vg SAVONIA

COLLISION DETECTION AND ALARM
SYSTEM FOR A FORKLIFT

Perttu Laukkanen

Bachelor’s Thesis

SAVONIA UNIVERSITY OF APPLIED SCIENCES

Degree Programme
Information Technology

Author
Perttu Laukkanen

Title of Project
Collision Detection and Alarm System For a Forkilift

Type of project Date Pages

Final project 8.12.2011 25+ 2
Academic supervisor Company

Arto Toppinen AP-TRUKIT OY

Abstract

The aim of this project was to create system faeecteng collisions and sending out alar
for a forklift for AP-TRUKIT OY. The main objectivevas to integrate the shock sensor
the EZ-10 GSM modem into a working system and ¢ai& the necessary Python-langu
program for detecting the collisions and sending tbhe alarms in the form of an SN
message. Most of the work in the projaotolved the design of the circuit connecting
shock sensor and the EZ-10, and the design ofttit@R-code to operate the system.

The aims of the project were met. The integratibrthe devices was successful and
Python code functions as intended. The systemsag quite flexible and can easily
modified to accommodate different environments denvice types.

ms
and
age
1S

the

Keywords
EZ-10, Python , Shock sensors, GSM

Confidentiality
Public

SAVONIA-AMMATTIKORKEAKOULU TEKNITKKA KUOPIO

Degree Programme
Tietotekniikan koulutusohjelma

Tekija
Perttu Laukkanen

Ty6n nimi

Trukin Toérmaystunnistus- ja Halytysjarjestelma

Tyon laji Paivays Sivumaara
o 254 2
InSINGOrityo 8.12.2011

Ty6n valvoja Yritys
Arto Toppinen AP-TRUKIT OY

Tiivistelma

Taman lopputydon pdaatarkoitus oli luoda trukissa té#igiva jarjestelma tunnistama
tormayksia ja lahettamaan halytyksia. Firma jolig ttehtiin oli AP-TRUKIT OY.
Ensisijainen tavoite oli yhdistdd shokkisensori gZ-10 GSM modeemi toimivak
jarjestelmaksi ja luoda tarvittava Python-kielinehjelma térmaysten tunnistamiseksi
lAhettamaan halytyksia SMS-viesteina. Suurin o$estéy kului shokkisensorin ja EZ-1
laitteen yhdistavan piirin sekéa Python-koodin sutialuun.

an

ja
0_

Projektin tavoitteet tulivat taytetyiksi. Laitteideyhdistaminen onnistui ja Python-kogdi
toimii kuten pitddkin. Jarjestelma on my6s melkaisi@ava ja se on helppo muuntaa

toimimaan erilaisissa ymparistoissa ja kayttama#daiga laitteita.

Avainsanat
EZ-10, Python , Shock sensors, GSM

Luottamuksellisuus
Julkinen

AKNOWLEDGEMENTS

| could not have finished this project without theoport | received from a
number of people. | would like to thank my projestipervisor Arto
Toppinen for giving me this great opportunity tgoard my skills and the
fact that despite his busy schedule he found the to assist me with the
project and provide information and support.

| would also like to thank my girlfriend, my mothand my father for
helping me to keep going when | encountered difies, especially my
father for his excellent technical advice and krexlge.

TABLE OF CONTENTS

1. Introduction
2. Shock Sensors and Sensor Technology
2.1 Sensors
2.2 Piezoelectric Sensors
2.3 ZD-1 Piezoelectric Shock Sensor
3. GSM
3.1 EZ-10-QUAD-PY Terminal
3.2 Operating the EZ-10
3.3 The Python Program
4. The Connecting Circuit
5. Summary
5.1 The Functioning of the Device
5.2 User Guide

5.3 Conclusion
5.4 Further Developments

LIST OF ABBREVIATIONS

GPIO General Purpose Input/Output

GPRS General Packeted Radio Services

GSM Global System for Mobile Communications
PDU Protocol Data Units

PZT Lead zirconate titanate

SIM Subscriber Identity Module

SMS Short Message Service

1. Introduction

This project is an attempt to create a system cm@grof a shock sensor
and a GSM modem. There are countless situatiorvghioh detection of
shocks, vibration or collisions are necessary. Moshmon uses for shock
sensors are various types of alarms. Either burglams to detect the
shock caused by breaking into a house or a califferent kinds of safety
alarms such as the airbags of a car. In this ¢hsegim is to create a shock
sensor based collision detection system to beliedten a forklift.

