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PlanMill Cloud is an online, subscription-based B2B product which supports service-
based companies‟ business processes such as project management, employee time 
reporting and customer billing. PlanMill recognized a need for more efficient generic 
automation within its infrastructure. With increasing demands, especially in northern 
Europe for businesses to use electronic invoicing there was urgency for an automated 
setup and configuration of PlanMill‟s online services with a reliable electronic invoicing 
operator.  
  
As a part of the 14.1 Version release on 22.9.2011 PlanMill‟s goal was to completely 
automate the registration, settings, verification and enabling of electronic invoice 
sending (which includes printing and other services offered by the operators). The 
chosen operator was „Maventa‟ – a locally based and emerging player in the e-Invoice 
market. The integration would take advantage of Maventa‟s comprehensive open API 
web service (Bravo version).   
 
This report describes the architecture and explains the methods to be used. It then 
follows the requirements gathering, creation of user stories and corresponding 
Behaviour Driven Development models (BDD‟s), selection and requirements testing 
of the API methods and Maventa‟s class libraries with JSP tools, data mapping 
between to the two systems, and finally the refinement of the development BDD‟s into 
useful cross-browser test cases. Due to some resource restrictions and the version 
release deadline the project made some compromises for a less functional first-release 
of the feature.  
 
An appropriate new UI would need to be designed to implement the BDD‟s within 
PlanMill‟s Java-based factory model architecture. The Java implementation was to be 
primarily undertaken by a senior developer utilizing the results of the JSP tests and in 
accordance to the BDD‟s. Any UI layer applied business rules would be handled by 
JavaScript and be the responsibility of the author. 
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1 Introduction 

1.1 Background 

PlanMill has been operating in its current form since 2001 though it has a longer legacy 

as a Project management tool. The business suite now supports Project management, 

Customer relations management, and some ERP processes such as invoicing. Its 

strength is its focus on service-based industries that invoice mainly on a time-reporting 

basis, and often in a project driven environment. PlanMill appears to fill a demand that 

applications like Microsoft‟s Dynamics Navision (which support more product-based 

ERP processes) are not satisfying. 

 

One important feature of PlanMill Cloud is the ability to directly create invoices from 

the project revenues and sales orders in support of the complete sales process. 

However research carried out by the author had confirmed that with their currently 

manual configuration PlanMill could not profitably support new customers with less 

than 5 users. Thus PlanMill recognized its need to continually develop towards a better 

„SaaS‟ (Software as a Service) mass-configuration and automation leveraging model to 

have any growth in this potent „micro‟ segment. 

 

1.2 PlanMill’s service segment customer base  

 

PlanMill specializes in SME‟s within the broad category of service-based businesses. 

These vertical segments of these groups include IT services,  IT software project 

companies, Media, and Accounting, and Financial Services. 

 

PlanMill‟s current online infrastructure and segmentation is geared to mainly medium 

sized business with 20-50 users though they have several clients supporting over 250 

users. PlanMill still services a small market share in larger on-premise solutions. These 

were out of scope and not directly considered in this project.  However the current 



 

 

2 

 

function rich architecture and more complex configurations and setup processes are a 

result of this larger corporation heritage. 

 

1.3 Current methods, processes and resources 

 

Currently any customizations and connections to third-party services require manual 

configurations, custom stored procedures and business layer coding by consultants and 

developers. There is a waiting list for these customizations, they can be costly and there 

always the risk of mistakes in the requirements gathering and implementation of the 

code. The major problem is of course growing liability of managing and maintaining 

the many thousands of lines customer specific code, parameters and scripts throughout 

continual evolution of the business suite. In a multi-tenanted architecture such as 

PlanMill, direct customizations create risks of failures in the customer instances each 

time the regular version upgrades are launched. The thankfully smaller group of highly 

customised instances must be considered and tested thoroughly each upgrade. 

 

 

Business process support model 

 

PlanMill is about supporting the business processes of customers in its target 

segments. The most commonly used function is the time reporting function for 

employees as they report billable or non-billable hours to projects, tasks and requests. 

These activity entities may or may not be attached to revenues with billing rules. In the 

case that revenues are generated they will in turn require invoicing of their 

corresponding customers‟ accounts which are managed in the CRM functions. 

 

Sales order based invoicing facilities were introduced to PlanMill in 2010 by popular 

demand, although invoicing in general had been available since 2006. These functions 

completed the support of the clients' business process in a holistic approach from 

prospect to quote to order and then implementation through to sending invoices to 

customer and to accounting software. By encouraging efficiency with data 
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centralization and best practice models PlanMill seeks to grow its customers in a 

mutually beneficial manner. 

 

2 SaaS model launch goals 

2.1 Limits of current sales model 

PlanMill has a proven strength in the mid-sized company segments as it offers 

customizations and higher standards of service. 

The PlanMill online application suite known as „PlanMill Cloud‟ is a push towards the 

low capital outlay cloud architectures that more and more companies are seeking. 

Cloud application solutions offer quick start-up, subscription based fees and lower 

maintenance issues – leaving the backups and recovery planning to the vendors.  

 

The time of this project the sales and setup processes at PlanMill actually only 

profitably supported accounts with at least 5 users. The pre-sales time with the 

processes was preclusive of anything smaller due in no small part to the function-

richness of the product and the many questions that arise from prospects. The SaaS 

model strategy of providing a no-obligation, free trial-period access to the working 

product was impossible due to the manual setup and configurations required to get 

started.  

 

2.2 Preparing for larger customer base with increased automation 

This project was a part of a longer term parent project to redesign the business 

application software, as well as improving the support software such as helpdesks, to 

prepare better for capturing the „long-tail‟ of the business spectrum. In other words, 

the longer term strategy is the to make these smaller customers a more viably profitable 

option for inclusion in the target market as well as develop better processes for 

handling the larger segments such as 10-20 users companies. With better nurturing of 

prospects and empowerment of customers to self-service, supported by well-designed 
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automation, both the conversion rate of prospects to subscription members and the 

growth of existing customer could be expected to increase.  

 

The automation of the registration and configurations for electronic invoicing services 

including hands off activation of timed invoicing jobs (known as chrons) which was 

undertaken by this project was a flagship implementation. As it was so different to any 

pre-existing automation functionality it was hoped to be a model for automated 

support of all necessary configurations, settings, instance creations, sample data and 

essential data objects to get a new user working with PlanMill with as little manual 

„hands-on‟ dependency as possible.  

