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An ability to precisely configure computer systems is needed in any IT infrastructure to ensure 
that each system serves its intended purpose. To centrally control configuration of a group of 
systems in an automated manner is invaluable. 
 
The purpose of this thesis project was to enhance the development of an IT infrastructure by 
using a system configuration management framework called Puppet. This thesis project was 
assigned by Conformiq Software Oy. 
 
This thesis contains definitions and underlying principles of automated system configuration 
management, an introduction to the Puppet framework, a set of objectives with their 
problematics, reasoning and implementation as well as a description of chosen research methods 
and working methodology. 
 
The thesis indicated that Puppet is a powerful tool. It is used to keep diverse systems in certain 
configuration states and to orchestrate changes whenever necessary. Such general usage of 
Puppet for achieving concrete results in systems’ configuration was one integral part of this 
project. 
 
Powerful tools alone are just tools until they are included in a meaningful, safe and easy-to-use 
workflow. Hence, another crucial aspect of this project was establishing and implementing an 
advanced workflow to better support the process of developing an infrastructure with Puppet. 
 
By the end of this thesis project, the configuration of the company’s 20+ servers was entirely 
managed by Puppet. Moreover, the further development of the infrastructure with Puppet is 
now supported by the customized workflow and necessary documentation. 
 
This report is primarily targeted at students and professionals in IT administration. However, 
software developers, managers and anyone else interested in the concept of system 
administration and automated system configuration management might also find it useful. 
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1 Introduction 

The role of system configuration management in an IT organization is difficult to 

overestimate. All companies relying on IT need to ensure that their computer systems 

are configured and their users are supported by these systems as expected. The extent 

of precision of systems’ configuration depends on how much an organization relies on 

IT.  

 

Conformiq Software Oy - the sponsor of this thesis project, is a small-sized software 

house in Espoo. It strongly relies on its IT infrastructure in general and particularly on 

a group of servers configured to support its everyday operations, which consist of 

developing, testing, benchmarking, and releasing its software products. The required 

precision of systems’ configuration is high, especially for performing meaningful 

benchmarks and building releases since servers performing these purposes need to be 

identical in their state of configuration. 

 

The value of automation and centralization of system configuration management lies in 

ability 1) to quickly deploy and redeploy diverse systems with precisely defined 

configurations, 2) to ensure that systems stay in the defined state of configuration as 

long as it is needed, 3) and to quickly and easily propagate any further changes required 

in their configuration.   

 

Already before this project Conformiq Software had enjoyed some of the benefits of 

automated and centralized system configuration management. Conformiq’s server farm 

had been deployed and controlled by one of the most powerful frameworks for system 

configuration management called Puppet. However, some features were missing.  

 

Some of the required features referred to configuration of the existing Conformiq’s 

Puppet farm, which included installation and configuration of new services as well as 

an improved calibration of some of the existing ones. Other features were targeted at 

establishing an infrastructure that would support a safe, smooth and sensible workflow 

for further development of the Puppet farm. This included fine-tuning of the 
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framework itself as well as its integration with other tools in the infrastructure. The 

need for such workflow and its underlying infrastructure was mostly driven by an 

increasing number of Puppet contributors in Conformiq, so the development process 

had to be better supported and administered. 

 

The main objective of this thesis project was to implement the missing features which 

included both – further configuration of the Puppet farm and establishing an 

infrastructure for further development with Puppet. The full list of features is 

presented in section 3.2. 

 

Out of scope 

This project is Linux centered and all concepts, findings and discussions imply Linux 

as the operating system whenever applicable. Considerations for Windows and other 

operating systems are beyond the scope of this project. 

 

Conformiq Software started using Puppet to manage system configuration 1.5 years 

before this project. Reasoning for choosing Puppet (and not some other framework) is 

beyond the scope of this project. However, some principles of what Puppet is and how 

it works are presented in section 2.3 in order to familiarize the reader with this 

framework and to thus make the reading experience smoother. 

 

Automation of repetitive tasks, quick deployments, smooth and safe development 

procedures can all be resulting in a decrease of human hours spent on these tasks. This 

thesis project, however, does not undertake any attempt to actually measure the direct 

monetary benefits provided by automated system configuration management for one 

reason – developing and propagating configuration changes through Puppet ensures 

that your infrastructure is sustainable, and because it is scalable of course it is cheaper 

than manual labor. However, there are other possible techniques to quickly develop 

and propagate configuration changes (e.g. image cloning) that are not as sustainable as 

with Puppet. So, comparing the Puppet way to manual configuration to find the 

monetary benefits and not considering these other techniques would not be extremely 

revealing. This could probably make a topic for a separate deeper research. 
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2 Theoretical Background 

2.1 Automation of system configuration management 

In one of his books on system configuration management James Turnbull writes that 

“the lives of system administrators and in general individuals employed in IT’s 

operational sector often revolve around a series of repetitive tasks: configuring hosts, 

creating users, managing applications, daemons, and services” (Turnbull 2007, 1). The 

repetitiveness of these tasks can be host-based, for example to ensure that same or 

similar configuration is applied to a number of hosts, and it can be time-based, i.e. “in 

the lifecycle of one host in order to add new configuration or remedy configuration 

that has changed through error, entropy, or development” (Turnbull 2007, 1).  

 

Systems (desktops and servers) can, naturally, be configured ad-hoc by e.g. logging in 

to the machine and manually configuring system resources like users, packages, 

services, mount points etc. No matter if configuration is performed by executing 

commands one after another in a shell (e.g. bash or zsh) or using graphical user 

interface tools “these tasks can be an ineffective use of time and effort” (Turnbull 

2007, 1). 

 

“The usual first response to these tasks is to try to automate them. This leads to the 

development of custom-built scripts and applications” (Turnbull 2007, 1). Such scripts 

can be simple, designed to manage a single configuration resource on a host or on a 

group of hosts with sufficiently identical environment. They can also be complex and 

manage multiple resources on a group of hosts with heterogeneous environments. 

Simple scripts can contain a simple set of configuration procedures, while others - to 

support configuration of diverse systems, can also contain functions for getting 

necessary data from systems as well as necessary logic for applying procedures 

appropriate for systems in question; and depending on system administrator’s 

intentions as well as on conditions [such as hardware, operating system and software 

tools] it is possible to create scripts which can bring systems to various (including 

identical) states of configuration. 
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There is a number of benefits that can be derived from automated system 

configuration management tools. First of all, they can make system administration 

more efficient by automatically applying repetitive configuration procedures on 

multiple nodes. Secondly, they can help ensure the quality of configuration by avoiding 

human configuration errors. They also can serve as technical documentation 

containing applied procedures and, therefore, describing the state of the configuration 

(at least the desired state). They can serve as backups of configuration e.g. if the 

machine needs to be reinstalled or if a new machine with a given configuration has to 

be deployed, i.e. they can provide increased efficiency and quality of deployments and 

redeployments. 

 

2.2 Automation and centralization challenges 

Over time as systems evolve the scripts can grow in size and complexity and can 

become more and more difficult to use and manage. “Custom scripts and applications 

rarely scale to suit large environments and often have issues of stability, flexibility, and 

functionality. [...]. This increases the time and effort required to develop and maintain 

the very tools you are hoping to use to reduce administrative efforts” (Turnbull 2007, 

1). With this quote James Turnbull directly referred to the first challenge from the ones 

presented below. However, it can also be applied to the other two - pursuing 

automated configuration of a group of complex and diverse systems requires proper 

tools or frameworks to handle the task, otherwise, if development of tools starts taking 

too much time and effort the whole point of automation becomes secondary. 

 

2.2.1 Support for multiple platforms and distributions 

One of the problems of scripts not scaling well in large environments is that “such 

scripts tend to suit only one target platform, resulting in situations such as the need to 

create a user creation script for BSD, one for Linux, and yet another one for Solaris” 

(Turnbull 2007, 1). 

 

This challenge is also applicable in cases when IT infrastructure contains various Linux 

distributions, i.e. when command-line tools and resource names or paths can differ 
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between systems. For example, a system administrator needs to install Apache web-

server on Debian and Red Hat systems, i.e. the challenges for automated system 

configuration management tool would be to find out which system is Debian and 

which is Red Hat, to apply different command-line tools (in this case package 

managers) like ‘aptitude’ for Debian and ‘yum’ for Red Hat and to give the 

administrator a way to separately define a name of the package for each system like 

‘apache2’ for Debian and ‘httpd’ for Red Hat. 

 

2.2.2 Offline nodes 

The term “offline nodes” in this context refers to systems which are offline at the time 

when changes in system configuration are applied. For example, system administrator 

needs a new user to be created on 20 servers. He or she instructs the framework 

accordingly, but at the moment of applying these changes several machines were 

offline due to maintenance, i.e. the new user is created only on machines which were 

online. The challenge here is to be able to ensure that when the offline machines are 

back online they should also be instructed to create the new user.  

 

2.2.3 Idempotence 

Idempotence deals with ensuring that configuration stays intact if same configuration is 

applied repeatedly. For example, an Apache web-server’s configuration file is defined 

to have some specific content and whenever the content is changed the Apache service 

should be restarted. So, there must be a way for the framework to ensure that the 

configuration file has the defined content, that it changes if instructed, and that the 

service is restarted only when it is changed. 

 

2.3 Introduction to Puppet 

Puppet is an open source framework and toolset for managing configuration of 

computer systems (Turnbull, 2011, 1). It usually is deployed in a simple client-server 

model, where server is called “Puppet master” and clients - computers managed by the 

Puppet master are called “Puppets” or “nodes” (Turnbull, 2011, 2). 
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2.3.1 Puppet client-server workflow 

A typical workflow of Puppet deployment is presented below in Figure 1. 

