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1 INTRODUCTION 

The use of the general type dc motors has its long history. It has been used in the 

industries for many years now. They provide simple means and precise way of 

control [1]. In addition, they have high efficiency and have a high starting torque 

versus falling speed characteristics which helps high starting torque and helps to 

prevent sudden load rise [2]. But with such characteristics, the dc motors have 

some deficiencies that needed to be attended to which gave rise to design of some 

other alternative types of dc motors. For example, the lack of periodic 

maintenance, mechanical wear outs, acoustic noise, sparkling, brushes effects are 

some of the problems that were needed to overcome the defects in dc motors. As a 

result, emphatic studies have been made on synchronous dc motors with brushless 

commutators. So, current researches have been tailored towards developing 

brushless direct current motors, which are fast becoming alternatives to the 

conventional dc motor types. The BrushLess Direct Current (BLDC) motors are 

gaining grounds in the industries, especially in the areas of appliances production, 

aeronautics, medicine, consumer and industrial automations and so on. 

The BLDC are typically permanent synchronous motors, they are well driven by 

dc voltage. They have a commutation that is done mainly by electronics 

application. 

Some of the many advantages of a brushless dc motor over the conventional 

“brushed dc motors are highlighted below [3]: 

1. Better speed versus torque characteristics 

2. High dynamic response 

3. High efficiency 

4. Long operating life 

5. Noiseless operation 

6. Higher speed ranges 

7. Low maintenance (in terms of brushes cleaning; which is peculiar to the 

brushed dc motors). 

Another vital advantage is that the ratio of torque delivered to the size of the 

motor is higher, and this contributes to its usefulness in terms of space and weight 

consideration. 
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The BLDC motors come in different phases, for example, single phase, double-, 

and triple- types. In depth discussion would not be made in this regards, but the 

most commonly used of all these is the three phase type. 

For this purpose, a brief perspective will be considered on how the BLDC motors 

could be compensated in terms of control and stability. Therefore, this report 

would presents a theoretical background of DC and BLDC motors, design of 

simple model of basic DC motors tailored towards developing a BLDC motor 

model. In addition, a brief introduction of a very essential tool of stability 

determinant would also be discussed under “PID auto-tuning”. Thereafter, a 

MATLAB®/SIMULINK® model of the BLDC motor would also be reported 

accordingly.  

The PID controller is applied in various fields of engineering, and it is also a very 

important tool in telecommunication system. If there is a system and stability is 

desired, then PID could be very useful. 

A simple systematic approach to these tasks is given in chapter format as given 

below. The chapters 2 and 3 present the “DC motor and design concepts” while 

chapter 4 gives a brief introduction into the Brushless DC motor and its model 

concept. It also elaborates the basic concept of their mathematical representations 

in simple format. The particular BLDC motor used is a maxon motor and chapters 

5 – 7 present the whole modelling idea of this specific motor and the open loop 

response analysis was also included as part of the pre-analysis needed for the 

subsequent control.  

Also, the idea of the PID (Proportional-Integral-Derivative) controller and its 

design concepts, control mechanism and tuning methods are presented under 

chapters 8 and 9. 

Chapters 10 – 12 present the work done on the robot trajectory planning and 

simulation. The chapter 10 was used to elaborate the required standard football 

pitch layout model; chapter 11, for the analysis and computation for the robot 

four-wheeled motors and the chapter 12 gives the planning stages and 

corresponding coding schemes. 
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The results analysis and discussion is presented under the 13th chapter; and finally 

the chapter fourteen focuses on the conclusion, challenges and recommendation 

and possible improvement needed in future works. 
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2 DC MOTOR 

2.1 DC motors 

A brief illustration and mathematical representation of DC motors will be 

discussed in the section based on the general concepts of electromagnetic 

induction.  

 

The DC motors are made of a number of components; some of which are [1]: 

1. Frame 

2. Shaft 

3. Bearings 

4. Main field windings (Stator) 

5. Armature (Rotor) 

6. Commutator 

7. Brush Assembly1

The most important part of these components that needs detail attention is the 

main field and the rotating windings (the stator and the rotor respectively). 

 

 
Magnet

Rotor

Brush

Commutator

Shaft

 
Figure 2.1 – Sectional illustration of a DC motor [2] 

 

As shown in figure 2.1, the stator is formed by the metal carcass with a permanent 

magnet enclosure which a magnetic field inside the stator windings. At one of the 

                                                 
1 This is a major difference between the DC and the BLDC motors 
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ends is the brush mountings and the brush gear which are used for electrical 

contacts with the armature (the rotor). 

The field windings are mounted on the poles pieces to create electromagnetism. 

The strength of this electromagnetic field is determined by the extent of 

interaction between the rotor and the stator. Also, the brushes serve as the contact-

piece for the commutator to provide electrical voltage to the motor. Consistent dirt 

on the commutator causes disruption in the supply of dc voltage, which creates a 

number of maintenance applications. This sometimes could lead to corrosion and 

sometimes sparks between the carbon made brushes and the commutator. 

One of the major challenges is the control of the speed (speed precision); but this 

could be done by varying the applied voltage. Varying the supply voltage might 

involve the use of a variable resistor (or a rheostat) which will be connected in 

tandem with the armature to form a series connection. But this kind of 

arrangement is not efficient enough as a result of power dissipation. In recent 

times, solid state electronics has made its implication in this regard through the 

use of controlled rectifiers and choppers. This arrangement could be efficient as 

they are used for highly efficient varying dc voltage. In most cases, the most 

commonly used device is the thyristor (this allows for voltage variation by 

varying the firing angle of the thyristor in question) [4]. Consider the simple 

arrangement in figure 2.2. 

 

DC
Motor

Controlled 
Rectifiers

Firing Circuit, with 
firing angle

Control
Signal

Supply, single or 
3 phases

 
Figure 2.2 – A dc motor operation with a thyristor arrangement using the thyristor 

firing angle to vary the dc voltage [4]. 
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3 DC MOTOR MODEL 

3.1 Mathematical model of a typical DC motor 

A typical dc motor equivalent circuit is illustrated as shown in the circuit shown 

below in figure 3.1 and figure 3.2: 

M

L

i

R

+

 
Figure 3.1 – A typical DC motor equivalent electrical circuit. 

 

 

L

i

R

e=kewm

+
DC 

Motor
Inertia 
Load, J

Torque Angular rate

Viscous friction  
Figure 3.2 – A typical DC motor electromechanical system arrangement. 

 

The basic component represented are the armature resistance, R and the armature 

inductance L; in addition, there is the back emf, e. From the in figure 3.1 and 

figure 3.2 above, the following equations are used to describe the relationship of 

operation. 

Using the Kirchhoff’s Voltage Law, KVL, the following equation 3.1 is obtained: 

 𝑉𝑉𝑠𝑠 = 𝑅𝑅𝑅𝑅 + 𝐿𝐿
𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

+ 𝑒𝑒 (3.1)  

 

At steady state (DC state of zero-frequency),  𝑉𝑉𝑠𝑠 = 𝑅𝑅𝑅𝑅 + 𝑒𝑒. 
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Therefore, for the non steady-state, equation 3.1 is rearranged to make provision 

for the back emf, as shown in equation 3.2 below: 

 𝑒𝑒 = −𝑅𝑅𝑅𝑅 − 𝐿𝐿
𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

+ 𝑉𝑉𝑠𝑠  (3.2)  

 

Where,  

𝑉𝑉𝑠𝑠 = the DC Source voltage 

𝑅𝑅 = the armature current 

Similarly, considering the mechanical properties of the dc motor, from the 

Newton’s second law of motion, the mechanical properties relative to the torque 

of the system arrangement in figure 3.1 and figure 3.2 would be the product of the 

inertia load, J and the rate of angular velocity, 𝜔𝜔𝑚𝑚  is equal to the sum of all the 

torques; these follow with equation 3.3 and 3.4 accordingly. 

 𝐽𝐽
𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

= �𝑇𝑇𝑅𝑅  (3.3)  

 𝑇𝑇𝑒𝑒 = 𝑘𝑘𝑓𝑓𝜔𝜔𝑚𝑚 + 𝐽𝐽
𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

+ 𝑇𝑇𝐿𝐿 (3.4)  

Where,  

𝑇𝑇𝑒𝑒 = the electrical torque 

𝑘𝑘𝑓𝑓 = the friction constant 

𝐽𝐽 = the rotor inertia 

𝜔𝜔𝑚𝑚 = the angular velocity 

𝑇𝑇𝐿𝐿 = the supposed mechanical load2, 

Where the electrical torque and the back emf could be written as: 

 𝑒𝑒 = 𝑘𝑘𝑒𝑒𝜔𝜔𝑚𝑚  and 𝑇𝑇𝑒𝑒 = 𝑘𝑘𝑑𝑑𝜔𝜔𝑚𝑚  (3.5)  

Where, 

𝑘𝑘𝑒𝑒 = the back emf constant 

𝑘𝑘𝑑𝑑 = the torque constant 

Therefore, re-writing equations 3.2 and 3.3, the equation 3.6 and 3.7 are obtained, 

 𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= −𝑅𝑅
𝑅𝑅
𝐿𝐿
−
𝑘𝑘𝑒𝑒
𝐿𝐿
𝜔𝜔𝑚𝑚 +

1
𝐿𝐿
𝑉𝑉𝑠𝑠 (3.6)  

                                                 
2 this could be assumed to be zero for analysis sake 
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𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑅𝑅
𝑘𝑘𝑑𝑑
𝐽𝐽
−
𝑘𝑘𝑓𝑓
𝐽𝐽
𝜔𝜔𝑚𝑚 +

1
𝐽𝐽
𝑇𝑇𝐿𝐿 (3.7)  

 

Using Laplace transform to evaluate the two equations 3.6 and 3.7, the following 

are obtained appropriately (all initial conditions are assumed to be zero): 