 

2.3 Customization versus self-service features 

One of the proposed benefits of cloud solutions with mass configurable shared 

architecture is that the evolution of the product benefits all the users (York 2009). This 

is the complete reverse of the situation with the pure customization approach. 

Customizations can result in alienation of the customer from subsequent versions 

upgrades and functions enhancement as more and more compatibility issues inevitably 

surface. There were at the time of writing clear evidence of this in several cases with 

clients using old functionality due to their customizations and the sensitivity or risk to 

those customizations of failure if subjected to new code paradigms. PlanMill was 

actually designed for customization optimization, as we shall see in the architecture 

overview section. However, as Web 2.0 shifts demands a new level of user experience 

this originally innovative architecture approach simply cannot be relied upon for an 

optimal SaaS application 

 

2.4 Feasibility studies and profitability 

PlanMill has made a decision to progressively enhance its web-based business 

application suite „PlanMill Cloud‟ to allow more self-service facilities for their 

customers.  
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Profitability studies carried out by the author strengthened suspicions of the 

inefficiency of the manual set up and configuration process. As an illustration a spread 

sheet table was created to link the dependencies of number of subscriptions, non-

billable pre-sales time (e.g. setting up a free-trial instance) and conversion rates of lead-

to-subscribing-customer with average cost figures. We considered the SaaS „long tail‟ 

example cases of 1, 5, and 10 user subscription customers. For a given average 

subscription fee of 50 euros per user, a consultant labour cost of 100 euros per hour 

and a lead to sales order conversion rate of 10 the „zero point‟ for profit  was 

determined for the pre-sales time wastage. The results were very interesting for the 

consultants involved in these processes.  

 

Taking modest non-billable post sale maintenance post sales For the 10 subscription 

user customer group if any more than 3 hours was spent per customer on presales and 

just hour per month non-billable on post sales then profits would turn to into negative 

liabilities. 

For the 5 customer group the figure was correspondingly 1,5 hours and  the single 

subscription customer would only have to use 20 minutes of a consultant‟s time with 

free-trial handling and questions before he would risk eating the company‟s hard-won 

profits. 

 

Even more interesting was the consideration that as much as the long tail of micro 

customers offers a promise of a mass customer base – it also carries with it a high 

exposure to liability. If these large numbers of small subscriptions and profit margins 

per account are not managed correctly they risk dragging a company down by a 

difference of just minutes spent per customer pre-sales. With just 500 customers won 

against a conversion rate of 10. If presales time exceeds 25 minutes then single 

subscription customers would have, after one year of paying their subscription, 

generated 'profits' of minus 200 000 euros - a very substantial loss despite all that hard 

work by the consultants.  
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2.5 Implication of research results - reorganization of resources 

PlanMill experienced a growth burst of 100 per cent in the two years preceding this 

project with much of that growth over a single financial year. In the aftermath of this 

growth burst PlanMill could affirm that they were in possession of a product-service 

combination that was in high demand in the SME market while at the same time there 

was a realization that their own business processes with the current infrastructure are 

limiting any further sustainable growth. They simply could not service the customer 

base's needs with their setup and continued customization demands all along with any 

possible challenges, bugs etc. that could arise in each case.  

 

The customization demands are both a reflection of the niche market that PlanMill 

finds itself in along with a symptom of the lack of inherent self-configuration 

functionality in the application. PlanMill's current customers are small enough to be 

interested in a non-enterprise ERP system, being precluded from highly priced start-up 

costs and unnecessarily complex systems such as SAP and still possibly Microsoft 

Dynamics Nav.  However many of the customers are mature enough to have complex 

business processes that require assistance to set up in PlanMill, and not able to be 

modelled without some customizations. It was the situation at the time of writing that 

a small group of even more established clients consumed the most resources, all-be-it 

billable work, with little or none of that development benefiting any the other 

customers directly.  

 

Thus the growing realization across the company from developers through to 

management has been that despite the short term profitability which is proffered by 

satisfying the current customers with billable customizations - these activities actually 

block the finite development resources from: 

 

1) Creating more generic functions that could be reused for all customers 

2) Redesigning the architecture to facilitate the support of a multiplied 

customer base 
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3) Developing systems that actually leverage the power of automation and 

allow PlanMill to reach more of its potential market. 

 

The author had performed his internship at PlanMill being involved with an API 

integration of complex customized instance with a then necessarily complex front-end 

web application. In addition he also experienced first-hand the day to day demand on 

resources which result from the continual flow of smaller customization tasks. The 

resource drain affect the process chain in all the areas of request handling, estimates, 

requirements, implementation, fixes, billing, and maintenance.  

With multiplication of customers you have directly proportional multiplication of load 

across the complete spectrum of activities – the exact situation which the SaaS seeks to 

avoid.  

 

This project was thus a positive shift from these existing billable and customer specific 

activities to non-billable endeavours. The primary goal was to empower PlanMill‟s 

application environment with a seamless setup of e-invoicing.  Mutual benefits as 

vendor or reseller of the service provided some profit generating motivations but 

primarily it was cost-saving driven with a need to reduce the customer care and setup 

load generated by interest and implementation, billing and maintenance issues related 

to e-invoicing. 

 

3 Working Methods for project 

PlanMill draws its working processes from the Agile development model. It takes the 

major elements from the Scrum subset of Agile though without strict adherence to the 

full practices. Pair programming, user stories, minimal documentation and test driven 

development are some of the important aspects that define PlanMill‟s approach. 

3.1 Scrum backlog, sprint of shippable product 

As a part of the requirements gathering phase discussions with the customer are 

focussed on the eliciting a set of clear user stories which describe the expected 
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functionality from the system or feature. These are without exception inclusive of the 

following points: 

Who wants to do it? 

What is wanted to be done? 

Why I want to do it? 

What are the minimum acceptable behaviours? 

 

User stories are readable by all the stakeholders as well as the developer team. They are 

clear and include small enough functionality and complexity to be completed in a single 

'sprint' period such as 30 days. 

A user story could read like:  

“As a manager user of the system I want to get an activity report from a given company so I 

can make decisions of which campaigns they would be suitable for.  

Acceptance criteria: I can choose the period and it is phased into months.” 

The requirements gatherer, if they are not the actual the coder cannot be certain of the 

full consequences of a given desired functionality at a code level. This is why the 

implementing developer should make an estimate based on the current functionality 

and assets as to the time demand of each story. From this estimate the decision of 

where to draw the line of a 'shippable product' for that sprint can be made; whether 

another story could be included or should the primary one be broken into smaller user 

stories. 