 

 

Figure 1: Puppet client-server workflow model (source: http://www.aosabook.org/en/puppet.html) 

 

The communication starts with Puppet nodes connecting to master by sending data 

about themselves and asking if there is any configuration they should apply. The fact 

that [typically / at least optionally] Puppet nodes are initiating the communication 

addresses the “offline nodes” challenge described in 2.2.2. Nodes can be configured to 

ask for new configuration at any time interval (default is 30 minutes) as well as at boot 

time, which ensures that any new configuration will be applied with a maximum delay 

of the defined time interval or if the node is offline - then whenever it is back online. 

 

All the required configuration for Puppet nodes is defined on the master. When a node 

requests for new configuration the master checks what configuration is defined for the 

node, compiles a configuration catalog and sends it to the node, the node then applies 

the configuration and reports back to the Puppet master. When no new configuration 

is defined - nothing has to be done. This workflow is supported by the core of Puppet 
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– its transactional layer, which allows configurations to be created and applied 

repeatedly on the host which is called to be idempotent, meaning that multiple 

applications of the same operation will yield the same results (Turnbull, 2011, 5). In 

practice it means that “Puppet configuration can be safely run multiple times with the 

same outcome on your host and hence ensuring your configuration stays consistent” 

(Turnbull, 2011, 6), which addresses the challenge of idempotence presented in section 

2.2.3. 

 

On Puppet master the configuration is defined in manifests. Manifests can contain 

definitions for various configuration resource types, e.g. user, package, file, service, 

exec (executing commands), mount (mount points) etc.;  the number of officially 

supported resource types manageable by Puppet at the moment of writing is 48 

(Puppetlabs, Docs: Type reference). Resources that are related to each other can be 

grouped into manifests, e.g. the simplified snipped below defines that Postfix is 

installed and is always running:  

 
class postfix { 
   package { "postfix": 
       ensure => installed, 
   } 
   service { "postfix": 
       ensure    => running, 
   } 
} 
 

Manifests can be organized into modules for better grouping of related resources; for 

example a “webserver” module might include everything necessary to be a webserver 

such as Apache configuration files, virtual host templates, and the Puppet code 

necessary to deploy these (Arundel 2011, 62). Modules are then applied for specific 

nodes, which actually propagates the configuration to the specified nodes. 

 

2.3.2 Declarative language  

To define resources Puppet uses its own declarative language (Turnbull 2011, 3). 

Declarative nature of the language, as opposed to imperative or procedural, allows 

defining the state of system configuration as it should be, rather than how it should be 

done (Turnbull 2011, 3). In the snippet above a package “postfix” is declared to be 

present on a system, “Puppet handles the “how” by knowing how different platforms 
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and operating systems manage certain types of resources” (Turnbull 2011, 4). 

According to Turnbull for the “package” type alone Puppet has more than 20 

providers covering a variety of tools including yum, aptitude, pkgadd, ports, and 

emerge (Turnbull, 2011, 4). For example, the above declaration of package “postfix” to 

be installed would be applicable for nodes running on Debian, Ubuntu, Red Hat, 

CentOS and other systems. Puppet’s ability to handle various abstracted resources by 

invoking appropriate providers partly addresses the multi-platform / multi-distribution 

configuration concern outlined in section 2.2.1. 

 

2.3.3 Facter 

To find out which provider to use Puppet uses a tool called Facter (Turnbull, 2011, 

4),  which is an independent, cross-platform Ruby library that gathers basic node 

information about the hardware and operating system (http://puppetlabs.com/facter ). 

 

Facts provided by Facter can also be used by a developer for further overcoming the 

multi-platform / multi-distribution challenge outlined in 2.2.1. Installing Apache on 

Debian and Red Hat (an example from 2.2.1) can be accomplished by using the 

“operatingsystem” fact for manually parameterizing the name of the Apache package: 

 
case $operatingsystem { 
       debian: { $apachepackage = "apache2" } 
       redhat: { $apachepackage = "httpd" } 
} 
package { $apachepackage: 
  ensure => present, 
} 
 

Facts can also be powerfully used in ERB templates, which are served as configuration 

files to multiple nodes. For example, Postfix’s main.cf should contain a setting called 

“myhostname” with a value of machine’s fully qualified domain name; to serve all 

nodes with a customized configuration file from a single template it is enough to use 

the Facter’s “fqdn” fact in the template: 

 
myhostname = <%= @fqdn %> 

 

Such customized Puppet modules can be grouped into specific server roles (in a class-

like style) and then these server-role classes can be applied for specific nodes. So, 

adding a new node to a specific server-role would simply require one definition that 
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new node needs to include the class of the specific-server role. Adding a new module 

to specific server-role(s) would similarly need inclusion of this module into a class 

which is known to be applied by the server-role(s) in question. In the snippet below 

there are definitions of three nodes, all of them need Postfix installed and only one 

needs Apache; there are several ways to define it, this is just one of them: 

 
class base { include postfix } 
class webserver { 
    include base 
    include apache 
} 
node1 { include base } 
node2 { include base } 
node3 { include webserver } 
 
 

This should demonstrate how serving new configuration or new nodes is quick and 

simple. 

 

For more information on how Puppet works the reader is advised to visit Puppetlabs’ 

thoroughly-documented website at http://puppetlabs.com/. 



 

 

10 

3 Project Background 

3.1 Environment 

Conformiq Software Oy is a small-sized software developing company located in 

Espoo, Finland. Its main operations consist of development and technical support of 

several Conformiq Software tools specialized for automated model-based software 

testing. The company’s two core teams (R&D and Customer Success) as well as system 

administration and most of company’s computing resources are located in Espoo. 

Currently there are 20 employees working in the Finnish office. 

 

Over the past two years Conformiq’s IT infrastructure has been growing in size and 

complexity - the number of servers running inside the corporate network has more 

than tripled and servers’ roles and configuration have become more diversified. The 

main driver for undergoing this change was the need to better support company’s 

operations in developing, testing, benchmarking and releasing Conformiq Software 

products by increasing processing capacity to avoid bottlenecks in continuous 

integration system orchestrating test-, benchmark- and release builds.  

 

Development and maintenance of such growing infrastructure was posing specific 

challenges. Various server roles used in the continuous integration farm implied that 

configuration of machines have to be precisely calibrated to ensure that various server 

roles’ are serving their intended purposes and that servers within each role definition 

have identical configuration. Thus, development and maintenance of this infrastructure 

using same tools and processes as before the expansion would require more time and 

effort to be spent to manually configure each server. Quality of configuration would 

also be more difficult to ensure due to human errors / negligence. 

 

These challenges have posed a need for a system capable of automating and 

centralizing management of systems’ configuration. Puppet framework was chosen to 

manage system configuration on most of Conformiq’s continuous ingratiation farm’s 

members. In summer 2012 while planning automated deployment of new servers as 

well as redeployment of the old ones system I have developed a set of Puppet modules 
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(collections of Puppet manifests), which would help bring the new and the old servers 

to the desired states of configuration in an automated and centralized manner. 

Subsequent configuration changes to these and other nodes were implemented 

through the existing and new Puppet modules. 

 

Before this project started I have already been using Puppet in Conformiq to manage 

configuration of 15 servers, a dozen of virtual machines and 1 user workstation, i.e. 

about 20+ nodes running 4 different distributions of Linux spanning 7 different server 

roles. Among the manageable resources were system configuration, user management, 

package management, and service management.  

 

3.2 Objectives 

As mentioned above, at the beginning of this project Puppet was already used to 

manage system configuration of a group of Conformiq servers and although this has 

been seen as a significant development in system administration in Conformiq there 

still is a lot of room for improvement. This project’s aim is to create new definitions 

for further configuration of the Puppet farm nodes and also to establish a more 

favorable infrastructure for further development of the Puppet farm using an 

improved workflow for this process. Below are objectives of this project named and 

described as features of the desired Puppet-related functionality: 

 

• Configure Puppet reports to ensure that changes in configuration served by 

Puppet are reported to system administrator. 

• Integrate development with Puppet and Conformiq’s version control system 

(SVN) to make sure that all changes first go to version control and from there 

are deployed onto Puppet server. Automated Puppet syntax check before 

committing considered as a bonus. 

• Ensure packages’ versions stay in sync across all nodes. 

• Install and configure a local Debian package repository for distributing custom 

Debian packages. 

• Centralize and automate user management - minimize number of actions 

needed for adding and editing user accounts served by Puppet; simplify the 
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procedure for users to edit their accounts (e.g. changing their passwords and 

default shell) 

• Develop an environment for changes in configuration served by Puppet - create 

an environment for safe testing of new or edited manifests and modules before 

using them in production. 
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4 Methods 

This chapter describes the research methods used in the project for gathering 

information, development methodology applied in the project, as well as working 

process and tools used thought the project. 

 

4.1 Research methods 

All the necessary material used during this project can be divided into three groups: 

books, documentation and various IT-related sources in the internet. Books are mostly 

Puppet related and have been used to gather higher-level ideas of what Puppet is and 

what it can be used for. Documentation has been used to solve more practical issues 

related to Puppet, Subversion (SVN), Python, Bash, Vagrant etc., i.e. issues dealing 

with [lower-level ideas for] implementing functionality and addressing e.g. language 

semantics and syntax. By online IT-related resources I refer to various questions-and-

answers web sites where technical solutions are suggested for specific technical issues 

e.g. serverfault.com (for system administration) and stackoverflow.com (for 

programming) as well as various public wikis, forums, blogs, mailing lists etc. 

