
 

 

 

KYMENLAAKSON AMMATTIKORKEAKOULU 

Information Technology / Network Engineering 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rikhard Tjeder 

 

IPv6 SECURITY 

 

Thesis 2014 

 

 

 

 



 

 

 

TIIVISTELMÄ 

 

KYMENLAAKSON AMMATTIKORKEAKOULU 

Tietotekniikka 

 

TJEDER, RIKHARD IPv6 Security 

Opinnäytetyö 48 sivua + 32 liitesivua 

Työn ohjaaja Lehtori Martti Kettunen 

Toimeksiantaja Kyamk, Kymp OY 

Maaliskuu 2014 

Avainsanat IPv6, Security, Neighbor Discovery, Extension Headers  

 

Tämän opinnäytetyön aihe on IPv6 protokollan turvallisuus. Työ keskittyy suurimaksi 

osaksi ongelmiin, jotka esiintyvät Neighbor Discovery protokollassa sekä IPv6 Exten-

sion Headereissä. Lisäksi käsitellään IPv6 tiedustelu ja IPv6 Bogonien tietoturvaon-

gelmia sekä näiden ongelmien vaikutusten lieventämistä. 

Tämän opinnäytetyön tavoitteena on kerätä tietoa IPv6 protokollan turvallisuusongel-

mista yleistä käyttöä varten. Tavoitteena olisi myös vähentää kyseisten ongelmien 

vaikutusta ja myös testata, että tehdyt toimenpiteet toimivat. Tietoturvaongelma käsi-

tellään ja arvioidaan tarkemmin, jos kyseessä on vaativa ongelma tai sen vaikutusten 

vähentämiseen on useita vaihtoehtoja. 

Tutkimuksissa on käytetty luotettavista lähteistä saatua materiaalia, kuten alan kirjalli-

suutta ja luotettavien osapuolten internet-sivuja. Merkittävä osa materiaalista on Cisco 

Systemsin julkaisemaa. Opinnäytetyön toteutus koostuu puoliksi kirjallisuustutkimuk-

sesta ja puoliksi käytännön kokeista. 

Opinnäytetyössä päädyttiin johtopäätökseen, että vaikka IPv6 on turvallisempi kuin 

IPv4, löytyy siitä vielä haavoittuvuuksia, joita joudutaan torjumaan. IPv6-protokollan 

turvallisuuden syvällisempi tarkastelu vaatisi huomattavasti enemmän aikaa, koska ai-

healue on niin laaja. 



 

 

 

ABSTRACT 

 

KYMENLAAKSON AMMATTIKORKEAKOULU 

University of Applied Sciences 

Information Technology 

 

TJEDER, RIKHARD Ipv6 Security 

Bachelor’s Thesis 48 pages + 32 pages of appendices 

Supervisor Martti Kettunen, Principal Lecturer 

Commissioned by Kyamk, Kymp OY 

March 2014 

Keywords IPv6, Security, Neighbor Discovery, Extension Headers 

 

The subject of this thesis was security in the IPv6 protocol. The subject areas within it 

that were examined in this thesis mostly revolve around the problems within Neighbor 

Discovery and the IPv6 Extension Headers. In addition, other problems were taken in-

to account such as reconnaissance of IPv6 networks and IPv6 Bogons. The mitigation 

for these problems was also discussed. 

The aim of this thesis was to generally gather information about some of the security 

threats involved in IPv6 for general purpose use and to be informational. Moreover, 

the objectives were implementing some of the mitigations and actually testing that 

they work. The problems themselves were evaluated on how they should be dealt with 

if problematic subjects were encountered or multiple choices were present. 

The research was conducted by going through material on trusted media such as books 

published by trusted parties, the same applies to any information collected from the in-

ternet. Mostly the information was gathered from Cisco sources. The empirical part 

consisted of half research and half practical work. 

To conclude, while better than IPv4 security-wise IPv6 still poses many threats and 

requires them to be mitigated. It would be also wise to research the subject further 

considering the size of the subject itself, for example further research into IPv6 Bo-

gons and new ways to secure Neighbor Discovery. 



 

 

 

LIST OF ABBREVIATIONS 

 IP Internet Protocol; A communication protocol. 

 IPv6 Internet Protocol version 6; The latest revision of the Internet Protocol. 

 IPv4 Internet Protocol version 4; The predecessor of IPv6 

 IETF Internet Engineering Task Force; Organization in charge of the stan-

  dardization of the Internet Protocol. 

 IPng Internet Protocol Next Generation; A precursor or early version of IPv6 

 MAC Media Access Control; A data communication protocol. 

 IPsec Internet Protocol Security; A protocol suite for securing IP communica-

  tion. 

 Node Nodes is a catch-all term for devices in a network that are either interme-

  diate devices  such as routers or end-point devices such as computers. 

 Router A device used for forwarding packets across a network. 

 Host A device that is not a router, such as a computer. 

 QoS Quality of Service; a way to control what traffic is considered important 

  by increasing their priority in the network. 

 TTL Time-To-Live; the lifespan of a packet traversing through the network, 

  usually decremented by 1 for every hop. 

  GiB Gigibyte; a unit used for digital information storage, 1 gigibyte =  

  1073741824 bytes. 

 PMTU Path Maximum Transmission Unit; value which indicates the largest 

  datagram size allowed on the path from source to destination without be-

  ing fragmented. 



 

 

 

 RH0 Routing Header Type 0; part of the Routing extension header, works 

  similarly to IPv4 source routing option. 

 RH2 Routing Header Type 2; part of the Routing extension header, used in 

  MobileIPv6 

 DoS Denial of Service; an attack designed to deny a network or computer 

  resources they require to work. 

 CPU Central Processing Unit; hardware in devices such as computer and 

  routers used for processing information. 

 ND Neighbor Discovery (Protocol); a protocol within IPv6 used in helping 

  nodes to be aware of their neighboring nodes in attached links and to 

  auto-configure hosts with addresses and prefixes. 

 RA Router Advertisement; a message sent by a router to a host to inform 

  about the link so they can auto-configure themselves. 

 RS Router Solicitation; a message sent out by a host node when it requests a 

  router to send it a RA message. 

 SEND Secure Neighbor Discovery; a security protocol used to secure the  

  Neighbor Discovery Protocol 

 CGA Cryptographically Generated Addresses;  

 DDoS Distributed Denial of Service, the same as DoS attacks but done by mul-

  tiple people or in some cases botnets. 

 RIR Regional Internet Registry; an organization that manages the allocation 

  and registration of Internet number resources within a particular region. 

 IANA Internet Assigned Numbers Authority; nonprofit private American cor-

  poration which oversees global IP address allocation. 



 

 

 

 DAD Duplicate Address Detection; verification mechanism in ND that checks 

  that the auto-configured address is no present on any other device. 

 NUD Neighbor Unreachability Detection; a mechanism in ND used to inform 

  neighbors when a neighboring node is unreachable. 

 Bogon A bogus address from an unallocated address space. 

 ACL Access Control List; a feature used in devices to filter network traffic. 

 OUI  Organizational Unique Identifier; unique identifier for gear by specific 

  vendors for different devices. 



 

 

 

TABLE OF CONTENTS 

 

TIIVISTELMÄ 

ABSTRACT 

LIST OF ABBREVIATIONS

1 INTRODUCTION 9 

2 INTERNET PROTOCOL VERSION 6 9 

2.1 IPv6 FEATURES 10 

2.2 IPv6 HEADER 11 

2.3 ADDRESSING 13 

2.3.1 GLOBAL UNICAST ADDRESSES 14 

2.3.2 LINK-LOCAL 14 

2.3.3 MULTICAST ADDRESSING 14 

2.4 EXTENSION HEADERS 14 

2.4.1 HOP-BY-HOP OPTION 15 

2.4.1.1 ROUTER ALERT 15 

2.4.1.2 JUMBOGRAMS 15 

2.4.2 ROUTING 16 

2.4.2.1 TYPE 0 ROUTING HEADER 16 

2.4.2.2 TYPE 2 ROUTING HEADER 16 

2.4.3 FRAGMENT 17 

2.4.4 ENCAPSULATION SECURITY PAYLOAD 18 

2.4.5 AUTHENTICATION HEADER 18 

2.4.6 NO NEXT HEADER 19 

2.4.7 DESTINATION OPTION 19 

3 NEIGHBOR DISCOVERY PROTOCOL 19 

3.1 ROUTER ADVERTISEMENTS AND SOLITICATIONS 20 

3.2 NEIGHBOR SOLICITATION AND ADVERTISEMENTS 20 

3.3 DUPLICATE ADDRESS DETECTION 20 

3.4 NEIGHBOR UNREACHABILTIY DETECTION 21 

3.5 NEIGHBOR CACHE 21 



 

 

 

4 SECURE NEIGHBOR DISCOVERY 22 

5 IPV6 RA GUARD 23 

6 BOGONS 23 

7 RECONNAISSANCE 24 

7.1 TECHNIQUES 24 

7.1.1 REGISTRIES 25 

7.1.2 AUTOMATED SCANNING 25 

7.1.3 MULTICAST RECONNAISSANCE 26 

7.1.4 NEIGHBOR DISCOVERY RECONNAISSANCE 26 

7.2 RECONNAISSANCE TOOLS 27 

7.3 PROTECTION AGAINST RECONNAISSANCE 27 

8 EMPIRICAL PART 28 

8.1 EXTENSION HEADERS 29 

8.1.1 ROUTING HEADER TYPE 0 FILTERING 30 

8.1.2 ROUTER ALERT FILTERING 34 

8.1.3 FRAGMENTATION FILTERING 36 

8.1.4 CONCLUSION TO EXTENSION HEADERS TESTING 38 

8.2 SEND IMPLEMENTATION 38 

8.2.1 SEND CONFIGURATION 39 

8.2.2 CONCLUSION TO SEND CONFIGURATION 44 

9 CONCLUSION TO THESIS 45 

REFERENCES 47

APPENDICES 

 



  9 

 

1 INTRODUCTION 

As IPv6 starts to become more common with the IPv4 address pool becoming ex-

hausted, security issues within the IPv6-protocol must be dealt with. As service pro-

viders and enterprises start to use more IPv6-addressing they must also start using 

more IPv6-security. The security aspect is still developing and ways of attacking net-

works and devices keep evolving. Despite this, there are security options and mitiga-

tions for issues within the IPv6-protocol. 

This study was aimed towards researching and testing IPv6-security as IPv6 is starting 

to become more common by the day. Various different vulnerabilities were researched 

in both how they work and how they are mitigated if it is possible to even mitigate. 

Solutions to spot or find possible vulnerabilities within the network were researched. 

The problems that were researched in this study involved reconnaissance, Bogons, Ex-

tension Headers, Neighbor Discovery and possible tools used by attackers in trying to 

take advantage of the weaknesses in each of the areas. Mitigations for before-

mentioned problems were addressed both in simply discussing them and implement-

ing them in practical work, mostly in the ND and Extension header areas. 

This thesis was commissioned by Kymp Oy. The practical testing was mostly con-

ducted within the Kymenlaakso University of Applied Sciences SimuNet-Lab and also 

some of the equipment located in the Cisco-Lab residing in the same building. The 

tests were conducted on various equipment located both in the SimuNet-Lab network 

and in the Cisco-Lab equipment. 

SimuNet-lab within Kymenlaakso University of Applied Sciences in its simplest form 

is a small Internet service provider environment mostly used for research, testing and 

new product development. With the help of the SimuNet-network those difficult tasks 

which Internet service providers have with testing new network solutions can be simu-

lated. 

