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The purpose of this bachelor’s thesis was to know well the different lignin 

isolation methods from various wood species and black liquor, and then the 

lignin obtained was identified by spectrophotometric methods which were UV 

and FTIR spectroscopy, to analyze and compare the physical and chemical 

properties of lignin, such as lignin content and color with different pH values, 

and their chemical structures, etc. 

The experimental part of this study was performed in the laboratory of Saimaa 

University of Applied Sciences, Imatra. Two different methods of lignin isolation 

were studied: one was isolation according to different pH values from the black 

liquor which was obtained from four wood species (pine, spruce, birch and 

aspen chips) in the batch digester by Kraft process, it was called Kraft lignin; 

another one was isolation from sawdust of four wood species in a flask reactor 

with reflux condenser, it was called Klason lignin. These lignins were 

characterized by UV and FTIR spectroscopy.  

According to the results, the lignin content and functional group were 

determined separately. The yields of lignin slightly increased with pH value 

decreasing, and the yields in softwood were higher than in hardwood. The UV 

absorption maximum of lignin revealed that lower pH value had a high purity 

level. In a comparison with Kraft and Klason lignin, they included different 

functional groups; there was a difference in chemical structure. In addition, the 

chemical structure was not similar between softwood and hardwood. 

Keywords: Kraft lignin, Klason Lignin, Softwood, Hardwood, Black Liquor, Lignin 

Isolation Methods, UV and FTIR Spectroscopy.  
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1 INTRODUCTION 

 

Lignin is one of the important chemical constituents of lignocellulosic materials 

in wood and it is one of the most abundant biopolymers in nature. Despite 

extensive investigation, the complex and irregular structure of lignin is not fully 

understood. The physical property and the chemical characteristics of lignin 

vary not only between different wood species, but also according to the method 

of isolation. Moreover, the molecular structure and function groups differ for the 

various type of lignin.  

In this work, the general knowledge of lignin, e.g. chemical structure of lignin, 

application of lignin, the different isolation methods for lignin and identification of 

lignin, are reviewed. Furthermore, two different isolation methods of lignin were 

implemented to obtain Kraft lignin and Klason lignin in labotoary of Saimaa 

University of Applied Sciences. The raw materials were four wood species (pine, 

spruce, birch and aspen). For extraction of Kraft lignin, the black liquor after 

chemical cooking of woods was precipitated at various pH values by using 

sulfuric acid. For Klason lignin, the wood was extracted directly in accordance 

with TAPPI T222 Strandard.  

The isolated lignin was characterized with regard to yields of lignin, UV and 

FTIR spectroscopic analysis. FTIR spectroscopy is a versatile, rapid, and 

reliable technique for lignin characterization. Using this technique, the p-

hydroxyphenyl, guaiacyl, and syringyl units, methoxyl groups, carbonyl groups, 

and the ratio of phenolic hydroxyl to aliphatic hydroxyl groups can be 

determined. The UV spectroscopic method was best suited for investigating the 

topochemistry of lignin in wood and for determining the concentration and purity 

of lignin. Subsequently the experimental results were discussed from the 

different viewpoints, such as the effect of isolation method, operating conditions 

and wood species on the property and structure of lignin. 

 



6 

 

2 LIGNIN FROM WOOD 

 

2.1 Chemical composition of wood 

 

Wood is one of the most abundant resources in the bio-based industry and yet it 

is also one of the most complex materials, composed of polymers of lignin and 

carbohydrates that are physically and chemically bound together. Wood species 

can be divided into two groups: hardwood and softwood. Softwoods are 

gymnosperm trees, while hardwoods are angiosperm trees. (Stenius 2000.) 

Wood is essentially composed of cellulose, hemicelluloses, lignin, and 

extractives. In different wood species, however, their relative composition varies 

greatly, and also the chemical composition of wood varies quantitatively among 

tree species. Table 2.1 shows some values that are given in the percentages of 

wood weight for each constituent in the different wood species. 

Table 2.1 Chemical comparison of various wood species (Sjöström 1993)  

Scots Pine

(Pinus sylvestris)

Spruce

(Picea glauca)

Silver Birch

(Betula verrucosa)

Eucalyptus

(Eucalyptus camaldulensis)

Cellulose 40.0 39.5 41.0 45.0

Hemicellulose

 -Glucomannan (%) 16.0 17.2 2.3 3.1

 -Glucuronoxylan (%) 8.9 10.4 27.5 14.1

 -Other polysaccharides (%) 3.6 3.0 2.6 2.0

Lignin (%) 27.7 27.5 22.0 31.3

Total extractives (%) 3.5 2.1 3.0 2.8

Softwood Hardwood

Constituent (%)

 

As can be seen from the Table 2.1, the contents of cellulose and hemicelluloses 

are relatively higher than that of lignin in each wood species. In comparison, the 

content of extractives is relatively low. According to Table 2.1, which shows the 

four kinds of wood species, the content of lignin is in softwood slightly higher 

than in hardwood. (Sjöström 1993.) 
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2.1.1 Cellulose 

 

Cellulose is the main constituent of wood carbohydrates. It is a polysaccharide 

consisting of glucose units. The cellulose molecule is linear and it easily forms 

hydrogen bonds with neighboring molecules (Knowpulp). The structure of 

cellulose molecule is shown in the Figure 2.1. 

 

Figure 2.1 The structure of cellulose (Klemn 2005) 

It can be seen from above Figure 2.1 that cellulose is a glucan polymer 

consisting of D-glucose linked by ß-1,4-glycosidic bonds (Klemn 2005). As 

cellulose is an insoluble substance in most solvents including strong alkali, it is 

hard to separate cellulose from the wood in pure form, because cellulose is 

closely integrated with lignin and hemicelluloses (Pettersen 1984). 

 

2.1.2 Hemicellulose 

 

Hemicelluloses consist of heteropolysaccharides. The structure and 

composition of softwood and hardwood hemicelluloses are different. 

Hemicelluloses play a crucial role in the bonding capacity of fibers, i.e. the 

ability to form interfiber bonds, which gives the paper fiber network its strength 

(Knowpulp). In contrast to cellulose that is crystalline, strong, and resistant to 

hydrolysis, hemicellulose has a random, amorphous structure with little strength. 

It is easily hydrolyzed by dilute acid or base, but nature provides an arsenal of 

hemicellulase enzymes for its hydrolysis. (Wise L. 1962.) 



8 

 

2.1.3 Lignin 

 

Lignin is a complex chemical compound and the only aromatic polymer present 

in wood; it is concentrated mainly in the region of the middle lamella. The 

amount of lignin in normal wood is 20%-35% depending on the different wood 

species. (Glennie & McCarthy 1962.) Lignin is bound together to the cellulose 

and hemicelluloses. The position of lignin within lignocellulosic matrix can be 

seen in the Figure 2.2. 

 

Figure 2.2 The position of lignin within lignocellulosic matrix (Kuhad & Singh 

2007) 

As it is illustrated in the Figure 2.2, lignocellulosic matrix is a complex structure 

in which the cellulose is surrounded by a monolayer of hemicellulose and 

embedded in a matrix of hemicellulose and lignin. Furthermore lignin specifically 

creates a barrier to enzymatic attack while the highly crystalline structure of 

cellulose is insoluble in water, then the hemicellulose and lignin create a 

protective sheath around the cellulose. (Stenius 2000.) 

In general, lignins are roughly classified into three major groups: softwood, 

hardwood, and grass lignins. Besides these native lignins, which are typically 

separated from the wood in the form of "milled wood lignin" (MWL), "dioxane 

lignin", or "enzymically liberated lignin", there are several industrially based 
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technical lignins that are by-products of the chemical pulping. Kraft lignin (or 

sulfate lignin), alkali lignin (or soda lignin), and lignosulfonates are derived from 

Kraft, soda-AQ, and sulfite pulping of wood, respectively. (Stenius 2000.) 

