

___. ___. ______ ________________________________

COLLISION DETECTION AND ALARM

 SYSTEM FOR A FORKLIFT

Perttu Laukkanen

Bachelor’s Thesis

SAVONIA UNIVERSITY OF APPLIED SCIENCES
Degree Programme

Information Technology

Author

Perttu Laukkanen

Title of Project

Collision Detection and Alarm System For a Forklift

Type of project

Final project

Date

8.12.2011

Pages

25+ 2

Academic supervisor

Arto Toppinen

Company

AP-TRUKIT OY

Abstract

The aim of this project was to create system for detecting collisions and sending out alarms
for a forklift for AP-TRUKIT OY. The main objective was to integrate the shock sensor and
the EZ-10 GSM modem into a working system and to create the necessary Python-language
program for detecting the collisions and sending out the alarms in the form of an SMS
message. Most of the work in the project involved the design of the circuit connecting the
shock sensor and the EZ-10, and the design of the Python-code to operate the system.

The aims of the project were met. The integration of the devices was successful and the
Python code functions as intended. The system is also quite flexible and can easily be
modified to accommodate different environments and device types.

Keywords

EZ-10, Python , Shock sensors, GSM

Confidentiality
Public

SAVONIA-AMMATTIKORKEAKOULU TEKNIIKKA KUOPIO
Degree Programme

Tietotekniikan koulutusohjelma

Tekijä

Perttu Laukkanen

Työn nimi

Trukin Törmäystunnistus- ja Hälytysjärjestelmä

Työn laji

Insinöörityö

Päiväys

8.12.2011

Sivumäärä
25+ 2

Työn valvoja

Arto Toppinen

Yritys

AP-TRUKIT OY

Tiivistelmä

Tämän lopputyön päätarkoitus oli luoda trukissa käytettävä järjestelmä tunnistamaan
törmäyksiä ja lähettämään hälytyksiä. Firma jolle työ tehtiin oli AP-TRUKIT OY.
Ensisijainen tavoite oli yhdistää shokkisensori ja EZ-10 GSM modeemi toimivaksi
järjestelmäksi ja luoda tarvittava Python-kielinen ohjelma törmäysten tunnistamiseksi ja
lähettämään hälytyksiä SMS-viesteinä. Suurin osa työstä kului shokkisensorin ja EZ-10-
laitteen yhdistävän piirin sekä Python-koodin suunnitteluun.

Projektin tavoitteet tulivat täytetyiksi. Laitteiden yhdistäminen onnistui ja Python-koodi
toimii kuten pitääkin. Järjestelmä on myös melko joustava ja se on helppo muuntaa
toimimaan erilaisissa ympäristöissä ja käyttämään erilaisia laitteita.

Avainsanat

EZ-10, Python , Shock sensors, GSM

Luottamuksellisuus
Julkinen

AKNOWLEDGEMENTS

I could not have finished this project without the support I received from a
number of people. I would like to thank my project supervisor Arto
Toppinen for giving me this great opportunity to expand my skills and the
fact that despite his busy schedule he found the time to assist me with the
project and provide information and support.

I would also like to thank my girlfriend, my mother and my father for
helping me to keep going when I encountered difficulties, especially my
father for his excellent technical advice and knowledge.

TABLE OF CONTENTS

1. Introduction

2. Shock Sensors and Sensor Technology

 2.1 Sensors
 2.2 Piezoelectric Sensors
 2.3 ZD-1 Piezoelectric Shock Sensor

3. GSM

 3.1 EZ-10-QUAD-PY Terminal
 3.2 Operating the EZ-10
 3.3 The Python Program

4. The Connecting Circuit

5. Summary

 5.1 The Functioning of the Device
 5.2 User Guide
 5.3 Conclusion
 5.4 Further Developments

LIST OF ABBREVIATIONS

GPIO General Purpose Input/Output
GPRS General Packeted Radio Services
GSM Global System for Mobile Communications
PDU Protocol Data Units
PZT Lead zirconate titanate
SIM Subscriber Identity Module
SMS Short Message Service

1. Introduction

This project is an attempt to create a system comprised of a shock sensor
and a GSM modem. There are countless situations in which detection of
shocks, vibration or collisions are necessary. Most common uses for shock
sensors are various types of alarms. Either burglar alarms to detect the
shock caused by breaking into a house or a car, or different kinds of safety
alarms such as the airbags of a car. In this case, the aim is to create a shock
sensor based collision detection system to be installed in a forklift.