For the larger projects PlanMill as per the Scrum model maintains a product backlog 

comprising of all the stories on the customer's 'wish list' that must wait until 

subsequent sprints and for resources, prioritised in order of importance. 

The essence of agile development is frequent communication and daily incrementing 

through development iterations of committed code. This strict methodology was still 
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not yet fully implemented at the time of writing however good version management 

practices had been established. 

 

3.2 Behaviour Development Design BDD artefacts 

The User story model from agile development is enhanced by breaking the general 

story into elemental steps. Taking the acceptance criteria into account these steps are 

then translated into workable Behavioural Development Design (BDD) cases. BDDs 

are in fact testable cases and should be completed with all the preceding stories, given 

conditions, actions, results, error and useable example data value 

 

The Model for the BDD case is as follows: 

Given story and scenario,  

Given, when, then. Examples.  

 

3.3 Kanban production process system 

The context of the project was the introduction of a production management 

environment based on the Kanban system. This is a method developed in Japan in 

factory production companies to avoid bottle necks and encourage the smooth 

prioritised accomplishment of tasks. It has also been proven to be effective in 

intelligent material production like software. 

 

Kanban in a similar spirit to Scrum (which avoids telling the developers HOW to do 

the implementation and rather WHAT the feature should do), avoids the traditional 

paradigm of assigning of tasks to people. Instead Kanban model puts the onus on the 

performer pick the task up from a prioritised waiting list. This allows some level of 

choice as the performer matches themselves to the task and also encourages more 

ownership in the process. The reason that Kanban has worked for many companies is 

that it is simply an excellent system for telling people what to do. (Baudin 2011).  It 

could also be speculated that workers perform generally better and with more 
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motivation when they only have one or two tasks to consider at a given point in time - 

rather than a mounting list of assigned work.  

 

All PlanMill requests for new functions and customizations pass through the following 

stages of the Kanban process: Requirements, Coding, Testing, Documentation, 

Production release. The principle is that a limited number of tasks should ever be 

underway in all of these phases at any one point in time. Jobs are given clarity to be 

completed more quickly and no stages of the process are then able to be omitted 

intentionally nor forgotten 

 

 

4 Architecture of  PlanMill 

The PlanMill online business application suite uses a combination of open source and 

propriety software. The programming language used for the primary system is Java, 

running on Apache Tomcat servers. The database used is Microsoft SQL Server 2008 

(while also supporting SQL Server 2005).  

 

The application is by definition a multi-tenant paradigm with shared server 

environment and a default shared client. However each customer instance has its own 

partitioned Database instance and own customer specific UI instance which inherits all 

the common instance parameters and configurations from the shared client unless 

customer parameters exist.  

 

4.1 Factory method design model 

PlanMill has been designed according to the Factory method model to allow for more 

generic object oriented structure and allow for easier customizations with only a small 

increase in overhead of the complexity (Niinioja 2010).  

The implementation of this model is through the partitioning into the broad layers of 

UI, Interface redirector, Business modules and Database - all of which have relevance 

in this project's design definition and specifications.  
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Figure 1.0 Architectural layers of PlanMill according to the factory model (Niinioja 2010) 

 
 

Rather than attempting to explain the full architectural intricacies of the system at this 

point - from an unapplied theoretical perspective - we will cover them further in the 

context of the project implementation distribution in section. 

 

The multi-tenanted functional design is partitioned by applying access rights to each 

subscription and user. Access rights implement access to functionality based on the 

subscribed-for services of PlanMill‟s client and the designated role of the user. Each 

user is checked for access rights to tools and categories and actions each page load. 

Optimization is important to keep the system useable despite its rich functionality. 
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5 Existing functionality and the need for further development 

5.1 Invoicing and limited e-invoice functions 

The pre-existing functionality of PlanMill included creation of invoices from Sales 

order or project generated invoices. For all customers who subscribed to this level of 

product group the invoice could simply be outputted in PDF form and handled 

manually. A select group of customers, with manual set up and configuration had the 

ability to transform the invoice files into the Finvoice-standard xml files for transfer via 

an electronic invoicing operator to their customers. This functionality had been setup 

originally for an intermediary other than Maventa however a small pilot group of 

customers were sending invoices electronically with Maventa by using these Finvoice 

files. There existed some technical issues with the current situation as Maventa has a 

different model for handling the sending process compared to the original operator. 

The desired channel was not always carried out for a given e-invoice address as 

Maventa required explicit declarations in the SOAP envelope used for the Finvoice. to 

ensure the correct delivery. This issue would need to be solved as a part of this project. 

 

In any case PlanMill had observed there to be a distinct market gap between any 

existing software or SaaS offerings that could satisfactorily provide this standardized 

service and the SME companies demanding it. Other ERP solutions that can handle 

invoicing such as SAP are costly, overly complex for SME's and require substantial 

investment in understanding their application to the company's processes. The pilot 

projects were attempting to stop-gap meet the need and test for further development 

like this project. 

 

Better handling of e-invoicing for a large group of customer demanded some level of 

automation of the registration and setting preference process. Maventa had a UI for its 

customers in place however PlanMill's goal was to avoid the need for the user to enter 

the Maventa environment and be baffled by the setting choices, Maventa's own wizard 

as well as the management of access keys 
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5.2 Need for generic functionality for a multi-branched wizard 

Automation of the registration process pointed towards a multi-branched wizard type 

registration.   Initial feasibility for this highlighted the need for several generic type 

handlings and functions to be added to the architecture. These included:  radio 

buttons, long text in forms, popups in forms, links and XHTML parsing in form field 

caption. None of these had been necessary before and they are a good example of how 

a product is forced to evolve as more powerful and informative interfaces are created. 

 

The form of the primary UI had been suggested to be a wizard however the question 

arose as to whether the concept of 'wizard' was really matched correctly to the need. If 

the user simply needed to fill out some form details and let the automation handle the 

rest then it could simply be a simple form. The existence of a wizard at Maventa 

possibly pointed to the need to break down the decision making process for the 

customer into phases. However with the integration project a major advantage would 

be that much information may already pre-exist in the customer's PlanMill database. 

The complications for the integration project arose due to the existence of the 

alternative direct registration channel. This fact generated the possible case 

combination of pre-existing company registrations and pre-existing user accounts 

eventually described as four distinct scenarios in section 13.1.  Also account activation 

requirement enforced by Maventa created a user-dependent break in the registration 

and setup process while trying to abstract it away from the third party. 