 

These research methods were used throughout the project, each serving a different 

purpose - specific chapters in books were mostly used for gathering and analyzing 

requirements and designing solutions on conceptual level. Documentation and other 

online resources were found useful for looking for technical insights and solutions 

mostly while implementing solutions, but also during design (on technical level) and 

test phases. While documentation has been the primary source for authoritative 

technical insights, other internet resources despite their “anonymity” and non-

authoritativeness also proved to be extremely helpful when looking for quick solutions 

to known technical problems. 

 

4.2 Development methodology 

This thesis project has been conducted in a fashion of agile development [as opposed 

to the traditional “waterfall” model]. Main rationale for choosing agile methodology 
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was that development of Puppet infrastructure just like the rest of system 

administration in Conformiq is feature-driven - new functionality is requested as 

features or tasks with various levels of priorities / severities, which can change. 

Therefore, to be able to adapt to the potentially changing environment these features 

and tasks were modularized into independent tasks which could be worked on 

independently of each other. The order of implementing tasks was dictated by tasks’ 

priorities and when priorities were changing the order was changing as well (see Project 

management for details). 

 

It is worth noting that ‘officially’ no specific agile development methodology was 

adopted for this project. For example, agile development usually implies a cooperation 

of a group of people with diverse technical know-how, or short daily progress meetings 

none of which were applicable since the project was conducted by one person only.  

 

4.3 Working process and tools 

In this project each feature implementation was in itself an iteration of traditional 

development stages. Following workflow and tools have been applied: 

 

Gathering and analyzing requirements for each feature started as a ticket in 

Conformiq’s bug tracking system (Trac). Puppet related tickets were commonly 

opened by either the system administrator or someone from R&D. Progress of 

development of the feature was reported to the ticket. Puppet related tickets were 

public for anyone in Conformiq, i.e. apart from reporter of a ticket, its owner and who 

is deliberately added in CC, anyone could see the progress of the ticket through search 

or timeline.  

 

In Conformiq’s system administration design is often split into conceptual and 

technical sides, while conceptually solutions are described in a related Trac ticket the 

technical side usually involves a prototype in the production environment or a 

replicated production environment for development. Replication of the production 

environment has been achieved through such virtualization tool as VirtualBox.  
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Implementation and testing here are referred to the actual implementation and testing 

of a feature in the production environment. Most common artifacts of this phase were 

Puppet modules and manifests, Puppet configuration files as well as other scripts and 

configuration files. All implementation artifacts have been committed to Conformiq’s 

version control repository. 

 

Documentation phase included publishing wiki pages (hosted at Conformiq’s Trac) 

with information on each feature’s functionality. This information has been written as 

user guidelines and has been targeted at both - mostly at developers who work with 

Puppet infrastructure but also at users who are included in this infrastructure indirectly 

(e.g. by having a user account managed by Puppet). References to Trac tickets and 

SVN revisions were made in wiki documentation when applicable. 
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5 Project 

This chapter contains results of the implemented features as well as some facts related 

to project management. 

 

5.1 Results 

This section discusses implemented features, it describes the need for each feature as 

well as the process of implementation. Where applicable it presents alternatives that I 

faced while during implementation and, where applicable, my analysis for choosing one 

alternative over another. 

 

5.1.1 Automated reports of Puppet service runs 

Puppet service (agent) had already been configured to run every 60 minutes on all the 

Puppet slaves. During each run an agent contacts Puppet master to ask if there are any 

changes in the configuration it should apply. If there are no changes nothing needs to 

be done. If there are changes Puppet master instructs the agent on what changes 

should be applied and how. The problem is that all the applied changes are 

documented in logs and the system administrator has to manually log in to each agent 

and see if Puppet runs were successful. 

 

This feature’s main point was to automate reporting, i.e. to have the results of Puppet 

service runs emailed to the system administrator. Initially it was planned to configure it 

so that only reports of runs which contained errors should be emailed, but while 

designing the solution another option appeared more superior: emailing all the reports 

if there were any changes in the configuration. This option was preferred to only 

sending reports with errors for following reasons: 

 

• I as a system administrator stay in control by being aware of all configuration 

changes distributed through Puppet by others as well by myself 

• I stay in control by being informed of any unplanned changes in state of any 

server, e.g. some service is stopped instead of running 
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The downside of this option is that more reports would be emailed, but since the 

changes distributed by Puppet master are not too frequent and the reports are concise 

no data overflow is expected. 

 

The functionality of this stage was implemented by modifying an already existing 

module “puppet_conf” (Appendix 2), which is used to distribute agent’s configuration, 

to report results of Puppet service runs to Puppet master and by configuring Puppet 

master (Appendix 1) to email these reports to system administrator. 

 

After later implementing another feature (SVN post-commit hooks) email notifications 

of Puppet service runs became disrupted - post-commit hook was restarting the 

Puppet master in a way that would fail to properly construct email headers (“From” 

field would contain a non-RFC-compliant address, for some reason the Puppet could 

not correctly resolve its own host name). Whist if Puppet master was restarted 

manually reporting would work as expected. Some investigation was made to find out 

how these two ways would differ (e.g. if effective user id was different from real user 

id), but the cause was not found. However, to fix the issue it was sufficient to explicitly 

define it in the Puppet master’s configuration settings file (Appendix 1). 

 

5.1.2 Local repository for custom Debian packages 

In order to avoid building some software packages from source on each Puppet node 

one can build them once into a Debian package, include it into a local repository, and 

instruct all Puppet nodes to install the package from the repository.  

 

The local repository for custom Debian packages was installed by creating a Puppet 

module “reprepro” (Appendix 3) which ensures that: a package “reprepro” – a tool to 

manage a repository of Debian packages (SPI Inc,  Reprpepro) is installed, was 

required directory structure is created, configuration files with defined content were 

ensured to be present in appropriate locations, “apache” service was configured to be 

restarted whenever there is a change in the repository-related apache configuration file. 
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The “reprepro” module was applied to the company’s internal file server, after that all 

Debian servers’ sources lists had to also include the location of the new local 

repository. This was implemented by modifying an existing Puppet module “apt” to 

distribute an updated sources.list configuration file to all the machines (Appendix 4, 

see inclusion of a URL specific to Squeeze – the custom packages are currently needed 

on Debian Squeeze machines only). 

 

Because installing and configuring reprepro is a one-server operation one might 

suggest doing it manually, e.g. to save time and effort spent on automation. However, I 

see value of doing it with Puppet for several reasons: if the fileserver ever needs to be 

redeployed or if reprepro ever needs to be deployed elsewhere there will be no need to 

install and configure it again, instead the existing module can be used to deploy it 

automatically. 

 

5.1.3 Keep packages’ versions in sync 

Making sure that all necessary packages exist on all production servers has already been 

implemented before this project by the Puppet module “packages”, through which 

packages are installed to appropriate servers. However this did not ensure that 

packages’ versions were all constantly up-to-date and in sync. This has been 

implemented by writing two new modules: “unattended-upgrades” (Appendix 5) and 

“postfix” (Appendix 6). The “unattended-upgrades” module now ensures that each 

servers’ package manager periodically checks for updates and applies them when they 

are available. The “postfix” module ensures that all the servers have a mail transfer 

agent installed and configured in order to be able to email the system administrator 

results (logs) of the unattended-upgrades runs. 

 

The choice of unattended-upgrades involved a compromise. The main disadvantage of 

this tool is that it can only perform upgrades equivalent to “apt-get upgrade” and 

cannot perform a “deeper” upgrade (with installing new packages as dependencies) 

equivalent to “apt-get dist-upgrade”. There was an alternative to unattended-upgrades 

– a more configurable cron-apt tool. However, since cron-apt is the non-

recommended way for automatic upgrades (SPI Inc, Cron-apt) the decision was made 
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to go with the unattended-upgrades. The missing functionality of performing an 

equivalent to apt-get dist-upgrade was solved by writing a custom function for Fabric 

(a python based automated configuration management tool) where all the servers and 

commands are defined, and manually executing this function against the bunch of 

servers at once. 

 

5.1.4 Integrate Puppet and SVN 

The common way to develop Puppet manifests at Conformiq was to work directly in 

Puppet master’s working directory, i.e. to work with manifests in production. This was 

resulting in occasional syntax errors breaking manifests as well as inability to 

simultaneously edit manifests by more than one user. Integrating Puppet with 

company’s version control repository was aiming to solve these problems by having 

developers each work with Puppet in their local checkouts and commit their code 

when done, and automatically checking syntax error in a pre-commit hook and 

deploying new code to Puppet production in a post-commit hook. 

 

Both SVN pre- and post-commit hooks have already been used by the company and in 

order to implement the desired functionality without disrupting current SVN services 

the development and testing was performed in a replicated environment, and only later 

implemented in production. 

 

SVN pre-commit hook (Appendix 7) was configured to listen to Puppet-related 

commits and to check new Puppet manifests for syntax errors before actually 

committing them to SVN; commits with errors in manifests are cancelled and the 

committer gets notified of a syntax error and its possible location. Implementation of 

this functionality required a bash for-loop which runs Puppet’s tool for validating 

syntax (puppet parser validate) against each Puppet manifest committed.  

