

Comparing Google’s Android and Apple’s iOS Mobile Software

Development Environments

Eero Maasalmi, Panu Pitkänen

 Thesis

 Business Information Technology

 2011

 Abstract

 2.11.2011

Business Information Technology

Author or authors
Eero Maasalmi, Panu Pitkänen

Group or year of
entry
2008

Title of report
Comparing Google’s Android and Apple’s iOS Mobile Software
Development Environments

Number of
pages and
appendices
104 + 6

Supervisors
Ismo Harjunmaa, Juhani Välimäki

Mobile devices have become extremely popular during the past few years. They are
used widely in business and everyday life by the young and the elderly. As the mobile
devices and their operating systems have developed, the manufacturers have made it
possible also for everyday users to create their own applications using specific Software
Development Kits. For that reason, it is now common that applications are created not
only by third party companies but also by everyone interested in the matter.

The mobile business has come to a point where there are a few big companies respon-
sible for developing the operating systems used by most hardware manufacturers. Of
all the operating systems, there are two which have grown their market share during
the past few years: Apple's iOS and Google's Android. The purpose of this thesis was
to compare the two, finding out how easy they are to take into use, and to develop and
publish applications with.

The study was carried out as an empirical research. The research was made on both
operating systems and the SDKs. Based on that knowledge, applications were created
and published for both systems. The basic outline of the study was installing and work-
ing with both SDKs, developing and publishing applications using the SDKs, and es-
timating the costs of installing development kits in an educational environment.

The objectives of this study were achieved as planned: both SDKs were successfully
installed, four applications were created altogether, an estimation of costs was made
and overall experience of both systems was gained.

Keywords
Android, Apple iOS, Software Development Kit, mobile device

Table of contents

1 Introduction .. 1

1.1 Objective of the thesis .. 1

1.2 Outline of the thesis .. 2

1.3 Scope of the thesis .. 2

1.4 Out of scope .. 2

1.5 Methodology applied .. 3

2 Android.. 4

2.1 Android and the Open Handset Alliance .. 4

2.2 Android from a technical perspective .. 5

2.2.1 Applications.. 5

2.2.2 Application Framework .. 5

2.2.3 Libraries .. 6

2.2.4 Android Runtime ... 6

2.2.5 Linux Kernel .. 7

2.3 Introduction to Android SDK .. 7

2.4 System and software requirements for developing with Android SDK 8

2.4.1 Supported Operating Systems ... 8

2.4.2 Supported Development Environments .. 8

2.4.3 Hardware requirements .. 9

2.5 Installing the Android SDK ... 9

2.6 Summary of the Android SDK installation process ... 26

2.7 Programming with the Android SDK .. 27

2.7.1 Setting up the Android Virtual Device ... 27

2.7.2 Starting the project in the Eclipse environment .. 29

2.7.3 Developing HelloWorld for Android ... 31

2.7.4 Developing OpenSomeWebsite for Android .. 32

2.7.5 Summary of the application development process on Android SDK ... 33

2.8 Deploying an application on Android .. 33

2.8.1 Testing the application on Android SDK .. 34

2.8.2 Considering the use of license agreements .. 35

2.8.3 Giving the application an icon, a label and a correct version number ... 35

2.8.4 Turning off unnecessary facilities and removing unnecessary files 37

2.8.5 Generating a cryptographic key and considering the use of Maps API

Key .. 37

2.8.6 Compiling, signing and aligning the application .. 38

2.8.7 Releasing the application into the Android Market 40

2.9 Legal issues and costs of setting up an Android SDK environment 41

3 iOS.. 43

3.1 iOS in general ... 43

3.2 iOS from a technical perspective .. 44

3.2.1 Core OS and Core Services layers ... 45

3.2.2 Media layer.. 45

3.2.3 Cocoa Touch layer... 46

3.3 iOS Developer Programs ... 46

3.4 Introduction to iOS SDK .. 47

3.5 System and software requirements for developing with iOS SDK 48

3.6 Installing the iOS SDK ... 49

3.7 Summary of the iOS SDK installation process ... 56

3.8 Programming with the iOS SDK .. 57

3.8.1 Setting up the virtual iPhone device ... 58

3.8.2 Starting the project in the Xcode environment ... 59

3.8.3 Developing HelloWorld for iOS ... 61

3.8.4 Developing OpenSomeWebsite for iOS .. 62

3.8.5 Summary of the application development process on iOS SDK 63

3.9 Deploying an application on iPhone .. 63

3.9.1 Designating iOS devices for development and user testing 65

3.9.2 Creating a Certificate Signing Request and obtaining the iOS

Development Certificate .. 66

3.9.3 Creating and downloading a development provisioning profile 73

3.9.4 Considering the use of license agreements .. 73

3.9.5 Giving the application an icon, a label and a correct version number ... 74

3.9.6 Archiving and signing the application .. 76

3.9.7 Releasing the application into the App Store .. 76

3.10 Legal issues and costs of setting up an iOS SDK environment 77

3.10.1 Legal issues ... 77

3.10.2 Costs of setting up an iOS SDK environment .. 78

4 Overall comparison based on the research ... 81

4.1 Pros and cons of using Android as a platform .. 81

4.2 Pros and cons of using iOS as a platform .. 83

5 Discussion about the research .. 86

5.1 Evaluating the methods .. 86

5.2 Evaluating the research results and their validity .. 86

5.3 Evaluating the overall thesis process .. 87

5.4 Evaluating the learning process ... 88

6 Summary and conclusion of the thesis .. 89

6.1 Summary ... 89

6.2 Conclusion ... 89

Bibliography ... 91

General sources used ... 91

Sources used in the research about Android and Android SDK 91

Sources used in the research about Apple iOS and iOS SDK 94

Appendix A - Android source code ... 98

Appendix A.1. - HelloWorld for Android .. 98

Appendix A.2. - OpenSomeWebsite for Android ... 99

Appendix B - iOS source code .. 100

Appendix B.1. - HelloWorld for iOS .. 100

Appendix B.2. - OpenSomeWebsite for iOS ... 102

Abbreviations

2D Two dimensional

3D Three dimensional

ADB Android Debug Bridge

ADT Android Development Tools

API Application Programming Interface

AVD Android Virtual Device

CA Certificate Authority

CRL Certificate Revocation List

CSS Cascading Style Sheets

CSR Certificate Signing Request

DDMS Dalvik Debug Monitor Server

DPI Dots Per Inch

DVI Digital Visual Interface

EFF Electronic Frontier Finland

EULA End User License Agreement

GB Gigabyte

GCC GNU Compiler Collection

GHz Gigahertz

GNU GPL GNU General Public License

GUI Graphical User Interface

HD Hard Drive/High Definition

HDMI High Definition Multimedia Interface

HTML Hypertext Markup Language

ID Identification

IDE Integrated Development Environment

iOS Apple’s mobile operating system (known as iPhone OS before June 2010)

JDK Java Development Kit

JDT Java Development Tools

JRE Java Runtime Environment

MB Megabyte

OCSP Online Certificate Status Protocol

OHA Open Handset Alliance

OS Operating System

2

RSA Rivest, Shamir and Adleman, the designers of the RSA signing/encryption

algorithm

SDK Software Development Kit

SQL Structured Query Language

UDID Unique Device Identifier

UI User Interface

USB Universal Serial Bus

WWDR Apple Worldwide Developer Relations Intermediate Certificate

XML eXstensible Markup Language

1

1 Introduction

Mobile devices are not in any way as they used to be in the past. Not only have the

screens grown in size and quality, but also the internal hardware has grown to reach

performance levels seen only in laptop computers some years ago. In addition to tradi-

tional mobile phones, the market has seen the rise of devices with screen up to over 10

inches, so called tablets. All of this opens doors for new, bigger, faster, better looking

and possibly yet never seen applications to be developed.

Google Android and Apple iOS being among the biggest players in the mobile operat-

ing system market, there is also a need for usable environments in which more or less

experienced developers can create applications of their own for these specific envi-

ronments. As the mobile application development is luring more and more developers

into the market it has also become an attractive topic in educational environment. The

growing popularity of Android and iOS has made them the two most interesting plat-

forms for now.

1.1 Objective of the thesis

The objective of this thesis is to compare the Android Software Development Kit and

Apple’s iOS Software Development Kit with each other. We will install both develop-

ment kits on workstations, create applications with them, research the publishing

process of the application and finally find out how much each environment would cost

in educational use. All of these steps are documented and the documentation is pre-

sented in this thesis.

As this thesis work is done as a pair work, the workload had to be divided evenly be-

fore starting in order for both of us to be able to receive our own grade for the work.

We divided it so that Eero Maasalmi is responsible for everything related to Apple iOS

SDK and its documentation and likewise Panu Pitkänen is responsible for Android

SDK and the documentation related to it. We are working as a team, but still keeping

our own areas in mind throughout the process.

2

1.2 Outline of the thesis

The basic outline of this thesis work is as follows:

 Introduction.

 Research related to the Android SDK and Android programming.

 Research related to the Apple iOS SDK and iOS programming.

 Conclusion and appendices.

1.3 Scope of the thesis

The scope of this thesis work can be listed as follows:

 Installing and familiarizing ourselves with Android SDK and iOS SDK.

 Creating a small application with Android SDK and iOS SDK according to re-

quirements commissioned to us.

 Publishing the application in the operating system’s application market.

 Researching the estimated cost of installing either development kit in an educa-

tional environment.

1.4 Out of scope

This thesis work will not introduce nor explain the very basics of Android and Apple

iOS. The reader is expected to have basic knowledge about both operating systems.

We will not be considering the advantages or disadvantages of using the operating sys-

tems and applications on tablet-devices and their bigger screens. We are only working

with two mobile devices: iPhone 4 and Samsung Galaxy S.

Due to monetary issues, we will not actually be able to publish our application neither

in neither Apple’s App Store nor in the Android Market. We will describe the publish-

ing process in theory instead.

We will not take sides on which operating system or development environment is bet-

ter, we will only document the usability and differences.

3

We will also only consider the creation and publishing of an application; we will not

take into consideration whether the application should cost any amount of money and

whether the development is done as a profession or merely for own advance.

1.5 Methodology applied

This thesis is carried out as a research project and is partly based on theoretical and

partly on empirical research; the systems are first taken into use, and the results will

then be documented. It is a research project comparing two development environ-

ments intended for similar use. Other source material will be gathered from related

literature and from the companies responsible for the systems.

The thesis includes some application development work, which falls under product

oriented research. Nevertheless, it is only a minor part of the entity and thus makes this

a research-oriented thesis following the contents and methods of the related guideline

“Thesis report guidelines for a research project”. For the layout standard, the HAA-

GA-HELIA UAS Report Layout and Citing Sources will be used as the guideline.

(HAAGA-HELIA University of Applied Sciences 2011a, HAAGA-HELIA University

of Applied Sciences 2011b.)

4

2 Android

Panu Pitkänen is responsible for this chapter. The testing was done as a team with Ee-

ro Maasalmi, but all research and documentation is made by Panu Pitkänen.

2.1 Android and the Open Handset Alliance

Google, along with the Open Handset Alliance (OHA), launched the mobile operating

system Android in the end of 2007 (DiMarzio 2008, 23.) The Open Handset Alliance is

dedicated to “accelerate innovation in mobile and offer consumers a richer, less expen-

sive, and better mobile experience” (Open Handset Alliance 2007a.) Nowadays the

OHA is represented by 84 of the leading software and hardware companies, and mo-

bile operators, for example Sprint, T-Mobile, Intel, Asus and Acer in addition to

Google and others (Open Handset Alliance 2007a, Open Handset Alliance 2007b.)

As the name of the Open Handset Alliance implies, the companies representing it are

dedicated to contribute to the openness of the mobile world. This is why Android is an

open source system bringing cheaper and more innovative products for customers and

better developing platforms for programmers. As soon as Android was first released,

development tools and tutorials were made available to help new developers find the

new system. (Open Handset Alliance 2007a.)

The Open Handset Alliance has an advantage over other operating system developers,

because Android as such is a ready package to be converted into different devices. For

example, if LG Electronics would bring Android into some other device than mobile

phones or tablets, the operating system would be ready and there would immediately

be an uncountable amount of ready applications for the new devices.

5

2.2 Android from a technical perspective

Android is a stack of software built for mobile devices. It consists of an operating sys-

tem, middleware and some key applications. Android applications can be programmed

with the Java-language. (Android Developers 2011a.)

Image 1 - The major components of the Android OS (Android Developers 2011a.)

2.2.1 Applications

By default, all Android devices have an email client, a text messaging program, a calen-

dar, a map software (usually Google Maps), an Internet browser, an application for

managing contacts, and other core applications installed in them. More applications for

Android can be downloaded from the Android Market; some of the applications there

are free and some cost a fairly low amount of money. (Android Developers 2011a.)

2.2.2 Application Framework

Because of Android’s open development platform, developers have free hands to build

very innovative applications. It is possible for developers to take advantage of the de-

vice hardware, access location information, run background services, set alarms and

add notifications to the status bar, basically anything that helps in creating the ideal

application.

6

Being an open system, Android lets developers have full access to the same framework

APIs, application programming interfaces, which are used by the core applications.

(Android Developers 2011a.)

2.2.3 Libraries

A set of C/C++ programming languages’ libraries are included in Android. They are

used by various components of the system and visible to developers through the appli-

cation framework. Key libraries and their functions are described briefly below.

System C Library: a standard C system library tuned for embedded Linux-based devic-

es.

Media Libraries: libraries supporting playback and recording of many popular image

files and audio and video formats.

Surface Manager: unites 2D and 3D graphic layers from several applications.

LibWebCore: a modern web browser engine powering the Android browser and the

embeddable WebView described later.

SGL: the main 2D graphics engine.

3D libraries: libraries using either hardware 3D acceleration or the 3D software raste-

rizer.

FreeType: used to render bitmap and vector fonts to the form needed.

SQLite: a lightweight database engine available for all applications to use.

(Android Developers 2011a.)

2.2.4 Android Runtime

There is a set of core libraries in Android resembling the core libraries of the Java pro-

gramming language and thus providing similar functionality (Android Developers

2011a.)

Android uses a certain virtual machine known as Dalvik to run each of its applications.

These applications are run in their own processes each of which having their own in-

stance of the Dalvik virtual machine. Thanks to the way Dalvik has been written, a

7

device can efficiently run multiple virtual machines at the same time. Applications are

executed in the Dalvik Executable format in a way that minimal memory footprint is

required. (Android Developers 2011a.)