Most isolated lignins are brown amorphous powders. Depending on the 

preparation method used and on the fraction represented of the total lignin, 

there are some changes correspondingly in color and shape. The molecular 

weight, or average molecular weight, is a particularly important characteristic 

property of a lignin. Another important property of lignin is its capacity to absorb 

ultraviolet light. When the intensity of absorption is plotted against a given 

wavelength of ultraviolet light, an ultraviolet spectrum curve for the lignin is 

obtained. According to the type of lignin, the lignin solvent, and the pH of the 

solution and lignin structure, the shape of this curve may change. (Glennie & 

McCarthy 1962.) 

 

2.1.4 Extractives 

 

Wood contains also other components which are so-called extractives. These 

substances are usually soluble in one or more of the following solvents: water, 

ether, the alcohols, acetone, and various simple organic halides. However, the 

choice of solvent depends on the type of wood being examined. The solvents 

should be neutral, and in many cases the extractives can be recovered by 

evaporating the solutions to dryness. Alkaline or acid organic compounds 

should not be used, because they usually attack the cell wall components. In 

general, aqueous extraction should also be carried out with cold water, but hot 

water usually causes some degradation of the cell wall. (Wise L 1962) 
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2.2 The chemical structure of lignin 

 

Lignin consists of complex and diverse structures. Lignin includes three primary 

precursors which have different proportion in softwood and hardwood lignin. Lignin 

precursors are linked together by different functional groups, the frequency of the 

linkages results in the variation of the structure in lignins. 

 

The distribution of lignin in the cell wall 

 

The cell wall consists of several layers which are depicted in the classical 

representation in Figure 2.3. The layers of the cell wall from outer to inner are 

as follows: middle lamella (M), the primary wall, the secondary wall (divided into 

the S1, S2, and S3 layers), and the hollow inner region called the lumen. The 

layers of the secondary wall differ based on the thickness of the cell wall layer 

and the microfibril angle. (Holtman 2003.) 

 

Figure 2.3 The structure of cell wall in wood (Knowpulp) 

Lignin is found mainly in the middle lamella and the secondary wall. In the 

middle lamella the lignin content is high, but, because the layer is thin, only a 

minor fraction of the total lignin is located in this layer. In hardwood, the lignin 

concentration in the middle lamella is lower than in that of softwood. In addition, 

the majority of lignin is contained in the secondary wall although the relative 

concentration of lignin is low. (Holtman 2003.) 

M = middle lamella 

P = primary wall 

S1 = secondary wall outer layer 

S2 = secondary wall middle layer 

S3 = secondary wall inner layer 

        (tertiary wall) 
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Precursors of lignin 

 

Lignin is an amorphous polymer with a chemical structure that distinctly differs 

from the other macromolecular constituents of wood. The lignin polymer 

molecule is made up of a number of structural units. These units are similar in 

configuration and can be regarded as a common skeleton which is a 

phenylpropane or C6-C3 or C9 type.  

Lignin can be defined as a polyphenolic material arising primarily from enzymic 

dehydrogenative polymerization of three phenylpropanoid units, which are 

coniferyl alcohol, sinapyl alcohol and p-coumaryl alcohol, respectively (Stenius 

2000). Chemical structures of the precursors are presented in Figure 2.4. 

 

 

Figure 2.4 The structural units of lignin (Stenius 2000) 

Lignin classification is traditionally done according to the precursors of the 

polymer. Guaiacyl lignin (G) is typical of softwood species and it is formed 

mostly of trans-coniferyl alcohol precursors, with the remainder consisting 

mainly of trans-p-coumaryl alcohol which contains p-hydroxyphenyl (H) units. In 

contrast, generally guaiacyl-syringyl (GS) lignins found in hardwood species, 

are mainly composed of trans-coniferyl alcohol and trans-sinapyl alcohol type 

units in varying ratios. Grass lignins are also classified as guauacyl-syringyl 

lignins, although they contain some structural units derived from trans-p-

coumaryl alcohol and some aromatic acid residues. (Glennie & McCarthy 1962.) 
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Polymerization of lignin precursors 

 

In the polymerization process of lignin, precursors are turned into resonance-

stabilized phenoxy radicals by enzymatic oxidation. Figure 2.5 shows an 

example of a phenoxy radical formed from coniferyl alcohol by a one – electron 

transfer and its resonance forms. Delocalization of the singlet electron allows 

covalent bonds to be formed on three different sites of the molecule. Similar 

radicalization occurs to lignin polymer when new precursors are added. 

(Freudenberg & Neish 1968.) 

 

Figure 2.5 Resonance forms of the coniferyl alcohol radical (Freudenberg & 

Neish 1968) 

Lignin precursors are linked together with ether linkages (C-O-C) and with 

carbon-carbon (C-C) linkages. Carbon-carbon linkages are considered as 

condensed linkages, whereas ether linkages are non-condensed. Ether-type of 

linkages is most common and approximately two thirds of bonds between 

precursors are of ether-type, the rest are of the carbon-to-carbon type. (Harkin 

1969.) 
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Figure 2.6 The common phenylpropane linkages in lignin (Froass 1996) 

Figure 2.6 shows the common linkages between phenylpropane in lignin. The 

dominant linkage is the β-O-4 linkage, and then, some new linkages were 

discovered in lignin. The percent of linkages in lignin has been determined and 

is shown in Table 2.2. 

Table 2.2 Proportions of most common linkages in lignin (Froass 1996) 

β-O-4 Phenylpropane β-aryl ether 45-85

5-5 Biphenyl and Dibenzodioxocin 4-25

β-5 Phenylcoumaran 9-12

β-1 1,2-Diaryl propane 7-10

α-O-4 Phenylpropane α-aryl ether 6-8

4-O-5 Diaryl ether 4-8

β-β β-β-linked structures 3

Percent of

Total Linkages

(%)

Dimer StructureLinkage Type

 

The variation of the structure in lignins also comes from the frequency of the 

linkages in lignin macromolecules. These three units which are p-hydroxyphenyl 

(H), guaiacyl (G) and syringyl (S) in lignin tremendously change the frequency 



14 

 

of the linkages. Hardwood lignin contains relatively more β-O-4 and less 5-5 

and β-5 linkages than softwood lignin, though generally the most abundant 

linkage in lignin is β-O-4. The frequency of a β-O-4 linkage is approximately 45-

50% of the phenylpropane units in softwood lignin, while approximately 60-85% 

phenylpropane units in hardwood lignin. (Chen 1991.) 

Lignin polymer contains methoxyl groups, phenolic hydroxyl groups, benzyl 

alcohol groups and carbonyl groups and some terminal aldehyde groups in the 

side chain. The same functional groups that are present in the lignin polymer 

are also present in the lignin precursors (Pearl 1967). There is considerable 

variation in the distribution of functional groups among different wood species. 

Therefore only approximate values for the frequencies of different functional 

groups can be given (Table 2.3). 

Table 2.3 Functional groups of softwood and hardwood lignin (Stenius 2000) 

Functional group Softwood lignin Hardwood lignin

Phenolic hydroxyl 20-30 10-20

Aliphatic hydroxyl 115-120 110-115

Methoxyl 90-95 140-160

Carbonyl 20 15  

 

2.3 Different methods of lignin isolation 

 

Lignin can be isolated from various raw materials, i.e. wood and black liquor. 

There are several methods for lignin isolation from wood, generally, where lignin 

is isolated either by removing non-lignin or lignin components. Moreover, carbon 

dioxide or sulfuric acid is used to isolate lignin from black liquor. 
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2.3.1 Isolation of lignin from wood 

 

Lignins probably exist in wood as branched-chain polymer molecules which 

may comprise an almost infinite network, and this network may be integrated 

and chemically combined with hemicelluloses or other nonlignin components of 

wood. In this state, lignin will here be called protolignin. Broadly speaking, lignin 

may be separated from associated wood components either by preferentially 

dissolving lignin or by preferentially dissolving nonlignin components. Therefore, 

there are some methods for isolation of lignin from wood. (Glennie & McCarthy 

1962.) 