The information collected by the sensors is useless unless it can be read by
the people who need it. Just like a cars burglar alarm plays a loud sound to
notify that the shock sensor was triggered, the collision detection system
must be able to quickly notify the people who need to know. Today mobile
communication has a massive amount of applications. One of them is
working in tandem with sensors to remotely transmit the information
provided by the sensors.

The main aims of the project are to first create a system to tie together the
shock sensor and the GSM modem so that the modem can receive the
information it needs from the sensor and then create the program which
automatically monitors the sensor information and if a collision happens,
sends out an alarm in the form of an SMS-message.

The devices selected were a ZD-1 piezoelectric high sensitivity shock
sensor and an EZ-10 GPS GSM modem.

2. Shock Sensors and Sensor Technology

 2.1 Sensors

Modern technology allows for very accurate measuring of all kinds of
natural quantities from things like heat or humidity to mechanical tilt or
acceleration. Almost everything that people would want to measure can be
done with great accuracy. Sensors are devices which measure the quantities
and present them in a way that can be understood by the observers. In
today’s world sensors have a massive amount of applications and can be
found nearly everywhere from cell phone touch screens to solar cells.

A simple definition of a sensor would be that it is a device that when
affected by an outside quantity reacts by sending out a response that is
proportional in size to the outside quantity affecting the sensor. Most
sensors are electric or mechanical in nature, but there are other types such
as the piezoelectric sensors like the one which is used in this project. The
most important property of a sensor, apart from what it is supposed to
measure, is its sensitivity. A sensors’ sensitivity must be taken into account
when selecting what kind of sensor to use. Measuring very small changes
requires a high sensitivity sensor whereas large changes require a sensor
with a low sensitivity but a high range of detection. Sensors are generally
designed to be as resistant as possible to interference from sources it is not
supposed to measure and to have as little effect on the measured quantity as
possible but these effects can never be completely eliminated and must
therefore be taken into account as well when designing systems that make
use of sensors. Finally, a sensor by itself only provides the information and
it must always be integrated with something else to make use of that
information, be that something else a human reading a thermometer to
decide what clothes to put on or an alarm siren warning people that
someone is trying to break into their car. (1)

 2.2 Piezoelectric Sensors

The piezoelectric effect is a phenomenon where certain materials
accumulate internal electric charge when exposed to mechanical stress.
There exists also the reverse piezoelectric effect, where the material
experiences mechanical stress when exposed to an electric field. There are a
number of applications for piezoelectric materials such as actuators,
transducers, sonar, high voltage transformers and of course sensors.
Piezoelectric sensors can measure force, strain, pressure or acceleration, the
last one being the one measured by shock sensors.

The most common piezoelectric material used for sensor manufacturing is
Lead zirconate titanate(PZT), an artificial ceramic. It exhibits measurable
piezoelectricity when deformed by 0.1% of its original size. The device
used in this project is a Chinese-made PZR piezoelectric shock and
vibration sensor. (2), (3)

 2.3 ZD-1 Piezoelectric Shock Sensor

The ZD-1 is a high-sensitivity lead zirconate titanate based shock sensor. It
was selected for the project primarily because an earlier project that this one
is a continuation of carefully studied the subject of shock sensors and
selected it specifically for this purpose. Figure 1 shows a circuit diagram of
the device.