Dalvik relies on the Linux kernel for matters concerning threading and low-level mem-

ory management (Android Developers 2011a.)

2.2.5 Linux Kernel

The Linux kernel version 2.6 is the communicator between the device hardware and

the software. The kernel also takes care of Android’s core system services which in-

clude the overall security, memory management, process management, network related

systems and the driver model. (Android Developers 2011a.)

2.3 Introduction to Android SDK

The Android SDK provides a group of tools needed when developing applications for

the Android operating system. It is recommended to use the Eclipse software devel-

opment environment to run ADT, Android Development Tools, which then gives the

user access to all of the SDK tools. (Android Developers 2011b.)

It is also possible to develop applications without Eclipse: this method requires the use

of a text editor and the ability to use the SDK tools on the command line or with

scripts. This is not such an easy way as using Eclipse but all the same tools are still

available. (Android Developers 2011b.)

The most important SDK tools include android, which is an SDK and AVD Manager,

the emulator and the Dalvik Debug Monitor Server, DDMS. In addition to these, there

are also many other tools available and also included in the SDK starter package. (An-

droid Developers 2011b, Android Developers 2011c.)

8

2.4 System and software requirements for developing with Android SDK

The system and software requirements for developing applications with Android SDK

are briefly listed in this section. For the original list, please see the Android developer

web guide at http://developer.android.com/sdk/requirements.html.

2.4.1 Supported Operating Systems

Android SDK runs on basically all commonly available operating systems. From Mi-

crosoft’s operating systems the supported ones are the 32bit version of Windows XP,

and both the 32bit and 64bit versions of Windows Vista and Windows 7. (Android

Developers 2011d.)

Mac OS X 10.5.8 is the earliest version supported; only the 32bit versions are accepted.

From the Linux side, Android SDK has been tested on Ubuntu and Lucid. The GNU

C Library version 2.7 is the minimum requirement and if using Ubuntu Linux, version

8.04 is the earliest that will run Android SDK. If using a 64bit distribution, it must be

capable of running 32bit applications. (Android Developers 2011d.)

2.4.2 Supported Development Environments

The integrated development environment best capable of running the Android SDK is

Eclipse IDE. From it you need the version 3.5 or higher. One of the following Eclipse

IDE packages is recommended for Android development: Eclipse IDE for Java De-

velopers, Eclipse Classic v.3.5.1 and higher, or Eclipse IDE for Java EE Developers. If

not already included in the Eclipse IDE, it is necessary to install the appropriate JDT,

Java Development Tools, plugin. (Android Developers 2011d.)

The JDK, Java Development Kit, version five or six is required. The JRE, Java Run-

time Environment, alone is not enough. The installation of the Android Development

Tools plugin is highly recommended. (Android Developers 2011d.)

9

2.4.3 Hardware requirements

In addition to the hard drive space required by everything listed before, you need to

reserve at least 600 MB of free space on your hard drive for the recommended com-

ponents needed to run the Android SDK properly. The more components are in-

stalled, the more space is needed. (Android Developers 2011d.)

Here is an example list of components and the space they require:

SDK Tools: 35 MB, SDK Platform-tools: 6MB, Android platform: 150 MB each, SDK

Add-on: 100 MB each, USB Driver for Windows: 10 MB, Offline documentation: 250

MB, Samples: 10 MB per installed platform. (Android Developers 2011d.)

2.5 Installing the Android SDK

This section, along with each of the sections following, describes our own empirical

research and findings related to installing the SDK, using it to implement applications

and then publishing them. If any screen shot following has no source mentioned on it,

it is then taken from the environment used in the context and is copyrighted by the

developer of the appropriate environment.

After checking that the computers we intended to use the SDK with met the system

requirements, we started the installing process. First, we navigated to the home page of

everything related to Android development,

http://developer.android.com/index.html. (Android Developers 2011e.) The Android

SDK can be downloaded free of charge and the downloading instructions can be

found from under the “SDK”-tab. On the first page, we downloaded the installing

package according to the computer’s operating system. When using Microsoft Win-

dows, it is recommended to download the .exe file. It is an automatic installer for the

SDK, but downloading the .zip package works as well in the end. In the end of this

site, there was a link to the installing instructions. (Android Developers 2011f.) While

selecting the destination for all downloadable files throughout the whole installation

process, we found one folder including everything downloaded to be quite handy.

10

Image 2 - List of available Android SDK packages (Android Developers 2011f.)

The first step was to install the JDK, Java Development Kit from

http://www.oracle.com/technetwork/java/javase/downloads/index.html. It is a ne-

cessary add-on to the Android SDK because the programming language used is Java. It

was important to choose to download the JDK package as the JRE, Java Runtime En-

vironment at itself is not enough. (Android Developers 2011g.)

Image 3 - Java Standard Edition Downloads (Oracle 2011a.)

From under the “Downloads”-tab the license agreement needed to be accepted before

choosing the right installation file according to the operating system.

11

Double-clicking the downloaded installation file starts the installer. The setup program

first prepared the Installation Wizard.

Image 4 - JDK Installer

When prompted, we pressed “Next” to carry on to the next step.

Image 5 - JDK Installer

It was possible to select the features of the JDK that we wanted installed. We found

the best way to be just to leave the features list at its default setting. Here it is also

possible to change the installation path if needed.

12

Image 6 - JDK Installer

In the next window after the installer had finished, the program still offered a chance

to change the installation path. We left it at its default. Finally, the installer finished.

After pressing the “Finish”-button, the system automatically opened an Internet web

site for registering the JDK. Registering is not compulsory; it can be done at the user’s

free will.

Image 7 - JDK Installer

Next, we went to the website http://www.eclipse.org/downloads/ in order to install

the Eclipse IDE. Eclipse is the software development environment into which the An-

droid development tools plugin is later added. It is not compulsory to install Eclipse as

other similar programs work too, but the installation of it, Eclipse Classic to be precise,

13

is strongly recommended. (Android Developers 2011g, The Eclipse Foundation

2011a.)

Image 8 - The Eclipse Downloads (The Eclipse Foundation 2011a.)

The newest version of Eclipse Classic and choosing the appropriate downloading link

according to the operating system used ensure a successful installation. The site led us

to a mirror from which we then downloaded the software.

Image 9 - The Eclipse Downloads (The Eclipse Foundation 2011a.)

14

The first thing Eclipse asked after starting the download was the destination of the

workspace folder. In this folder, it saves all the projects being formed with the SDK.

After successful installation, the front page of Eclipse Classic opened and we moved

on to the next step of the installation.

Image 10 – Installing Eclipse SDK

In the second part of the web guide, the instructions were quite unclear. Especially in

our case as we downloaded the before mentioned .zip package of the Windows instal-

ler on one computer and the .exe package on another. By reading the web guide, at

least we got the feeling that only unpacking the .zip folder would be enough at this

phase. It isn’t, the SDK needs to be installed along with at least one platform. Whereas

downloading the .exe installer gave no other option than to install the SDK. (Android

Developers 2011g.)

Either by searching inside the unpacked .zip folder and executing the application file

from there, or by executing the downloaded .exe file, the setup for Android SDK

Tools will begin.

15

Image 11 - Installing Android SDK Tools

The executable version (.exe file) of the installer searches for the previously installed

JDK from your computer. We ran this application on Windows 7 Professional 64bit

and Windows XP Professional 32bit. On the computer running Windows 7, the instal-

ler did not find the JDK in this phase even though it was installed and even re-

installed, and the computer was booted in between. The computer running Windows

XP had no problem in finding the JDK with this installer.

We then executed the application file from the .zip package with the computer running

Windows 7. That application skips this part and the installation continued onwards

without problems.

Image 12 - Installing Android SDK Tools

16

The installer asked for the installation path which we left at its default value. It also

required us to give a folder menu for all the shortcuts to be installed into. We left that

also at its default value.

Image 13 - Installing Android SDK Tools

Image 14 - Installing Android SDK Tools

17

After all necessary choices and check-ups were made, the installation began.

Image 15 - Installing Android SDK Tools

Image 16 - Installing Android SDK Tools

After the installation was done, we started the SDK Manager by checking the appro-

priate box and pressing “Finish.”

First, the SDK Manager refreshed its sources to find all available platforms to be in-

stalled.

18

Image 17 - Starting Android SDK Manager

Next, we chose the platforms and tools to be installed according to the list of recom-

mendations available in the Android Developer web guide (Android Developers

2011g). We chose the Basic and Recommended-layouts listed in the web guide. These

included all SDK Tools, SDK Platform-Tools, SDK Platforms, Documentation, Sam-

ples and USB Drivers (for debugging on a mobile device) to be installed.

Image 18 - Setting up the Android SDK Manager

The platforms and tools were then installed; this took a while depending on the net-

work connection speed.

19

Image 19 - Setting up the Android SDK Manager

When the extra packages were installed, the installer asked whether we would like to

restart ADB. We accepted this. When the installation window claimed that the installa-

tion was done, it could be closed. After this, all installed packages could be found from

behind the “Installed packages”-tab on the Android SDK and AVD Manager main

view.

Image 20 - ADB restart required after setting up the SDK Manager

Image 21 - Updated archives after the installation

20

Image 22 - Installed packages listed

Next, we installed the ADT (Android Development Tools) Plugin for the previously

installed Eclipse Classic.

The first step was to open Eclipse Classic from the path were it was chosen to be in-

stalled. The application can be started from the same folder where it was downloaded

in the first place. Then, by navigating through Help > Install New Software, we got

started. (Android Developers 2011g.)

Image 23 - Installing Android Development Tools in Eclipse

When opened, the installer window looked like this. We pressed the “Add”-button

from the top right corner to start the installation of the ADT Plugin.

21

Image 24 - Installing Android Development Tools in Eclipse

The Add Repository window opened next. Here, we wrote “ADT Plugin” as the name

and “https://dl-ssl.google.com/android/eclipse” as the location of the repository. We

did not make these up or search for them; they were mentioned in the installation

guide. (Android Developers 2011g.)

Image 25 - Installing Android Development Tools in Eclipse

22

After pressing ”OK” in the previous window, we returned to the main installing view.

We made sure that the checkbox next to “Developer Tools” was selected so that all

four items would be installed. We then pressed “Next.”

Image 26 - Installing Android Development Tools in Eclipse

The next window only reviews the items to be installed, we again pressed “Next.”

Image 27 - Installing Android Development Tools in Eclipse

23

After this, the licenses of the software to be installed needed to be read and accepted.

After doing this, the installation began by pressing “Finish.”

Image 28 - Installing Android Development Tools in Eclipse

The installation did not last long, only for a minute or two. A security warning was also

established as some of the items we were installing contained unsigned content. As the

Android Developers installation guide advised just to press “OK” here, we did not

hesitate to do so. The last part was just to restart Eclipse and then the ADT Plugin was

successfully installed.

Image 29 - Installing Android Development Tools in Eclipse

Image 30 - As instructed, it was safe to press OK here

24

Image 31 - Installing Android Development Tools in Eclipse

After the plugin was installed, Eclipse still needed to be configured to use the previous-

ly installed Android SDK and its directory as a preference point for the ADT Plugin.

This can be done from the main view in Eclipse and then navigating through Window

> Preferences. (Android Developers 2011g.)

Image 32 - Configuring Eclipse to use Android SDK with the ADT plugin

The next window that appeared was about whether or not to send usage statistics to

Google. This could be chosen by either checking or unchecking the box in the lower

left side of the window and then clicking “Proceed.”

Image 33 - Configuring Eclipse to use Android SDK with the ADT plugin

25

Next, the Preferences window opened. By navigating to the Android tab from the right

side of the window, the Android Preferences view opened. Here, we browsed the SDK

Location to be the one into which the Android SDK was installed in the very

beginning of the whole installation phase.

Image 34 - Configuring Eclipse to use Android SDK with the ADT plugin

The system then showed all the previously installed, now available, platforms for An-

droid SDK. These could be approved by pressing “Apply” and then the Android SDK

running on Eclipse Classic was successfully up and running and ready for some pro-

gramming.

Image 35 - Configuring Eclipse to use Android SDK with the ADT plugin

26

2.6 Summary of the Android SDK installation process

Installing the Android SDK and Eclipse along with their add-ons was quite a complex

task at first.

There were many different applications and add-ons to be installed and they had to be

installed in a specific order, so without the instructions found from the website of An-

droid Developers, the installation could not have been completed successfully. Even by

following the instructions, we had to guess our way through a couple of steps.

On the other hand, while trying for the second time on another computer, the installa-

tion was much easier to finish. Almost no instructions were needed as the installation

process was clearer.

It is understandable that the installation process is not the simplest, and as later

learned, is much more difficult than the installation of the iOS SDK. Apple does not

offer the most recent version of the iOS SDK for everyone to download for free;

which gives them the chance to create such a package that includes only the needed

application and add-ons. But on the contrary, Android SDK being free and available

for everyone, they need to gather the needed environments and tools from separate,

free sources.

Nevertheless, as a whole, the installation process of the Android SDK is no more

complicated than installation process of any other commercial software. All the op-

tions are by default chosen so that the user has no need to change anything and can

still have a perfectly functional SDK. As always, there is of course the custom install

option, but it is mainly for those who need extra functionality or want to drop out an

add-in they already know they will never need. Or like in this case, maybe someone

wants to use another software development environment instead of using Eclipse. In

such case, the developer is usually already an advanced user and doesn’t necessarily

even need the instructions for installing the environment.

27

2.7 Programming with the Android SDK

This section handles the part of developing applications using the Android SDK. The

environment used here was built using the instructions given before. In order to follow

these instructions and gain from our experiences, it is necessary to use the Eclipse

software development environment along with the correctly installed Android SDK.

The Android Developers website, which can be found on

http://developer.android.com/resources/tutorials/hello-world.html, has been used as

a help throughout this section, it is also mentioned as a source separately wherever ne-

cessary.

2.7.1 Setting up the Android Virtual Device

Before we could start implementing for Android, we needed to set up at least one An-

droid Virtual Device (AVD.) The AVD is basically the emulator used when testing the

software; it consists of all the environment settings of the given version of Android. In

this example we built our AVD to use Android 2.3.3, the most common Android plat-

form at the moment.

First, after opening Eclipse Classic, we navigated to Window > Android > Android

SDK and AVD Manager. (Android Developers 2011h.)