 

Removing non-lignin components 

 

Klason Lignin (sulfuric acid lignin): Wood meal is extracted with alcohol-

benzene which is employed to remove materials, such as waxes, fats, some 

resins, and possibly some portions of wood gums, then stirred at room 

temperature and hydrolysis with 64 to 75% sulfuric acid. The Klason lignin is 

obtained after removing the polysaccharides, and refluxed with dilute acid; then 

the Klason lignin or sulfuric acid lignin is filtered, dried, and weighed. This 

procedure serves as a method for determination of lignin in wood and other 

plant materials. But this method is able to change the structure of lignin during 

the hydrolysis. (López et al. 2010) 

Willstätter Lignin: wood meal is extracted and hydrolyzed with concentrated 

hydrochloric acid, and produces an insoluble lignin residue, this is so-called 

Willstätter lignin. 

Periodate Lignin: mild oxidation of extracted wood meal with periodic acid (HIO3) 

dissolved nonlignin components by hot-water hydrolysis, there is less alteration 

in lignin structure. Degraded carbohydrates are dissolved, finally obtain an 
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insoluble Periodate or Purves lignin. 

Cuproxam Lignin: substantially all carbohydrate components in extracted wood 

meal may be dissolved with cuprammonium hydroxide with alternate dilute acid 

hydrolysis, and this is the basis for preparation of Freudenberg of Cuproxam 

lignin (Glennie & McCarthy 1962). 

 

Removing lignin components 

 

Brauns or Native Lignin (BNL): Fresh wood meal is extracted with cold water, 

then with ether for 48 hours, and finally with ethanol at room temperature for 8 

to 10 days. The solution of lignin in ethanol is then purified by solvent 

precipitation until the methoxyl content is constant, resulting in a lignin which in 

yield is only a few per cent based on lignin content of the wood. This method 

causes the structural changes as minimally as possible. Without removing 

extractives from wood meal before ethanol extraction, Brauns lignin consists of 

some impurities, such as carbohydrates and extractive components. Compared to 

other preparations, such as Milled Wood lignin, Brauns lignin from conifers is 

characterized by similar elemental compositions, low molecular weight lignin, large 

amounts of ester groups and higher phenolic hydroxyl content. (Lai & Sarkanen 

1971.) 

Milled Wood Lignin (MWL): Björkman developed an isolation procedure to extract 

a larger proportion of lignin from wood. According to Björkman, when extractive-free 

wood meal of a woody species is ground for 48 hr or more in a vibratory ball mill 

under nitrogen atmosphere. Wood-meal particles are reduced in size in a 

vibrational ball mill in the presence of an organic solvent with a non-swelling 

agent, such as aqueous dioxane. During ball mill the cell structure of the wood is 

destroyed. The dissolved lignin is purified by solvent precipitation, and as much 

as 50% of the total lignin can be obtained as an almost white powder. This 

lignin preparation is known as milled wood lignin (MWL) or Bjorkman lignin. At 

the same time, MWL preparation always contains some carbohydrate material. 
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Moreover, Ball milling affects the yield and chemical structure of MWL. (Hu 2006.) 

Cellulolytic Enzyme Lignin (CEL): In order to improve the yield of lignin isolated 

from ball-milled wood, the cellulolytic enzymes are used. Cellulolytic enzymes 

are used to remove carbohydrates prior to aqueous dioxane extraction of ball-

milled wood meal. Cellulolytic enzyme lignin (CEL) was found and it is 

structurally similar to MWL. This method results in original structure essentially 

unchanged of cellulolytic enzyme lignin. (Glennie & McCarthy 1962.) 

 

2.3.2 Isolation of lignin from black liquor 

 

Black liquor is generated in the cooking process as the white liquor dissolves 

the lignin and other organic compounds in the wood. Kraft or Sulfate cooking is 

the most commonly used pulp production method. Kraft process uses white 

liquor containing mainly the active chemicals, a mixture of sodium hydroxide 

(NaOH) and sodium sulfide (Na2S) as the main cooking chemicals. The sulfite 

process is characterized by its high flexibility compared to the Kraft process, 

which is a very uniform method, which can be carried out only with highly 

alkaline cooking liquor. The sulfite cooking process is based on the use of 

aqueous sulphur dioxide (SO2) and a base - calcium, sodium, magnesium or 

ammonium. (Knowpulp.) Therefore, two kinds of black liquor from Kraft and 

sulfite process are acidified to generate lignin, which are called Kraft lignin and 

Lignosulfonate respectively. 

 

Composition of black liquor 

 

Black liquor contains water, organic residue from pulping, and inorganic cooking 

chemicals. The primary organic compounds are lignin, polysaccharides, 

carboxylic acids, and extractives, the main inorganic substances in black liquor 

are Na2CO3, Na2SO4, Na2S, Na2S2O3, NaOH and NaCl. The organic material 

dissolved from wood is approximately 60% of the total black liquor dry solids 
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(Pettersen 1984, Sjöström 1993). Typical content of spent liquor from various 

cooking conditions are listed in Table 2.4. 

Table 2.4 Typical composition of the black liquor from various cooking condition 
(Sjöström 1993) 

Components 

Content (% of dry solid) 

Kraft liquor Sulfite liquor 

Lignin 39-54 55 

Degraded 
carbohydrates 

25-35 28 

Extractives 3-5 4 

Inorganic components 18-25 13 

 

Black color comes from lignin compounds colored by alkali and dissolved to 

liquor. There are often large differences between industrial and laboratory 

liquors, for example industrial black liquor contains minor amounts of sulphate 

and carbonate as residues from the recovery and more degraded lignin due to 

several reuses of the black liquors in impregnations of chips to recover heat. 

There are also differences between different industrial black liquors due to 

different cooking strategies and variations in equipment as well as raw material. 

(Sjöström 1993.) 

 

Isolation of Kraft lignin 

 

Normally, isolation of lignin is a by-product of the pulp and paper industry. 

Lignosulfonate derived from sulfite pulping of wood, and Kraft lignin derived 

from Kraft pulping of wood are the principal commercially available lignin types. 

Kraft lignins, also called sulfate or alkali lignins, are obtained from black liquor 

by precipitation with acid. Generally, acidification is conducted in two steps. In 

the first step, carbon dioxide from the waste gases of boiler fires or from lime 

kilns is used to reduce the pH of the liquor. About three quarters of the lignin is 

precipitated in this step as a sodium salt. After isolation, the material obtained is 

refined by washing. By suspending the salt in water and minimizing the pH with 
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sulfuric acid, refined lignin is obtained. The procedure of lignin precipitation is 

shown in the Figure 2.7. (Tamminen 1995.) 

 

Figure 2.7 Lignin isolation process (TAPPI 2010) 

As it is illustrated in the Figure 2.7, in the cooking process, ether bonds break 

due to the function of caustic soda, and then lignin macromolecules degrade 

gradually in the form of alkali lignin or lignin sodium salt R-OH. When lignin 

totally dissolves in the black liquor, it presents hydrophilic gel. Afterwards, 

electrophilic substitution reaction happens when the black liquor is neutralized 

by acid; it means that hydrogen ion instead of sodium ion in alkali lignin and 

hydrophilic gel of alkali lignin is destroyed. Finally, the lignin is precipitated from 

the black liquor, namely it is called Kraft lignin which is difficult to dissolve in 

water. 

2R-ONa+H2SO4→ 2ROH↓+Na2SO4                                                (1) 

At the same time, the recovery is also an essential part. Water is removed from 

black liquor in evaporation plant and then black liquor go to the recovery boiler 

to burned, through a series of chemical reaction, form a circulation process, the 

cooking chemicals can be recycled, regenerated as well as reused in the 

cooking process. (Knowpulp.) 
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Isolation of lignosulfonate 

 

Lignosulfonates, also called lignin sulfonates and sulfite lignins, are derived 

from the sulfite pulping of wood. Typical compositions for hardwood and 

softwood spent sulfite liquors are given in Table 2.5.  