For equation 3.6, 

 ℒ �
𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= −𝑅𝑅
𝑅𝑅
𝐿𝐿
−
𝑘𝑘𝑒𝑒
𝐿𝐿
𝜔𝜔𝑚𝑚 +

1
𝐿𝐿
𝑉𝑉𝑠𝑠� (3.8)  

This implies, 

 𝑠𝑠𝑅𝑅 = −𝑅𝑅
𝑅𝑅
𝐿𝐿
−
𝑘𝑘𝑒𝑒
𝐿𝐿
𝜔𝜔𝑚𝑚 +

1
𝐿𝐿
𝑉𝑉𝑠𝑠  (3.9)  

For equation 3.7, 

 ℒ �
𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑅𝑅
𝑘𝑘𝑑𝑑
𝐽𝐽
−
𝑘𝑘𝑓𝑓
𝐽𝐽
𝜔𝜔𝑚𝑚 +

1
𝐽𝐽
𝑇𝑇𝐿𝐿� (3.10)  

This implies, 

 𝑠𝑠𝜔𝜔𝑚𝑚 = 𝑅𝑅
𝑘𝑘𝑑𝑑
𝐽𝐽
−
𝑘𝑘𝑓𝑓
𝐽𝐽
𝜔𝜔𝑚𝑚 +

1
𝐽𝐽
𝑇𝑇𝐿𝐿 (3.11)  

At no load (for 𝑇𝑇𝐿𝐿 = 0); equation 3.11 becomes: 

 𝑠𝑠𝜔𝜔𝑚𝑚 = 𝑅𝑅
𝑘𝑘𝑑𝑑
𝐽𝐽
−
𝑘𝑘𝑓𝑓
𝐽𝐽
𝜔𝜔𝑚𝑚  (3.12)  

From equation 3.12, i is made the subject for a substitute into equation 3.9. 

 𝑅𝑅 =
𝑠𝑠𝜔𝜔𝑚𝑚 +

𝑘𝑘𝑓𝑓
𝐽𝐽 𝜔𝜔𝑚𝑚

𝑘𝑘𝑑𝑑
𝐽𝐽

 (3.13)  

 �
𝑠𝑠𝜔𝜔𝑚𝑚 +

𝑘𝑘𝑓𝑓
𝐽𝐽 𝜔𝜔𝑚𝑚

𝑘𝑘𝑑𝑑
𝐽𝐽

� �𝑠𝑠 +
𝑅𝑅
𝐿𝐿�

= −
𝑘𝑘𝑒𝑒
𝐿𝐿
𝜔𝜔𝑚𝑚 +

1
𝐿𝐿
𝑉𝑉𝑠𝑠  (3.14)  

 

Equation 3.14 becomes: 

 ��
𝑠𝑠2𝐽𝐽
𝑘𝑘𝑑𝑑

+
𝑠𝑠𝑘𝑘𝑓𝑓
𝑘𝑘𝑑𝑑

+
𝑠𝑠𝑅𝑅𝐽𝐽
𝑘𝑘𝑑𝑑𝐿𝐿

+
𝑘𝑘𝑓𝑓𝑅𝑅
𝑘𝑘𝑑𝑑𝐿𝐿

� +
𝑘𝑘𝑒𝑒
𝐿𝐿
�𝜔𝜔𝑚𝑚 =

1
𝐿𝐿
𝑉𝑉𝑠𝑠 (3.15)  

And equation 3.15 finally resolved to 3.16: 

 𝑉𝑉𝑠𝑠 = �
𝑠𝑠2𝐽𝐽𝐿𝐿 + 𝑠𝑠𝑘𝑘𝑓𝑓𝐿𝐿 + 𝑠𝑠𝑅𝑅𝐽𝐽 + 𝑘𝑘𝑓𝑓𝑅𝑅 + 𝑘𝑘𝑒𝑒𝑘𝑘𝑑𝑑

𝑘𝑘𝑑𝑑
�𝜔𝜔𝑚𝑚  (3.16)  
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The transfer function is therefore obtained as follows using the ratio of and the 

angular velocity, 𝜔𝜔𝑚𝑚  to source voltage, Vs. 

That is, 

 𝐺𝐺(𝑠𝑠) =
𝜔𝜔𝑚𝑚
𝑉𝑉𝑠𝑠

=
𝑘𝑘𝑑𝑑

𝑠𝑠2𝐽𝐽𝐿𝐿 + 𝑠𝑠𝑘𝑘𝑓𝑓𝐿𝐿 + 𝑠𝑠𝑅𝑅𝐽𝐽 + 𝑘𝑘𝑓𝑓𝑅𝑅 + 𝑘𝑘𝑒𝑒𝑘𝑘𝑑𝑑
 (3.17)  

From these, the transfer function could be derived accordingly as follows: 

That is, 

 𝐺𝐺(𝑠𝑠) =
𝜔𝜔𝑚𝑚
𝑉𝑉𝑠𝑠

=
𝑘𝑘𝑑𝑑

𝑠𝑠2𝐽𝐽𝐿𝐿 + �𝑅𝑅𝐽𝐽 + 𝑘𝑘𝑓𝑓𝐿𝐿�𝑠𝑠 + 𝑘𝑘𝑓𝑓𝑅𝑅 + 𝑘𝑘𝑒𝑒𝑘𝑘𝑑𝑑
 (3.18)  

 

Considering the following assumptions: 

1. The friction constant is small, that is, 𝑘𝑘𝑓𝑓  tends to 0, this implies that; 

2. 𝑅𝑅𝐽𝐽 ≫ 𝑘𝑘𝑓𝑓𝐿𝐿, and 

3. 𝑘𝑘𝑒𝑒𝑘𝑘𝑑𝑑 ≫ 𝑅𝑅𝑘𝑘𝑓𝑓  

And the negligible values zeroed, the transfer function is finally written as; 

 𝐺𝐺(𝑠𝑠) =
𝜔𝜔𝑚𝑚
𝑉𝑉𝑠𝑠

=
𝑘𝑘𝑑𝑑

𝑠𝑠2𝐽𝐽𝐿𝐿 + 𝑅𝑅𝐽𝐽𝑠𝑠 + 𝑘𝑘𝑒𝑒𝑘𝑘𝑑𝑑
 (3.19)  

 

So by re-arrangement and mathematical manipulation on “JL”, by multiplying top 

and bottom of equation 3.19 by: 
𝑅𝑅

𝑘𝑘𝑒𝑒𝑘𝑘𝑑𝑑
×

1
𝑅𝑅

 

 

Equation 3.20 is obtained after the manipulation, 

 

 
𝐺𝐺(𝑠𝑠) =

1
𝑘𝑘𝑒𝑒

𝑅𝑅𝐽𝐽
𝑘𝑘𝑒𝑒𝑘𝑘𝑑𝑑

∙ 𝐿𝐿𝑅𝑅 ∙ 𝑠𝑠
2 + 𝑅𝑅𝐽𝐽

𝑘𝑘𝑒𝑒𝑘𝑘𝑑𝑑
∙ 𝑠𝑠 + 1

 (3.20)  

 

From equation 3.13, the following constants are gotten, 

The mechanical (time constant), 

 𝜏𝜏𝑚𝑚 =
𝑅𝑅𝐽𝐽
𝑘𝑘𝑒𝑒𝑘𝑘𝑑𝑑

 (3.21)  
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The electrical (time constant), 

 𝜏𝜏𝑒𝑒 =
𝐿𝐿
𝑅𝑅

 (3.22)  

 

Substituting the equations 3.21 and 3.22 into equation 3.20, it yields; 

 𝐺𝐺(𝑠𝑠) =

1
𝑘𝑘𝑒𝑒

𝜏𝜏𝑚𝑚 ∙ 𝜏𝜏𝑒𝑒 ∙ 𝑠𝑠2 + 𝜏𝜏𝑚𝑚 ∙ 𝑠𝑠 + 1
 (3.23)  
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4 BRUSHLESS DC MOTOR AND MODEL CONCEPT 

One of the major differences between the DC motor and the BLDC is implied 

from the name. The conventional DC motor has brushes that are attached to its 

stator while the “brushless” DC motor does not. Also, unlike the normal DC 

motor, the commutation of the BLDC could be done by electronic control [3]. 

Under the BLDC motor, the stator windings are energised in sequence for the 

motor to rotate. More also, there is no physical contact whatsoever between the 

stator and the rotor. Another vital part of the BLDC is the hall sensor(s); these hall 

sensors are systematically attached to the rotor and they are used as major sensing 

device by the Hall Effect sensors embedded into the stator [3]. This works based 

on the principle of Hall Effect. 

The BLDC motor operates in many modes (phases), but the most common is the 

3-phase. The 3-phase has better efficiency and gives quite low torque. Though, it 

has some cost implications, the 3-phase has a very good precision in control [6]. 

And this is needful in terms of control of the stator current. 

 

4.1 Mathematical model of a typical BLDC motor 

Typically, the mathematical model of a Brushless DC motor is not totally 

different from the conventional DC motor. The major thing addition is the phases 

involved which affects the overall results of the BLDC model. The phases 

peculiarly affect the resistive and the inductive of the BLDC arrangement. For 

example, a simple arrangement with a symmetrical 3-phase and “wye” internal 

connection could give a brief illustration of the whole phase concept. 
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DC 
Motor

Inertia 
Load, J

Torque Angular rate

Viscous frictionL
R

L
R

L

R
RL-L

KeL-L

 
Figure 4.1 – Brushless DC motor schematic diagram 

 

So from the equations 3.20 – 3.22, the difference in the DC and BLDC motors 

will be shown. 

This difference will affect primarily the mechanical and electrical constants as 

they are very important parts of modelling parameters. 