Image 36 - Setting up the AVD

28

From the Android SDK and AVD Manager, we clicked “New” to start creating the

virtual device.

Image 37 - Setting up the AVD

In the next window, the AVD name and target needed to be given. The target is the

Android platform required for the emulator to run. In this example we chose Android

2.3.3 – API Level 10 as it is the most popular platform at the moment. (Android De-

velopers 2011h.)

Image 38 - Setting up the AVD

Now, the AVD was created and the next step was to start a new application project in

Eclipse.

29

2.7.2 Starting the project in the Eclipse environment

In the Eclipse main view, we navigated to File > New > Project in order to start build-

ing a new implementation project. (Android Developers 2011h.)

Image 39 - Starting a project

We navigated to Android > Android Project and pressed Next.

Image 40 - Starting a project

In the following window, Eclipse requests for the key information about the project.

Unless everything required is given, the project cannot be started. The project name

needs to be given before anything else. The build target is the target environment into

30

which the application will be created. This can be at the most the same platform as the

AVD created earlier is running, but it can also be an earlier one. In fact, Android plat-

forms are forwards compatible, so if the created application works on Android 1.6, it

will also work on Android 2.3.3. The same is not necessary true in the opposite direc-

tion; an application created with the build target of Android 2.3.3 might not work on

systems running Android 1.6 for example. (Android Developers 2011h.) This is why

we chose our project to be built into the Android 1.6 platform. When scrolling down

the New Android Project-window, the Application name and Package name still need

to be given.

In our example, the filled fields are as following:

Project name: HelloWorld

Build Target: Android 1.6

Application name: HelloWorld

Package name: com.example.helloworld

Create Activity: HelloWorldActivity

Image 41 - Starting a project

Now, the project was created and everything was ready for application implementation.

31

2.7.3 Developing HelloWorld for Android

As already seen in the steps taken before, the first application we created with the An-

droid SDK was a simple Hello World-application. The application we created displays

a button on the screen and after pressing the button, it displays a pop-up message.

Neither of us have prior experience in the Java programming language, so this imple-

mentation was a useful lesson to us. As mentioned before, the Android Developers

website was a great help in this part also as it showed the basics of the development

language and also the differences between implementing the application directly into

the source code and using the XML implementing possibility offered by Eclipse Clas-

sic (Android Developers 2011h.) The end result is the same, but with XML, the im-

plementation is done more graphically than within the source code.

After learning the basics, we created an application with the instructions given by An-

droid Code Monkey (Greg Zimmers.) His implementation uses the XML-format and

after a few tries, was easy to build and get working. (Android Code Monkey 2010.)

Here are screen shots of the application we implemented in use with the AVD emula-

tor. The source code for the application is found in Appendix A.1. - HelloWorld for

Android. The application was debugged and seemed to work without errors.

Image 42 - HelloWorld for Android

32

2.7.4 Developing OpenSomeWebsite for Android

The second application we created opens the Finnish television program guide

http://www.telkku.com in the device’s browser after the user presses a button on the

application. It is easy to change the site to be opened; it is only one line in the source

code. We made this application with source code combined from the previously used

Android Code Monkey’s HelloWorld and Android Developer’s WebView introduc-

tion. (Android Code Monkey 2010, Android Developers 2011i.) The source code for

the application is found in Appendix A.2. - OpenSomeWebsite for Android. We used a

combination of XML and traditional source code when implementing this application.

Image 43 - The website as it opened in the application (Kustannusosakeyhtiö Iltalehti 2011.)

This application opens the device’s designated Internet browser. Android supports

another way of viewing websites also, it is called WebView. We tried it, as a default it

only opens the site requested and if some link is pressed on that site, the real web

browser automatically opens instead. This can be overridden with appropriate Java-

Script code, but we did not find it worth the trouble. WebView is a good way to dem-

onstrate a static website in the middle of an application working, but it is no web

browser. (Android Developers 2011j.)

33

2.7.5 Summary of the application development process on Android SDK

Developing applications for Android most definitely is not a hard process after some

practicing. Java is a very popular programming language, so the Internet is full of tuto-

rials for it, which means that it is possible to create software even without being very

familiar with the language. After a short while of getting familiar with the system, Ec-

lipse is a very user friendly environment to work in.

XML seemed to be a nice addition to programming for Android with Eclipse. It was

easier to create graphical objects, such as buttons, with XML when their source code

was immediately embedded into the file after inserting the object. This made it easier

to focus on the outcome of the actual application, not needing to waste energy on the

correct implementation of objects.

On the negative side, the AVD emulator on Android SDK works quite slowly. It takes

a while to start, at first we thought it crashed during start-up. When it starts, it works

quite sluggishly. For a person not being very fluent in Java, the language indeed occa-

sionally brings up problems, but nothing that could not be researched and learned

from.

2.8 Deploying an application on Android

In this section, we will demonstrate how to prepare the HelloWorld application built

before for publishing and how to distribute the readymade .apk-package to other

people also. In this example all steps reported until now have been taken and default

options were used while installing the SDK. All instructions for the publishing process

can be found from the Android Developers website.

It is important to be familiar with using the command prompt of the computer’s oper-

ating system. If using a Windows system and/or a user account with decreased rights,

it is necessary to run the command prompt as an administrator.

34

2.8.1 Testing the application on Android SDK

First, the application needs to be tested. The more complex the application, the more

thorough tests are necessary. Simple usability tests can be done on the emulator while

developing, but test cases and stress tests are also recommendable. We tested the ap-

plication on the emulator and then used the UI/Application Exerciser Monkey in-

cluded in the Android SDK to generate random user events and system stress events.

As a result, our application did not crash or get mixed up in any way. (Android Devel-

opers 2011k, Android Developers 2011l.)

The UI/Application Exerciser Monkey is used via the command prompt. First, we had

to navigate to the folder where we unpacked the Android SDK-files mentioned in the

beginning of section 2.5. There, the needed path was \android-sdk-windows\platform-

tools. This folder includes a tool known as ADB, Android Debug Bridge, which is

needed to run the stress test. After navigating to this path with the command prompt,

we opened Eclipse Classic and our project, and ran it in the emulator. Then we re-

turned to the command prompt and inserted the following commands: “adb shell

monkey -p com.example.helloworld –v 500.” Com.example.helloworld is the name of

our package; it is of course substituted by the name of the current project in question.

This command sends 500 pseudo-random commands to the application. (Android De-

velopers 2011l.) The test ended without error messages.

Image 44 - Using the UI/Application Exerciser Monkey

A list of other possible commands and their combinations can be found from the An-

droid Developers website,

http://developer.android.com/guide/developing/tools/monkey.html.

35

2.8.2 Considering the use of license agreements

It is worth considering whether the application needs an End User License Agreement

(EULA) provided in order to protect the implementer’s person, organization, and in-

tellectual property. (Android Developers 2011k.)

If the coming application will be released with a cost through the Android Market, it is

smart, yet fully optional, to add support for Android Market Licensing. If needed, this

gives the implementer control of the application after the user has purchased it. Using

Android Market Licensing makes the application query Android Market at run time to

check their licensing situation. This makes it possible to disallow further use of the ap-

plication making it a strong weapon against piracy among other advantages. (Android

Developers 2011m.)

2.8.3 Giving the application an icon, a label and a correct version number

In order to get the application verified and published, it is necessary to add an icon, a

label, a version code and version name for the application.

In Eclipse Classic this could all be done very easily from the Android Manifest. First,

we opened our HelloWorld application in the Package Explorer on the left side of the

screen. Then, we double-clicked AndroidManifest.xml from the bottom of the list in

order to open the Manifest. (Android Developers 2011k.)

The label and icon could be inserted into the appropriate fields in the “Application”-

tab of the Android Manifest. The label is basically the name of the application showing

in the main menu of the user’s mobile device. As a default, the system finds the label

from the application resources located in the path res > values > strings.xml >

app_name. This same name is also used elsewhere in the application, so if no real rea-

son appears for altering it, it should be left as it is. (Android Developers 2011k.)

The icon is the picture of the application showing in the menu of the user’s mobile

device. As a default, the icon of our application was a picture of the Android mascot.

36

We created a 36x36 pixel .png-format picture of a smiling face and drag-and-dropped it

into the drawable-ldpi folder in the application resources. This could then be found by

browsing the appropriate text box in the Android Manifest.

It is important to notice that there are three different drawable-folders in the system

resources: hdpi, mdpi and ldpi. “Dpi” stands for dots per inch and the preceding letter

stands for either high, medium or low. The default icon sizes in the folders were ldpi

36x36px, mdpi 48x48px and hdpi 72x72px. This should be taken into consideration

when building applications for several Android platforms and screen sizes. The smal-

lest icons understandably will not look very good on a 10 inch tablet device and the

biggest will not show correctly on a 2.5 inch mobile device.

The version code and name could be altered from the ”Manifest”-tab of the Android

Manifest. In the Manifest, there were two fields: Version code and Version name. Ver-

sion code is the version number visible only for other applications and systems. It

needs to be an integer and thus, according to general recommendations, we used the

number 1 to represent our application’s first development phase (Android Developers

2011k.).

The Version name is the version number visible to users. It can be a decimal and as

our application is in its first phase, we used 0.1 to represent it.

Here are screen shots of both of the tabs we completed in our Android Manifest in

this step:

Image 45 - Android Manifest, General Attributes

37

Image 46 - Android Manifest, Application Attributes

2.8.4 Turning off unnecessary facilities and removing unnecessary files

It is important to make sure that debugging and logging facilities are turned off before

compiling the application. This can be done simply by removing private data, log files,

backup files and other files you know to be unnecessary from the application project.

We also checked that the “Debuggable”-textbox from the “Application”-tab of the

Android Manifest does not show it to be turned on.

2.8.5 Generating a cryptographic key and considering the use of Maps API

Key

The most demanding part of compiling the application was the use of the cryptograph-

ic key. The use of it, however, was required, so this step required some focus. The key

was built with a tool known as Keytool, which came along in the JDK tools.

First, we opened the Windows command prompt with administrative privileges. Then

we used it to navigate to the path where the JDK was installed earlier. If default instal-

lation choices were used, the path required is: C:\Program Files\Java\jdk1.6.0_25\bin,

of course depending on the version of the installed JDK. After navigating to this path

with the Command prompt, we inserted the following command to generate the re-

quired keystore as a file called “my-release-key.keystore”: “keytool -genkey -v -keystore

my-release-key.keystore -alias alias_name -keyalg RSA -keysize 2048 -validity 10000”

(Android Developers 2011n).

38

After running the command, Keytool required passwords for the keystore and key.

These were the only parts that needed answering, everything else could be skipped by

pressing the Enter button, or you could have also answered the parts you wished. The

command created the cryptographic key into a keystore-file located in the folder we

were working in with the command prompt. After running the command, the key is

valid for 10 000 days, which is about 27 years. Android Market requires the key to be

valid until 22 October 2033 at the minimum (Android Developers 2011n). Before the

application can be signed with the key, it needs to be compiled.

Image 47 - Creating the cryptographic key

If the developed application uses Google Maps for any action, the application needs to

consist of a MAPS API Key. This can be asked for from Google after reading their

documentation about the matter: http://code.google.com/intl/fi-FI/android/add-

ons/google-apis/mapkey.html (on 29.9.2011.) This requires concurring to their license

agreement after which a MD5 fingerprint is formed. The application will be signed

with this fingerprint and then a MAPS API KEY is provided by the Maps registration

service. The Key must be referred to whenever using the MapView in the source code.

(Google Code 2011.)

2.8.6 Compiling, signing and aligning the application

Our application needed to be compiled in release mode in order for it to be released

for users. This was a simple step and it could be done in Eclipse.

39

First, we right-clicked our project in the Package Explorer and selected Android Tools

> Export Unsigned Application Package (Android Developers 2011h).

Image 48 - Exporting the Application Package

When choosing the destination for the unsigned application, it made our work easier to

choose a simple path, because we still needed to access the application via the com-

mand prompt.

The signing of the package was done with a tool called Jarsigner and the cryptographic

key we generated earlier. Again, with the command prompt running administrative pri-

vileges, we navigated to the location of Jarsigner in the Java-tools. In our case it was

located in the same directory as Keytool: C:\Program Files\Java\jdk1.6.0_25\bin.

There, we inserted the following command to sign the application with the key in the

keystore located in the same directory as the Jarsigner-tool. Our unsigned application

was located on our desktop, but to make the command simpler, we do not mention it

here. It is easy to copy the location of a file on your Windows computer: just go to the

file properties and copy and paste the path under Location. (Android Developers

2011n.)

jarsigner -verbose -keystore my-release-key.keystore path of the applica-

tion\HelloWorld.apk alias_name (Android Developers 2011n.)

40

After providing the passwords required, our application was signed successfully. This

can also be verified with the command: jarsigner -verify HelloWorld.apk. If the prompt

prints “jar verified”, everything has gone as it should. (Android Developers 2011n.)

The final step was to align the final application package. This was done with a tool

known as zipalign found from the Android SDK-tools. This ensured the alignment of

uncompressed data bytes and optimizes performance to its best. We opened the com-

mand prompt with administrative privileges and navigated to the location of our An-

droid SDK-folder and from there onwards to the “tools”-subfolder. In there we

printed the following command: zipalign -v 4 path of the application\Helloworld.apk Hel-

loworld.apk. This did not take long and we also received a notice of successful align-

ment.

2.8.7 Releasing the application into the Android Market

Our application was now finished and compiled successfully. It was a good idea still to

test it now, as it was ready for publishing.

Before publishing an application on Android Market, the developer needs to register

with the service using a Google account. The first steps are to create the personal de-

veloper profile, pay a registration fee of $25.00 (on 29.9.2011) and agree to the terms

of service. After this, it is possible to upload the application, update it and publish it

when ready. Once the application has been published, it is possible for users to see it,

download it and rate it. (Android Developers 2011o.)

Requirements without which the Android Market will not accept the application for

distribution:

1. The application must be signed with a private cryptographic key which is valid

until 22 October 2033 at least.

2. The application must have both the Version code and Version name defined.

3. The application must have the icon and label defined.

(Android Developers 2011o.)

41

2.9 Legal issues and costs of setting up an Android SDK environment

One of our objectives was to find out how much it would cost to run the Android

SDK in the Eclipse environment in a classroom of 30 computers. It was assumed that

the classroom already has the computers installed, so the only costs we paid attention

to were the license fees related to the separate programs.

