

Developing IT Infrastructure: Automated and Centralized
System Configuration Management with Puppet

Armen Igitian

 Bachelor’s Thesis

 Business Information Technology

 December 2013

 Abstract

 19.12.2013

Business Information Technology

Author
Armen Igitian

Group
BITE

Title of report
Developing IT Infrastructure – Automated and Centralized System
Configuration Management with Puppet

Number of report
pages and
attachment pages
33 + 22

Supervisor
Juhani Merilinna

An ability to precisely configure computer systems is needed in any IT infrastructure to ensure
that each system serves its intended purpose. To centrally control configuration of a group of
systems in an automated manner is invaluable.

The purpose of this thesis project was to enhance the development of an IT infrastructure by
using a system configuration management framework called Puppet. This thesis project was
assigned by Conformiq Software Oy.

This thesis contains definitions and underlying principles of automated system configuration
management, an introduction to the Puppet framework, a set of objectives with their
problematics, reasoning and implementation as well as a description of chosen research methods
and working methodology.

The thesis indicated that Puppet is a powerful tool. It is used to keep diverse systems in certain
configuration states and to orchestrate changes whenever necessary. Such general usage of
Puppet for achieving concrete results in systems’ configuration was one integral part of this
project.

Powerful tools alone are just tools until they are included in a meaningful, safe and easy-to-use
workflow. Hence, another crucial aspect of this project was establishing and implementing an
advanced workflow to better support the process of developing an infrastructure with Puppet.

By the end of this thesis project, the configuration of the company’s 20+ servers was entirely
managed by Puppet. Moreover, the further development of the infrastructure with Puppet is
now supported by the customized workflow and necessary documentation.

This report is primarily targeted at students and professionals in IT administration. However,
software developers, managers and anyone else interested in the concept of system
administration and automated system configuration management might also find it useful.

Keywords
system configuration, automation, system administration, puppet

Table of contents

1 Introduction .. 1

Out of scope ... 2

2 Theoretical Background ... 3

2.1 Automation of system configuration management ... 3

2.2 Automation and centralization challenges ... 4

2.2.1 Support for multiple platforms and distributions .. 4

2.2.2 Offline nodes .. 5

2.2.3 Idempotence .. 5

2.3 Introduction to Puppet.. 5

2.3.1 Puppet client-server workflow... 6

2.3.2 Declarative language .. 7

2.3.3 Facter .. 8

3 Project Background .. 10

3.1 Environment... 10

3.2 Objectives .. 11

4 Methods .. 13

4.1 Research methods .. 13

4.2 Development methodology ... 13

4.3 Working process and tools .. 14

5 Project ... 16

5.1 Results .. 16

5.1.1 Automated reports of Puppet service runs .. 16

5.1.2 Local repository for custom Debian packages .. 17

5.1.3 Keep packages’ versions in sync .. 18

5.1.4 Integrate Puppet and SVN .. 19

5.1.5 Centralize and automate user management ... 21

5.1.6 Environment for testing new configuration .. 22

5.2 Project management .. 24

6 Discussion .. 25

6.1 Reporting ... 25

6.2 Package management .. 25

6.3 User management .. 26

6.4 Workflow for further development of infrastructure with Puppet 27

7 Conclusion .. 29

8 Recommendations for further development ... 30

9 Summary ... 31

Bibliography .. 32

Appendices .. 34

Appendix 1 - Puppet master’s “puppet.conf” and “tagmail.conf” 34

Appendix 2 - Module “puppet_conf” .. 35

Appendix 3 - Module “reprepro” .. 36

Appendix 4 - Module “apt” .. 38

Appendix 5 - Module “unattended-upgrades” ... 39

Appendix 6 - Module “postfix” ... 41

Appendix 7 - SVN pre-commit hook ... 43

Appendix 8 - SVN post-commit hook ... 44

Appendix 9 - C wrapper for SVN post-commit hook .. 45

Appendix 10 - Module “users” .. 46

Appendix 11 – Script for comparing definitions from Unix users and Puppet users

definitions from production ... 47

Appendix 12 – Script for generating Puppet user definitions from Unix users 48

Appendix 13 – Wiki: Puppet .. 49

Appendix 14 – Wiki: Vagrant ... 54

1

1 Introduction

The role of system configuration management in an IT organization is difficult to

overestimate. All companies relying on IT need to ensure that their computer systems

are configured and their users are supported by these systems as expected. The extent

of precision of systems’ configuration depends on how much an organization relies on

IT.

Conformiq Software Oy - the sponsor of this thesis project, is a small-sized software

house in Espoo. It strongly relies on its IT infrastructure in general and particularly on

a group of servers configured to support its everyday operations, which consist of

developing, testing, benchmarking, and releasing its software products. The required

precision of systems’ configuration is high, especially for performing meaningful

benchmarks and building releases since servers performing these purposes need to be

identical in their state of configuration.

The value of automation and centralization of system configuration management lies in

ability 1) to quickly deploy and redeploy diverse systems with precisely defined

configurations, 2) to ensure that systems stay in the defined state of configuration as

long as it is needed, 3) and to quickly and easily propagate any further changes required

in their configuration.

Already before this project Conformiq Software had enjoyed some of the benefits of

automated and centralized system configuration management. Conformiq’s server farm

had been deployed and controlled by one of the most powerful frameworks for system

configuration management called Puppet. However, some features were missing.

Some of the required features referred to configuration of the existing Conformiq’s

Puppet farm, which included installation and configuration of new services as well as

an improved calibration of some of the existing ones. Other features were targeted at

establishing an infrastructure that would support a safe, smooth and sensible workflow

for further development of the Puppet farm. This included fine-tuning of the

2

framework itself as well as its integration with other tools in the infrastructure. The

need for such workflow and its underlying infrastructure was mostly driven by an

increasing number of Puppet contributors in Conformiq, so the development process

had to be better supported and administered.

The main objective of this thesis project was to implement the missing features which

included both – further configuration of the Puppet farm and establishing an

infrastructure for further development with Puppet. The full list of features is

presented in section 3.2.

Out of scope

This project is Linux centered and all concepts, findings and discussions imply Linux

as the operating system whenever applicable. Considerations for Windows and other

operating systems are beyond the scope of this project.

Conformiq Software started using Puppet to manage system configuration 1.5 years

before this project. Reasoning for choosing Puppet (and not some other framework) is

beyond the scope of this project. However, some principles of what Puppet is and how

it works are presented in section 2.3 in order to familiarize the reader with this

framework and to thus make the reading experience smoother.

Automation of repetitive tasks, quick deployments, smooth and safe development

procedures can all be resulting in a decrease of human hours spent on these tasks. This

thesis project, however, does not undertake any attempt to actually measure the direct

monetary benefits provided by automated system configuration management for one

reason – developing and propagating configuration changes through Puppet ensures

that your infrastructure is sustainable, and because it is scalable of course it is cheaper

than manual labor. However, there are other possible techniques to quickly develop

and propagate configuration changes (e.g. image cloning) that are not as sustainable as

with Puppet. So, comparing the Puppet way to manual configuration to find the

monetary benefits and not considering these other techniques would not be extremely

revealing. This could probably make a topic for a separate deeper research.

3

2 Theoretical Background

2.1 Automation of system configuration management

In one of his books on system configuration management James Turnbull writes that

“the lives of system administrators and in general individuals employed in IT’s

operational sector often revolve around a series of repetitive tasks: configuring hosts,

creating users, managing applications, daemons, and services” (Turnbull 2007, 1). The

repetitiveness of these tasks can be host-based, for example to ensure that same or

similar configuration is applied to a number of hosts, and it can be time-based, i.e. “in

the lifecycle of one host in order to add new configuration or remedy configuration

that has changed through error, entropy, or development” (Turnbull 2007, 1).

Systems (desktops and servers) can, naturally, be configured ad-hoc by e.g. logging in

to the machine and manually configuring system resources like users, packages,

services, mount points etc. No matter if configuration is performed by executing

commands one after another in a shell (e.g. bash or zsh) or using graphical user

interface tools “these tasks can be an ineffective use of time and effort” (Turnbull

2007, 1).

“The usual first response to these tasks is to try to automate them. This leads to the

development of custom-built scripts and applications” (Turnbull 2007, 1). Such scripts

can be simple, designed to manage a single configuration resource on a host or on a

group of hosts with sufficiently identical environment. They can also be complex and

manage multiple resources on a group of hosts with heterogeneous environments.

Simple scripts can contain a simple set of configuration procedures, while others - to

support configuration of diverse systems, can also contain functions for getting

necessary data from systems as well as necessary logic for applying procedures

appropriate for systems in question; and depending on system administrator’s

intentions as well as on conditions [such as hardware, operating system and software

tools] it is possible to create scripts which can bring systems to various (including

identical) states of configuration.

4

There is a number of benefits that can be derived from automated system

configuration management tools. First of all, they can make system administration

more efficient by automatically applying repetitive configuration procedures on

multiple nodes. Secondly, they can help ensure the quality of configuration by avoiding

human configuration errors. They also can serve as technical documentation

containing applied procedures and, therefore, describing the state of the configuration

(at least the desired state). They can serve as backups of configuration e.g. if the

machine needs to be reinstalled or if a new machine with a given configuration has to

be deployed, i.e. they can provide increased efficiency and quality of deployments and

redeployments.