 

2 INTERNET PROTOCOL VERSION 6 

Internet Protocol version 6 (IPv6)  is an Internet Protocol (IP) developed to be the 

successor of Internet Protocol version 4 (IPv4) as the IPv4 address pool has become 

exhausted. The Internet Engineering Task Force, which is in charge of defining the In-



  10 

 

ternet Protocol standards, could not foresee the global expansion that the Internet 

would have and could not predict what kind of impact this could have on the security 

of the Internet. Security was in fact not considered that important in the original de-

sign of IPv4. (Hogg & Vyncke,  2008, 3.) 

 As the Internet grew from just being formed from different organization's networks 

into what it is today, security and the vulnerabilities in IPv4 started to become a major 

concern. In the beginning of the 1990s, the IETF started developing a new version of 

IP, because they not only noticed the security hazards within IPv4 but also the fact 

that they were going to run out of addresses form the IPv4 address pool. They started 

developing IP Next Generation (IPng) which later became IPv6.  (Hogg & Vyncke,  

2008, 3.) 

 

2.1 IPv6 FEATURES 

IPv6 had many features which outperformed and improved on concepts from IPv4 but 

also introduced new features. The main features introduced in IPv6 as listed by 

Blanchet: 

 Larger addresses. IPv4 had 32 bit address space which was increased to 128 

bit address space in IPv6. This enabled the possibility of addressing all nodes 

increasing features such as security.  

 More levels of addressing hierarchy. With the added level of addressing hi-

erarchy it provided better aggregation of routes, allocation of addresses to 

downstreams became easier as did the scalability of the global routing table. 

 Scoping in the addressing. Made filtering easier at boundaries, also increased 

link layer protocol security against remote attacks. 

 Simple and fixed address architecture. Making /48 prefix for sites and /64 

for links made it easier to manage addressing plans. 

 Privacy addresses. End-user IP address cannot be used for tracking traffic. 

 Multiple addresses on an interface. Enabled multiple use, virtual hosting 

easier, renumbering and multihoming. 



  11 

 

 Autoconfiguration of nodes. Nodes now auto-configured themselves based 

on advertisements and inserting their MAC address into the host part of the 

IPv6 address making configuration fast and reliable. 

 No address conflicts on links.  Due to MAC addresses being used in the auto-

configuration process, duplicate addresses would no longer be a problem. 

 Simpler and more efficient IP header. Packets were processed more effi-

ciently making forwarding easier for the routers. 

 Extension headers. Similar to the IPv4 Options Header the extension headers 

in IPv6 allowed for more options within the IPv6 packets and because most of 

them do not have to be processed, it made forwarding faster. 

 Mandatory IP security.  IPsec was mandatory in IPv6, securing traffic for all 

nodes if any underlying key infrastructure is present. 

 Source routing. An extension header option which made it easier to imple-

ment source routing. 

 Labeling flows for QoS.  Flow labels in the basic header made it easier for the 

routers to determine labeling and policing without having to check the applica-

tion payload. 

 Multicast for discovery and link-local interaction. Broadcasting was not 

used in IPv6. Only the nodes that should receive a request would receive it. 

 Mobility. Mobility options were integrated into IPv6 headers, stacks and im-

plementations making implementing mobility for network access easier. 

 Private but unique address space. Unlike the private addresses in IPv4 the 

private addresses in IPv6 were unique to the site making connecting two or 

more private networks together. (Blanchet, 2006, 30 – 32.) 

 

2.2 IPv6 HEADER 

IP headers are used to give the devices a great deal of information on the Internet Lay-

er. There are 8 fixed fields in the IPv6 Header which amount to 40 bytes. Shown is a 

depiction of the IPv6 Header (figure 1). 



  12 

 

 Figure 1. IPv6 Header 

The fixed fields are as follows: 

 Version Field. The Version field is 4 bits long and is used to identify which IP 

protocol version is in use. In IPv6 the value is “6” to indicate that IPv6 is in 

use. 

 Traffic Class Field. The Traffic Class field is 8 bits long and is used to classi-

fy what sort of traffic the packets are, making it easier for devices if packets 

are high or low priority traffic. 

 Flow Label Field. The Flow Label field is 20 bits. Unlike in IPv4 where rout-

ers had to specifically process, based on the IP header and transport header, 

what the flows for the sequence of incoming packets were. IPv6 implement the 



  13 

 

Flow Label, which makes it easier for routers to process which flows the pack-

ets should follow. 

 Payload Length. The Payload Length field is 16 bits long. It has the infor-

mation regarding the length of what comes after the IP header, which means it 

tells the length of the transport, application data and possible extension head-

ers. 

 Hop Limit. The Hop Limit field is 8 bits long. Similar to the TTL (Time-To-

Live) field in IPv4 it defines how long a time a datagram has to “live” until it 

is “killed”. This basically means when the packet traverses through the net-

work its hop limit is decremented and when value hits 0 the device sends back 

a 'Time exceeded' ICMP message to inform the sender that the packet has been 

discarded due to the hop limit being exceeded.  

 Next Header. The Next Header field is 8 bits long. This field is used for iden-

tification of the data inside the payload of the IP datagram. This is usually dif-

ferent sort of transport protocols- or encapsulation. The Next Header field is 

also in charge of telling the routers what Extension Headers are used up ahead. 

(Blanchet, 2006, 47 – 49.) 

2.3 ADDRESSING 

IPv6 addresses are 128 bits long which basically means there are 3.4x10^38 unique 

addresses. This provides for a much larger address space than Ipv4 also unlike Ipv4 

the address notations are not in decimals such as 192.0.0.1 but in hexadecimals  such 

as 2001:0::1234:c1c0:abcd:243. The netmasks have also changed into prefix lengths, 

which are noted for example as /64 which means identifies an address 64 first bits. For 

example in the previous IPv6 address 2001:0::1234:c1c0:abcd:243 it would mean the 

1234:c1c0:abcd:234 part. 

 



  14 

 

 

2.3.1 GLOBAL UNICAST ADDRESSES 

Global Unicast Addresses are addresses used to communicate between two nodes over 

the Internet. These addresses range from 2000:: to 3fff:ffff:ffff:ffff:ffff:ffff:ffff:ffff or 

in other terms 2000:/3. All Global Unicast Addresses use the prefix length of /64, this 

is because the leftmost 64 bits are for the network prefix and the rightmost 64 bits are 

used for the host part of the address. IPv6 also requires that addresses used are provid-

er-based, which means one cannot acquire an IPv6 address block from a registry but 

has to get it from an upstream provider. (Blanchet, 2006, 64.) 

2.3.2 LINK-LOCAL 

Link-local addresses are scoped addresses, they are used on the specific link on the in-

terface. This means they are used between the connection of two nodes on the same 

link. Link-local addresses use the structure fe80::<interface identifier>. They also 

happen to be automatically configured on every IPv6-enabled interface, this allows for 

communication between nodes without having to manually configure the interfaces. 

Routers never forward Link-local addresses. (Blanchet, 2006, 66.) 

2.3.3 MULTICAST ADDRESSING 

Multicast addressing is used to send a datagram to many nodes in a network. Unlike 

Broadcast in IPv4, where one node sends out a datagram to all nodes in the network 

and even the nodes it does not concern have to listen to it, IPv6 multicast send out the 

datagrams in specific multicast addresses specifying which nodes should listen said 

datagram. A multicast address is assigned to be temporary for a specific time or per-

manently. The lifetime and scope  are united into the multicast address, this causes the 

multicast addresses to look as following ff<L><S>:<multicast group identifier> where 

<L> is the lifetime and <S> for the scope. (Blanchet, 2006, 71.) 

2.4 EXTENSION HEADERS 

Extension headers, similar to Options Field in IPv4 are not fixed to the IP header such 

as the IPv4 Options Field but since options and exceptions might be needed they are 

added as a non-mandatory feature. All the different extension headers are identified 

via unique Next Header values, so when an Extension Header is called upon the Next 



  15 

 

Header in the IP header points to next Extension header. Now when the router pro-

cesses the extension header it encounters another next header which points to the next 

extension header if one exists. (Blanchet, 2006, 50.) 

2.4.1 HOP-BY-HOP OPTION 

The hop-by-hop option extension header is always read first and has to be looked at 

by every device on the path to a packet's destination. There are two uses for the hop-

by-hop option which are router alert and jumbogram. (Blanchet, 2006, 51.) 

2.4.1.1 ROUTER ALERT 

This function in the hop-by-hop option is to tell or alert all the devices in the route to 

the destination of the packet to process this certain datagram. An example would be 

RSVP (Resource Reservation Protocol) which sends only control messages to all rout-

ers of a path in one datagram. Because routers usually just view the transport data to 

check if a datagram is important, which causes a lot of load on processing by the rout-

er, router alerts will inform the router to take a look at this datagram so only the 

tagged datagrams are processed. (Blanchet, 2006, 51.) 

Since the Router Alert option can be used to force routers to take a closer look at 

packets this can be used by attackers to their advantage. They will bombard the router 

with packets with the Hop-by-hop header with the Router Alert option perhaps with a 

combination with the Npad option to cause a DoS attack by forcing the router to use 

its CPUs resources to go through all the files. All depends on the network and the per-

son in charge of administrating the network. They should block Router Alerts on rout-

ers since if they are using protocols that actually require Router Alerts simply block-

ing them would cause issues. However if this does not happen to be a problem and 

one can simply block the packets, this can be done using ACLs. (Hogg & Vyncke,  

2008, 33.) 

2.4.1.2 JUMBOGRAMS 

Because the upper limit of the IP datagram is limited, to 65536 bytes due to the 16 bits 

in the Payload Length field an extension header was needed to allow for bigger data-

grams that require special processing, the Jumbograms extension header. The Jumbo-

gram allows for a maximum upper limit of 4 GiB. The Jumbogram extension header is 

mostly used for just for fast and large links between supercomputers.  (Blanchet, 2006, 

56 - 57.) 



  16 

 

2.4.2 ROUTING  

The Routing extension header allows for repathing of packets when they reach inter-

mediate nodes to their destination, thus being able to shift their paths at will. There are 

currently two relevant types of Routing headers, RH0 (Routing Header Type 0) and 

RH2 (Routing Header Type 2). 

2.4.2.1 TYPE 0 ROUTING HEADER 

RH0 as in the Type 0 Routing Headers allow packets routing paths to be modified to 

the liking of the sender by the use of the Routing extension header. The Type 0 rout-

ing header is very simplistic and thus can be abused by the sender. For instance there 

is no limit to how many intermediate nodes the packet can be redirected to, even if it 

is back to the one it just came from. This allows for DoS (Denial of Service) attacks 

by causing an amplification attack. The amplification attack is performed by using 

RH0 to tell the intermediate routers to send the same packet back and forth, during 

this the attacker is obviously sending in more of the same packets to cause the routers 

to be unable to handle to load. RH0 can also be used to set a path that avoids specific 

intermediate nodes, in particular firewalls or nodes that could block RH0. (Hogg & 

Vyncke,  2008, 36.) 

One option to mitigate this problem is disabling IPv6 source routing in routers to dis-

allow packets from using source routing in the routers, however this will also disable 

Type 2 routing headers from being source routed by the router which if you need 

would be troublesome, on top of this disabling the IPv6 source routing does not stop 

the packet itself so if you happen to have another router in the network that allows the 

source routing on the packets path to its destination it will be able to use source rout-

ing at that node. That is why one must stop the packet using an ACL, which will iden-

tify any packets using RH0 and block it. (Hogg & Vyncke,  2008, 37.) 

2.4.2.2 TYPE 2 ROUTING HEADER 

RH2 as in the Type 2 Routing Header is used for source routing in MobileIPv6. Just 

like RH0, RH2 allows routers to redirect packets to other intermediate nodes before 

reaching their destination. However the difference is that they learned from Type 0 

Routing Headers not making it as simplistic. Now the routing header is only allowed 

to have one address it can be redirected too before reaching its destination. The  desti-

nation IPv6 address for the packet has to be from a network interface of the node that 



  17 

 

owns the intermediate address. This allows the source routing to be only used with the 

recipient's addresses. Shown below is how source routing could be used (figure 2) 

(Koodli & Perkins, 2007, 130.) 

