAT number or Business id field. A list of the

current EU countries was needed to be included as key value pairs with the short

country code for handling in an appropriate script. Error responses and success

responses were included in the scenarios.

28

11.3 Data mapping

To accompany the BDD cases the implementing developer required data mapping

tables between the PlanMill objects and their database columns, and the corresponding

Maventa objects and API parameter fields. Figure 6 is an example of the data mapping

between the systems relevant for the Save, (Show) and Update settings BDD cases.

Figure 6 - Data mapping table between Maventa and PlanMill for Company Settings concepts

29

12 Implementation

12.1 System specification

The system specifications for using the Agile minimal documentation methodology

comprised of the clarified BDDs, the finalized UI screen shots especially the forms,

the supplementary business rules, data mapping tables, Keystore table design, and a

state diagram for the process of becoming a registered and verified user

12.2 Distribution of implementation across PlanMill architecture

The implementation phase, in the spirit of Scrum, does not tell the developer how

exactly to code the feature. However it was useful to allocate the design model to the

appropriate architectural layers.

12.2.1 Server side implementation

At the server a main Java class module for the business layer was created. All the logic

implementing the state machine model for the invoice set up process would need to

reside in this server side class. Actions linked to corresponding Java functions were

accessed via arguments passed into the class by the web requests.

Main functions implemented in the server were:

Load registration – a database read query and form build

Save registration – a database update query and API call

Load invoicing channels - a database read query and form build

Save invoicing channels - a database update query

Verification of account – API call updating settings, database query changing the verified

status code field, and finally an update that enables the running the invoice sending

jobs.

The other new server-side class to be built was the Keystore service class. This class

was effectively the interface that handled the encryption and all access methods for the

30

cached data. The Maventa business module would call upon the partitioned services of

the Keystore which was to be built for the use of other services also.

The main business module class for the project also depended on services from the

pre-existing „MaventaClient‟ class. This class handled all the web service connections

and served the important „MaventaApiPort‟ function object for accessing all the API

methods. The binding of Maventa access credentials to both user and account required

the enhancement of this existing Maventa client class. Previously a single set of shared

parameters and single company limitations were now to be replaced with user specific

keys and a support for multiple companies. This amounted to the addition of the

account id to the required arguments passed into the Maventa client class and

alteration of the key getting methods to now point to the Keystore interface.

12.2.2 Client side implementation

The mapping between the systems is the responsibility of concise forms residing at the

client side. The forms exist as field, enumeration and language string parameters, which

are mapped to columns in the database tables. The language strings enable dynamic

multi-language support -PlanMill at the time of writing was available in Finnish,

English and German. Simple concatenations and operations, and JavaScript insertions

are performed via in this layer as field parameter attributes along with element types

and style class declarations. The attributes are parsed through a Form-builder service

class into XML and then transformed by relevant XSL sheets into XHTML. New

forms to be implemented at the shared client were the Registration form to support

the first page of the wizard and the Invoice channels form for the second.

12.2.3 Production-use JSP tool for adding keys directly to the Keystore

As the Keystore was encrypted it necessarily required an internal use interface for any

manual row entries. Also as discussed in section 10 Rationalization phase, some stop-

gap handling of the user story „I want to set up my company at PlanMill with an existing

Maventa account‟ was still needed despite its omission from the 14.1 release wizard.

31

Until the implementation into the wizard this user story would be dependent on

internal use only of a JSP tool by a PlanMill consultant. These tools were in frequent

use already for various extra functionalities that were available to super users only.

The tool would need to consider carefully the registration-verification state of the

company that it would produce. As the final goal was to set up the invoicing company

to be ready to send invoices it was soon recognized that the JSP tool should implement

all the functionality handled by the registration of a new company – not just add the

keys.

To clarify this it was found useful to create a combined BPMN process model diagram

and review the complete process from registration, configuration through to activation

verification and sending invoices. The diagram as seen below, also considers the

important company account‟s verification status which is held by the integer code

discussed in section 8.1.