2.2 Automation and centralization challenges

Over time as systems evolve the scripts can grow in size and complexity and can

become more and more difficult to use and manage. “Custom scripts and applications

rarely scale to suit large environments and often have issues of stability, flexibility, and

functionality. [...]. This increases the time and effort required to develop and maintain

the very tools you are hoping to use to reduce administrative efforts” (Turnbull 2007,

1). With this quote James Turnbull directly referred to the first challenge from the ones

presented below. However, it can also be applied to the other two - pursuing

automated configuration of a group of complex and diverse systems requires proper

tools or frameworks to handle the task, otherwise, if development of tools starts taking

too much time and effort the whole point of automation becomes secondary.

2.2.1 Support for multiple platforms and distributions

One of the problems of scripts not scaling well in large environments is that “such

scripts tend to suit only one target platform, resulting in situations such as the need to

create a user creation script for BSD, one for Linux, and yet another one for Solaris”

(Turnbull 2007, 1).

This challenge is also applicable in cases when IT infrastructure contains various Linux

distributions, i.e. when command-line tools and resource names or paths can differ

5

between systems. For example, a system administrator needs to install Apache web-

server on Debian and Red Hat systems, i.e. the challenges for automated system

configuration management tool would be to find out which system is Debian and

which is Red Hat, to apply different command-line tools (in this case package

managers) like ‘aptitude’ for Debian and ‘yum’ for Red Hat and to give the

administrator a way to separately define a name of the package for each system like

‘apache2’ for Debian and ‘httpd’ for Red Hat.

2.2.2 Offline nodes

The term “offline nodes” in this context refers to systems which are offline at the time

when changes in system configuration are applied. For example, system administrator

needs a new user to be created on 20 servers. He or she instructs the framework

accordingly, but at the moment of applying these changes several machines were

offline due to maintenance, i.e. the new user is created only on machines which were

online. The challenge here is to be able to ensure that when the offline machines are

back online they should also be instructed to create the new user.

2.2.3 Idempotence

Idempotence deals with ensuring that configuration stays intact if same configuration is

applied repeatedly. For example, an Apache web-server’s configuration file is defined

to have some specific content and whenever the content is changed the Apache service

should be restarted. So, there must be a way for the framework to ensure that the

configuration file has the defined content, that it changes if instructed, and that the

service is restarted only when it is changed.

2.3 Introduction to Puppet

Puppet is an open source framework and toolset for managing configuration of

computer systems (Turnbull, 2011, 1). It usually is deployed in a simple client-server

model, where server is called “Puppet master” and clients - computers managed by the

Puppet master are called “Puppets” or “nodes” (Turnbull, 2011, 2).

6

2.3.1 Puppet client-server workflow

A typical workflow of Puppet deployment is presented below in Figure 1.

Figure 1: Puppet client-server workflow model (source: http://www.aosabook.org/en/puppet.html)

The communication starts with Puppet nodes connecting to master by sending data

about themselves and asking if there is any configuration they should apply. The fact

that [typically / at least optionally] Puppet nodes are initiating the communication

addresses the “offline nodes” challenge described in 2.2.2. Nodes can be configured to

ask for new configuration at any time interval (default is 30 minutes) as well as at boot

time, which ensures that any new configuration will be applied with a maximum delay

of the defined time interval or if the node is offline - then whenever it is back online.

All the required configuration for Puppet nodes is defined on the master. When a node

requests for new configuration the master checks what configuration is defined for the

node, compiles a configuration catalog and sends it to the node, the node then applies

the configuration and reports back to the Puppet master. When no new configuration

is defined - nothing has to be done. This workflow is supported by the core of Puppet

7

– its transactional layer, which allows configurations to be created and applied

repeatedly on the host which is called to be idempotent, meaning that multiple

applications of the same operation will yield the same results (Turnbull, 2011, 5). In

practice it means that “Puppet configuration can be safely run multiple times with the

same outcome on your host and hence ensuring your configuration stays consistent”

(Turnbull, 2011, 6), which addresses the challenge of idempotence presented in section

2.2.3.

On Puppet master the configuration is defined in manifests. Manifests can contain

definitions for various configuration resource types, e.g. user, package, file, service,

exec (executing commands), mount (mount points) etc.; the number of officially

supported resource types manageable by Puppet at the moment of writing is 48

(Puppetlabs, Docs: Type reference). Resources that are related to each other can be

grouped into manifests, e.g. the simplified snipped below defines that Postfix is

installed and is always running:

class postfix {
 package { "postfix":
 ensure => installed,
 }
 service { "postfix":
 ensure => running,
 }
}

Manifests can be organized into modules for better grouping of related resources; for

example a “webserver” module might include everything necessary to be a webserver

such as Apache configuration files, virtual host templates, and the Puppet code

necessary to deploy these (Arundel 2011, 62). Modules are then applied for specific

nodes, which actually propagates the configuration to the specified nodes.

2.3.2 Declarative language

To define resources Puppet uses its own declarative language (Turnbull 2011, 3).

Declarative nature of the language, as opposed to imperative or procedural, allows

defining the state of system configuration as it should be, rather than how it should be

done (Turnbull 2011, 3). In the snippet above a package “postfix” is declared to be

present on a system, “Puppet handles the “how” by knowing how different platforms

8

and operating systems manage certain types of resources” (Turnbull 2011, 4).

According to Turnbull for the “package” type alone Puppet has more than 20

providers covering a variety of tools including yum, aptitude, pkgadd, ports, and

emerge (Turnbull, 2011, 4). For example, the above declaration of package “postfix” to

be installed would be applicable for nodes running on Debian, Ubuntu, Red Hat,

CentOS and other systems. Puppet’s ability to handle various abstracted resources by

invoking appropriate providers partly addresses the multi-platform / multi-distribution

configuration concern outlined in section 2.2.1.

2.3.3 Facter

To find out which provider to use Puppet uses a tool called Facter (Turnbull, 2011,

4), which is an independent, cross-platform Ruby library that gathers basic node

information about the hardware and operating system (http://puppetlabs.com/facter).

Facts provided by Facter can also be used by a developer for further overcoming the

multi-platform / multi-distribution challenge outlined in 2.2.1. Installing Apache on

Debian and Red Hat (an example from 2.2.1) can be accomplished by using the

“operatingsystem” fact for manually parameterizing the name of the Apache package:

case $operatingsystem {
 debian: { $apachepackage = "apache2" }
 redhat: { $apachepackage = "httpd" }
}
package { $apachepackage:
 ensure => present,
}

Facts can also be powerfully used in ERB templates, which are served as configuration

files to multiple nodes. For example, Postfix’s main.cf should contain a setting called

“myhostname” with a value of machine’s fully qualified domain name; to serve all

nodes with a customized configuration file from a single template it is enough to use

the Facter’s “fqdn” fact in the template:

myhostname = <%= @fqdn %>

Such customized Puppet modules can be grouped into specific server roles (in a class-

like style) and then these server-role classes can be applied for specific nodes. So,

adding a new node to a specific server-role would simply require one definition that

9

new node needs to include the class of the specific-server role. Adding a new module

to specific server-role(s) would similarly need inclusion of this module into a class

which is known to be applied by the server-role(s) in question. In the snippet below

there are definitions of three nodes, all of them need Postfix installed and only one

needs Apache; there are several ways to define it, this is just one of them:

class base { include postfix }
class webserver {
 include base
 include apache
}
node1 { include base }
node2 { include base }
node3 { include webserver }

This should demonstrate how serving new configuration or new nodes is quick and

simple.

For more information on how Puppet works the reader is advised to visit Puppetlabs’

thoroughly-documented website at http://puppetlabs.com/.

10

3 Project Background

3.1 Environment

Conformiq Software Oy is a small-sized software developing company located in

Espoo, Finland. Its main operations consist of development and technical support of

several Conformiq Software tools specialized for automated model-based software

testing. The company’s two core teams (R&D and Customer Success) as well as system

administration and most of company’s computing resources are located in Espoo.

Currently there are 20 employees working in the Finnish office.

Over the past two years Conformiq’s IT infrastructure has been growing in size and

complexity - the number of servers running inside the corporate network has more

than tripled and servers’ roles and configuration have become more diversified. The

main driver for undergoing this change was the need to better support company’s

operations in developing, testing, benchmarking and releasing Conformiq Software

products by increasing processing capacity to avoid bottlenecks in continuous

integration system orchestrating test-, benchmark- and release builds.

Development and maintenance of such growing infrastructure was posing specific

challenges. Various server roles used in the continuous integration farm implied that

configuration of machines have to be precisely calibrated to ensure that various server

roles’ are serving their intended purposes and that servers within each role definition

have identical configuration. Thus, development and maintenance of this infrastructure

using same tools and processes as before the expansion would require more time and

effort to be spent to manually configure each server. Quality of configuration would

also be more difficult to ensure due to human errors / negligence.

These challenges have posed a need for a system capable of automating and

centralizing management of systems’ configuration. Puppet framework was chosen to

manage system configuration on most of Conformiq’s continuous ingratiation farm’s

members. In summer 2012 while planning automated deployment of new servers as

well as redeployment of the old ones system I have developed a set of Puppet modules

11

(collections of Puppet manifests), which would help bring the new and the old servers

to the desired states of configuration in an automated and centralized manner.

Subsequent configuration changes to these and other nodes were implemented

through the existing and new Puppet modules.