From the very beginning, Android was designed to be an open-source software stack

with no liabilities to any industry players (Android Open Source Project 2011.) The

source codes for all different Android releases are available in

http://source.android.com/. The Android SDK can therefore be freely used in educa-

tional use – to create, test and publish software for free or with a fee. The only cost in

developing software for Android is the $25.00 when registering to become a developer

in Android Market. Publishing in Android Market is not compulsory, however. At

school the readymade applications can be uploaded to the school’s own servers usually

for free.

Java follows the GNU General Public License (later referred to as GNU GPL) (Free

Software Foundation 2006.) Unlike normal software licenses, the GNU GPL guaran-

tees your freedom to share the free software and receive the necessary source codes if

needed. Software created following the GNU GPL can be distributed with a fee, but

the end user must have the rights to share the software onwards as the license states.

(Free Software Foundation 2007.)

In the case of using the necessary JDK alongside the Android SDK, no payments

whatsoever are needed. A direct quote from the related paragraph in the Java license

agreement in Oracle’s website states the following:

SOFTWARE INTERNAL USE FOR DEVELOPMENT LICENSE

GRANT. Subject to the terms and conditions of this Agreement and restric-

tions and exceptions set forth in the README File incorporated herein by ref-

erence, including, but not limited to the Java Technology Restrictions of these

Supplemental Terms, Oracle grants you a non-exclusive, non-

42

transferable, limited license without fees to reproduce internally and use inter-

nally the Software complete and unmodified for the purpose of designing, de-

veloping, and testing your Programs. (Oracle 2011b.)

This means that the JDK can be used for free in educational, non-commercial use, in-

side the school.

Eclipse itself is written in Java, so its distribution is done according to the before men-

tioned GNU GPL. It may be used freely wherever, the license agreement states the

following:

Subject to the terms of this Agreement, each Contributor hereby grants Reci-

pient a non-exclusive, worldwide, royalty-free copyright license to reproduce,

prepare derivative works of, publicly display, publicly perform, distribute and

sublicense the Contribution of such Contributor, if any, and such derivative

works, in source code and object code form (The Eclipse Foundation 2011b.)

Considering that it is not compulsory to upload files to Android Market and since all

the necessary development kits are free, and assuming that there already exists 30

working computers in a school’s IT-laboratory, the only costs from using the Android

SDK build up from purchasing the required amount of mobile devices needed to test

the software. In any case, these devices are not even necessary; the SDK includes its

own emulator.

43

3 iOS

Eero Maasalmi is responsible for this chapter. The testing was done as a team with

Panu Pitkänen, but all research and documentation is made by Eero Maasalmi.

3.1 iOS in general

iOS (formerly known as iPhone OS) is a UNIX-based operating system built for Ap-

ple’s iPhone, iPod touch and iPad mobile devices. It is used for managing the hardware

of a device and for providing technologies required to implement both native and web

applications. Not many people know that IOS is originally Cisco’s core operating sys-

tem which has been in use for almost 20 years. Cisco licensed the trademark “iOS” to

Apple in March 2010. Cisco’s technology was not included in the license. (Carvell

2010.)

iOS was first introduced and released as the operating system of iPhone when on 29th

of June 2007. 270,000 iPhones were sold in first two days and more than a million

units in month and a half. (Trebitowski, Allen & Appelcline 2001, 2.)

At first there was no native SDK available. Apple claimed that there is no need for

one, and that only JavaScript, CSS and HTML should be used for building applications

for the device. This meant that Apple was only supporting web application develop-

ment and did not see the need to support native application development. Even

though Apple had locked the iPhone from the developers, only a few months after the

release, the open source community had gained access, reverse-engineered the SDK

and built a tool allowing the development of native applications for the device. This led

to popularity of “jail breaking” the device so that it was possible to run third-party ap-

plications on it. Finally, in March 2008 Apple changed its mind and released the iOS

SDK for the public. (Allan 2010, 1.)

44

3.2 iOS from a technical perspective

iOS can be presented as a proxy between the hardware of the hardware and the appli-

cations that appear on the device’s screen. The applications rarely interact with the

hardware directly. Instead they interact through system interfaces which protect the

application from hardware changes. (Apple 2010a.)

Image 49 – Different layers of the iPhone: Applications, iOS, hardware

iOS applications are developed using an object-oriented language called Objective-C,

which supports the same basic syntax as C. Objective-C adds Smalltalk-style messaging

to C-language. Smalltalk was one of the first object-oriented programming languages.

(Apple 2010b.)

Even though iOS was designed for mobile devices, it shares a variant of the same basic

Mach kernel which is used in Mac OS X, and many technologies with it. On top of the

kernel, iOS has four technology layers: Core OS, Core Services, Media and Cocoa

Touch. Lower layers consist of core services and technologies, and the higher level

layers consist of more advanced and sophisticated ones. The layers all have different

functionality. (Apple 2010c.)

45

Image 50 – iOS Technology Layers

3.2.1 Core OS and Core Services layers

Core OS and Core Services are lower level layers. The features in these layers are often

services which are not used directly in application, but which other frameworks use.

These layers include interfaces for accessing files, low-level data types and network

sockets. (Apple 2010a.)

Key technologies of Core OS layer include for example system frameworks for han-

dling file-system access, memory allocation and mathematical computations, and secu-

rity framework for data securing purposes. Core Services include SQLite for embed-

ding SQL databases in applications, and XML support. Interfaces in both layers are

mostly based on C programming language. (Apple 2010a.)

3.2.2 Media layer

On upper layers the technologies tend to have a bit more advanced features. Media

layer contains graphics, audio and video technologies. AirPlay is also built in this layer.

It allows cordless streaming of audio to Apple TV and speakers that support AirPlay.

(Apple 2010a.)

Important features like support for animation, 2D and 3D rendering, video and still

image manipulation are part of graphics technologies. Audio frameworks include for

example easy access to user’s iTunes library and audio playback and recording. Last,

the media technologies consist of features like video recording and playback. The

technologies in the Media layer are mostly C-based, but it also contains an advanced

Objective-C based animation engine called Core Animation. (Apple 2010a.)

46

3.2.3 Cocoa Touch layer

Every iOS application uses the UIKit framework of Cocoa Touch layer to implement

such basic features like cut, copy and paste, battery state information, support for text

and web content, and user interface -, and application management. For this reason the

Cocoa Touch Layer is often called the home of the key frameworks for building iOS

applications. Most of its technologies use the Objective-C language. (Apple 2010a.)

Gestures like tapping, pinching, swiping etc. are part of this layer’s touch-based input

technology. Another nice feature called the push notification lies in this layer. Push

notification alerts the user of new information even when the application is not run-

ning. (Apple 2010a.)

3.3 iOS Developer Programs

Apple offers four different Developer Programs for iOS developers to choose from.

Being a part of a program not only has benefits, but is also compulsory if one for ex-

ample wants to have access to Apple Developer Forums, submit Technical Support

Incidents, or deploy applications on iPad, iPhone and iPod touch. The programs differ

from each other by price and by benefits. (Apple 2010e.)

Apple Developer is the so called base program. If the developer wants to be a part of

any iOS program, he first has to register as an Apple Developer. It is free, but only

offers the access to the Dev Center Resources and the iOS SDK. (Apple 2010e.)

University Program is also free, but is only available for educational institutes and is of

course meant for educational purposes. The University Program allows access to the

Developer Forums and enables testing applications on real devices. (Apple 2010e.)

 iOS Developer Program is a paid program with a $99 yearly fee. Members of this pro-

gram can submit Technical Support Incidents and are allowed App Store Distribution

for their applications. There are both Individual and Company iOS Developer Pro-

47

grams, but the only difference between these two is that the Company Program allows

the creation of Developer Teams. (Apple 2010e.)

Last there is the iOS Enterprise program for $299/year. It has all the benefits the other

programs have, and is mainly useful for those organizations that want to take advan-

tage of the In-House Distribution of applications. In-House Distribution allows distri-

bution of software for the organization’s members and employees. (Apple 2010e.)

Table 1 – Comparing iOS Developer Programs

3.4 Introduction to iOS SDK

The iOS SDK contains all the necessary tools for designing, creating, debugging and

optimizing software for iOS. The list includes native - and web applications, but no

other types of code like drivers, frameworks or dynamic libraries. Native applications

appear on the device’s home screen and can be run without a network connection lo-

cally on the device. Web applications use HTML, CSS and JavaScript code and are lo-

cated on a web server, are transmitted over the network and run inside a browser

which – in the iPhone – is the mobile version of the Safari browser. (Apple 2010a.)

iOS SDK has built in frameworks, standard shared libraries, Xcode Tools (which in-

cludes Xcode, Interface Builder and Instruments), iOS Simulator and iOS Developer

48

Library. Xcode is the main application for developing applications and it is used for

managing application projects, editing, compiling, running, and debugging code. Inter-

face Builder is a tool for assembling the UI and Instruments is a tool for performing

runtime analysis and debugging. iOS Simulator can be used for testing iOS applications

by simulating the iOS technology stack on a Mac OS X. It makes testing faster, since

the developer doesn’t need to first upload the application to a mobile device. Even

though a simulator is never the real system and thus isn’t 100% reliable, it provides a

nice and easy platform for testing. Last, the iOS Developer Library is the source for

documentation helping application development. (Apple 2010a.)

iOS SDK is usually built in the Xcode package, but not always. This can be verified by

checking it in the used installer’s “Custom Install” pane. The most recent free version

of Xcode at the moment (on 27th of June 2011) is version 3.2.6, which is available for

those who are registered as Apple Developers. The most up-to-date version 4.0.2 can

be purchased for $4.99. Alternatively, members of the iOS or Mac Developer Pro-

grams can download 4.0.2 for free. (Apple 2010d.)

3.5 System and software requirements for developing with iOS SDK

Xcode’s software and hardware requirements are extremely trivial. All that is needed

for the software to run is an Intel-based Mac running Mac OS X Snow Leopard ver-

sion 10.6.6 or later and at least 10GB of free disk space. Snow Leopard (Mac OS X

10.6) was the first OS to support Intel-based products only, so basically all Mac com-

puters manufactured after the release of Snow Leopard on 28th of August, 2009 should

run Xcode.

There is an exception with the latest OS X (10.7 Lion) though. Since Xcode 3 is not

compatible with it, Xcode 4.2 has also become available for free in the Mac App Store.

(Apple 2009; Apple 2010-2011, Apple 2011a.)

49

3.6 Installing the iOS SDK

We began the installation of the iOS SDK by registering as an Apple Developer. It is

not possible to download Xcode without an Apple ID which has been registered as an

Apple Developer. After creating the account, we were able to download the Xcode and

the iOS SDK from Apple’s Developer pages: http://developer.apple.com/xcode/.

The images in this chapter are from the Mac OS X and the Xcode 3.2.6 Installer.

After downloading the 4.14GB “xcode_3.2.6_and_ios_sdk_4.3.dmg” package, the file

was shown in the Mac OS X’s “Downloads” folder. These.dmg files are Apple disk

image files and can be extracted by double-clicking the files.

Image 51 – Contents of OS X’s”Downloads” folder after downloading the installation package

After the image file was extracted, two files were shown: “About Xcode and iOS

SDK.pdf”, which is an introductory document to Xcode and iOS SDK, and “Xcode

and iOS SDK.mpkg”, which is the actual installation file for Xcode and iOS SDK.

We began the installation by double-clicking the “Xcode and iOS SDK.mpkg” -file.

.mpkg files are Mac installer packages.

50

Image 52 – Contents of the “xcode_3.2.6_and_ios_sdk_4.3.dmg” package

As soon as we began the installation, a security warning from the operating system it-

self appeared on the screen. It reminds the users to only install software from trusted

sources. As this package was downloaded from Apple itself, we were safe to “Contin-

ue”.

Image 53 – A security warning before beginning the Xcode and iOS SDK installation

The installation first displayed a short introduction screen welcoming us, the users, to

the Xcode and iOS SDK installer. We selected “Continue” to read the license agree-

ment.

51

Image 54 – Xcode and iOS SDK installation software’s welcome message

Next, the Software License Agreement for Xcode was displayed. After reading the

agreement, we again selected “Continue” to proceed with the installation.

Image 55 – Software License Agreement for the Xcode

We agreed with the terms of the Xcode software license agreement and selected

“Agree” to continue.

Image 56 – Agreeing with the terms of the Xcode

52

Another Software License Agreement was displayed. This time it was for the iOS

SDK. We selected “Continue” to proceed with the installation.

Image 57 – Software License Agreement for the iOS SDK

We again agreed with the terms of the iOS SDK software license agreement and se-

lected “Agree” to continue.

Image 58 – Agreeing with the terms of the iOS SDK Software License Agreement

Next the installer required us to select the install destination. The installer calculates

the available space according to the destination. Our MacBook Pro only has one hard

drive which was for that reason chosen automatically by the installer. We then selected

“Continue” to go on to the next step.

53

Image 59 – Selecting the install destination

The Custom Install package selection pane was displayed next. This window shows all

the packages available for installation. The installer displays additional information

about what the packages include:

“Essentials”-package cannot be unselected, since it includes the complete Xcode de-

velopment toolset: Xcode, Instruments, compilers and other tools. Both Max OS X

SDK and iOS SDK are installed by default, and iOS Simulator is also included. If the

user doesn’t change the destination directory, “/Developer” folder is chosen by de-

fault. It should be noted here that the SDK developer tools will automatically replace

any existing Apple development tools. (Apple 2010k.)

If selected, “System Tools” -package is also installed into “/Developer” folder by de-

fault. Only one installation, the most recent set of System Tools, per Mac OS X at a

time is possible. The package includes system-wide tools like Shark, DTrace compo-

nents for Instruments, and distributed build processes. (Apple 2010k.)

“UNIX Development” enables boot volume command-line development. This is done

by automatically installing a clone of the GCC compiler and command line tools,

which are part of the Xcode developer tool, into the boot volume. Other installed

components are: header files, libraries, and other resources. It’s not possible to change

the installation destination for this package. It is always installed onto the boot volume.

54

This package is mostly recommended for advance users who are more familiar with the

SDK and can come by without the GUI, too. (Apple 2010k.)

“Documentation” enables offline documentation for Xcode. If this package is selected,

Xcode automatically downloads developer documentation to disk at first launch and

also keeps it updated. It is a good choice if the developer intends to work offline. (Ap-

ple 2010k.)

