
UNIVERISTY CA’ FOSCARI OF VENICE

TURKU UNIVERSITY OF APPLIED SCIENCES

B.Sc. in Computer Science

Empirical Analysis of a Parallel Data
Mining Algorithm on a Graphic

Processor

Candidate

Davide Berdin

Supervisor

Prof. Claudio Silvestri

Referee

Prof. Jari-Pekka Paalassalo

November 2nd, 2012

Viagiar descanta,
ma chi parte mona, torna mona.

Antico detto veneziano

Contents

1 Introduction 2

2 CUDA Framework 3
2.1 What is CUDA? . 3
2.2 Program Structure . 3
2.3 Kernel Functions and Threading Operations 5
2.4 Cuda Device Memory Types . 7

2.4.1 Register . 7
2.4.2 Local . 7
2.4.3 Shared . 8
2.4.4 Global . 8
2.4.5 Constant . 8

2.5 Thread Synchronization . 9

3 Association Mining 10
3.1 Association Mining Rules . 10
3.2 Goals of Association Mining . 11
3.3 Frequent Itemset Mining . 12
3.4 Apriori Algorithm . 14

3.4.1 Formal Statement . 14
3.4.2 Pseudocode . 14

3.5 Computational Complexity . 15
3.6 Frequent Sequences Mining . 16

4 SPAM 17
4.1 Overview . 17
4.2 Problem . 17
4.3 The SPAM Algorithm . 18
4.4 S-step and I-step . 19
4.5 Pruning . 20
4.6 Data Structure . 20
4.7 Candidate Generation . 20

4.7.1 S-step Processing . 20
4.7.2 I-step Processing . 21

5 gpuSPAM 22
5.1 An overview of gpuSPAM . 22
5.2 Candidate-wise parallelization . 23
5.3 Transaction-wise parallelization . 23

i

5.4 Implementation . 24
5.4.1 Bitmaps Intersection and Counting 24
5.4.2 ANDing and Counting operations 25

5.5 Reduction . 26
5.5.1 Parallel Reduction Complexity 26

5.6 The gpuSPAM Application . 28
5.6.1 Classes Diagrams . 28

5.7 Data Flow Chart of Mining process 30
5.8 Testing . 31

6 Experimental Results 33
6.0.1 Test environment and datasets 33
6.0.2 Synthetic data generation . 34
6.0.3 Graphs of results . 34

7 Conclusions 37
7.0.4 Future works . 37

ii

List of Figures

2.1 Execution of a CUDA program . 4
2.2 Blocks and Threads Organization . 5
2.3 Thread Organization . 6
2.4 Memory structure . 7
2.5 Thread Block . 9

3.1 Lattice of Database D . 13

4.1 Lexicographic Tree . 19

5.1 Tree-based approach . 26
5.2 Di↵erence between O(N) and O(Log(N)) computation complexity . . 27
5.3 Amount of Bandwidth with reduction 27
5.4 Classes diagram of SPAM . 28
5.5 Classes diagram of gpuSPAM . 29
5.6 Data Flow Chart . 30

6.1 Time taken comparing the two applications 35
6.2 Comparation between operations and Bitmaps 36

iii

List of Tables

2.1 CUDA extensions to C functional declaration. 5
2.2 Memory types resume. 9

3.1 Market Basket Analysis . 11
3.2 Dataset D . 12

6.1 Summary of used datasets . 34
6.2 Time taken for all operations of Bitmap 32 34
6.3 Time taken for all operations of each Bitmap 36

iv

List of Algorithms

3.1 Apriori Pseudocode . 14
5.1 Candidate wise . 25
5.2 Transaction wise . 25

v

Abstract

In this thesis, we analyze in an empirical way a di↵erent approach of the algorithm
SPAM (Sequential PAttern Mining using A Bitmap Representation) made by J.
Ayres, J. Gehrke, T. Yiu and J. Flannick from Cornell University, exploiting GPUs.

SPAM is a novel approach for FSM (Frequent Sequence Mining) where the al-
gorithm is not looking for a single item during the mining process but for a set of
items that customers have taken in their transactions. Basically we can think of
Spam as a supermarket where the customers have the ”Fidelity card” and that the
supermarket can track the transactions. What Spam does is to calculate which are
the most bought items per customer.
But the question is: Why graphic cards ? The answer is pretty easy: graphic cards
can benefit of a rich amount of data parallelism allowing many arithmetic operations
to be safely performed on program data structures in a simultaneous manner. In
our tests we noticed that performing a massive amount of multiplications (or any
other kind of operation) with the CPU took at least the 60% more rather than the
GPU. Just with this simple case, we could understand the potential of GPUs.

ACM Classification: B.2.1, B.2.2, B.2.4, B.3.2, B.3.3, H.2.8
Keywords: GPGPU, CUDA, Frequent itemsets, Frequent sequences

vi

Acknowledgements

Many people have been important to this work, with their guidance, suggestions
and corrections.
First of all, I would like to thank my teachers: Prof. Claudio Silvestri introduced
me into the Data Mining and Parallel Programming world that I found absolutely
fascinating. He supported me during the whole period while I was writing the thesis
giving good explanations for a good understanding of GPU programming and data
structure algorithms.

In the same way, I’d like to thank my referee Jari-Pekka Paalassalo who always
supported my work even when it apparently seemed to be unfruitful. During these
months he has made available his support and many times he helped me to figure
out when I was stuck or without any ideas for continuing the project.

This year abroad gave me the opportunity to meet a lot of people from many
parts of Europe. The Embedded Software lab at ICT-Talo has been a very nice
environment to work at, and I would like to thank everybody there: I would like to
show my gratitude to Till Riemer who has been a perfect colleague to work with
and, more important, a good friend.

This thesis is dedicated to my family. So many thanks to my parents and my
brother Elia Berdin for their unconditional support: I’d have never reached this
goal without their help. It has always been important to me to know that there is
a safe place where I can always rest. Their trust in me has been really motivating
especially in those moments that you would give up. I will never forget it!

1

Chapter 1

Introduction

”I find that a great part of the information I have
was acquired by looking up something and
finding something else on the way”

Franklin Pierce Adams
Reader’s Digest (1960)

Progress in digital data acquisition and storage technology has resulted in the
growth of huge databases. This has occurred in all areas of human endeavor, from
the mundane (such as supermarket transaction data, credit card usage records and
telephone call details) to the more exotic (such as images of astronomical bodies,
molecular databases, and medical records). Little wonder, then, that interest has
grown in the possibility of mining these data, of extracting from them information
that might be of value to the owner of the database. The discipline concerned with
this task has become known as Data Mining.

Data mining is the analysis of (often large) observational data sets to find un-
suspected relationships and to summarize the data in novel ways that are both
understandable and useful to the data owner. The relationships and summaries de-
rived through a data mining exercise are often referred to as Models or Patterns.
[1] From now, I will reserve the term Data Mining to the first meaning, using the
more general KDD - Knowledge Discover in Databases - for the whole workflow
that is needed in order to apply Data Mining algorithms to real world issues.

The kind of knowledge we are interested in, together with the organization of in-
put data and the criteria used to discriminate among useful and useless information,
contributes to characterize a specific data mining problem and its possible algorith-
mic solutions. Common data mining tasks are the classification of new objects
according to a scheme learned from examples, the partitioning of a set of objects
into homogeneous subsets, the extraction of association rules and numerical rules
from a database. [2]

2

Chapter 2

CUDA Framework

”The real technology behind all our other
technologies is language.
It actually creates the world our consciousness lives in.”

Andrei Codrescu

2.1 What is CUDA?

CUDATM is a parallel computing platform and programming model invented by
NVIDIA. It enables dramatic increases in computing performance by harnessing the
power of the graphics processing unit (GPU). With millions of CUDA-enabled GPUs
sold to date, software developers, scientists and researchers are finding broad-ranging
uses for GPU computing with CUDA.

To a CUDATM programmer, the computing system consists of a host, which is
a traditional central processing unit (CPU), and one or more devices, which are
massively parallel processors equipped with a large number of arithmetic execu-
tion units. In modern software applications, program sections often exhibit a rich
amount of data parallelism, a property allowing many arithmetic operations to be
safely performed on program data structures in a simultaneous manner. The CUDA
devices accelerate the execution of these applications by harvesting a large amount
of data parallelism.

2.2 Program Structure

A CUDA program consists of many phases that are executed on either the CPU
(Host) or a device such as a GPU. All the phases are implemented in the part called
host code. The other phases, which exhibit a rich amount of data parallelism, are
implemented in the part called device code. Of course the NVDIA C compiler (nvcc)
splits the parts related to the host from these related to the device. The host code
is written using ANSI C code and it is compiled with the standard C compilers and
runs as an normal CPU process. The device’s code is also written using ANSI C
extended with keywords for labeling data parallelism functions, called kernels, and
their data structures that belong to them.

3

”The kernel functions generate a large number of threads to exploit data paral-
lelism. It is worth nothing that CUDA threads are of much lighter weight than the
CPU threads. CUDA programmers can assume that these threads take very few cy-
cles to generate and schedule due to e�cient hardware support. This is in contrast
with the CPU threads that typically requires thousands of clock cycles to generate
and schedule”.[3]

As you can evaluate from Figure 2.1, the execution starts with a CPU execution
and then, when a kernel function is launched, the execution is moved to the GPU,
where a large number of threads are generated. All the threads that are generated by
a kernel during an invocation are collectively called a grid. When all threads have
completed their execution, the corresponding grid terminates and the execution
continues on the CPU until another kernel function is launched.