The information collected by the sensors is usaleésss it can be read by
the people who need it. Just like a cars burglkamalplays a loud sound to
notify that the shock sensor was triggered, théistmh detection system
must be able to quickly notify the people who nee#énow. Today mobile
communication has a massive amount of applicati@se of them is
working in tandem with sensors to remotely transthié information
provided by the sensors.

The main aims of the project are to first creatystem to tie together the
shock sensor and the GSM modem so that the modenreczive the

information it needs from the sensor and then eréla¢ program which
automatically monitors the sensor information ahd rcollision happens,
sends out an alarm in the form of an SMS-message.

The devices selected were a ZD-1 piezoelectric Heghsitivity shock
sensor and an EZ-10 GPS GSM modem.

2. Shock Sensors and Sensor Technology

2.1 Sensors

Modern technology allows for very accurate meagurir all kinds of
natural quantities from things like heat or humjidid mechanical tilt or
acceleration. AlImost everything that people woulhivto measure can be
done with great accuracy. Sensors are devices whédsure the quantities
and present them in a way that can be understoothdyobservers. In
today’s world sensors have a massive amount oficghigns and can be
found nearly everywhere from cell phone touch stsee solar cells.

A simple definition of a sensor would be that itasdevice that when

affected by an outside quantity reacts by sendingadresponse that is
proportional in size to the outside quantity affiegtthe sensor. Most

sensors are electric or mechanical in nature, irretare other types such
as the piezoelectric sensors like the one whialsed in this project. The

most important property of a sensor, apart from twhas supposed to

measure, is its sensitivity. A sensors’ sensitivityst be taken into account
when selecting what kind of sensor to use. Meagwary small changes
requires a high sensitivity sensor whereas largengls require a sensor
with a low sensitivity but a high range of detenti®ensors are generally
designed to be as resistant as possible to inéerderfrom sources it is not
supposed to measure and to have as little effettt@measured quantity as
possible but these effects can never be completiyinated and must

therefore be taken into account as well when desygsystems that make
use of sensors. Finally, a sensor by itself onfwjles the information and

it must always be integrated with something elsemiake use of that

information, be that something else a human readintfpermometer to

decide what clothes to put on or an alarm sirennuwgr people that

someone is trying to break into their car. (1)

2.2 Piezoelectric Sensors

The piezoelectric effect is a phenomenon where acertmaterials

accumulate internal electric charge when exposednéghanical stress.
There exists also the reverse piezoelectric effediere the material

experiences mechanical stress when exposed teetniefield. There are a
number of applications for piezoelectric materiasch as actuators,
transducers, sonar, high voltage transformers ahdcomrse sensors.
Piezoelectric sensors can measure force, strasspre or acceleration, the
last one being the one measured by shock sensors.

The most common piezoelectric material used fos@emanufacturing is
Lead zirconate titanate(PZT), an artificial ceramtcexhibits measurable
piezoelectricity when deformed by 0.1% of its an@li size. The device
used in this project is a Chinese-made PZR pieztr@eshock and
vibration sensor. (2), (3)

2.3 ZD-1 Piezoelectric Shock Sensor

The ZD-1 is a high-sensitivity lead zirconate tatnbased shock sensor. It
was selected for the project primarily becauseaalies project that this one

is a continuation of carefully studied the subjettshock sensors and

selected it specifically for this purpose. Figurehbws a circuit diagram of

the device.

D1
IN41438

Ql

Figure 1 A circuit diagram of the ZD-1 shock sensor

The device is extremely cheap, reliable and sirtplaperate. It is powered
by a 5-12V power supply. The sensitivity can beuatjd by a knob in the
front of the device, turning it clockwise increasegnsitivity and

counterclockwise decreases it. When the devicectet® shock that is
stronger than the set threshold a red LED on ibret fof the device lights up
and the device sends a 1-second long pulse anthg voltage out of the
output line. The device is 5x3x2cm in size and &asgorking temperature
range of -10 to +50 degrees Celsius. The ZD-1 & fttst component
required for the system, but still more are needed.