Before this project started I have already been using Puppet in Conformiq to manage

configuration of 15 servers, a dozen of virtual machines and 1 user workstation, i.e.

about 20+ nodes running 4 different distributions of Linux spanning 7 different server

roles. Among the manageable resources were system configuration, user management,

package management, and service management.

3.2 Objectives

As mentioned above, at the beginning of this project Puppet was already used to

manage system configuration of a group of Conformiq servers and although this has

been seen as a significant development in system administration in Conformiq there

still is a lot of room for improvement. This project’s aim is to create new definitions

for further configuration of the Puppet farm nodes and also to establish a more

favorable infrastructure for further development of the Puppet farm using an

improved workflow for this process. Below are objectives of this project named and

described as features of the desired Puppet-related functionality:

• Configure Puppet reports to ensure that changes in configuration served by

Puppet are reported to system administrator.

• Integrate development with Puppet and Conformiq’s version control system

(SVN) to make sure that all changes first go to version control and from there

are deployed onto Puppet server. Automated Puppet syntax check before

committing considered as a bonus.

• Ensure packages’ versions stay in sync across all nodes.

• Install and configure a local Debian package repository for distributing custom

Debian packages.

• Centralize and automate user management - minimize number of actions

needed for adding and editing user accounts served by Puppet; simplify the

12

procedure for users to edit their accounts (e.g. changing their passwords and

default shell)

• Develop an environment for changes in configuration served by Puppet - create

an environment for safe testing of new or edited manifests and modules before

using them in production.

13

4 Methods

This chapter describes the research methods used in the project for gathering

information, development methodology applied in the project, as well as working

process and tools used thought the project.

4.1 Research methods

All the necessary material used during this project can be divided into three groups:

books, documentation and various IT-related sources in the internet. Books are mostly

Puppet related and have been used to gather higher-level ideas of what Puppet is and

what it can be used for. Documentation has been used to solve more practical issues

related to Puppet, Subversion (SVN), Python, Bash, Vagrant etc., i.e. issues dealing

with [lower-level ideas for] implementing functionality and addressing e.g. language

semantics and syntax. By online IT-related resources I refer to various questions-and-

answers web sites where technical solutions are suggested for specific technical issues

e.g. serverfault.com (for system administration) and stackoverflow.com (for

programming) as well as various public wikis, forums, blogs, mailing lists etc.

These research methods were used throughout the project, each serving a different

purpose - specific chapters in books were mostly used for gathering and analyzing

requirements and designing solutions on conceptual level. Documentation and other

online resources were found useful for looking for technical insights and solutions

mostly while implementing solutions, but also during design (on technical level) and

test phases. While documentation has been the primary source for authoritative

technical insights, other internet resources despite their “anonymity” and non-

authoritativeness also proved to be extremely helpful when looking for quick solutions

to known technical problems.

4.2 Development methodology

This thesis project has been conducted in a fashion of agile development [as opposed

to the traditional “waterfall” model]. Main rationale for choosing agile methodology

14

was that development of Puppet infrastructure just like the rest of system

administration in Conformiq is feature-driven - new functionality is requested as

features or tasks with various levels of priorities / severities, which can change.

Therefore, to be able to adapt to the potentially changing environment these features

and tasks were modularized into independent tasks which could be worked on

independently of each other. The order of implementing tasks was dictated by tasks’

priorities and when priorities were changing the order was changing as well (see Project

management for details).

It is worth noting that ‘officially’ no specific agile development methodology was

adopted for this project. For example, agile development usually implies a cooperation

of a group of people with diverse technical know-how, or short daily progress meetings

none of which were applicable since the project was conducted by one person only.

4.3 Working process and tools

In this project each feature implementation was in itself an iteration of traditional

development stages. Following workflow and tools have been applied:

Gathering and analyzing requirements for each feature started as a ticket in

Conformiq’s bug tracking system (Trac). Puppet related tickets were commonly

opened by either the system administrator or someone from R&D. Progress of

development of the feature was reported to the ticket. Puppet related tickets were

public for anyone in Conformiq, i.e. apart from reporter of a ticket, its owner and who

is deliberately added in CC, anyone could see the progress of the ticket through search

or timeline.

In Conformiq’s system administration design is often split into conceptual and

technical sides, while conceptually solutions are described in a related Trac ticket the

technical side usually involves a prototype in the production environment or a

replicated production environment for development. Replication of the production

environment has been achieved through such virtualization tool as VirtualBox.

15

Implementation and testing here are referred to the actual implementation and testing

of a feature in the production environment. Most common artifacts of this phase were

Puppet modules and manifests, Puppet configuration files as well as other scripts and

configuration files. All implementation artifacts have been committed to Conformiq’s

version control repository.

Documentation phase included publishing wiki pages (hosted at Conformiq’s Trac)

with information on each feature’s functionality. This information has been written as

user guidelines and has been targeted at both - mostly at developers who work with

Puppet infrastructure but also at users who are included in this infrastructure indirectly

(e.g. by having a user account managed by Puppet). References to Trac tickets and

SVN revisions were made in wiki documentation when applicable.

16

5 Project

This chapter contains results of the implemented features as well as some facts related

to project management.

5.1 Results

This section discusses implemented features, it describes the need for each feature as

well as the process of implementation. Where applicable it presents alternatives that I

faced while during implementation and, where applicable, my analysis for choosing one

alternative over another.

5.1.1 Automated reports of Puppet service runs

Puppet service (agent) had already been configured to run every 60 minutes on all the

Puppet slaves. During each run an agent contacts Puppet master to ask if there are any

changes in the configuration it should apply. If there are no changes nothing needs to

be done. If there are changes Puppet master instructs the agent on what changes

should be applied and how. The problem is that all the applied changes are

documented in logs and the system administrator has to manually log in to each agent

and see if Puppet runs were successful.

This feature’s main point was to automate reporting, i.e. to have the results of Puppet

service runs emailed to the system administrator. Initially it was planned to configure it

so that only reports of runs which contained errors should be emailed, but while

designing the solution another option appeared more superior: emailing all the reports

if there were any changes in the configuration. This option was preferred to only

sending reports with errors for following reasons:

• I as a system administrator stay in control by being aware of all configuration

changes distributed through Puppet by others as well by myself

• I stay in control by being informed of any unplanned changes in state of any

server, e.g. some service is stopped instead of running

17

The downside of this option is that more reports would be emailed, but since the

changes distributed by Puppet master are not too frequent and the reports are concise

no data overflow is expected.

The functionality of this stage was implemented by modifying an already existing

module “puppet_conf” (Appendix 2), which is used to distribute agent’s configuration,

to report results of Puppet service runs to Puppet master and by configuring Puppet

master (Appendix 1) to email these reports to system administrator.

After later implementing another feature (SVN post-commit hooks) email notifications

of Puppet service runs became disrupted - post-commit hook was restarting the

Puppet master in a way that would fail to properly construct email headers (“From”

field would contain a non-RFC-compliant address, for some reason the Puppet could

not correctly resolve its own host name). Whist if Puppet master was restarted

manually reporting would work as expected. Some investigation was made to find out

how these two ways would differ (e.g. if effective user id was different from real user

id), but the cause was not found. However, to fix the issue it was sufficient to explicitly

define it in the Puppet master’s configuration settings file (Appendix 1).

5.1.2 Local repository for custom Debian packages

In order to avoid building some software packages from source on each Puppet node

one can build them once into a Debian package, include it into a local repository, and

instruct all Puppet nodes to install the package from the repository.

The local repository for custom Debian packages was installed by creating a Puppet

module “reprepro” (Appendix 3) which ensures that: a package “reprepro” – a tool to

manage a repository of Debian packages (SPI Inc, Reprpepro) is installed, was

required directory structure is created, configuration files with defined content were

ensured to be present in appropriate locations, “apache” service was configured to be

restarted whenever there is a change in the repository-related apache configuration file.

18

The “reprepro” module was applied to the company’s internal file server, after that all

Debian servers’ sources lists had to also include the location of the new local

repository. This was implemented by modifying an existing Puppet module “apt” to

distribute an updated sources.list configuration file to all the machines (Appendix 4,

see inclusion of a URL specific to Squeeze – the custom packages are currently needed

on Debian Squeeze machines only).

Because installing and configuring reprepro is a one-server operation one might

suggest doing it manually, e.g. to save time and effort spent on automation. However, I

see value of doing it with Puppet for several reasons: if the fileserver ever needs to be

redeployed or if reprepro ever needs to be deployed elsewhere there will be no need to

install and configure it again, instead the existing module can be used to deploy it

automatically.

5.1.3 Keep packages’ versions in sync

Making sure that all necessary packages exist on all production servers has already been

implemented before this project by the Puppet module “packages”, through which

packages are installed to appropriate servers. However this did not ensure that

packages’ versions were all constantly up-to-date and in sync. This has been

implemented by writing two new modules: “unattended-upgrades” (Appendix 5) and

“postfix” (Appendix 6). The “unattended-upgrades” module now ensures that each

servers’ package manager periodically checks for updates and applies them when they

are available. The “postfix” module ensures that all the servers have a mail transfer

agent installed and configured in order to be able to email the system administrator

results (logs) of the unattended-upgrades runs.