Figure 1 A circuit diagram of the ZD-1 shock sensor

The device is extremely cheap, reliable and simple to operate. It is powered
by a 5-12V power supply. The sensitivity can be adjusted by a knob in the
front of the device, turning it clockwise increases sensitivity and
counterclockwise decreases it. When the device detects a shock that is
stronger than the set threshold a red LED on the front of the device lights up
and the device sends a 1-second long pulse at the input voltage out of the
output line. The device is 5x3x2cm in size and has a working temperature
range of -10 to +50 degrees Celsius. The ZD-1 is the first component
required for the system, but still more are needed.

3. GSM

 3.1 EZ-10-QUAD-PY Terminal

The second device necessary for our project is the GSM modem for sending
the SMS-message. For this purpose, the Telit EZ-10-QUAD-PY Terminal
GSM/GPRS modem was chosen. The reason for the selection was because
the company for which the project was made already uses a variant of the
same device in their forklifts for work-time supervision. Using the same
device will therefore make the system easy to integrate into the existing
devices. EZ-10 can also be programmed very easily with the high-level
Python programming language which makes it possible to run the device
automatically. The device requires a standard SIM card to function in a
GSM network.
Figure 2 Shows the EZ-10 device front the front, top and backsides. (4)

Figure 2 The EZ-10 modem (4)

The main features of the EZ-10 include:

○ Powered by a 12-24V DC current.
○ Operates in a quad frequency band (GSM 850 / EGSM 900 / PCS 1800 /
PCS 1900Mhz)
○ Class 10 GPRS device
○ Maximum temperature range -20 to +70 degrees Celsius
○ A standard RS232 serial interface for AT-commands and programming
○ Molex 6-PIN RJ-11 interface for general input/output
○ SMA connector for an external RF antenna
○ SMA connector for an external GPS antenna
○ EasyScript function allows at commands to by run through Python code
○ Internal Python interpreter
○ Fully upgradable firmware

Figure 3 shows the interfaces and plugs of the EZ-10 in detail.

Figure 3 The EZ-10 with interfaces labeled (4)

The power connector located on the left side of the device is a Molex 4-pin
connector with a pin-layout as shown in figure 4 .

Figure 4 The pin layout of the EZ-10 power connector from the front (4)

The most important interfaces for this project are the RS232 serial interface
and the RJ-11 GPIO lines. The serial line is used to connect the device to a
PC and the RJ-11 line for receiving the input signal from the shock sensor.

The serial interface is a standard 9-pin female RS232 interface. It is
connected to a PC using a 9-pin cable with 1 male and 1 female D9
connector. Other features are:

○ Input voltage range -12V to 12V
○ Baud rate from 300 to 115 200 bit/s
○ Short circuit protection on all outputs

The 6-pin RJ-11 connectors pin layout is shown in figures 5 and 6, and the
input and output voltage ranges for the GPIO pins on figure 7, All of the
lines in the GPIO interface have a 100pF bypass capacitor to ground and
100Ω series resistor.(4)

Figure 5 The pin order of the Molex 6-pin RJ-11 interface from the front (4)

Figure 6 The individual functions of the pins in the RJ-11 interface (4)

Figure 7 Input and output voltage ranges for the GPIO pins (4)

 3.2 Operating the EZ-10

The EZ-10 is operated manually by a PC connected to the serial interface
and using a terminal program, or automatically by uploaded Python scripts.
Both of these methods use AT commands as to operate the device. AT
commands are used as a command language that has been used by modems
since the early 1980’s and most modems and phones use them for operation.
The EZ-10 supports all the standard Hayes AT-commands as well as ETSI
GSM 07.07, ETSI GSM 07.05 and FAX class 1 compatible commands. The
07.07 commands are specific to GPRS applications and the 07.05-ones deal
with SMS. The AT commands are given to the device through a terminal
program such as the Windows HyperTerminal or the RS-terminal, the latter
of which was used in this project because of its improved additional
functions such as automated output of some of the most used AT-commands
and easier upload of Python-scripts.(4),(5)

All AT commands are divided into basic and extended commands. Basic
commands are input by entering the prefix AT, followed by the command
and terminated with the carriage return character. The default value for the
carriage return character in ASCII decimal is 13. An example of a basic
command would be:

ATCMD<CR>

Where “AT” is the prefix, “CMD” the basic command and “<CR>” the
carriage return character for terminating the command.