The execution of a typical CUDA program is illustrated in Figure 3.2.
The execution starts with host (CPU) execution. When a kernel function is
invoked, or launched, the execution is moved to a device (GPU), where a
large number of threads are generated to take advantage of abundant data par-
allelism. All the threads that are generated by a kernel during an invocation
are collectively called a grid. Figure 3.2 shows the execution of two grids
of threads. We will discuss how these grids are organized soon. When all
threads of a kernel complete their execution, the corresponding grid termi-
nates, and the execution continues on the host until another kernel is invoked.

3.3 A MATRIX–MATRIX MULTIPLICATION EXAMPLE
At this point, it is worthwhile to introduce a code example that concretely
illustrates the CUDA program structure. Figure 3.3 shows a simple main
function skeleton for the matrix multiplication example. For simplicity,
we assume that the matrices are square in shape, and the dimension of each
matrix is specified by the parameter Width.

The main program first allocates the M, N, and P matrices in the host
memory and then performs I/O to read in M and N in Part 1. These are
ANSI C operations, so we are not showing the actual code for the sake of
brevity. The detailed code of the main function and some user-defined
ANSI C functions is shown in Appendix A. Similarly, after completing
the matrix multiplication, Part 3 of the main function performs I/O to write
the product matrix P and to free all the allocated matrices. The details of
Part 3 are also shown in Appendix A. Part 2 is the main focus of our

CPU serial code
Grid 0

. . .

CPU serial code

. . .

Grid 1

GPU parallel kernel
KernelA<<< nBlK, nTid >>>(args);

GPU parallel kernel
KernelA<<< nBlK, nTid >>>(args);

FIGURE 3.2

Execution of a CUDA program.

42 CHAPTER 3 Introduction to CUDA

Figure 2.1: Execution of a CUDA program.

As the reader can evaluate from the picture above, every time that a kernel is
launched, the grid is composed with either one or several subsets of blocks. Indeed,
a grid is a two dimensional level where blocks are distributed. This means that a
grid can have just precise amount of blocks along the x axes and a precise amount
of blocks along the y axes as well. But, a single block is just a set of threads which is
composed in a three dimensional way. Based on these instructions, the programmers
have every time to define the amount of blocks and threads per blocks for taking
advantage of data parallelism.

4

Figure 2.2 depicts how the structure is organized.

Figure 2.2: Thread distribution into the two level hierarchy of CUDA.

2.3 Kernel Functions and Threading Operations

In CUDA, a kernel function specifies the code to be executed by all threads during
a parallel process. Because all of these threads execute the same code, CUDA pro-
gramming is an instance of the well-known single-program, multiple-data (SPMD)
parallel programming style, a popular programming style for massively parallel com-
puting system.[4] As said above, CUDA provides some new keywords beyond ANSI
C standard code. In general, CUDA extends C function declarations with three
qualifier keywords (see Table 2.1).
Some definitions:

• The global keyword indicates that it is a kernel function. It will be exe-
cuted on the device and can only be called from the CPU to generate a grid
of threads on the GPU.

• The device keyword indicates that it is a device function. It will be
executed on a CUDA device and can only be called from a kernel function
or another device function. Device functions can have neither recursive nor
another device function.

• The host keyword indicates that is a host function. It is simply a tra-
ditional C function that executes on the host and can only be called from
another host function. By default, all functions in a CUDA program are host
functions if they don’t have any of the CUDA keywords in their declaration.

Executed on the: Only callable from the:

device float DeviceFunc() device device

global void KernelFunc() device host

host float HostFunc() host host

Table 2.1: CUDA extensions to C functional declaration.

5

CUDA o↵ers other notable extensions of ANSI C like threadIdx.x and blockIdx.x,
which refer to the thread indices of a thread and an indices of a block respectively. It
has to be noticed that all the threads are executing the same kernel code. The key-
words threadIdx.x and threadIdx.y identify predefined variables that allow the thread
to access the hardware register at runtime that furnish the identifying coordinates
to the thread.

As said above, when a kernel is invoked, it’s executed as a grid of parallel threads.
Those two keywords appear as well-defined variables that can be accessed just with
kernel functions and assigned at CUDA runtime:
- blockIdx.x for block index;
- threadIdx.x for thread index.

Additional reserved variables, gridDim and blockDim, provide the dimension of
the whole grid and the dimension of each block as well.
Figure 2.3 shows the whole organization:

Figure 3.8. Each thread also uses its threadIdx.x and threadIdx.y values to
select the Pd element that it is responsible for; for example, Thread2,3 will
perform a dot product between column 2 of Nd and row 3 of Md and write
the result into element (2,3) of Pd. This way, the threads collectively gen-
erate all the elements of the Pd matrix.

When a kernel is invoked, or launched, it is executed as grid of parallel
threads. In Figure 3.13, the launch of Kernel 1 creates Grid 1. Each CUDA
thread grid typically is comprised of thousands to millions of lightweight
GPU threads per kernel invocation. Creating enough threads to fully utilize
the hardware often requires a large amount of data parallelism; for example,
each element of a large array might be computed in a separate thread.

Threads in a grid are organized into a two-level hierarchy, as illustrated
in Figure 3.13. For simplicity, a small number of threads are shown in
Figure 3.13. In reality, a grid will typically consist of many more threads.
At the top level, each grid consists of one or more thread blocks. All blocks
in a grid have the same number of threads. In Figure 3.13, Grid 1 is
organized as a 2!2 array of 4 blocks. Each block has a unique two-
dimensional coordinate given by the CUDA specific keywords blockIdx.x

and blockIdx.y. All thread blocks must have the same number of threads
organized in the same manner.

• A thread block is a batch
 of threads that can
 cooperate with each
 other by:

Host Device

Synchronizing their
execution

Kernel
1

Block
(0, 0)

Block
(1, 0)

Block Block

• For hazard-free shared
 memory accesses

—

—

Efficiently sharing data
through a low-latency
shared memory

Kernel

(0, 1) (1, 1)

Grid 2

• Two threads from two
 different blocks cannot
 cooperate

Block (1, 1)

Thread Thread

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Grid1

(2,0,0) (3,0,0)

2

Thread Thread
(0,0,0) (1,0,0)

Thread
(0,1,0)

FIGURE 3.13

CUDA thread organization.

54 CHAPTER 3 Introduction to CUDA

Figure 2.3: CUDA Thread Organization.

The total size of a block is limited to 512 threads, with flexibility in distributing
these elements into the three dimensions as long as the total number of threads does
not exceed 512. But in our case, the GPU that we used could have as maximum
value 1024 threads per block.

6

2.4 Cuda Device Memory Types

In this section we describe di↵erent memory types [5][6]. There are several di↵erent
types that CUDA has access to and for all of them there di↵erent features to keep
in mind during the development. For example Global Memory has a very large
address space but the time required to access this memory is very high, rather then
Shared Memory where the address space is very small but the memory latency is
very low. Those are just some examples; Figure 2.4 shows the whole organization:

Figure 2.4: Example of CUDA memory organization for each block.

2.4.1 Register

Register memory access is very fast but the number of available registers for each
block is very limited. Each register’s variable is private for the thread, so each thread
will have a private version of every register variable and, of course, the life-time is
as long as the thread exists. Not less important, register variables can be both read
and written inside the kernel and do not be synchronized.

2.4.2 Local

Local memory is used from the compiler when any variable that cannot fit into
the register space. Thus, it will put automatically in another space address. Local
memory has the same memory latency as global memory, so it takes a lot before to
transfer all the data. This type is allowed just on devices with CUDA capability
2.x. As for register variable, local variables has life-time as long as the thread who
it belongs to.

7

2.4.3 Shared

Variables that are declared with shared attribute are stored in shared memory.
Accessing the shared memory is very fast although each streaming multiprocessor
has a limited amount of shared memory address space. Shared variables have to be
declared within the scope of the kernel but the life time is as long as the block is
used. Hence, when a block has finished the execution, the shared memory that was
defined in the kernel cannot be accesed again.
Since shared memory is very fast, it is more e�cient to copy part of the data in
that space address because the memory latency is quite low compared with global
memory. In this way it is reduced the number of access to the global memory.
Modification of shared memory must be synchronized unless it is sured that each
thread will only access the memory that will not be read-from or written-to by
other threads in the block. In the next section we will talk about the whole thread
synchronization. A good point to use shared memory it is that all threads can
share this kind of memory and being sure that all of them wil stay in the same SM
(Streaming Multiprocessor - explained later) disputing the same resources.

2.4.4 Global

Global variables are those which are declared with device attribute and since
they are declared outsite of the kernels functions (global scope) they are stored in
global memory. The time requested for accesing to those variables is very high but
the advantage is that the amount of space address is huge compared with shared
memory. Global memory has a life-time of the application and is accessible to all
threads of all kernels. The programmer has to pay attention when global memory is
going to be either read or written because thread execution cannot be synchronized
across di↵erent blocks.