The choice of unattended-upgrades involved a compromise. The main disadvantage of

this tool is that it can only perform upgrades equivalent to “apt-get upgrade” and

cannot perform a “deeper” upgrade (with installing new packages as dependencies)

equivalent to “apt-get dist-upgrade”. There was an alternative to unattended-upgrades

– a more configurable cron-apt tool. However, since cron-apt is the non-

recommended way for automatic upgrades (SPI Inc, Cron-apt) the decision was made

19

to go with the unattended-upgrades. The missing functionality of performing an

equivalent to apt-get dist-upgrade was solved by writing a custom function for Fabric

(a python based automated configuration management tool) where all the servers and

commands are defined, and manually executing this function against the bunch of

servers at once.

5.1.4 Integrate Puppet and SVN

The common way to develop Puppet manifests at Conformiq was to work directly in

Puppet master’s working directory, i.e. to work with manifests in production. This was

resulting in occasional syntax errors breaking manifests as well as inability to

simultaneously edit manifests by more than one user. Integrating Puppet with

company’s version control repository was aiming to solve these problems by having

developers each work with Puppet in their local checkouts and commit their code

when done, and automatically checking syntax error in a pre-commit hook and

deploying new code to Puppet production in a post-commit hook.

Both SVN pre- and post-commit hooks have already been used by the company and in

order to implement the desired functionality without disrupting current SVN services

the development and testing was performed in a replicated environment, and only later

implemented in production.

SVN pre-commit hook (Appendix 7) was configured to listen to Puppet-related

commits and to check new Puppet manifests for syntax errors before actually

committing them to SVN; commits with errors in manifests are cancelled and the

committer gets notified of a syntax error and its possible location. Implementation of

this functionality required a bash for-loop which runs Puppet’s tool for validating

syntax (puppet parser validate) against each Puppet manifest committed.

SVN post-commit hook (Appendix 8) was implemented so that each Puppet-related

commit would deploy a fresh copy of manifests to the Puppet master’s working

directory. Deployment was split into several steps: exporting Puppet configuration and

manifests from SVN to a temporary directory, stopping Puppet master service,

20

replacing old Puppet master working directory with the new copy, and starting the

Puppet master. The strict order of these steps ensures that at any point of time when

Puppet master is compiling a catalog for some slave the state of its manifests is clearly

defined and that it can only serve a catalog based on a definite configuration.

Stopping and starting puppet master during post-commit hook execution posed a

problem - since the commit hook is actually run as the same Unix user who makes the

commit (over svn+ssh://) the user needs elevated privileges to stop and start the

puppet master service. There were several options to deal with the issue, for example,

to give all users rights to run /etc/init.d puppetmaster in /etc/sudoers, or write a C

wrapper which would stop and start the service, or to not stop and start the service

during the post-commit deployment at all.

All of these options had their downsides. Reason for not taking the last options (not

stopping and starting the service at all) was described in the above paragraph - Puppet

master can compile configuration based on undefined state of its codebase in working

directory if deployment is in progress, which is not acceptable; reason for not

implementing the first option was that even with all users having privileges to stop and

start puppet master there would be conflicts on the file permissions level - after every

deployment the ownership of puppet master working directory needs to be writable so

that the next Puppet-related commit can succeed, however, leaving the manifests

writable through any other means than SVN was regarded as highly undesirable. The

downside of the C wrapper implementation was that it required a binary to be owned

and executed by “puppet” user (with setuid flag on) and setuid flags are never

desirable.

Out of three options the C wrapper was chosen (Appendix 9). It appeared equally bad

and equally probable to have a hostile Unix-user with either write access to Puppet

working directory or a possibility to become “puppet” user through abusing the suid

flag. However, it also appeared much less probable that someone would accidently

abuse the suid-enabled binary, become “puppet” user, and for example work with

21

Puppet manifests in production as opposed to a more likely scenario where a user with

writable rights to Puppet manifests in production accidentally edits these manifests.

5.1.5 Centralize and automate user management

Objective of this feature was to further centralize and automate user management on

all Puppet nodes.

First of all this meant centralizing user management. Functionality of two existing

modules which were taking care of defining users and users-specific data folders were

merged into one module (Appendix 10). Creation of users-specific data folders was

defined as a function of creation of users, i.e. no separate definitions of such folders’

creation is anymore needed.

Secondly, creation and management of user definitions was automated. This was

implemented by two scripts run as cron-jobs. One of the scripts (Appendix 12) uses

puppet tools to generate user definitions from unix users existing in the system (same

system where Puppet master runs), and the second script (Appendix 11) compares

these generated definitions with the ones in production; when they differ the ones in

production are replaced with the fresh definitions. This way if a new user has to be

added it is enough to create him/her on the system with e.g. “adduser” and add to a

specific user group, the script then analyzes users of this group and creates the

definitions.

Also, now if a user wants to change password or default shell on all Puppet nodes

there is no need to edit manifests (as before) - instead it is enough to log in to the

central server, make the changes there (e.g. with passwd or chsh -s) and just wait for

these changes to be propagated automatically.

There are two scripts instead of one for a reason: processing text (output from puppet

tools) was easier to implement with Python, while running Bash command is more

natural with a Bash script, it might be beneficial to merge them into one script at some

point.

22

Users have also been split into logical groups for easier and clearer realization of these

users on various Puppet nodes - users are now realized in these groups and the groups

are included as classes in the nodes’ definitions. This resulted in cleaner nodes’

definition file (previously all users were realized there) and clearer and easier separation

of which user should exist on which group of servers.

5.1.6 Environment for testing new configuration

The need for a testing environment for new configuration served by Puppet comes

from the fact that one cannot revert to previous configuration, at least not trivially. If

developer accidentally instructs Puppet to partition a hard drive or to upgrade the

operating system to the next release version - there will be no easy way back, no matter

if all the configuration was stored in version control – some data might get lost and the

amount of extra time spent and the scale of the problem might depend on how soon

the unwanted change is uncovered.

Implementation of this feature made use of Puppet’s native functionality which enables

defining various environments. In essence, if a Puppet node’s configuration file states

that it belongs to a specific environment, then Puppet master will look for modules

specified for this environment. The snippet below shows this distinction in Puppet

master’s definitions for modulepaths.

[production]
modulepath = $confdir/modules

[testing]
modulepath = $confdir/$environment/modules:$confdir/modules

Production machines are served modules from default location, whilst machines from

testing environment are first served from their specific environment module-path, and

only then from the default location. This way, one can copy a module from the

production module path to testing, Puppet master will then be serving this module to

testing environment nodes from testing environment and the rest of the modules will

be served from production. This ensures that modules in production keep served to

machines in production without interruptions while a copy of one of the modules in

under test. After successful testing the module can be moved back to production.

23

Provision of the actual test-beds had two alternatives. Either to have virtual machines

running in the network dedicated for testing. Or to provision such virtual machines on

individual basis. The latter option was found to be much more superior because the

point of these test-beds was to test new configuration and to possibly be breaking

them, so having possibly broken dedicated machines for testing seemed senseless.

Since Conformiq had already been using VirtualBox as the virtualization solution it was

logical to employ a popular front-end for VirtualBox called Vagrant, which can

provision pre-configured virtual machines from some location on the network directly

to developer’s workstation “with just a few keystrokes” (Mitchell Hashimoto,

VagrantDocs: Packaging).

Further implementation of this feature consisted of installing virtual machines which

would be replicas of server-roles from Puppet farm, packaging them into Vagrant

boxes, putting them to specific place in the network, and documenting how further

Puppet development can incorporate these boxes. Documentation can be seen in

Appendices 13 and 14 (one is for using Puppet and Vagrant,while the the other is

solely for Vagrant usage).

By default all Puppet nodes are requesting configuration from Puppet master

automatically, but for these test-beds it was decided to have the Puppet service not

started by default in order to give developers a better control of the environment. This

was implemented by changing a template which serves this setting to all nodes. Adding

the snippet below to a specific template resulted in all host whose hostname ends on “-

v” not having Puppet agent started by default:

<% if @hostname =~ /.*-v$/ then %>
do not start Puppet on this node by default
START=no
<% end %>

Similar conditional statement in another template defines these machines configuration

as the test-beds

<% if @hostname =~ /.*-v$/ then %>
this node is operating in testing environment
environment = testing
<% end %>

24

5.2 Project management

This thesis project was started in June of 2013 (week 24) and ended in December 2013

(week 51). Throughout the project I have spent a total of 332 hours, out of which:

• 45.5 hours were spent on project management related issues, such as writing

and updating project plan, preparing status reports for project meetings, the

actual project meetings, and writing meeting minutes

• 151.5 hours were spent on the research, design and implementation, as well as

testing and documentation of the features.

• 135 hours were spent on compiling this thesis report

In relation to how resource allocation was planned it is both, close and not. Total

amount of time is close to the planned 318 hours. The amount of time spent on

project management is also close to the planned 40 hours. What differs much is the

amount of time spent writing the thesis report, 135 hours against the 60 hours planned.

The 151.5 hours spent on implementation is actually a bit more than was planned to be

spent on these features against the planned 134.

Throughout this project the order of features’ implementation was changing together

with priorities for the features. Features which received higher priority (as e.g.

happened with the need for local Debian repository) was implemented without waiting

for its turn. Implementation of features which appeared less acute were postponed to

make sure that important stuff (including writing of the report) gets done first. This

way, there was no time left for implementing two features. One of which I mention in

the section 6.4 (visualization of Puppet dependencies) and the other one (configuration

of staged deployments) was dropped out completely due to the consideration that it

would not bring a significant value.

Throughout this project there have been 5 project meetings, including the starting

meeting and the closing meeting. All the minutes of the meetings as well as status

reports are submitted to the supervisor of this thesis.