 

 

6 User stories and Behavioural Development cases 

6.1 User stories to describe the desired functionality 

From initial discussion about the functionality needs and consideration of the pre-

existing resources the project embarks formerly with the creation of the first draft user 

stories. Around ten user stories were created and considered for breaking down into 

clarified BDD cases. These were formulated from a brainstormed list of possible 
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functionality desires imagined by the stakeholders. The brain-storm wish list included 

the following for various actors in a customer company: 

 

1) I want to register my company for e-invoicing so I can send invoices 

electronically to my customers 

2) I want to add my existing Maventa account to PlanMill for sending e-

invoices direct from PlanMill 

3) I want to choose the preferred invoice sending channels for my 

customers and let PlanMill set the channel for each customer based on the 

available information 

4) I want to see a list view of all my customer companies which the 

invoice channel for each based on the preferences set and flags possible 

missing information. 

5) I want to browse and match companies that are listed for e-invoicing to 

my own customers in PlanMill 

6) I want to add other PlanMill users to be able to send e-invoices via 

Maventa 

 

The user stories were formalized according to the model discussed previously in the 

Working Methods section and managed from a collaborative wiki space. The primary 

user story was selected to be related to the registration process and read as follows: 

 

"As a finance user I want to register my company with Maventa so I can 

bill customers using efficient e-invoicing"  

 

The full list of formalised user stories is attached at Appendix 1 

 

6.2 Selection of functionality to be built in first Sprint 

 From the user stories the following functionality was selected to be delivered as a 

shippable product at the end of the sprint, coinciding with the version release: 
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1) Automated registration and setup of a new Maventa company account 

from a PlanMill company account's summary view (including generation 

and storage of new Maventa access information) 

 

2) Setting up invoicing in PlanMill with a pre-existing Maventa company 

account (mapping of existing account to the corresponding PlanMill 

account and storage of existing Maventa access information) 

 

3) Automation of invoicing channel based on preferences. 

 

The first two functionalities would be implemented by use of a multi-branched wizard. 

While the third would be the responsibility of some automated decision logic initiated 

by a relevant trigger and based on settings applied in the registration process. 

 

The second sprint would add the functionality to manage subsequent users (add, 

update, delete) with the „wish-list‟ suggestion of automatic user creation based on 

PlanMill user access rights. The architectural design for the first sprint would still need 

to prepare for multiple users despite the delay for that story. 

 

Discussions with CEO and chief project manager defined the acceptance criteria for 

the now agreed shippable product of automatic registration. All the other remaining 

user stories would comprise the product backlog in appropriate priority. 

 

6.3 Acceptance criteria for user stories 

Acceptance criteria encapsulate the extra business rules that are not a simple to define 

as a measurable condition. Rather than simply listing all the acceptance criteria we will 

discuss some of the important ones that affect the project. Here is an example of an 

acceptance criterion needing to be transformed into BDDs:   

 

“When Customer clicks register PlanMill collects all relevant fields for invoicing in addition to the 

required fields for registration and fills them with any existing data in the database.”  
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With the form being generated within the PlanMill system and inheriting any known 

relevant information the user would not be required to fill out a completely empty 

form.  So in contrast to the common case of registering to a non-integrated service, 

there was the chance to include more fields without creating a so called „churn point‟. 

  

Purpose of this criterion - it both eases the process of registration by avoiding any 

unnecessary double-handling of any existing data and at the same time leverages the 

opportunity to improve the quality of existing information in PlanMill and prevent 

errors later when user tries to create invoices 

 

Another important acceptance criterion was that the keys should be all stored in a new 

DB object table called a Keystore in the database for each instance. This would allow 

implementation of multiple user key support, as opposed to the current three pilot 

customers who were all using an instance bound set of shared and unencrypted 

parameters. The keys would need to be encrypted before storage at the database as a 

security acceptance criterion. Each key should be protected from misuse because each 

user would be accountable for invoices sent with their key and as they had hierarchical 

roles that affect the creation and management of more keys and users each user key 

and company UUID should be handled carefully. 

 

6.4 First draft BDD definitions  

So from the above acceptance criteria the first draft BDD cases were able to be 

defined. They would be refined much more clearly later however it was important to 

start partitioning the behaviour of the functionality for the requirements research. The 

first BDD‟s included the following 

  

1) Register new company account new user 

2) Register new company account with existing user. 

3) Set up e-invoicing with existing Maventa Account 
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4) Apply company settings for invoicing 

 

For example BDD 1) could read as: 

 

For a given <User>,  

And <User.role> („finance‟), 

And <Account.Id>,  

And <Account.Type> („My Company‟)  

When clicking the „Register‟ button 

Then  Update form fields to the Database and make API call with registration 

parameters to Maventa. 

Result: If succeful save returned keys to Keystore and notify user of activation email. 

 

 

The practice is to use the form element id, which for the most part corresponds to DB 

column, as much as possible to aid mapping and later possible automation of such 

behavioural test cases. 

 

7 Requirement gathering process   

7.1 Research of API methods to match the user stories 

 

The documentation for the Maventa Open API lists all the available methods. Each 

method includes some example code in Ruby and Python. Neither of these resemble 

closely Java however the code was useful to at least determine some required fields for 

the methods. Inspection of the user stories and BDDs pointed to a list of possible 

useful and essential methods for the first and second sprints. They have been listed 

below: 

 

register_company – in case of creating a new company account (BDD case 1 and 2) 

 

company_show, user_show - in case of an existing Maventa account needing be appropriately 

mapped to PlanMill (BDD case 3) 
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company_settings_update - for setting the preferred or recommended settings for other invoice 

channels such as printing services and email (BDD 4) 

 

set_invoice_receiving - (BDD case 4) 

 

user_create –for adding subsequent users (additional user story)  

 

company_lookup – used for actively determining if a customer is able to accept electronic invoicing 

using Maventa as the intermediary (additional user story) 

 

 

7.2 Collection of important concepts, method responses and errors 

As a result of the minimal documentation the JSP test tools were also very useful for 

teasing out and recording both the successful response strings and any possible error 

messages from each method. These would be essential for string matching at the 

implementation stage for the various predictable conditions and were added to the 

requirements specifications which supplement each BDD case.  