3. GSM
3.1 EZ-10-QUAD-PY Terminal

The second device necessary for our project i$SB& modem for sending
the SMS-message. For this purpose, the Telit ERQUAD-PY Terminal
GSM/GPRS modem was chosen. The reason for thetiselegas because
the company for which the project was made alrazbs a variant of the
same device in their forklifts for work-time supesion. Using the same
device will therefore make the system easy to natieginto the existing
devices. EZ-10 can also be programmed very easily the high-level
Python programming language which makes it possilaun the device
automatically. The device requires a standard S#vtl do function in a
GSM network.

Figure 2 Shows the EZ-10 device front the fromp, and backsides. (4)

Figure2 The EZ-10 modem (4)

The main features of the EZ-10 include:

o Powered by a 12-24V DC current.

o Operates in a quad frequency band (GSM 850 / EGS0/ PCS 1800 /
PCS 1900Mhz)

o Class 10 GPRS device

o Maximum temperature range -20 to +70 degrees @&elsi

o A standard RS232 serial interface for AT-commaamls programming

o Molex 6-PIN RJ-11 interface for general input/aiitp

o SMA connector for an external RF antenna

o SMA connector for an external GPS antenna

o EasyScript function allows at commands to by huough Python code
o Internal Python interpreter

o Fully upgradable firmware

Figure 3 shows the interfaces and plugs of the &# etalil.

Power OK
Antenna RF RS232 LED
Power supply / GPI3 connector connector

connector ———— \

RJ11 AUX
connector

Network status
LED

Figure 3 The EZ-10 with interfaces labeled (4)

The power connector located on the left side ofdénece is a Molex 4-pin
connector with a pin-layout as shown in figure 4 .

GND GND
Al

GPIO3 Input
Input Power

Figure 4 The pin layout of the EZ-10 power connector fromftont (4)

The most important interfaces for this project thiee RS232 serial interface
and the RJ-11 GPIO lines. The serial line is usecbhnect the device to a
PC and the RJ-11 line for receiving the input sigraan the shock sensor.

The serial interface is a standard 9-pin female 3Skterface. It is
connected to a PC using a 9-pin cable with 1 malé A female D9
connector. Other features are:

o Input voltage range -12V to 12V
o Baud rate from 300 to 115 200 bit/s
o Short circuit protection on all outputs

The 6-pin RJ-11 connectors pin layout is showngares 5 and 6, and the
input and output voltage ranges for the GPIO pimdigure 7, All of the
lines in the GPIO interface have a 100pF bypasaaty to ground and
1002 series resistor.(4)

fo

Pin 1 Pin 6
Figure 5 The pin order of the Molex 6-pin RJ-11 interfaasf the front (4)

Internal

pin Signal /O Function Pull UP Type

1 GND - Power Ground (negative)/ Signal Ground POWER/GND

2 CGFPIO4 /O Configurable general purpose 1/O pin / CMOS 2.8V
GPIO6 / Configurable general purpose /O pin |

3 ALARM 1o ALARM CMOS 2.8V
GFRIO?7 / Configurable general purpose /0 pin /

4 BUZZER Vo BUZZER CMOS 2.8V

5 GPIOS IO Configurable general purpose /O pin CMOS 2.8V

6 VMOD O Low power supply output (typically +3.8V DC) FOWER OUT

Figure 6 The individual functions of the pins in the RJiiterface (4)

LEVEL MIN MAX
Input high level 740 3.6V
Input low level oV 05V
Output high level 22V 3.0V
Output low level 0V 035V

Figure 7 Input and output voltage ranges for the GPIO s

3.2 Operating the EZ-10

The EZ-10 is operated manually by a PC connectdtidcserial interface
and using a terminal program, or automatically pipaded Python scripts.
Both of these methods use AT commands as to opénatalevice. AT

commands are used as a command language thatérasidexl by modems
since the early 1980’s and most modems and phaeethem for operation.
The EZ-10 supports all the standard Hayes AT-conasias well as ETSI
GSM 07.07, ETSI GSM 07.05 and FAX class 1 compatd@dmmands. The
07.07 commands are specific to GPRS applicatiodstza 07.05-ones deal
with SMS. The AT commands are given to the devimeugh a terminal

program such as the Windows HyperTerminal or thedr@inal, the latter

of which was used in this project because of itprowed additional

functions such as automated output of some of i msed AT-commands
and easier upload of Python-scripts.(4),(5)