25

6 Discussion

This chapter presents a discussion of the results of this project - the value of change

brought by the implemented features are discussed .

6.1 Reporting

Configuring Puppet master to send automated reports with results of Puppet service

runs on all nodes was an important first step in this project - it was much easier to

develop Puppet manifests having results of all the service runs available at immediately

in one location - in this case my email account, easier in comparison to prior

development of Puppet manifests and manual checking these results from each node’s

syslog. Email reports are also invaluable for further development of Puppet

infrastructure after this project for its ability to keep me informed about changes made

to Puppet configuration by other Conformiq employees.

6.2 Package management

Enhancement of package management with Puppet had two objectives: to make sure

that packages are in sync across Puppet nodes and to enable distributing custom

Debian packages which are built and served inside company’s internal network.

Previously, packages were managed with module “packages” that defined which

packages have to be installed on which servers; after some time versions of these

packages started varying between each other even on machines with an identical

purpose e.g. because someone decided to manually upgrade some packages on one

machine for building Conformiq releases but not on all. And since identical purpose

implies identical configuration, this clearly had to be fixed. Implementing modules

“unattended-upgrades” and “postfix” ensured that packages which are expected to be

upgraded are upgraded and kept in sync across various same-purpose machines and

that all results of unattended-upgrades runs are emailed to system administrator.

The bottom line is that previously in order to keep packages in sync I had to follow

Debian mailing lists (at least debian-security@lists.debian.org), when appropriate

26

patches were available to manually login to each server and run an upgrade command,

and to then go through the output of each machine’s results to make sure everything

went as expected. As a result sometimes it was taking time to make sure packages are

in sync and during other times [when it is not taken care of] they were not [in sync].

Now the I simply have to check my email and go through summarized reports of each

of unattended-upgrades runs.

Setting up a local repository for custom Debian packages was meant to ease installation

of some specific software which has to be built in-house - it gives the possibility to

build a specific package once, publish it in the repository and declare in module

‘packages’ that it has to be installed on some machine(s). During this project it did

prove to be useful once when one of Conformiq developer’s built several packages of

specific JDK-6 version (6.27), which was not available in Debian Squeeze repositories.

So, he published it through the local repository, which soon resulted in all Squeeze

machines having the openjdk-6.27. Considering that there were only two Squeeze

servers running at that time an immediate value of the local repository serving

openjdk-6.27 might appear quite low, however, considering the potential scalability

value of e.g. not having to go through the build process every time a Squeeze server

needs to be reinstalled (or additional Squeeze server is added) or the other packages

need to be built from source (as it currently is with qt4 and acetao) one can conclude

that benefits from the local repository are yet to be realized and appreciated.

6.3 User management

Automating and centralizing user management involved simplifying two aspects of

user management: users’ self-management (e.g. changing password or default shell) and

additions of new users to Puppet infrastructure. The main idea behind this part was to

cut down any unnecessary actions from user’s and from system administrator’s sides

If previously a user for changing his/her password on all Puppet nodes needed to

access the central server, change the password there, get the hash of this password, and

update his/her entry in the Puppet “users” manifest with this hash, now the user needs

to access the central server and update his/her password, the rest will be taken care of

27

behind the scenes. The benefit of this is that no knowledge of Puppet is required to

perform such action, also it ensures that passwords will be in sync and that there will

be no such situation when user updates the password on the central server but does

not update the Puppet manifest because of forgetting or not knowing about this

procedure.

Addition of new users had previously required system administrator to edit two

manifests by hand, which is requiring time and effort, and is error-prone. After

implementing improvements to user management there is only one module and even

this does not have to be worked with directly, instead it is enough to add a new user to

the central server and the changes will be propagated to this Puppet manifest behind

the scenes.

To sum up, this enables users to more easily manage their own accounts, and system

administrator - to easier and quicker add new users.

6.4 Workflow for further development of infrastructure with Puppet

With SVN pre- and post-commit hooks the process of development of Puppet

manifests and modules became more standardized, to be more exact here were

introduced first steps of a standard procedure for development of Puppet manifests

and modules (further steps mentioned later). This includes a single way to work with

manifests only through the SVN repository, where manifests are checked for syntax

before committing and deployed to Puppet master working directory after committing.

The value added with this feature is that several developers can work on Puppet

modules independently, changes are deployed from SVN to Puppet working directory

automatically, and that syntax errors will not creep into production environment.

With Vagrant boxes the further development of infrastructure with Puppet is more

safe. Checking for syntax errors in SVN pre-commit hook is great, but it does not

prevent from semantic errors that can result in unexpected system behaviors included

corrupting system and losing data. Vagrant boxes can serve as test-beds where results

of configuration changes can be studied in detail before applying these changes in

28

production. This allows more developers with little or no Puppet experience to start

working with Puppet without any fear of breaking configuration in production.

A feature for visualization of Puppet dependencies was planned to be implemented to

better support understanding of what configuration is served to which kind of nodes

and how some configuration definitions are influencing other definitions, but due to

lack of time implementation of this feature had to be postponed and later cancelled.

However, this is the very next step to be done (though already outside of this project)

to enable developers to better understand interrelationship of Puppet definitions, and

to thus make the development process more confident.

29

7 Conclusion

Right tools can be a prerequisite of work done well and on time. Puppet as a

framework for automated and centralized system configuration management is

definitely the right tool for Conformiq Software, and to a great extent this tool is one

of the reasons for the success of this project.

Features implemented during this project have all been tested and at the moment of

writing are in production.

The improved package management ensures that the quality of configuration meets the

expectations on all the 20+ nodes in the Puppet farm. Improved user management

enables system administrator and users themselves to better administer appropriate

user resources. Integration of Puppet with Conformiq’s version control empowers

distributed development, basic Puppet syntax check and automated deployment of

changes into production. Environment for testing changes in configuration minimizes

the risk of breaking down systems that are controlled by Puppet. And last but not least,

all configuration changes distributed within the Puppet farm are reported to the system

administrator; staying informed is staying in control.

With these features in production Conformiq Software will enjoy higher quality of

configuration of its server farm, and quicker, more scalable and safer further

development of its infrastructure with Puppet.

30

8 Recommendations for further development

Development of an IT infrastructure is a constantly ongoing activity and there can be

an endless amount of recommendations for further development. However, stemming

right from this project I have selected several suggestions that in my opinion are worth

considering.

Puppet has been used in Conformiq to also configure two user workstations, but this

was more of an experiment. It has not yet been productized, partly because this is not a

very frequent use case, partly because users like keeping maintenance of their machines

to themselves. But since most of user workstations are running Linux it could be

beneficial to find the golden middle of what kind of configuration could be served by

Puppet to save users’ time and effort. One aspect should however be well considered:

user workstations can contain users’ private data and since Puppet development is

open for anyone in the company there must be a way to make sure that hacking a

colleague’s machine is not possible (for fun or not).

Vagrant virtual machines used as test-beds for new Puppet configuration can also be

used for other purposes, for example as test-beds for testing of some bleeding-edge

features of Conformiq’s own software products. Also, more virtual machines can be

packed into Vagrant boxes, which can then be used for e.g. showing customers demos

of Conformiq Software products integrations with other software tools.

Conformiq’s Windows machines have been controlled by Puppet in a very limited way.

The last time I checked Puppet could only install .msi packages on Windows and

Windows did not provide API for managing passwords in any other way than clear-

text. However, consider taking more under the same hood, look for workarounds, you

are probably not the first person who encountered this problem. Getting more under

the same hood makes maintenance and further development easier, especially when the

”hood” is a well-developed, well-documented, open-source framework like Puppet.

31

9 Summary

The basis of this thesis was a necessity to further develop part of the IT infrastructure

of Conformiq Software Oy, where at the moment of writing I am working as the

system administrator. This part of the infrastructure consisted of a group of servers

used by Conformiq Software to develop, test, benchmark and release its software

products. The quality of configuration of this group of servers as well as its availability

and scalability was of great importance to the company. So, already before this project

this part of the infrastructure was developed and maintained by a system configuration

framework called Puppet.

This project’s main objectives were:

• additional configuration of this group of servers using the Puppet framework

• improvement of a workflow and its underlying infrastructure for better

supporting further development of this group of servers with Puppet

These objectives split down into features were implemented one after another. As a

result of implementing these features the state of configuration of this group of servers

satisfies the requirements. And further development of this group of servers with

Puppet is supported by an advanced workflow, specifically preconfigured and

integrated tools, and the necessary documentation.