Figure 7. Business Process Notation Model of Setup e-invoicing with JSP tool

32

From this model an appropriate BDD case could be defined and applied for testing. It

is worth noting that the tool did not need to „reinvent the wheel‟. Once the correct

consistent state had been modelled any functions developed in the Maventa class could

simply be called as needed. The JSP tool would in fact be the first production use of

the new services long before any new user would access the wizard as it would be

applied first thing on release night for the pilot customers. Later the logical decisions

for the tool should in theory be supported by some level of automation in a further

enhanced version of the wizard

After implementation of correct the information handling the acceptance criteria for

the BDD still needed to be consider. This included the slightly complicated issue of

mapping the user bound key to the correct user and the company bound key to the

correct company.

It was interestingly discovered that Maventa‟s open API lacked a direct „show key own

user‟ based on the API key. The user_show method only accepted the apparent foreign

key for the user details objects and as consequence it did not implement any direct link

back to the user API key. This was either a relational model or security abstraction

however it created the problem that if there is more than one user linked to a given

company the API methods can do nothing more than list the all of users attached to it.

This would leave you to guess who actually owns the key.

As a consequence the email for a given key used at the time of registration would need

to be supplied by the client to correctly map any set of verified user key and company

UUID. In section 13.2 as an example of sprint delivery documentation, a screenshot

has been included which demonstrates the resulting tool.

33

12.2.4 Script-handled behaviour design requirements

The remaining business rules for the BDD‟s which were not able to be handled on the

class level would need to be implemented also client side in JavaScript. These included

the following:

1) Visibility of the „Set up e-invoicing‟ wizard initiation button link in the

account summary page for the company.

2) Opening of the UI overlay container for the wizard and the initial call to the

business class to load the form

3) The country dependent VAT number relevance rule and corresponding

enabling and disabling of fields

4) The consequent „No VAT‟ choice in the case of VAT country relevance

5) The closing of the wizard when „done‟

12.3 Communication

Some working methods utilized in this project were newly introduced to PlanMill and

experiencing the normal resistance stage from employees. Some of the artefacts

provide to the senior developer were found to be useful while others were not or the

model was not yet understood. Despite the availability of the collaborative wiki

resource the feature request maintained in the PlanMill operations instance was the

only reference point used by the senior developer. The requirements documents then

had to be carefully linked to the relevant pages in PlanMill‟s collaborative wiki space

containing the project artefacts such as BDD‟s and other specifications or the

developer would not find them.

34

13 Acceptance testing and documentation

13.1 Evolution of BDD cases into Acceptance test cases

Agile and Scrum methodology encourages the relinquishment of redundant artefacts as

the development processes proceeds. As a part of this the BDD‟s used for design

should make way for persistent test cases with useful data examples.

The BDD for acceptance testing for the „Submit registration form‟ considered the

following four clear scenarios:

1) Unregistered BID/VAT for the given country, unregistered user email

2) Previously registered BID/VAT for the given country

3) Unregistered BID/VAT for the given country, previously registered user email

with the PlanMill wizard from given PlanMill instance.

4) Unregistered BID/VAT for the given country, previously registered user email

at Maventa but not yet stored in PlanMill (for that given instance).

As the system uses a web-based UI, cross browser issues need constantly to be

considered. PlanMill at the time of writing was supporting IE 7+, Chrome, Firefox,

and Safari. Test cases had to be created with examples for each of the different

browsers. These would be run as a part of the acceptance testing for the 14.1 release

each on a browser allocated virtual machines).

The test examples needed to be carefully selected to not conflict at the third-party

application with either other testers or developers using the Maventa test server. For

example Business ids for the test company along with user emails needed to be

explicitly allocated so each browser tester would get an opportunity to test with unique

and previously unregistered data. This could be done by using the „Company lookup‟

method implemented in one of the method testing JSP tools.