All AT commands are divided into basic and extendedhmands. Basic
commands are input by entering the prefix AT, fokal by the command
and terminated with the carriage return charadtee. default value for the
carriage return character in ASCIlI decimal is 18. é&xample of a basic
command would be:

ATCMD<CR>

Where “AT” is the prefix, “CMD” the basic commandd “<CR>" the
carriage return character for terminating the comuna

The extended commands are differ from the basis am¢hat they are all
separated from the prefix by a separator sign, nystally “+” .The

extended commands are further divided into two gsothe parameter type
commands and the action type commands. The paratype commands
are used for either storing values of a parametelater use or reading the
current value of the parameter. They also havesademmand used for
finding out the accepted value types and rangeekample the commands:

AT+CMD=?<CR>

Tests the possible values for the parameter CMD
AT+CMD?<CR>

Checks the current value for the parameter CMD
AT+CMD=10<CR>

Sets the value of parameter CMD to 10

It is possible to use strings as parameter valugsout the use of quotes,
but only if the string has no spaces in it. So fexample
AT+CMD=AAA<CR> would be a valid command, buAT+CMD=A
AA<CR>is not and would have to instead be expressefiTasCMD="A
AA’<CR>.

The action type commands can be executed to makefumome associated
function of the equipment, such as registering deeice with the GSM
network or sending an SMS message. They can alsedzk in order to
return the possible subparameter range, assumaxg@dmmand has any.
Any parameters input into an action type commarmdrat saved and only
used for that specific invocation of the command.

The specific functioning of the commands and thetay varies slightly
based on which specific Telit-module is being udeak this purpose the
EZ-10 module had a command called #SELINT (Seletd¢rface) which
can be used to change the devices AT-commandaciietween 3 choices
by setting the parameter to 0,1 or 2. By defah#,EZ-10 has the parameter
set to 2, and that is the position where it is Kepthis project.

Finally a brief description of the specific AT-corands that are used in the
project. “AT+CREG?” is used to check for the statas network
registration. The command returns two parametérst, defines how the
device handles code reports from the network negiesh and is set by
default to report nothing, the second returns theent state of network
registration. The possible values are:

0 - Not registered and currently not searching famew operator

1 — Registered to the home network

2 — Not Registered but currently searching for ameperator

3 - Registration denied

4 — Unknown status

5 — Registered to a roaming network

The “AT+CPIN?” and “AT+CPIN=1234" commands are udedread the
status of the PIN-code required to use the SIM-eaudl to input the value.
They are necessary for the device to successfellyster to the GSM
network. The “AT+CPIN?” command returns either anoe code if for

example the SIM-card is not inserted or not funmghg, the currently
entered PIN code, or the string “READY” which mean$IM card was
detected but no PIN is entered. The “AT+CPIN=12&4then used to set
the PIN-number to 1234, or whichever number is eded

The “AT+CMGF” is a parameter command used for selgcthe message
format to be either PDU or text mode. In this peogrtext mode was used
because it allows entering the messages in pldintex

The script manipulation commands “AT#WSCRIPT” , THDSCRIPT”
“ATHESCRIPT” and “AT#EXECSCR” are used, respediyeto
write(upload) scripts to the module from the PCdatete scripts from the
modules memory, to select which script is to be enactive and ready to be
executed and finally to begin the execution ofgbiept.

Finally the “AT+CMGS” command is used for sendirge tactual SMS-
messages. The sending process takes place in Fsphisstly, the
“AT+CMGS” command is entered with the desired desion address as a
parameter. The modem then checks if a messageecsenb to the network,
if not, it return an error, if yes, the desired sage can now be entered.
Once the message has been sent to the modenseittito the network by
sending the hexadecimal character 0x1A to the ma&gm

3.3 The Python Program

The actual program necessary for automatically toang the shock

sensor and sending the AT-commands was writtehanPlython language.
The main reason for this was that the EZ-10 costaim extension called
the Easy Script Extension which includes an intepyghon interpreter, as
well as a number of interfaces for the interpreteroperate the GSM
modem with. A typical application without the E&Sgript Extension would
include an external microcontroller that would @ierthe module through
the physical AT serial line. How such a system milglok is shown in