 

 

Some important concepts that were established from the API research included: 

 

1) The user API keys and Company UUID needed as access credentials with any 

API calls, 

 

2) The use of the email address as Username identifier, and the actual e-invoice 

identifier which could be the EDI (OVT in Finland) or a Maventa Id ( referred 

to more generically as the invoice net address).  

 

3) The vendor key and server address for the API were two additional important 

concepts but these were simply common to all users and set in parameters. 

PlanMill as a vendor had to manage both a testing and production version of 
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these so it was important to build some functionality that ensured the two were 

not mixed between the testing and production release phase. 

 

 

Company identifier and all the API keys are in actuality each a Universally Unique 

Identifier (UUID).  The UUID is a 128 bit hexadecimal number that uses among other 

things a clock-time based algorithm to generate a globally unique number without the 

necessity for any standards control authority.  (Leach, Mealling and Salz, 2005) 

 

Continuing with our discussion of important concepts and the user activation and its 

impact on the process to achieve a registered-and-verified state was recognized to be 

an important issue. The verification emails were noted to possibly distract the user 

away from the integrated registration process by offering too much unnecessary 

information such as displaying the keys plus an invitation to log into the Maventa UI. 

This could confuse the user and raise questions which it was the goal of the integration 

project to avoid. 

 

7.3 Research of the Maventa UI and infrastructure  

 

In parallel to the method selection, implementation and testing process the Maventa 

UI and direct registration process was inspected for important points. Both Maventa‟s 

own registration form and the company settings viewable when logged-in were 

considered and tested for behaviours in comparison to the API method results. 

 

 One important point which arose from this was the business rule associated with 

handling of VAT numbers in EU excluding Finland (where the VAT number is also 

the business identity number where applicable).  This one small issue had 

consequences for the project UI behaviour and mapping issues - PlanMill reserves a 

place in the account for both BID and VAT while Maventa needs only to capture 

whichever one is relevant. Some client based script would definitely be required to 
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handle this. 

 

The impact of the invoice channels preferences offered by Maventa were attempted to 

be clarified further by navigating through Maventa‟s UI and by using the system. As no 

invoices were actually sent on the test server it was difficult to conduct testing of the 

delivery method.  

 

Printing services are an important channel in the digital handling of invoicing to reach 

the customers that do not yet accept electronic invoices while still increasing the 

efficiency of the invoicing company processes. Any invoices marked for printing 

service are forwarded by Maventa onto Itella‟s „Ipost‟ service where they print the 

attached PDF and deliver them via the local post. The cost for this service at the time 

of writing was between 1-2 euros per page.  

 

As a third alternative Maventa also provides online invoice previewing and 

downloading of PDFs with notification links to the customers email address. When 

not explicitly indicated the invoice method or preferences Maventa tries to deliver the 

invoice first as an e-invoice, then email, then finally as printing service. This rose 

questions as to how to explicitly predict the sending channel - due to the fact that 

PlanMill was using the simpler finvoice_put method rather than the more explicit 

invoice_put method available. 

 

7.4 Clarification of registration process into state diagram 

To help describe the concept of company registration status from the view-point of 

PlanMill a diagram was created encompassing the following states:  

 

Unregistered, Registered – unverified, Registered –no keys, Registered -verified 
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Figure 3 – State diagram for Registration concept 

 

 

8 Database requirements 

To support the new concepts introduced by the Maventa system requirements some 

adjustments would be necessary to the database. These would take the form of changes 

at 3 levels of persistency in the structure: code field in a generic table, column additions 

to the existing account table and a completely new table. 

U

z

Key 

Saved?

Registered 

– unverified 
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8.1 New code fields for recording states 

As mentioned the activation requirement for a new account/user created a need for a 

state indicator in the system. Settings could not be updated and invoices sent until the 

user had activated the account via the email link. 

 

Rather than impacting the Account table for this status record an integer code would 

be saved to the generic code table and thus no unnecessary space would need to be 

reserved in the DB.  Other concepts would however affect the Accounts table. 

 

8.2 New columns required in the existing Account object table  

 

The currently unsupported concepts still needing to be bound to the company account 

were Printing services (or Ipost) region, Ipost type, Sending operator, and finally the 

Invoice receiving option. It was decided for management purposes to add these to the 

account table as null-allowed columns to be used when applicable. 

 

 

8.3 Design of a new Keystore table 

The access data being bound to both accounts and users and the multi-user acceptance 

criterion determine a need for Keystore. This was a service that would have use for all 

third-party applications in PlanMill and thus demanded the most persistent handling in 

the form of new table. 

 

Concepts that needed reflection in the Keystore included: 

 

1) User bound API key / company bound UUID,  

2) User / Company association has many to many multiplicity,   

3) initial administrator user immutability (company cannot exist without a user 

and user key),  
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4) subsequent users,  

5) User roles (ADMIN or USER).  

6) Active or Inactive status of users 

7) Email used as identifier at Maventa as this was bound to the user API key at 

the time of creation. 

 

These concepts were encapsulated in a simple excel table with some example data 

rows which established unique key sets for each company /user combination. This 

table would be used as a model for an iterative implementation of the Keystore by 

an SQL creation script. The primary design of the table was as follows: 

 

Key store table design 

Id PersonId AccountId AppName KeyName KeyData 

2776100 2689817 2776096 Maventa user_api_key ############ 

2776102 2689817 2776096 Maventa company_uuid ############ 

2776116 2689817 2776096 Maventa user_role ADMIN 

2776117 2689817 2776096 Maventa email_address test@test.com 

 

 

9 UI design 

9.1 BDD cases to wireframes 

By combining the draft BDD cases, PlanMill acceptance requirements and Maventa 

requirements with the research knowledge gathered the UI could begin to be described 

in „wireframe‟ form.  This was actually a process that occurred in parallel to the 

research of the methods to help visualize the user experience and clarify complexities. 

A multi-branch wizard that started with a choice of new registration or adding existing 

account keys would now need to be implemented.  
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Figure 4. Wizard navigation first draft version 

 

The most important page for the user would be the registration form. It would have 

the responsibility of collecting any information already existing for the company in 

PlanMill and demand any missing information to be completed before proceeding to 

perform the API call. The wireframe image for this page has been included at the end 

of this section at Figure 5.  

 

The wireframes were also excellent tools for clarification discussions with the 

stakeholders in regards to the acceptance criteria such as messages to clients. As they 

are only a starting point for design the UI there is no need to retain them as artefacts at 

the end of the project -they may not resemble anything like the final UI. Thus Figure 5 

the only wireframe included in this document. 