 

SVN post-commit hook (Appendix 8) was implemented so that each Puppet-related 

commit would deploy a fresh copy of manifests to the Puppet master’s working 

directory. Deployment was split into several steps: exporting Puppet configuration and 

manifests from SVN to a temporary directory, stopping Puppet master service, 
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replacing old Puppet master working directory with the new copy, and starting the 

Puppet master. The strict order of these steps ensures that at any point of time when 

Puppet master is compiling a catalog for some slave the state of its manifests is clearly 

defined and that it can only serve a catalog based on a definite configuration. 

 

Stopping and starting puppet master during post-commit hook execution posed a 

problem - since the commit hook is actually run as the same Unix user who makes the 

commit (over svn+ssh://) the user needs elevated privileges to stop and start the 

puppet master service. There were several options to deal with the issue, for example, 

to give all users rights to run /etc/init.d puppetmaster in /etc/sudoers, or write a C 

wrapper which would stop and start the service, or to not stop and start the service 

during the post-commit deployment at all. 

 

All of these options had their downsides. Reason for not taking the last options (not 

stopping and starting the service at all) was described in the above paragraph - Puppet 

master can compile configuration based on undefined state of its codebase in working 

directory if deployment is in progress, which is not acceptable; reason for not 

implementing the first option was that even with all users having privileges to stop and 

start puppet master there would be conflicts on the file permissions level - after every 

deployment the ownership of puppet master working directory needs to be writable so 

that the next Puppet-related commit can succeed, however, leaving the manifests 

writable through any other means than SVN was regarded as highly undesirable. The 

downside of the C wrapper implementation was that it required a binary to be owned 

and executed by “puppet” user (with setuid flag on) and setuid flags are never 

desirable. 

 

Out of three options the C wrapper was chosen (Appendix 9). It appeared equally bad 

and equally probable to have a hostile Unix-user with either write access to Puppet 

working directory or a possibility to become “puppet” user through abusing the suid 

flag. However, it also appeared much less probable that someone would accidently 

abuse the suid-enabled binary, become “puppet” user, and for example work with 
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Puppet manifests in production as opposed to a more likely scenario where a user with 

writable rights to Puppet manifests in production accidentally edits these manifests. 

 

5.1.5 Centralize and automate user management  

Objective of this feature was to further centralize and automate user management on 

all Puppet nodes.  

 

First of all this meant centralizing user management. Functionality of two existing 

modules which were taking care of defining users and users-specific data folders were 

merged into one module (Appendix 10). Creation of users-specific data folders was 

defined as a function of creation of users, i.e. no separate definitions of such folders’ 

creation is anymore needed. 

 

Secondly, creation and management of user definitions was automated. This was 

implemented by two scripts run as cron-jobs. One of the scripts (Appendix 12) uses 

puppet tools to generate user definitions from unix users existing in the system (same 

system where Puppet master runs), and the second script (Appendix 11) compares 

these generated definitions with the ones in production; when they differ the ones in 

production are replaced with the fresh definitions. This way if a new user has to be 

added it is enough to create him/her on the system with e.g. “adduser” and add to a 

specific user group, the script then analyzes users of this group and creates the 

definitions. 

 

Also, now if a user wants to change password or default shell on all Puppet nodes 

there is no need to edit manifests (as before) - instead it is enough to log in to the 

central server, make the changes there (e.g. with passwd or chsh -s) and just wait for 

these changes to be propagated automatically. 

 

There are two scripts instead of one for a reason: processing text (output from puppet 

tools) was easier to implement with Python, while running Bash command is more 

natural with a Bash script, it might be beneficial to merge them into one script at some 

point. 
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Users have also been split into logical groups for easier and clearer realization of these 

users on various Puppet nodes - users are now realized in these groups and the groups 

are included as classes in the nodes’ definitions. This resulted in cleaner nodes’ 

definition file (previously all users were realized there) and clearer and easier separation 

of which user should exist on which group of servers. 

 

5.1.6 Environment for testing new configuration 

The need for a testing environment for new configuration served by Puppet comes 

from the fact that one cannot revert to previous configuration, at least not trivially. If 

developer accidentally instructs Puppet to partition a hard drive or to upgrade the 

operating system to the next release version - there will be no easy way back, no matter 

if all the configuration was stored in version control – some data might get lost and the 

amount of extra time spent and the scale of the problem might depend on how soon 

the unwanted change is uncovered. 

 

Implementation of this feature made use of Puppet’s native functionality which enables 

defining various environments. In essence, if a Puppet node’s configuration file states 

that it belongs to a specific environment, then Puppet master will look for modules 

specified for this environment. The snippet below shows this distinction in Puppet 

master’s definitions for modulepaths. 

[production] 
modulepath = $confdir/modules 
 
[testing] 
modulepath = $confdir/$environment/modules:$confdir/modules 
 

Production machines are served modules from default location, whilst machines from 

testing environment are first served from their specific environment module-path, and 

only then from the default location. This way, one can copy a module from the 

production module path to testing, Puppet master will then be serving this module to 

testing environment nodes from testing environment and the rest of the modules will 

be served from production. This ensures that modules in production keep served to 

machines in production without interruptions while a copy of one of the modules in 

under test. After successful testing the module can be moved back to production. 
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Provision of the actual test-beds had two alternatives. Either to have virtual machines 

running in the network dedicated for testing. Or to provision such virtual machines on 

individual basis. The latter option was found to be much more superior because the 

point of these test-beds was to test new configuration and to possibly be breaking 

them, so having possibly broken dedicated machines for testing seemed senseless. 

 

Since Conformiq had already been using VirtualBox as the virtualization solution it was 

logical to employ a popular front-end for VirtualBox called Vagrant, which can 

provision pre-configured virtual machines from some location on the network directly 

to developer’s workstation “with just a few keystrokes” (Mitchell Hashimoto, 

VagrantDocs: Packaging). 

 

Further implementation of this feature consisted of installing virtual machines which 

would be replicas of server-roles from Puppet farm, packaging them into Vagrant 

boxes, putting them to specific place in the network, and documenting how further 

Puppet development can incorporate these boxes. Documentation can be seen in 

Appendices  13 and 14 (one is for using Puppet and Vagrant,while the the other is 

solely for Vagrant usage). 

 

By default all Puppet nodes are requesting configuration from Puppet master 

automatically, but for these test-beds it was decided to have the Puppet service not 

started by default in order to give developers a better control of the environment. This 

was implemented by changing a template which serves this setting to all nodes. Adding 

the snippet below to a specific template resulted in all host whose hostname ends on “-

v” not having Puppet agent started by default: 

<% if @hostname =~ /.*-v$/ then %> 
# do not start Puppet on this node by default 
START=no 
<% end %> 
 

Similar conditional statement in another template defines these machines configuration 

as the test-beds 

<% if @hostname =~ /.*-v$/ then %> 
# this node is operating in testing environment 
environment = testing 
<% end %> 
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5.2 Project management 

This thesis project was started in June of 2013 (week 24) and ended in December 2013 

(week 51). Throughout the project I have spent a total of 332 hours, out of which: 

• 45.5 hours were spent on project management related issues, such as writing 

and updating project plan, preparing status reports for project meetings, the 

actual project meetings, and writing meeting minutes 

• 151.5 hours were spent on the research, design and implementation, as well as 

testing and documentation of the features. 

• 135 hours were spent on compiling this thesis report 

 

In relation to how resource allocation was planned it is both, close and not. Total 

amount of time is close to the planned 318 hours. The amount of time spent on 

project management is also close to the planned 40 hours. What differs much is the 

amount of time spent writing the thesis report, 135 hours against the 60 hours planned.  

The 151.5 hours spent on implementation is actually a bit more than was planned to be 

spent on these features against the planned 134. 

 

Throughout this project the order of features’ implementation was changing together 

with priorities for the features. Features which received higher priority (as e.g. 

happened with the need for local Debian repository) was implemented without waiting 

for its turn. Implementation of features which appeared less acute were postponed to 

make sure that important stuff (including writing of the report) gets done first. This 

way, there was no time left for implementing two features. One of which I mention in 

the section 6.4 (visualization of Puppet dependencies) and the other one (configuration 

of staged deployments) was dropped out completely due to the consideration that it 

would not bring a significant value. 

 

Throughout this project there have been 5 project meetings, including the starting 

meeting and the closing meeting. All the minutes of the meetings as well as status 

reports are submitted to the supervisor of this thesis.  
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6 Discussion 

This chapter presents a discussion of the results of this project - the value of change 

brought by the implemented features are discussed . 

 

6.1 Reporting 

Configuring Puppet master to send automated reports with results of Puppet service 

runs on all nodes was an important first step in this project - it was much easier to 

develop Puppet manifests having results of all the service runs available at immediately 

in one location - in this case my email account, easier in comparison to prior 

development of Puppet manifests and manual checking these results from each node’s 

syslog. Email reports are also invaluable for further development of Puppet 

infrastructure after this project for its ability to keep me  informed about changes made 

to Puppet configuration by other Conformiq employees. 

 

6.2 Package management 

Enhancement of package management with Puppet had two objectives: to make sure 

that packages are in sync across Puppet nodes and to enable distributing custom 

Debian packages which are built and served inside company’s internal network. 

Previously, packages were managed with module “packages” that defined which 

packages have to be installed on which servers; after some time versions of these 

packages started varying between each other even on machines with an identical 

purpose e.g. because someone decided to manually upgrade some packages on one 

machine for building Conformiq releases but not on all. And since identical purpose 

implies identical configuration, this clearly had to be fixed. Implementing modules 

“unattended-upgrades” and “postfix” ensured that packages which are expected to be 

upgraded are upgraded and kept in sync across various same-purpose machines and 

that all results of unattended-upgrades runs are emailed to system administrator. 