For the mechanical time constant (with symmetrical arrangement), equation 3.21 

becomes: 

 𝜏𝜏𝑚𝑚 = �
𝑅𝑅𝐽𝐽
𝐾𝐾𝑒𝑒𝐾𝐾𝑑𝑑

=
𝐽𝐽 ∑𝑅𝑅
𝐾𝐾𝑒𝑒𝐾𝐾𝑑𝑑

 (4.1)  

 

The electrical (time constant), 

 𝜏𝜏𝑒𝑒 = �
𝐿𝐿
𝑅𝑅

=
𝐿𝐿
∑𝑅𝑅

 (4.2)  

 

Therefore, since there is a symmetrical arrangement and a three phase, the 

mechanical (known) and electrical constants become: 

Mechanical constant, 

 𝜏𝜏𝑚𝑚 =
𝐽𝐽. 3𝑅𝑅
𝐾𝐾𝑒𝑒𝐾𝐾𝑑𝑑

 (4.3)  

Electrical constant, 

 𝜏𝜏𝑒𝑒 =
𝐿𝐿

3.𝑅𝑅
 (4.4)  

 

Considering the phase effects, 
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 𝜏𝜏𝑚𝑚 =
3.𝑅𝑅∅. 𝐽𝐽

�𝐾𝐾𝑒𝑒(𝐿𝐿−𝐿𝐿)/√3�.𝐾𝐾𝑑𝑑
 (4.5)  

 

Equation 4.5 now becomes: 

 𝜏𝜏𝑚𝑚 =
3.𝑅𝑅∅. 𝐽𝐽
𝐾𝐾𝑒𝑒 .𝐾𝐾𝑑𝑑

 (4.6)  

 

Where 𝐾𝐾𝑒𝑒  is the phase value of the EMF (voltage) constant; 

𝐾𝐾𝑒𝑒 = 𝐾𝐾𝑒𝑒(𝐿𝐿−𝐿𝐿)/√3 

Also, there is a relationship between 𝐾𝐾𝑒𝑒  and 𝐾𝐾𝑑𝑑 ; using the electrical power (left 

hand side) and mechanical power (right hand side) equations; that is: 

√3 × 𝐸𝐸 × 𝐼𝐼 =
2𝜋𝜋
60

× 𝑁𝑁 × 𝑇𝑇 

 
𝐸𝐸
𝑁𝑁

=
𝑇𝑇
𝐼𝐼

×
2𝜋𝜋 × 1

60 × √3
 

 

𝐾𝐾𝑒𝑒 = 𝐾𝐾𝑑𝑑 ×
2𝜋𝜋 × 1

60 × √3
 

 

 
𝐾𝐾𝑒𝑒 = 𝐾𝐾𝑑𝑑 × 0.0605 

 
(4.7)  

Where,  

𝐾𝐾𝑒𝑒 = �
v − secs

rad
� : the electrical torque 

𝐾𝐾𝑑𝑑 = �
N − m

A
� : the torque constant 

Therefore, the equation for the BLDC can now be obtained as follow from 

equation 3.23 by considering the effects of the constants and the phase 

accordingly. 

 𝐺𝐺(𝑠𝑠) =

1
𝐾𝐾𝑒𝑒

𝜏𝜏𝑚𝑚 ∙ 𝜏𝜏𝑒𝑒 ∙ 𝑠𝑠2 + 𝜏𝜏𝑚𝑚 ∙ 𝑠𝑠 + 1
 

 

(4.8)  
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5 MAXON BLDC MOTOR 

5.1 Maxon EC 45 flat ∅45 mm, brushless DC motor 

The BLDC motor provided for this thesis is the EC 45 flat ∅45 mm, brushless, 30 

Watt from Maxon motors [8]. The order number of the motor is 200142. The 

parameters used in the modeling are extracted from the datasheet of this motor 

with corresponding relevant parameters used. Find below in Table 5.1 the major 

extracted parameters used for the modeling task.  

 

 Maxon Motor Data Unit Value 

  Values at nominal voltage  

1 Nominal Voltage V 12.0 

2 No load Speed rpm 4370 

3 No load Current mA 151 

4 Nominal Speed rpm 2860 

5 Nominal Torque (max. continuous torque) mNm 59.0 

6 Nominal Current (max. continuous current) A 2.14 

7 Stall Torque mNm 255 

8 Starting Current A 10.0 

9 Maximum Efficiency % 77 

  Characteristics  

10 Terminal Resistance phase to phase Ω 1.20 

11 Terminal Inductance phase to phase mH 0.560 

12 Torque Constant mNm/A 25.5 

13 Speed Constant rpm/V 37.4 

14 Speed/Torque Gradient rpm/mNm 17.6 

15 Mechanical time constant ms 17.1 

16 Rotor Inertia gcm2 92.5 

17* Number of phases  3 

 

Table 5.1 – BLDC motor parameters used [8] 
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6 BLDC Maxon Motor Mathematical Model 

The mathematical model of the BLDC motor is modelled based on the parameters 

from table 5.1 using the equation 4.23. This is illustrated below: 

 

 𝐺𝐺(𝑠𝑠) =

1
𝐾𝐾𝑒𝑒

𝜏𝜏𝑚𝑚 ∙ 𝜏𝜏𝑒𝑒 ∙ 𝑠𝑠2 + 𝜏𝜏𝑚𝑚 ∙ 𝑠𝑠 + 1
 

 

(6.1.)  

So the values for 𝐾𝐾𝑒𝑒 , 𝜏𝜏𝑚𝑚  and 𝜏𝜏𝑒𝑒  need to calculated to obtain the motor model. 

From equation 4.4, 

𝜏𝜏𝑒𝑒 =
𝐿𝐿

3.𝑅𝑅
 

𝜏𝜏𝑒𝑒 =
0.560 × 10−3

3 × 1.20
 

 𝝉𝝉𝒆𝒆 = 155.56 × 10−6 (6.2.)  

But 𝜏𝜏𝑚𝑚  is a function of R, J, 𝐾𝐾𝑒𝑒  and 𝐾𝐾𝑑𝑑 , 

Where, 

R = 𝑅𝑅∅ = 1.2 Ω; 

𝐽𝐽𝑅𝑅𝑅𝑅𝑑𝑑𝑅𝑅𝑅𝑅  = 92.5 gcm2 = 9.25 × 10−6 Kgm2; 

𝐾𝐾𝑑𝑑 = 25.5 × 10−3Nm/A 

𝜏𝜏𝑚𝑚 = 0.0171 secs 

From equation 4.6, 𝐾𝐾𝑒𝑒  could be obtained: 

That is, 

𝝉𝝉𝒎𝒎 =
3.𝑅𝑅∅. 𝐽𝐽
𝐾𝐾𝑒𝑒 .𝐾𝐾𝑑𝑑

= 0.0171 

 

𝑲𝑲𝒆𝒆 =
3.𝑅𝑅∅. 𝐽𝐽
𝜏𝜏𝑚𝑚 .𝐾𝐾𝑑𝑑

=
3 × 1.2 × 9.25 × 10−6

0.0171 × 25.5 × 10−3 = 0.0763 
v − secs

rad
 

 

Therefore, the G(s) becomes: 

𝐺𝐺(𝑠𝑠) =
13.11

155.56 × 10−6 × 0.0171 ∙ 𝑠𝑠2 + 0.0171 ∙ 𝑠𝑠 + 1
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𝐺𝐺(𝑠𝑠) =

13.11
2.66 × 10−6 ∙ 𝑠𝑠2 + 0.0171 ∙ 𝑠𝑠 + 1

 

 
(6.3.)  

The G(s) derived above in the equation 6.3 is the open loop transfer function of 

the Brushless DC maxon motor using all necessarily sufficient parameters 

available. 
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7 OPEN LOOP ANALYSIS OF THE MAXON MOTOR 

MODEL 

The open loop analysis would be done using the MATLAB®/SIMULINK®. And 

the corresponding stability analysis is given likewise to see the effect thereafter 

when there is closed loop system incorporation. 

 

7.1 Open Loop Analysis using MATLAB m-file 

With the aid of the BLDC motor parameters provided, the open loop analysis is 

done by considering the stability factors and making the necessary plots for this 

analysis. Some of the plots include the step response, root locus, nyquist diagram, 

and bode plot diagram. 

For this, separate m-files were created for the constants, evaluated constants 

and the main files 
constants.m 
 

 
 
evaluatedconstants.m 
 

 

% 
% Start of code 
% 
% Evaluated parameters not given 
% 
constants 
te = L/(p*R);               % seconds, s, Electrical Time constant 
Ke = (3*R*J)/(tm*Kt);       % Back emf constant 
% End of code 
 

% 
% Start of code 
% Maxon flat motor parameters used in the modeling 
% 
% Characteristics parameters 
R = 1.2;        % Ohms, Terminal Resistance phase to phase 
L = 0.560e-3;   % Henrys, Terminal Inductance phase to phase 
Kt = 25.5e-3;   % Nm/A, Torque constant 
Ks = 37.4       % rpm/V, Speed constant 
tm = 17.1e-3;   % seconds, s, Mechanical Time constant 
J = 92.5e-7;    % kg.m^2, Rotor inertia, given in gcm^2 
p = 3;          % Number of phases 
% 
% End of code 
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topenloop.m 
 

 
 

% 
% Start of code 
% 
% includes constant parameters 
constants 
  
% includes evaluated constants 
evaluatedconstants 
  
% Transfer function 
G = tf([1/Ke],[tm*te tm 1]); 
  
% Plots the Step Response diagram 
figure; 
step(G, 0.5); 
title('Open Loop Step Response diagram'); 
xlabel('Time, secs') 
ylabel('Voltage, volts') 
grid on; 
  
% plots the Root-locus 
figure; 
rlocus(G); 
title('Open Loop Root Locus diagram'); 
grid on; 
  
% plots the Nyquist diagram 
figure; 
nyquist(G); 
title('Open Loop Nyquist diagram'); 
grid on; 
  
% plots the Bode Plot 
figure; 
bode(G); 
title('Open Loop Bode plot diagram 1'); 
grid on; 
  
% plots the Bode Plot 
figure; 
bode(G,{0.1 , 100}) 
title('Open Loop Bode plot diagram with wider frequency spacing'); 
grid on; 
  
% plots the Bode Plot 
figure; 
GD = c2d(G, 0.5) 
bode(G,'r', GD,'b--') 
title('Open Loop Bode plot diagram with discretisied response'); 
grid on; 
% End of code 
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Figure 7.1 – Open Loop Step Response 

 
Figure 7.2 – Open Loop Step Root Locus with Gain = 0, Overshoot % = 0 and 

Damping = 1 for both poles 
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Figure 7.3 – Open Loop Step Nyquist Diagram 

 
Figure 7.4 – Open Loop Step Bode Plot Diagram 
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7.2 Open Loop Analysis using SIMULINK 

Alternatively, the open loop step response could be done by using the SIMULINK 

tools as shown in figure 7.5 below. 