 

Figure 2. Packet being manipulated to take a specific path using source routing. The Internet Socie-

ty (2010). 

 

2.4.3 FRAGMENT 

If a source node notices that the PMTU is smaller in size than the datagram being sent, 

then it must the fragmented. In IPv6 the source node is in charge of fragmentation and 

not the router, the destination node reassembles the fragments on delivery. This is 

done by using the Fragment extension header which splits the fragment into pieces, 

that are smaller or the same size as the PMTU and they all share the original IP header 

of the original datagram but also have an additional fragment header. To identify 



  18 

 

which fragments are a part of a specific datagram they have a 32 bit identification 

field in the fragment header. Because the order the fragments will arrive at the desti-

nation is not linear they also specify which order the fragments are supposed to be re-

assembled by using a 13 bit field called “fragment offset”, they also use a flag to indi-

cate which fragment is the last fragment of the datagram. (Blanchet, 2006, 55-56.) 

Attacks can use fragmentation to their advantage when trying to get past firewalls by 

fragmenting files into very small pieces in an attempt to pass through the firewall un-

detected. However, filtering these packets might be troublesome since filtering cannot 

determine which fragments might be harmful and which might not be. This is why the 

person in charge of the network has to decide if filtering should be implemented in 

some point in the network as no fragmented packets should travel that way. The filter-

ing is done by using ACLs that block packets which have the extension header point-

ing to a packet being fragmented. (Hogg & Vyncke,  2008, 43.) 

 

2.4.4 ENCAPSULATION SECURITY PAYLOAD 

The Encapsulation Security Payload extension header is used by Ipsec to encapsulate 

packets. It provides confidentiality, integrity for the encapsulated packet, authentica-

tion of the packets source and anti-replay protection. Unlike the authentication header 

it only provides protection for the data segment of the packet but the protection it 

gives is encryption of the data. (Blanchet, 2006, 239.) 

 

2.4.5 AUTHENTICATION HEADER 

The Authentication Header is used by Ipsec for authentication. It provides integrity in 

the whole packet, helps authenticate the source and has replay protection. It provides 

this protection to the Version field, payload length field, next header field, the source 

address field, the destination address field, the extension header field and the Data 

section of the packet. It does not provide protection for the Traffic Class, Flow Label 

or Hop Limit headers. It uses a cryptographic checksum over the fields protected.  

(Blanchet, 2006, 235-236.) 

 



  19 

 

2.4.6 NO NEXT HEADER 

The no next header extension header informs that there is no payload, which means 

that all the relevant information in the datagram is in the header or extension header. 

This is used when control protocol messages are using extension headers and do not 

add extra information in the payload. (Blanchet, 2006, 52.) 

2.4.7 DESTINATION OPTION 

The Destination Options are used to carry optional information to the destination 

node. It uses different sort of binary values which correspond with different predeter-

mined options which it calls upon. One of the options used is the Home Address Des-

tination Option Extension Header. This option is used in mobility support for IPv6. 

(RFC2460.) (RFC6265.) 

There are also two other Destination Options called Pad1 and PadN options. Pad1 in-

serts one octet of padding into the option portion of the header while the PadN option 

allows you to insert a variable amount. The PadN option can be used by attackers in a 

combination with Router Alert to make a packet that is forced to be viewed by the 

router that had a large Npad option junk data. Even on their own they could be quite 

effective. That is why it would be best for firewalls to drop packets with multiple pad-

ding options and padding option exceeding 5 bytes on top of dropping padding that 

has anything besides 0s in the datafield. (Hogg & Vyncke,  2008, 28.) 

3 NEIGHBOR DISCOVERY PROTOCOL 

ND (Neighbor Discovery) protocol is a feature in IPv6 which allows nodes to deter-

mine the link-layer address for other nodes connected them via links. Hosts use this to 

locate routers that would be willing to forward for them. It is also used by nodes to de-

termine if their neighbors are currently reachable and if their link-layer addresses have 

changed. (RFC2460.) 



  20 

 

 

3.1 ROUTER ADVERTISEMENTS AND SOLITICATIONS 

RA(Router Advertisement) messages are ICMPv6 messages that are used to help 

neighboring hosts to get information about the link so they can auto-configure them-

selves. The important information carried in these messages is the prefix or possible 

prefixes and the default router or default routers. These messages are sent every 5 

minutes. Because these messages are sent at 5 minute intervals this could cause prob-

lems if a node has to reboot or restart as it would not receive the information to auto-

configure itself, so when the device is booting it sends a RS (Router Solicitation) mes-

sage to request a RA message to be sent to it so it can auto-configure itself. If it just 

receives a regular RA message from two different routers it auto-configures both pre-

fixes. However, if there are two routers both sending a host node RA messages claim-

ing they are the default router, it chooses either or starts doing round robin between 

the two routers competing for being the default router. (Blanchet, 2006, 81-84.) 

3.2 NEIGHBOR SOLICITATION AND ADVERTISEMENTS 

A Neighbor Solicitation message is used when a node wants to send a packet to a 

neighbor on the same link, this is sent to the solicited-node multicast address which 

sends it out to all the neighbors on the link which then view the solicitation to see if 

the destination IPv6 address matches their address. If it does, they send back a Neigh-

bor Advertisement to tell the soliciting node what the link layer address of the node is. 

(Blanchet, 2006, 116.) 

3.3 DUPLICATE ADDRESS DETECTION 

DAD (Duplicate Address Detection) is used in the ND protocol to make sure nodes 

are not using the same address causing problems in the network working correctly. 

This is checked with a node wanting to use a specific link-local address. It then sends 

out a Neighbor Solicitation message to the multicast address to ask around if that spe-

cific address would respond. If there is no response by any of the other nodes, it con-

cludes that this address is not being used by anyone else and starts using it. However, 

if a node responds with a Neighbor Advertisement, the node concludes the address is 

already in use and does not use that address. (Blanchet, 2006, 117.) 



  21 

 

While this is a useful function in ND it can be exploited by attackers. They could 

cause a DoS attack by configuring a node to always respond to solicitation with a 

Neighbor Advertisement. This would cause a situation where a node could not auto-

configure itself because the attacker's node would keep responding to the advertise-

ment with a Neighbor Advertisement claiming that it us currently using the address. 

3.4 NEIGHBOR UNREACHABILTIY DETECTION 

If there is no traffic between nodes for a long period of time nodes would not know if 

a neighbor is reachable or not. This is why ND has a feature called Neighbor Un-

reachability Detection. NUD (Neighbor Unreachability Detection) is used by nodes to 

determine if their neighboring nodes are still reachable. This feature comes in handy 

to determine unreachable neighboring nodes, especially if there are multiple default 

routers being advertised helping the node to switch over to the other default router if 

the path to the other default router is unreachable. (Blanchet, 2006, 118.) 

NUD activates automatically when there is no traffic between nodes for a while, this 

helps ND to know the states of neighboring nodes to see if they are up or not. It sends 

a NA message over to the node a few times to check for responses and if it receives 

none it determines that the node is unreachable and deletes it from the Neighbor 

cache. Because this is done by using NS messages where the node responds with a NA 

message, it can be leveraged by an attacker to cause a Dos attack via responding to the 

NS messages over and over with forged NA messages. (RFC3756) 

3.5 NEIGHBOR CACHE 

The neighbor cache is the list of neighboring nodes. The cache tells you what state the 

neighbors are in currently. The states in which nodes can be in are the following. 

 Incomplete. This state indicates that a neighbor solicitation message has been 

sent to the neighbor but no neighbor advertisement has been sent back yet. 

 Reachable. Indicates that a neighbor advertisement has been received from 

this neighbor recently. 

 Stale. Indicates that a neighbor advertisement has been received but the expi-

ration time has been reached. The neighboring node will stay in this state until 

a new message is sent to said node and the neighbor solicitation is restarted. 



  22 

 

 Delay. Similar to the stale state but a state before a neighbor solicitation is sent 

again via the probe state. 

 Probe. Neighbor solicitation has been sent to the neighboring node. 

(Blanchet, 2006, 117.) 

 

4 SECURE NEIGHBOR DISCOVERY 

SEND (Secure Neighbor Discovery) is a security measure for Neighbor Discovery 

that uses authentication in the links formed between nodes. This means a Certificate 

Server must be set up which grants a Router its certificate letting it act as a Router. 

When nodes are connected to the network they must be configured with a trust anchor. 

This means the router must have a certification path to the certificate server so that the 

node can make the router its default router. SEND also uses CGA (Cryptographically 

Generated Addresses) to make sure that the node sending out a Neighbor Discovery 

message actually is the node that owns the address it claims it has.  (RFC3971.) 

CGA requires a RSA public keypair which it uses to generate an address for the node 

using a cryptographic hash function. This means the node can now claim ownership to 

the address CGA creates because it is associated with the RSA keypair that was gen-

erated on the node. This means no other node can claim they have this address without 

actually having the RSA keypair at their disposal. CGA also has a security value 

called the Sec which has 8 different values ranging from 0 to 7. These are used to in-

crease the strength of the encryption to avoid attackers from simply cracking the en-

cryption by brute-forcing the address. (RFC3972.) 

This way SEND allows for Neighbor and Router discovery messages to be protected 

by either using certificates, using CGA or in the best case possibly using both. This 

has the benefits of protecting Neighbor Solicitation and Advertisement spoofing be-

cause SEND requires RSA Signatures and ,prepver. the CGA option in the solicitation 

which means if they do not correspond to what the router requires they will be disre-

garded. DAD Dos attacks are also mitigated by the fact that when a SEND node is 

generating its first address it listens for non-SEND nodes for possible duplicate ad-

dresses but on the 2nd attempt if a non-SEND node responds yet again it disregards 

the message and starts using the generated address anyway. (RFC3971.) 



  23 

 

Even though SEND mitigates some of the possible DoS and intrusion attempts SEND 

itself also allows for attackers to launch DoS attacks against some of SENDs features. 

Because SEND uses CGA, certificates or in some cases both for validation it has to 

verify each packet. This can cause a situation where CGA will be first in line for veri-

fication which means the nodes could possibly cause unnecessary work for the devices 

processor by simply verifying the incoming packets. Especially routers can also be 

targeted by using multiple trust anchors to request multiple certification paths forcing 

the routers to use resources in said process. With certificates it would be wise to also 

configure nodes so that too many resources are not used for verification of files to 

prevent similar situations. (RFC3971.) 

5 IPV6 RA GUARD 

IPv6 RA Guard is a feature that allows one to filter out unwanted RA messages by 

rogue routers. RA Guard announces to the network what kind of device there is at the 

end of the port and allows a network administrator to set up a safe environment with 

trusted ports allowing in RA messages while untrusted ports are denied. RA Guard al-

lows a device to be either configured to be a host or a router. It also allows for other 

optional configurations that increase the security of RA Guard such as adding custom 

hop-limits, matching the sender to specific IP address using access lists or checking 

that the prefix being advertised matches the correct prefix-list. RA Guard is slightly 

lighter than SEND, but it only protects against rogue RA messages. (Cisco, IPv6 RA 

Guard) 

However RA-Guard may be spoofed by Extension Headers depending on how the 

message is read. An attacker could make an RA message that uses an Extension 

Header, making use of Hop by Hop or Destination Options Header, allowing Router 

Advertisement messages to slip by RA Guard due to how the packet is read and pro-

cessed. Also using this in combination with fragmentation would allow the RA mes-

sage to slip past a Layer 2 device. (v6ops, 2011.) 