Figure 8 (6)

FLASH ROM

Figure 8 A layout of a system using an external microcdletr@4)

However with the Easy Script extension we effedyiveiminate the need
for an external microcontroller. In addition to tRgthon interpreter the
extension includes 1,2MB of RAM for the Python emgio use as well as
2MB of non-volatile flash memory for storing the tRgn scripts and
settings. Instead of an external device feeding mmanmds through the
physical serial port, the extension also includestaal serial port that the
Python interpreter uses to send its commands tamibgéem engine. The
way this system looks is shown in Figure 9

FLASH ROM : RAM

MDM module

memory

Figure 9 The layout of the Easy Script Extension usingesyst)

The uploaded Python scripts are stored in the Hashory in a simple
single level file system with no subdirectoriesoaled. Only a single
python script can ever be running at a time, andRython operations are
always executed inside the Telit-module at the kivp@ssible priority so as
not to interfere with the normal functions of the@&or the GPRS modules.

The Python interpreter communicates with the GPR&em engine
through a number of interfaces. The most impor@am is the MDM-
interface, it allows the Python interface to send eeceive AT commands
and data to and from the modem engine and the G&woank. This is
achieved through a virtual internal serial port immics the functioning of
the actual physical serial port. Any AT-commandat tten be used through
the physical serial port can also be used throaghdne. There is also a
second similar interface called the MDM2, which t@nused when the first
MDM interface is already in use.

The SER interface allows the Python interpreteuge the real physical
serial port that would normally be used for sendiffgcommands to the
device from a terminal program. However when thehpy script is
running no external AT commands can be enteredtlzrefore the port is
free for the interpreter to use. The SER interfeae be used for reading
inputs from an external device or sending debuggnigrmation into a
terminal program.

The GPIO interface allows the Python script to aisecontrol the GPIO
interfaces. The advantage of using this interfager the MDM is that no
AT-commands are required here, the interface camtralothe 1/0O pins
directly.

The MOD interface contains an assortment of variegesful functions. In
this project it is used for creating timers witholie need to write them in
Python code. (6)

The actual program code consists of 2 separatetfiled “autorun.py” and
“shocksens.pyo” respectively. The “autorun.py” isimple 3-line program
that loads the subprogram “shocksens” and runbhie. reason for this is
because the script that is set to be executed Wieedevice is powered is
only ever compiled for that single use, and needbe recompiled every
time the device is reset, whereas the subprograensoapiled permanently
and saved in a compiled form on the flash memoheréfore it makes
sense to keep the program that always needs toropiled as simple as
possible, as compiling a long and complicated @ogmay take anything
from 10 minutes to an hour.

At the beginning of the program we load the neagddararies, in this case
the MDM, the SER, the GPIO and the MOD-librariebeTprogram then
uses the SER and MDM interfaces to configure thesichl serial port, set
up the needed variables to their default values iaitilize the network
connection by checking the network status and tmgutthe PIN code
associated with the SIM-card. After the connechas been established the
program prints to the terminal program “Network @eation Established”
and enters the main loop.

In the main loop, the program sets the variablest&®”, which defines
whether or not the shock sensor is currently dietga shock to false and
then goes to sleep for 10 seconds. The sleepirdpri® so as to save
processing power for other applications runninthatsame time, seeing as
how the Python scripts are already ran at the lopessible priority. After
the sleeping period is over, the program uses POGnterface to read the
status of input PIN 5, where the shock sensor meocted, to determine
whether it is in a high or low state and then stdhes value in the variable
“SSstate”. This value is then converted into areget to allow it to be
tested for truth value.

If the value of “SSstate” or that of “ShockAlarns found to be false, that
Is to say there is the shock sensor did not detestiock and there are no
unsent messages in line from previously recordentlksd) the program
returns to the beginning of the main loop. If eitleé those variables is
found to be true, the program sets “ShockAlarmtrtee, prints “SHOCK”
into the terminal and calls the function “SendSM@th the function set to
return its output value to the variable “ShockAl&amt” and with the
desired destination number and the message torbeaseparameters used
in calling the function.