“Mac OS X 10.4 SDK” includes the support for Mac OS X 10.4 APIs development.

There’s no use for it for iOS developers since it is used to develop Mac apps. (Apple

2010k.)

Since we were not interested in developing applications for Mac OS X, we used the

default settings where the “Mac OS X 10.4 SDK”-package was already unselected. We

then selected “Continue”.

Image 60 – Selecting the components to be installed

The installer then asked for a confirmation for the install location. After checking the

location, we selected “Install” to finally begin the installation.

55

Image 61 – Confirming the install location

The installer asked for a user name and password before the installation was started.

The user entered needs to have enough rights to write on the selected hard drive. We

confirmed with “OK”.

Image 62 – Authentication is required for writing on the selected disk

After entering valid authentication information the installer began the installation.

Even though the “Install time remaining” –calculator started the countdown from

about 60 minutes, it soon came down, and in reality the installation with the MacBook

Pro only took about 15 minutes in total.

56

Image 63 – Xcode and iOS SDK installation in progress

After running for about 15 minutes the installer notified us with a successful installa-

tion of Xcode and iOS SDK.

Image 64 – A message shown after a successful installation

3.7 Summary of the iOS SDK installation process

Installing the iOS SDK was a very straightforward process. Since one single installation

file includes all the components needed, there was practically no room for error. The

user may choose which version of Xcode he or she wants to download from the Apple

Developer Center, but that is all basically it. There was no need to download third par-

ty installations files, add-ons, plug-ins nor extensions.

57

During the actual installation, the only step where the user had to actually choose

something was the custom install pane where the installer asked to pick the packages

which are installed. If the user has any intentions to develop applications for Mac OS

X, it’s an easy decision to include the “Mac OS X 10.4 SDK” -package. Anyhow, basi-

cally, the easiest way to go is to keep the default settings and select “Next” every time.

Installation of the tool has been made easy, but there we need to criticize the version

releasing policy of Xcode. Apple has never released a single incremental update for the

tool, which means that every time an updated version of the tool has been released, it

has included a copy of the entire suite. For example if the user has downloaded and

installed Xcode 4.0 or 4.0.1, he cannot patch the existing version, but is always required

to download the entire suite to update Xcode to its most recent version. It’s has not

been possible to only patch the old version which has already been installed, but to

first download the whole suite and then start the installation process from the begin-

ning. Even with today’s high-speed broadband internet connections and fast comput-

ers, downloading and installing the minimum of 4.5GB package takes its time. The

same policy applies with the latest available Xcode version, too. (Bucanek 2010, 2.)

3.8 Programming with the iOS SDK

Xcode shares the same kind of simple looking user interface as Apple products often

do. The main window consists of the “Toolbar”, “Groups & Files list”, “Detail View”

“Editor” and “Status bar”. Editor area is where the actual code is implemented. (Ap-

ple 2011b.)

Image 65 – The Xcode Project Window

58

Objective-C files have either .h, .m or .hh extension. Files with the .h extension are

header files which contain class, type, function, and constant declarations. .m files are

source files which can contain both Objective-C and C language. .hh files are also

source files, but can contain C++ code in addition to Objective-C and C code. Anoth-

er important file is the .xib file called nib file, which contains the application’s user in-

terface. This file is automatically created by the Xcode when a view-based project is

created. Nib files cannot be read with a source - or a hex editor, since they are in a

proprietary format. Instead, a separate application called Interface Builder is used for

designing the UI. (Allan 2010, 31; Apple 2010f.)

Images used in this chapter are from Xcode.

3.8.1 Setting up the virtual iPhone device

iOS Simulator comes with the Xcode, so there was really no need to set it up separate-

ly. It is used to simulate the behavior of a real device when they are run, and it can si-

mulate the iPhone, iPhone with Retina display and iPad, and several different iOS ver-

sions. The 4.3 (238.2) Simulator, which comes with Xcode 3.2.6, has iOS versions 3.2,

4.0.2, 4.1, 4.2 and 4.3 built in. Testing applications on different versions is easy. The

debugging console which starts up when a project is built and ran has a menu where all

the different versions are found. To run the project on another device or version, the

active executable needs to be chosen and the project needs to be built and run again.

Image 66 – Selecting iPhone Simulator device and version

59

3.8.2 Starting the project in the Xcode environment

When Xcode was run the first time, the welcome screen was displayed. This screen

shows the latest projects and makes it easy to open any project that the user has been

working with before. Unless the “Show this window when Xcode launches” option is

cleared, the same screen is displayed every time Xcode starts up. Of course there is

always the option to open a project by double-clicking the project file, and without first

opening Xcode. This is another way to prevent the welcome screen from being dis-

played when the Xcode is started.

The environment was set up for implementing our code after four simple steps:

1. We selected “Create a new Xcode project” from the welcome screen.

2. We chose a template for the project.

3. We chose the target product (i.e. iPhone or iPad).

4. We gave the project a name.

Image 67 – Xcode welcome screen

60

Image 68 – Choosing a template and the target product

Since older iOS versions do not support all the features built in the newer versions, it is

a good idea to set the correct Base SDK and iOS Deployment Targets before starting

the implementation. Base SDK determines which headers and libraries are used for

compiling, and iOS Deployment Target is the minimum iOS version the application is

supported on. Configuring these two settings should minimize the risk of implement-

ing code which isn’t supported on a device running on older version of the iOS.

We modified both settings by selecting Targets > “the name of the application” > Info >

Build. Base SDK was selected under the “Architectures” subheading and iOS Deploy-

ment Target under the “Deployment” subheading. (Muchov, J. 2010.)

Image 69 – Changing Base SDK and iOS Deployment Target

61

3.8.3 Developing HelloWorld for iOS

Like in the Android part before, the first application we created for iOS was Hello-

World. As everyone with any knowledge of programming knows, HelloWorld is usual-

ly the simplest possible kind of software. It is basically used for demonstrating the syn-

tax of a given programming language. Normally its sole purpose is to print out the text

“Hello World” and do nothing more.

The behavior of the example demonstrated here is quite similar to that, except that the

user first needs to click a button after which the application prints out “Hello, User!”

The basic idea is the same, but we just added the button to demonstrate at least some

sort of dialog between the user and the application.

As the previous chapter explained, the creation of a new project in Xcode 3.2.6 in-

cludes four steps. After creating a new project we began the implementation. Allan’s

(2010, 34–38) HelloWorld is the source for our example of the same application.

After implementing our example application according to the instructions we ran it.

The application was built and run without errors. We used iPhone Simulator with the

version 4.3 to see that the application is working the way it should. The source code

for the application is found in Appendix B.1. - HelloWorld for iOS.

Image 70 – HelloWorld running on the iPhone simulator

62

3.8.4 Developing OpenSomeWebsite for iOS

The second implementation was an application which uses an internet connection.

Like in HelloWorld, OpenSomeWebsite first displays a button, and when the button is

clicked the application opens the Safari browser which again opens a website defined

in the “OpenSomeWebsiteViewController.h” file, which in this case was chosen as

http://www.telkku.com.

The application uses the UIApplication class, the sharedApplication class method and

the openURL method. UIApplication class is used for controlling and coordinating

application running on iOS, and there has to be exactly one instance of it in every ap-

plication. UIApplicationMain function is called when an application is launched. The

function creates a UIApplication object, which can then be accessed by invoking the

sharedApplication class method. Because an application can bind itself to a URL, the

openURL method can be used to launch various applications, like Google Maps, Apple

Mail, and the App Store. However we used it for launching the Safari browser. The

source code for the application is found in Appendix B.1. - OpenSomeWebsite for iOS

(Aiglstorfer 2008; Apple 2011c.)

Image 71 – OpenSomeWebsite running on the iPhone simulator (Kustannusosakeyhtiö Iltalehti 2011.)

63

3.8.5 Summary of the application development process on iOS SDK

Xcode seems like a simple enough tool for anyone to learn. The outlook of the applica-

tion is clear and minimalist - as Apple applications often are - and Apple provides tho-

rough documentation for using it. The usability also seems user friendly. In Xcode,

there is nothing that really catches the eye so to speak. It feels like everything is where

they are expected to be, which of course makes the usability good. Of course learning

the syntax of a previously unknown programming language always requires a lot of

work, especially for the likes of us who are not that experienced in any kind of pro-

gramming.

The code completion (sometimes called “intellisense”) works nicely, which makes the

daily use of the tool more enjoyable. It’s actually hard to imagine using a develop envi-

ronment that didn’t have it after one is used to working with the feature. Another very

useful feature in for a beginner is the Xcode quick help, which can be opened in the

code editor by holding down the “alt option” key and double-clicking a symbol in the

editor window. The quick help stays open when the window is moved, and also pro-

vides an easy way to access complete reference documentation. The documentation is

opened by clicking the book icon in the quick help.

The Interface Builder is consistent with the Xcode design wise. All the tools are easy to

find and it is quite to use. The linking of the elements has been made straightforward

and understandable.

Unlike the corresponding tool in the Android SDK, not only is the iOS Simulator very

fast to start, it also runs fast. As the simulator is very likely used quite often during any

kind of development project, it also plays an important role in the development envi-

ronment.

3.9 Deploying an application on iPhone

Before it was possible to test an application on the iPhone, there were four mandatory

steps to be taken. We needed to

64

1. Designate an iOS device for development and user testing.

2. Create a Certificate Signing Request (CSR).

3. Download and install a digital certificate for development.

4. Create a provisioning profile.

All the devices used in the development need to be added to the iOS Provisioning Por-

tal’s Devices –section by the Team Admin. The iOS University program allows 200

devices to be added. If a device is added and later removed it still counts as one and

does not reset the device count.

CSR is needed for generating a development certificate, and it is submitted in the iOS

Provisioning Portal located in the Member Center of Apple’ Developer pages. After

the CSR has been approved it is possible to download and install the development cer-

tificate. The certificate is associated with the developers name, email address, or busi-

ness, and is used to identify the developer by using a secret private key and a shared

public key. A developer certificate in a keychain includes the private key and the public

key is included in the provisioning profile and in the iOS Provisioning Portal. The pri-

vate key is used by Xcode to sign iOS application binaries, and without the certificate

Xcode reports a build error. (Apple 2011d.)

Provisioning Profile links development certificates, devices and iOS application ID’s.

The provisioning profile uses the development certificate to identify the developer and

the device, and it enables the developers of the same team to run applications built by

another developer on their devices. Without at least one provisioning profile it’s not

possible to install iOS applications on a device at all. (Apple 2011d.)

Images used this chapter are from Mac OS X, Xcode, Keychain Access, Apple Devel-

oper website and iOS Provisioning Portal.

65

Image 72 – Digital assets required for iOS development

3.9.1 Designating iOS devices for development and user testing

Adding iOS devices is done using the Unique Device Identifier (UDID), which is a 40

character string of numbers and letters and is tied to a single device, just like a serial

number. We took the identifier from both Xcode’s Organizer utility (Window > Orga-

nizer), but it’s also found from iTunes versions 7.7 and later. We set the device for de-

velopment use from the Organizer’s Summary tab, by clicking “Use for Develop-

ment”. (Apple 2011d.)

Image 73 – iPhone UDID displayed in Xcode’s Organizer

After finding out the UDID, we added the device to the iOS Provisioning Portal’s De-

vices collection by selecting “Upload Devices”, entering the device a name and its ID,

and clicking the “+” sign next to the Device ID field. There is also the option to add a

series of devices by uploading a tab delimited .txt file or using a tool called “iOS Con-

66

figuration Utility”, which is available in Apple’s iPhone Enterprise Support pages. (Ap-

ple 2011d.)

3.9.2 Creating a Certificate Signing Request and obtaining the iOS Develop-

ment Certificate

We began by locating the Keychain Access utility, which in Mac OS X Leopard is

found from Applications > Utilities.

Image 74 – Starting the Keychain Access utility

Following Apple’s How To -instructions found from the iOS Provisioning Portal, we

set “Online Certificate Status Protocol (OCSP)” and “Certificate Revocation list

(CRL)” to “Off”. These setting are located in the “Preferences” menu in the Keychain

Access utility.

Image 75 – Keychain Access preferences

67

After the preferences were set, we created the Certificate Signing Request. From Key-

chain Access we selected the Keychain Access menu > Certificate Assistant > Request

a Certificate From a Certificate Authority...

Image 76 – Creating a Certificate Signing Request

Both the User Email Address and Common Name are mandatory fields, and they have

to match the information that was used when the iOS Developer registration was

submitted. Certificate Authority (CA) Email Address is not required when the request

is saved to disk.

Image 77 – Creating a Certificate Signing Request - certificate information

Since we had selected “Saved to disk” and “Let me specify key pair”, we needed to

name the file and choose where the CSR is saved. After selecting “Save”, we were re-

quested to define Key Pair Information. There was no need to change any settings, as

by default Key Size was “2048 bits” and Algorithm was “RSA”.

68

Image 78 – Creating a Certificate Signing Request – saving the CSR

Image 79 – Creating a Certificate Signing Request - defining Key Pair Information

After selecting Continue the request file has been created and a confirmation message

is shown.

69

Image 80 - Creating a Certificate Signing Request - certificate request created

After we had created the CSR, we had to submit it in the iOS Provisioning Portal. The

portal is found from the Member Center of Apple Developer pages. In the Provision-

ing Portal we navigated to Certificates > Development, chose the CSR file by selecting

“Choose File” and browsing the file from where we saved it, after which we submitted

the file by selecting “Submit”

Image 81 - Submitting the Certificate Signing Request

Once the request was submitted, our development certificate was shown on the “De-

velopment” tab under the “Certificates” menu as a pending certificate. This is where

70

Team Admins can either reject or approve certificates after they have submitted and

approved their own requests. As a Team Agent we approved our development certifi-

cate to proceed with the process.

The status of the certificate changed from “Pending Issuance” to “Issued” after the

approval and it was available for download.

Image 82 – Pending certificates in the iOS Provisioning Portal

Image 83 – Approved certificates in the iOS Provisioning Portal

Before downloading and installing the developer certificate, we found out that there is

also another certificate that needs to be downloaded and stored to the computers Key-

chain. It is called “Apple Worldwide Developer Relations Intermediate Certificate”

(WWDR) and is used by Xcode to check that the other certificates are valid. This cer-

tificate is also found from the iOS Provisioning Profile > Certificates > Development,

and can be downloaded from the link: “click here to download now”. Only one

WWDR Intermediate is needed per computer.