2.4.5 Constant

Variables that are decorated with the constant attribute are declared in Constant
memory. Like global variables, constant variables must be declared in global scope,
so outside of kernel functions. Constant variable shares the same memory banks as
global memory but unlike global memory, there is only a limited amount of constant
memory that can be declared. As global memory, also constant memory has life-
time of the whole application. It can be accessed by all threads of all kernels and
the value will not change across kernel invocations unless explicitly modified by the
host process.

8

Here, the all kind of memories resumed in one table with their own Location and
kind of Access as well.

Memory Location Access Scope

Register On-chip Read/Write One thread

Local O↵-chip Read/Write One thread

Shared On-chip Read/Write All threads in a block

Global O↵-chip Read/Write All threads + host

Constant O↵-chip Read All threads + host
Table 2.2: Memory types resume.

2.5 Thread Synchronization

CUDA allows threads in the same block to coordinate their activities using a syn-
chronization function, syncthreads(). When a kernel function is called and the
keyword syncthreads() has been invoked, the thread that executes the function call
will be held at the calling location until each thread in the block reaches the proper
location. [3] reports that, when the synchronization function is placed in an if state-
ment, either all threads in a block execute the path that includes the syncthreads()
or none of them do. For an if -then-else statement, if each path has a syncthreads()
statement, then either all threads in a block execute the syncthreads() on the then
path or all of them execute the else path.

An important step for threads is how they are assigned to compute their job.
Once a kernel is invoked, the CUDA runtime system generates the corresponding grid
of threads. The execution resources are organized into streaming multiprocessors
- SMs. In certain situations it could happen that the amount of any one or more
types of resources needed for simultaneous execution is not su�cient; in this case the
CUDA runtime automatically reduces the number of blocks assigned to each SM until
the resources usage is under limit [3]. Figure 2.5 shows how threads are assignment
to SMs.

be in the form of 4 blocks of 256 threads each, 8 blocks of 128 threads each,
etc. It should be obvious that 16 blocks of 64 threads each is not possible, as
each SM can only accommodate up to 8 blocks. Because the GT200 has 30
SMs, up to 30,720 threads can be simultaneously residing in the SMs for exe-
cution. The number of threads that can be assigned to each SM increased
from the G80 to the GT200. Each SM in G80 can accommodate 768 threads,
and, because the G80 has 16 SMs, up to 12,288 threads can be simultaneously
residing in the SMs for execution. The transparent scalability of CUDA
allows the same application code to run unchanged on G80 and GT200.

4.5 THREAD SCHEDULING AND LATENCY TOLERANCE
Thread scheduling is strictly an implementation concept and thus must be
discussed in the context of specific hardware implementations. In the
GT200 implementation, once a block is assigned to a streaming multipro-
cessor, it is further divided into 32-thread units called warps. The size of
warps is implementation specific. In fact, warps are not part of the CUDA
specification; however, knowledge of warps can be helpful in understanding
and optimizing the performance of CUDA applications on particular genera-
tions of CUDA devices. The warp is the unit of thread scheduling in SMs.

SP SP

MT IU IUMT

t0 t1 t2 … tm t0 t1 t2 … tm

Blocks

Shared
Memory

Shared
Memory

Blocks

SM 1SM 0

FIGURE 4.9

Thread block assignment to streaming multiprocessors (SMs).

714.5 Thread Scheduling and Latency Tolerance

Figure 2.5: Thread block assignment to streaming multiprocessors (SMs).

9

Chapter 3

Association Mining

”Computers are famous for being able
to do complicated things starting
from simple programs”

Seth Lloyd
Interview at EdgeFoundation (1999)

3.1 Association Mining Rules

The core of associative rules is to describe and analyze strong rules using di↵erent
measures of interestingness. If, for example, the data represents the objects bought
in the same shopping chart by the customers of a supermarket, then the main task
will be finding rules relating the fact that a market basket contains an item with
the fact that another item has been bought at the same time.

Referring to the supermarket, one of these rules could be ”people who buy Bread
and also buy Peanut butter at the same time will also buy Milk later in conf% cases”,
but also the more complex ”people who buy Bread followed by Peanut butter, after
some time will also buy Milk later in conf% cases” where conf% is the confidence
of the rule. Another important measure, frequently used combined with confidence,
is the support of a rule, which is defined as the number of records in the database
that confirm the rule. Generally, the user specifies minimum thresholds for both, so
an interesting rule should have both a high support and a high confidence, i.e. it
should be based on a significant number of cases to be useful, and at the same time,
there should be few cases in which it is not valid.
As next step, it is necessary to find the, as it called, frequent patterns, such as
patterns that occur in a significant number of records. When those pattern are
determined, the actual association rule can be defined as follow: X) Y , that it is
read as every time that X occurs in a transaction (sequence), most likely also Y will
also occur (later).

10

Table 3.1 depicts the previous example:

Transaction Items

t1 Bread, Jelly, Peanut butter

t2 Bread, Peanut butter, Diaper

t3 Bread, Milk, Peanut butter

t4 Beer, Bread

t5 Beer, Milk
Table 3.1: Market Basket Analysis

In this case I = {Beer, Bread, Jelly, Milk, Peanut butter} and, for instance the
minimum Support is 60% the result will be the set composed by the Itemset {Bread,
Peanut butter}.

Going deeply with math definitions, the Association Rule is defined as X) Y
where X, Y ✓ I and X \ Y = ;. In the end we have the Confidence of Association
Rule (↵) X) Y which is the ratio of the number of transactions that contain X[Y
to the number that contain X.

Sequential rules are an extension of association rules, which also considers se-
quential relationships, but this time the input data are sequences of sets. Continuing
with the example of the supermarket (and the table above), each transaction is re-
lated to a customer. Hence, the supermarket could track the item bought from each
customer and make statistics (or suppositions) that when the customer will come
back there are a conf % cases that he/she buys Peanut butter if he/she buys Bread.

3.2 Goals of Association Mining

There are three goals [7] that Association Mining has to reach:

Association
Association rules are statements of the form {X1, X2, . . . , Xn}) Y , meaning
that if we find all the elements (or items) in the market basket, then we have
high probability of finding Y.

Causality
Ideally, we would like to know that in an association rule the presence of
{X1, X2, . . . , Xn} actually ”causes” Y to be bought. Still, ”causality” is an
exclusive concept, nevertheless, for market basket data, the following test sug-
gests what causality means. But as [8] reports in the Example 1, the item
Y can be bought if the association {X1, X2, . . . , Xn}) Y have both high
confidence and high support. A practical example: if we lower the price of
Diapers and raise the price of Beer, we can lure diaper buyers, who are more
likely to pick up Beer while in the store, thus covering our losses on the Dia-
pers. That strategy works because ”Diapers causes Beer”. However, working
it the other way round, running a sale on Beer and raising the price of Diapers,
will not result in Beer buyers buying Diapers in any great numbers, and we
lose money.

11

Frequent Itemset
In several situations, we only care about the first two goals involving sets of
items that appear frequently in baskets. For instance, we can’t run a good
marketing strategy involving items that anyone buys anyway. Hence, much
data mining starts with the assumption that we only care about sets of items
with high support. We can then find association rules or causalities involv-
ing high-support set of items (i.e. {X1, X2, . . . , Xn, Y } which must appear
in at least a certain percent of the baskets, as we defined above, supporting
threshold.

3.3 Frequent Itemset Mining

We formalize the problem of mining frequent itemsets as follows: Let I = {x1, . . . , xn}
be a set of items and an itemset X is a subset of I. A transactional database is
a collection of itemsets such as D = {t1, t2, . . . , tn} with ti � I called transaction.
The support of an itemset X is the database D, denoted as �(X) when D is clear
from the context, is the ratio of transactions that includes X. Given a minimum
support �, an itemset X such that �(X) � � is called frequent or large, since they
have a large support. The Frequent Itemset Mining problem requires to discover all
the frequent itemsets in D given �. [9]
Moreover, a subset of a frequent itemset is frequent itself. This reason is given by
the Anti-Monotonic property, that we explain with the following example:
If {AB} is a frequent itemset, both {A} and {B} are frequent because �({A}) �
�({AB}) and �({B}) � �({AB}).
Of course, if the {A} and {B} is not-frequent as well as {AB} is not frequent becuase
the minimum supp > �({A}) � �({AB}). Indeed, those rule are being used for
generating the Association Rules as the reader can see above.
The main di�culty of FIM algorithms comes from the large size of the search space.
In principle, every itemset in powerset P (I) is potentially frequent, and a whole
scan of the dataset is required to calculate its exact support. Indeed, given the Anti-
monotonic property, Data mining algorithm can drastically reduce the huge amount
of computation that we have without exloiting it. Just imagine with 1 billion of
transaction, if we should mine through whole this massive dataset without using
this property: the number of candidates producted from the itemsets generation are
prohibitive.
As usual we will use a lattice of itemsets, where node are in lexicographical order,
to visualize such search space as in Figure 3.2:

TID Items

1 b, d

2 a, b, c, d

3 a, c, d

4 c
Table 3.2: Dataset D

12

2.2. Frequent itemsets mining algorithms 11

the dataset D

TID items

1 {b, d}
2 {a, b, c, d}
3 {a, c, d}
4 {c}

the lattice

of frequent

itemsets

abcd 1

acd 2
abc 1 abd 1 bcd 1

ac 2 ad 2ab 1
bd 2bc 1 cd 2

a 2 b 2 c
3

d 3

� 4 abd 1

Frequent Itemset

Support

Figure 2.1: (top) The input transactional dataset D, represented in its horizontal
form. (bottom) Lattice of all the frequent itemsets with � = 1.