 
Figure 7.5 – Open loop step response simulink arrangement 

From the simulation of figure 7.5 and using a step input of at t=1, the following 

were obtained. 

 

To file 1

stepout .mat

To file

openloop .mat

Step Input Display

Step
input

Open Loop
Step Response DisplayMotor Transfer Function

13 .11

2.66e-6s  +0.0171 s+12
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Figure 7.6 – Step input for the open loop simulink arrangement (at t=1) 

 
Figure 7.7 – Open loop step response output for the simulink arrangement 
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With the step response moved to 0.05 for a better display, a joint output of the 

step input and open loop step response was simulated to give figure 7.8 below. 

This shows the effect of the system model on the step input. 

 

 
Figure 7.8 – Combined step input and open loop step response span over t=0.5 s 
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8 PID DESIGN CONCEPT 

The Proportional-Integral-Derivative (PID) controller is about the most common 

and useful algorithm in control systems engineering [7]. In most cases, feedback 

loops are controlled using the PID algorithm. The main reason why feedback is 

very important in systems is to be able to attain a set-point irrespective of 

disturbances or any variation in characteristics of any form.  

The PID controller is always designed to correct error(s) between measured 

process value(s) and a particular desired set-point in a system.  

A simple illustration on how the PID works is given below: 

Consider the characteristics parameters – proportional (P), integral (I), and 

derivative (D) controls, as applied to the diagram below in figure 8.1, the system, 

S is to be controlled using the controller, C; where controller, C efficiency 

depends on the P, I and D parameters [8]. 

 

CONTROLLER SYSTEMR Y
+

-

e u

 
Figure 8.1 – A typical system with a controller [8] 

 

The controller provides the excitation needed by the system and it is designed to 

control the overall behaviour of the system. 

The PID controller has several categories of structural arrangements. The most 

common of these are the series and parallel structures and in some cases, there are 

the hybrid form of the series and the parallel structures. 

The following shows the typical illustrative diagrams of common PID controller 

structures. 

Typically, the function of the form shown in equation 8.1 is applicable in this kind 

of PID controller design. 

 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 =
𝐾𝐾𝐷𝐷𝑠𝑠2 + 𝐾𝐾𝑃𝑃𝑠𝑠 + 𝐾𝐾𝐼𝐼

𝑠𝑠
 (8.1)  

[8]. 
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Where, 

𝐾𝐾𝑃𝑃 = Proportional gain 

𝐾𝐾𝐼𝐼 = Integral gain 

𝐾𝐾𝐷𝐷 = Derivative gain 

 

 
Figure 8.2 – PID parameters schematics 

 

Considering the figure 8.1, variable, e is the sample error, and it is the difference 

between the desired input value, R and the actual output, Y. In a closed loop, e will 

be sent to the controller, and the controller will perform the integral and derivative 

computation on the error signal. Thereafter, the signal, u which is the output of the 

controller is now equal to the sum of [the product of proportional gain, KP and the 

magnitude of the error], [the product of the integral gain, KI and the integral of the 

error] and [the product of the derivative gain, KD and the derivative of the error]. 

That is,  

 𝑢𝑢 = 𝐾𝐾𝑃𝑃𝑒𝑒 + 𝐾𝐾𝐼𝐼 �𝑒𝑒𝑑𝑑𝑑𝑑 + 𝐾𝐾𝐷𝐷
𝑑𝑑𝑒𝑒
𝑑𝑑𝑑𝑑

 (8.2)  

 

The signal value, u is sent continuously to the plant with every corresponding new 

output, Y being obtained as the process continues. The output, Y is sent back and 

subsequently new error signal, e is found and the same process repeats itself on 

and on. 



34 
 

Also, it is very typical to have the PID transfer function written in several forms 

depending on the arrangement structure. The following equation shows one of 

these (a parallel structure): 

 

 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 = 𝐾𝐾𝑃𝑃 × �1 +
1

𝑇𝑇𝐼𝐼 ∙ 𝑠𝑠
+ 𝑇𝑇𝐷𝐷 ∙ 𝑠𝑠� (8.3)  

Where, 

𝐾𝐾𝑃𝑃 = Proportional gain 

𝑇𝑇𝐼𝐼 = Integral time or Reset time =  
𝐾𝐾𝑃𝑃
𝐾𝐾𝐼𝐼

 

𝑇𝑇𝐷𝐷 = Derivative time or Rate time 

 

8.1 Some characteristics effects of PID controller parameters 

The proportional gain 𝐾𝐾𝑃𝑃 , will reduce the rise time and might reduce or remove 

the steady-state error of the system. The integral gain 𝐾𝐾𝐼𝐼 , will eliminate the steady-

state error but it might a negative effect on the transient response (a worse 

response might be produced in this case). And the derivative gain 𝐾𝐾𝐷𝐷 , will tend to 

increase the stability of the system, reducing overshoot percentage, and improving 

the transient response of the system. In all, the table below will give 

comprehensive effects of each of the controllers on a typical closed-loop system. 

 
 

Parameter Rise time Overshoot Settling time Steady-state 
error 

𝐾𝐾𝑃𝑃 ↓ ↑ small change ↓ 

 𝐾𝐾𝐼𝐼 ↓ ↑ ↑ eliminate 

𝐾𝐾𝐷𝐷 small change ↓ ↓ small change 

     

Legend ↓ Decrease   

 ↑ Increase   

 

Table 8.1 – PID controller parameter characteristics on a typical system [8] 
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The ability to blend these three parameters will make a very efficient and stable 

system. It should be noted that the relationship between the three controller 

parameters may not exactly be accurate because of their interdependency. 

Therefore, it is very possible to compute particular parameters which effects 

would be noticed on the other two. 

 

8.2 PID controller design tips 

Designing a PID controller might require some of the following steps to obtain a 

more efficient and stable system [5]: 

1. It is advisable to obtain the open-loop response of the system first and 

subsequently determine what to improve; 

2. Add a proportional gain control to improve the rising time; 

3. Then, add a derivative gain to improve the overshoot percentage; 

4. And perhaps, add the integral control to eliminate the steady-state error; 

5. Thereafter, adjust each of the parameters might be important to achieve an 

overall desired performance (or output). 

And most importantly, all the three PID controller parameters might not be 

necessarily used in some cases. In most cases, the tuning stops at the PI – control 

combination. 

More also, it should be noted that the major goal of the PID parameters is to 

obtain a fast rise time with minimum overshoot and no (almost no) steady-state 

error. 
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9 PID CONTROLLER TUNING PARAMETERS 

Under this section a critical analysis would be done on the PID tuning criteria and 

the parameters involved. Before a detail analysis is done, a quick look at the 

tuning methods is considered first and thereafter, specific tuning parameters are 

computed for the BLDC maxon motor. Some of the generally used tuning 

methods are the Trial and Error method, the Ziegler-Nichols method (1st), 

Improved Ziegler-Nichols method (2nd), Cohen-Coon method, Genetic Algorithms 

and so on. For this work, the Ziegler-Nichols tuning method would be given a 

priority. 

9.1 The PID arrangement 

As a general form, a full schematic of the PID controller arrangement with the 

System model arrangement is displayed in figure 9.1 as a start for the tuning 

procedure. 

 

 
Figure 9.1 – PID Schematic for a full PID Controller with System model 

arrangement 

 
The figure 9.1 is under no saturation, but the saturation is included in figure 9.2. 

Both figures would be used for our analysis. 
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Figure 9.2 – PID Schematic for a full PID Controller (with saturation) and system 

model arrangement 

 

For an initial computation, P, PI and PID would be considered in that order to 

observe the best part for the PID parameters to be obtained. 

 

9.2 Trial and Error tuning methods 

This method is crude but could help in getting an overview of what the PID 

parameters could be like and their effects on the whole system model. It is 

particularly time consuming because of its trial and format. But a computational 

stability rule was needed to set a mark for the trial and effect. This is done by 

using the Routh-Hurwitz stability rule as shown below. Under this, emphasis 

would be mainly on the PID combination. 

 

9.2.1 The Routh-Hurwitz stability rule 

From the various designs needed for this trial, a brief stability check is needed to 

make the trial and error at the first instance. It would be observed that the only 

design near the perfect (open-loop – which is without compensation or controller) 

is the PID. To have a more appropriate trial and error value, the following steps 

would be followed for only the PID structure. 

From the PID controller equation 9.1, 
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 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 = 𝐾𝐾𝑃𝑃 × �1 +
1

𝑇𝑇𝐼𝐼 ∙ 𝑠𝑠
+ 𝑇𝑇𝐷𝐷 ∙ 𝑠𝑠� (9.1)  

 

Similarly, 

 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 =
𝐾𝐾𝑃𝑃 ∙ 𝑠𝑠 + 𝐾𝐾𝐼𝐼 + 𝐾𝐾𝐷𝐷∙𝑠𝑠2

𝑠𝑠
 (9.2)  

 

This is used in the m-file tclosedloopPID_TrialError4.m and it is 

convuled with the motor model. 