71

Of the two certificates we downloaded and installed the WWDR first. Double-clicking

the downloaded “AppleWWDRCA.cer” file launched the Keychain Access utility from

where the keychain was added to a keychain. After adding, the certificate was shown

under “Certificates”.

Image 84 – Installing the WWDR Certificate

Image 85 – WWDR certificate in Keychain Access

Next, we installed the developer certificate the same way. Double-clicking the “devel-

oper_identity.cer” file installed the certificate. The iPhone Developer certificate was

found again from Keychain Access after installation.

72

Image 86 – Installed certificates in Keychain Access

Both keys - public and private key – were then found from “Keys” in Keychain

Access, and the process of acquiring both certificates was completed.

Image 87 – Installed Keys in Keychain Access

It is important to remember that the private key should be backed up in case of any

intention to develop applications on another system or reinstall the operating system

later on. The private key cannot be recreated if it is lost at some point and without it, it

is impossible to sign binaries in Xcode. We exported the private key by right clicking

on the private key in Keychain Access and selecting “Export name of the certificate”. Set-

ting a password for the private key was mandatory so we gave it one. The password set

here is needed if the private key is imported at some point.

73

3.9.3 Creating and downloading a development provisioning profile

The last step before being able to run an application on the iPhone was to create a

provisioning profile from the Provisioning section of iOS Provisioning Portal. We se-

lected “New Profile”, entered a name for the profile, selected the certificate, the App

ID and device, and finally submitted the form. The profile was shown immediately on

the Provisioning page from where we downloaded it.

Image 88 – Creating a Provisioning Profile

Image 89 – Provisioning Profile created and in Active -status

3.9.4 Considering the use of license agreements

All developers whose goal who release their applications on App Store are required to

sign the iPhone Developer License Agreement. Even though it is not possible to see

this agreement without actually registering to the developer program, Electronic Fron-

tier Foundation (EFF) released a copy of the agreement on 9th of March 2010. The

74

agreement is dated January 2010 so it’s not necessarily completely accurate anymore,

but is still worth presenting. (Von Lohmann, 2010.)

According to EFF’s article the developers themselves have very limited rights to the

applications they develop:

Section 7.2 makes it clear that any applications developed using Apple's SDK may only

be publicly distributed through the App Store, and that Apple can reject an app for any

reason, even if it meets all the formal requirements disclosed by Apple. So if you use

the SDK and your app is rejected by Apple, you're prohibited from distributing it

through competing app stores like Cydia or Rock Your Phone.

A few other interesting sections of the agreement prohibit the user from reverse engi-

neering the iOS SDK or iPhone OS, and “tinkering with any Apple software or tech-

nology.” Apple also reserves the rights to "revoke the digital certificate of any of Your

Applications at any time", which also allows Apple to remotely disable such apps that

have already been installed on users’ devices. According to EFF, Section 14 of the

agreement states that: “Apple will never be liable to any developer for more than $50

in damages.”, even if an Apple update would for example accidentally break the devel-

oper’s application. (Von Lohmann, 2010.)

3.9.5 Giving the application an icon, a label and a correct version number

An application is required to have an icon if it is published and added to the App

Store. The icon is used to represent the application on the devices home screen. An

iPhone application icon should be a 57 x 57 -pixel JPEG or PNG file.

We added the icon to our project by drag & dropping the file under the “Resources”

folder, but it can also be added by selecting “Resources” and choosing Project > Add

to Project, and then browsing the file from the system. After we had added the file to

our project we checked that it also shows in the “Copy Bundle Resources” -field found

under Targets > “name of the application”. Since Xcode doesn’t automatically use the

picture file as the icon, we also added the filename to the “Icon file” -field, too. This

75

field is found in Resources > NameOfTheApplication-Info.plist > Information Property

List. (Apple 2010g.)

Even though a new project has to be named when the development phase begins, it

doesn’t mean that the end result will carry the same name, nor it should. To make it

easy for developers to rename the application later on, Xcode uses variables for certain

fields holding information regarding the project. In the same .plist file that was intro-

duced in the previous chapter, there are two fields with the value “${PROD-

UCT_NAME}”: “Bundle display name” and “Bundle name”. The “Product name” -

field found under Project > Edit Project Settings > Build > Packaging holds the actual

value of “${PRODUCT_NAME}”, and when this value is changed, it is automatically

changed everywhere in the project where it has been is used to represent this value.

(Apple 2010h.)

The type configuration and methodology explained above doesn’t mean that the dis-

play name of an application could not be changed. Quite opposite renaming has been

made possible and easy. The use of “Bundle display name” for example enables the

user to rename an application making the change only superficial without changing the

application’s and its folders’ names. If a user was to change the name of an application,

the “Bundle display name” field’s value would change from “${PRODUCT_NAME}”

to anything the user defined. Since the user only changes the “Bundle display name” –

fields value and not the actual “${PRODUCT NAME}” value, the change does not

affect the functionality of the application. (Apple 2010h.)

There are a couple of ways to set and maintain the version numbering of a project.

From Xcode the version can be set from the same “Build”-setting as the “Product

name” was changed from. Logically the “Current Project Version” -field is found un-

der the “Versioning” -settings. The field allows integer or floating point numbers like 4

or 2.5. “Versioning System” is by default set to “None” and there is no need to change

it if this type of versioning is used. (Apple 2010h.)

76

Another option is to use an Xcode built in versioning tool called “agvtool”. The tool

can be used to display, set, and update version information in Xcode projects when

Apple generic versioning system is in use. To enable it, “Versioning System” -field has

to be changed to “Apple Generic”. After this the project version number can be easily

checked or update from Mac OS X’s “Terminal”-utility by browsing to the project

folder and using the tool’s commands like “agvtool what-version”, or “agvtool next-

version –all”. (Rinaldi 2010.)

3.9.6 Archiving and signing the application

Once the application was ready for sharing we archived it by selecting Build > Build

and Archive in Xcode. All archived applications are listed under Organizer’s “Archived

Applications” -menu, from where they can be validated, shared and submitted. How-

ever, being a member of the iOS University Program only allows sharing the applica-

tion. It is possible to either distribute the archive for an enterprise, save it to disk or e-

mail it. The sharing feature forces the developer to sign the application using the exist-

ing certificate when choosing the sharing type.

3.9.7 Releasing the application into the App Store

To be able to release applications into the App Store, the developer needs to be a

member of the iOS Developer Program or the iOS Developer Enterprise Program.

Since the account used in this research is not part of either of the programs, and the

registration fee is $99/year, it was not possible to release the applications developed for

this research. Anyhow, the steps for releasing are explained in the following para-

graphs. (Apple 2010e.)

Before an application can be released into the App Store, the team has to have an iOS

Distribution Certificate linked to a Distribution Provisioning Profile. Just like with the

Development Certificate, a CSR has to be created and approved before the certificate

can be downloaded. Only one Distribution Certificate is allowed per team and it must

be created and installed by the Team Admin. The Team Admin also has to create a

Distribution Provisioning Profile with the following information:

77

1. Distribution method: App Store.

2. Profile name: [Application_Name] Distribution Profile.

3. App ID: The appropriate application ID for the application being distributed.

When both the Distribution Certificate and the Distribution Provisioning Profile are in

use, the developer has to create an iTunes Connect account. The account uses the

same username and password as the iOS Developer Account. iTunes Connect is used

to validate the application, so some information about it has to be entered there before

releasing. Naturally, the application also has to be signed using the Distribution Certifi-

cate. Once the application has passed the validation tests it can be submitted. Again,

only Team Admins can release applications into the App Store. (Apple 2011e.)

3.10 Legal issues and costs of setting up an iOS SDK environment

Since iOS is not as open platform as Android, there are some details in the University

Program’s licenses that we feel are important to know. This chapter introduces some

of these license agreements’ details. We also calculate some example hardware ex-

penses.

3.10.1 Legal issues

There are two different Legal Agreements for educational use of iOS SDK: “iOS

Developer Program University License Agreement” and “iOS Developer Program

University Student Agreement. This chapter combines a few practical points that need

to be taken into account when using the iOS SDK for educational purposes.

iOS Developer Program University Agreement includes a University Teaching License

which gives a university a permission to teach iOS application development. It also

permits sharing of those developed applications with other participants of the course.

However it doesn’t allow any other kind of distribution, which basically means that

they cannot be uploaded to Apple Store without the developer in question being a part

of an iOS Developer Program. (Apple 2010i, 1.)

78

With this agreement the university is permitted to teach courses to “Authorized

Students” and install – and permit Authorized Students to install – one copy of the

iOS and a “Provisioning Profile” on each “Authorized Test Device”. The number of

Authorized Devices depends on how many devices the university has registered and

acquired licenses for. The agreement also permits installing a reasonable number of

copies of the SDK on Apple computers that are owned or controlled either by the

university or “Authorized developers”. Of course the SDK’s are to be used by

Authorized Students and Authorized Developers in connection with the course.

(Apple 2010i, 4; Apple 2010j, 3)

“Authorized Student” is a student who is enrolled in a course, has an active and valid

Registered Apple Developer account, and has agreed to the iOS Developer Program

University Student Agreement. (Apple 2010i, 4; Apple 2010j, 3)

“Provisioning Profile” means the provisioning profile provided by Apple for

educational purposes and limited distribution of applications for use on Authorized

Devices (Apple 2010i, 3).

“Authorized Device” is an iOS device owned or controlled by the university, or owned

by an Authorized Developer or an Authorized Student (Apple 2010i, 2).

“Authorized Developer” is university faculty, staff, employee or a contractor who has

an active and valid Registered Apple Developer account, and has a need to know or

use the Apple Software for teaching purposes (Apple 2010i, 2).

3.10.2 Costs of setting up an iOS SDK environment

Since Apple provides a free license for educational use, the costs of setting up an iOS

SDK environment come from hardware expenses. Unfortunately Apple is well known

for their policy on pricing their products, and thus such an environment does not nec-

essarily come very cheap. Being unfamiliar with the discount policy of Apple regarding

mass orders of tens of devices, it is not possible to take such factors into account when

calculating the costs.

79

 At the moment (on 8th of August 2011) Apple offers five different kinds of comput-

ers; two laptop models, two desktop models and the Mac mini. As Apple Store is

usually the cheapest source for any Apple products, we will use their list prices for cal-

culating the prices. Prices in the Apple Store start from the relatively cheap Mac mini

(599€–799€) to the really expensive Mac Pro (2.499€–4.999€). (Apple 2011f.)

As stated in a previous chapter, the system and software requirements for running the

iOS SDK are a Mac computer with test an Intel processor. This means that all the

computers available in the Apple Store are good enough for developing an iOS appli-

cation. Anyhow, for practical reasons, a desktop computer is probably the smartest

choice in a school environment. Apple offers four different iMac desktop options; two

with 21.5” displays and two with 27” displays. Their prices range from 1.179€ to

1.929€. The cheaper 21.5” model (1.179€) has a 2.5GHz Quad-Core Intel Core i5 pro-

cessor, 4GB of memory, 500GB hard drive and an AMD Radeon HD 6750M graphics

card with 512MB of memory. The display offers a 1920 x 1080 resolution. 30 21.5”

2.5GHz iMacs would cost a total of 35.370€. (Apple 2011f.)

Another reasonable option price wise is the Mac mini with a non-mac display. The

cheaper Mac mini model isn’t as powerful as the iMac, but should run Xcode without

problems. It has a 2.3GHz dual-core Intel Core i5 processor, 2GB of memory, a

500GB hard drive and Intel HD Graphics 3000 graphics card, which supports resolu-

tion up to 1920 x 1200 (HDMI port) or up to 2560 x 1600 (Thunderbolt port). List

price for Mac mini 2.3GHz is 599€, but it doesn’t include a display. The cheapest 21.5”

display available in Verkkokauppa.com, http://www.verkkokauppa.com, costs

119.90€. It is a 21.5” Acer P226HQVPD with a 1920 x 1080 max resolution, which is

the same as with the iMac. Since the Mac mini has a HDMI port and comes with a

HDMI to DVI adapter, basically any display device with a HDMI or DVI input can be

used with it. 30 2.3GHz Mac minis with 30 Acer P226HQVPD’s would cost a total of

21.567€. (Apple 2011f; Verkkokauppa.com 2011.)

80

The more expensive Mac mini 2.5GHz has quite similar technical specs with the iMac

mentioned; 2.5GHz dual-core Intel Core i5 processor, 4GB of memory, a 500GB hard

drive and AMD Radeon HD 6630M graphics card. List price for it is 799€. With the

same 21.5” Acer display, 30 2.5GHz Mac minis with 30 Acer P226HQVPD’s would

cost a total of 27.567€. (Apple 2011f; Verkkokauppa.com 2011.)

There is also a need for test devices. Not only to test the developed applications, but to

also familiarize with how to transfer the application to the device and everything that is

needed for that. For this purpose we have calculated the price for 30 test devices;

iPhones and iPads.

The cheapest iPhone available in the Apple Store is the older iPhone 3GS (8GB) with a

519€ price tag. The iPhone 4 costs either 629€ (16GB version) or 739€ (32GB ver-

sion). 30 iPhone 3GS’s would then cost 15.570€ using list prices. 30 iPhone 4’s would

cost 18.870€ or 22.170€. (Apple 2011g.)

There are six different models of the iPad2: 16GB, 32GB and 64GB versions of the

Wi-Fi only -model and the same size options for the Wi-Fi + 3G version. Wi-Fi mod-

els costs 479€ (16GB), 579€ (32GB) or 679€ (64GB). Wi-Fi + 3G versions are a bit

more expensive: 599€ (16GB), 699€ (32GB) or 799€ (64GB).

With these list prices, 30 Wi-Fi iPad2’s would cost 14.370€, 17.370€ or 20.370€, and 30

Wi-Fi + 3G iPad2’s would cost 17.970€, 20.970€ or 23.970€. (Apple 2011h.)