The extended commands are differ from the basic ones in that they are all
separated from the prefix by a separator sign, most typically “+” .The
extended commands are further divided into two groups, the parameter type
commands and the action type commands. The parameter type commands
are used for either storing values of a parameter for later use or reading the
current value of the parameter. They also have a test command used for
finding out the accepted value types and range. For example the commands:

AT+CMD=?<CR>

Tests the possible values for the parameter CMD

AT+CMD?<CR>

Checks the current value for the parameter CMD

AT+CMD=10<CR>

Sets the value of parameter CMD to 10

It is possible to use strings as parameter values without the use of quotes,
but only if the string has no spaces in it. So for example
AT+CMD=AAA<CR> would be a valid command, but AT+CMD=A
AA<CR> is not and would have to instead be expressed as AT+CMD=”A
AA”<CR>.

The action type commands can be executed to make use of some associated
function of the equipment, such as registering the device with the GSM
network or sending an SMS message. They can also be read in order to
return the possible subparameter range, assuming the command has any.
Any parameters input into an action type command are not saved and only
used for that specific invocation of the command.

The specific functioning of the commands and the syntax varies slightly
based on which specific Telit-module is being used. For this purpose the
EZ-10 module had a command called #SELINT (Select Interface) which
can be used to change the devices AT-command interface between 3 choices
by setting the parameter to 0,1 or 2. By default, the EZ-10 has the parameter
set to 2, and that is the position where it is kept for this project.

Finally a brief description of the specific AT-commands that are used in the
project. “AT+CREG?” is used to check for the status of network
registration. The command returns two parameters, first defines how the
device handles code reports from the network registration and is set by
default to report nothing, the second returns the current state of network
registration. The possible values are:
0 - Not registered and currently not searching for a new operator
1 – Registered to the home network
2 – Not Registered but currently searching for a new operator
3 - Registration denied
4 – Unknown status
5 – Registered to a roaming network

The “AT+CPIN?” and “AT+CPIN=1234” commands are used to read the
status of the PIN-code required to use the SIM-card and to input the value.
They are necessary for the device to successfully register to the GSM
network. The “AT+CPIN?” command returns either an error code if for
example the SIM-card is not inserted or not functioning, the currently
entered PIN code, or the string “READY” which means a SIM card was
detected but no PIN is entered. The “AT+CPIN=1234” is then used to set
the PIN-number to 1234, or whichever number is needed.

The “AT+CMGF” is a parameter command used for selecting the message
format to be either PDU or text mode. In this program text mode was used
because it allows entering the messages in plaintext.

The script manipulation commands “AT#WSCRIPT” , “AT#DSCRIPT”
“AT#ESCRIPT” and “AT#EXECSCR” are used, respectively, to
write(upload) scripts to the module from the PC, to delete scripts from the
modules memory, to select which script is to be made active and ready to be
executed and finally to begin the execution of the script.

Finally the “AT+CMGS” command is used for sending the actual SMS-
messages. The sending process takes place in 3 phases. Firstly, the
“AT+CMGS” command is entered with the desired destination address as a
parameter. The modem then checks if a message can be sent to the network,
if not, it return an error, if yes, the desired message can now be entered.
Once the message has been sent to the modem, it is sent to the network by
sending the hexadecimal character 0x1A to the modem.(5)

 3.3 The Python Program

The actual program necessary for automatically monitoring the shock
sensor and sending the AT-commands was written in the Python language.
The main reason for this was that the EZ-10 contains an extension called
the Easy Script Extension which includes an internal python interpreter, as
well as a number of interfaces for the interpreter to operate the GSM
modem with. A typical application without the Easy Script Extension would
include an external microcontroller that would operate the module through
the physical AT serial line. How such a system might look is shown in
Figure 8 (6)