Keeping the KP part, with TI and TD set to infinity and zero respectively. A 

controller gain, KC could be obtained that would sustain the oscillation output. 

This value serves as the ultimate gain, KCU. For a proper oscillation, KC is set to be 

less than KCU. 

Assumed the figure 9.9 below with a gain of KCU and the system model: 

 

 
Figure 9.3 – Trial and Error PID computation diagram 

 
By obtaining the characteristics equation of the figure 9.9, a limiting gain could be 

obtained just before sustained oscillation and this is assumed as the KCU. 
  

Ultimate Gain , Kcu

In1 Out1

System Model - Transfer Function

13 .11
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Step
input
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tclosedloopPID_TrialError4.m 
 

 
 

 

Therefore, we have: 

 

 1 + 𝐾𝐾𝐶𝐶𝐶𝐶 ∙ 𝐺𝐺(𝑠𝑠) = 0 (9.3)  

 

 1 + 𝐾𝐾𝐶𝐶𝐶𝐶 ∙
13.11

2.66 × 10−6 ∙ 𝑠𝑠2 + 0.0171 ∙ 𝑠𝑠 + 1
= 0 (9.4)  

 

% Start of code 
clear 
close all 
% includes constant parameters 
constants 
% includes evaluated constants 
evaluatedconstants 
  
num = [1/Ke]; 
den = [tm*te tm 1]; 
  
%Ziegler-Nichols parameter computed 
Kp = 13.11;     %Proportional gain 
Ki = 0%1310.6;         %Integral gain 
Kd = 0%0.0763;         %Derivative gain 
% For the PID equation 
numc = [Kd Kp Ki]; 
denc = [1 0]; 
  
% convule "num with numc" and "den with demc" 
numa = conv(num, numc); 
dena = conv(den, denc); 
  
% For the closed-loop transfer function, the following is obtained 
% numac and denac used for the overall closed tranfer function in 
this case 
[numac, denac] = cloop(numa, dena); 
% Plotting the new step-response 
t = 0:0.00001:0.5; 
step(numac, denac, t);      % across 0.01 seconds timing 
title('Closed loop step response for ZN - Kp, Ki and Kd'); 
xlabel('Time, [s]') 
ylabel('Voltage, [volts]') 
%grid on; 
  
% New G1 for overall closed loop trasnfer function 
G1 = tf(numac, denac); 
% End of code 
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Equation 9.4 becomes, 

 2.66 × 10−6 ∙ 𝑠𝑠2 + 0.0171 ∙ 𝑠𝑠 + 1 + 13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶 = 0 (9.5)  

 

So for stability purposes, KCU’s range of values could be obtained by using the 

Routh-Hurwitz condition of stability. This is computed below: 

 

 

𝑠𝑠2 2.66 × 10−6 1 + 13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶
𝑠𝑠1 0.0171 0

𝑠𝑠0 𝟏𝟏 + 𝟏𝟏𝟏𝟏.𝟏𝟏𝟏𝟏 ∙ 𝑲𝑲𝑪𝑪𝑪𝑪 −

  

 

According to Routh-Hurwitz condition, the obtained characteristics equation 9.5 

should be spread into column as shown above and the s0 is evaluated as follows 

(because it has the assumed unknown KCU which would be evaluated): 

 

 s0(1st row) = −
�2.66 × 10−6 1 + 13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶

0.0171 0
�

1 + 13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶
  

 

 

s0(1st row)

= −
(2.66 × 10−6 × 0) − (1 + 13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶)(0.0171)

0.0171
= 1 + 13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶  

 

 

For stability sake, the 1st column after the s-column must not have any sign 

change (that is, no change from + to – or – to +). Therefore, s0(1st row), must be 

greater than zero. 

This implied that, 

1 + 13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶 > 0 

Then, 

13.11 ∙ 𝐾𝐾𝐶𝐶𝐶𝐶 > −1 

 

𝐾𝐾𝐶𝐶𝐶𝐶 >
−1

13.11
= −0.0763 
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This implies that KCU has its main value in the positive range. With a rough trial 

and error tuning, KP, can be fixed to full value of the system model numerator, 

which is 13.11. The KI and KD were set initially to zero to see the effect of the KP 

on the system. This resulted into the figure KI about the inverse of 0.0763 = 

13.106, and KD = 0.0763. After this,  

 

9.2.2 Proportional control 

Based on the M-file – “tclosedloopP.m”, the following figure 9.3, figure 9.4, 

figure 9.5 and figure 9.6 were obtained as an improvement to the open-loop 

system. By making an initial raw guess of the value of KP just before applying the 

Routh-Hurwitz condition. 

 
 

Figure 9.4 – Proportional controller gain effect on the system 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4
New  step response w ith proportion, P control; Kp = 10

Time, secs (sec)

Vo
lta

ge
, v

ol
ts



42 
 

 
Figure 9.5 – Root locus diagram for the proportional controller gain effect  

 
Figure 9.6 – Nyquist diagram for the proportional controller gain effect 
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Figure 9.7 – Bode plot for the proportional controller gain effect 

 
Figure 9.8 – Trial and error value used for the P parameters output, with KI and 

KD set to zero 
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Figure 9.9 – Trial and error value used for the P parameters output, with KI and 

KD set to zero (zoomed display) 

 

The above figure 9.3 – 9.7 show how the proportional controller has reduced the 

rising time and the steady-state error, the overshoot is reasonably increased but 

the settling time is also decreased slightly. The subsequent figures show the 

effects of the trial and error method of tuning applied. The detail analysis would 

be under the results and analysis section. 

 

9.2.3 Proportional-Integral control 

To improve on effect of the KP, an additional KI was also set based on the Routh-

Hurwitz condition used above. This is implemented with the same m-file – 

“tclosedloopPID_TrialError4.m”, the following figures 9.10 – 9.11 

was obtained as an added improvement. To make a more visible on the step 

response, the integral parameter was scaled by 1000 to see its effects, that is, KI= 

1310.6. And another “supposed” improvement was also obtained (figures 9.12 – 

9.13).  
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Figure 9.10 – Trial and error values used for the PI parameters output 

 
Figure 9.11 – Trial and error values used for the PI parameters output with Kd=0 

(zoomed) 
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Figure 9.12 – Trial and error values used for the PI parameters output with Ki 

multiplied 1000 and Kd=0 

 
Figure 9.13 – Trial and error values used for the PI parameters output with Ki 

multiplied 1000 and Kd=0 (zoomed) 
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9.2.4 Proportional-Integral-Derivative control 

But for a more critical assessment of the trial and error method, the M-file – 

“tclosedloopPID_TrialError4.m”, was used to obtain a more perfect 

output for the system response as shown in the following figure 9.8. Though, all 

the PID parameters might not be needed sometimes, but it needful to examine it to 

check the effect and the difference from the other P and PI combinations. For the 

implementation of the PID guessed parameters based in the trial and error, the KI 

and KD were set to 1310.6 and 0.0763 respectively. On the first trial the figure – 

was obtained. 

 
 Figure 9.14 – Trial and error method for PID – control effect on the system 

response (first trial with Kd set at 0.0763) 
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Figure 9.15 – Trial and error method for PID – control effect on the system 
response (first trial with Kd set at 0.0763, zoomed) 

 

The trial and error gave a reasonable level comfort but it is time consuming and 

requires extra techniques to be able to have guesses that are appropriate and near 

efficient. 

For an overall assessment of the P, PI and PID parameters effect, the following 

figure was generated for appropriate comparison effects using the 

UpdatedPPIPID_TrialError.m. 

 

 PID Type 𝐾𝐾𝑃𝑃 𝐾𝐾𝐼𝐼 𝐾𝐾𝐷𝐷 

1. P 13.11 0 0 

2. PI 13.11 1310.6 0 

3. PID 13.11 1310.6 0.0763 

 

Table 9.1 – Results of the Trial and Error method for PID controller parameters 
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UpdatedPPIPID_TrialError.m 
 

 
 

 

% Start of code 
clear 
close all 
  
% includes constant parameters 
constants 
% includes evaluated constants 
evaluatedconstants 
num = 1/Ke; 
den = [tm*te tm 1]; 
  
%----P starts 
% assumed Kp = 13.11 
Kp1 = 13.11; 
numa1 = Kp1 * num; 
dena1 = den; 
  
% For the closed-loop transfer function, the following is obtained 
% numac and denac used for the overall closed tranfer function in 
this case 
[numac1, denac1] = cloop(numa1, dena1); 
%----P ends 
  
%----PI Starts 
%Trial and Error tuning parameter Kp and Ki 
Kp2 = 13.11; 
Ki2 = 1310.6; 
  
% For the PI equation 
numc2 = [Kp2 Ki2]; 
denc2 = [1 0]; 
  
% convule "num with numc" and "den with demc" 
numa2 = conv(num, numc2); 
dena2 = conv(den, denc2); 
  
% For the closed-loop transfer function, the following is obtained 
% numac and denac used for the overall closed tranfer function in 
this case 
[numac2, denac2] = cloop(numa2, dena2); 
%----PI ends 
  
%----PID Starts 
%Trial and Error parameter guessed with support of RH 
Kp3 = 13.11;    %Proportional gain 
Ki3 = 1310.6;   %Integral gain 
Kd3 = 0.0763;    %Derivative gain 
% For the PID equation 
numc3 = [Kd3 Kp3 Ki3 ]; 
denc3 = [1 0]; 
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UpdatedPPIPID_TrialError.m (contd.) 
 