The “SendSMS” function then rechecks the status tloé network
connection and sets the SMS sending mode to tex@meturning an error
if either of these did not succeed. It proceed$ whe actual sending, first
defining the number to be sent to and waiting t&ersure that the message
can be sent. It then waits to see if the devicpards with the symbol “>”,
which is the text prompt for entering the messagbd sent. The program
then outputs the message which was defined in thie fnop followed by
the hex code 0x1A, which triggers the sending efitiessage. Depending
on circumstances the sending may fail for a nundfedifferent reasons.
Depending on which stage the sending failed, thectfon may return
“FALSE” along with printing a specific error coda the terminal. If the
sending succeeded, the function returns “TRUEh&main loop.

Finally the main loop checks if the variable “ShatkmSent” is true or

false. If the sending of the SMS succeeded theevalill be true, which

causes the program to set the “ShockAlarm” variablealse and return to
the beginning of the main loop. If the sending loé SMS failed for any
reason the value of “ShockAlarmSent” will be falggnich means that the
variable “ShockAlarm” will remain true and the neixnbe the loop runs the
program will try to resend the message regardléfiseocurrent state of the
shock sensor.

The full code of the programs can be found as Adpexs 1 and 2

4. The Connecting Circuit

In order to connect the EZ-10 GPS modem and thelZhock sensor
together a simple electronic circuit was requiveslall of the devices were
to be powered by the same 12V power source, theubsignal from the
shock sensor would be too high voltage for the 28WOS inputs of the
EZ-10. A further problem was the length of the amtpignal. At only 1

second long and triangle shaped, it was entirebsibte for the EZ-10 to
miss the signal completely and it would also reguine program to be
executed at a very fast loop which would use uptaf processing power
for a fairly simple program.

The main problem that came about with the seleabibthe timer circuit
was flexibility. It was initially tried to use arCb55-based timer, but any
change in the devices, or in the desired lengttinoé of the signal would
have required major redesigns of the circuit. Iswaerefore decided to use
an SA-025Q programmable timer module as the bégseccircuit.

The SA-025Q has the following features.

o Output signal length can be set anywhere froncrsgto 1 hour.

o Adjustable trigger, can be activated by positive bltage or the closing
or opening of dry contact

o Relay can be set to activate at the end or thabieg of timing cycle.

o Operating voltage 12-24V with automatic input agk sensing

o LED light to indicate when relay is energized andput signal is active

o Programmable by 6 DIP switches and timer lengjbsded by a knob

Figure 10 Shows the SA-025Q from the top and Figlteshows the
functions of the DIP switches (7)

‘eeesr e
= e i

=

Figure 10 The SA-0O25Q viewed from the top.

Switch
#1
#2
#3
#4
#5
#6

Fuction
Timing starts
How does the timing start

ON OFF
At the end of trigger At the start of trigger
When the module is powered u| Connecting (+) to TRG

Timer setting In seconds In minutes

Steady relay output or pulse/flash? Steady relay output Pulse/flash output
When does the relay output start At end of timing period At start of timing period
Relay output mode, delayed orinstant Instant output Delayed output

Figure 11 The functions of the DIP switches
In the circuit used here the switches are setl&sis:

#1 OFF

#2 OFF

#3 ON

#4 ON

#5 OFF

#6 ON

Timing knob set to 10.

Therefore whenever the trigger input receives atigesDC voltage the
module sends a steady, 10 second long signal anphug voltage(in this
case, 12V) out of the relay output. The diagranthef circuit is shown in
Figure 12

412V

NC

/— com
NO ', 1KQ ', T PINS

SA-025Q - g EZ-10
TRG M
_‘ . PIN1
ZD1

Figure 12 The circuit diagram of the connecting circuit

As you can see from the diagram, the ZD-1 is podetieectly from the
“+" and “-“connectors of the SA-025Q of which “+8 directly tied into the
relay input voltage while “-“acts as a ground. thaput signal from the
ZD1 is fed into the trigger input of the SA-025Qheaveas the relay output
signal of the SA-025Q is connected to the EZ-1083GRput pins through
a series and parallel resistor to lower the voltagaround 3V. Pin 1 of the
EZ-10 is connected to the common ground.

5. Summary
5.1 The Functioning of the Device

The testing of the device was performed simply plpading the program
into an EZ-10 module that was connected into a §l@guhe serial port and
the RT-terminal program for debugging. The modulesvwpowered by a
230/12V network power adapter and connected taZibel shock sensor
through the connecting circuit. The SA-025Q was @®@a by an external
12V power source which in turn then powered the ZBensor. Figure 13
shows the user interface of the terminal progranwel$ the main loop of
the shock sensor program running with no shockesctied.