Figure 8 A layout of a system using an external microcontroller (4)

However with the Easy Script extension we effectively eliminate the need
for an external microcontroller. In addition to the Python interpreter the
extension includes 1,2MB of RAM for the Python engine to use as well as
2MB of non-volatile flash memory for storing the Python scripts and
settings. Instead of an external device feeding commands through the
physical serial port, the extension also includes a virtual serial port that the
Python interpreter uses to send its commands to the modem engine. The
way this system looks is shown in Figure 9

Figure 9 The layout of the Easy Script Extension using system (4)

The uploaded Python scripts are stored in the Flash memory in a simple
single level file system with no subdirectories allowed. Only a single
python script can ever be running at a time, and any Python operations are
always executed inside the Telit-module at the lowest possible priority so as
not to interfere with the normal functions of the GPS or the GPRS modules.

The Python interpreter communicates with the GPRS modem engine
through a number of interfaces. The most important one is the MDM-
interface, it allows the Python interface to send and receive AT commands
and data to and from the modem engine and the GSM network. This is
achieved through a virtual internal serial port that mimics the functioning of
the actual physical serial port. Any AT-commands that can be used through
the physical serial port can also be used through this one. There is also a
second similar interface called the MDM2, which can be used when the first
MDM interface is already in use.

The SER interface allows the Python interpreter to use the real physical
serial port that would normally be used for sending AT-commands to the
device from a terminal program. However when the python script is
running no external AT commands can be entered and therefore the port is
free for the interpreter to use. The SER interface can be used for reading
inputs from an external device or sending debugging information into a
terminal program.

The GPIO interface allows the Python script to directly control the GPIO
interfaces. The advantage of using this interface over the MDM is that no
AT-commands are required here, the interface can control the I/O pins
directly.

The MOD interface contains an assortment of various useful functions. In
this project it is used for creating timers without the need to write them in
Python code. (6)

The actual program code consists of 2 separate files titled “autorun.py” and
“shocksens.pyo” respectively. The “autorun.py” is a simple 3-line program
that loads the subprogram “shocksens” and runs it. The reason for this is
because the script that is set to be executed when the device is powered is
only ever compiled for that single use, and needs to be recompiled every
time the device is reset, whereas the subprograms are compiled permanently
and saved in a compiled form on the flash memory. Therefore it makes
sense to keep the program that always needs to be compiled as simple as
possible, as compiling a long and complicated program may take anything
from 10 minutes to an hour.

At the beginning of the program we load the necessary libraries, in this case
the MDM, the SER, the GPIO and the MOD-libraries. The program then
uses the SER and MDM interfaces to configure the physical serial port, set
up the needed variables to their default values and initialize the network
connection by checking the network status and inputting the PIN code
associated with the SIM-card. After the connection has been established the
program prints to the terminal program “Network Connection Established”
and enters the main loop.

In the main loop, the program sets the variable “SSstate”, which defines
whether or not the shock sensor is currently detecting a shock to false and
then goes to sleep for 10 seconds. The sleeping is done so as to save
processing power for other applications running at the same time, seeing as
how the Python scripts are already ran at the lowest possible priority. After
the sleeping period is over, the program uses the GPIO interface to read the
status of input PIN 5, where the shock sensor is connected, to determine
whether it is in a high or low state and then stores this value in the variable
“SSstate”. This value is then converted into an integer to allow it to be
tested for truth value.

If the value of “SSstate” or that of “ShockAlarm” is found to be false, that
is to say there is the shock sensor did not detect a shock and there are no
unsent messages in line from previously recorded shocks, the program
returns to the beginning of the main loop. If either of those variables is
found to be true, the program sets “ShockAlarm” to true, prints “SHOCK”
into the terminal and calls the function “SendSMS” with the function set to
return its output value to the variable “ShockAlarmSent” and with the
desired destination number and the message to be sent as parameters used
in calling the function.