Table 2.5 Compositions of Spent Sulfite Liquors (John Wiley & Sons, Inc) 

Component

Lignosulfonate 55 42

Hexose sugars 14 5

Pentose sugars 6 20

Noncellulosic carbohydrates 8 11

Acetic and formic acids 4 9

Resin and extractives 2 1

Ash 10 10

Percentage of total solids

Softwood       Hardwood

 

There are various methods for isolating and purifying lignosulfonates from spent 

pulping liquors. For instance, the Howard process is one of most widely used 

industrial processes, where calcium lignosulfonates are precipitated from spent 

pulping liquor by addition of excess lime. In addition, other methods used 

industrially include ultrafiltration and ion exclusion, which uses ion-exchange 

resins to separate lignin from sugars. Laboratory methods for isolating 

lignosulfonates include dialysis, electrodialysis, ion exclusion, precipitation in 

alcohol, and extraction with amines. (John Wiley & Sons, Inc) 

 

2.4 Application of lignin 

 

Natural lignin is a colorless or pale yellow. But when it met acid, alkali treatment, 

the color changes the brown or dark brown. From the lignin structure, it has a 

non-polar aromatic ring side chain and polar sulfonic acid group, etc., therefore, 

it is lipophilic and hydrophilic. Lignin is used as a cement water reducer, cement 
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grinding aids, bitumen emulsion, drilling mud regulator, plugging agent, viscosity 

breaking agent, surfactant and dye dispersant. Lignin is a kind of natural 

polymer, it has bonding itself, and then through the phenol, aldehyde or other 

method of modification, the bonding will be better. Therefore, it can be used as 

rubber intensifier, polyolefin and rubber packing. New applications of lignin are 

in composite materials. In the unsaturated polyester and vinyl ester, it is for filler 

and comonomer. Lignin has natural affinity for cellulose, it can deal with natural 

hemp fiber surface.  At the same time, the bond strength between resin and 

fiber is increasing. In addition, lignin molecular structure contains a variety of 

active groups, so it can apply in the agroforestry. After degradation slowly by 

microorganisms in the soil, it can be converted into humus; it has certain 

inhibition for urease activity, promoting the growth of plants, improving soil 

conditions. (Chen 1991.) 

Moreover, the Kraft lignin and lignosulfonate can be as the industrial application. 

Kraft lignins are used in some foam fire extinguishers to stabilize the foam and 

in printing inks for high speed rotary presses (John Wiley & Sons, Inc). Kraft 

lignin products are generally used in high value applications. In many 

applications, the base lignin must be modified prior to use. Once modified, Kraft 

lignins can be used in most of the same applications in which lignosulfonates 

are used. These include usage as emulsifying agents/emulsion stabilizers, as 

sequestering agents as pesticide dispersants, as dye dispersants, as additives 

in alkaline cleaning formulations, as complexing agents in micronutrient 

formulations, as flocculants, and as extenders for phenolic adhesives. In 

addition, Kraft lignins can also be used as an extender/modifier, and as a 

reinforcement pigment in rubber compounding. (John Wiley & Sons, Inc.) 

One major application of lignosulfonates is for mud viscosity control during deep 

oil well drilling. There are also some applications in metallurgy. Specific mineral 

dispersing and depressant effects plus sequestering power make 

lignosulfonates effective in slime control and improving separation during tabling 

or flotation of ores. Lignosulfonates are also included in some adhesives. They 

act as extenders for the phenolic resins used in manufacturing particleboard, 

nonwoven fiber padding, and molding powders. (John Wiley & Sons, Inc.) 



22 

 

3 ANALYTICAL METHODS OF LIGNIN 

  

There are several standard methods for determination of the total amount of 

lignin in wood and pulp samples. Lignin content in wood is determined by direct 

or indirect methods. The direct method includes measurement of acid-insoluble 

(ie, Klason) lignin, such as Klason method. In contrast to the direct 

determination of lignin content, indirect methods do not involve the isolation of a 

lignin residue, these include spectrophotometric methods. (John Wiley & Sons.) 

Furthermore, UV and infrared spectroscopy are useful techniques for the 

identification, determination and characterization of analytical and technical 

lignins and lignin derivatives. 

 

3.1 Klason method 

  

Klason method is based on hydrolysis and solubilization of cellulose and 

hemicelluloses from the extracted wood or pulp samples with 72% sulfuric acid, 

final hydrolysis is made with 3% sulfuric acid, and then acid-insoluble (ie, 

Klason) lignin is washed, dried, and measured (Stenius 2000). For instance, the 

Klason lignin contents of representative lignified materials are shown in Table 

3.1 (John Wiley & Sons). 

Table 3.1 The Klason lignin contents of lignified materials (John Wiley & Sons) 

Material Klason lignin, %

Softwood 26-28.8

Hardwood 22-30  

From the above table, the figures show clearly that softwoods contain about 26-

28.8% lignins, and the lignin present in hardwoods is about 22-30%. Compared 

with Table 2.1, the contents of lignin are relatively similar, while the contents of 

lignin are higher in softwood than in hardwood too. Therefore, results indicate 
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that this method is feasible. 

 

3.2 UV spectrophotometric method 

 

Ultraviolet (uv) spectrophotometric method is best suited for determining the 

concentration and chemical structure of lignin in wood or black liqour. 

Instrument is used for quantitative analysis and it is not used for identification of 

compounds, because many compounds absorb at same wavelengths. In the 

qualitative and quantitative UV spectroscopic determination of lignin the typical 

maximum at a wavelength of 280nm is mostly used. Because the lignin 

molecule contains no large portion of unsaturated aliphatic units in addition to 

its aromatic structure, it is concluded that there are the two characteristic bands 

in the lignin spectrum at 200-230 and 260-280 nm. (Jahan & Mun 2007) 

However, due to common acidic degradation products of carbohydrates which 

have absorbance maximums near 280nm, the measurement wavelength at 

205nm is the better choice. The absorbance of UV spectra is directly 

proportional to the purity level of lignin. A lower absorbance is due to the co-

precipitation of non-lignin material such as polysaccharides degradation product, 

wax, and lipids. A number of spectral methods for determining lignin content are 

based on totally dissolving the sample in a suitable solvent and measuring the 

UV absorbance of the solution. (Stenius 2000) 

The essential parts of a spectrophotometer include light source, monochromator, 

sample and detector. Light source can be one lamp or two lamps in a 

spectrophotometer. When a single lamp is used, it covers the whole wavelength 

range. If there are two lamps, one is for UV wavelength range and another one is 

for visible light range. The sample background can be subtracted with two 

different methods, single beam instruments and double beam instruments. 

There are a spectrometer and a photometer in a spectrophotometer. With a 

spectrometer the measuring wavelength of light is chosen. This is done with a 

monochromator. A photometer measures the intensity of light. This is done with 
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a detector.  

 

Figure 3.1 Parts of single beam spectrophotometer (Skoog et al. 2007) 

Figure 3.1 gives a clear picture of operation UV spectrophotometer. The light 

source emits light spectrum. A measurement wavelength which is led to the 

sample is chosen by a monochromator. The light passes through the sample 

and the sample absorbs the light. A detector measures the intensity of 

absorbance and converts light into electricity, a photomultiplier is often used. In 

photomultiplier, a light photon removes photoelectrons from photocathode. 

Every photoelectron removes photoelectrons from next dynode and an electric 

current is formed. Finally the current is transformed to a voltage with an anode. 

The current is amplified before the measurement. (Skoog et al. 2007.) 