 
 

 

% convule "num with numc" and "den with demc" 
numa3 = conv(num, numc3); 
dena3 = conv(den, denc3); 
  
% For the closed-loop transfer function, the following is obtained 
% numac and denac used for the overall closed tranfer function in 
this case 
[numac3, denac3] = cloop(numa3, dena3); 
%----PID ends 
  
% Plotting the new step-response 
t = 0:0.00001:0.01; 
  
% New G1 for overall closed loop transfer function 
G1 = tf(numac1, denac1); 
  
G2 = tf(numac2, denac2); 
  
G3 = tf(numac3, denac3); 
  
% Plots the Step Response diagram 
figure; 
hold on 
step(G1, t); 
hold on 
step(G2, t); 
hold on 
step(G3, t); 
legend('P', 'PI', 'PID'); 
title('Closed Loop PID Trial and Error step response generated for 
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Figure 9.16 – Trial and error method for P, PI and PID – control effect on the 

system response (t-max=0.3s) 

 
Figure 9.17 – Trial and error method for P, PI and PID – control effect on the 

system response (t-max=0.1s) 
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Figure 9.18 – Trial and error method for P, PI and PID – control effect on the 

system response (t-max=0.03s) 

 
Figure 9.19 – Trial and error method for P, PI and PID – control effect on the 

system response (t-max=0.01s) 
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Figure 9.20 – Trial and error method for P, PI and PID – control effect on the 

system response (1st zooming) 

 
Figure 9.21 – Trial and error method for P, PI and PID – control effect on the 

system response (2nd zooming) 
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Figure 9.22 – Trial and error method for P, PI and PID – control effect on the 

system response (3rd zooming) 

 

9.3 Ziegler-Nichols tuning methods 

The Ziegler-Nichols method used was done based on obtaining the open loop 

transfer function and thereafter obtaining the necessary parameter values needed 

for the various evaluation of the P, PI and PID parameters. The steps taken 

involve the files topenloop.m used in conjunction with the openloop.mdl 

model. So, for the Ziegler-Nichols method analysis the m-file 

topenloop_zn.m was used accordingly. 

The open loop step response is characterized by two main parameters, the L 

(delay time parameter) and T (time constant). These two parameters are computed 

by drawing tangents to the open loop step response at its point of inflections 

(basically two points. The inflection points are particularly done so that there 

would be an intersection with the vertical (voltage axis, which correlates with the 

steady-state value) and horizontal (time axis) axes. 
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Based on the Ziegler-Nichols, the following were derived to obtain the control 

parameters based on the required model: 
 
 

 PID Type 𝐾𝐾𝑃𝑃 𝑇𝑇𝐼𝐼 =
𝐾𝐾𝑃𝑃
𝐾𝐾𝐼𝐼

 𝑇𝑇𝐷𝐷 =
𝐾𝐾𝐷𝐷
𝐾𝐾𝑃𝑃

 

1. P 𝑇𝑇
𝐿𝐿

 ∞ 0 

2. PI 0.9× 𝑇𝑇
𝐿𝐿
 𝐿𝐿

0.3
 0 

3. PID 1.2× 𝑇𝑇
𝐿𝐿
 2 × 𝐿𝐿 0.5× 𝐿𝐿 

 

Table 9.2 – Ziegler-Nichols PID controller parameters model [10] 

 

 
 

Figure 9.23 – Ziegler-Nichols step response tuning method [10] 

 

From the figure 9.23, the target is on how to evaluate the two parameters (L and 

T) needed. This is done as follows with the illustration. 
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topenloop_zn.m 
 

 
 

% 
% Start of code 
% 
% includes constant parameters 
clear 
close all 
  
%motor constants 
constants 
  
% includes evaluated constants 
evaluatedconstants 
  
% Transfer function 
G = tf([1/Ke],[tm*te tm 1]); 
  
% Plots the Step Response diagram 
figure; 
step(G, 0.5); 
title('Open Loop Step Response diagram'); 
xlabel('Time, secs') 
ylabel('Voltage, volts') 
%grid on; 
  
format long 
load openloop.mat 
coeff_x=polyfit([6 10 12],openloop(2,[6 10 12]),1) 
coeff_y=polyfit([700:900],openloop(2,[700:900]),1) 
  
for n=1:100 
    zn_line_x(n)=coeff_x(1)*n+coeff_x(2); 
end 
  
for n=1:900 
    zn_line_y(n)=coeff_y(1)*n+coeff_y(2); 
end 
  
figure(2) 
hold on 
plot(openloop(2,:),'red') 
plot(zn_line_x); 
plot((zn_line_y), 'green'); 
legend('1step response','line'); 
grid on 
axis([0 400 0 14]); 
l=length(openloop(2,:)) 
L_samples=roots(coeff_x) 
  
%inflecton_point=intersect(zn_line_x,zn_line_y) 
[a,b,c]=intersect(zn_line_x,zn_line_y) 
  
% End of code 
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Figure 9.24 – Ziegler-Nichols open step response plot computation 

 

 
Figure 9.25 – Ziegler-Nichols open step response horizontally zoomed 

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

Time, secs

V
ol

ta
ge

, v
ol

ts

Ziegler-Nichols Open Loop Step Response diagram

 

 
step response
line intercept with t, axis
line intercept with voltage, axis

3.75 3.8 3.85 3.9 3.95 4 4.05 4.1 4.15 4.2

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Time, secs

V
ol

ta
ge

, v
ol

ts

Ziegler-Nichols Open Loop Step Response diagram

 

 
step response
line intercept with t, axis
line intercept with voltage, axis



58 
 

 
Figure 9.26 – Ziegler-Nichols open step response vertically zoomed 

 

Therefore, from the figure 9.24, figure 9.25 and figure 9.26, the values of the L 

and T could be computed as follows: 
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L = 4.1; 

K = 13.1101; 

T = T* – L = 4.1 = 42.7987 - 38.6987 ≈ 38.70 

This implies that we have: 

L = 0.0041; 

K = 13.1101; 

T = 0.0387 

42.7987 42.7987 42.7987 42.7987 42.7987 42.7987 42.7987

13.1101

13.1101

13.1101

13.1101

13.1101

13.1101

13.1101

Time, secs

V
ol

ta
ge

, v
ol

ts

Ziegler-Nichols Open Loop Step Response diagram

 

 
step response
line intercept with t, axis
line intercept with voltage, axis



59 
 

With the above computation, the P, PI and PID computation was done to get the 

best suited parameters combination desired. 

So the updated table 9.1 would be table 9.2 shown below: 
 

 PID Type 𝐾𝐾𝑃𝑃 𝑇𝑇𝐼𝐼 =
𝐾𝐾𝑃𝑃
𝐾𝐾𝐼𝐼

 𝑇𝑇𝐷𝐷 =
𝐾𝐾𝐷𝐷
𝐾𝐾𝑃𝑃

 

1. P 9.439 ∞ 0 

2. PI 8.495 0.0137 0 

3. PID 11.327 0.0082 0.00205 

 

Table 9.3 – Results of the Ziegler-Nichols method for PID controller parameters 

 
From table 9.2, the following parameters are obtained based on the equation 

format (from equation 7.3 above) to become equation 9.1 below: 

 

For P only, 

 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 = 9.439 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 (9.1)  

For PI only, 

 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 = 8.495 +
620.07
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 (9.2)  

For PID only, 

 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

+ 𝐾𝐾𝐷𝐷 ∙ 𝑠𝑠 = 11.327 +
1381.34

𝑠𝑠
+ 0.0232 ∙ 𝑠𝑠 (9.3)  

 

Using the figure 9.1 (above) and m-file tclosedloopP_zn.m, 

tclosedloopPI_zn.m and tclosedloopPID_zn.m, the outputs of the 

various PID combinations could be obtained as given below: 
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tclosedloopP_zn.m 
 

 

%start of code 
clear 
close all 
  
% includes constant parameters 
constants 
% includes evaluated constants 
evaluatedconstants 
  
num = 1/Ke; 
den = [tm*te tm 1]; 
  
% assumed Kp = 10 
Kp = 9.439; 
numa = Kp * num; 
dena = den; 
  
% For the closed-loop transfer function, the following is obtained 
% numac and denac used for the overall closed transfer function in 
this case 
[numac, denac] = cloop(numa, dena); 
  
% Plotting the new step-response 
t = 0:0.00001:0.005 
step(numac, denac, t);      % across 0.01 seconds timing 
title('Closed step response with proportion, P control; Kp = 
9.439'); 
xlabel('Time, [s]') 
ylabel('Voltage, [volts]') 
grid on; 
 
% New G1 for overall closed loop trasnfer function 
G1 = tf(numac, denac); 
  
% plots the Root-locus 
figure; 
rlocus(G1); 
title('Closed Loop Root Locus diagram'); 
grid on; 
  
% plots the Nyquist diagram 
figure; 
nyquist(G1); 
title('Closed Loop Nyquist diagram'); 
grid on; 
  
% plots the Bode Plot 
figure; 
bode(G1,{0.1 , 100}) 
title('Closed Loop Bode plot diagram with wider frequency 
spacing'); 
grid on; 
 
%end of code 
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Figure 9.27 – P output for the Ziegler-Nichols tuning method 

 

 
Figure 9.28 – P output for the Ziegler-Nichols tuning method root locus output 
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Figure 9.29 – P output for the Ziegler-Nichols tuning method Bode plot output 
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tclosedloopPI_zn.m 
 

 
 

% Start of code 
clear 
close all 
% includes constant parameters 
constants 
% includes evaluated constants 
evaluatedconstants 
num = 1/Ke; 
den = [tm*te tm 1]; 
  
%Ziegler-Nichol tuning parameter Kp and Ki 
Kp = 8.495; 
Ki = 620.07; 
  
% For the PI equation 
numc = [Kp Ki]; 
denc = [1 0]; 
% convule "num with numc" and "den with demc" 
numa = conv(num, numc); 
dena = conv(den, denc); 
  