* Round Solutions G5M terminal
Int Provider RTC Waoice SMS Telt HTTP Telit Camera: Telit Email Telit Python Telit GRS Terminal Abaout

Serial Port setup

Pot R JCOM1 x Close ‘ b] : .- ~i_
Specialists in Machine-to Maching =

Baudae 115200 =] Commurications
Flowicontial Hardwar__v] 4| af
I Logio e R
I =
Module initializing. and network:
_ & |
AT+PRZ115200
ATHKD
AT+CMEE=2
AT4OFING
AT+CPIN=0000 joooo
AT+CREG?
ATHMONI
AT+LCRATT?
AT+CGMR
ATHSELINT=1 [=l

‘Manual commands

Tosend manual AT commands tppe ther - 3y
then press [ENTER] key

Tarezend last typed command press [CTRL-R]
then [EMTER] key

Lozalecho [

Figure 13 RS-terminal user interface with the program rurmnin

After the device had successfully powered on, tsevark connection had
been achieved and the main loop was running thiewas initiated by

dropping the shock sensor into a table from a heijfabout 15cm. The
shock sensor successfully detected the shock &dBED in its front lit up

to notify this. The SA-025Q then in turn detectbd signal from the shock
sensor and its LED lit up as well and remaineddit 10 seconds. The
program then detected the modified signal wheninggithe state of I/O pin
number 5 and switched to the “SendSMS”-function. the checks were
passed successfully and the message was sent, isolaten confirmed as
the message arrived on the GSM phone used fongegtigure 14 shows
the sending of the SMS message in the debug window:

CCIEEP)
Figure 14 The shock detection and the SMS sending process

The program was also confirmed to be able to racfyeen temporary loss
of network connection without failure. There wascabhn endurance test
performed where the program ran continuously fggraximately a week
and was consistently able to detect shocks and sesdages all the way
through.

5.2 User Guide

To operate the system in its current state all hatquired is to power the
devices on and the system starts up automatiddbyvever, in order to
change the content of the text message or thendésth number, some
changes to the program code are necessary. Thent@md the address of
the message are both defined in the line calliegdinction “SendSMS”

ShockAlarmSent=SendSMS('collision’,'+3584408XXXXX")

In this case, the message sent would be the tekision” and the number
to be sent to “+3584408XXXXX". Changing these ahi@ved simply by
retyping these lines to whatever is desired. lingortant to remember that
the EZ-10 does not support special characters asctd” or “6” in the

message field. In order to upload the new progranthe module it is
necessary to delete both the old “shocksens.pyt fieex as well as the
compiled “shocksens.pyo” from the modules memorg #ren to upload

the new changed plaintext “shocksens.py” file te thodule. This can be
done easily through the default functions of the-t&#&inal program or
manually through Windows HyperTerminal. The instimes for the manual
upload are not covered in this thesis but can beddrom the Telit Easy
Script in Python Guide linked in the referencesepd@nce the new script
has been uploaded, it is necessary to give theceleseveral minutes to
compile the new program before it begins to run.

5.3 Conclusion

The project took quite a bit longer to completenthheexpected and there
were many difficulties on the way but ultimatelyhink it was worth it. |
learned plenty of things about a subject that raxellp been covered by my
education as well as learned a new programminguiagg that | had never
used before. And in the end, the original goalthefproject were achieved.
The system successfully integrates a shock senffioaWzSM modem and
has a flexible connecting circuit that makes madifions easy.

5.4 Further Development

As to where should the system go from here, | elie most immediate
developments required are threefold. Firstly, etrmugh the shock sensor
used in the project was apparently carefully setbapecifically for this
purpose, it is my opinion that for the purposesdefecting collisions of
heavy machinery the ZD-1 may be quite a bit toosid®e, and a more
heavy-duty shock sensor should probably be usexbrigéy, the company
that the project was made for uses their own insbdouilt variant of the
EZ-10 modem which may present its own challengegrwlrying to
integrate it into a system built for the generic-EZ model. Thirdly, this
design assumes a stable 12V input voltage to pdiverdevices and
depending on the kind of power source available reshibe system is
applied it is likely to need a further power eledic circuit to modify and
stabilize the input voltage.