32

Bibliography

Arundel, J. 2011. Puppet 2.7 Cookbook. Packt Publishing

git-reset(1) Manual Page. URL: https://www.kernel.org/pub/software/scm/git/docs/git-

reset.html (accessed on 2013-08-30)

Jan Wolter, Unix Incompatibility Notes. URL: http://unixpapa.com/incnote/setuid.html

(accessed on 2013-08-27)

John Altenmueller, setuid on shell scripts URL: http://www.tuxation.com/setuid-on-shell-

scripts.html (accessed on 2013-08-27)

Mendel Cooper, Advanced Bash-Scripting Guide. URL:

http://www.tldp.org/LDP/abs/html/io-redirection.html (accessed on 2013-08-06)

Mitchell Hashimoto, VagrantDocs: Packaging. URL: http://docs-

v1.vagrantup.com/v1/docs/getting-started/packaging.html (accessed on 2013-12-13)

nixCraft, What is Umask. http://www.cyberciti.biz/tips/understanding-linux-unix-umask-

value-usage.html (accessed on 2013-08-09)

Puppet Labs, Facter URL: http://puppetlabs.com/facter (accessed on 2013-12-13)

Puppet Labs, Type Reference. URL:

http://docs.puppetlabs.com/references/2.7.stable/type.html (accessed on 2013-12-13)

Python Software Foundation, Subprocess management. URL:

http://docs.python.org/2.6/library/subprocess.html (accessed on 2013-09-12)

SPI Inc, Debian – Details of package reprpepro in wheezy. URL:

http://packages.debian.org/sid/reprepro (accessed on 2013-08-14)

33

stack exchange inc, How to have git-svn take care of empty directories gracefully. URL:

http://stackoverflow.com/questions/8051991/how-to-have-git-svn-take-care-of-empty-

directories-gracefully accessed on (2013-12-09)

stack exchange inc, How to undo the last Git commit. URL:

http://stackoverflow.com/questions/927358/how-to-undo-the-last-git-commit (accessed on

2013-08-06)

Turnbull, J. & McCune, J. 2011, Pro Puppet. Apress

Turnbull, J. 2007. Pulling Strings with Puppet: Configuration Management Made Easy. Apress

unixh4cks, Using SVN commit hooks to validate puppet syntax: URL:

http://wiki.unixh4cks.com/index.php/Using_SVN_commit_hooks_to_validate_puppet_syntax

(accessed 2013-07-17)

34

Appendices

For ease of read appendices contain only code relevant to this project, i.e. code that

existed before this project and is of no relevance is not included. For example,

Appendix 1’s “puppet.conf” is not complete, but it contains code/options written in

this project and referred to in this report.

Commented out (i.e. not active) configuration options in some configuration files

served by modules are not included, again - purely for the ease of read. For example,

default configuration that comes with unattended-upgrades (Appendix 5’s

“50unattended-upgrades.tmpl”) is much longer, but at the same time it contains

mostly commented out options. Such commented out options which come with

default configuration files seemed to not add any value here, hence they were left out.

Appendix 1 - Puppet master’s “puppet.conf” and “tagmail.conf”

Extract from Puppet master’s puppet.conf

Send reports of Puppet agents' service runs
reports = store,tagmail
reportfrom = XXXX@conformiq.com
tagmap = /etc/puppet/tagmail.conf

Definitions of module-paths for environments
[production]
modulepath = $confdir/modules

[testing]
modulepath = $confdir/$environment/modules:$confdir/modules

Puppet master’s tagmail.conf

Send all reports to admin
possible options are: all, err, or a custom tags defined e.g. in a class
all: XXXX@conformiq.com

35

Appendix 2 - Module “puppet_conf”

puppet_conf module consists of a manifest and two templates, it serves Puppet nodes’

configuration files.

Manifest

This class serves puppet configuration files to Puppet nodes.
Note that /etc/puppet/puppet.conf and /etc/default/puppet serve
templates,
i.e. their contents will depend on facts received from agents!
To see the facts run facter on a Puppet node!

class puppet_conf {
 file { "puppet.conf":
 path => "/etc/puppet/puppet.conf",
 owner => "root",
 group => "root",
 mode => 0644,
 content => template("puppet_conf/puppet.conf.tmpl"),
 require => Package["puppet"],
 }
 file { "puppet":
 path => "/etc/default/puppet",
 owner => "root",
 group => "root",
 mode => 0644,
 content => template("puppet_conf/puppet.tmpl"),
 require => Package["puppet"],
 }
}

Template puppet.conf.tmpl serving Puppet nodes’ /etc/puppet/puppet.conf

report results of Puppet service runs to master
report = true

<%# hostnames ending on "-v" are vagrant boxes and belong to testing
environment %>
<% if @hostname =~ /.*-v$/ then %>
this node is operating in testing environment
environment = testing
<% end %>

36

Appendix 3 - Module “reprepro”

Manifest

This class installs and configures reprepro (a local Debian repository)
For adding more distributions edit modules/reprepro/files/distributions

class reprepro {

 package { 'reprepro':
 ensure => installed,
 }

 file { ['/var/www/repos', '/var/www/repos/apt',
'/var/www/repos/apt/debian', '/var/www/repos/apt/debian/conf']:
 ensure => directory,
 owner => 'root',
 group => 'root',
 mode => 0644,
 }

 file { '/var/www/repos/apt/debian/conf/distributions':
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => 0644,
 source => "puppet:///modules/reprepro/distributions",
 }

 file { '/var/www/repos/apt/debian/conf/options':
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => 0644,
 source => "puppet:///modules/reprepro/options",
 }

 file { '/etc/apache2/conf.d/repos':
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => 0644,
 source => "puppet:///modules/reprepro/repos",
 }

 exec { '/etc/init.d/apache2 reload':
 subscribe => File["/etc/apache2/conf.d/repos"],
 refreshonly => true,
 }
}

distributions file

Origin: Conformiq
Label: Conformiq
Codename: squeeze
Architectures: i386 amd64
Components: main
Description: Conformiq repository for custom Debian Squeeze packages

options file

verbose
basedir /var/www/repos/apt/debian

37

repos file

/etc/apache2/conf.d/repos

<Directory /var/www/repos/ >
 # We want the user to be able to browse the directory manually
 Options Indexes FollowSymLinks Multiviews
 Order allow,deny
 Allow from all
</Directory>

This syntax supports several repositories, e.g. one for Debian, one for
Ubuntu.
Replace * with debian, if you intend to support one distribution only.
<Directory "/var/www/repos/apt/*/db/">
 Order allow,deny
 Deny from all
</Directory>

<Directory "/var/www/repos/apt/*/conf/">
 Order allow,deny
 Deny from all
</Directory>

<Directory "/var/www/repos/apt/*/incoming/">
 Order allow,deny
 Deny from all
</Directory>

38

Appendix 4 - Module “apt”

Manifest

vim:et sw=4 ts=4:
class apt {
 file {"/etc/apt/sources.list":
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => 0644,
 content => template("apt/sources.list"),
 }
 file {"/etc/apt/apt.conf":
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => 0644,
 source => "puppet:///modules/apt/etc/apt/apt.conf",
 }

 # Run apt-get update when anything beneath /etc/apt/ changes
 exec {"apt-get update":
 command => "/usr/bin/apt-get update",
 onlyif => "/bin/sh -c '[! -f /var/cache/apt/pkgcache.bin] ||
/usr/bin/find /etc/apt/* -cnewer /var/cache/apt/pkgcache.bin | /bin/grep .
> /dev/null'",
 }
}

sources.list

<%# This is a template for serving list of repository sources for various
distributions %>
deb http://ftp.fi.debian.org/debian <%= @lsbdistcodename %> main
deb-src http://ftp.fi.debian.org/debian <%= @lsbdistcodename %> main

deb http://security.debian.org/ <%= @lsbdistcodename %>/updates main
deb-src http://security.debian.org/ <%= @lsbdistcodename %>/updates main

<%# sources for Debian Squeeze (6) only %>
<% if @lsbdistcodename == "squeeze" then %>
squeeze-updates, previously known as 'volatile'
deb http://ftp.fi.debian.org/debian/ squeeze-updates main
deb-src http://ftp.fi.debian.org/debian/ squeeze-updates main

conformiq internal packages repository
deb http://XXXX/repos/apt/debian <%= @lsbdistcodename %> main
<% end %>

39

Appendix 5 - Module “unattended-upgrades”

Manifest

This class installs and configures unattended-upgrades.
Configuration options are in the two files (one is a template) referenced
below.

class unattended-upgrades {

 package { "unattended-upgrades":
 ensure => present,
 }
 file { "/etc/apt/apt.conf.d/50unattended-upgrades":
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => 0644,
 content => template("unattended-upgrades/50unattended-
upgrades.tmpl"),
 require => Package["unattended-upgrades"],
 }
 file { "/etc/apt/apt.conf.d/10periodic":
 ensure => present,
 owner => 'root',
 group => 'root',
 mode => 0644,
 source => "puppet:///modules/unattended-
upgrades/10periodic",
 require => Package["unattended-upgrades"],
 }
}

10periodic file

// Enable the update/upgrade script (0=disable)
APT::Periodic::Enable "1";

// Do "apt-get update" automatically every n-days (0=disable)
APT::Periodic::Update-Package-Lists "1";

// Do "apt-get upgrade --download-only" every n-days (0=disable)
APT::Periodic::Download-Upgradeable-Packages "1";

// Run the "unattended-upgrade" security upgrade script
// every n-days (0=disabled)
// Requires the package "unattended-upgrades" and will write
// a log in /var/log/unattended-upgrades
APT::Periodic::Unattended-Upgrade "1";

// Do "apt-get autoclean" every n-days (0=disable)
APT::Periodic::AutocleanInterval "1";

APT::Periodic::RandomSleep "10";
APT::Periodic::Verbose "1";

40

50unattended-upgrades.tmpl template

// Automatically upgrade packages from these origin patterns
 // migration to the specified archive (e.g. testing becomes the
 // new stable).
// allowed origins for <%= @lsbdistcodename %>
<% if @lsbdistcodename == "wheezy" then %>
Unattended-Upgrade::Origins-Pattern {
 "o=Debian,a=stable";
 "o=Debian,a=stable-updates";
 "origin=Debian,archive=stable,label=Debian-Security";
<% end %>
<% if @lsbdistcodename == "squeeze" then %>
Unattended-Upgrade::Allowed-Origins {
 "${distro_id} oldstable";
 "${distro_id} ${distro_codename}-security";
<% end %>
};