% For the closed-loop transfer function, the following is obtained 
% numac and denac used for the overall closed tranfer function in 
this case 
[numac, denac] = cloop(numa, dena); 
  
% Plotting the new step-response 
t = 0:0.00001:0.005 
step(numac, denac, t);      % across 0.01 seconds timing 
title('Closed step response with proportion, P control; Kp = 8.495 
and Ki = 620.07'); 
xlabel('Time, [s]') 
ylabel('Voltage, [volts]') 
grid on; 
  
% New G1 for overall closed loop trasnfer function 
G1 = tf(numac, denac); 
% plots the Root-locus 
figure; 
rlocus(G1); 
title('Closed Loop Root Locus diagram'); 
grid on; 
% plots the Nyquist diagram 
figure; 
nyquist(G1); 
title('Closed Loop Nyquist diagram'); 
grid on; 
% plots the Bode Plot 
figure; 
bode(G1,{0.1 , 100}) 
title('Closed Loop Bode plot diagram with wider frequency 
spacing'); 
grid on; 
%end of code 
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Figure 9.30 – PI output for the Ziegler-Nichols tuning method 
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tclosedloopPID_zn.m 
 

 

% Start of code 
% includes constant parameters 
constants 
% includes evaluated constants 
evaluatedconstants 
num = 1/Ke; 
den = [tm*te tm 1]; 
  
%Ziegler-Nichols parameter computed 
Kp = 11.327;    %Proportional gain 
Ki = 1381.34;   %Integral gain 
Kd = 0.0232;    %Derivative gain 
 
% For the PID equation 
numc = [Kd Kp Ki ]; 
denc = [1 0]; 
  
% convule "num with numc" and "den with demc" 
numa = conv(num, numc); 
dena = conv(den, denc); 
  
% For the closed-loop transfer function, the following is obtained 
% numac and denac used for the overall closed tranfer function in 
this case 
[numac, denac] = cloop(numa, dena); 
 
% Plotting the new step-response 
t = 0:0.00001:0.3; 
step(numac, denac, t);      % across 0.01 seconds timing 
title('Closed loop step response for ZN - Kp, Ki and Kd'); 
xlabel('Time, [s]') 
ylabel('Voltage, [volts]') 
%grid on; 
 
% New G1 for overall closed loop trasnfer function 
G1 = tf(numac, denac); 
 
% plots the Root-locus 
figure; 
rlocus(G1); 
title('Closed Loop Root Locus diagram'); 
grid on; 
% plots the Nyquist diagram 
figure; 
nyquist(G1); 
title('Closed Loop Nyquist diagram'); 
grid on; 
% plots the Bode Plot 
figure; 
bode(G1,{0.1 , 100}) 
title('Closed Loop Bode plot diagram with wider frequency 
spacing'); 
grid on; 
%% End of code 
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Figure 9.31 – Auto-scaled PID output for the Ziegler-Nichols tuning method 

 
Figure 9.32 – Auto-scaled PID output for the Ziegler-Nichols tuning method 
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Figure 9.33 – PID Ziegler-Nichols tuning method Root locus diagram 

 
Figure 9.34 – PID Ziegler-Nichols tuning method Nyquist diagram 
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Figure 9.35 – PID Ziegler-Nichols tuning method Bode plot diagram 
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UpdatedPPIPID_znj.m 
 

 
 

% 
% Start of code 
% 
clear 
close all 
  
% includes constant parameters 
constants 
% includes evaluated constants 
evaluatedconstants 
num = 1/Ke; 
den = [tm*te tm 1]; 
  
  
%----P starts 
% assumed Kp = 10 
Kp1 = 9.439; 
numa1 = Kp1 * num; 
dena1 = den; 
  
% For the closed-loop transfer function, the following is obtained 
% numac and denac used for the overall closed tranfer function in 
this case 
[numac1, denac1] = cloop(numa1, dena1); 
%----P ends 
  
%----PI Starts 
%Ziegler-Nichols parameter computed 
%Ziegler-Nichol tuning parameter Kp and Ki 
Kp2 = 8.495; 
Ki2 = 620.07; 
  
% For the PI equation 
numc2 = [Kp2 Ki2]; 
denc2 = [1 0]; 
  
% convule "num with numc" and "den with demc" 
numa2 = conv(num, numc2); 
dena2 = conv(den, denc2); 
  
% For the closed-loop transfer function, the following is obtained 
% numac and denac used for the overall closed tranfer function in 
this case 
[numac2, denac2] = cloop(numa2, dena2); 
%----PI ends 
  
%----PID Starts 
%Ziegler-Nichols parameter computed 
Kp3 = 11.327;    %Proportional gain 
Ki3 = 1381.34;   %Integral gain 
Kd3 = 0.0232;    %Derivative gain 
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UpdatedPPIPID_znj.m (contd.) 
 

 
 

 

 

% For the PID equation 
numc3 = [Kd3 Kp3 Ki3 ]; 
denc3 = [1 0]; 
  
% convule "num with numc" and "den with demc" 
numa3 = conv(num, numc3); 
dena3 = conv(den, denc3); 
  
% For the closed-loop transfer function, the following is obtained 
% numac and denac used for the overall closed tranfer function in 
this case 
[numac3, denac3] = cloop(numa3, dena3); 
%----PID ends 
  
% Plotting the new step-response 
t = 0:0.00001:0.3; 
  
% New G1 for overall closed loop transfer function 
G1 = tf(numac1, denac1); 
  
G2 = tf(numac2, denac2); 
  
G3 = tf(numac3, denac3); 
  
% Plots the Step Response diagram 
figure; 
hold on 
step(G1, t); 
hold on 
step(G2, t); 
hold on 
step(G3, t); 
legend('P', 'PI', 'PID'); 
title('Closed Loop PID ZN step response generated for P, PI and 
PID combinations'); 
xlabel('Time, [s]') 
ylabel('Voltage, [volts]') 
% End of code 
 



71 
 

 
Figure 9.36 – Closed loop PID response for P, PI and PID with t-max=0.01s 

 

 
Figure 9.37 – Closed loop PID response for P, PI and PID with t-max=0.03 
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Figure 9.38 – Closed loop PID response for P, PI and PID with t-max=0.1 

 
Figure 9.39 – Closed loop PID response for P, PI and PID with t-max=0.3 
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Figure 9.40 – Closed loop PID response for P, PI and PID (1st Zoom) 

 
Figure 9.41 – Closed loop PID response for P, PI and PID (2nd Zoom) 
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Figure 9.42 – Closed loop PID response for P, PI and PID (3rd Zoom) 
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UpdatedPPIPID_TErrznj.m 
 

 
 
 
 

 

 

% 
% Start of code 
% 
clear 
close all 
  
% includes constant parameters 
constants 
% includes evaluated constants 
evaluatedconstants 
num = 1/Ke; 
den = [tm*te tm 1]; 
  
%Trial and Error PID parameters part 
TErrorPID 
%Ziegler-Nichols PID parameters part 
ZNPIDcomp 
  
% Plotting the new step-response 
t = 0:0.00001:0.03; 
  
% New G for overall closed loop transfer function 
GZN = tf(numacZN, denacZN); 
  
GTErr = tf(numacTErr, denacTErr); 
  
% Plots the Step Response diagram 
figure; 
hold on 
step(GZN, t); 
hold on 
step(GTErr, t); 
  
legend('Trial and Error PID', 'Ziegler-Nichols PID'); 
title('Closed Loop PID for Trial and Error/Ziegler-Nichols step 
response output for PID'); 
xlabel('Time, [s]') 
ylabel('Voltage, [volts]') 
% End of code 
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Figure 9.43 – Closed loop response for Trial and Error/Ziegler-Nichols tuning 

methods 

 
Figure 9.44 – Closed loop response for Trial and Error/Ziegler-Nichols tuning 

methods (1st zoomed) 
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Figure 9.45 – Closed loop response for Trial and Error/Ziegler-Nichols tuning 

methods (2nd zoomed, right side) 

 
Figure 9.46 – Closed loop response for Trial and Error/Ziegler-Nichols tuning 

methods (3rd zoomed, left side, with t-max=0.03)  
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10 FOOTBALL PITCH LAYOUT MODEL 

10.1 Dimensions of the Pitch 

The football pitch model serves as the background for the main plot of the 

trajectory path of the robot wheel. The basic dimensions (in millimetres) used are 

given below and are scaled down to metres in the model plot. 

 

 Part Label Dimension (mm) 

1. Length 6050 

2. Width 4050 

3. Centre circle (radius) 500 

 

Table 10.1 – Dimensions of the Football pitch layout model 

The figure 10.1 below shows the main target design based on the Laws of the 

F180 League 2009 [12]. The needed design for the thesis is the main pitch shown 

in white lines. 

 

 
Figure 10.1 – Dimension of the standard pitch required [12] 
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10.2 Football pitch MATLAB design implementation 

The figure 10.2 shows the full part label of the football pitch layout. But the main 

target design is shown in figure 10.1. This follows with the m-files used to 

generate the whole pitch layout robotpatternUpdated.m, 

newFieldSpec.m, robotBlockpart.m, 

semiCircleBottomLeft.m, semiCircleBottomRight.m, 

semiCircleTopLeft.m, semiCircleTopRight.m and testcir2.m 

(for centre circle plot) used to generate the actual design and shown in figure 10.2. 

The output football pitch generated is given under figure 10.3 below. 