 

6 BOGONS 

Bogons deriving from Bogus addresses are IP addresses or network spaces that should 

never appear on the Internet routing table and are normally used as a bogus source ad-

dress in  DDoS attacks. These addresses are address spaces that have not been allocat-



  24 

 

ed to RIR (Regional Internet Registry) by IANA(Internet Assigned Numbers Authori-

ty). These apply to both the Ipv4 address space and the IPv6 address space. (Hogg & 

Vyncke,  2008, 87.) 

There are various ways to block Bogons in a network such as using Unicast RPF. 

Probably the most useful way to do this is using RTBH (Remotely Triggered Black 

Hole) filtering.  RTBH routes unwanted traffic based on either the source address or 

the destination address into a null0 interface which means the packet is being routed 

into “nowhere”. The general problem with Bogon filtering is the fact that especially in 

IPv6 the address space that is unallocated will keep on changing as they are given out, 

which will require for filters to be updated so that no actual traffic from previously 

unallocated address spaces is blackholed or filtered. This will cause an issue where the 

network administrator has to weigh their options depending on if they want to set up 

an automatically updateable filter or a manually managed filter. There are some com-

panies willing to offer automatic updates through IBGP but this might not be an op-

tion for some administrators because the companies claim not to be eligible for taking 

any responsibility in any possible problems resulting from the service they have pro-

vided. On the other hand, manual upkeep of up-to-date Bogon filters requires addi-

tional work and management on the network. It is best to choose the option that would 

be the optimal for that network. (Hogg & Vyncke,  2008, 90.) 

7 RECONNAISSANCE 

Attackers will generally want to scout out for information about a network before re-

connaissance launching a possible attack or trying to get control of the network, look-

ing for possible vulnerabilities. Just like in Ipv4, IPv6 has similar problems with some 

of the features related to IPv6, even though some of them happen to be diminished by 

the larger address space. 

 

7.1 TECHNIQUES  

During reconnaissance the attacker would generally like anonymity in case of detec-

tion so having a bogus source address would be beneficial in avoiding authentication. 

Depending on what technique the attacker is going to use a less efficient technique 

could be used to avoid detection, sacrificing speed to gain stealth. (Hogg & Vyncke,  

2008, 56.) 



  25 

 

7.1.1 REGISTRIES 

Registries are a part of many so called “tools” for attackers to use to check for infor-

mation about an IP address or a network. Such as whois for checking information 

about addresses or domains, nslookup to look up DNS information and IP addresses, 

using trace route or even simply using search engines to gain information about a spe-

cific IP address. In IPv6 especially DNS is a prime suspect for reconnaissance because 

it can contain information about all the target's IPv6 systems. (Hogg & Vyncke,  2008, 

56.) 

7.1.2 AUTOMATED SCANNING 

Because of the size of the IPv6 subnets it is simply inefficient to brute force scan 

through the entire network looking for nodes starting from the first possible address 

and ending at the last possible address of that subnet. It is also quite troublesome since 

host nodes auto-configure their IPv6 addresses which takes out the chance of there be-

ing any predictability about the interface identifier portion of the address. However, 

port-scanning for known IPv6 addresses is still possible, so if an attacker somehow 

managed to get their hands on a larger list of IPv6 addresses, the attacker could run it 

through an automated port-scan. (Hogg & Vyncke,  2008, 56.) 

However, if an attacker found out the OUI (Organizational Unique Identifier) for de-

vices such as the routers or the Ethernet cards for the host computers and went under 

the assumption that they were only using EUI-64 addresses, they could make a scan 

that simply needed to scan through the last 24 bits of the address. This would need 

some additional reconnaissance about the actual hardware of the target but could yield 

better results. On the other hand, on routers things might get easier for attackers be-

cause addresses may be configured by administrators for nodes. Because of human er-

ror and laziness this might result in routers having easy to remember IP addresses that 

either resemble words, words could be something like ::f001 or ::abcd. This could 

give the attacker an opportunity to make a scanning tool which goes through all these 

easy to remember addresses which the administrator is obviously using to aid them-

selves in managing the network. Also simply making an automated scan that goes 

through the lower and higher end of the subnets could yield results in finding possible 

laziness on the part of the administrator. (Hogg & Vyncke,  2008, 58.) 



  26 

 

7.1.3 MULTICAST RECONNAISSANCE 

Multicast addresses can be used by attackers in reconnaissance of a network by mak-

ing connections to multicast addresses which return information about the nodes. This 

would however, mean that the attacks were done inside the internal LAN which would 

either mean the attacker had to be inside the organization being able to attach his de-

vices in positions which would yield an opportunity to do this. Other option would be 

a user being infected by malware enabling the attacker remote access to be able to do 

these scans. Some of the Multicast addresses would be able to find or receive infor-

mation about all the nodes in the network or all routers in the network.  (Hogg & Vyn-

cke,  2008, 59.) 

7.1.4 NEIGHBOR DISCOVERY RECONNAISSANCE 

ND can be leveraged for reconnaissance also since if ND is not using SeND it will 

make nodes vulnerable of sending information to the attacker's node if the attacker 

somehow is able to connect into the network. The attacker could also possibly infect a 

node inside the network, perhaps a computer, with a sniffer. The sniffer would listen 

for NDP messages. (Hogg & Vyncke,  2008, 61.) 

Otherwise if the attacker happened to have node in the network, which they either 

connected into it themselves or if they happened to get remote access to a node, they 

could simply view the Neighbor Cache. The Neighbor Cache of course holds Layer 2 

information about the neighboring nodes in the network, including their MAC ad-

dresses. (Hogg & Vyncke,  2008, 62.) 



  27 

 

 

7.2 RECONNAISSANCE TOOLS 

There are some tools that are already in use for IPv6 reconnaissance, perhaps the best-

known being NMAP (Network Mapper). NMAP is a free security scanner most com-

monly used for scanning both Ipv4 and IPv6 address spaces and for possible open 

ports, it also works quite well for single host addresses as well. It can also determine 

what operating systems hosts are running on and what firewalls or filters are currently 

being used. It is most commonly used for checking the security of a network for any 

possible holes and by administrators for upkeep of their network. NMAP works on 

both Linux distributions and different Windows OSes. (NMAP.) 

THC-IPv6 is a toolkit designed to scan IPv6 networks in multiple different ways the 

kit containing many different features used for different sort of reconnaissance at-

tempts. It has various tools for either scanning specific addresses, advertising yourself 

as a part of some protocol, faking your address and so on. It also happens to have 

about 55 tools that can be used in attacks against a network. (THC-IPv6.) 

Scapy is a tool that allows you to create and capture packets from both different pro-

tocols as well as different requests and replies. It works with both Ipv4 and IPv6 crea-

tion and allows for a much more sophisticated attack because of the freedom the at-

tacker receives from creating their own packets. Scapy is available mainly for Linux 

but has some Windows support, however the IPv6 spectrum of Scapy on Windows 

OSes is very limited so using it for creating IPv6 packets is mostly limited to Linux 

distributions. (Scapy.) 

7.3 PROTECTION AGAINST RECONNAISSANCE 

The options for protecting a network against reconnaissance yields one the benefit of 

protecting oneself against all other following attacks, the less information the attacker 

has the better. This is why it is up to the administrator in charge to do whatever they 

can to mitigate this. The basics would be not to use any obvious addresses for nodes 

starting from the beginning or the end parts of a subnet. This also holds true for using 

the ”word” type addresses such as ::F001 or common combinations such as ::abcd. It 

would be wisest for the administrators to use randomized IPv6 addresses for their 

nodes if they have to manually configure an IPv6 address for them. The Auto-

configuration of hosts should also be taken into account, ensuring that the operating 



  28 

 

systems on the nodes do support this and actually generate them randomly.(Hogg & 

Vyncke,  2008, 63-64.) 

SEND would also ensure giving an added layer of security versus reconnaissance in 

the ND department, but because it can cause a load on some nodes and is not actually 

supported by many Computer OSes and in the OSes that they are very poorly or made 

complicated, this might be an issue just to ensure further protection versus reconnais-

sance. Administrators should also take into consideration scanning their networks 

nodes for possible vulnerable nodes. When found, they should be taken care of by giv-

ing them the proper security they need. Also making sure that nodes have their soft-

ware up-to-date especially any security software it would lower the chances of Mal-

ware infecting the nodes enabling the attackers to snoop around the network. (Hogg & 

Vyncke,  2008, 64.) 

Dual-stacking should also be taken into consideration because IPv6 will not be only 

used natively by all networks. This means that Ipv4 could still be leveraged for recon-

naissance so that has to be taken into account. Brute force scanning is quite difficult in 

the IPv6 address space, getting information about the network would be quite valuable 

to the attackers, meaning any device that could hold this information should be well 

protected. This includes devices such as DHCP servers or possibly Logs. (Hogg & 

Vyncke,  2008, 64.) 

8 EMPIRICAL PART 

The testing environment chosen for testing the mitigations for the subject's issues that 

were going to be examined was the Cisco Lab at Kymenlaakso University of Applied 

Sciences. This was because the lab itself had gear set up conveniently for use both in 

general and for the specific tasks that were going to be performed. The lab was also 

convenient because it allowed for the testing of these things without it having any sort 

of negative effect on any other network. Previously in the original project, subjects 

were tested in the Simunet environment but due to the complexity of the Simunet net-

work it would be smarter to do it in a separate network at least first before it was im-

plemented in any way in the Simunet network. 

 



  29 

 

8.1 EXTENSION HEADERS 

For the empiric part of the thesis there was time to work with both mitigating some of 

the troublesome Extension Headers that would be good to filter out and mitigated. 

These would be the Router Header Type 0, Router Alert and Fragmentation extension 

headers. These are easily dealt with via implementing ACL filtering on the devices al-

lowing them to block any packets containing the above-mentioned extension headers. 

Because there needed to be a way to create and send and receive responses based on 

extension headers sent to the target address, a program enabling the creation and send-

ing packets with the extension headers in them was needed. It was decided that Scapy, 

which was mentioned in many sources related to the subject as a very reliable option 

for creating both IPv4 and IPv6 packets, would be used. The person doing the testing 

had already used it during their previous project so they were somewhat familiar with 

how it worked. What was also learned about the program was that it had very slim 

support for Windows OSes so a Linux distribution had to be used that would allow 

one to create the IPv6 packets. 

It was decided that Fedora 64-bit distribution would be installed on VMware, 

VMware being a virtual machine, this would allow the freedom of both safely testing 

and downloading items on it without risking any infection if any other tools would be 

tested, considering some of the more questionable attack tools came from quite ques-

tionable sites. Scapy however is mainly used for administrators for testing, like most 

tools are nevertheless it was more convenient to install it as a virtual machine in the 

testing environment being used. 

For the “attack” setup itself two routers were used, one being a Cisco 2911 that acted 

as the filtering part of the setup. This is where the ACL would block the packets that 

had the extension header attached to it and possibly log when the packets were en-

countered and blocked for ease for the administrator to track down the attack whenev-

er it may happen. The other router was a Cisco 2801 that acted as the target of the “at-

tack”. This is where all the attack packets were sent, first passing through the filtering 

router and then arriving here, the loopback address was to be used as the “Target” IP 

address for the attacks. Below can be seen the setup for the environment in figure 3. 



  30 

 

Figure 3. Setup for Routing Header Labs 

 

8.1.1 ROUTING HEADER TYPE 0 FILTERING 

As mentioned before in the theory on Extension headers, RH0 allows for DoS attacks 

and could be used for avoiding specific paths that would possibly lead the packets to 

firewalls or devices which would filter them out. This is why they should be filtered 

out introducing safety in one's network.  

The first thing that had to be done was creating a RH0 packet that would be sent to the 

Target IP. This was done by creating the packet in Scapy, the creation of packet 

looked as following. 