 

9.2 Wizard design considerations 

Research on UI and wizard design highlighted several important points described 

here as a checklist (Constantine and Lockwood 1999): 

1) Question and choices should be worded as the intentions of user to make the 

consequences as clear as possible. (For example a „Register me‟ button rather 

than generic „Next‟ or „Submit‟.) 

2) Upon launch inform the scope of the wizard to the user 

3) Maintain state where possible between steps if wizard is aborted before 

completion.  

Start page 

Register new 

account 

Add existing 

keys  

Invoice channels 

+ email activate 

message 

Invoice 

channels 

Finish 
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4) Keep the user informed, and use simple language  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Wireframe draft example of Registration form in PlanMill wizard 

 

Best attempts were made to satisfy the discussed design recommendation as shown in 

the preliminary wireframe design example at Figure 5. Notice the inclusion of 

navigation breadcrumbs, checkboxes using intent wording-structure captions, and the 

contextually named buttons - all specific design optimization choices.  

 

10 Rationalization phase 

10.1 Reduction of scope for first sprint 

The requirements phase took more time than expected partly due to lack of 

documentation and also raised some complications for modelling the multi branching 
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choices. The time restrictions and the requirement to have a shippable product at the 

end of the sprint forced a re-evaluation of the scope of user stories. The project was 

consolidated to now only implement the „Registration of a new company‟ story in the 14.1 

version wizard. This was of course the primary story. The second story would still need 

to be covered but instead of within a multi-branched wizard it would now be 

implemented in a JSP tool as stop-gap solution. This persistent need for the second 

story was driven by three known and pressing cases of existing Maventa accounts 

owners – namely the pilot customers which had been setup manually using customer 

instance residing parameters (as semi-generic customizations).  

 

Clarification was made that the multiuser supported design would need to bypass 

handling of the user binding and point to a single administrator keys until the 

implementation of the creating and manage user story in the next sprint. 

 

10.2 Assumptions made for unnecessarily complicated preferences 

The invoice channels settings offered by Maventa risked overly complex logic in the 

product backlog automations of customer account billing settings. After producing 

extensive BPMN decision modelling it was decided to be in the interests of stake 

holders to make some useful assumptions of settings: 

 

The default values for Printing-services were for enablement to the world and 

economy post. These were now promoted to assumptions removing any user choice 

concerning these. Assumed preferences were to now be presented to the user as 

simplified channel choices available at the individual customer account level. The 

choices were reduced to only the e-invoicing or printing services for this sprint. The 

third option at the customer account would be to override the Maventa channels by 

selecting the currently available channel option „email‟. This rationalization explicitly 

ignored the Maventa available channel of emailing the invoices to the customer. 
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The basis for these decisions was experience with the current pilot group‟s members. 

Consultants had generally found that clients preferred PlanMill to choose a 

recommended configuration rather than be presented with a multi-faceted set of 

preference choices. 

 

 

11 Finalization of  Design specifications 

11.1 Refinement of BDDs 

Communication of the requirements research results amount to refined, normalized 

inheritance explicit, and ordered BDD cases and scenarios. This means that in theory 

every action should be represented by a BDD or scenario. An example of this 

refinement was the addition of a „Load registration form‟ BDD case just for the correct 

behaviour of the system when the user clicked „Set up e-invoicing‟. This BDD would 

be responsible for describing the access rights and the relevant form fields to be 

loaded. The subsequent „Registration of new account‟ BDD case would inherit the 

access rights and correct fields and then only need to test the registration dependent 

data such as Business Id and country. 

 

Example data was supplied for unit testing purposes in the implementation iterations. 

 

11.2 Creation of clear additional specifications linked to BDD’s Business rules 

Any complex business rules that could not be encapsulated in scenarios were added to 

supplementary specification tables. Examples of these business rules included the 

country dependent submission of the VAT number or Business id field. A list of the 

current EU countries was needed to be included as key value pairs with the short 

country code for handling in an appropriate script. Error responses and success 

responses were included in the scenarios. 
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11.3 Data mapping  

To accompany the BDD cases the implementing developer required data mapping 

tables between the PlanMill objects and their database columns, and the corresponding 

Maventa objects and API parameter fields. Figure 6 is an example of the data mapping 

between the systems relevant for the Save, (Show) and Update settings BDD cases. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 - Data mapping table between Maventa and PlanMill for Company Settings concepts   
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12 Implementation 

12.1 System specification 

The system specifications for using the Agile minimal documentation methodology  

comprised of the clarified BDDs, the finalized UI screen shots especially the forms, 

the supplementary business rules, data mapping tables,  Keystore table design, and a 

state diagram for the process of becoming a registered and verified user 

 

12.2 Distribution of implementation across PlanMill architecture 

The implementation phase, in the spirit of Scrum, does not tell the developer how 

exactly to code the feature. However it was useful to allocate the design model to the 

appropriate architectural layers. 

 

12.2.1 Server side implementation 

At the server a main Java class module for the business layer was created. All the logic 

implementing the state machine model for the invoice set up process would need to 

reside in this server side class. Actions linked to corresponding Java functions were 

accessed via arguments passed into the class by the web requests. 

 

Main functions implemented in the server were: 

Load registration – a database read query and form build 

Save registration – a database update query and API call 

Load invoicing channels - a database read query and form build 

Save invoicing channels - a database update query 

Verification of account – API call updating settings, database query changing the verified 

status code field, and finally an update that enables the running the invoice sending 

jobs.  

 

The other new server-side class to be built was the Keystore service class. This class 

was effectively the interface that handled the encryption and all access methods for the 
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cached data.  The Maventa business module would call upon the partitioned services of 

the Keystore which was to be built for the use of other services also. 

 

The main business module class for the project also depended on services from the 

pre-existing „MaventaClient‟ class. This class handled all the web service connections 

and served the important „MaventaApiPort‟ function object for accessing all the API 

methods. The binding of Maventa access credentials to both user and account required 

the enhancement of this existing Maventa client class. Previously a single set of shared 

parameters and single company limitations were now to be replaced with user specific 

keys and a support for multiple companies. This amounted to the addition of the 

account id to the required arguments passed into the Maventa client class and 

alteration of the key getting methods to now point to the Keystore interface. 