 

3.3 FTIR spectrophotometric method 

 

Fourier Transform Infrared is a versatile and rapid technique for identification 

and determining lignin content. Typical bands are found at about 1500 and 

1600cm-1 and between 1470 and 1460cm-1 (Wegener et al. 1983). FTIR can 

give information on the lignin type, methoxyl groups, carbonyl groups, and 

hydroxyl groups. FTIR spectra can be obtained directly on solid samples such 

as wood, pulp, and paper by attenuated total reflectance (ATR), diffuse 

reflectance (DRIFT), and photoacoustic (PAS) techniques (Stenius, P 2000). 



25 

 

 

Figure 3.2 Operating principle of FTIR spectrometer (Griffiths & de Hasseth 

2007) 

The basic components of an FTIR are shown schematically in Figure 3.2. The 

FTIR is a method of obtaining infrared spectra by first collecting an 

interferogram of a sample signal using an interferometer. The interferometer 

consists of a beam splitter, a fixed mirror, and a mirror that translates back and 

forth; radiation from the source strikes the beam splitter and separates into two 

beams. One beam is transmitted through the beam splitter to the fixed mirror 

and the second is reflected off the beam splitter to the moving mirror. The fixed 

and moving mirrors reflect the radiation back to the beam splitter. Again, half of 

this reflected radiation is transmitted and half is reflected at the beam splitter, 

resulting in one beam passing to the detector and the second back to the 

source. Then a Fourier Transform (FT) is performed on the interferogram to 

obtain the spectrum. An FTIR Spectrometer collects and digitizes the 

interferogram, performs the FT function, and displays the spectrum. (Griffiths & 

de Hasseth 2007.) 
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4 EXPERIMENT PART 

 

In my experiment, two kinds of lignin were isolated in Saimaa University of 

Applied Sciences’ laboratory, i.e. isolation of Kraft lignin from black liquor and 

isolation of Klason lignin from wood. Softwood and hardwood were prepared as 

raw materials. The isolation procedures were performed based on TAPPI 

Standard. 

 

4.1 Isolation of lignin from black liquor 

 

Equipment 

 

Batch cooking and extraction of Kraft lignin were carried out in a laboratory at 

Saimaa University of Applied Sciences, Imatra. Batch digester was used as 

equipment of batch cooking. The equipment is shown in the Figure 4.1. 

 

Figure 4.1 Batch digester for experiment of batch cooking 
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The batch digester is a pressure vessel, the size of digester is 0.010 m3 (10 

litres). In addition, in order to control the cooking temperature and cooking time, 

the values were adjusted on the control panel. Liquid was circulated between 

heat exchanger and digester tank continuously. The system can reach 

maximum temperature of up to 170 °C and stand up to 20 bars pressure. 

 

Raw material 

 

Raw materials for the experiments were chips of birch, pine, spruce and aspen, 

which were available from Saimaa University of Applied Sciences’ laboratory. 

The dry content of each wood type was measured, which was 67%, 63%, 57% 

and 93% for birch, pine, spruce and aspen respectively. Chips were screened in 

Gyratory screen which is shown in the Figure 4.2.  

 

Figure 4.2 Gyratory screen  

The purpose of Gyratory screen was to obtain the chips with length of 19mm-

25mm, and no barks or knots. The even distribution of chip size can improve 

the quality of cooking, and also improve defibration speed. The white liquor 

used in the cooking process came from Stora Enso, Kaukopää mill, Imatra. 

Moreover, White liquor was used for the cooking; it consisted of a mixture of 

sodium hydroxide (NaOH) and sodium sulfide (Na2S). 
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Batch cooking method and conditions 

 

The cooking was done in alkali conditions as white liquor was used in cooking 

process. The amount of white liquor required was calculated. The active alkali 

was 136 [gNaOH /l] of white liquor used for the cooking process and sulfidity 

was 35%. 

For each cooking, about 900 g of oven-dry screened chips were used. First of 

all, the chips were fed into the digester tank, and then white liquor with a 

measured volume was poured carefully in to digester tank. In addition to these, 

the certain amount of water was added according to liquid-to-wood ratio of 4:1. 

One had to make sure that sealing surfaces were clean and dry without damage, 

and that the deckle had been closed. Afterwards, the most significant thing was 

that the valves of cold cooling water had to be opened for the circulation of 

pump and the circulation of liquor in the pipe. 

Then heat exchanger of cooking system was turned on. In the first stage, the 

temperature inside the cooker fast increased from about 20℃	to 80℃. And then 

it took 90 minutes to raise the temperature of cooking liquor from 80°C to 170°C. 

In the secondary stage, the temperature inside cooker increased quite slowly, 

which was about 1°C /min. Then the chips were homogeneously cooked, 

cooking time was calculated according to H-factor for various wood species, 

and thus it took around 70-90 minutes to reach the temperature of 170 °C. 

Batch cooking conditions are shown in Figure 4.3 and Table 4.1. 



 

Figure 4.3 Batch cooking process

Table 4.1 The raising time and cooking time for various wood species.

Raising time (min)

Birch 90

Pine 90

Spruce 90

Aspen 90

When the cooking was finished, the heating was turned off. The heat exchanger 

was cooled by opening 

bar or lower, the temperature decrease

injected to digester tank for was

cooked chips were taken out

(Knowpulp) 

 

Treatment of black liquor

 

After each cook, about 1 liter of black liquor was obtained.

black liquor was measured by indicator paper, 

Black liquor of various wood 
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3 Batch cooking process 

The raising time and cooking time for various wood species.

Raising time (min) Cooking time (min) H-factor

90 67 1200

90 87 1500

90 87 1500

90 87 1500  

When the cooking was finished, the heating was turned off. The heat exchanger 

was cooled by opening the valve of cooling water. When the pressure was one 

the temperature decreased to about 80℃

injected to digester tank for wash. After washing the digester

cooked chips were taken out, and the digester was further washed 

Treatment of black liquor 

After each cook, about 1 liter of black liquor was obtained.

black liquor was measured by indicator paper, and the value was about 

Black liquor of various wood species is shown in Figure 4.4. 

The raising time and cooking time for various wood species. 

 

When the cooking was finished, the heating was turned off. The heat exchanger 

valve of cooling water. When the pressure was one 

℃ , warm water was 

the digester for 15 minutes, the 

further washed finally. 

After each cook, about 1 liter of black liquor was obtained. The pH value of 

and the value was about 12-13. 
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Figure 4.4 The black liquor of various wood species 

It can be seen from Figure 4.4 that the black liquors were black and had a 

strong odour. There was a number of tall oil soap on the surface of the black 

liquor. Tall oil soap was a mixture of the sodium salts of rosin acids, fatty acids 

and neutrals that separated from Kraft black liquor. The tall oil soap can be 

recovered to improve evaporator operation, reduce effluent toxicity, and 

improve recovery boiler operation, etc. (Drew & Propst 1981.) 

 
Properties of black liquor 
 

Black liquor is generated in the cooking process as the white liquor dissolves 

the lignin and other organic compounds in the wood. The most important 

physical properties of black liquor are density, viscosity, thermal conductivity, 

specific heat, and surface tension. Some waste liquor properties, such as dry 

solids content and temperature, give a sufficiently exact basis for the 

determination of the physical properties of black liquor. Black liquor density 

decreases with increasing temperature. The interdependence between dry 

solids content and evaporation temperature is almost linear.  

The kinematic viscosity of black liquor depends on its dry solids content, 

temperature, and composition. Viscosity increases sharply at over 30% dry 

solids content. If black liquor is stored at a high temperature, its viscosity 

decreases due to the cracking of polymers. Heat conductivity decreases with an 

increasing dry solids content and increases with an increasing temperature. 

Pine Spruce Birch Aspen 
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Apart from viscosity and density, surface tension is the most important factor in 

the assessment of drop formation in black liquor firing. 