>>> i=IPv6() 

>>> i.dst="2A00:1dd0:100:3004::4" 

>>> h=IPv6ExtHdrRouting() 

>>> h.addresses=["2A00:1dd0:100:3034::3","2A00:1dd0:100:3034::4"] 

>>> p=ICMPv6EchoRequest() 

>>> pa=(i/h/p) 

>>>ans=sr1(pa) 

>>>ans.show() 

 

To break it down briefly the steps will be explained. The first thing done was i=IPv6() 

which means that it is a IPv6 packet, then the packet's destination address was set by 

doing i.dst=” 2A00:1dd0:100:3004::4” making the destination address of the packet 

that of the target routers Loopback address.  



  31 

 

After this was done the next step was to do h=IPv6ExtHdrRouting() which was the 

RH0 extension header and on top of that add 

h.addresses=["2A00:1dd0:100:3034::3","2A00:1dd0:100:3034::4"] that were the ad-

dresses it should go through before going to the destination address. In a larger test 

environment or actual network one could make it go any path you wanted too. 

As the last step the command p=ICMPv6EchoRequest() was used. It is a simple IC-

MPv6 Echo Request sending back an echo after the packet has reached its target let-

ting one inspect the received packet. 

After doing steps the actual packet was created by doing pa=(i/h/p) creating the packet 

where the i variable is first, h second and p last. If one tries to make a packet with 

where specific portions come in different orders the program will simply tell them this 

could not be done, since even if they were able to send it, it would be discarded due to 

the devices not being able to process it. 

Then as the next step the packet was sent by doing ans=sr1(pa), which sent out the 

packet and then records the response into the ans variable. One could also do 

ans,unans=sr1(pa) since  Scapy seemed to be very specific on how it reads some 

packets so one might have to read different packets in different ways. 

The final step was to read what the response was by doing ans.show() it gives infor-

mation on the packet that was sent there but the important part. 

 

###[ ICMPv6 Parameter Problem ]### 

     type= Parameter problem 

     code= erroneous header field encountered 

     cksum= 0xe0a7 

     ptr= 42 

 

From studying different examples of using extension headers with Scapy from other 

sources this means that the packet went through even though it gave this parameter 

problem text. This meant the packets were not dropped and actually reached their des-

tination. 



  32 

 

The way one blocks this sort of packet from entering a network is by creating an ac-

cess-list on a device that supports the making of ACLs and can handle them. To create 

the IPv6 ACL to block RH0 packets one has to use the following commands. The fol-

lowing commands have to be done in the Global Configuration Mode. 

 

IPv6 access-list FILTER 

  deny IPv6 any any routing-type 0 

  permit IPv6 any any 

 exit 

 

This creates the ACL itself but that is not enough, it has to also be applied to the inter-

face it is going to filter. The commands themselves within in the ACL are basically 

telling to deny any packets from any source to any destination containing the RH0 ex-

tension header. The lower command simply states that all other traffic is permitted. 

The ACL is applied to the G0/0 port, the port leading to the machine sending the 

packets, this means all traffic coming from the G0/0 will be filtered using the access-

list. The commands to apply the access-list to the port are as following, these have to 

be preformed in the Global Configuration Mode. 

 

interface GigabitEthernet0/0 

 IPv6 traffic-filter FILTER in 

 exit 

 

Now the access-list is applied as a traffic-filter for the G0/0 port and is filtering all the 

traffic through the access-list. This should mean that RH0 packets no longer are al-

lowed to pass through. The packet was sent from the machine once more using Scapy 

and got a different response from in part of the output. 

 



  33 

 

 

###[ ICMPv6 Destination Unreachable ]### 

     type= Destination unreachable 

     code= Communication with destination administratively prohibited 

     cksum= 0xe3f1 

     unused= 0x0 

 

As can be seen above it noted that the packet was administratively prohibited from 

communicating with the Target router due to the access-list filtering the packets con-

taining RH0 extension headers. To confirm that the packets were actually filtered by 

the Filter router the following command was used in the privileged EXEC mode. 

 

 show IPv6 access-list 

 

This command will display information about the access-lists that have been created 

such as which ACLs are currently on the devices and if there has been any matching 

packets to said ACLs. The Filter router gave the following prompt after entering the 

command.  

 

 IPv6 access list FILTER 

    deny IPv6 any any routing-type 0 (1 match) sequence 10 

     permit IPv6 any any (20 matches) sequence 20 

 

As can be seen, there had been 1 match for packets containing routing-type 0 headers 

and 20 which have not contained any routing-type 0 headers. 

There is another way of also avoiding RH0 being used and that is by disabling IPv6 

source routing from the devices. However, this will not actually stop the packets but 

just not allow them to use the source routing on that device, which mean somewhere 

along the line some device might allow it to use it and then start using the routing 



  34 

 

header destinations again. It can also cause problems if RH2 is in any way used in the 

network because that is required for it to work. The command to turn off IPv6 source 

routing is as follows. The command is performed in the Global Configuration Mode. 

 

no IPv6 source-route 

 

In most devices it is most likely that it has already been set to be off by default, but it 

would be good to know if it is on or not depending on if the network requires it to be 

used. All in all the smartest option is to filter out unwanted RH0 packets from the 

network by the use of ACLs. 

8.1.2 ROUTER ALERT FILTERING 

As stated before about Router Alert it could possibly be used in DoS attacks versus 

routers, where they are told to view the packets more carefully. An attacker could pos-

sibly make use of this by adding a massive amount of data for the router to process 

causing a denial-of-service attack. 

Using the same setup with the Scapy machine as the attacker, the filtering router and 

the target router,  the following packets were created by using Scapy. 

 

>>> i=IPv6() 

>>> i.dst="2A00:1dd0:100:3004::4" 

>>> h=IPv6ExtHdrDestOpt(nh=6, options=[RouterAlert()]) 

>>> p=ICMPv6EchoRequest() 

>>> pa=(i/h/p) 

>>>ans=sr1(pa) 

>>>ans.show() 

 

This packet is very similar to the RH0 packet made earlier with Scapy. However, this 

packet had the h value, which was used for the header in the previous packet, change 



  35 

 

to use an option header which was using the Router Alert option. It also happens to 

contain a next header value which points to TCP thus nh=6. This is because the next 

header value for TCP is 6. The return packets cannot be read because there are no re-

turn packets but they are getting through. 

The way to block this is via ACL on the device to filter out any packets containing the 

RA option header option. This is performed by doing the following commands. 

 

IPv6 access-list BLOCKRA 

 deny IPv6 any any dest-option-type 5 log 

 permit IPv6 any any 

 exit 

 

interface GigabitEthernet0/0 

 IPv6 traffic-filter BLOCKRA in 

 exit 

 

As can be seen in the ACL configuration it denies any packets containing destination 

option type 5, which is the RA option and logging was also turned on. If any packets 

containing RA pass through the interface they are both blocked and logged. 

After applying the filter, another packet was sent containing the RA header from the 

Scapy machine, then once again the ACL was checked to see if it has encountered any 

packets that it would have blocked. The prompt received was the following: 

 

IPv6 access list BLOCKRA 

    deny IPv6 any any dest-option-type 5 log (1 match) sequence 10 

    permit IPv6 any any (4 matches) sequence 20 

 



  36 

 

As can be seen, 1 such packet was encountered and filtered out as the ACL detected 

the packet containing the RA header. 

 

8.1.3 FRAGMENTATION FILTERING 

Fragmentation could be used in a network to get past firewalls without detection and 

thus could be a major security threat. However, filtering out fragments may also cause 

problems in transporting data in the network possibly blocking fragmented packets 

from a non-hostile host. This is why fragmentation filtering should only be applied in 

places it is really required. 

Using the same setup as before a packet was created containing a fragmentation head-

er with Scapy using the following commands: 

  

 >>> i=IPv6(nh=44) 

>>> i.dst='2A00:1dd0:100:3004::4' 

>>> h=IPv6ExtHdrFragment(nh=6, offset=100, id=2, m=1) 

>>> t=TCP(sport=1080, dport=80, flags="S") 

>>> pa=(i/h/t) 

>>> ans,unans=sr(pa) 

>>> print(ans) 

 

This packet had to be a little more exact due to how Scapy apparently handled the 

fragmentation header. The TCP section had to be added because of this, which the 

fragmentation header was pointing to as its next header. There were also problems 

with reading the reply packet which was done by using the command show 

show.ans() so the command print(ans) was used instead which gives a somewhat dif-

ferent prompt. However, it gave the same text to confirm that the packet had actually 

passed through to its target destination. 

 



  37 

 

<ICMPv6ParamProblem  type=Parameter problem code=erroneous header field 

encountered cksum=0x291 ptr=4  

 

As usual to block packets containing the fragmentation header one had to use a ACL. 

This had to be applied on the packet passed through to reach its destination. The 

commands were the following: 

 

IPv6 access-list FRAGBLOCK 

  deny IPv6 any 2A00:1DD0:100:3004::/64 log fragments 

 permit IPv6 any any 

 

interface GigabitEthernet0/0 

 IPv6 traffic-filter FRAGBLOCk in 

 exit 

 

As mentioned before because blocking fragmentation could cause problems in the 

network it would be wise to more precisely filter out the packets containing fragmen-

tation so the filter only blocks packets with the destination of the target IP. Logging 

was also enabled for the packets containing the fragmentation header destined to the 

target IP. 

As a new packet was sent from the Scapy machine and then using the command 

print(ans)  a different reply was received containing the following line: 

 

<ICMPv6DestUnreach  type=Destination unreachable code=Communication 

with destination administratively prohibited cksum=0x5b5 unused=0x0 

 

Not only this confirms that the packet has been blocked since enabling logging also 

prompted the device to display the following text as the packet was filtered out. 

 



  38 

 

Mar 11 14:11:47.351: %IPv6_ACL-6-ACCESSLOGP: list FRAGBLOCK/50 de-

nied tcp 2A00:1 

DD0:100:3013:20C:29FF:FE4D:473B(0) -> 2A00:1DD0:100:3004::4(0), 1 packet 

 

As can be seen, the device logged the event of the packet containing the fragmentation 

header being captured and filtered. 

  

8.1.4 CONCLUSION TO EXTENSION HEADERS TESTING 

Because of what threats some of the extension headers cause it seems like a very good 

idea to mitigate the problems they pose. Also taking into the account the ease in which 

they are mitigated there seems to be no reason why they should not be filtered out un-

less it would cause problems in the general network, which blocking most of them 

would not cause. 

 

8.2 SEND IMPLEMENTATION 

As described before,  SEND is a protocol designed to mitigate threats aimed at the 

Neighbor Discovery protocol. However, there are a few problems with it. Besides the 

fact that the protocol itself is vulnerable to attacks it also has very poor support by op-

erating systems. Microsoft does not support it at all, Linux however supports it but it 

requires you to edit the kernel itself to enable it to actually use it. The main reason 

why Microsoft has not implemented SEND into their OS is because it is a very com-

plex protocol to manage, as well as the fact that it can require a great deal of resources 

to upkeep. 

However, to further study and examine the SEND protocol and to see how complicat-

ed it is to set up and any problems that may arise along the way it was decided that 

setting up a SEND network would quite possibly be beneficial to see how it worked. 

In the setup for making the test environment, three Cisco 2911 were used running on 

Version 15.2(2)T1 of the IOS since they all supported SEND, one which was the cer-

tificate servers answering to any certificate requests from devices, a router that would 

work as the default router also advertising out a prefix that has been certified by the 



  39 

 

certificate server and lastly a host simply to work with the router and receive the pre-

fix. There were some oversights during configuration which will be addressed in the 

upcoming sections. Below can be seen the setup for the lab (figure 4). 