 

The bottom line is that previously in order to keep packages in sync I had to follow 

Debian mailing lists (at least debian-security@lists.debian.org), when appropriate 
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patches were available to manually login to each server and run an upgrade command, 

and to then go through the output of each machine’s results to make sure everything 

went as expected. As a result sometimes it was taking time to make sure packages are 

in sync and during other times [when it is not taken care of] they were not [in sync]. 

Now the I simply have to check my email and go through summarized reports of each 

of unattended-upgrades runs. 

 

Setting up a local repository for custom Debian packages was meant to ease installation 

of some specific software which has to be built in-house - it gives the possibility to 

build a specific package once, publish it in the repository and declare in module 

‘packages’ that it has to be installed on some machine(s). During this project it did 

prove to be useful once when one of Conformiq developer’s built several packages of 

specific JDK-6 version (6.27), which was not available in Debian Squeeze repositories. 

So, he published it through the local repository, which soon resulted in all Squeeze 

machines having the openjdk-6.27. Considering that there were only two Squeeze 

servers running at that time an immediate value of the local repository serving 

openjdk-6.27 might appear quite low, however, considering the potential scalability 

value of e.g. not having to go through the build process every time a Squeeze server 

needs to be reinstalled (or additional Squeeze server is added) or the other packages 

need to be built from source (as it currently is with qt4 and acetao) one can conclude 

that benefits from the local repository are yet to be realized and appreciated. 

 

6.3 User management 

Automating and centralizing user management involved simplifying two aspects of 

user management: users’ self-management (e.g. changing password or default shell) and 

additions of new users to Puppet infrastructure. The main idea behind this part was to 

cut down any unnecessary actions from user’s and from system administrator’s sides 

 

If previously a user for changing his/her password on all Puppet nodes needed to 

access the central server, change the password there, get the hash of this password, and 

update his/her entry in the Puppet “users” manifest with this hash, now the user needs 

to access the central server and update his/her password, the rest will be taken care of 



 

 

27 

behind the scenes. The benefit of this is that no knowledge of Puppet is required to 

perform such action, also it ensures that passwords will be in sync and that there will 

be no such situation when user updates the password on the central server but does 

not update the Puppet manifest because of forgetting or not knowing about this 

procedure. 

 

Addition of new users had previously required system administrator to edit two 

manifests by hand, which is requiring time and effort, and is error-prone. After 

implementing improvements to user management there is only one module and even 

this does not have to be worked with directly, instead it is enough to add a new user to 

the central server and the changes will be propagated to this Puppet manifest behind 

the scenes. 

 

To sum up, this enables users to more easily manage their own accounts, and  system 

administrator - to easier and quicker add new users. 

 

6.4 Workflow for further development of infrastructure with Puppet 

With SVN pre- and post-commit hooks the process of development of Puppet 

manifests and modules became more standardized, to be more exact here were 

introduced first steps of a standard procedure for development of Puppet manifests 

and modules (further steps mentioned later). This includes a single way to work with 

manifests only through the SVN repository, where manifests are checked for syntax 

before committing and deployed to Puppet master working directory after committing. 

The value added with this feature is that several developers can work on Puppet 

modules independently, changes are deployed from SVN to Puppet working directory 

automatically, and that syntax errors will not creep into production environment. 

 

With Vagrant boxes the further development of infrastructure with Puppet is more 

safe. Checking for syntax errors in SVN pre-commit hook is great, but it does not 

prevent from semantic errors that can result in unexpected system behaviors included 

corrupting system and losing data. Vagrant boxes can serve as test-beds where results 

of configuration changes can be studied in detail before applying these changes in 
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production. This allows more developers with little or no Puppet experience to start 

working with Puppet without any fear of breaking configuration in production. 

 

A feature for visualization of Puppet dependencies was planned to be implemented to 

better support understanding of what configuration is served to which kind of nodes 

and how some configuration definitions are influencing other definitions, but due to 

lack of time implementation of this feature had to be postponed and later cancelled. 

However, this is the very next step to be done (though already outside of this project) 

to enable developers to better understand interrelationship of Puppet definitions, and 

to thus make the development process more confident. 
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7 Conclusion  

Right tools can be a prerequisite of work done well and on time. Puppet as a 

framework for automated and centralized system configuration management is 

definitely the right tool for Conformiq Software, and to a great extent this tool is one 

of the reasons for the success of this project. 

 

Features implemented during this project have all been tested and at the moment of 

writing are in production. 

 

The improved package management ensures that the quality of configuration meets the 

expectations on all the 20+ nodes in the Puppet farm. Improved user management 

enables system administrator and users themselves to better administer appropriate 

user resources. Integration of Puppet with Conformiq’s version control empowers 

distributed development, basic Puppet syntax check and automated deployment of 

changes into production. Environment for testing changes in configuration minimizes 

the risk of breaking down systems that are controlled by Puppet. And last but not least, 

all configuration changes distributed within the Puppet farm are reported to the system 

administrator; staying informed is staying in control. 

 

With these features in production Conformiq Software will enjoy higher quality of  

configuration of its server farm, and quicker, more scalable and safer further 

development of its infrastructure with Puppet. 
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8 Recommendations for further development 

Development of an IT infrastructure is a constantly ongoing activity and there can be 

an endless amount of recommendations for further development. However, stemming 

right from this project I have selected several suggestions that in my opinion are worth 

considering.  

 
Puppet has been used in Conformiq to also configure two user workstations, but this 

was more of an experiment. It has not yet been productized, partly because this is not a 

very frequent use case, partly because users like keeping maintenance of their machines 

to themselves. But since most of user workstations are running Linux it could be 

beneficial to find the golden middle of what kind of configuration could be served by 

Puppet to save users’ time and effort. One aspect should however be well considered: 

user workstations can contain users’ private data and since Puppet development is 

open for anyone in the company there must be a way to make sure that hacking a 

colleague’s machine is not possible (for fun or not). 

 

Vagrant virtual machines used as test-beds for new Puppet configuration can also be 

used for other purposes, for example as test-beds for testing of some bleeding-edge 

features of Conformiq’s own software products. Also, more virtual machines can be 

packed into Vagrant boxes, which can then be used for e.g. showing customers demos 

of Conformiq Software products integrations with other software tools. 

 

Conformiq’s Windows machines have been controlled by Puppet in a very limited way. 

The last time I checked Puppet could only install .msi packages on Windows and 

Windows did not provide API for managing passwords in any other way than clear-

text. However, consider taking more under the same hood,  look for workarounds, you 

are probably not the first person who encountered this problem. Getting more under 

the same hood makes maintenance and further development easier, especially when the 

”hood” is a well-developed, well-documented, open-source framework like Puppet. 
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9 Summary 

The basis of this thesis was a necessity to further develop part of the IT infrastructure 

of Conformiq Software Oy, where at the moment of writing I am working as the 

system administrator. This part of the infrastructure consisted of a group of servers 

used by Conformiq Software to develop, test, benchmark and release its software 

products. The quality of configuration of this group of servers as well as its availability 

and scalability was of great importance to the company. So, already before this project 

this part of the infrastructure was developed and maintained by a system configuration 

framework called Puppet.  

 

This project’s main objectives were: 

• additional configuration of this group of servers using the Puppet framework 

• improvement of a workflow and its underlying infrastructure for better 

supporting further development of this group of servers with Puppet 

 

These objectives split down into features were implemented one after another. As a 

result of implementing these features the state of configuration of this group of servers 

satisfies the requirements. And further development of this group of servers with 

Puppet is supported by an advanced workflow, specifically preconfigured and 

integrated tools, and the necessary documentation. 
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Appendices 

For ease of read appendices contain only code relevant to this project, i.e. code that 

existed before this project and is of no relevance is not included. For example, 

Appendix 1’s “puppet.conf” is not complete, but it contains code/options written in 

this project and referred to in this report.  

 

Commented out (i.e. not active) configuration options in some configuration files 

served by modules are not included, again - purely for the ease of read. For example, 

default configuration that comes with unattended-upgrades (Appendix 5’s 

“50unattended-upgrades.tmpl” ) is much longer, but at the same time it contains 

mostly commented out options. Such commented out options which come with 

default configuration files seemed to not add any value here, hence they were left out. 

 

Appendix 1 - Puppet master’s “puppet.conf” and “tagmail.conf” 

Extract from Puppet master’s puppet.conf 

# Send reports of Puppet agents' service runs 
reports = store,tagmail 
reportfrom = XXXX@conformiq.com 
tagmap = /etc/puppet/tagmail.conf 
 
# Definitions of module-paths for environments 
[production] 
modulepath = $confdir/modules 
 
[testing] 
modulepath = $confdir/$environment/modules:$confdir/modules 

 

Puppet master’s tagmail.conf 

# Send all reports to admin 
# possible options are: all, err, or a custom tags defined e.g. in a class 
all: XXXX@conformiq.com 

 

 

 

  



 

 

35 

Appendix 2 - Module “puppet_conf” 

puppet_conf module consists of a manifest and two templates, it serves Puppet nodes’ 

configuration files. 