41

Appendix 6 - Module “postfix”

Manifest

This class installs postfix, serves appropriate config files (one is a
template), and makes sure services are restarted when needed

class postfix {

 package { "postfix":
 ensure => installed,
 }

 service { "postfix":
 ensure => running,
 enable => true,
 hasstatus => true,
 restart => '/etc/init.d/postfix reload',
 require => Package['postfix'],
 }

 file { "/etc/postfix/main.cf":
 ensure => present,
 owner => "root",
 group => "root",
 mode => 0644,
 content => template("postfix/main.cf.tmpl"),
 require => Package["postfix"],
 notify => Service['postfix'],
 }

 file { "/etc/aliases":
 ensure => present,
 owner => "root",
 group => "root",
 mode => 0644,
 source => "puppet:///modules/postfix/aliases",
 require => Package["postfix"],
 }

 exec { "/usr/sbin/postalias /etc/aliases":
 subscribe => File["/etc/aliases"],
 refreshonly => true,
 }
}

42

mail.cf.tmpl template

Postfix main.cf configuration, fed by puppet (upon refreshing all locally
made changes will be reset)
This template serves dynamic values, like fqdn, and domain. These values
are provided by facter

myhostname = <%= @fqdn %>
myorigin = <%= @domain %>
mydestination = <%= @fqdn %> localhost
relayhost = [XXX.XXX.XXX.XXX]
mynetworks = XXX.XXX.XXX.XXX/XX XXX.XXX.XXX.XXX/XX

alias_maps = hash:/etc/aliases
alias_database = hash:/etc/aliases
mailbox_size_limit = 0
recipient_delimiter = +
inet_interfaces = loopback-only
smtpd_banner = $myhostname ESMTP $mail_name (Debian/GNU)
biff = no

appending .domain is the MUA's job.
append_dot_mydomain = no

Uncomment the next line to generate "delayed mail" warnings
#delay_warning_time = 4h

readme_directory = no

TLS parameters
smtpd_tls_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem
smtpd_tls_key_file=/etc/ssl/private/ssl-cert-snakeoil.key
smtpd_use_tls=yes
smtpd_tls_session_cache_database = btree:${data_directory}/smtpd_scache
smtp_tls_session_cache_database = btree:${data_directory}/smtp_scache

See /usr/share/doc/postfix/TLS_README.gz in the postfix-doc package for
information on enabling SSL in the smtp client.

43

Appendix 7 - SVN pre-commit hook

#!/bin/sh

REPOS="$1"
TXN="$2"

Define variables
SVNLOOK=/usr/bin/svnlook
PUPPET="/usr/bin/puppet"

Make sure that the log message contains some text.
$SVNLOOK log -t "$TXN" "$REPOS" | \
 grep "[a-zA-Z0-9]" > /dev/null || exit 1

tmpfile=$(mktemp)
export
PATH="/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin"

go through every file in commit and look for Puppet manifests (ending on
.pp)
for file in $($SVNLOOK changed -t "$TXN" "$REPOS" | awk '/^[^D].*\.pp$/
{print $2}')
do
 #
 $SVNLOOK cat -t $TXN $REPOS $file > $tmpfile
 $PUPPET parser validate $tmpfile 1>&2
 # if there are errors echo the error message and exit with code 1
 if [$? -ne 0]
 then
 echo "Puppet syntax error in $file" 1>&2
 exit 1
 fi
done

Clean up
rm -rf "$tmpfile"

All checks passed, so allow the commit.
exit 0

** part of this pre-commit hook was readily available at unixh4cks, Using

SVN commit hooks to validate puppet syntax

44

Appendix 8 - SVN post-commit hook

#!/bin/bash

REPOS="$1"
REV="$2"
UUID=$(svnlook uuid $REPOS)

mychanges="$(mktemp)"
svnlook changed --revision "$REV" "$REPOS" > "$mychanges"

If Puppet-related commit run the binary to deploy changes production
if grep -q 'XXXXX/puppet' "$mychanges";
then
 echo "will restart services and move configuration"
 /usr/local/svn2/hooks/post-commit.puppet
else
 echo "uninteresting commit"
fi
rm -rf "$mychanges"

45

Appendix 9 - C wrapper for SVN post-commit hook

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main()
{
 // set puppet uid
 setreuid(116,116);

 // get latest puppet manifests to a temporary directory
 int exitcode = system("/usr/local/bin/svn export --force
file:///usr/local/svn2/it/trunk/puppet /tmp/puppet");

 // if export was successful: stop puppet master, copy new configuration
and clean up, start puppet master
 if (exitcode == 0) {
 system("/etc/init.d/puppetmaster stop");
 system("/bin/rm -rf /etc/puppet/* ; /bin/cp -r /tmp/puppet/*
/etc/puppet/ ; /bin/rm -rf /tmp/puppet");
 system("chown -R puppet:puppet /etc/puppet");
 system("chmod -R 755 /etc/puppet");
 system("/etc/init.d/puppetmaster start");
 }
 return 0;
}

46

Appendix 10 - Module “users”

Manifest

USER DEFINITIONS 1 - HEAD
vim:et sw=4 ts=4:
class users {
 include users::virtual
 include data_users_dir
}

class data_users_dir {
 file{ "/data/users":
 ensure => "directory",
 owner => "root",
 group => "users",
 mode => "755",
 }
}

class users::virtual {
 define localuser ($uid,$gid,$password="",$shell,$home) {
 user { $title:
 ensure => "present",
 uid => $uid,
 groups => $gid,
 shell => $shell,
 home => "$home",
 comment => $realname,
 password => $password,
 managehome => true,
 }

 file { "/data/users/${title}":
 ensure => "directory",
 owner => "${title}",
 group => "users",
 mode => "755"
 }
 }
}

class mysite::users {
 include users::virtual

 case $operatingsystem {
 # name the 'sudo' group for Debian and Suse
 Debian: { $sudo = "sudo" }
 SuSE: { $sudo = "wheel" }
 }

USER DEFINITIONS - USERS
 @users::virtual::localuser { ‘XXXX':
 gid => ['users',$sudo],
 home => '/home/XXXX',
 password => 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX',
 shell => '/bin/zsh',
 uid => 'XXXX’,
 }
 @users::virtual::localuser { ‘XXXX’':
 gid => ['users',$sudo],
 home => '/home/XXXX’,
 password => 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX',
 shell => '/bin/bash',
 uid => ‘XXXX’,
 }
USER DEFINITIONS 3 - END
}

47

Appendix 11 – Script for comparing definitions from Unix users and Puppet

users definitions from production

#! /bin/sh

Script for making sure that users have same definitions on local system
and in Puppet 'users' manifests
To be run in cron every 30 minutes

TMPDIR="/root/puppet"

generate users' definitions from current UNIX users of XXXXX
python $TMPDIR/puppet-users-generate.py

get users' definitions from current Puppet 'users' module
awk '/# USER DEFINITIONS/{n++}{print > "/root/puppet/"n".txt" }' \
/etc/puppet/modules/users/manifests/init.pp

compare the resulted files, if they differ - ACT!
DIFFOUTPUT=$(diff "$TMPDIR"/2.txt "$TMPDIR"/puppet-users.tmp)
if ["$DIFFOUTPUT" != ""]
then
 echo "Users' definitions have changed! The changes are:"
 echo "$DIFFOUTPUT"
 echo "Putting up new 'users' manifest.."
 cd $TMPDIR && cat 1.txt puppet-users.tmp 3.txt > new.init.pp

 echo "Checking out the latest 'users' manifest from SVN, replacing it
with the new manifest, committing it to SVN.."
 svn checkout file:///XXXXXXX/puppet/modules/users/manifests
"$TMPDIR"/manifests
 cat "$TMPDIR"/new.init.pp > "$TMPDIR"/manifests/init.pp
 svn commit "$TMPDIR"/manifests -m "puppet: automated update of 'users'
manifest"
fi

clean up
cd $TMPDIR && rm -rf 1.txt 2.txt 3.txt manifests new.init.pp puppet-
users.tmp

48

Appendix 12 – Script for generating Puppet user definitions from Unix users

/root/puppet/puppet-users-generate.py
This script generates users' definitions appropriate for Puppet
configuration.
Invoked by puppet-users-check.sh from the same directory.

import subprocess

get a list of users belonging to group XXX (puppetusers)
getent_out = subprocess.Popen(['/usr/bin/getent', 'group', 'XXX'],
stdout=subprocess.PIPE).communicate()[0]
getent_out_split = getent_out.split(":")
usersline = getent_out_split[-1].rstrip()
users = usersline.split(",")

open the temporary file for writing and insert beginning of the block
f = open("/root/puppet/puppet-users.tmp", "w")
f.write("# USER DEFINITIONS 2")

iterate through users, generate Puppet definitions
for u in users:
 newblock = ""

 # get block with user definition and split them into lines
 userblock = subprocess.Popen(['puppet', 'resource', 'user', u],
stdout=subprocess.PIPE).communicate()[0]
 blocklines = userblock.splitlines()

 # iterate through lines in blocklines and construct own blocks with only
necessary options:
 # i.e. user, gid, home, password hash, uid, shell
 for line in blocklines:
 # catch the beginning of the block
 # add our custom beginning and the rest
 if "user {" in line:
 line = "\n @" + line[:4] + "s::virtual::localuser" + line[4:]
 line += "\n gid => ['users',$sudo],"
 newblock += line
 newblock += "\n home => '/home/%s'," % u
 if "password " in line or "uid" in line or "shell" in line:
 line = "\n " + line
 newblock += line
 # catch the ending of the block
 if "}" in line:
 line = "\n " + line
 newblock += line
 # after iterating over all users insert the whole block with user
definitions into temp file
 f.write(newblock)
f.write("\n")
f.close()

49

Appendix 13 – Wiki: Puppet

• Development of Puppet with Vagrant boxes

There now is a safe and simple way to try out new things in Puppet before moving
them into production.