The “SendSMS” function then rechecks the status of the network
connection and sets the SMS sending mode to textmode, returning an error
if either of these did not succeed. It proceeds with the actual sending, first
defining the number to be sent to and waiting to make sure that the message
can be sent. It then waits to see if the device responds with the symbol “>”,
which is the text prompt for entering the message to be sent. The program
then outputs the message which was defined in the main loop followed by
the hex code 0x1A, which triggers the sending of the message. Depending
on circumstances the sending may fail for a number of different reasons.
Depending on which stage the sending failed, the function may return
“FALSE” along with printing a specific error code in the terminal. If the
sending succeeded, the function returns “TRUE” to the main loop.

Finally the main loop checks if the variable “ShockAlarmSent” is true or
false. If the sending of the SMS succeeded the value will be true, which
causes the program to set the “ShockAlarm” variable to false and return to
the beginning of the main loop. If the sending of the SMS failed for any
reason the value of “ShockAlarmSent” will be false, which means that the
variable “ShockAlarm” will remain true and the next time the loop runs the
program will try to resend the message regardless of the current state of the
shock sensor.

The full code of the programs can be found as Appendices 1 and 2

4. The Connecting Circuit

In order to connect the EZ-10 GPS modem and the ZD-1 shock sensor
together a simple electronic circuit was required. As all of the devices were
to be powered by the same 12V power source, the output signal from the
shock sensor would be too high voltage for the 2.8V CMOS inputs of the
EZ-10. A further problem was the length of the output signal. At only 1
second long and triangle shaped, it was entirely possible for the EZ-10 to
miss the signal completely and it would also require the program to be
executed at a very fast loop which would use up a lot of processing power
for a fairly simple program.

The main problem that came about with the selection of the timer circuit
was flexibility. It was initially tried to use an IC555-based timer, but any
change in the devices, or in the desired length of time of the signal would
have required major redesigns of the circuit. It was therefore decided to use
an SA-025Q programmable timer module as the basis of the circuit.

The SA-025Q has the following features.

○ Output signal length can be set anywhere from 1 second to 1 hour.
○ Adjustable trigger, can be activated by positive DC voltage or the closing
or opening of dry contact
○ Relay can be set to activate at the end or the beginning of timing cycle.
○ Operating voltage 12-24V with automatic input voltage sensing
○ LED light to indicate when relay is energized and output signal is active
○ Programmable by 6 DIP switches and timer length adjusted by a knob

Figure 10 Shows the SA-025Q from the top and Figure 11 shows the
functions of the DIP switches (7)

Figure 10 The SA-O25Q viewed from the top.

Figure 11 The functions of the DIP switches

In the circuit used here the switches are set as follows:

#1 OFF
#2 OFF
#3 ON
#4 ON
#5 OFF
#6 ON
Timing knob set to 10.

Therefore whenever the trigger input receives a positive DC voltage the
module sends a steady, 10 second long signal at the input voltage(in this
case, 12V) out of the relay output. The diagram of the circuit is shown in
Figure 12

.+12V

NC

COM

NO 1KΩ PIN5

+

SA-025Q - EZ-10

TRG

PIN1

3
4
0
Ω

ZD1

Figure 12 The circuit diagram of the connecting circuit

Switch Fuction ON OFF

#1 Timing starts At the end of trigger At the start of trigger

#2 How does the timing start When the module is powered upConnecting (+) to TRG

#3 Timer setting In seconds In minutes

#4 Steady relay output or pulse/flash? Steady relay output Pulse/flash output

#5 When does the relay output start At end of timing period At start of timing period

#6 Relay output mode, delayed or instant?Instant output Delayed output

As you can see from the diagram, the ZD-1 is powered directly from the
“+” and “-“connectors of the SA-025Q of which “+” is directly tied into the
relay input voltage while “-“acts as a ground. the output signal from the
ZD1 is fed into the trigger input of the SA-025Q, whereas the relay output
signal of the SA-025Q is connected to the EZ-10s GPIO input pins through
a series and parallel resistor to lower the voltage to around 3V. Pin 1 of the
EZ-10 is connected to the common ground.