The part of the resulting BDD test case pertaining to scenario 1) appeared as follows:

35

Given story: BDD Load Register Maventa form

Finance user checks/fills missing fields before proceeding.

Scenario 1:

Business ID / VAT has NOT been registered before and Administrator email address has NOT been

registered before.

Given <Account.Id.>

And <User.Id>

And <User Agreement> = True

And <Location1.CountryId> (enumeration list)

And the submitted (<Account.BusinessId> OR (<Account.VatId> + <Country>)

And remaining <e-invoicing registration relevant fields>

When User clicks register (plus confirm order popup)

Then a succesful Maventa API call registration forwards user to the Invoice channels screen with

Acount.Name and Person.Email

Result:

Keystore has 4 rows for the user/account combination key/uuid , email and ADMIN role

And <Account.InvoiceNetAddress> updated with Maventa_Id returned from api call.

Examples:

Figure 2. A segment of the cross-browser acceptance test data

The complete test case is attached as Appendix 4

36

13.2 Documentation of completed functionality

The final phase of the sprint includes the documentation of the shippable products in

release for release notes and user guide suitable for both PlanMill consultants and end

user clients. Also importantly documentation was required for any new related JSP

tools such as our user key /company UUID insert tool. JSPs due to their rudimentary

interfaces often need more clarified documentation as they are quickly designed for

internal use and without much if any consideration for the user experience or

intuitiveness.

The author is of the opinion that relying on a tool being available only for internal use

can be a big risk for costly errors in the future - especially in the case of this project in

which the tool binds users and companies. Due to the lack of automation inherent in

the JSP tool the guide leads the user step by step through the necessary decision points.

Some effort was made to protect the user from entering just any keys to the Keystore

by adding a verification layer however the mapping of the account and person could

prove to be very confusing.

37

Figure 8. Screen shot of JSP tool as provided in the user guide for internal consultants

38

14 Learning outcomes

During the implementation phase some integration dependency issues arose which

highlight the vulnerability such projects have with constantly developing API‟s and

web services.

The author discovered the need for clearer BDD cases and example test data to aid the

implementation process. Along with this the people using the model should agree on

what works for them – what is useful and what is not.

Conveying implementation specifications important for further development but not

relevant to the current BDD‟s was found to be a challenge e.g. the multi-user design

and the user binding of keys despite the stop-gap solution of a single set of

administrator access keys for a given company. Some solution that indicates these

needs contextually within the BDD is required.

14.1 Checklist for integration of an application with a third-party web service

A good way to describe the learning outcomes appears to be a checklist of questions to

ask when embarking on an integration project.

Are there SLAs covering changes to the API or web service - will they be notified in

advance with useful adaptation suggestions? Any change in an expected result can have

large effects on a process flow.

Are there any the third party direct communications to the user that bypass your own

system? For example the email activation and welcome email in this project: does the

third party take into account that the alternative registration process for the user via the

API creates many redundancies for instructions and may require very different

information?

39

Will there be good open communication lines between you and the service provider?

What is the level of documentation for the service and available methods? The former

consideration may make up for the lack of documentation and vice versa.

What is the stability level of the version - is there a new improved service nearing

release for that rectifies some limitations?

What can and can‟t be expected to be done – Are most important user stories even

covered by a method?

What are the differences between the testing server and the operational server

behaviours? These should be clearly defined to prepare the correct actions for return

responses when the system goes live. For example in our tests the VAT validation

check was deactivated for the test server and consequently omitted from the test cases.