The specific heat of black liquor increases with temperature. At increasing dry 

solids content, there is a drastic decrease in specific heat. The specific heat 

calculated per volumetric unit is almost constant, the dry solid content being 10-

60% and the temperature 50-120°C. (Gullichsen & Fogelholm 2000) 

When the black liquor was acidified by adding strong mineral acid, such as 20% 

(v/v) sulfuric acid, Kraft lignin was precipitated from black liquor. For each black 

liquor, Kraft lignin was precipitated by acidifying it to pH 2-3, 4 and 7 

respectively and titration process is shown in Figure 4.5. The reaction inside 

black liquor was much stronger and the yield of Kraft lignin increased with the 

pH value decreased. During the precipitation process, the odour emitted from 

the black liquor. Then Kraft lignin precipitates were separated from the liquor by 

filtration. The filtration of the lignin precipitate was improved at elevated 

temperatures (about 40℃), because of aggregation to a tighter and a less 

hydrated form. At the same time, lignins were washed by water for several 

times. Finally, lignins were dried in the vacuum oven, the temperature was not 

allowed to exceed 40℃. 

 

Figure 4.5 Titration  
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4.2 Extraction of lignin from wood 

 

Lignin isolation from wood was divided into two steps according to TAPPI 

Standard, which was preparation of extractive-free wood and procedure of 

isolating lignin. Finally, the Klason lignin was obtained from wood. 

 

Preparation of extractive-free wood  

 

Raw materials for the experiments were fresh sawdusts of birch, pine, spruce 

and aspen. In these sawdusts, the pine came from UPM paper mill, the rest of 

them were obtained from logs by the equipment at the labotatory of Saimaa 

University of Applied Sciences. The four kinds of sawdusts and equipment are 

shown in Figure 4.6.  

 

Figure 4.6 Raw material 

Afterwards, the sawdusts were placed to be extracted in a flask reactor with a 

reflux condenser (Figure 4.7). Fresh sawdusts of about 15g (40 meshes) were 
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extracted with 200 ml of ethanol-benzene solvent (1:2 by volume) for 6 hours, 

keeping the liquid stably boiling. Benzene was highly flammable liquid and toxic, 

so we had to use plastic gloves and avoided any contact of benzene with skin. 

 

Figure 4.7 Flask reactor with Reflux condenser  

After extraction with ethanol-benzene, sawdusts were transferred to a Büchner 

funnel, the excess solvent was removed with suction and sawdusts were 

washed with ethanol to remove the benzene. Then sawdusts were returned to 

the extraction flask and extracted with 95% ethanol for 4 hours. After that, the 

samples were transferred to a Büchner funnel again, the excess solvent was 

removed with suction, and sawdust samples were washed with distilled water to 

remove the ethanol. Finally, the samples were transferred to a 1000-ml 

Erlenmeyer flask and 500 ml of boiling distilled water was added. The flask was 

heated for 1 hour in the water bath at boiling temperature. After extraction, the 

sawdust samples were filtered on a Büchner funnel, while washed with 500 ml 

of boiling distilled water. Then the sawdusts were allowed to air-dry thoroughly 

at room temperature. (TAPPI T264) 

 

Procedure of isolating lignin  

 

Two parallel samples were prepared from the extractive-free sawdust, and each 
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sample had 1 g dry weight. The samples were placed in 100-ml beakers, and 

also 15ml of cold (10 to 15℃) 72% sulfuric acid was added. Sulfuric acid was 

added gradually in small increments while the material was stirred and 

macerated with a glass rod. Each beaker was kept in a bath at 20±1℃ during 

dispersion of the material. After the samples were dispersed, each beaker was 

covered with a watch glass and they were kept in a bath at 20±1℃ for 2 hours. 

The materials were stirred frequently during this time to ensure complete 

dissolution. 

Afterwards, the solid solutions were transferred from the beakers to the two 

flasks separately, and about 300 ml of water was added to each flask. Then 

more water was added to dilute the solution to a 3% concentration of sulfuric 

acid. Then the solution was boiled for 4 hours by using a flask reactor with a 

reflux condenser. After that, the lignin was transferred to the filter and hot water 

was used to wash, and lignin was dried at room temperature. (TAPPI T222) 

 

4.3 Identification of lignin 

 

The analyse of lignin samples were carried out at Saimaa University of Applied 

Sciences. Ultraviolet spectroscopy (UV) and Fourier transform infrared 

spectroscopy (FTIR) were used for lignin identification. 

For the UV analysis, a Shimadzu spectrophotometer model U-2000 (Figure 4.8) 

was used. Prior to the analysis, the Kraft lignin was prepared; 5 mg of oven-dry 

sample was dissolved into 10 ml of 90% (v/v) dioxane-water (aliquot). 1 ml of 

aliquot was further diluted into 25 ml by using 50% (v/v) dioxane-water.  
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Figure 4.8 Shimadzu UV-spectrophotometer 

For the analysis of FTIR, both Kraft lignin and Klason lignin were identified and 

the IR spectra were recorded by using a Bruker TENSOR Series FTIR 

spectrometer (Figure 4.9). The sample can be measured directly with ATR 

technique (attenuated total reflection technique), no sample preparation was 

needed. The sample was kept in contact with the ATR crystal using the 

micrometer pressure clamp. Then acquisition time was only one minute, and IR 

spectra were obtained. (IBRAHIM et al. 2006.) 

 

Figure 4.9 Bruker TENSOR Series FTIR spectrometer and pressure clamp 
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5 RESULTS AND DISSCUSSION 

 

The lignins of various wood species were compared in different isolation 

conditions, the results received from the experiments were illustrated in charts. 

Furthermore, several analytic techniques and instruments were used, such as 

ultraviolet-visible (UV-Vis) spectroscopy and Fourier transform infrared 

spectroscopy (FTIR), in order to identify and determine the lignin content, such 

as the yield of lignin in various pH values from black liquor, the functional group 

and bond linkage contained in lignin. A lot of results can be analyzed from the 

chart and in addition to that detail values could be found in appendices. 

 

5.1 Comparisons of the different Kraft lignins 

 

In general, the precipitation yield of Kraft lignin depended on several factors, for 

instance, final pH value of liquor and different wood species, e.g. softwood or 

hardwood. The comparisons of Kraft lignins from various wood species 

according to different pH values are shown in Figures 5.1-5.4 respectively. 

 

 

Figure 5.1 The isolation of Kraft lignin from black liquor of pine  

Kraft lignin of Pine 

with pH 2-3 
Kraft lignin of Pine 

with pH 4 

Kraft lignin of Pine 

with pH 7 
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Figure 5.2 The isolation of Kraft lignin from black liquor of spruce  

 

 

Figure 5.3 The isolation of Kraft lignin from black liquor of birch  

 

 

Figure 5.4 The isolation of Kraft lignin from black liquor of aspen  

As can be seen from Figures 5.1-5.4, for a certain type of wood, e.g. pine, due 

Kraft lignin of Spruce 

with pH 2-3 

Kraft lignin of Spruce 

with pH 4 

Kraft lignin of Spruce 

with pH 7 

Kraft lignin of Birch 

with pH 2-3 

Kraft lignin of Birch 

with pH 4 

Kraft lignin of Birch 

with pH 7 

Kraft lignin of Aspen 

with pH 2-3 

Kraft lignin of Aspen 

with pH 4 

Kraft lignin of Aspen 

with pH 7 
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to different pH value, the color of Kraft lignin changed from light brown to dark 

brown with pH value increasing. In addition, there were obvious differences in 

the shape and size of Kraft lignin for softwood and hardwood. Kraft lignin of 

softwood formed large pieces much easier than that of hardwood, and also 

filtered relatively faster than that of hardwood during the precipitation process.  
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Chart 5.1 The Kraft lignin precipitation from black liquor at different pH values 