• The way in a nut shell
• get a virtual machine which is pre-configured to work with modules in testing

environment

• work with modules in testing environment

• verify that new functionality does what it is supposed to with the new modules

• check that it does not break something one might expect or suspect
• after validating the module, move it to production environment

• Example of a workflow

Bellow is a workflow example for editing some existing module (say packages) for
linrels.

Get started with the linrel vagrant box

mkdir linrel-v && cd linrel-v

vagrant box add linrel-v /storage/vagrant/linrel-v.box

vagrant init linrel-v

vagrant up

vagrant ssh

NB! Successful execution of the last command assumes your private key is in

~/.ssh/id_rsa logs you into the Vagrant box. More details on Vagrant boxes are
in https://XXXXXXX.conformiq.com/XXXXXXX/wiki/Vagrant

in linrel-v apply latest changes from Puppet production

sudo puppet agent --server=XXXXXXXXX.conformiq.com --no-daemonize

--verbose –onetime

checkout latest Puppet code

git svn clone svn+ssh://$(whoami)@XXXXX/puppet puppet

cd puppet

Copy "packages" module from production into testing environment

cp -r modules/packages testing/modules/

edit, add and commit

vim testing/modules/packages/manifests/init.pp

...

git add testing/modules/packages

git commit

git svn dcommit

NB! Now, there are two modules "packages": one in production and one in testing

environment. Puppet nodes in testing environment first look in their specified

modulepath, then in production, i.e. at this point our linrel-v will be served "packages"
module from testing environment and the rest will come from production.

50

Apply your latest changes commited moments ago

sudo puppet agent --server=XXXXXXXXX.conformiq.com --no-daemonize

--verbose --onetime

Observe the output, check the system, try something out

make changes if necessary,

and when happy and satisfied move the module from testing into

production

cp -r testing/modules/packages modules/

git rm -r testing/modules/packages

git commit

git svn dcommit --rmdir

NB Git-users! In the last command make sure you use --rmdir switch to remove

empty directories behind you, because empty directories with module names left in

testing/modules will confuse and stall environment Puppet nodes. They will complain
that "Cannot compile catalog.." and give an error in manifests/nodes.pp

Vagrant boxes are located in /storage/vagrant, they are populated over time, to

request more boxes email XXXXXXX@conformiq.com

• User management

Puppet is used to manage users on all of its nodes. Users definitions are stored in a

Puppet module "users" at svn+ssh://@XXXX/puppet/modules/users/manifests/init.pp.

These definitions are generated automatically by a cronned script, which converts

puppet.conformiq.com unix-users belonging to local group "users" into Puppet user

definitions. The script runs every 30 minutes and compares latest generated

definitions with current ones, and commits latest changes to SVN whenever there are

any. Changes can e.g. be addition of a new user, or change of user's password or
default shell.

To change a password or a default shell a user should not edit his/her user definition

in the above mentioned manifest, instead the user should log in to

XXXXXX.conformiq.com and make the necessary operation(s) there; the changes will
be auto-generated and auto-committed to the appropriate manifest in SVN, and from
there - applied to the Puppet nodes.

For example, to change password and default shell to zsh on all the Puppet nodes:

ssh XXXXX.conformiq.com

passwd

chsh -s /bin/zsh

• User folders

Each user has two user-specific folders on every Puppet node:

• /home/[user] - is user's home folder

o mounted over NFS from XXXXXXX

o can be used to store stuff which is needed often at least several

machines

o over-the-network performance < locally performed operations

o backed up

o disk space is limited - might get a request from admin to clean up

51

• /data/users/[user] is a local folder

o better performance than over NFS

o not backed-up
o disk space not that scarce

• Editing Puppet manifests

The new way of editing [also creating new] Puppet manifests is through our

SVN repository. Please note that this is also the only way supported - all local
modifications in the Puppet working directory will be overwritten by SVN export, thus
all changes made locally will be lost [forever]. The the new workflow is:

• checkout latest revision of Puppet working directory

• make necessary modification to manifest[s]

• commit changes to SVN

• you changes will be automatically validated for Puppet syntax errors by a

pre-commit hook

o commits with no syntax errors will be allowed through

o commits with syntax errors will be aborted; a message with error details

will be displayed in the ouput, after correcting the error commit again

• your changes will be deployed automatically from SVN to Puppet working

directory on the Puppet master server by a post-commit hook

• svn

svn checkout svn+ssh://$(whoami)@XXXXXXX/puppet ; cd puppet

vim / emacs ...

svn commit

• git svn

git svn clone svn+ssh://$(whoami)@ XXXXXXX/puppet puppet ; cd

puppet

vim / emacs ...

git add -p

git commit

git svn dcommit

NB Git svn users! If during git svn dcommit there appeared to be a syntax error in

one of your manifests, simply correcting your error and pushing the manifest back to

the repository with a newer error-free commit will not succeed, this is due to how git

works [differently from svn] - you will be pushing both versions of the manifest: the

one with the error and the one without. Most likely you want to keep the changes you

just made and to only correct the syntax error, if so then do:

reset to where you just were (and keep all your modifications)

git reset --soft HEAD^

vim / emacs ...

git add -p

git commit

git svn dcommit

52

• Puppet reports

Puppet is configured to generate and send report on each of Puppet service runs for

each node. Reports are generated and sent via email to system administrator

whenever there are any changes between the catalog generated by Puppet master

and the slave's state.

Implementation of this configuration has been documented in #3872 and r39735

• Puppet handling Debian packages' automatic upgrades

Two Puppet modules are now taking care of automatic upgrades on lintests,
linbenches, and linrels:

• unattended-upgrades makes sure packages’ versions are in sync and up-to-

date

• postfix makes sure that mail agent is installed and configured on each node,

this is done so that Puppet nodes are able to email reports from unattended
upgrades

NB! on linrels only security upgrades are applied.

Implementation of this feature has been documented in #3180 and #3859

• Adding new node (slave) to Puppet master

• On master create a definition of the new node in

/etc/puppet/manifests/nodes.pp by adding e.g.

• node 'XXXXXX.conformiq.com' { include lintester }

• On slave create an ssl certificate and send it to master for approval

• sudo puppet agent --server=XXXXXX.conformiq.com --no-daemonize
--verbose

• On master view the request and sign the certificate

sudo puppet cert -all

sudo puppet cert --sign XXXXX.conformiq.com

• On slave pull the configuration from master

sudo apt-get update

sudo puppet agent --server=XXXXXX.conformiq.com --no-

daemonize --verbose --onetime --pluginsync

• Vim Puppet editing support

sudo aptitude install vim-puppet

mkdir -p ~/.vim/{ftdetect,syntax}

ln -s /usr/share/vim/addons/ftdetect/puppet.vim ~/.vim/ftdetect

ln -s /usr/share/vim/addons/syntax/puppet.vim ~/.vim/syntax

53

• Puppet Slave

Update configuration on a slave manually:

ssh someslave

sudo puppet agent --server=XXXXXXXX.conformiq.com --no-daemonize -

-verbose --onetime

NB! : Puppet slaves are automatically pulling configuration from the master every

hour.

54

Appendix 14 – Wiki: Vagrant

Vagrant Boxes

Vagrant boxes are easy-to-get throwaway virtualbox vms. Developers can get them

from our storage whenever they need some certain environment, use them, and then

throw away.

All boxes:

• are replicas of their counterparts (with same Puppet configuration that their

counterparts have)

• have Puppet certificates signed by master

• are configured for networking behind your host's NAT

• assume that your private key (e.g. for accessing mylly) is in ~/.ssh/id_rsa (to

override edit)

• have host name ending on "-v" for Puppet to recognize them and serve them

as Puppet testing environment machines. Puppet is not running on them at
boot. To invoke it run:

sudo puppet agent --server=XXXXX.conformiq.com --no-

daemonize --verbose --onetime

Install vagrant

sudo apt-get -y install vagrant virtualbox-ose

Get a Vagrant box from storage and start working with it

example for getting a linrel vm

export machinename="linrel-v"

mkdir $machinename && cd $machinename

vagrant box add $machinename /storage/vagrant/$machinename.box

vagrant box list

vagrant init $machinename

vagrant up

vagrant ssh

after the machine is not anymore needed you can destroy all its

traces with

vagrant destroy

rm -rf ~/.vagrant.d/boxes/$machinename

55

Package some virtual machine into a Vagrant box

vagrantfile additions to be packaged with the box

cat >> vagrantfile << EOF

Vagrant::Config.run do |config|

 # ssh to box as current user with existing own key-pair

 config.ssh.username = ENV['USER']

 config.ssh.private_key_path = '~/.ssh/id_rsa'

end

EOF

pack the box

vagrant package --base linrel-v --vagrantfile vagrantfile