5. Summary

 5.1 The Functioning of the Device

The testing of the device was performed simply by uploading the program
into an EZ-10 module that was connected into a PC using the serial port and
the RT-terminal program for debugging. The module was powered by a
230/12V network power adapter and connected to the ZD-1 shock sensor
through the connecting circuit. The SA-025Q was powered by an external
12V power source which in turn then powered the ZD-1 sensor. Figure 13
shows the user interface of the terminal program as well the main loop of
the shock sensor program running with no shocks detected.

Figure 13 RS-terminal user interface with the program running

After the device had successfully powered on, the network connection had
been achieved and the main loop was running the test was initiated by
dropping the shock sensor into a table from a height of about 15cm. The
shock sensor successfully detected the shock and the LED in its front lit up
to notify this. The SA-025Q then in turn detected the signal from the shock
sensor and its LED lit up as well and remained lit for 10 seconds. The
program then detected the modified signal when reading the state of I/O pin
number 5 and switched to the “SendSMS”-function. All the checks were
passed successfully and the message was sent, moments later confirmed as
the message arrived on the GSM phone used for testing. Figure 14 shows
the sending of the SMS message in the debug window:

Figure 14 The shock detection and the SMS sending process

The program was also confirmed to be able to recover from temporary loss
of network connection without failure. There was also an endurance test
performed where the program ran continuously for approximately a week
and was consistently able to detect shocks and send messages all the way
through.

 5.2 User Guide

To operate the system in its current state all that is required is to power the
devices on and the system starts up automatically. However, in order to
change the content of the text message or the destination number, some
changes to the program code are necessary. The content and the address of
the message are both defined in the line calling the function “SendSMS”

ShockAlarmSent=SendSMS('collision','+3584408XXXXX')

In this case, the message sent would be the text “collision” and the number
to be sent to “+3584408XXXXX”. Changing these is achieved simply by
retyping these lines to whatever is desired. It is important to remember that
the EZ-10 does not support special characters such as “ä” or “ö” in the
message field. In order to upload the new program to the module it is
necessary to delete both the old “shocksens.py” text file as well as the
compiled “shocksens.pyo” from the modules memory and then to upload

the new changed plaintext “shocksens.py” file to the module. This can be
done easily through the default functions of the RS-terminal program or
manually through Windows HyperTerminal. The instructions for the manual
upload are not covered in this thesis but can be found from the Telit Easy
Script in Python Guide linked in the references page. Once the new script
has been uploaded, it is necessary to give the device several minutes to
compile the new program before it begins to run.

 5.3 Conclusion

The project took quite a bit longer to complete than I expected and there
were many difficulties on the way but ultimately I think it was worth it. I
learned plenty of things about a subject that had barely been covered by my
education as well as learned a new programming language that I had never
used before. And in the end, the original goals of the project were achieved.
The system successfully integrates a shock sensor with a GSM modem and
has a flexible connecting circuit that makes modifications easy.

 5.4 Further Development
As to where should the system go from here, I believe the most immediate
developments required are threefold. Firstly, even though the shock sensor
used in the project was apparently carefully selected specifically for this
purpose, it is my opinion that for the purposes of detecting collisions of
heavy machinery the ZD-1 may be quite a bit too sensitive, and a more
heavy-duty shock sensor should probably be used. Secondly, the company
that the project was made for uses their own in-house built variant of the
EZ-10 modem which may present its own challenges when trying to
integrate it into a system built for the generic EZ-10 model. Thirdly, this
design assumes a stable 12V input voltage to power the devices and
depending on the kind of power source available where the system is
applied it is likely to need a further power electronic circuit to modify and
stabilize the input voltage.

Once all of the above issues have been addressed I believe the system
would be ready for field tests.