More formally, the problem of finding the number of frequent itemsets is #P-
hard [29]. The class of #P problems is the counting counterpart of usual decision
problems. For instance, a #P problem is #SAT: “How many di↵erent variables
assignments will satisfy a given DNF formula ?”. The classes of #P, #P-hard and
#P-complete problems were first introduced in [65], and consider that many pattern
mining tasks fall in to the toughest class of #P-complete problems [72].

Apriori [1]

The first proposed FIM algorithm is Apriori. It exploits a bottom-up level-wise
exploration of the lattice of frequent itemsets. During a first scan of the dataset,
all the frequent singletons, denoted with L1, are found. Next, L1 is used to find the
set of frequent 2-itemsets L2, and so on until all the frequent patterns have been
discovered.

Each iteration is composed of two steps: candidate generation and support count-
ing. During the first step, a collection of possibly frequent itemsets Ck of length k is
generated, and their actual support is calculated with a single scan over the dataset
during the second step. In principle, it would be easy to generate at each iteration
all the possible k-itemsets given that I is known. In this way, we would have an
extremely large collection of itemsets that have to pass the support counting phase.
The Apriori algorithm uses a simple property in order to reduce the number of

Figure 3.1: (top) The input transactional dataset D, represented in its horizontal form.
(bottom) Lattice of all the frequent itemsets with � = 1

Two Approaches can be used:

1 Naive or Brute-Force Approach

2 Apriori (see next Section)

The Naive or Brute-Force one is based on the principle that ”each itemset in
the lattice is a frequent itemset” where every transaction is matched against each
candidate. In this way, the Computational Complexity is prohibitive becuase, ac-
cording with [10], we have O(MNw), where M is the List of Candidates, N is the
number of transactions and w is the itemset for each transaction. And this is very
expensive becase it produces M = 2d. Continuing with more math, this following
formula calculates the number of rules:

R =
d�1X

k=1

"✓
d

k

◆ d�kX

j=1

✓
d � k

j

◆#
= 3d � 2d+1 + 1

having d as a unique items.
With di↵erent strategies we can reduce the total complexity of the itemset genera-
tion, such as:

Candidates (M)
Complete search M = 2d, using pruning techniques for reducing M

Transactions (N)
Reduce size of N as the size of itemset increases

Comparisons (NM)
Use e�cient data structures to store the candidates or transactions and there
is no need to match every candidate against every transaction

with Apriori we are going to reduce the number of candidates.

13

3.4 Apriori Algorithm

As [11] says, Frequent itemset mining sets of items that appear in a percentage of
transactions with the percentage, called support, larger than a given threshold. The
Apriori algorithm finds all frequent itemsets in multiple passes, given a support
threshold. At the first pass, it finds the frequent items. Generally at the l-th pass,
the algorithm finds the frequent items each consisting of l items (named l-itemsets).
In each pass, it first generates candidate (l+1)-itemsets from the frequent l-itemsets,
then counts the supports of these candidates and prunes those candidates whose
supports are less than a given support threshold. The algorithms ends when no
candidate is generated in a pass.

3.4.1 Formal Statement

[12] Let I = {i1, i2, . . . , im} be a set of items. Now, let D be a set of transactions,
where each transaction T is a set of items such that T ✓ I. Associated with each
transaction is a unique identifier, called its TID. The authors say that a transaction
T contains X, a set of some items in I, if X ✓ T . An association rule is an
implication of the form X) Y , where X ⇢ I, Y ⇢ I, and X \ Y = ;. The rule
X) Y holds in the transaction set D with confidence c% of transaction in D
that contain X also contain Y . The rule X) Y has support s in the transaction
set D if s% of transaction in D contain X [Y .

3.4.2 Pseudocode

The following code explains how the Apriori algorithm works:

Algorithm 3.1 Apriori Pseudocode

1: L1 = {large 1 � itemsets};
2: for (k := 1; Lk�1; k + +) do
3: Ck = apriori � gen(Lk�1); . New candidates
4: for all transaction t 2 D do
5: Ct = subset(Ck, t); . Candidates contained in t
6: for all candidates c 2 Ct do
7: c.count + +;
8: end for
9: Lk = {c 2 Ck | c.count � minsup}

10: end for
11: end for
12: return Answer =

S
k Lk;

14

3.5 Computational Complexity

The computational complexity of the Apriori algorithm can be influenced by the
following factors:

Support Threshold
Lowering the support threshold often results in more itemsets being declared
as frequent. This has an negative e↵ect on the computational complexity of the
algorithm because more candidate itemsets have to be generated and counted.

Number of Items (Dimension)
If the number of items increases, more space is needed for storing the support
counts of items. But also, if the number of frequent items grows, even the
computation will increase because of the larger number of candidate itemsets
generated by the algorithm.

Number of Transactions
Since the Apriori algorithm scans several times the data set, its run time
increases with a larger number of transactions.

Average Transaction Width
As [1] reports: ”For dense data sets, the average transaction width can be
very large. This a↵ects the complexity of the Apriori algorithm in two ways.
First, the maximum size of frequent itemsets tends to increase as the average
transaction width increases. As a result, more candidate itemsets must be
examined during candidate generation and support counting. Second, as the
transaction width increases, more itemsets are contained in the transaction.
This will increase the number of hash tree traversals performed during support
counting.”

Generation of frequent 1-itemsets
For each transaction, we need to keep updating the support count for every
item present in the transaction itself. If w is the average transaction width, this
operation requires O(Nw) time, where N is the total number of transactions.

Candidate generation
The candidate generation depends in which data structure is apriori algorithm
performing its steps. For a complete example based on Hash Tree data struc-
ture, see [1].

Support counting
Each transaction of length | t | produces

�|t|
k

�
itemsets of size k. The cost

for support counting is O(N
P

k

�
w
k

�
↵k), where w is the maximum transaction

width and ↵k is the cost for updating the support count of candidate.

Actaully we cannot define the exact computation complexity of Apriori since
those di↵erent factors, but still, we have a radical improvment of performance when
solutions exploit this one rather than Brute-Force method.

15

3.6 Frequent Sequences Mining

Sequential pattern mining1 (FSM) represents an evolution of Frequent Itemsets Min-
ing (FIM), allowing also for the discovery of before-after relationships between sub-
sets of input data. The patterns we are looking for are sequences of sets, indicating
that the elements of a set occurred at the same time and before the items contained in
the following sets. The ”occurs after” relationship is indicated with an arrow, i.e.2

{Bread, Peanutbutter} ! {Peanutbutter} indicates an occurrence of both item
Bread and Peanut butter followed by an occurrence of item Peanut butter.
Clearly, the inclusion a�nity is more complex than in case of subsets, so it needs to
be defined. For now, we consider that a sequence pattern Z is supported by an input
sequence IS, if Z can be obtained by removing items and sets from IS. As an ex-
ample the input sequence {Bread, Peanutbutter} ! {Milk} ! {Bread} supports
the sequential patterns {Bread, Peanutbutter}, {Bread} ! {Milk}, {Bread} !
{Bread} but not the pattern {Bread, Milk}, because the occurrence of Bread and
Milk in the input sequence are not simultaneous. We highlight that the ”occurs
after” relationship is satisfied by {Bread} ! {Bread}, since anything between the
two items can be removed. [13]

1In those lines we simply gave a very brief introduction. In the next chapter we will describe
deeper with also math definitions of the problem

2The following examples are referred to the supermarket which we discussed in the previous
paragraph

16

Chapter 4

SPAM

”There are two ways of constructing a software design.
One way is to make it so simple that there are obviously no deficiencies.
And the other way is to make it so complicated that
there are no obvious deficiencies.”

C.A.R. Hoare
Turing Award Lecture (1980)

4.1 Overview

J. Ayeres, J. Gehrke, T. Yiu and J. Flannick [14] introduced an algorithm for min-
ing sequential patterns. Their algorithm is especially e�cient when the sequential
patterns in the database are very long. A novel depth-first search strategy that in-
tegrates a depth-first traversal of the search space with e↵ective pruning mechanisms
is introduced.

Their algorithm of the search strategy combines a vertical bitmap representation
- discussed later - of the database with e�cient support counting. An important
feature is that it incrementally outputs new frequent itemsets in an online fashion.

I will report the essential parts of their work because some definitions and some
names will be useful in the next chapters for a good understanding of our work.

4.2 Problem

The problem of mining sequential patterns and the support-confidence framework
were originally proposed by Agrawal and Srikant [15][16]. Let I = {i1, i2,. . . ,in} be a
set of items. A subset X ✓ I is an itemset and the | X | is the size of X. A sequence
s = (s1,s2,. . . ,sm) is an ordered list of itemsets, where si ✓ I, i 2 {1, . . . , m}. The
size, m, of a sequence is the number of itemsets in the sequence, i.e. X. The length
l of a sequence s = (s1, s2, . . . , sm) is defined as

l
def
=

mX

i=1

| si |

17

A sequence with length l is called an l-sequence. A sequence sa = (a1, a2, . . . , an)
is contained in another sequece sb = (b1, b2, . . . , bm) if there exist integers 1 6 i1 <
i2 < . . . < in 6 m such that a1 ✓ bi1, a2 ✓ bi2, . . . , an ✓ bin. If sequence sa is
contained in sequence sb, then sa is a subsequence of sb and sb is a supersequence
of sa.