 

Manifest  

# This class serves puppet configuration files to Puppet nodes. 
# Note that /etc/puppet/puppet.conf and /etc/default/puppet serve 
templates, 
# i.e. their contents will depend on facts received from agents! 
# To see the facts run facter on a Puppet node! 
 
class puppet_conf { 
    file { "puppet.conf": 
       path => "/etc/puppet/puppet.conf", 
       owner => "root", 
       group => "root", 
       mode => 0644, 
       content => template("puppet_conf/puppet.conf.tmpl"), 
       require => Package["puppet"], 
    } 
    file { "puppet": 
       path => "/etc/default/puppet", 
       owner => "root", 
       group => "root", 
       mode => 0644, 
       content => template("puppet_conf/puppet.tmpl"), 
       require => Package["puppet"], 
    } 
} 

 

Template puppet.conf.tmpl serving Puppet nodes’ /etc/puppet/puppet.conf 

# report results of Puppet service runs to master 
report = true 
 
<%# hostnames ending on "-v" are vagrant boxes and belong to testing 
environment %> 
<% if @hostname =~ /.*-v$/ then %> 
# this node is operating in testing environment 
environment = testing 
<% end %> 
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Appendix 3 - Module “reprepro” 

Manifest 

# This class installs and configures reprepro (a local Debian repository) 
# For adding more distributions edit modules/reprepro/files/distributions 
 
class reprepro { 
 
   package { 'reprepro': 
       ensure => installed, 
   } 
 
   file { [ '/var/www/repos', '/var/www/repos/apt', 
'/var/www/repos/apt/debian', '/var/www/repos/apt/debian/conf']: 
       ensure => directory, 
       owner => 'root', 
       group => 'root', 
       mode => 0644, 
   } 
    
   file { '/var/www/repos/apt/debian/conf/distributions': 
       ensure => present, 
       owner => 'root', 
       group => 'root', 
       mode => 0644, 
       source => "puppet:///modules/reprepro/distributions", 
   } 
 
   file { '/var/www/repos/apt/debian/conf/options': 
       ensure => present, 
       owner => 'root', 
       group => 'root', 
       mode => 0644, 
       source => "puppet:///modules/reprepro/options", 
   } 
 
   file { '/etc/apache2/conf.d/repos': 
       ensure => present, 
       owner => 'root', 
       group => 'root', 
       mode => 0644, 
       source => "puppet:///modules/reprepro/repos", 
   } 
 
   exec { '/etc/init.d/apache2 reload': 
       subscribe => File["/etc/apache2/conf.d/repos"], 
       refreshonly => true, 
   } 
} 

 

distributions file 

Origin: Conformiq 
Label: Conformiq 
Codename: squeeze 
Architectures: i386 amd64 
Components: main 
Description: Conformiq repository for custom Debian Squeeze packages 

 

options file 

verbose 
basedir /var/www/repos/apt/debian 
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repos file 

# /etc/apache2/conf.d/repos 
 
<Directory /var/www/repos/ > 
       # We want the user to be able to browse the directory manually 
       Options Indexes FollowSymLinks Multiviews 
       Order allow,deny 
       Allow from all 
</Directory> 
 
# This syntax supports several repositories, e.g. one for Debian, one for 
Ubuntu. 
# Replace * with debian, if you intend to support one distribution only. 
<Directory "/var/www/repos/apt/*/db/"> 
       Order allow,deny 
       Deny from all 
</Directory> 
 
<Directory "/var/www/repos/apt/*/conf/"> 
       Order allow,deny 
       Deny from all 
</Directory> 
 
<Directory "/var/www/repos/apt/*/incoming/"> 
       Order allow,deny 
       Deny from all 
</Directory> 
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Appendix 4 - Module “apt” 

Manifest 

# vim:et sw=4 ts=4: 
class apt { 
   file {"/etc/apt/sources.list": 
       ensure => present, 
       owner => 'root', 
       group => 'root', 
       mode => 0644, 
       content => template("apt/sources.list"), 
   } 
   file {"/etc/apt/apt.conf": 
       ensure => present, 
       owner => 'root', 
       group => 'root', 
       mode => 0644, 
       source => "puppet:///modules/apt/etc/apt/apt.conf", 
   } 
 
   # Run apt-get update when anything beneath /etc/apt/ changes 
   exec {"apt-get update": 
       command => "/usr/bin/apt-get update", 
       onlyif => "/bin/sh -c '[ ! -f /var/cache/apt/pkgcache.bin ] || 
/usr/bin/find /etc/apt/* -cnewer /var/cache/apt/pkgcache.bin | /bin/grep . 
> /dev/null'", 
   } 
} 

 

sources.list 

<%# This is a template for serving list of repository sources for various 
distributions %> 
deb http://ftp.fi.debian.org/debian <%= @lsbdistcodename %> main 
deb-src http://ftp.fi.debian.org/debian <%= @lsbdistcodename %> main 
 
deb http://security.debian.org/ <%= @lsbdistcodename %>/updates main 
deb-src http://security.debian.org/ <%= @lsbdistcodename %>/updates main 
 
<%# sources for Debian Squeeze (6) only %> 
<% if @lsbdistcodename == "squeeze" then %> 
# squeeze-updates, previously known as 'volatile' 
deb http://ftp.fi.debian.org/debian/ squeeze-updates main 
deb-src http://ftp.fi.debian.org/debian/ squeeze-updates main 
 
# conformiq internal packages repository 
deb http://XXXX/repos/apt/debian <%= @lsbdistcodename %> main 
<% end %> 
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Appendix 5 - Module “unattended-upgrades” 

Manifest 

# This class installs and configures unattended-upgrades. 
# Configuration options are in the two files (one is a template) referenced 
below. 
 
class unattended-upgrades  { 
 
   package { "unattended-upgrades": 
       ensure => present, 
   } 
   file { "/etc/apt/apt.conf.d/50unattended-upgrades": 
               ensure => present, 
               owner => 'root', 
               group => 'root', 
               mode => 0644, 
               content  => template("unattended-upgrades/50unattended-
upgrades.tmpl"), 
               require => Package["unattended-upgrades"], 
   } 
   file { "/etc/apt/apt.conf.d/10periodic": 
               ensure => present, 
               owner => 'root', 
               group => 'root', 
               mode => 0644, 
               source => "puppet:///modules/unattended-
upgrades/10periodic", 
               require => Package["unattended-upgrades"], 
   } 
} 

 

 

 

10periodic file 

// Enable the update/upgrade script (0=disable) 
APT::Periodic::Enable "1"; 
 
// Do "apt-get update" automatically every n-days (0=disable) 
APT::Periodic::Update-Package-Lists "1"; 
 
// Do "apt-get upgrade --download-only" every n-days (0=disable) 
APT::Periodic::Download-Upgradeable-Packages "1"; 
 
// Run the "unattended-upgrade" security upgrade script 
// every n-days (0=disabled) 
// Requires the package "unattended-upgrades" and will write 
// a log in /var/log/unattended-upgrades 
APT::Periodic::Unattended-Upgrade "1"; 
 
// Do "apt-get autoclean" every n-days (0=disable) 
APT::Periodic::AutocleanInterval "1"; 
 
APT::Periodic::RandomSleep "10"; 
APT::Periodic::Verbose "1"; 
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50unattended-upgrades.tmpl template 

// Automatically upgrade packages from these origin patterns 
       // migration to the specified archive (e.g. testing becomes the 
       // new stable). 
// allowed origins for <%= @lsbdistcodename %> 
<% if @lsbdistcodename == "wheezy" then %> 
Unattended-Upgrade::Origins-Pattern { 
    "o=Debian,a=stable"; 
    "o=Debian,a=stable-updates"; 
    "origin=Debian,archive=stable,label=Debian-Security"; 
<% end %> 
<% if @lsbdistcodename == "squeeze" then %> 
Unattended-Upgrade::Allowed-Origins { 
       "${distro_id} oldstable"; 
       "${distro_id} ${distro_codename}-security"; 
<% end %> 
}; 
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Appendix 6 - Module “postfix” 

Manifest 

 

# This class installs postfix, serves appropriate config files (one is a 
template), and makes sure services are restarted when needed 
 
class postfix { 
 
   package { "postfix": 
       ensure => installed, 
   } 
 
   service { "postfix": 
       ensure    => running, 
       enable    => true, 
       hasstatus => true, 
       restart   => '/etc/init.d/postfix reload', 
       require   => Package['postfix'], 
   } 
 
   file { "/etc/postfix/main.cf": 
       ensure => present, 
       owner => "root", 
       group => "root", 
       mode => 0644, 
       content => template("postfix/main.cf.tmpl"), 
       require => Package["postfix"], 
       notify  => Service['postfix'], 
   } 
    
   file { "/etc/aliases": 
       ensure => present, 
       owner => "root", 
       group => "root", 
       mode => 0644, 
       source => "puppet:///modules/postfix/aliases", 
       require => Package["postfix"], 
   } 
 
   exec { "/usr/sbin/postalias /etc/aliases": 
       subscribe => File["/etc/aliases"], 
       refreshonly => true, 
   } 
} 
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mail.cf.tmpl template 

 

# Postfix main.cf configuration, fed by puppet (upon refreshing all locally 
made changes will be reset) 
# This template serves dynamic values, like fqdn, and domain. These values 
are provided by facter 
 
myhostname = <%= @fqdn %> 
myorigin = <%= @domain %> 
mydestination = <%= @fqdn %> localhost 
relayhost = [XXX.XXX.XXX.XXX] 
mynetworks = XXX.XXX.XXX.XXX/XX XXX.XXX.XXX.XXX/XX 
 
alias_maps = hash:/etc/aliases 
alias_database = hash:/etc/aliases 
mailbox_size_limit = 0 
recipient_delimiter = + 
inet_interfaces = loopback-only 
smtpd_banner = $myhostname ESMTP $mail_name (Debian/GNU) 
biff = no 
 