 

Figure 4. SEND test environment 

 

8.2.1 SEND CONFIGURATION 

The first step was configuring the Certificate Server or the CA (Certificate Authority) 

by making the “Server” router the Certificate Authority by using the following com-

mands in Global Configuration mode. 

 

crypto key generate rsa label  ca modulus 1024 

ip http server 

crypto pki trustpoint CA 

 ip-extension prefix 2A00:1DD0:100:3011::/64 

  revocation-check crl 

  rsakeypair CA 



  40 

 

 

crypto pki server CA 

  grant auto 

  hash sha1 

  cdp-url http://10.0.15.1 

 no shutdown 

 exit 

 

First aa RSAkeypair was generated which will be used in the certification process. Af-

ter that SCEP (Simple Certificate Enrollment Protocol) was enabled by enabling IOS 

HTTP server on the device. Then a crypto pki trustpoint was created which will allow 

routers to only advertise the specific prefix mentioned in SEND, setting the revoca-

tion-check to use CRL(Certificate Revocation List) and binding the rsakeypair created 

to the trustpoint. 

After that the server itself was created, granting certification was made to be automat-

ic in this case because it is a safe testing environment. The hashing of the certificates 

was set to use sha1 encryption, the cdp-url name was set  to http://10.0.15.1 used for 

the CRL and then the no shutdown command was used to start the server. 

After enabling the server the following commands were used on the “Router” router: 

 

crypto key generate rsa label  SEND modulus 1024 

crypto pki trustpoint ROUTER 

  enrollment url http://10.0.15.1:80 

  revocation-check crl 

  rsakeypair SEND 

 exit 

crypto pki trustpoint authenticate ROUTER 

% Do you accept this certificate? [yes/no]:   yes 



  41 

 

crypto pki enroll ROUTER 

 

An RSAkeypair was generated labeled SEND, then a trustpoint was created called 

ROUTER which sat the enrollment URL for the certificate to the CA. Sat the revoca-

tion-check to use CRL and bound the RSAkeypair SEND to the trustpoint. Then au-

thenticated the CA and accepted the certificate and enrolled it, it will ask for a pass-

word also for revoking the certificate later and asked if the router serial number should 

be in the subject name and if an IP address should be in the subject name. It will then 

send the certificate request to the CA which would auto grant it since it was set to do 

so.   

After being done with the “Router” the “Host” device needed to be configured.. Be-

cause this was all slightly confusing and figuring out how all this worked the decision 

was made to turn the device into a host after receiving the certificate. So the following 

commands were used. 

 

crypto key generate rsa label  SEND modulus 1024 

crypto pki trustpoint CLIENT 

 enrollment url http://10.0.15.1:80 

 revocation-check none 

 rsakeypair SEND 

 exit 

crypto pki trustpoint authenticate CLIENT 

% Do you accept this certificate? [yes/no]:   yes 

crypto pki enroll CLIENT 

no ip routing 

 

This was very similar to the router except the revocation-check was not set to be CRL 

so it was not allowed to operate as the default router and does not receive the rights to 

advertise the prefix certified by the CA. The device was also turned into a host device 



  42 

 

by issuing the no ip routing command. After the certificates had been enrolled the 

following commands were be done on the router: 

 

 

IPv6 cga modifier rsakeypair SEND sec-level 1 

interface GigabitEthernet0/1 

 IPv6 cga rsakeypair SEND 

 IPv6 address FE80:: link-local cga 

 IPv6 nd prefix 2A00:1DD0:100:3011::/64 

 IPv6 nd secured trustpoint ROUTER 

 IPv6 nd secured timestamp delta 1000 

 exit 

 

The RSAkeypair is bound with the CGA hashing for the encryption of the addresses 

and ND. Then in the interface pointing to the client host and bind the RSAkeypair in 

the interface as well as generate a link-local address encrypted with CGA, advertised 

the prefix out to the host,  sat a secured trustpoint and add a secured time stamp. Then 

on the Client device the following commands were performed: 

 

IPv6 cga modifier rsakeypair SEND sec-level 1 

interface GigabitEthernet0/1 

  IPv6 cga rsakeypair SEND 

  IPv6 address autoconfig 

  IPv6 nd secured trustanchor CLIENT 

  IPv6 nd secured timestamp delta 1000 

 



  43 

 

On the Client device a very similar sequence of commands was configured except a 

link-local address was not generated and a trustanchor made rather than a trustpoint. 

However, at this point some problems arose as SEND would not start operating cor-

rectly. After some investigation it was discovered that the device clocks were not 

synched which meant the clocks had to be set manually. The best alternative however 

would have been to set a NTP server but because of time restraints this was the best 

option at the moment. After the clocks were set SEND started to operate as it should. 

Using some checks it could be confirmed that the auto-configured device on the Client 

was using SEND by using the following command:  

 

show IPv6 cga address-db 

2A00:1DD0:100:3011::/64 ::2CBF:5542:1173:93A5 - table 0x0 

        interface:      GigabitEthernet0/1 (4) 

        modifier:       SEND 

        collisions:     0 

 

The IPv6 neighbors were also checked, before the clocks were fixed nothing was 

showing up in the neighbor cache but after fixing the clocks the following prompt was 

shown. 

 

 show IPv6 neighbors 

IPv6 Address                              Age Link-layer Addr State Interface 

 FEA1:1111:1111:1111:38AF:9590:64CE:4999    17 c464.13f5.dbe1  STALE Gi0/1 

 

Interface G0/1 was also viewed to see if it had set the default router correctly which it 

had. 

 

SENDCLIENT#show IPv6 int g0/1 

GigabitEthernet0/1 is up, line protocol is up 



  44 

 

  IPv6 is enabled, link-local address is FE80::C664:13FF:FEF6:161 

  No Virtual link-local address(es): 

  Stateless address autoconfig enabled 

  Global unicast address(es): 

    2A00:1DD0:100:3011:2CBF:5542:1173:93A5, subnet is 

2A00:1DD0:100:3011::/64 [C 

AL/PRE] 

      valid lifetime 2591913 preferred lifetime 604713 

  Joined group address(es): 

    FF02::1 

    FF02::2 

    FF02::1:FF73:93A5 

    FF02::1:FFF6:161 

  MTU is 1500 bytes 

  ICMP error messages limited to one every 100 milliseconds 

  ICMP redirects are enabled 

  ICMP unreachables are sent 

  ND DAD is enabled, number of DAD attempts: 1 

  ND reachable time is 30000 milliseconds (using 30000) 

  ND NS retransmit interval is 1000 milliseconds 

  Default router is FEA1:1111:1111:1111:38AF:9590:64CE:4999 on Giga-

bitEthernet0/ 

 

8.2.2 CONCLUSION TO SEND CONFIGURATION 

This is the point the testing of SEND was halted. It was very hard to find any infor-

mation about the subject and getting it to work was also quite the hassle considering 

one had to learn how CAs work and figuring out some of the problems that were en-



  45 

 

countered along the way. While SEND does provide additional security to ND it 

seems as if it should be only implemented in the most serious situations where securi-

ty is a must. This would possibly be to a server running on Linux or devices which re-

ally need to be secured for ND. For general use it is hard to think of a way how this 

will become popular unless Microsoft backs it. 

9 CONCLUSION TO THESIS 

The aim of this study was to generally research IPv6 security. In the subject areas the 

most time was put into researching problems with both Extension Headers and Neigh-

bor Discovery. Time was also put into researching other aspects such as reconnais-

sance and Bogons. Also the mitigations for both Extension Headers and ND were 

thoroughly researched, finding out how Extension Headers are filtered out and what 

options were for securing some of the functions in Neighbor Discovery Using 

RAGuard or SEND. 

As a whole IPv6 seems more secure than IPv4 yet it still has problems which need to 

be addressed. An intelligent guess would be that most of these problems would not be 

apparent if when designing IPv6, the architects would have known about all the prob-

lems within IPv4 more thoroughly, since similar problems arise here also. These could 

have probably been avoided. 

The problematic Extension Headers should be filtered out if they are not required in a 

network, considering the low cost of filtering them. The filtering still has to take into 

account the fact that it might cause problems within the network somehow and thus 

should be implemented by taking into consideration how it is done. 

ND seems quite problematic and the current ways of securing it seem quite “weak”. 

RAGuard only protects from one aspect and has possible way of spoofing it yet SEND 

could secure it quite well but is not supported by most operating systems natively and 

is quite troublesome to even to get to work. 

While reconnaissance can be mitigated by intelligent choices on managing a network 

and possibly even implementing SEND and configuring devices to not respond to dif-

ferent kinds of messages, reconnaissance would most likely always be a problem 

when it comes to networks. The only thing to be done is to make it as difficult for the 

attackers as possible. 



  46 

 

All in all more attention and time should be spent in the security aspects of IPv6 con-

sidering the size and the benefits it reaps if done correctly. However, the fact that se-

curity may cripple a network should always be taken into account. 



  47 

 

REFERENCES 

Hogg, S. & Vyncke, E. 2008. IPv6 Security. Indianapolis: Cisco Press. 

Blanchet, M. 2006. Migrating to IPv6: A practical guide to implementing IPv6 in Mo-

bile and Fixed Networks. Chichester: John Wiley & Sons Ltd. 

RFC2460, Internet Protocol, Version 6 (IPv6) Specification. IETF (Internet Engineer-

ing Task Force). Available: http://www.ietf.org/rfc/rfc2460.txt (referenced 30.1.2014). 

RFC6265, Mobility Support in IPv6. IETF. Available: 

http://www,ietf.org/html/rfc6275.txt (referenced 30.1.2014). 

Koodli, R. & Perkins, C. 2007. Mobile Inter-networking with IPv6: Concepts, Princi-

ples and Practices: New Jersey: John Wiley & Sons Ltd. 

RFC2460. 1998. Neighbor Discovery for IP Version 6 (IPv6), Available: 

http://www.ietf.org/rfc/rfc2461.txt (referenced 5.2.2014). 

RFC3971. 2005. Secure Neighbor Discovery (SEND). Available: 

http://tools.ietf.org/html/rfc3971.txt (referenced 20.2.2014). 

RFC 3972. Cryptographically Generated Addresses (CGA). Available: 

https://tools.ietf.org/rfc/rfc3972.txt (referenced 20.2.2014). 

Cisco. 2011. Implementing First Hop Security in IPv6. Available: 

http://www.cisco.com/c/en/us/td/docs/ios/IPv6/configuration/guide/12_4t/IPv6_12_4t

_book/ip6-first_hop_security.html (referenced 20.2.2014). 

Cisco. 2012. IPv6 RA Guard. Available: http://www.cisco.com/c/en/us/td/docs/ios-

xml/ios/IPv6/configuration/15-2s/ip6-15-2s-book/ip6-ra-guard.html (referenced 

10.3.2014). 

 v6ops. 2011. IPv6 Router Advertisement Guard (RA-GUARD) Evasion.

 Available:  http://tools.ietf.org/id/draft-gont-v6ops-ra-guard-evasion-00.txt (refer

 enced 10.03.2014). 

http://www.ietf.org/rfc/rfc2460.txt
http://tools.ietf.org/html/rfc6275.txt
http://www.ietf.org/rfc/rfc2461.txt
http://tools.ietf.org/html/rfc3971.txt
https://tools.ietf.org/rfc/rfc3972.txt
http://www.cisco.com/c/en/us/td/docs/ios/ipv6/configuration/guide/12_4t/ipv6_12_4t_book/ip6-first_hop_security.html
http://www.cisco.com/c/en/us/td/docs/ios/ipv6/configuration/guide/12_4t/ipv6_12_4t_book/ip6-first_hop_security.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6/configuration/15-2s/ip6-15-2s-book/ip6-ra-guard.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6/configuration/15-2s/ip6-15-2s-book/ip6-ra-guard.html
http://tools.ietf.org/id/draft-gont-v6ops-ra-guard-evasion-00.txt


  48 

 

NMAP.  Available: http://nmap.org/book/man.html#man-description  (referenced 

21.2.2014). 