 

12.2.2 Client side implementation 

The mapping between the systems is the responsibility of concise forms residing at the 

client side. The forms exist as field, enumeration and language string parameters, which 

are mapped to columns in the database tables. The language strings enable dynamic 

multi-language support -PlanMill at the time of writing was available in Finnish, 

English and German. Simple concatenations and operations, and JavaScript insertions 

are performed via in this layer as field parameter attributes along with element types 

and style class declarations. The attributes are parsed through a Form-builder service        

class into XML and then transformed by relevant XSL sheets into XHTML. New 

forms to be implemented at the shared client were the Registration form to support 

the first page of the wizard and the Invoice channels form for the second.  

 

12.2.3 Production-use JSP tool for adding keys directly to the Keystore 

As the Keystore was encrypted it necessarily required an internal use interface for any 

manual row entries. Also as discussed in section 10 Rationalization phase, some stop-

gap handling of the user story „I want to set up my company at PlanMill with an existing 

Maventa account‟ was still needed despite its omission from the 14.1 release wizard. 
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Until the implementation into the wizard this user story would be dependent on 

internal use only of a JSP tool by a PlanMill consultant. These tools were in frequent 

use already for various extra functionalities that were available to super users only.  

 

The tool would need to consider carefully the registration-verification state of the 

company that it would produce. As the final goal was to set up the invoicing company 

to be ready to send invoices it was soon recognized that the JSP tool should implement 

all the functionality handled by the registration of a new company – not just add the 

keys. 

 

To clarify this it was found useful to create a combined BPMN process model diagram 

and review the complete process from registration, configuration through to activation 

verification and sending invoices. The diagram as seen below, also considers the 

important company account‟s verification status which is held by the integer code 

discussed in section 8.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Business Process Notation Model of Setup e-invoicing with JSP tool 
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From this model an appropriate BDD case could be defined and applied for testing. It 

is worth noting that the tool did not need to „reinvent the wheel‟. Once the correct 

consistent state had been modelled any functions developed in the Maventa class could 

simply be called as needed. The JSP tool would in fact be the first production use of 

the new services long before any new user would access the wizard as it would be 

applied first thing on release night for the pilot customers. Later the logical decisions 

for the tool should in theory be supported by some level of automation in a further 

enhanced version of the wizard 

 

After implementation of correct the information handling the acceptance criteria for 

the BDD still needed to be consider. This included the slightly complicated issue of 

mapping the user bound key to the correct user and the company bound key to the 

correct company.   

 

It was interestingly discovered that Maventa‟s open API lacked a direct „show key own 

user‟ based on the API key. The user_show method only accepted the apparent foreign 

key for the user details objects and as consequence it did not implement any direct link 

back to the user API key. This was either a relational model or security abstraction 

however it created the problem that if there is more than one user linked to a given 

company the API methods can do nothing more than list the all of users attached to it. 

This would leave you to guess who actually owns the key. 

 

As a consequence the email for a given key used at the time of registration would need 

to be supplied by the client to correctly map any set of verified user key and company 

UUID.  In section 13.2 as an example of sprint delivery documentation, a screenshot 

has been included which demonstrates the resulting tool. 
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12.2.4 Script-handled behaviour design requirements 

The remaining business rules for the BDD‟s which were not able to be handled on the 

class level would need to be implemented also client side in JavaScript. These included 

the following: 

1) Visibility of the „Set up e-invoicing‟ wizard initiation button link in the 

account summary page for the company. 

2) Opening of the UI overlay container for the wizard and the initial call to the 

business class to load the form 

3) The country dependent VAT number  relevance rule and corresponding 

enabling and disabling of fields 

4) The consequent „No VAT‟ choice in the case of VAT country relevance 

5) The closing of the wizard when „done‟  

 

 

12.3 Communication  

Some working methods utilized in this project were newly introduced to PlanMill and 

experiencing the normal resistance stage from employees. Some of the artefacts 

provide to the senior developer were found to be useful while others were not or the 

model was not yet understood. Despite the availability of the collaborative wiki 

resource the feature request maintained in the PlanMill operations instance was the 

only reference point used by the senior developer. The requirements documents then 

had to be carefully linked to the relevant pages in PlanMill‟s collaborative wiki space 

containing the project artefacts such as BDD‟s and other specifications or the 

developer would not find them. 
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13 Acceptance testing and documentation 

13.1 Evolution of BDD cases into Acceptance test cases 

Agile and Scrum methodology encourages the relinquishment of redundant artefacts as 

the development processes proceeds. As a part of this the BDD‟s used for design 

should make way for persistent test cases with useful data examples.  

 

The BDD for acceptance testing for the „Submit registration form‟ considered the 

following four clear scenarios: 

1) Unregistered BID/VAT for the given country,  unregistered user email  

2) Previously registered BID/VAT for the given country 

3) Unregistered BID/VAT for the given country, previously registered user email 

with the PlanMill wizard from given PlanMill instance. 

4) Unregistered BID/VAT for the given country, previously registered user email 

at Maventa but not yet stored in PlanMill (for that given instance). 

 

As the system uses a web-based UI, cross browser issues need constantly to be 

considered. PlanMill at the time of writing was supporting IE 7+, Chrome, Firefox, 

and Safari.  Test cases had to be created with examples for each of the different 

browsers. These would be run as a part of the acceptance testing for the 14.1 release 

each on a browser allocated virtual machines).  

 

The test examples needed to be carefully selected to not conflict at the third-party 

application with either other testers or developers using the Maventa test server. For 

example Business ids for the test company along with user emails needed to be 

explicitly allocated so each browser tester would get an opportunity to test with unique 

and previously unregistered data.  This could be done by using the „Company lookup‟ 

method implemented in one of the method testing JSP tools. 

  

The part of the resulting BDD test case pertaining to scenario 1) appeared as follows: 
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Given story: BDD Load Register Maventa form 

Finance user checks/fills missing fields before proceeding. 

Scenario 1:  

Business ID / VAT has NOT been registered before and Administrator email address has NOT been 

registered before. 

Given <Account.Id.> 

And <User.Id> 

And <User Agreement> = True  

And <Location1.CountryId> (enumeration list) 

And the submitted (<Account.BusinessId> OR ( <Account.VatId> + <Country>)   

And remaining <e-invoicing registration relevant fields> 

When User clicks register (plus confirm order popup) 

Then a succesful Maventa API call registration forwards user to the Invoice channels screen with 

Acount.Name  and Person.Email  

Result: 

Keystore has 4 rows for the user/account combination key/uuid , email and ADMIN role 

And <Account.InvoiceNetAddress> updated with Maventa_Id returned from api call. 