Once all of the above issues have been addresgetieve the system
would be ready for field tests.

REFERENCES

(1)Ripka. P and Tipek. A (200 WNlodern Sensors Handboakhn
Wiley & Sons

(2)http://en.wikipedia.org/wiki/Piezoelectric_sensor

(3)Noliac Ceramics NCE datasheet

http://www.noliac.com/Files/Billeder/02%20Stand#&dfamics
/Noliac_CEramics_NCE_datasheet.pdf

(4) EZ-10 GPS Datasheet

http://www.fouriersystems.com/files/download cefE&r-
10 GSM Modem.pdf

(5) Telit AT-commands reference guide

http://www.telit.com/module/infopool/download.phg2b642

(6) Telit Easy Script in Python guide

http://www.telit.com/module/infopool/download.phd2617

(7) SA-025Q Programmable Timer Module Description

http://www.seco-larm.com/SA025.htm

APPENDICES
Appendix 1. The autorun.py code in Python

import shocksens

if _name__ ==' main__"
shocksens.main()

Appendix 2. The shocksens.py code in Python

import MDM
import MOD
import GPIO
import SER

TRUE =1
FALSE =0
def SendSMS(message,number):
etimer=MOD.secCounter()+100
SER.send("\r\nSendSMS: Start")
res = MDM.send('AT+CREG?\r',20)
SER.send("\r\nSendSMS: connection check ok’")
res = res + MDM.send('AT+CMGF=1\r",20)
SER.send(\r\nSendSMS: textmode ok")
if(res.find(ERROR") == 1):
SER.send(\r\nSendSMS: Error’)
return FALSE
else:
SER.send('\r\nSendSMS: sending message")
res = MDM.send('AT+CMGS="' + number + ;\r', 0)
res = MDM.receive(20)
if(res.find('>") 1= -1):
SER.send("\r\n#")
res = MDM.send(message, 0)
res = MDM.sendbyte(0x1A, 0)
ok = MDM.receive(5)
while((ok.find('"+CMGS:") == -1 and
ok.find(ERROR") == -1) and (MOD.secCounter() <vedr)):
res = MDM.receive(5)
ok = ok +res
SER.send('#")
if(ok.find('+CMGS:") != -1):
SER.send("\r\nSendSMS: OK")
return TRUE
elif(ok.find(ERROR") != -1):
SER.send(\r\nSendSMS: Error2")
return FALSE
else:
SER.send(\r\nSendSMS: Error?")
return FALSE
else:
SER.send(\r\nSendSMS: Error 3")
return FALSE
return FALSE

def main():

SER.set_speed('115200"
SSstate = FALSE;
ShockAlarm = FALSE;
ShockAlarmSent = FALSE;
SER.send(\r\nSER connection initialized'\r\n")
MDM.send('AT+CREG?\r',40)
MDM.send('AT+CPIN?\r',40)
MDM.send('AT+CPIN=1234\r',150)
SER.send("\r\nNetwork connection established\r\n’)
MOD.sleep(100)
while 1 == 1:
SER.send(\\nMAIN-LOOP!")
SSstate = FALSE;
SER.send(\\nBEFORE SLEEP?!)
MOD.sleep(100)
#sleep for 10s
SER.send(\r\nafter SLEEP!")
SSstate = GP10.getlOvalue(5) # Read the stal® &N 5
SER.send("\r\nafter gpio getvalue’)
SSstate = int(SSstate) # convert SSstate to int
if (SSstate == TRUE):
SER.send("\r\nSSstate = TRUE')
SER.send("\r\nafter gpio value conversion tg int'
if (SSstate == TRUE) | (ShockAlarm == TRUE)):
ShockAlarm == TRUE #sets ShockAlarm to true
SER.send(\r\nSHOCK\r\n")#
prints SHOCK to terminal

ShockAlarmSent=SendSMS(‘collision’,'+3584408XXXXX'
#Send the defined message to the defined number
SER.send("\r\nAfter sending\r\n’)
if ShockAlarmSent == TRUE: #
Checks if the shock alarm was sent
ShockAlarm == FALSE # If yes

reset ShockAlarm to false