THC-IPv6. 2013. THC-IPv6 Available: https://www.thc.org/thc-IPv6/ (referenced 

21.2.2014). 

Scapy. SecDev. Available: http://www.secdev.org/projects/scapy/ (referenced 

21.2.2014). 

 RFC3756. 2004. Available: http://tools.ietf.org/html/rfc3756 (referenced 10.03.2014). 

 RFC6104. 2011. Available: http://tools.ietf.org/html/rfc6105 (referenced 10.03.2014). 

http://nmap.org/book/man.html#man-description
https://www.thc.org/thc-ipv6/
http://www.secdev.org/projects/scapy/
http://tools.ietf.org/html/rfc3756
http://tools.ietf.org/html/rfc6105


  49 

 

Appendices 

APPENDIX 1: Extension Header Practical Work Filtering Router 

Configuration. 

Building configuration... 

 

Current configuration : 2292 bytes 

! 

! Last configuration change at 14:03:18 UTC Tue Mar 11 2014 

version 15.2 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname Filter 

! 

boot-start-marker 

boot-end-marker 

! 

! 

! 

no aaa new-model 

! 

! 

ipv6 unicast-routing 

ipv6 cef 

ip auth-proxy max-login-attempts 5 

ip admission max-login-attempts 5 

! 

! 

! 

! 

! 



  50 

 

ip cef 

! 

multilink bundle-name authenticated 

! 

! 

crypto pki token default removal timeout 0 

! 

! 

license udi pid CISCO2911/K9 sn FCZ160570LU 

license boot module c2900 technology-package securityk9 

license boot module c2900 technology-package datak9 

! 

! 

vtp mode transparent 

! 

redundancy 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

interface Loopback0 

 no ip address 

 ipv6 address 2A00:1DD0:100:3003::3/64 

 ipv6 ospf 1 area 0 



  51 

 

! 

interface Embedded-Service-Engine0/0 

 no ip address 

 shutdown 

! 

interface GigabitEthernet0/0 

 no ip address 

 duplex auto 

 speed auto 

 ipv6 address 2A00:1DD0:100:3013::3/64 

 ipv6 nd prefix 2A00:1DD0:100:3013::/64 

 ipv6 ospf 1 area 0 

 ipv6 traffic-filter FRAGBLOCK in 

! 

interface GigabitEthernet0/1 

 no ip address 

 duplex auto 

 speed auto 

 ipv6 address 2A00:1DD0:100:3034::3/64 

 ipv6 ospf 1 area 0 

! 

interface GigabitEthernet0/2 

 no ip address 

 shutdown 

 duplex auto 

 speed auto 

! 

interface Serial0/1/0 

 no ip address 

 shutdown 

! 

interface Serial0/1/1 

 no ip address 

 shutdown 



  52 

 

 clock rate 2000000 

! 

! 

ip forward-protocol nd 

! 

no ip http server 

no ip http secure-server 

! 

! 

ipv6 router ospf 1 

 router-id 10.0.0.3 

 auto-cost reference-bandwidth 100000 

 passive-interface default 

 no passive-interface GigabitEthernet0/1 

! 

! 

! 

! 

ipv6 access-list BLOCKRA 

 deny ipv6 any any dest-option-type 5 log 

 permit ipv6 any any 

! 

ipv6 access-list FILTER 

 deny ipv6 any any routing-type 0 

 permit ipv6 any any 

! 

ipv6 access-list FRAGBLOCK 

 permit 88 any any 

 permit 103 any any 

 permit icmp any any router-advertisement 

 permit icmp any any router-solicitation 

 deny ipv6 any 2A00:1DD0:100:3004::/64 log fragments 

 permit ipv6 any any 

! 



  53 

 

control-plane 

! 

! 

! 

line con 0 

line aux 0 

line 2 

 no activation-character 

 no exec 

 transport preferred none 

 transport input all 

 transport output lat pad telnet rlogin lapb-ta mop udptn v120 ssh 

 stopbits 1 

line vty 0 4 

 login 

 transport input all 

! 

scheduler allocate 20000 1000 

! 

end 

 

APPENDIX 2: Extension Header Practical Work Target Router Configuration. 

Building configuration... 

 

 

Current configuration : 1632 bytes 

! 

version 12.4 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 



  54 

 

hostname Target 

! 

boot-start-marker 

boot-end-marker 

! 

logging message-counter syslog 

! 

no aaa new-model 

memory-size iomem 10 

! 

dot11 syslog 

ip source-route 

! 

! 

ip cef 

! 

! 

ipv6 unicast-routing 

ipv6 cef 

! 

multilink bundle-name authenticated 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 



  55 

 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

voice-card 0 

! 

! 

! 

! 

! 

archive 

 log config 

  hidekeys 

! 

! 

! 

! 

! 

! 

! 

! 

! 

interface Loopback0 

 no ip address 

 ipv6 address 2A00:1DD0:100:3004::4/64 

 ipv6 ospf 1 area 0 

! 

interface FastEthernet0/0 



  56 

 

 no ip address 

 shutdown 

 duplex auto 

 speed auto 

! 

interface FastEthernet0/1 

 no ip address 

 duplex auto 

 speed auto 

 ipv6 address 2A00:1DD0:100:3034::4/64 

 ipv6 ospf 1 area 0 

! 

interface Serial0/1/0 

 no ip address 

 shutdown 

 no fair-queue 

 clock rate 2000000 

! 

interface Serial0/1/1 

 no ip address 

 shutdown 

 clock rate 2000000 

! 

interface ATM0/3/0 

 no ip address 

 shutdown 

 no atm ilmi-keepalive 

! 

interface wlan-controller1/0 

 no ip address 

 shutdown 

! 

ip forward-protocol nd 

no ip http server 



  57 

 

no ip http secure-server 

! 

! 

! 

ipv6 router ospf 1 

 router-id 10.0.0.4 

 log-adjacency-changes 

 auto-cost reference-bandwidth 100000 

 passive-interface default 

 no passive-interface FastEthernet0/1 

! 

! 

! 

! 

! 

! 

! 

control-plane 

! 

! 

! 

! 

mgcp fax t38 ecm 

mgcp behavior g729-variants static-pt 

! 

! 

! 

! 

! 

! 

line con 0 

line aux 0 

line 66 

 no activation-character 



  58 

 

 no exec 

 transport preferred none 

 transport input all 

 transport output pad telnet rlogin lapb-ta mop udptn v120 ssh 

line vty 0 4 

 login 

! 

scheduler allocate 20000 1000 

end 

APPENDIX 3: SEND CA Configuration 

Building configuration... 

 

Current configuration : 3309 bytes 

! 

! Last configuration change at 11:50:08 UTC Mon Feb 24 2014 

version 15.2 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname CA 

! 

boot-start-marker 

boot-end-marker 

! 



  59 

 

! 

! 

no aaa new-model 

! 

! 

ipv6 unicast-routing 

ipv6 cef 

ip auth-proxy max-login-attempts 5 

ip admission max-login-attempts 5 

! 

! 

! 

! 

! 

ip cef 

! 

multilink bundle-name authenticated 

! 

! 

! 

crypto pki server CA 

 grant auto 

 hash sha1 



  60 

 

 cdp-url http://10.0.15.1 

crypto pki token default removal timeout 0 

! 

crypto pki trustpoint CA 

 ip-extension prefix 2A00:1DD0:100:3011::/64 

 revocation-check crl 

 rsakeypair CA 

! 

! 

crypto pki certificate chain CA 

 certificate ca 01 

  3082021B 30820184 A0030201 02020101 300D0609 2A864886 F70D0101 05050030 

  0D310B30 09060355 04031302 4341301E 170D3134 30323234 31313130 31325A17 

  0D313730 32323331 31313031 325A300D 310B3009 06035504 03130243 4130819F 

  300D0609 2A864886 F70D0101 01050003 818D0030 81890281 8100CEEC B1CD3357 

  DD4058C4 6219E3F0 0A1830F5 6A7FAEAE 7100C979 EDD99359 4DE7905F EDE4582C 

  6CFF85AD 8C604561 2C2CB6C1 BAA7F961 D62C6DEE 243AD19F 47E50A3B A0A4B8C6 

  C324888F 461F203F DDA5DF5B F3516043 F61BC4A7 706D4910 BA2E9660 86EA38A8 

  DF199714 65E5AD57 F418D7AA 7154A869 4BD57BFC 85BBB4AC E31B0203 010001A3 

  818A3081 87300F06 03551D13 0101FF04 05300301 01FF300E 0603551D 0F0101FF 

  04040302 01863024 06082B06 01050507 01070101 FF041530 13301104 02000230 

  0B030900 2A001DD0 01003011 301F0603 551D2304 18301680 14778F17 8F2C60C0 

  122C6E5A 187FEDE3 79475AAD 59301D06 03551D0E 04160414 778F178F 2C60C012 



  61 

 

  2C6E5A18 7FEDE379 475AAD59 300D0609 2A864886 F70D0101 05050003 81810018 

  0BA244E6 17BB7F66 C98DD384 954C9E4A 571348F8 21D13533 0E0E2ECA BA80D876 

  916CED89 53E43109 3862D285 A580D798 9E28ACF1 2EE02E70 8CD5260C 4CC49157 

  33467C58 90FE9862 C32A85D7 A1D9C540 2A39A5BE AC2DA077 73D924B4 03123E1F 

  EF722378 B9DDAACF C3FA619E 6F96C346 8D68AC87 53330A80 14993BC6 693D1E 

        quit 

license udi pid CISCO2911/K9 sn FCZ160570LU 

license boot module c2900 technology-package securityk9 

license boot module c2900 technology-package datak9 

! 

! 

vtp mode transparent 

! 

redundancy 

! 

! 

! 

! 

! 

! 

! 

! 

! 



  62 

 

! 

! 

! 

! 

! 

interface Loopback0 

 ip address 10.0.0.1 255.255.255.255 

! 

interface Embedded-Service-Engine0/0 

 no ip address 

 shutdown 

! 

interface GigabitEthernet0/0 

 ip address 10.0.15.1 255.255.255.0 

 duplex auto 

 speed auto 

! 

interface GigabitEthernet0/1 

 ip address 10.0.16.1 255.255.255.0 

 duplex auto 

 speed auto 

! 

interface GigabitEthernet0/2 



  63 

 

 no ip address 

 shutdown 

 duplex auto 

 speed auto 

! 

interface Serial0/1/0 

 no ip address 

 shutdown 

 clock rate 2000000 

! 

interface Serial0/1/1 

 no ip address 

 shutdown 

 clock rate 2000000 

! 

! 

router ospf 1 

 router-id 10.0.0.1 

 auto-cost reference-bandwidth 100000 

 passive-interface default 

 no passive-interface GigabitEthernet0/0 

 no passive-interface GigabitEthernet0/1 

 network 10.0.0.0 0.255.255.255 area 0 



  64 

 

! 

ip forward-protocol nd 

! 

ip http server 

no ip http secure-server 

! 

! 

! 

! 

! 

control-plane 

! 

! 

! 

line con 0 

line aux 0 

line 2 

 no activation-character 

 no exec 

 transport preferred none 

 transport input all 

 transport output lat pad telnet rlogin lapb-ta mop udptn v120 ssh 

 stopbits 1 



  65 

 

line vty 0 4 

 login 

 transport input all 

! 

scheduler allocate 20000 1000 

! 

end 

APPENDIX 4: SEND ROUTER Configuration 

Building configuration... 

 

Current configuration : 4696 bytes 

! 

! Last configuration change at 11:30:32 UTC Mon Feb 24 2014 

version 15.2 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname DefRouter 

! 

boot-start-marker 

boot-end-marker 

! 