REFERENCES

(1) Ripka. P and Tipek. A (2007) Modern Sensors Handbook. John
Wiley & Sons

(2) http://en.wikipedia.org/wiki/Piezoelectric_sensor

(3) Noliac Ceramics NCE datasheet

http://www.noliac.com/Files/Billeder/02%20Standard/Ceramics
/Noliac_CEramics_NCE_datasheet.pdf

(4) EZ-10 GPS Datasheet

http://www.fouriersystems.com/files/download_center/EZ-
10_GSM_Modem.pdf

(5) Telit AT-commands reference guide

http://www.telit.com/module/infopool/download.php?id=542

(6) Telit Easy Script in Python guide

http://www.telit.com/module/infopool/download.php?id=617

(7) SA-025Q Programmable Timer Module Description

http://www.seco-larm.com/SA025.htm

APPENDICES

Appendix 1. The autorun.py code in Python

import shocksens

if __name__ == '__main__':
 shocksens.main()

Appendix 2. The shocksens.py code in Python

import MDM
import MOD
import GPIO
import SER

TRUE = 1
FALSE = 0
def SendSMS(message,number):
 etimer=MOD.secCounter()+100
 SER.send('\r\nSendSMS: Start')
 res = MDM.send('AT+CREG?\r',20)
 SER.send('\r\nSendSMS: connection check ok')
 res = res + MDM.send('AT+CMGF=1\r',20)
 SER.send('\r\nSendSMS: textmode ok')
 if(res.find('ERROR') == 1):
 SER.send('\r\nSendSMS: Error')
 return FALSE
 else:
 SER.send('\r\nSendSMS: sending message')
 res = MDM.send('AT+CMGS=' + number + ';\r', 0)
 res = MDM.receive(20)
 if(res.find('>') != -1):
 SER.send('\r\n#')
 res = MDM.send(message, 0)
 res = MDM.sendbyte(0x1A, 0)
 ok = MDM.receive(5)
 while((ok.find('+CMGS:') == -1 and
ok.find('ERROR') == -1) and (MOD.secCounter() < etimer)):
 res = MDM.receive(5)
 ok = ok + res
 SER.send('#')
 if(ok.find('+CMGS:') != -1):
 SER.send('\r\nSendSMS: OK')
 return TRUE
 elif(ok.find('ERROR') != -1):
 SER.send('\r\nSendSMS: Error2')
 return FALSE
 else:
 SER.send('\r\nSendSMS: Error?')
 return FALSE
 else:
 SER.send('\r\nSendSMS: Error 3')
 return FALSE
 return FALSE

def main():
 SER.set_speed('115200')
 SSstate = FALSE;
 ShockAlarm = FALSE;
 ShockAlarmSent = FALSE;
 SER.send('\r\nSER connection initialized!\r\n')
 MDM.send('AT+CREG?\r',40)
 MDM.send('AT+CPIN?\r',40)
 MDM.send('AT+CPIN=1234\r',150)
 SER.send('\r\nNetwork connection established\r\n')
 MOD.sleep(100)
 while 1 == 1:
 SER.send('\r\nMAIN-LOOP!')
 SSstate = FALSE;
 SER.send('\r\nBEFORE SLEEP!')
 MOD.sleep(100)
 #sleep for 10s
 SER.send('\r\nafter SLEEP!')
 SSstate = GPIO.getIOvalue(5) # Read the state of IO PIN 5
 SER.send('\r\nafter gpio getvalue')
 SSstate = int(SSstate) # convert SSstate to int
 if (SSstate == TRUE):
 SER.send('\r\nSSstate = TRUE')
 SER.send('\r\nafter gpio value conversion to int')
 if ((SSstate == TRUE) | (ShockAlarm == TRUE)):
 ShockAlarm == TRUE #sets ShockAlarm to true

 SER.send('\r\nSHOCK\r\n')#
prints SHOCK to terminal

 ShockAlarmSent=SendSMS('collision','+3584408XXXXX')
 #Send the defined message to the defined number

 SER.send('\r\nAfter sending\r\n')
 if ShockAlarmSent == TRUE: #

Checks if the shock alarm was sent
ShockAlarm == FALSE # If yes
reset ShockAlarm to false