Device Model Unit price Price of 30pcs

iMac 21.5" 2.5GHz 1 179,00 € 35 370,00 €

Mac mini + Acer P226HQVPD 2.3GHz + 21.5" 718,90 € 21 567,00 €

Mac mini + Acer P226HQVPD 2.5GHz + 21.5" 918,90 € 27 567,00 €

iPhone 3GS 8GB 519,00 € 15 570,00 €

iPhone 4 16GB 629,00 € 18 870,00 €

iPhone 4 32GB 739,00 € 22 170,00 €

iPad2 16GB Wi-Fi 479,00 € 14 370,00 €

iPad2 32GB Wi-Fi 579,00 € 17 370,00 €

iPad2 64GB Wi-Fi 679,00 € 20 370,00 €

iPad2 16GB Wi-Fi + 3G 599,00 € 17 970,00 €

iPad2 32GB Wi-Fi + 3G 699,00 € 20 970,00 €

iPad2 64GB Wi-Fi + 3G 799,00 € 23 970,00 €
Table 2 – Calculating Apple hardware expenses

81

4 Overall comparison based on the research

In this chapter, we gathered our findings together, performed the comparison between

the two operating systems and development environments related, and finally summa-

rized the results. The pros and cons of both operating systems are discussed freely un-

der their own subheading by the person responsible for the given system.

4.1 Pros and cons of using Android as a platform

We were both generally very pleased with Android as a mobile operating system. At

least from a technically oriented person’s point of view, it is very nice that the system is

almost fully customizable yet very usable. Despite the technical strengths, Android is

not any harder to use in everyday life than any other operating system. The menus are

built logically and the application icons clearly demonstrate which application they

represent.

Android is an open source system, it has been developed to be like that from the very

beginning. This makes it usable with basically every mobile device possible, unless the

use of other systems has been prevented in the specific device. The fact that Android is

an open source system means that developers and manufacturers can develop the sys-

tem onwards to suit their own needs. In fact, many manufacturers port the base plat-

form of Android into their user interfaces, an example of this is the Sense GUI made

by HTC.

Android is still a growing system in popularity and efficiency and it is being developed

constantly. When Android was first released, only the most dedicated mobile device

enthusiasts knew about it. Now, during the past few years, Android has gained a bigger

share of the market and also the everyday mobile device users have found the system.

This is mainly because more manufacturers have started using Android in their devices.

As more and more people start using Android, the system is developed onwards more

efficiently according to user experiences and at least in our opinion, it is a positive fact

that a truly open source system gains a bigger share of the market.

82

On the other hand, the fact that more manufacturers bring more and more Android

devices to the market can result in problems for application developers. At least the

most demanding applications, such as 3D games, can be hard to get to function in the

cheapest devices: hardware issues will surely arise. The relatively dense rate of updating

Android can also be considered a negative factor from the same reason. Even though

Android applications are said to be forwards compatible in different platforms, prob-

lems can arise especially if an application is developed to be more platform-centered

and if new features are built into the new platforms.

In any case, the selection of applications, free or not, available in the Android Market is

breath taking. It is possible to find almost anything from the Market. The negative side

of this is of course the lack of quality control: anyone can publish their applications.

The responsibility falls mainly in the hands of the final user, what is downloaded and

what is not.

Regarding the Android SDK and developing programs for Android, we were also quite

pleased. The programming language used in developing applications for Android is

Java. Java is a very popular programming language, tutorials and instructions can easily

be found from literature and Internet articles. The basics of Java are also relatively tri-

vial to learn, the language is quite logical.

The Android SDK has a dedicated team maintaining it. The Android Developers web-

site has everything documented from installing the SDK to developing basic applica-

tions. Also many of the different elements of the programming language and Android

tools are clearly explained and the use of them documented. It is possible to get very

familiar with developing applications for Android only by visiting the Android Devel-

opers website.

Unlike iOS developers, the developers publishing their applications for Android Mar-

ket have quite good control over their products even after releasing. This requires us-

ing Android Market Licensing, a feature allowing the publisher to allow or disallow the

further use of the product.

83

Another factor clearly differing from programming for iOS is the cost of developing

applications. Unlike iOS, it is basically free of cost to develop applications for Android,

the only cost results from the minor developer’s fee charged when first registering into

the Android Market. Unlike applications for iOS, the applications developed for An-

droid can be distributed from anywhere. It is possible to download the .apk-file from

the Internet, for example a personal server share, so it does not have to be released

into the Android Market to be downloaded.

4.2 Pros and cons of using iOS as a platform

During the past few years, Apple has built a very strong brand in the mobile market.

They have reached a point where other manufacturers always seem to be a couple of

steps behind in innovations, even though Apple’s products are more or less based on

the brand and minimalism. They have gone quite far in creating devices where the con-

trol of the device and everything in it - in good and bad - has been taken out of the

users hand for the manufacturer to worry about. This is great for those who don’t see

the need to, for example, modify the operating system, but does not suite those who

prefer having as much control over it as possible.

Apple is actually quite known for their policy over their products. Often only Apple

products are compatible with other Apple products. This sounds quite restricting, but

it also simplifies many things. Since iOS and iOS SDK can only run on Apple’s devic-

es, it brings down important everyday issues like system and software requirements.

The iOS SDK is also very easy to install because everything that is needed for applica-

tion development is built into the same installation package, and there is no need for

third party applications, add-ons or plugins.

Unfortunately, sometimes it feels like Apple uses their loyal customer base for their

own advantage and it might seem unfair for others. They completely own and control

the one and only distribution channel for applications, the App Store. Developers may

and do create applications, but Apple has the right to say what gets released and what

doesn’t. They don’t need to reason their decisions if they prevent something from be-

84

ing released and developers just have to accept these decisions. Even if an application

gets released, Apple still basically owns the software and can do whatever they want

with it.

All the rules also make the application deployment somewhat confusing. Development

certificates, distribution certificates, certificates checking other certificates, and differ-

ent provisioning profiles are just a big mess at first. It takes some time to understand

what the purpose of each digital asset is.

To even out all the rules, at least Apple offers a very thorough documentation on their

developer site. There are a lot of articles about such general matters as object oriented

programming, but also very detailed information like Objective-C syntax guides, exam-

ple code and information about the iOS architecture. It seems like the whole lifecycle

of an application, from beginning application development to releasing it on the App

Store, has been quite well documented and guided. But with a comprehensive docu-

mentation, it is not very rare to find duplicate information within the documentation,

and that sometimes confuses things.

Like in Android’s case, iOS applications are forward compatible. If they are developed

for an older iOS version they should run on newer versions, too. Of course it is not

possible to use API’s that the older versions do not support, but with that limitation in

mind it is possible to develop software which is compatible with all existing versions.

Consistent architecture and user interface between versions is also something the de-

velopers should benefit from.

Compared to Android, developing iOS applications is quite expensive with its

$99/year price tag. Of course anyone can become an Apple developer and not join a

developer program, but that only allows the access to the actual SDK application and

the developer center resources. An Apple developer can’t even test applications on a

real device nor distribute applications in any way.

85

The fact that it is not possible to develop applications without a Mac computer is of

course very restricting for non-Mac users. Those using a PC have to buy a Mac if they

want their part of the Apple hype, and it requires more than just investments in hard-

ware. The user interface, commands and even keyboard shortcuts differ from the PC-,

and Windows-world, and getting to know Mac OS X takes its time.

Al in all, iOS seems like a solid platform that will be on the market for a long time, and

is likely to attract a lot of developers. iOS has a decent market share and an expanding

number of users. This even though so far there are only a handful of devices on which

the operating system runs: the iPhone, iPad and iPod touch families. If Apple contin-

ues to innovate like they have during the last years, their user base is likely to expand

and that would bring more customers to 3rd party developers. By experience, another

positive trend among the Apple users seems to be that they seem to be quite loyal to

the brand.

86

5 Discussion about the research

This chapter consists of our final opinion on how the thesis succeeded as a project and

how well we fulfilled our personal learning goals and objectives. During this chapter

we considered the success of the methods used, the final research results, the thesis

process in general and finally our own learning process. This chapter consists only of

our project group members’ opinions.

5.1 Evaluating the methods

Our methods for this thesis included theoretical and empirical research. For theoretical

research we read related articles, documentation and other literature. The material was

mostly provided by the systems’ developers, Google and Apple, but also by 3rd parties

such as authors, and company - and developer bloggers. For empirical research we in-

stalled and deployed the SDK environments, developed applications, and ran them on

the built in emulator or simulator and finally on the actual mobile devices.

These research methods suited our needs well since our scope consisted of getting fa-

miliar with the installation of the SDK’s, and development, deployment and releasing

process of an application. Being completely new to the mobile development in general,

a lot of background work was needed to get familiar with both environments. On the

other hand, the vast amount of background work was nicely balanced by the learn-by-

doing –type of working method.

Since both of us have a technical background, the idea of first developing and then

actually running the applications on real devices was a good motivator for this re-

search. Our background also made it relatively easy to understand the concepts of the

processes regarding application development for mobile devices.

5.2 Evaluating the research results and their validity

In our opinion, the research was a success. Throughout the research, we managed to

keep to our original objective in everything we did. After conducting the needed back-

87

ground research, we were able to install both of the SDKs and create and deploy appli-

cations with them. We were also successful in finding out the costs and related license

issues in using the SDKs in educational environments. In the end, we were able to find

a group of similarities and differences between the development environments and we

documented all steps taken as was mentioned in the objective.

We feel that we reached the needed results with the research. Our positive feeling was

backed up by the commissioners’ optimistic comments when the project started near-

ing its end. We did not fail to gain any of the knowledge mentioned in the objective

and we also managed to keep unnecessary factors out of the final research. We feel that

the research results are valid until either of the systems are upgraded so far that they

are no longer anything like described in this thesis.

5.3 Evaluating the overall thesis process

In general, our whole thesis process was covered without problems. Communication

between the steering group and the project group worked well, as did the communica-

tion inside the project group. From the beginning of the process to the end we mainly

knew what we were doing and if we did not, help was one e-mail message away.

As the scope of the thesis was quite vast, the only way to have finished it in the given

timeframe was to conduct the thesis as a pair work. Dividing the work into two equal

parts was easy: both of us got our own operating system to work with and which we

were responsible for. We had a lot of individual work to do, but also enough pair work,

which was no problem in a well-functioning project group.

As a negative side of our thesis process, we were missing our thesis supervisor for

most of the project duration. This resulted in us not receiving any guidance regarding

the thesis structure until the last few months before the project deadline. We were then

appointed with a new thesis supervisor (Juhani Välimäki).

88

5.4 Evaluating the learning process

In general, we learned a lot while conducting this thesis. Neither of us knew the pro-

gramming languages used with either Android SDK or iOS SDK before this research.

In addition to that, we were not at all familiar with developing mobile applications, and

we were both completely unfamiliar with the Apple environment. Neither of us had

ever even used an Apple product before which created a challenge to begin with.

As both development environments are well documented, it was not difficult to find

information. Quite the opposite, sometimes the amount of information was over-

whelming, since there was a lot of overlapping within the documentation. We were

also forced to be critical and learn how to filter out unwanted information, so we

would stay within the scope. In the end, we got very familiar with the developer sites

of both systems. As both systems are very popular, it was also easy to find answers to

technical questions which rose mainly during the different development phases. Solv-

ing these problems was also a good way of learning about the systems.

Towards the end of the project, we felt that we had learned a lot not only about mobile

development but also system-specific matters. We felt that we had gained a lot of gen-

eral knowledge about everything related to the research, ranging from the use of the

SDKs to developing and releasing complete mobile applications. We hope the thesis

sponsor gains from this research as much as we feel we did.

89

6 Summary and conclusion of the thesis

In this chapter, we summarize the primary objectives and the purpose of this research

and in comparison to them, we briefly review the results. We also discuss our conclu-

sions referring to the primary research problem based on the results obtained.

6.1 Summary

The primary objective of this thesis was to compare Android and Apple iOS software

development kits. We were to install the development environments, test them, devel-

op applications with them, publish the applications and finally obtain information on

how the development kits could be used in educational environments.

We managed to do all of this, the objective is fulfilled. Both of the development kits

have been installed and tested and we also developed two applications with each of the

SDKs. This thesis consists of a documentation of the whole process and all the steps

taken. We also found distinctive differences between the two SDKs. The differences

are also documented in this thesis, mainly in chapter four. From our point of view as a

project team, we gathered new theoretical knowledge, and we did our best to docu-

ment it in this thesis.

6.2 Conclusion

In conclusion, both of the software development kits researched here have their

strengths and weaknesses. Both SDKs are equally usable and capable of completing the

same tasks, but they are still somewhat out of each other’s league. The user of the iOS

SDK needs to be an Apple-person at least at some level; it’s not possible to develop

and test the application without an Apple computer and mobile device. The Android

SDK user can enjoy the positive sides of the system being open source; the SDK

works on any operating system and the Android system is available for many different

devices.

90

On the other hand, while installing the SDK at first, the Android SDK user needs to

do much more work as many different systems need to be combined together, as the

iOS SDK basically installs with the click of a button. Though, if taking the application

development to the level of actual publishing, Android SDK is easier to use as iOS

SDK requires the use of many different digital assets.

As shown, neither of the two SDKs is better than the other on a general level. They

both have their good and bad sides, so it is up to the user to decide what is looked for

in the system and application to be created and choose the SDK to be used based on

that.

91

Bibliography

General sources used

HAAGA-HELIA University of Applied Sciences 2011a. URL: http://extra.haaga-

he-

lia.fi/english/units/information_technology/thesis/Documents/thesis_report_researc

h.doc. Quoted: 20.6.2011.

HAAGA-HELIA University of Applied Sciences 2011b. URL: Guidelines for complet-

ing a thesis report. URL: https://extra.haaga-

he-

lia.fi/english/studies/guidelines/thesis/Documents/Report_Layout_and_Citing_Sour

ces.doc. Quoted: 20.6.2011.

Kustannusosakeyhtiö Iltalehti 2011. Telkku.com. URL: http://www.telkku.com.

Quoted: 29.9.2011.

Sources used in the research about Android and Android SDK

Android Code Monkey 2010. Hello World - Your First Android Application. URL:

http://androidcodemonkey.blogspot.com/2010/01/hello-world-your-first-

android.html. Quoted: 22.9.2011.

Android Developers 2011a. What is Android? URL:

http://developer.android.com/guide/basics/what-is-android.html. Quoted 15.7.2011.

Android Developers 2011b. Introduction. URL:

http://developer.android.com/guide/developing/index.html. Quoted 15.7.2011.

Android Developers 2011c. Tools. URL:

http://developer.android.com/guide/developing/tools/index.html. Quoted 15.7.2011.