  66 

 

! 

! 

no aaa new-model 

! 

memory-size iomem 10 

! 

ipv6 unicast-routing 

ipv6 cga modifier rsakeypair SEND sec-level 1 90A4:C546:7C30:6236:8B14:7624:6D1D 

:70F8 

ipv6 cef 

ip auth-proxy max-login-attempts 5 

ip admission max-login-attempts 5 

! 

! 

! 

! 

! 

ip cef 

! 

multilink bundle-name authenticated 

! 

! 

crypto pki token default removal timeout 0 



  67 

 

! 

crypto pki trustpoint ROUTER 

 enrollment url http://10.0.15.1:80 

 revocation-check crl 

 rsakeypair SEND 

! 

! 

crypto pki certificate chain ROUTER 

 certificate 02 

  3082020F 30820178 A0030201 02020102 300D0609 2A864886 F70D0101 05050030 

  0D310B30 09060355 04031302 4341301E 170D3134 30323234 31313138 35355A17 

  0D313530 32323431 31313835 355A301A 31183016 06092A86 4886F70D 01090216 

  09446566 526F7574 65723081 9F300D06 092A8648 86F70D01 01010500 03818D00 

  30818902 818100CC DEAD399B 696909E6 11A6723B EBD64591 2B99C375 59F47864 

  656ADC7E 3DDD6BF2 6E5205AE 38664153 59326365 371D3C0B 8F73DEEA EF908B63 

  18F3FB14 CA7E2943 C7B7F9D9 F4D69531 F90CAA32 4F67402B C0C7CA97 40A81DE1 

  06F2E0DC CBF5363F 75799DD6 D915970B 735E603E DB270EB6 5135CF81 3D312151 

  87985807 8A03E702 03010001 A3723070 30210603 551D1F04 1A301830 16A014A0 

  12861068 7474703A 2F2F3130 2E302E31 352E3130 0B060355 1D0F0404 030205A0 

  301F0603 551D2304 18301680 14778F17 8F2C60C0 122C6E5A 187FEDE3 79475AAD 

  59301D06 03551D0E 04160414 6ED83007 80426980 07750303 5DCCB9A4 1E3BCFEE 

  300D0609 2A864886 F70D0101 05050003 8181002C 122F6D06 49E5B17D BB34A078 

  B17E81DB F9CAE84C 1324C9A9 D63725FF 7096057E 1B47AD54 053FB1B9 CA0641EE 



  68 

 

  F4C8D14A 7CDE29F6 475E9B65 A12DA926 24B33231 1B237967 FB342829 5028620D 

  DDB05D10 E0F3C6F5 E12003AE 0BD4C4A2 3345F4E1 1721DF2F A7A19A66 2E725C62 

  FEE1A7D1 EA0B8938 9EE318C9 CD2A932F 6C3155 

        quit 

 certificate ca 01 

  3082021B 30820184 A0030201 02020101 300D0609 2A864886 F70D0101 05050030 

  0D310B30 09060355 04031302 4341301E 170D3134 30323234 31313130 31325A17 

  0D313730 32323331 31313031 325A300D 310B3009 06035504 03130243 4130819F 

  300D0609 2A864886 F70D0101 01050003 818D0030 81890281 8100CEEC B1CD3357 

  DD4058C4 6219E3F0 0A1830F5 6A7FAEAE 7100C979 EDD99359 4DE7905F EDE4582C 

  6CFF85AD 8C604561 2C2CB6C1 BAA7F961 D62C6DEE 243AD19F 47E50A3B A0A4B8C6 

  C324888F 461F203F DDA5DF5B F3516043 F61BC4A7 706D4910 BA2E9660 86EA38A8 

  DF199714 65E5AD57 F418D7AA 7154A869 4BD57BFC 85BBB4AC E31B0203 010001A3 

  818A3081 87300F06 03551D13 0101FF04 05300301 01FF300E 0603551D 0F0101FF 

  04040302 01863024 06082B06 01050507 01070101 FF041530 13301104 02000230 

  0B030900 2A001DD0 01003011 301F0603 551D2304 18301680 14778F17 8F2C60C0 

  122C6E5A 187FEDE3 79475AAD 59301D06 03551D0E 04160414 778F178F 2C60C012 

  2C6E5A18 7FEDE379 475AAD59 300D0609 2A864886 F70D0101 05050003 81810018 

  0BA244E6 17BB7F66 C98DD384 954C9E4A 571348F8 21D13533 0E0E2ECA BA80D876 

  916CED89 53E43109 3862D285 A580D798 9E28ACF1 2EE02E70 8CD5260C 4CC49157 

  33467C58 90FE9862 C32A85D7 A1D9C540 2A39A5BE AC2DA077 73D924B4 03123E1F 

  EF722378 B9DDAACF C3FA619E 6F96C346 8D68AC87 53330A80 14993BC6 693D1E 

        quit 



  69 

 

license udi pid CISCO2911/K9 sn FCZ160570LV 

license boot module c2900 technology-package securityk9 

license boot module c2900 technology-package datak9 

! 

! 

! 

redundancy 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

interface Loopback0 

 ip address 10.0.0.2 255.255.255.255 



  70 

 

! 

interface Embedded-Service-Engine0/0 

 no ip address 

 shutdown 

! 

interface GigabitEthernet0/0 

 ip address 10.0.15.2 255.255.255.0 

 duplex auto 

 speed auto 

! 

interface GigabitEthernet0/1 

 no ip address 

 duplex auto 

 speed auto 

 ipv6 cga rsakeypair SEND 

 ipv6 address FE80:: link-local cga 

 ipv6 nd prefix 2A00:1DD0:100:3011::/64 

 ipv6 nd secured trustpoint ROUTER 

 ipv6 nd secured timestamp delta 1000 

! 

interface GigabitEthernet0/2 

 no ip address 

 shutdown 



  71 

 

 duplex auto 

 speed auto 

! 

interface Serial0/1/0 

 no ip address 

 shutdown 

 clock rate 2000000 

! 

interface Serial0/1/1 

 no ip address 

 shutdown 

 clock rate 2000000 

! 

! 

router ospf 1 

 auto-cost reference-bandwidth 100000 

 passive-interface default 

 no passive-interface GigabitEthernet0/0 

 network 10.0.0.0 0.255.255.255 area 0 

! 

ip forward-protocol nd 

! 

no ip http server 



  72 

 

no ip http secure-server 

! 

! 

! 

! 

! 

control-plane 

! 

! 

! 

line con 0 

line aux 0 

line 2 

 no activation-character 

 no exec 

 transport preferred none 

 transport input all 

 transport output lat pad telnet rlogin lapb-ta mop udptn v120 ssh 

 stopbits 1 

line vty 0 4 

 login 

 transport input all 

! 



  73 

 

scheduler allocate 20000 1000 

! 

end 

APPENDIX 5: SEND CLIENT Configuration 

Building configuration... 

 

Current configuration : 3371 bytes 

! 

! Last configuration change at 11:53:06 UTC Mon Feb 24 2014 

version 15.2 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname SENDCLIENT 

! 

boot-start-marker 

boot-end-marker 

! 

! 

! 

no aaa new-model 

! 



  74 

 

memory-size iomem 10 

! 

ipv6 cga modifier rsakeypair SEND sec-level 1 4F9D:C1C6:6690:A8E7:1D99:1B96:FE3F 

:D995 

no ipv6 cef 

no ip routing 

ip auth-proxy max-login-attempts 5 

ip admission max-login-attempts 5 

! 

! 

! 

! 

! 

no ip cef 

! 

multilink bundle-name authenticated 

! 

! 

crypto pki token default removal timeout 0 

! 

crypto pki trustpoint CLIENT 

 enrollment url http://10.0.15.1:80 

 revocation-check none 



  75 

 

 rsakeypair SEND 

! 

! 

crypto pki certificate chain CLIENT 

 certificate ca 01 

  3082021B 30820184 A0030201 02020101 300D0609 2A864886 F70D0101 05050030 

  0D310B30 09060355 04031302 4341301E 170D3134 30323234 31313130 31325A17 

  0D313730 32323331 31313031 325A300D 310B3009 06035504 03130243 4130819F 

  300D0609 2A864886 F70D0101 01050003 818D0030 81890281 8100CEEC B1CD3357 

  DD4058C4 6219E3F0 0A1830F5 6A7FAEAE 7100C979 EDD99359 4DE7905F EDE4582C 

  6CFF85AD 8C604561 2C2CB6C1 BAA7F961 D62C6DEE 243AD19F 47E50A3B A0A4B8C6 

  C324888F 461F203F DDA5DF5B F3516043 F61BC4A7 706D4910 BA2E9660 86EA38A8 

  DF199714 65E5AD57 F418D7AA 7154A869 4BD57BFC 85BBB4AC E31B0203 010001A3 

  818A3081 87300F06 03551D13 0101FF04 05300301 01FF300E 0603551D 0F0101FF 

  04040302 01863024 06082B06 01050507 01070101 FF041530 13301104 02000230 

  0B030900 2A001DD0 01003011 301F0603 551D2304 18301680 14778F17 8F2C60C0 

  122C6E5A 187FEDE3 79475AAD 59301D06 03551D0E 04160414 778F178F 2C60C012 

  2C6E5A18 7FEDE379 475AAD59 300D0609 2A864886 F70D0101 05050003 81810018 

  0BA244E6 17BB7F66 C98DD384 954C9E4A 571348F8 21D13533 0E0E2ECA BA80D876 

  916CED89 53E43109 3862D285 A580D798 9E28ACF1 2EE02E70 8CD5260C 4CC49157 

  33467C58 90FE9862 C32A85D7 A1D9C540 2A39A5BE AC2DA077 73D924B4 03123E1F 

  EF722378 B9DDAACF C3FA619E 6F96C346 8D68AC87 53330A80 14993BC6 693D1E 

        quit 



  76 

 

license udi pid CISCO2911/K9 sn FCZ160570LJ 

license boot module c2900 technology-package securityk9 

license boot module c2900 technology-package datak9 

! 

! 

vtp mode transparent 

! 

redundancy 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

! 

interface Loopback0 



  77 

 

 ip address 10.0.0.3 255.255.255.255 

 no ip route-cache 

! 

interface Embedded-Service-Engine0/0 

 no ip address 

 no ip route-cache 

 shutdown 

! 

interface GigabitEthernet0/0 

 ip address 10.0.16.2 255.255.255.0 

 no ip route-cache 

 duplex auto 

 speed auto 

! 

interface GigabitEthernet0/1 

 no ip address 

 no ip route-cache 

 duplex auto 

 speed auto 

 ipv6 cga rsakeypair SEND 

 ipv6 address autoconfig 

 ipv6 nd secured trustanchor CLIENT 

 ipv6 nd secured timestamp delta 1000 



  78 

 

! 

interface GigabitEthernet0/2 

 no ip address 

 no ip route-cache 

 shutdown 

 duplex auto 

 speed auto 

! 

interface Serial0/1/0 

 no ip address 

 no ip route-cache 

 shutdown 

 clock rate 2000000 

! 

interface Serial0/1/1 

 no ip address 

 no ip route-cache 

 shutdown 

 clock rate 2000000 

! 

! 

ip forward-protocol nd 

! 



  79 

 

no ip http server 

no ip http secure-server 

! 

! 

! 

! 

! 

control-plane 

! 

! 

! 

line con 0 

line aux 0 

line 2 

 no activation-character 

 no exec 

 transport preferred none 

 transport input all 

 transport output lat pad telnet rlogin lapb-ta mop udptn v120 ssh 

 stopbits 1 

line vty 0 4 

 login 

 transport input all 



  80 

 

! 

scheduler allocate 20000 1000 

! 

end 