The yields of Kraft lignin precipitated from black liquor of softwood and 

hardwood are given in Chart 5.1. The volume of black liquor used for each trial 

was 50 ml. According to different pH value that was 2-3, 4 and 7, the 

precipitation yields of Kraft lignin were relatively different. It can be seen that for 

all wood species, the precipitation yield of Kraft lignin increased with decreasing 

pH value. This is because the lignin was more soluble at high pH than low pH, 

and therefore more low-molecular fragments of lignin were dissolved at pH 7 

than at pH 2-3 (Gellerstedt et al. 1994). On the other hand, the precipitation 

yield in Kraft lignin from hardwood was lower than that of Kraft lignin from 

softwood at the same pH value, because in softwood lignin was typically 

predominantly composed of guaiacyl units with a minor proportion of 

unmethoxylated p-hydroxyphenyl units. The typical lignin of hardwood was 

guaiacyl-syringyl lignin, formed from co-polymerization of coniferyl and sinapyl 

alcohols. (Higuchi 1985.) Lignin from softwood was more difficult to hydrolyze 
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because it contained a higher proportion of p-hydroxyphenyl units. The 

presence of methoxylated syringyl units made hardwood lignin more easily 

hydrolyzed during isolation process (Chiang and Funaoka 1990). Furthermore, 

because softwood lignin contained a lower portion of low-molecular-mass 

compounds as compared to hardwood lignin, these made it more difficult to 

release or soften the softwood lignin (Gellerstedt et al. 1994). Therefore, based 

on these two reasons, the yields of Kraft lignin from softwood were relatively 

higher than that from hardwood. 

 

5.2 Comparisons of the different Klason lignin 

 

To determine acid-insoluble Klason lignin content of the extractive-free sawdust, 

the procedure described in TAPPI T222 standard was followed. My experiment’s 

Klason lignins extractions from the four kinds of wood species are shown in the 

Figure 5.5. 

  

Figure 5.5 The Klason lignins of the four kinds of wood species. 

As can be seen from the Figure 5.5, there were some differences in a number 

of aspects, such as shape, color and lignin content. By contrast between 
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softwood and hardwood, the color of Klason lignin in pine and spruce was 

yellow, whereas the color in birch and aspen was dark brown; in another aspect, 

the isolation of Klason lignin from softwood was much easier than hardwood 

during isolation process. The shape of Klason lignin had obvious differences 

between softwood and hardwood. Moreover, the Klason lignin was isolated from 

about 1g of dry weight of sawdust, then the acid-insoluble Klason lignin 

contents were calculated in the samples by using the following equation (TAPPI 

T222 om-06).  

Lignin, % = A ×100 / W                                       (2) 

Where: A = weight of lignin, g 

            W = oven-dry weight of extractive-free sawdust, g 

According to the equation 5.1, the Klason lignin contents were calculated and 

shown in the Chart 5.2.  
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Chart 5.2 The Klason lignin contents of four kinds of wood species. 

The Chart 5.2 illustrated the comparison of lignin content in the softwood and 

hardwood. The Klason lignin content of softwood was relatively higher than that 

of hardwood.  

There were some similarities for isolation process between Kraft lignin and 

Klason lignin. Isolation of both lignins from softwood was much easier than that 
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from hardwood. And also the content of softwood lignins was higher than that of 

hardwood. This could show that the results correspond with data from literature. 

In addition, comparison with both lignins, the yield of Kraft lignin was obviously 

higher than that of Klason lignin. 

 

5.3 Analysis of UV spectra of Kraft lignin 

 

The UV spectra of Kraft lignin extracted from black liquor are shown in Figure 

5.6. The different spectra were compared for the four wood species. For each 

wood species, the spectra of lignin obtained at different pH values are also 

shown. The figure shows that, generally, each Kraft lignin had similar peak 

regardless of softwood or hardwood. Two peaks were obtained in every UV 

spectrum of Kraft lignin, which had the absorption maximum at wavelength of 

200 -210 nm and at 270-280 nm. For the softwood, e.g. pine and spruce, the 

spectra of lignin have certain differences at the different pH values.  

For Kraft lignin obtained from pine, Fig. 5.6 shows that UV spectrum had an 

absorption maximum at wavelength of 205-210 nm, and the second maximum 

was at 279.5 nm. The appearance of two characteristic peaks in the lignin 

spectrum originated from non-condensed phenolic groups (aromatic ring) in 

lignin. (IBRAHIM et al. 2006.) Small portion of unsaturated aliphatic units 

contained in lignin molecule also results in peak (Jahan & Mun 2007). On the 

other hand, the absorbance maximum value at short wavelength was higher 

than that at long wavelength. Moreover, absorbance of Kraft lignin of pine has a 

slight variation at different pH values. The lower absorbance at high pH value 

(pH 7) was due to the co-precipitated of non-lignin material. The absorbance of 

UV spectra is directly proportional to the purity level of lignin. (IBRAHIM et al. 

2006.) The UV absorbance of Kraft lignin of four wood species is shown in 

Table 5.1. 
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Figure 5.6 The UV spectra of Kraft lignin from black liquor of four wood species 

 

 

Pine 

Spruce 

Birch 

Aspen 
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Table 5.1 The UV absorbance of Kraft lignin of four species 

pH 2-3 pH 4 pH 7 pH 2-3 pH 4 pH 7

279.5 279.5 279.5 0.586 0.462 0.362

209.0 208.5 206.5 3.812 3.508 3.492

279.5 279.5 279.5 0.762 0.593 0.405

208.5 208.5 208.0 3.809 3.538 3.504

278.5 278.5 277.5 0.657 0.585 0.538

212.0 210.5 209.5 3.350 3.519 3.514

278.5 278.5 276.5 0.429 0.504 0.462

206.5 207.5 207.5 3.492 3.500 3.500

Spruce

Birch

Aspen

Wave length  (nm) Absorbance  (A)
Kraft Lignin

Pine

 

Comparison between softwood, such as pine and spruce, the Kraft lignin 

samples had similar UV spectra at three different pH values, however, the 

absorbance of Kraft lignin from spruce was a little bit higher than that from pine 

at each pH value as shown in Table 5.1. 

Figure 5.6 shows that Kraft lignin of birch had well defined maxima at the 

different pH values, and the values are around 278 nm and 210 nm. The 

absorbance of Kraft lignin of birch is shown in Table 5.1. Considering another 

type of hardwood, i.e. aspen, the UV spectrum is similar compared with that of 

birch, however, the absorbance of Kraft lignin of birch was slightly higher than 

that of aspen for each pH value. 

It can be summarized based on Figure 5.6 and Table 5.1, that both softwood 

and hardwood had similar UV spectra at different pH values. The two peaks 

were included in every UV spectrum, and every wavelength value was quite 

similar corresponding to its maximum absorbance; moreover, absorbance 

values were also almost the same in Kraft lignin samples. In both softwood and 

hardwood, there was a significant decrease in absorbance when the 

wavelength became gradually long. For the softwood, the spectrum has a 

certain difference at the different pH values, and this difference shows the purity 

of lignin.  
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Figure 5.7 The UV spectra of Kraft lignin at pH 2-3 

The UV spectra of Kraft lignin were compared at the same pH value of 2-3 for 

different wood species as shown in Figure 5.7. It can be seen there were 

significant differences for the spectra of the lignin considering the different wood 

species. The fluctuation of absorbance values of softwood or hardwood is quite 

small.  

When the pH values were 4 and 7, there were similar results and phenomenon 

on absorbance values changing for the four species as when the pH value was 

2-3. In addition, the absorbance of softwood was the same with hardwood at the 

same pH value. And also the absorbance values were obviously increasing with 

the wavelength decreasing at the same pH value for four wood species. 