 

Examples: 

 

Figure 2. A segment of the cross-browser acceptance test data  

 

The complete test case is attached as Appendix 4 
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13.2 Documentation of completed functionality  

The final phase of the sprint includes the documentation of the shippable products in 

release for release notes and user guide suitable for both PlanMill consultants and end 

user clients. Also importantly documentation was required for any new related JSP 

tools such as our user key /company UUID insert tool. JSPs due to their rudimentary 

interfaces often need more clarified documentation as they are quickly designed for 

internal use and without much if any consideration for the user experience or 

intuitiveness.  

 

The author is of the opinion that relying on a tool being available only for internal use 

can be a big risk for costly errors in the future - especially in the case of this project in 

which the tool binds users and companies. Due to the lack of automation inherent in 

the JSP tool the guide leads the user step by step through the necessary decision points. 

Some effort was made to protect the user from entering just any keys to the Keystore 

by adding a verification layer however the mapping of the account and person could 

prove to be very confusing. 
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Figure 8. Screen shot of JSP tool as provided in the user guide for internal consultants 
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14 Learning outcomes 

During the implementation phase some integration dependency issues arose which 

highlight the vulnerability such projects have with constantly developing API‟s and 

web services.  

 

The author discovered the need for clearer BDD cases and example test data to aid the 

implementation process. Along with this the people using the model should agree on 

what works for them – what is useful and what is not. 

 

Conveying implementation specifications important for further development but not 

relevant to the current BDD‟s was found to be a challenge e.g. the multi-user design 

and the user binding of keys despite the stop-gap solution of a single set of 

administrator access keys for a given company.  Some solution that indicates these 

needs contextually within the BDD is required.  

 

14.1 Checklist for integration of an application with a third-party web service 

A good way to describe the learning outcomes appears to be a checklist of questions to 

ask when embarking on an integration project. 

 

Are there SLAs covering changes to the API or web service - will they be notified in 

advance with useful adaptation suggestions? Any change in an expected result can have 

large effects on a process flow. 

 

Are there any the third party direct communications to the user that bypass your own 

system? For example the email activation and welcome email in this project: does the 

third party take into account that the alternative registration process for the user via the 

API creates many redundancies for instructions and may require very different 

information? 
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Will there be good open communication lines between you and the service provider? 

What is the level of documentation for the service and available methods? The former 

consideration may make up for the lack of documentation and vice versa. 

 

What is the stability level of the version - is there a new improved service nearing 

release for that rectifies some limitations? 

 

What can and can‟t be expected to be done – Are most important user stories even 

covered by a method? 

 

What are the differences between the testing server and the operational server 

behaviours? These should be clearly defined to prepare the correct actions for return 

responses when the system goes live. For example in our tests the VAT validation 

check was deactivated for the test server and consequently omitted from the test cases. 
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Appendix 4 - Acceptance BDD test case for Submit Registration form 

Given story:BDD Load Register Maventa form 

Finance user checks/fills missing fields before proceeding. 

 

Scenario 1: Business ID / VAT has NOTbeen registered before and Administrator email address has 

NOTbeen registered before. 

Given <Account.Id.> 

And <User.Id> 

And <User Agreement> = TrueAnd Maventa Admin Email <Person.Email> is not registered at 

Maventa 

And <Location1.CountryId> (enumeration) 

And the submitted (<Account.BusinessId> OR ( <Account.VatId> + <Country>)  is Not Registered 

at Maventa yet 

And remaining <e-invoicing registration relevant fields> 

When User clicks register (plus confirm order popup) 

Then a succesful Maventa API call registration forwards user to the Invoice channels screen with 

Acount.Name  and Person.Email (at moment will be different if overriden) 

Result: 

Keystore has 3 rows for the user/account combination and 

<Account.InvoiceNetAddress> updated with Maventa_Id returned from api call. 

 

Scenario 2: Business ID / VAT HAS been registered before  

Given <Account.Id> 

And <User.Id> 

And <User Agreement> = TrueAnd Maventa Admin Email <Person.Email> is not registered at 

Maventa 

And <Location1.CountryId> (enumeration) 

And the submitted (<Account.BusinessId> OR ( <Account.VatId> + <Country>)  is Not Registered 

at Maventa yet 

And remaining <e-invoicing registration relevant fields> 

When User clicks register (plus confirm order popup) 

Then Form is returned with Error (examples table) and also AlertBox directing user to provide 

user/company keys for Submitted(<Account.BusinessId> OR <Account.VatId>) 

 

 

http://wiki.planmill.com/display/Maventa/BDD+Load+Register+Maventa+form
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(Appendix 4 continued) 

 

Result: 

Keystore has NO rows for the user/account combination  

 

Scenario 3:  Business ID / VAT has NOT been registered before, Administrator email address HAS 

been registered before VIA PlanMill. 

Given <Account.Id> 

And <User.Id> 

And <User Agreement> = TrueAnd Maventa Admin Email <Person.Email> is registered at Maventa 

and in keystore 

And <Location1.CountryId> (enumeration) 

And the submitted (<Account.BusinessId> OR ( <Account.VatId> + <Country>) is Not Registered 

at Maventa yet 

And remaining <e-invoicing registration relevant fields> 

When User clicks register (plus confirm order popup) 

Then a succesful Maventa API call registration forwards user to the Invoice channels screen (with 

<Person.Email> and <Account.Name> ) 

Result 

Keystore has 3 rows for the user/account combination 

AND <Account.InvoiceNetAddress> updated with Maventa_Id 

 

Scenario 4: Business ID / VAT has NOT been registered before, but Administrator email address 

HAS been registered before at Maventa (not via PlanMill) 

Given <Account.Id> 

And <User.Id> 

And <User Agreement> = TrueAnd Maventa Admin Email <Person.Email> is not registered at 

Maventa 

And <Location1.CountryId> (enumeration) 

And the submitted (<Account.BusinessId> OR ( <Account.VatId> + <Country>)  is Not Registered 

at Maventa yet 

And remaining <e-invoicing registration relevant fields> 

When User clicks register (plus confirm order popup) 

Then No keys page is returned directing user to provide keys for user and company with given 

submitted(<Person.Email>) 
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Result: Keystore has NO rows for the user/account combination 

 

(Appendix 4 continued) 

 

 

Examples: 
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(Appendix 4 continued) 

 

 

 

 

 

 

 

 

 

 

 