# appending .domain is the MUA's job. 
append_dot_mydomain = no 
 
# Uncomment the next line to generate "delayed mail" warnings 
#delay_warning_time = 4h 
 
readme_directory = no 
 
# TLS parameters 
smtpd_tls_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem 
smtpd_tls_key_file=/etc/ssl/private/ssl-cert-snakeoil.key 
smtpd_use_tls=yes 
smtpd_tls_session_cache_database = btree:${data_directory}/smtpd_scache 
smtp_tls_session_cache_database = btree:${data_directory}/smtp_scache 
 
# See /usr/share/doc/postfix/TLS_README.gz in the postfix-doc package for 
# information on enabling SSL in the smtp client. 
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Appendix 7 - SVN pre-commit hook 

 

#!/bin/sh 
 
REPOS="$1" 
TXN="$2" 
 
# Define variables 
SVNLOOK=/usr/bin/svnlook 
PUPPET="/usr/bin/puppet" 
 
# Make sure that the log message contains some text. 
$SVNLOOK log -t "$TXN" "$REPOS" | \ 
  grep "[a-zA-Z0-9]" > /dev/null || exit 1 
 
tmpfile=$(mktemp) 
export 
PATH="/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin" 
 
# go through every file in commit and look for Puppet manifests (ending on 
.pp) 
for file in $($SVNLOOK changed -t "$TXN" "$REPOS" | awk '/^[^D].*\.pp$/ 
{print $2}') 
do 
       #  
       $SVNLOOK cat -t $TXN $REPOS $file > $tmpfile 
       $PUPPET parser validate  $tmpfile 1>&2 
       # if there are errors echo the error message and exit with code 1 
       if [ $? -ne 0 ] 
       then 
               echo "Puppet syntax error in $file" 1>&2 
               exit 1 
       fi 
done 
 
# Clean up 
rm -rf "$tmpfile" 
 
# All checks passed, so allow the commit. 
exit 0 

 

** part of this pre-commit hook was readily available at    unixh4cks, Using 

SVN commit hooks to validate puppet syntax    
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Appendix 8 - SVN post-commit hook 

 

#!/bin/bash 
 
REPOS="$1" 
REV="$2" 
UUID=$(svnlook uuid $REPOS) 
 
mychanges="$(mktemp)" 
svnlook changed --revision "$REV" "$REPOS" > "$mychanges" 
 
# If Puppet-related commit run the binary to deploy changes production  
if grep -q 'XXXXX/puppet' "$mychanges"; 
then 
   echo "will restart services and move configuration" 
   /usr/local/svn2/hooks/post-commit.puppet 
else 
   echo "uninteresting commit" 
fi 
rm -rf "$mychanges" 
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Appendix 9 - C wrapper for SVN post-commit hook 

 

#include <stdio.h> 
#include <stdlib.h> 
#include <sys/types.h> 
#include <unistd.h> 
 
int main() 
{ 
   // set puppet uid 
   setreuid( 116,116 ); 
 
   // get latest puppet manifests to a temporary directory 
   int exitcode = system( "/usr/local/bin/svn export --force 
file:///usr/local/svn2/it/trunk/puppet /tmp/puppet" ); 
 
   // if export was successful: stop puppet master, copy new configuration 
and clean up, start puppet master 
   if ( exitcode == 0) { 
       system( "/etc/init.d/puppetmaster stop" ); 
       system( "/bin/rm -rf /etc/puppet/* ; /bin/cp -r /tmp/puppet/* 
/etc/puppet/ ; /bin/rm -rf /tmp/puppet" ); 
       system( "chown -R puppet:puppet /etc/puppet" ); 
       system( "chmod -R 755 /etc/puppet" ); 
       system( "/etc/init.d/puppetmaster start" ); 
   } 
   return 0; 
} 
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Appendix 10 - Module “users” 

Manifest 

# USER DEFINITIONS 1 - HEAD 
# vim:et sw=4 ts=4: 
class users {  
   include users::virtual 
   include data_users_dir 
} 
 
class data_users_dir { 
   file{ "/data/users": 
       ensure => "directory", 
       owner => "root", 
       group => "users", 
       mode => "755", 
   } 
} 
 
class users::virtual { 
   define localuser ($uid,$gid,$password="",$shell,$home) { 
       user { $title: 
           ensure    =>      "present", 
           uid        =>      $uid, 
           groups    =>    $gid, 
           shell    =>    $shell, 
           home    =>    "$home", 
           comment    =>    $realname, 
           password    =>    $password, 
           managehome    =>      true, 
       } 
 
       file { "/data/users/${title}": 
           ensure => "directory", 
        owner => "${title}", 
        group => "users", 
        mode => "755" 
       } 
   } 
} 
 
class mysite::users { 
   include users::virtual 
 
   case $operatingsystem { 
       # name the 'sudo' group for Debian and Suse 
       Debian: { $sudo = "sudo" } 
       SuSE: { $sudo = "wheel" } 
   } 
 
# USER DEFINITIONS - USERS 
   @users::virtual::localuser { ‘XXXX': 
       gid              => ['users',$sudo], 
       home             => '/home/XXXX', 
       password         => '$X$XXXXXXXXXXXXXXXXXXXXXXXXXXX', 
       shell            => '/bin/zsh', 
       uid              => 'XXXX’, 
   } 
   @users::virtual::localuser { ‘XXXX’': 
       gid              => ['users',$sudo], 
       home             => '/home/XXXX’, 
       password         => '$X$XXXXXXXXXXXXXXXXXXXXXXXXXXX', 
       shell            => '/bin/bash', 
       uid              => ‘XXXX’, 
   } 
# USER DEFINITIONS 3 - END 
} 
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Appendix 11 – Script for comparing definitions from Unix users and Puppet 

users definitions from production 

#! /bin/sh 
 
## Script for making sure that users have same definitions on local system 
and in Puppet 'users' manifests 
## To be run in cron every 30 minutes 
 
TMPDIR="/root/puppet" 
 
# generate users' definitions from current UNIX users of XXXXX 
python $TMPDIR/puppet-users-generate.py 
 
# get users' definitions from current Puppet 'users' module 
awk '/# USER DEFINITIONS/{n++}{print > "/root/puppet/"n".txt" }'  \ 
/etc/puppet/modules/users/manifests/init.pp 
 
# compare the resulted files, if they differ - ACT! 
DIFFOUTPUT=$(diff "$TMPDIR"/2.txt "$TMPDIR"/puppet-users.tmp) 
if [ "$DIFFOUTPUT" != "" ] 
then 
    echo "Users' definitions have changed! The changes are:" 
    echo "$DIFFOUTPUT" 
    echo "Putting up new 'users' manifest.." 
    cd $TMPDIR && cat 1.txt puppet-users.tmp 3.txt > new.init.pp 
 
    echo "Checking out the latest 'users' manifest from SVN, replacing it 
with the new manifest, committing it to SVN.." 
    svn checkout file:///XXXXXXX/puppet/modules/users/manifests 
"$TMPDIR"/manifests 
    cat "$TMPDIR"/new.init.pp > "$TMPDIR"/manifests/init.pp 
    svn commit "$TMPDIR"/manifests -m "puppet: automated update of 'users' 
manifest" 
fi 
 
# clean up 
cd $TMPDIR && rm -rf 1.txt 2.txt 3.txt manifests new.init.pp puppet-
users.tmp 
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Appendix 12 – Script for generating Puppet user definitions from Unix users 

/root/puppet/puppet-users-generate.py  
## This script generates users' definitions appropriate for Puppet 
configuration. 
## Invoked by puppet-users-check.sh from the same directory. 
 
import subprocess  
 
# get a list of users belonging to group XXX (puppetusers) 
getent_out = subprocess.Popen(['/usr/bin/getent', 'group', 'XXX'], 
stdout=subprocess.PIPE).communicate()[0] 
getent_out_split = getent_out.split(":") 
usersline = getent_out_split[-1].rstrip() 
users = usersline.split(",") 
 
# open the temporary file for writing and insert beginning of the block 
f = open("/root/puppet/puppet-users.tmp", "w") 
f.write("# USER DEFINITIONS 2") 
 
# iterate through users, generate Puppet definitions 
for u in users: 
   newblock = "" 
    
   # get block with user definition and split them into lines 
   userblock = subprocess.Popen(['puppet', 'resource', 'user', u], 
stdout=subprocess.PIPE).communicate()[0] 
   blocklines = userblock.splitlines() 
 
   # iterate through lines in blocklines and construct own blocks with only 
necessary options: 
   # i.e. user, gid, home, password hash, uid, shell 
   for line in blocklines: 
       # catch the beginning of the block 
       # add our custom beginning and the rest 
       if "user {" in line: 
           line = "\n    @" + line[:4] + "s::virtual::localuser" + line[4:] 
           line += "\n        gid              => ['users',$sudo]," 
           newblock += line 
           newblock += "\n        home             => '/home/%s'," % u 
       if "password " in line or "uid" in line or "shell" in line: 
           line = "\n      " + line 
           newblock += line 
       # catch the ending of the block 
       if "}" in line: 
           line = "\n    " + line 
           newblock += line 
   # after iterating over all users insert the whole block with user 
definitions into temp file 
   f.write(newblock) 
f.write("\n") 
f.close() 
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Appendix 13 – Wiki: Puppet 

• Development of Puppet with Vagrant boxes 

There now is a safe and simple way to try out new things in Puppet before moving 
them into production. 