92

Android Developers 2011d. System Requirements. URL:

http://developer.android.com/sdk/requirements.html. Quoted: 1.7.2011.

Android Developers 2011e. Android Developers. URL:

http://developer.android.com/index.html. Quoted: 1.7.2011.

Android Developers 2011f. Download the Android SDK. URL:

http://developer.android.com/sdk/index.html. Quoted: 1.6.2011.

Android Developers 2011g. Installing the SDK. URL:

http://developer.android.com/sdk/installing.html. Quoted: 1.6.2011.

Android Developers 2011h. Hello, World. URL:

http://developer.android.com/resources/tutorials/hello-world.html. Quoted:

22.9.2011.

Android Developers 2011i. Web View. URL:

http://developer.android.com/reference/android/webkit/WebView.html. Quoted:

29.9.2011.

Android Developers 2011j. Hello, Web View.

URL://http://developer.android.com/resources/tutorials/views/hello-webview.html.

Quoted 29.9.2011.

Android Developers 2011k. Preparing to Publish: A Checklist. URL:

http://developer.android.com/guide/publishing/preparing.html. Quoted 25.9.2011.

Android Developers 2011l. UI/Application Exerciser Monkey. URL:

http://developer.android.com/guide/developing/tools/monkey.html. Quoted:

25.9.2011.

93

Android Developers 2011m. Application Licensing. URL:

http://developer.android.com/guide/publishing/licensing.html. Quoted: 29.9.2011.

Android Developers 2011n. Signing Your Applications. URL:

http://developer.android.com/guide/publishing/app-signing.html. Quoted: 25.9.2011.

Android Developers 2011o. Publishing on Android Market. URL:

http://developer.android.com/guide/publishing/publishing.html#market. Quoted:

29.9.2011.

Android Open Source Project 2011. Welcome to Android. URL:

http://source.android.com/. Quoted: 31.7.2011.

DiMarzio, J. 2008. Android: A Programmer's Guide. McGraw-Hill. New York.

The Eclipse Foundation 2011a. Eclipse Downloads.

http://www.eclipse.org/downloads. Quoted: 1.6.2011.

The Eclipse Foundation 2011b. Eclipse Public License. URL:

http://www.eclipse.org/org/documents/epl-v10.php. Quoted: 31.7.2011.

Free Software Foundation 2006. Sun begins releasing Java under the GPL. Press Re-

lease. URL: http://www.fsf.org/news/fsf-welcomes-gpl-java.html. Quoted: 31.7.2011.

Free Software Foundation 2007. Gnu Operating System. Gnu General Public License.

URL: http://www.gnu.org/copyleft/gpl.html. Quoted: 31.7.2011.

Google Code 2011. Obtaining a Maps API Key. URL: http://code.google.com/intl/fi-

FI/android/add-ons/google-apis/mapkey.html. Quoted: 29.9.2011.

Open Handset Alliance 2007a. Frequently Asked Questions. URL:

http://www.openhandsetalliance.com/oha_faq.html. Quoted: 15.7.2011.

94

Open Handset Alliance 2007b. Members. URL:

http://www.openhandsetalliance.com/oha_members.html. Quoted: 15.7.2011.

Oracle 2011a. Java SE Downloads. URL:

http://www.oracle.com/technetwork/java/javase/downloads/index.html. Quoted

1.6.2011.

Oracle 2011b. Oracle Binary Code License Agreement for the Java SE Platform Prod-

ucts. http://www.oracle.com/technetwork/java/javase/terms/license/index.html.

Quoted: 31.7.2011.

Sources used in the research about Apple iOS and iOS SDK

Aiglstorfer, R. 2008. Launching Other Apps within an iPhone Application. URL:

http://iphonedevelopertips.com/cocoa/launching-other-apps-within-an-iphone-

application.html. Quoted 19.10.2011

Allan, A. 2010. Learning iPhone Programming: From Xcode to App Store. O’Reilly

Media, Inc. Sebastopol, CA.

Apple 2009. Apple to Ship Mac OS X Snow Leopard on August 28. URL:

http://www.apple.com/pr/library/2009/08/24Apple-to-Ship-Mac-OS-X-Snow-

Leopard-on-August-28.html. Quoted: 2.6.2011

Apple 2010-2011. Looking for Xcode 3? Download now Xcode 3 and iOS SDK 4.3

Readme.

URL: https://developer.apple.com/xcode/ (Xcode 3 and ios sdk 4.3 readme.pdf).

Quoted: 27.6.2011

Apple 2010a. iOS Dev Center. iOS Developer Library. Topics. General. iOS Technol-

ogy Overview. About iOS Development. URL: https://developer.apple.com/.

Quoted: 20.6.2011.

http://developer.apple.com/devcenter/ios
https://developer.apple.com/library/ios/navigation/
https://developer.apple.com/library/ios/navigation/#section=Topics
https://developer.apple.com/library/ios/navigation/#section=Topics&topic=General

95

Apple 2010b. iOS Dev Center iOS Developer Library. Topics. Tools & Languages.

Introduction. URL: https://developer.apple.com/. Quoted: 12.10.2011.

Apple 2010c. Apple 2010. iOS Dev Center. iOS Developer Library. Topics. General.

iOS Overview. URL: http://developer.apple.com/. Quoted: 16.6.2011.

Apple 2010d. Mac App Store Preview. URL:

http://itunes.apple.com/us/app/xcode/id448457090?mt=12. Quoted 27.6.2011.

Apple 2010e. Apple Developer Programs. URL:

http://developer.apple.com/programs/. Quoted 6.6.2011.

Apple 2010f. iOS Dev Center. iOS Developer Library. Topics. Tools & Languages.

Learning Objective-C: A Primer. URL: http://developer.apple.com/. Quoted:

19.10.2011.

Apple 2010g. iOS Dev Center. iOS Developer Library. Topics. General. iOS App Pro-

gramming Guide. App-Related Resources. URL: http://developer.apple.com/.

Quoted: 21.9.2011

Apple 2010h. iOS Dev Center iOS Developer Library Topics. Tools & Languages. iOS

App Development Workflow Guide. URL:

http://developer.apple.com/. Quoted: 11.10.2011

Apple 2010i. iOS Developer Program University License Agreement. Apple Developer

Member Center. Organization: University of Appliad Sciences (Business Information

Technology). Legal Agreements. URL: http://developer.apple.com/. Quoted:

28.7.2011

Apple 2010j. iOS Developer Program University Student Agreement

https://developer.apple.com/membercenter/index.action#profile
https://developer.apple.com/membercenter/index.action#profile

96

Apple Developer Member Center. Organization: University of Appliad Sciences (Busi-

ness Information Technology). Legal Agreements. URL: http://developer.apple.com/.

Quoted: 28.7.2011

Apple 2010k. Xcode 3.2.6 and iOS SDK 4.3 installer.

Apple 2011a. URL: http://developer.apple.com/xcode/. Quoted: 3.8.2011

Apple 2011b. iOS Dev Center. iOS Developer Library. Topics. General. Tools for iOS

Development. URL: https://developer.apple.com/. Quoted: 21.9.2011.

Apple 2011c. OS Dev Center. iOS Developer Library. Frameworks. Cocoa Touch

Layer. UIApplication Class Reference. URL: http://developer.apple.com/. Quoted:

16.10.2011

Apple 2011d. Member Center. iOS Provisioning Portal. URL:

http://developer.apple.com/. Quoted: XXX

Apple 2011e. iOS Dev Center. iOS Developer Library. Topics. Tools & Languages.

iOS App Development Workflow Guide. Distributing Applications. URL:

http://developer.apple.com/. Quoted: 14.10.2011

(Apple 2011f.) Apple 2011. Apple Store. URL:

http://store.apple.com/fi/browse/home/shop_mac/. Quoted: 2.8.2011

Apple 2011g. URL: http://store.apple.com/fi/browse/home/shop_iphone/. Quoted:

9.8.2011.

Apple 2011h. URL http://store.apple.com/fi/browse/home/shop_ipad/. Quoted:

10.8.2011.

Bucanek, J. 2010. Professional Xcode 3. Wiley Publishing, Inc. Hoboken, NJ.

https://developer.apple.com/membercenter/index.action#profile
https://developer.apple.com/membercenter/index.action#profile

97

Carvell K. 2010. Cisco and Apple Agreement on IOS Trademark. URL:

http://blogs.cisco.com/news/cisco_and_apple_agreement_on_ios_trademark/.

Quoted: 26.7.2011

Muchov, J. 2010. Developing iPhone Apps with iOS4 SDK, Deploying to 3.x Devices:

Base SDK and iPhone OS Deployment Target. URL:

 http://iphonedevelopertips.com/xcode/base-sdk-and-iphone-os-deployment-target-

developing-apps-with-the-4-x-sdk-deploying-to-3-x-devices.html. Quoted: 12.10.2011.

Rinaldi, G. 2010. Setting iOS Application Build Versions. URL:

http://gabrielrinaldi.me/blog/2010/10/13/setting-ios-application-build-versions.html.

Quoted: 16.10.2011.

Trebitowski, B, Allen, C. & Appelcline S. 2011. iPhone and iPad in Action. Manning

Publications Co. Stamford, CT.

Verkkokauppa.com 2011. URL:

http://www.verkkokauppa.com/fi/product/38692/dbxdm/Acer-P226HQVbd-21-5-

Full-HD-LCD-naytto. Quoted: 8.8.2011

Von Lohmann, F. 2010. All Your Apps Are Belong to Apple: The iPhone Developer

Program License Agreement. URL: https://www.eff.org/deeplinks/2010/03/iphone-

developer-program-license-agreement-all. Quoted: 12.10.2011

98

Appendix A - Android source code

Appendix A.1. - HelloWorld for Android

HelloWorldActivity.java:

package com.example.helloworld;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.Toast;

public class HelloWorldActivity extends Activity {

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 Button button = (Button) findViewById(R.id.button1);

 button.setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View v) {

 Toast.makeText(HelloWorldActivity.this, "Hello, User!",

Toast.LENGTH_SHORT).show();

 }

 });

 }

}

Main.xml:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

 <Button android:layout_width="wrap_content"

 android:text="Please, press here!"

 android:layout_height="wrap_content"

 android:id="@+id/button1"></Button>

</LinearLayout>

Strings.xml:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="hello">Hello User, I am a test application!</string>

 <string name="app_name">HelloWorld</string>

</resources>

99

Appendix A.2. - OpenSomeWebsite for Android

OpenSomeWebsiteActivity.java:

package com.example.opensomewebsite;

import android.app.Activity;

import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

public class OpenSomeWebsiteActivity extends Activity {

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 Button button = (Button) findViewById(R.id.button1);

 button.setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View v) {

 Uri uri = Uri.parse("http://www.telkku.com");

 Intent intent = new Intent(Intent.ACTION_VIEW, uri);

 startActivity(intent);

 }

 });

 }

}

Main.xml:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 >

<Button android:text="Press here to open www.telkku.com" andro-

id:id="@+id/button1" android:layout_width="fill_parent" andro-

id:layout_height="fill_parent"></Button>

</LinearLayout>

Strings.xml:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="hello">Hello World, OpenSomeWebsiteActivity!</string>

 <string name="app_name">Open Telkku.com</string>

</resources>

100

Appendix B - iOS source code

Appendix B.1. - HelloWorld for iOS

HelloWorldAppDelegate.h

#import <UIKit/UIKit.h>

@class HelloWorldViewController;

@interface HelloWorldAppDelegate : NSObject <UIApplicationDele-

gate>

{

 UIWindow *window;

 HelloWorldViewController *viewController;

}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@property (nonatomic, retain) IBOutlet HelloWorldViewController

*viewController;

@end

HelloWorldAppDelegate.m

#import "HelloWorldAppDelegate.h"

#import "HelloWorldViewController.h"

@implementation HelloWorldAppDelegate

@synthesize window;

@synthesize viewController;

- (BOOL)application:(UIApplication *)application didFinishLaun-

chingWithOptions:(NSDictionary *)launchOptions

{

 self.window.rootViewController = self.viewController;

 [self.window makeKeyAndVisible];

 return YES;

}

- (void)dealloc

{

 [viewController release];

 [window release];

 [super dealloc];

}

@end

HelloWorldViewController.h

#import <UIKit/UIKit.h>

@interface HelloWorldViewController : UIViewController

{

 UILabel *label;

UIButton *button;

}

@property (nonatomic, retain) IBOutlet UILabel *label;

-(IBAction)sayHello:(id) sender;

@end

101

HelloWorldViewController.m

#import "HelloWorldViewController.h"

@implementation HelloWorldViewController

@synthesize label;

-(IBAction) sayHello:(id) sender

{

 label.text = @"Hello, User!";

}

@end

Image 90 – HelloWorldViewController.xib in Interface Builder

102

Appendix B.2. - OpenSomeWebsite for iOS

OpenSomeWebSiteAppDelegate.h

#import <UIKit/UIKit.h>

@class OpenSomeWebsiteViewController;

@interface OpenSomeWebsiteAppDelegate : NSObject <UIApplicationDe-

legate>

{

UIWindow *window;

OpenSomeWebsiteViewController *viewController;

}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@property (nonatomic, retain) IBOutlet OpenSomeWebsiteViewControl-

ler *viewController;

@end

OpenSomeWebSiteAppDelegate.m

#import "OpenSomeWebsiteAppDelegate.h"

#import "OpenSomeWebsiteViewController.h"

@implementation OpenSomeWebsiteAppDelegate

@synthesize window;

@synthesize viewController;

- (BOOL)application:(UIApplication *)application didFinishLaun-

chingWithOptions:(NSDictionary *)launchOptions

{

self.window.rootViewController = self.viewController;

 [self.window makeKeyAndVisible];

return YES;

}

- (void)dealloc

{

 [viewController release];

 [window release];

 [super dealloc];

}

@end

OpenSomeWebsiteViewController.h

#import <UIKit/UIKit.h>

@interface OpenSomeWebsiteViewController : UIViewController

{

}

-(IBAction)website;

@end

103

OpenSomeWebsiteViewController.m

#import "OpenSomeWebsiteViewController.h"

@implementation OpenSomeWebsiteViewController

-(IBAction)website

{

[[UIApplication sharedApplication]openURL:[NSURL URL-

WithString:@"http://www.telkku.com/"]];

}

@end

Image 91 – OpenSomeWebsiteViewController.xib in Interface Builder