40

Bibliography

Joel York 2009, Top 10 Dos and Don‟ts of SaaS,

http://saas-top-ten-10.chaotic-flow.com/saas-top-ten-do-Enable-Mass-

Customization.php Quoted: 18.9.2011

Michael Baudin 2011, What‟s Unique about the Kanban system

http://www.sme.org/cgi-bin/get-newsletter.pl?LEAN&20010209&2

Marjukka Niinioja, PlanMill Architecture Overview, Technical guide, Release 12.2,

4.2.2010

Leach, Mealling and Salz 2005. RFC 4122 -A UUID URN Namespace

http://www.ietf.org/rfc/rfc4122.txt Quoted: 18.9.2011

Constantine and Lockwood 1999, Software for Use – A practical guide to User-

Centered Design, Edition 6 2004,

http://www.ietf.org/rfc/rfc4122.txt

1

Attachments

Appendix 1 - User stories

2

Appendix 4 - Acceptance BDD test case for Submit Registration form

Given story:BDD Load Register Maventa form

Finance user checks/fills missing fields before proceeding.

Scenario 1: Business ID / VAT has NOTbeen registered before and Administrator email address has

NOTbeen registered before.

Given <Account.Id.>

And <User.Id>

And <User Agreement> = TrueAnd Maventa Admin Email <Person.Email> is not registered at

Maventa

And <Location1.CountryId> (enumeration)

And the submitted (<Account.BusinessId> OR (<Account.VatId> + <Country>) is Not Registered

at Maventa yet

And remaining <e-invoicing registration relevant fields>

When User clicks register (plus confirm order popup)

Then a succesful Maventa API call registration forwards user to the Invoice channels screen with

Acount.Name and Person.Email (at moment will be different if overriden)

Result:

Keystore has 3 rows for the user/account combination and

<Account.InvoiceNetAddress> updated with Maventa_Id returned from api call.

Scenario 2: Business ID / VAT HAS been registered before

Given <Account.Id>

And <User.Id>

And <User Agreement> = TrueAnd Maventa Admin Email <Person.Email> is not registered at

Maventa

And <Location1.CountryId> (enumeration)

And the submitted (<Account.BusinessId> OR (<Account.VatId> + <Country>) is Not Registered

at Maventa yet

And remaining <e-invoicing registration relevant fields>

When User clicks register (plus confirm order popup)

Then Form is returned with Error (examples table) and also AlertBox directing user to provide

user/company keys for Submitted(<Account.BusinessId> OR <Account.VatId>)

http://wiki.planmill.com/display/Maventa/BDD+Load+Register+Maventa+form

3

(Appendix 4 continued)

Result:

Keystore has NO rows for the user/account combination

Scenario 3: Business ID / VAT has NOT been registered before, Administrator email address HAS

been registered before VIA PlanMill.

Given <Account.Id>

And <User.Id>

And <User Agreement> = TrueAnd Maventa Admin Email <Person.Email> is registered at Maventa

and in keystore

And <Location1.CountryId> (enumeration)

And the submitted (<Account.BusinessId> OR (<Account.VatId> + <Country>) is Not Registered

at Maventa yet

And remaining <e-invoicing registration relevant fields>

When User clicks register (plus confirm order popup)

Then a succesful Maventa API call registration forwards user to the Invoice channels screen (with

<Person.Email> and <Account.Name>)

Result

Keystore has 3 rows for the user/account combination

AND <Account.InvoiceNetAddress> updated with Maventa_Id

Scenario 4: Business ID / VAT has NOT been registered before, but Administrator email address

HAS been registered before at Maventa (not via PlanMill)

Given <Account.Id>

And <User.Id>

And <User Agreement> = TrueAnd Maventa Admin Email <Person.Email> is not registered at

Maventa

And <Location1.CountryId> (enumeration)

And the submitted (<Account.BusinessId> OR (<Account.VatId> + <Country>) is Not Registered

at Maventa yet

And remaining <e-invoicing registration relevant fields>

When User clicks register (plus confirm order popup)

Then No keys page is returned directing user to provide keys for user and company with given

submitted(<Person.Email>)

4

Result: Keystore has NO rows for the user/account combination

(Appendix 4 continued)

Examples:

5

(Appendix 4 continued)