 

5.4 Analysis of FTIR spectra of Kraft and Klason lignin 

 

In order to elucidate the structure of lignin and also to investigate the 

differences in the structure of the lignin, Kraft lignin and Klason lignin isolated 

from the four wood species were analyzed by FTIR. FTIR spectra were 

recorded and contained most of the characteristic absorption bands for the 

different chemical structures. For example, the comparison of different FTIR 

spectra of lignin from pine is shown in Figure 5.8. 
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Figure 5.8 The IR spectra of Kraft and Klason lignin of pine 

As can be seen from Figure 5.8, Kraft and Klason lignins showed almost the 

same FTIR spectra for pine at the different pH values. The two kinds of lignin 

samples indicated the presence of major peaks with corresponding functional 

groups, which were shown in Table 5.2.  

Table 5.2 Distribution of functional group for Kraft and Klason lignin from pine 

(IBRAHIM et al. 2006, Ghatak 2008) 

 

Band from FTIR Molecular structure Lignin 

3365-3350 cm-1 OH stretching vibration Kraft lignin 

Klason lignin 

2932-2930 cm-1 C-H stretching vibration Kraft lignin 

Klason lignin 

1690 cm-1 Conjugated carbonyl stretching Kraft lignin 
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1603 and 1504 cm-1 aromatic rings Kraft lignin 

Klason lignin 

1460 cm-1 C-H deformation and aromatic 

ring vibration 

Kraft lignin 

Klason lignin 

1370 cm-1 Bending vibrations of OH bonds Kraft lignin 

1280 & 1270 cm-1 guaiacyl ring breathing with C-O 

stretching 

Kraft lignin 

Klason lignin 

1116 cm-1 ether stretching Kraft lignin 

1030 cm-1 C-O deformation Kraft lignin 

Klason lignin 

840-830 cm-1 C-H deformation and ring 

vibration 

Kraft lignin 

Klason lignin 

As can be seen from Table 5.2, the absorption bands with distribution of 

functional groups of Pine Klason lignin were similar to that of Kraft lignin. 

However, there were still slight differences between Kraft and Klason lignin. The 

absorption band of O-H stretching shifted to higher bands in Klason lignin, 

compared with Kraft lignin. In the intermediate and low band regions, the 

conjugated carbonyl stretching and bending vibrations of OH bonds were 

absent in Klason lignin, and 1280 cm-1 can be assigned to ring breathing with C-

O stretching. (Ghatak 2008.) 

In the same way, the IR spectra of other wood species such as spruce, birch 

and aspen were similar with pine, and they are shown in Appendix 1-2. For 

hardwood, the absorbance near 1330 cm-1 (syringyl) and 1270 cm-1 (guaiacyl) 

was typical for hardwood lignin (Faix 1991). Further evidence of the syringyl 

content in birch and aspen lignin was afforded by it having a band near 835 cm-1 

but no band at 855 or 815 cm-1, later two guaiacyl bands were typical for 

softwood lignin not exhibited by hardwoods (Obst J.R. 1982). The Kraft and 

Klason lignin for birch indicated the presence of major peaks with corresponding 

functional groups, which were shown in Table 5.3. 
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Table 5.3 Distribution of functional group for Kraft and Klason lignin from birch 

(Lora and Wayman 1980, Jahan & Mun 2007) 

Band from FTIR Molecular structure Lignin 

1710 cm-1 Unconjugated C=O Kraft lignin 

1330 & 1111 cm-1 syringyl structure Kraft & Klason lignin 

1215 & 1028 cm-1 guaiacyl structure Kraft & Klason lignin 

It can be seen from Table 5.3 that some different absorbance bands with 

functional groups of Kraft and Klason lignin for birch at various pH values were 

revealed, compared with pine. There were also obvious similarities between 

Kraft and Klason lignin for birch. The band at 1330 and 1111 cm-1 were 

associated with syringyl structure in the lignin molecules; the band at 1215 and 

1028 cm-1 were associated with guaiacyl structure in lignin molecules, which 

indicated the simultaneous presence of both guaciyl and syringyl unit in the 

Kraft and Klason lignin molecule. However, presence of some functional groups 

was different in both Kraft and Klason lignins. For instance, the C=O in 

unconjugated ketone (β-carbonyl) was absent in Klason lignin. (Jahan & Mun 

2007.) 

Comparison of the IR spectra of Kraft lignin and Klason lignin for the same 

wood species, e.g. pine, is shown in Figure 5.8 and other IR spectra are shown 

in Appendix 1-2. It can be seen from the figures, although the IR spectra of both 

these two types of lignin were not different, that they still had a little distinction. 

There was a shift in the high absorption band region, and band at 800-900 cm-1 

was an entirely diverse absorption pattern. Moreover, the absorbance of Klason 

lignin in high bond region was obvious lower than that of Kraft lignin. Thus, the 

different lignin isolation methods were a different regarding the chemical 

structures. 

The FTIR spectra obtained for Kraft lignin from the four wood species are 

shown in Figure 5.9. Since a general similarity of IR spectra was evident for all 

the samples, only those bands which varied markedly were discussed. 
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Figure 5.9 The IR spectra of Kraft lignin of four wood species at pH 2-3 

It can be seen from Figure 5.9, that the broad band at 3310-3340 cm-1 was due 

to O-H stretching vibration, and the band at 2930 cm-1 was characteristic of 

various types of C-H bonds, generally, which were present in the Kraft lignin of 

softwood, but they did not exhibit for hardwoods. The spectra of softwood and 

hardwood exhibited a completely different absorption pattern at 700-900 cm-1 

region. The band indicated a shift from typical guaiacyl-propane aromatic 

substitution to a more complicated pattern (Hu 2006). Therefore, the analysis 

results clearly indicated that Kraft lignins of softwood and hardwood were 

different in their chemical structures. The common points for the softwood and 

hardwood show in the medium and weak absorption band regions. The IR 

spectra exhibited a high intensity condition for all Kraft lignin samples, the C=O 

stretching vibration, aromatic skeletal vibration, C-H deformation and aromatic 

ring vibration and C-O stretching vibration would occur. 

Similarly, the IR spectra of Klason lignin of the four wood species were analyzed 

in the same way as in the above method and are shown in Appendix 3. As can 
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be seen, each wood species had a similar absorption profile for the different 

types of wood, i.e. softwood and hardwood. However, the adsorption values 

depend on the various wood species. 

 

 

6 SUMMARY 

 

In this work two different isolation methods, i.e. Kraft lignin and Klason lignin, 

from two kinds of wood species, i.e. softwood and hardwood, were investigated. 

The Kraft lignin and Klason lignin were identified by using the spectroscopic 

instruments, UV and FTIR spectrometer.  

The Kraft lignin was obtained from black liquor from wood. The precipitation of 

black liquor with sulfate acid was successful to obtain the lignin as solid 

particles. The results showed that the color, shape and size of lignin particles 

had a certain difference depending on the pH values and wood species. Klason 

lignin was isolated from wood continuously with several steps, such as, isolation 

of extractives with alcohol-benzene, acid treatment of extractive-free wood etc. 

The results also showed that solid particles of Klason lignin depending on the 

wood species.  For a certain amount of raw materials, the results showed that 

the content of lignin Kraft and Klason lignin in softwood was higher than that in 

hardwood, which was supported by the literature study of wood. Furthermore, 

the Kraft lignin yield was higher than Klason lignin. For the Kraft lignin, the lower 

the pH value, the higher yield isolated from black liquor. 

UV spectrum recorded the lignin purity based on value of absorbance. The UV 

spectra showed absorption maxima at approximate 208 and 280 nm for Kraft 

lignins. For the softwood, the absorption profile had a certain difference at the 

various pH values. The theory explaining the UV analysis was given based on 

the literature study. The UV results showed that the lignins obtained in this 
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experimental work were the relative pure product.   

IR spectrum recorded the functional groups included in lignin. The different 

band values in IR spectrum of lignin were explained based on the literature 

study. The analysis of IR spectra revealed that the chemical structure of lignin 

varies depending on its wood species and the isolation method employed. 

Therefore, according to the analysis results, lignin can be quantitative and 

qualitative identified by Ultraviolet (UV) and Fourier Transform Infrared (FTIR) 

spectroscopy. 
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