• The way in a nut shell 
• get a virtual machine which is pre-configured to work with modules in testing 

environment 

• work with modules in testing environment 

• verify that new functionality does what it is supposed to with the new modules 

• check that it does not break something one might expect or suspect 
• after validating the module, move it to production environment 

 

• Example of a workflow 

Bellow is a workflow example for editing some existing module (say packages) for 
linrels. 

# Get started with the linrel vagrant box 

mkdir linrel-v && cd linrel-v 

vagrant box add linrel-v /storage/vagrant/linrel-v.box 

vagrant init linrel-v 

vagrant up 

vagrant ssh 

NB! Successful execution of the last command assumes your private key is in 

~/.ssh/id_rsa logs you into the Vagrant box. More details on Vagrant boxes are 
in https://XXXXXXX.conformiq.com/XXXXXXX/wiki/Vagrant 

# in linrel-v apply latest changes from Puppet production 

sudo puppet agent --server=XXXXXXXXX.conformiq.com --no-daemonize 

--verbose –onetime 

 

# checkout latest Puppet code 

git svn clone svn+ssh://$(whoami)@XXXXX/puppet puppet 

cd puppet 

 

# Copy "packages" module from production into testing environment 

cp -r modules/packages testing/modules/ 

 

# edit, add and commit 

vim testing/modules/packages/manifests/init.pp 

... 

git add testing/modules/packages 

git commit 

git svn dcommit 

NB! Now, there are two modules "packages": one in production and one in testing 

environment. Puppet nodes in testing environment first look in their specified 

modulepath, then in production, i.e. at this point our linrel-v will be served "packages" 
module from testing environment and the rest will come from production. 
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# Apply your latest changes commited moments ago 

sudo puppet agent --server=XXXXXXXXX.conformiq.com --no-daemonize 

--verbose --onetime 

 

# Observe the output, check the system, try something out 

# make changes if necessary, 

# and when happy and satisfied move the module from testing into  

# production 

cp -r testing/modules/packages modules/ 

git rm -r testing/modules/packages 

git commit 

git svn dcommit --rmdir      

NB Git-users! In the last command make sure you use --rmdir switch to remove 

empty directories behind you, because empty directories with module names left in 

testing/modules will confuse and stall environment Puppet nodes. They will complain 
that "Cannot compile catalog.." and give an error in manifests/nodes.pp 

Vagrant boxes are located in /storage/vagrant, they are populated over time, to 

request more boxes email XXXXXXX@conformiq.com 

• User management 

Puppet is used to manage users on all of its nodes. Users definitions are stored in a 

Puppet module "users" at svn+ssh://@XXXX/puppet/modules/users/manifests/init.pp. 

These definitions are generated automatically by a cronned script, which converts 

puppet.conformiq.com unix-users belonging to local group "users" into Puppet user 

definitions. The script runs every 30 minutes and compares latest generated 

definitions with current ones, and commits latest changes to SVN whenever there are 

any. Changes can e.g. be addition of a new user, or change of user's password or 
default shell. 

To change a password or a default shell a user should not edit his/her user definition 

in the above mentioned manifest, instead the user should log in to 

XXXXXX.conformiq.com and make the necessary operation(s) there; the changes will 
be auto-generated and auto-committed to the appropriate manifest in SVN, and from 
there - applied to the Puppet nodes. 

For example, to change password and default shell to zsh on all the Puppet nodes: 

ssh XXXXX.conformiq.com 

passwd 

chsh -s /bin/zsh 

• User folders 

Each user has two user-specific folders on every Puppet node: 

• /home/[user] - is user's home folder 

o mounted over NFS from XXXXXXX 

o can be used to store stuff which is needed often at least several 

machines 

o over-the-network performance < locally performed operations 

o backed up 

o disk space is limited - might get a request from admin to clean up 
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• /data/users/[user] is a local folder 

o better performance than over NFS 

o not backed-up 
o disk space not that scarce 

• Editing Puppet manifests 

The new way of editing [also creating new] Puppet manifests is through our 

SVN repository. Please note that this is also the only way supported - all local 
modifications in the Puppet working directory will be overwritten by SVN export, thus 
all changes made locally will be lost [forever]. The the new workflow is: 

• checkout latest revision of Puppet working directory 

• make necessary modification to manifest[s] 

• commit changes to SVN 

• you changes will be automatically validated for Puppet syntax errors by a 

pre-commit hook 

o commits with no syntax errors will be allowed through 

o commits with syntax errors will be aborted; a message with error details 

will be displayed in the ouput, after correcting the error commit again 

• your changes will be deployed automatically from SVN to Puppet working 

directory on the Puppet master server by a post-commit hook 

• svn 

svn checkout svn+ssh://$(whoami)@XXXXXXX/puppet ; cd puppet 

# vim / emacs ... 

svn commit 

• git svn 

git svn clone svn+ssh://$(whoami)@ XXXXXXX/puppet puppet ; cd 

puppet 

# vim / emacs ... 

git add -p 

git commit 

git svn dcommit 

NB Git svn users! If during git svn dcommit there appeared to be a syntax error in 

one of your manifests, simply correcting your error and pushing the manifest back to 

the repository with a newer error-free commit will not succeed, this is due to how git 

works [differently from svn] - you will be pushing both versions of the manifest: the 

one with the error and the one without. Most likely you want to keep the changes you 

just made and to only correct the syntax error, if so then do: 

# reset to where you just were (and keep all your modifications) 

git reset --soft HEAD^ 

# vim / emacs ... 

git add -p 

git commit 

git svn dcommit 
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• Puppet reports 

Puppet is configured to generate and send report on each of Puppet service runs for 

each node. Reports are generated and sent via email to system administrator 

whenever there are any changes between the catalog generated by Puppet master 

and the slave's state. 

Implementation of this configuration has been documented in #3872 and r39735 

• Puppet handling Debian packages' automatic upgrades 

Two Puppet modules are now taking care of automatic upgrades on lintests, 
linbenches, and linrels: 

• unattended-upgrades makes sure packages’ versions are in sync and up-to-

date 

• postfix makes sure that mail agent is installed and configured on each node, 

this is done so that Puppet nodes are able to email reports from unattended 
upgrades 

NB! on linrels only security upgrades are applied. 

Implementation of this feature has been documented in #3180 and #3859 

• Adding new node (slave) to Puppet master 

• On master create a definition of the new node in 

/etc/puppet/manifests/nodes.pp by adding e.g. 

• node 'XXXXXX.conformiq.com' { include lintester }  

• On slave create an ssl certificate and send it to master for approval 

• sudo puppet agent --server=XXXXXX.conformiq.com --no-daemonize 
--verbose 

• On master view the request and sign the certificate 

sudo puppet cert -all 

sudo puppet cert --sign XXXXX.conformiq.com 

• On slave pull the configuration from master 

sudo apt-get update 

sudo puppet agent --server=XXXXXX.conformiq.com --no-

daemonize --verbose --onetime --pluginsync 

• Vim Puppet editing support 

sudo aptitude install vim-puppet 

mkdir -p ~/.vim/{ftdetect,syntax} 

ln -s /usr/share/vim/addons/ftdetect/puppet.vim ~/.vim/ftdetect 

ln -s /usr/share/vim/addons/syntax/puppet.vim ~/.vim/syntax 



 

 

53 

• Puppet Slave 

Update configuration on a slave manually: 

ssh someslave 

sudo puppet agent --server=XXXXXXXX.conformiq.com --no-daemonize -

-verbose --onetime 

NB! : Puppet slaves are automatically pulling configuration from the master every 

hour. 
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Appendix 14 – Wiki: Vagrant 

 

Vagrant Boxes 

Vagrant boxes are easy-to-get throwaway virtualbox vms. Developers can get them 

from our storage whenever they need some certain environment, use them, and then 

throw away. 

All boxes: 

• are replicas of their counterparts (with same Puppet configuration that their 

counterparts have) 

• have Puppet certificates signed by master 

• are configured for networking behind your host's NAT 

• assume that your private key (e.g. for accessing mylly) is in ~/.ssh/id_rsa (to 

override edit .....) 

• have host name ending on "-v" for Puppet to recognize them and serve them 

as Puppet testing environment machines. Puppet is not running on them at 
boot. To invoke it run: 

sudo puppet agent --server=XXXXX.conformiq.com --no-

daemonize --verbose --onetime 

Install vagrant 

sudo apt-get -y install vagrant virtualbox-ose 

 

Get a Vagrant box from storage and start working with it 

# example for getting a linrel vm 

export machinename="linrel-v" 

mkdir $machinename && cd $machinename 

vagrant box add $machinename /storage/vagrant/$machinename.box 

vagrant box list 

vagrant init $machinename 

vagrant up 

vagrant ssh 

 

# after the machine is not anymore needed you can destroy all its 

# traces with 

vagrant destroy 

rm -rf ~/.vagrant.d/boxes/$machinename 
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Package some virtual machine into a Vagrant box 

# vagrantfile additions to be packaged with the box 

cat >> vagrantfile << EOF 

Vagrant::Config.run do |config| 

  # ssh to box as current user with existing own key-pair 

  config.ssh.username = ENV['USER'] 

  config.ssh.private_key_path = '~/.ssh/id_rsa' 

end 

EOF 

 

# pack the box 

vagrant package --base linrel-v --vagrantfile vagrantfile 

 

 