As said above, the algorithm has a database for keeping the sequence. A database
D is a set of tuples(cid, tid, X), where cid is the costumer-id, tid is the transaction-
id and X is an itemset such that X ✓ I. Each tuple in D is referred to as a
transaction. Very important thing is that for a given costumer-id, there are no
transaction with the same transaction ID.

Definition:
The absolute support of a sequence sa in the sequence representation of a database
D is defined as the number of sequence s 2 D that contain sa.

Definition:
The relative support is defined as the percentage of sequences s 2 D that contain sa.

Given a support threshold minSup, a sequence sa is called a frequent sequential
pattern on D if supD(sa) � minSup, where supD(sa) is the support of sa in D.

4.3 The SPAM Algorithm

The originator of [14] based this algorithm on the Lexicographic Tree of Sequence.
Also in other work such as MaxMiner [17] and MAFIA[18], it has been used a sort
of this technique.

Assume that there is a lexicographic ordering 6 of the items I in the database.
If item i occurs before item j in the ordering, then we denote this by i6Ij. This
ordering can be extended to sequences by defining sa 6 sb if sa is a subsequence of
sb. Of course, if sa is not a subsequence of sb, then there is no relationship in this
ordering.

Now, consider all sequences arranged in a sequence tree. The structure is de-
scribed as follow: the root of the tree is labeled with ;. Recursively, if n is a node
in the tree, then n0s children are all nodes n0 such that n 6 n0 and 8m 2 T : n 6
n0 =) n 6 m. A particular attention is that given definition the tree is infinite.
Due to a finite database, all trees in practice are finite.

Each sequence in the sequence tree can be considered as either a sequence-
extended sequence or an itemset-extended sequence, where they are defined as fol-
lows:

• A sequence-extended sequence is a sequence generated by adding a new trans-
action consisting of a single item to the end of its parent’s sequence in the
tree.

• An itemset-extended sequence is a sequence generated by adding an item to the
last itemset in the parent’s sequence, such that the item is greater than any
item in that last itemset.

18

4.4 S-step and I-step

The originator refer to the process of generating sequence-extended sequence as the
sequence-extended step (S-step), then the process of generating itemset-extended
sequences as the itemset-extended step (I-step). In this way, the algorithm can
associate with each node n in the tree two sets: Sn, the set of candidate items that
are considered for a a possible S-step extensions of node n (s-extensions), and In,
which identifies the set of candidate items that are considered for a possible I-step
extensions (i-extensions).

Hence, the support of sa is 2 (out of a possible 3), or 0.67.
If the user-defined minimum support value is less than 0.67,
then sa is deemed frequent.

1.1 Contributions of This Paper
In this paper, we take a systems approach to the prob-

lem of mining sequential patterns. We propose an e�cient
algorithm called SPAM (Sequential PAttern Mining) that
integrates a variety of old and new algorithmic contributions
into a practical algorithm. SPAM assumes that the entire
database (and all data structures used for the algorithm)
completely fit into main memory. With the size of cur-
rent main memories reaching gigabytes and growing, many
moderate-sized to large databases will soon become com-
pletely memory-resident. Considering the computational
complexity that is involved in finding long sequential pat-
terns even in small databases with wide records, this as-
sumption is not very limiting in practice. Since all algo-
rithms for finding sequential patterns, including algorithms
that work with disk-resident databases, are CPU-bound, we
believe that our study sheds light on the most important
performance bottleneck.

SPAM is to the best of our knowledge the first depth-
first search strategy for mining sequential patterns. An ad-
ditional salient feature of SPAM is its property of online
outputting sequential patterns of di�erent length — com-
pare this to a breadth-first search strategy that first outputs
all patterns of length one, then all patterns of length two,
and so on. Our implementation of SPAM uses a vertical
bitmap data layout allowing for simple, e�cient counting.

2. THE SPAM ALGORITHM
In this section, we will describe the lexicographic tree of

sequences upon which our algorithm is based. We will also
discuss the way we traverse the tree and the pruning meth-
ods that we use to reduce the search space.

2.1 Lexicographic Tree for Sequences
This part of the paper describes the conceptual framework

of the sequence lattice upon which our approach is based.
A similar approach has been used for the problem of mining
frequent itemsets in MaxMiner [3] and MAFIA [5]. We use
this framework to describe our algorithm and some pertinent
related works. Assume that there is a lexicographical order-
ing � of the items I in the database. If item i occurs before
item j in the ordering, then we denote this by i �I j. This
ordering can be extended to sequences by defining sa � sb

if sa is a subsequence of sb. If sa is not a subsequence of sb,
then there is no relationship in this ordering.

Consider all sequences arranged in a sequence tree (ab-
breviated, tree) with the following structure. The root of
the tree is labeled with �. Recursively, if n is a node in the
tree, then n’s children are all nodes n� such that n � n� and
�m � T : n� � m =� n � m. Notice that given this defini-
tion the tree is infinite. Due to a finite database instance as
input to the problem, all trees that we deal with in practice
are finite.

Each sequence in the sequence tree can be considered as
either a sequence-extended sequence or an itemset-extended
sequence. A sequence-extended sequence is a sequence gen-
erated by adding a new transaction consisting of a single
item to the end of its parent’s sequence in the tree. An
itemset-extended sequence is a sequence generated by adding

{}

a

 a,a a,b (a,b)

a,a,a a,a,b a,(a,b) a,b,a a,b,b (a,b),a (a,b),b

a,a,(a,b) a,(a,b),a a,(a,b),b a,b,(a,b) (a,b),a,a (a,b),a,b (a,b),(a,b)

a,(a,b),(a,b) (a,b),a,(a,b) (a,b),(a,b),a (a,b),(a,b),b

(a,b),(a,b),(a,b)

 Level

1

2

3

4

5

6

= S-Step

= I-Step

Figure 1: The Lexicographic Sequence Tree

an item to the last itemset in the parent’s sequence, such
that the item is greater than any item in that last itemset.
For example, if we have a sequence sa = ({a, b, c}, {a, b}),
then ({a, b, c}, {a, b}, {a}) is a sequence-extended sequence
of sa and ({a, b, c}, {a, b, d}) is an itemset-extended sequence
of sa.

If we generate sequences by traversing the tree, then each
node in the tree can generate sequence-extended children se-
quences and itemset-extended children sequences. We refer
to the process of generating sequence-extended sequences as
the sequence-extension step (abbreviated, the S-step), and
we refer to the process of generating itemset-extended se-
quences as the itemset-extension step (abbreviated, the I-
step). Thus we can associate with each node n in the tree
two sets: Sn, the set of candidate items that are consid-
ered for a possible S-step extensions of node n (abbreviated
s-extensions), and In, which identifies the set of candidate
items that are considered for a possible I-step extensions
(abbreviated, i-extensions.

Figure 1 shows a sample of a complete sequence tree for
two items, a and b, given that the maximum size of a se-
quence is three. The top element in the tree is the null se-
quence and each lower level k contains all of the k-sequences,
which are ordered lexicographically with sequence-extended
sequences ordered before itemset-extended sequences. Each
element in the tree is generated only by either an S-step or an
I-step, e.g. sequence ({a, b}, {b}) is generated from sequence
({a, b}) and not from sequence ({a}, {b}) or ({b}, {b}).

2.2 Depth First Tree Traversal
SPAM traverses the sequence tree described above in a

standard depth-first manner. At each node n, the support
of each sequence-extended child and each itemset-extended
child is tested. If the support of a generated sequence s is
greater than or equal to minSup, we store that sequence

Figure 4.1: Lexicographic Sequence Tree

Figure 3.1 shows an example of a complete sequence tree for two items, a and b,
given that the maximum size of a sequence is three. The top element in the tree is
the null sequence and each lower level k contains all of the k-sequences, which are
ordered lexicographically with sequence-extended sequences ordered before itemset-
extended sequences. Each element in the tree is generated only by either an S-step
or an I-step, e.g. sequence ({a, b}, {b}) is generated from sequence ({a, b}) and not
from sequence ({a}, {b}) or ({b}, {b}).

19

4.5 Pruning

The previous algorithm has a huge search space. In [14] to improve the performance,
it is possible to prune candidate s-extensions and i-extensions of a node n in the
tree. In the algorithm, the pruning technique are Apriori-based and are aimed
at minimizing the size of Sn and In at each node n. At the same moment, the
pruning guarantee that all nodes corresponding to frequent sequences are visited.
The algorithm provides two pruning techniques both for S-step and I-step, but I
will not describe in this report. Of course the reader can easily check for pruning
technique in [14].

4.6 Data Structure

SPAM uses the vertical bitmap representation of the data for an e�cient counting.
A vertical bitmap is created for each item in the dataset, and each bitmap has a bit
corresponding to each transaction in the dataset. If item i appears in transaction j,
then the bit corresponding to transaction j of the bitmap for item i is set to one;
otherwise, the bit is set to zero.

This bitmap idea extends naturally to itemsets. Suppose we have a bitmap
for item i and a bitmap for item j. The bitmap for the itemset {i, j} is simply
the bitwise AND of these two bitmaps. Sequences can also be represented using
bitmaps. If the last itemset of the sequence is in transaction j and all the other
itemsets of the sequence appear in transactions before j, then the bit corresponds
to j will be set to one; otherwise, it will be set to zero. In the research, the authors
define B(s) as the bitmap for sequence s.

4.7 Candidate Generation

A very important aspect of the algorithm is how it performs the candidate genera-
tions using the bitmap representation described above. There are two subsections
related for both S-step processing and I-step processing.

4.7.1 S-step Processing

Suppose to have bitmaps B(sa) and B(i) for sequence sa and item i respectively,
and that we have to perform a S-step on sa using i. This S-step will append the
itemset {i} to sa. To perform it, the method is based on these two operations.

First, we need to generate a bitmap from B(sa) such that all bits less than or
equal to k1 are set to zero, and all bits after k are set to one. The authors call
this bitmap a transformed bitmap. After that, it is necessary to make a logical
AND between the transformed bitmap and the item bitmap. The resultant bitmap
has the properties described above and it is exactly the bitmap for the generated
sequence. In the real application, the transformation is done using a lookup table.

1
k is the index of the first bit with value one in B(sa)

20

4.7.2 I-step Processing

Suppose to have bitmaps B(sa) and B(i) and that we have to perform a I-step on
sa using i. This I-step will generate a new sequence sg by adding item i to the last
itemset of sa. The bitmap for sg should have the property that if a bit has value one,
then the corresponding transaction j must contain the last itemset in sg, and all of
the other itemsets in sg must be transactions before j. Now, we should consider the
resultant bitmap B(sr) obtained by doing a logical AND among B(sa) and B(i). A
bit k in B(sr) have value one if and only if bit k in B(sa) is one and bit key in B(i)
is also one. For bit k of B(sr) to be one the transaction j that corresponds to bit k
must, therefore, containing both the last itemset in sa and the item i. In addition,
all of the other itemsets of sa must appear transaction before j. It follows that B(sr)
satisfies each of the requirements that B(sg) must satisfy; B(sr) is therefore exactly
the bitmap for the generated sequence.

21

Chapter 5

gpuSPAM

”Program testing can be used to show
the presence of bugs, but never to show their absence”

Edsger Dijkstra

5.1 An overview of gpuSPAM

The basic idea behind gpuSPAM is based on gpuDCI [19], where the application
starts the computation on CPU because the dataset is too large to fit it in the
GPU’s global memory. After the S-step pruning and I-step Pruning as described
above, the pruned dataset will be moved to the GPU just after the S-step and
I-step Processing. The GPU successively will compute the support computation;
but still, after swapping to GPU, the CPU will manage the patterns, the candidate
generation and store patterns that are frequent according to the support computed
by the GPU.

As in gpuDCI, there are several conditions that we need to satisfy for having a
good usage of the GPU. In particular, there are three important aspects related to
processor utilization, memory access patterns and blocking operations. For the first
one we need to be sure that every core is having enough workload and also enough
resources for executing the assigned computation. The second condition is decisive
because we must ensure coalesced access to global memory by aligning memory
access to avoid serialization and get the whole process rather slow. The last goal is
to minimize the number of synchronizations, especially that kind of operations that
is causing global synchronization such as memory transfer, kernel launches and, of
course, other blocking operations.

In this work, we analyze two di↵erent approaches called Candidate-wise and
Transaction-wise. These two strategies resulted a good compromise between
speedup and gpu-workload, with di↵erent datasets. For both of them we will briefly
describe the general features.

22

5.2 Candidate-wise parallelization

In this approach each GPU multiprocessor works on the intersection and count oper-
ations related to a di↵erent candidate, whereas the cores of the same multiprocessor
work on the same intersection or candidate. In general, thread blocks are taking
care of a block of candidate that are processed one by one, whereas threads are in
charge of the either intersection or count among a portion of bitmap. Remark that
in this case the chunk of threads that are operating on the bitmap are all in the
same multiprocessor accessing to the same, fast, shared memory.

There is a problem that it needs to handle up for implementing this strategy:
managing the cache used to store intermediate intersection results. As in DCI
[20][21] and the original SPAM, the candidates are examined in lexicographical order
(see the description above), thus, using a stack we can delete the item when it is no
more needed (see Implementation section).

The solution that we adopted in gpuSPAM is to assign a collection of candidates
to the same thread block, by setting an independent cache for each block. After-
wards, we assign a contiguous sub-sequence of candidates to each chunk of threads
increasing the cache reuse.

5.3 Transaction-wise parallelization

In this strategy the GPU cores, on one’s own of the GPU multiprocessor they belong
to, work on the same intersection or count operation. Each thread executes exactly
the operations as described above for Candidate-wise approach; to put it better, all
of them are in charge of an interleaved chunk of the bitmap, in such a way that
threads having contiguous indexes are working on consecutive parts of the bitmap.
Thus, the contiguous blocks processed by the same thread, are separated by a pre-
determinated sequence of blocks⇥threads decided at kernel launch time.

The chunk of threads that are involved in the operations on a bitmap are not
in the same gpu-multiprocessor, so they do not have to access to the same shared
memory as the previous approach. For this cause, the reduction has to be processed
in two steps: after each thread has completed the count on its portion of bitmap,
the counter of each thread is added on the local reduction, and then the partial sums
for each multiprocessor are summed to obtain the global reduction.

To satisfy one of the conditions for having a good usage of the GPU (cores work-
load), the number of thread blocks must be at least the same as the number of GPU
multiprocessors. After, to ensure that the cores of each multiprocessor are active,
the global memory access should be overlapped with computation. Empirically, the
amount of GPU’s memory required by this approach is principally determinated
by the size of the pruned dataset (number of items ⇥ size(bitmap)) plus the size
of the intermediate result cache (max pattern length ⇥ size(bitmap)). If there is
more space for more than one cache, we can use the previous strategy, which allows
an higher utilization of the cores even when bitmaps are not huge.

23

5.4 Implementation

In this section is described the implementation of the strategies applied to SPAM.
As said above, the given descriptions are more related to gpuDCI. In this work, they
are slightly di↵erent, but still with the same principles. We will split each approach
in two di↵erent parts: the intersections of the bitmaps and the re-use of the partial
data during GPU computations.

5.4.1 Bitmaps Intersection and Counting

The SPAM application provides five di↵erent type of Bitmaps. To have an e�cient
computation from GPU side, as soon as we pruned the dataset after the S�pruning
and I � pruning steps we start to use the GPU global memory avoiding data trans-
fers. Indeed, this operation allowed us to hide the memory latency caused by the
global memory. Exploiting the shared memory we drastically accelerate the perfor-
mance of the whole application.

The work starts from Counting Operation, where the system is finding the
support in number of customers. This means that the method Count is walking
the memory counting the support going through the whole bitmap. Afterwards,
the application creates the SBitmap which allows to accomplish the Candidate
Generation performing the s-step process described above. Thus, for Candidate-
wise parallelization method, we are going to execute the counting support in batches
and fetch blocks of results at the end of the computation. The strategy uses a cache
where we save the temporary values of the intersection in global memory (both
reading and writing), and then the shared memory for performing the counting
support. Basically, the cache is actually just a vector of integers (device vector) and
its behavior is like a stack because when a candidate has been examined and it is
no longer needed in the array we simply ”popped” it out. In the actual version we
are not performing the pop method, but we simply overwrite the previous element.

Transaction-wise parallelization method, instead of using shared memory for
storing temporary results, is using global memory. But for boosting the computation
and keeping the coalescing during the intersection, we needed to apply a Reduction.

24

5.4.2 ANDing and Counting operations

This section is the most important part for both Candidate and Transaction strate-
gies. Indeed, as the pseudocodes show, they are quite similar among each other, but
at the same time, they are using di↵erent parameters and arrays indexes.

The following pseudocode shows the Candidate wise approach:

Algorithm 5.1 Candidate wise

1: tid = threadIdx
2: shared count[threadIdx] = 0
3: while tid  bitmapSize do
4: if (candidate not examined) then
5: count[threadIdx] + = (bitmap1[tid] & bitmap2[tid])
6: else
7: skip candidate
8: end if
9: i + = blockDim

10: end while
11: result = Reduce() . Reduce the count and store the result in global memory

Down here there is shown the pseudocode of Transaction wise method:

Algorithm 5.2 Transaction wise

1: tid = threadIdx + blockDim ⇤ blockIdx
2: shared count[threadIdx] = 0
3: while tid  bitmapSize do
4: if (candidate not examined) then
5: count[threadIdx] + = (bitmap1[tid] & bitmap2[tid])
6: else
7: skip candidate
8: end if
9: i + = blockDim ⇤ gridDim1

10: end while
11: blockCount[blockIdx] = Shared Reduce()2 . Reduce the count and store the

temporary result into the shared memory
12: // The last finished block loads temporary
13: // results from shared memory and reduce the count
14: // and store the result into the global memory
15: result = Global Reduce()3

1where gridDim is the number of blocks in one axis
2Reduction process is applied to the shared variable
3Reduction applied to the counting device vector; It contains the final result of the counting

operation. As said previously, it is storing data in global memory

25

5.5 Reduction

The aim of this section is to explain how to have an e�cient data parallel reduction1.
The reduction is a tree-based approach used within each thread block. As Figure
4.1 shows, each thread block reduces just a portion of the array; in this way, every
multiprocessor of the GPU will keep busy allowing us to process very long arrays
with the minimum e↵ort.

Figure 5.1: Tree-based approach for reduction.

The main problem is how we do communicate partial results between thread
blocks. Unfortunately, CUDA doesn’t provide a Global Synchronization because,
according with [22], it is expensive to build in hardware for GPUs with high processor
count and, very important, it would force the programmer to run fewer blocks
to avoid deadlock, which may reduce overall e�ciency. For such a reasons, we
decompose the problem into multiple kernels.

Basically, the main goal of this optimization is because we are trying to reach
the GPU peak performance. During our tests, we used Bandwidth as metric for
memory-bound kernels. The hardware used for these tests is the NV IDIAR� GTX 580
which has a maximum Bandwidth peak of 192,4 GB/s. Of course we did not reach
the maximum but we arrived quite close.

5.5.1 Parallel Reduction Complexity

The complexity of the reduction algorithm is quite simple to understand.
log(N) parallel steps, where each step S takes N/2S independently from the kind

of operations. So far, we have that a Step Complexity is O(log(N)).
But, for N = 2D2, it performs

P
S2[1...D] 2

D�S = N � 1 operations. This formula
produces a Work Complexity of O(N) time - which is e�cient but it does not perform
more operations than a sequential algorithm.

With P3 threads physically in parallel, the Time Complexity is O(N
P + log(N)),

where in a thread block, N = P , obtaining O(log(N)) time. As Figure 4.2 shows
the time complexity is better than the sequential one.

1This reduction is the general form that Nvidia provides to figure out the whole process and
have the best performance. In gpuSPAM we used exactly the same form

2Where D is simply a number; more often is greater then S
3number of threads decided at kernel launching time; P should be as same number as multi-

processors inside the GPU

26

0

2

4

6

8

10

0 10 20 30 40 50

Time(ms)

Number of computations

O(N)

O(Log(N))

⇥⇥
⇥⇥⇥

⇥⇥⇥⇥
⇥⇥⇥⇥⇥⇥⇥

⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥
⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥

⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥
⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥

⇥

1

Figure 5.2: Di↵erence between two complexity.

Figure 5.3: Amount of Bandwidth using reduction in the application calculated in MB/s.

27

5.6 The gpuSPAM Application

In this section we report how we modified the original Spam and how we adapted
the GPU side into the program. Several problems we meet related with classes: for
instance, we figured out that we could exploit the Abstract class SeqBitmap also
from GPU side, because, as we reported above, after the second scan we move the
dataset into the GPU global memory. In this way we allow the GPU to make every
kind of calculation without wasting time for transferring data going and forth. In the
beginning we started simply to make ANDing and Counting operation copying data
in the GPU and moving the calculation back to CPU for performing the mining.
But with this solution we realized that the whole program takes too much time for
moving data between the host and the device.

So, basically, the application reads the dataset and save everything in memory
RAM and then we copy the data into the GPU global memory. Afterwards we start
to perform the mining operation. Several kernels are launched and all of them have
the same amount of blocks and threads-per-block. We chose this configuration to
allow the GPU to get the best performance and avoid to waste SM4 resources (those
thoughts are applied for both candidate and transaction wise parallelization).

5.6.1 Classes Diagrams

The next picture depicts the Classes Diagrams of both applications because we
thought that it is necessary for the reader to understand the main di↵erences between
them.

Figure 5.4: Classes diagram of SPAM

4The streaming multiprocessor (SM) contains 8 streaming processors (SP). These SMs only get
one instruction at time which means that the 8 SPs all execute the same instruction. This is done
through a warp (32 threads) where the 8 SPs spend 4 clock cycles executing a single instruction
on multiple data (SIMD).

28

Figure 5.5: Classes diagram of gpuSPAM

As the reader can evaluate, we added a sub-class called SeqBitmap GPU where
the compiler nvcc of CUDA can understand what kind of method and private vari-
ables we can use directly into the GPU. We would remind that, source files for
CUDA applications [23] consist of a mixture of conventional C++ ”host” code, plus
GPU ”device” (i.e. GPU-) functions. The CUDA compilation trajectory separates
the device functions from the host code, compiles the device functions using propri-
etary NVIDIA compilers/assemblers, compiles the host code using a general purpose
C/C++ compiler that is available on the host platform, and afterwards embeds the
compiled GPU functions as load images in the host object file. In the linking stage,
specific CUDA runtime libraries are added for supporting remote SIMD procedure
calling and for providing explicit GPU manipulation such as allocation of GPU
memory bu↵ers and host-GPU data transfer.

In the following code, we show how we implemented the new cuda-class. Basically
it is a caveat because the cuda compiler cannot actually make any external linkage
because it does not allow it5, so we introduced a MACRO in the header file. This
macro is a pre-processor definition where both compiler nvcc and the general C/C++
one, can use the methods of SeqBitmap class.

#ifdef __CUDACC__

#define CUDA_CALLABLE_MEMBER __host__ __device__

#else

#define CUDA_CALLABLE_MEMBER

#endif

Of course, CUDA CALLABLE MEMBER must put before the the implementation of the
method.

5According with NVIDIA, the external linking will be a future feature

29

5.7 Data Flow Chart of Mining process

Here we report the Data Flow Chart of Mining method. Of course, it is not the full
one since it contains some things that are not necessary to understand the process.
Basically, the function repeat the following process several times, depending on the
dataset. The Counting, ANDing and Reduction operations are already into GPU.

Figure 5.6: Data Flow Chart of Finding Sequential Patterns for both S-Step and I-Step

Reduction operation is not all the time called. That’s because, Bitmap4 for example
does not need it since the counting operation has just to compute a for loop with
two iterations (see Results Chapter). So, if we decide to use the Reduction method,
instead of having a speed-up we have as not as good performance without it. For this
reason, in the data flow chart we use those kind of ”arrows”. However, for which
kind of Bitmap has to be created is taken from Seqbitmap GPU as the previous

30

Class Diagram shows.

5.8 Testing

In this section we present the main code that we used for testing the application.
Nvidia provides directly some timers for CUDA. Indeed, thanks to those functions,
we could mesueare with a high precision, the amount of time that each kernel was
taking.
The CUDA Event API provides a collections of function which allows the program-
mers to calculate events, such as:

• mesuare the elapsed time for CUDA calls (kernel) with clock cycle precision

• query the status of an asynchronous CUDA call

• block CPU until CUDA calls prior to the event are completed

Mainly, these functions are used just for testing because according with the third
point above here, the CPU is being stopped because CUDA calls about events. So,
they must deleted before to release the code.

Here the general code for measuring the events:

double elapsedTime; // varaible for elapsed time;

// double for having high float precision

cudaEvent_t start, stop; // special variables for

// calculating the events

cudaEventCreate(&start); // ceate an object for both start

cudaEventCreate(&stop); // and stop event

// Recording the time from the very beginning when the kernel

// has been called to when it stops as well

cudaEventRecord(start, 0);

Kernel<<<grid, block>>>(...);

cudaEventRecord(stop, 0);

// Synchronize the record event

cudaEventSynchronize(stop);

// Calculate the elapsed time

cudaEventElapsedTime(&elapsedTime, start, stop);

// Release memory

cudaEventDestroy(start);

cudaEventDestroy(stop);

31

With those simple methods, we could simply calculate the amount of time needed.

Instead, as the reader will evaluate from the next chapter, we had to calculate
even the time taken from CPU. For a↵ording this, we did not use a similar approach
as for the GPU, because we would not useneither the clock() method nor di↵time() of
C++ library. Indeed, the first one return the clock ticks elapsed since the program
was launched, then, the other one, calculate the elapsed time from two di↵erent
times (as cudaEventRecord does) but some issues were encountered becuase most of
them are in nsec.

So, we decided to use the Visual Studio Performance Profiling Tools, where we
could see the exactely time tike by every single function and many informations.
Honestly, in the very beginning of the project we used this powerful tools for under-
standing which were the methods that were taking the biggest amount of time.

32

Chapter 6

Experimental Results

”People think that computer science is the
art of geniuses but the actual reality is
the opposite, just many people doing things that
build on each other, like a wall of mini stones. ”

Donald Knuth

In the following part of the section, we describe the behavior exhibited by gpuS-
PAM in our experiments. We launched the application with di↵erent datasets and
using di↵erent parameters for the kernels. The main goal of these tests, is to un-
derstand how GPUs can really improve the speed up of the computations. We split
the results in two parts: one for the candidate-wise parallelization and the other
one for the transaction-wise parallelization. In the next section we describe the test
environment and the datasets.

6.0.1 Test environment and datasets

The experiments where executed on a workstation equipped with an Intel Xeon
Quad Core CPU @ 2.67GHz, 8 GB of RAM, 64-bit architecture and a NVIDIA
GTX 580.
GPU features: 16 multiprocessors (512 cores) GPU Processor clock @ 1544MHz,
1.5GB device memory and Cuda device capability 2.0 Fermi architecture. The
operating system was Windows 7 with V isual Studio 2010 as IDE and as GPU
compiler we used nvcc which it is part of the Cuda Toolkit 4.1. During debugging
tests we used the NV IDIA Parallel Sight 2.1 for GPU side, then we used the
Debugger of Visual Studio for CPU side.

In our experiments we generated numerous synthetic datasets using the IBM
AssoGen program [15].

The amount of block for each operation was 256 and 256 threads per block.
Actually we were giving a small part of the maximum capacity.

33

6.0.2 Synthetic data generation

The table in the bottom represents which kind of datasets we used for our tests. The
reader needs to pay attention on the number of customers, because the application
can support maximum 64 transactions for each customer.

Tot. # Transactions Minimun support

10K
50K
100K
200K
400K 0.5
800k
1M
5M
20M

Table 6.1: Summary of used datasets

6.0.3 Graphs of results

In the next pages, the reader can see how much time gpuSPAM takes1 for computing
a certain amount of Transactions. In [14] there are the results2 of the original
application. Each function of the original application has been calculated again
because we used a di↵erent workstation as the reader can notice from the following
table. The reference to Result Section of SPAM above is cited just becuase it can
be useful for the reader for having a complete landscape of the results.

Operation GPU CW Time GPU TW Time CPU Time

ANDing v 182 ns v 323 ns v 477 ns

Counting v 543 ns v 587 ns v 788 ns

CreateSBitmap v 643 ns v 678 ns v 894 ns

Table 6.2: Time taken for all operations of Bitmap 32

The values in the table have been calculated doing an average operation each time
we launched the application. Basically, we divided the total amount of the time
taken of the operation by the total number that it is called. 3 In every test, we used

1Those results are obtained calculating the time that every kernel operation takes. Then the
time taken, has been divided by the number of blocks per threads

2See results chapter in the article
3We repeated this calculation for ANDing, Counting and CreateSBitmap - The results are

related to the GPU Kernel

34

the same chunk of blocks and threads-per-block. We used the Bitmap 32 because
we could e↵ectively see the di↵erence with the CPU and even becuase it is one of
the most used with large datasets.

0"50
"

10
0"

15
0"

20
0"

25
0"

0"
10
00
0"

50
00
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

50
00
00
0"

20
00
00
00
"

Time%(s)%

#%
Tr
an

sa
c.
on

s%

gp
uS
PA

M
"/"
CW

"
SP
AM

"
gp
uS
PA

M
"/"
TW

"

Figure 6.1: Time taken comparing the two applications

As the reader can evaluate, GPU can improve the program especially when we
are going to compute a huge amount of transactions. This happens because SPAM is
very optimized for CPU computation, but when it is performing a very big dataset,
especially when Bitmap 32 and 64 operations are called, the GPU takes advantages
of parallelism and reductions as well. Of course, also with the other kind of Bitmaps
the device is performing them in parallel but they do not take so much lesser time

35

than the original ones.

In the following table, we show the time taken for all operations of each Bitmap.
The example is based on the dataset with 1 milion transactions and using Candidate
wise:

Operation Bitmap4 Bitmap8 Bitmap16 Bitmap32 Bitmap64

ANDing CPU 18 ns 32 ns 147 ns 477 ns 798 ns
ANDing GPU 23 ns 39 ns 149 ns 182 ns 202 ns

Counting CPU 64 ns 78 ns 188 ns 788 ns 982 ns
Counting GPU 71 ns 88 ns 183 ns 543 ns 610 ns

CreateSBitmap CPU 58 ns 61 ns 173 ns 894 ns 1.33 µs
CreateSBitmap GPU 62 ns 65 ns 177 ns 643 ns 953 ns

Table 6.3: Time taken for all operations of each Bitmap

Truth be told, with the Bitmaps 4 and 8, GPU takes more time to make the com-
putations. That’s because we are moving data into shared memory which of course
need some time. But as we said above, with Bitmaps 32 and 64 we have a good
improvement.
Figure 6.2 is referred to the table above.

Figure 6.2: Comparation between operations and Bitmaps

36

Chapter 7

Conclusions

”Stay Hungry, Stay Foolish”

Steve Jobs
Graduate speech at Stanford University (2005)

The analysis that has been proposed about this parallel data mining algorithm on
graphic processor, aims to demonstrate that GPUs can compute very large datasets
reducing drastically the time’s taken from CPU. Indeed, after the evaluation of the
results obtained calculating the amount of time that each operation needs to be
computed, confirm that GPUs can be exploited for computing a huge amount of
data.
Referring to the introduction where we explained how SPAM works, the example
related to the Supermarket, we can think now gpuSPAM as a ”Super Fidelity Card”
where even the customer is able to know which are the most bought items. This
example helps the reader to have an idea about this work. Indeed, if just the
supermarket checks which are the most bought items of each customers, it takes more
time rather than every customer checks them by itself. This is because, gpuSPAM
works in parallel and not sequentially.

7.0.4 Future works

This thesis gives just the first step for a better implementation of the original appli-
cation. Indeed, we just convert the functions in GPU and analyzed the performance
for each operation. So, basically it provides an idea of the potential of graphic cards.
In the future it will be possible to use this work and improve the code that we have
written so far. In this way people can create a brand new algorithm (maybe using
both CPU and GPU at the same time) for improving it. Another possible feature
could be an algorithm which exploits also multi-CPU and multi-GPU.

37

Bibliography

[1] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining. The MIT
Press, 2001.

[2] M. D. Dikaiakos, D. Talia, and A. Bilas, Knowledge of Data Mining in GRIDs.
Springer Science+Business Media, LLC, 2007.

[3] D. B. Kirk and W. mei W. Hwu, Programming Massively Parallel Processors -
A Hands-on Approach. Morgan Kaufmann, 2010.

[4] M. J. Atallah and M. Blanton, Algorithms and theory of computation handbook.
CRC Applied Algorithms and Data Structures series, Chapman Hall, 1998.

[5] N. Corporation, CUDA C Programming Guide. Santa Clara, CA 95050, 4.2 ed.,
May 2012.

[6] N. Corporation, Fermi Compute Architecture Whitepaper. Santa Clara, CA
95050, 1.1 ed., January 2009.

[7] J. D. Ullman, “http://infolab.stanford.edu/ ullman/mining/assocrules.pdf.”

[8] C. Silverstein, S. Brin, R. Motwani, and J. Ullman, “Scalable techniques for
mining causal structures,” VLDB Journal Articles, 1998.

[9] C. Lucchese, High Performance Closed Frequent Itemsets Mining inspired by
Emerging Computer Architectures. PhD thesis, University Ca’ Foscari of Venice,
2008.

[10] S. Orlando, “http://www.dais.unive.it/ dm/new slides/3 asso dwm.pdf.”

[11] W. Fang, K. K. Lau, M. Lu, X. Xiao, C. K. Lam, P. Y. Yang, B. He, Q. Luo,
P. V. Sander, and K. Yang, “Parallel data mining on graphic processors,”
HKUST-CS08-07, October 2008.

[12] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,”
Proceedings of the 20th VLDB Conference Santiago, 1994.

[13] C. Silvestri, Distributed and Stream Data Mining Algorithms for Frequent Pat-
tern Discovery. PhD thesis, University Ca’ Foscari of Venice, Dipartimento di
Informatica Universita’ Ca’ Foscari di Venezia, Via Torino, 155 30172 Venezia
Mestre – Italia, 2006.

38

[14] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick, “Sequential pattern mining using
a bitmap representation,” ACM 1-58113-567-X/02/0005, 2002.

[15] R. Agrawal and R. Srikant, “Mining sequential patterns,” ICDE ’95: Proceed-
ings of the Eleventh International Conference on Data Engineering, vol. IEEE
Computer Society, March 1995.

[16] R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations and
performance improvents,” EDBT ’96: Proceedings of the 5th International Con-
ference on Extending Database Technology: Advances in Database Technology,
vol. Springer-Verlag, March 1996.

[17] R. J. Bayardo, “E�ciently mining long patterns from databases,” SIGMOD
1998, pp. 85–93, 1998.

[18] D. Burdik, M. Climlim, and J. Gehrke, “Mafia: A maximal frequent itemset
algorithm for transactional databases,” Proceedings of the 17th International
Conference on Data Engineering, April 2001.

[19] C. Silvestri and S. Orlando, “gpudci: Exploiting gpus in frequent itemset min-
ing,” 20th Euromicro International Conference on Parallel, Distributed and
Network-Based Computing, 2012.

[20] C. Lucchese, S. Orlando, and R. Perego, “kdci: a multi-strategy algorithm for
mining frequent sets,” FIMI Workshop, 2003.

[21] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri, “Adaptive and resource-
aware mining of frequent sets,” IEEE ICDM, pp. 338 – 345, 2002.

[22] M. Harriss, “Optimizing parallel reduction in cuda,” tech. rep., NVIDIA De-
veloper Technology, 2010.

[23] NVIDIA, “http://moss.csc.ncsu.edu/ mueller/cluster/nvidia/2.0/nvcc2.0.pdf.00

39