 

 
Figure 10.2 – Part label of the Football pitch layout model 
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testcir2.m 
 

 
 

semiCircleBottomLeft.m 
 

 
 

  

%draw circle code 
%resolution of plot 
t2 = linspace(2*pi, 3*pi/2,100000);  
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0) 
cirX2=0;  
cirY2=18.50;  
  
%radius of the centre circle, 500mm=5m 
r=5; 
  
%circle dual equations 
x2 = r*cos(t2)+cirX2;                    
y2 = r*sin(t2)+cirY2;                    
  
plot(x2, y2, 'Color', 'black') 
  
%end of code 
 
 

%draw circle code 
%resolution of plot 
t = linspace(0,2*pi,100000);  
  
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0) 
cirX=30.25;  
cirY=20.25;  
  
%radius of the centre circle, 500mm=5m 
r=5; 
  
%circle dual equations 
x = r*cos(t)+cirX;                    
y = r*sin(t)+cirY;                    
  
plot(x,y, 'Color','black');                        
%end of code 
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semiCircleBottomRight.m 
 

 
 

semiCircleTopLeft.m 
 

 
 

  

%draw circle code 
%resolution of plot 
t1 = linspace(0, pi/2,100000);  
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0) 
cirX1=0;  
cirY1=22.00;  
  
%radius of the centre circle, 500mm=5m 
r=5; 
  
%circle dual equations 
x1 = r*cos(t1)+cirX1;                    
y1 = r*sin(t1)+cirY1;                    
  
plot(x1, y1, 'Color', 'black') 
  
%end of code 
 

%draw circle code 
%resolution of plot 
t3 = linspace(pi, 3*pi/2,100000);  
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0) 
cirX3=60.50;  
cirY3=18.50;  
  
%radius of the centre circle, 500mm=5m 
r=5; 
  
%circle dual equations 
x3 = r*cos(t3)+cirX3;                    
y3 = r*sin(t3)+cirY3;                    
  
plot(x3, y3, 'Color', 'black') 
  
%end of code 
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semiCircleTopRight.m 
 

 
 
robotpatternUpdated.m 
 

 

%refreshes figures for new ones 
clear  
close all 
  
%activities needed on the robot field layout 
  
%test plot sample 
%--------------------------------------------- 
%--------------------------------------------- 
len=100; 
robot=zeros(1,len); 
  
%start position 
X(1)=-40; 
Y(1)=-40; 
  
%move to cordinates 
x_goal=0; 
y_goal=0; 
  
% 
%just something to plot 
%this will be for the actual robot movement path 
% 
for n=1:len 
    robot(n)=sin(n)+10; 
end 
% 
  
%plot robot movement 
hold on 
plot(robot, 'Color', 'red') 
  
%plot the robot pitch layout 
newFieldSpec 
 

%draw circle code 
%resolution of plot 
t4 = linspace(pi/2, pi, 100000);  
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0) 
cirX4=60.50;  
cirY4=22.00;  
%radius of the centre circle, 500mm=5m 
r=5; 
%circle dual equations 
x4 = r*cos(t4)+cirX4;                    
y4 = r*sin(t4)+cirY4;                    
plot(x4, y4, 'Color', 'black') 
%end of code 
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Figure 10.3 – Generated football pitch model using 

robotpatternUpdated.m 
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11 ROBOT 4-WHEEL MOTOR MODEL TRAJECTORY 

PLANNING 

This part involves the cascaded arrangement of all the four wheels with 

connection to the corresponding system blocks affecting the overall performance 

of the robot path movement. The block arrangement used is as shown in figure 

11.1 below: 

After the necessary planning was done, the path simulation would be done on the 

football model developed with the MATLAB. 
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Figure 11.1 – Full robot implementation block 
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The robot wheels have the following wheel arrangement as shown in figure below 

figure 11.3 below: the wheels motors are in an asymmetrical arrangement; this is a 

prototype drawing from the figure 11.2. With radian evaluation, the angles p1, p2, 

p3 and p4 are related to the angle of the wheel axis – 53O, 53O, 45O, and 45O. The 

whole evaluations as regards this were done in the codes – 

robotBlockpart.m, robotControllLogic.m, veloToWheel.m, 

wheelPIDs.m, and speedToXY.m  based on figure 11.1 implementation 

plan. 

 

 
Figure 11.2 – An extract from “Omnidirectional control” [13] 
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Figure 11.3 – Asymmetrical robot wheel arrangement based on the 

Omnidirectional robot control 



87 
 

robotTrajectoryPlan.m 
 

 

%plots robot trajectory path 
clear  
close all 
len=100; 
robot=zeros(1,len); 
  
X=zeros(1,100);Y=zeros(1,100); 
  
%start position 
X(1)=25;Y(1)=25; 
a1(1)=0;a2(1)=0;a3(1)=0;a4(1)=0; 
a1(2)=0;a2(2)=0;a3(2)=0;a4(2)=0; 
a1(3)=0;a2(3)=0;a3(3)=0;a4(3)=0; 
  
%move to cordinates 
x_goal=0;y_goal=0; 
  
n=1;k=3; 
robotGain=0.00001; 
  
%inlcudes motor constants 
constants 
% includes evaluated constants 
evaluatedconstants 
  
num = 1/Ke; 
den = [tm*te tm 1]; 
  
%Ziegler-Nichols parameter computed 
Kp = 11.327;    %Proportional gain 
Ki = 1381.34;   %Integral gain 
Kd = 0.0232;    %Derivative gain 
% For the PID equation 
numc = [Kd Kp Ki ]; 
denc = [1 0]; 
  
% convule "num with numc" and "den with demc" 
numa = conv(num, numc); 
dena = conv(den, denc); 
  
sys = tf(numa,dena,1/1000); 
  
integrationSums=[0, 0, 0, 0]; 
  
% robot block parts 
robotBlockpart 
  
%plot robot movement 
hold on 
plot(X,Y); 
  
%plot the robot pitch layout 
newFieldSpec 
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robotBlockpart.m 
 

 
 
This will take the main part of the planning and trajectory simulation 
 

while n==1 
    %done? 
    %robot control logic - BLOCK 1 
    [Vx(k),Vy(k),Vp(k)]=robotControlLogic(X(k-1),Y(k-
1),x_goal,y_goal,robotGain); 
     
    %Done 
    %transformation block  - BLOCK 2 
    %transformation matrix from velocity vector to wheelspeeds 
    [w1(k),w2(k),w3(k),w4(k)] = veloToWheel(Vx(k),Vy(k),Vp(k),X(k-
1),Y(k-1)); 
     
    %Done 
    %Wheel PIDs - BLOCK 3 
    %the idividual PID controllers for the wheels including 
wheelmotor model 
    temp=integrationSums; 
    oldArray=[a1(k-1),a2(k-1),a3(k-1),a4(k-1)]; 
    oldoldArray=[a1(k-2),a2(k-2),a3(k-2),a4(k-2)]; 
    
[a1(k),a2(k),a3(k),a4(k),integrationSums]=wheelPIDs(w1(k),w2(k),w3
(k),w4(k),temp,oldArray,oldoldArray); 
  
    %motor model 
 
    %Done 
    %robot position - BLOCK 4 
    %converts actual wheel motor speed to robot X Y position 
    [X(k),Y(k)]=speedToXY(a1(k),a2(k),a3(k),a4(k),X(k-1),Y(k-1)); 
     
    %check if close enough to the goal coordinates 
    if abs(X(k)-x_goal)<0.1%% && abs(Y(k)-y_goal)<0.1 
        n=0; 
    end 
    if abs(Y(k)-y_goal)<0.1%% && abs(Y(k)-y_goal)<0.1 
        n=0; 
    end 
     
    if abs(X(k))>41 
        n=0; 
    end 
    if abs(Y(k))>41 
        n=0; 
    end 
    if k>99 
        n=0; 
    end 
    %increment loop index 
    k=k+1;    
end 
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robotControlLogic.m 
 

 

 
wheelPIDs.m 
 

 

 
 
  

function 
[a1,a2,a3,a4,intSums]=wheelPIDs(w1,w2,w3,w4,intSumsIn,y_old,y_oldo
ld) 
    %actual PIDs here     
    %Ziegler-Nichols parameter computed 
    Kp = 11.327;    %Proportional gain 
    Ki = 1381.34;   %Integral gain 
    Kd = 0.0232;    %Derivative gain 
    
    inputs=[w1, w2, w3, w4]; 
  
    %certainty problem 
    for n=1:4 
        PIDin=inputs(n); 
        sumIn=intSumsIn(n); 
         
        [y,sumOut]=myPID(PIDin,y_old(n),y_oldold(n),sumIn); 
         
        intSums(n)=sumOut; 
        outputs(n)=y; 
    end 
         
    a1=outputs(1);  
    a2=outputs(2);  
    a3=outputs(3);  
    a4=outputs(4); 
end 
 

function [Vx,Vy,Vp]=robotControlLogic(X,Y,x_goal,y_goal,k) 
    
    Mag_x=x_goal-X; 
    Mag_y=y_goal-Y; 
  
    M=sqrt(Mag_x^2+Mag_y^2); 
     
    Vx=k*Mag_x/M; 
    Vy=k*Mag_y/M; 
    Vp=0; 
  
end 
 



90 
 

speedToXY.m 
 

 

 
  

function [X,Y]=speedToXY(a1,a2,a3,a4,Xold,Yold) 
%Calculate X Y position based on actual wheelspeeds since last 
sample 
% |W1|    |Vx| 
% |W2| -> |Vy| 
% |W3|    |Vp|   
% |W4| 
  
%Angle of each wheel in Rad, these angles does not change in this 
simulation 
p1=2.49582083; %143 deg 
p2=3.92699082; %225 deg 
p3=5.49778714; %315 deg 
p4=0.645771823; %37 deg  
  
%Co-ordinates of each wheel in Meter 
[x1,x2,x3,x4,y1,y2,y3,y4]=wheelsXYfromXY(Xold,Yold,p1,p2,p3,p4); 
  
  if 1 
       
  %actual wheel speeds...     
  W=[a1, a2, a3, a4]; 
  %transformation matrix 
  A=[cos(p1),sin(p1),(-y1*cos(p1)+x1*sin(p1)),1; 
       cos(p2),sin(p2),(-y2*cos(p2)+x2*sin(p2)),1; 
       cos(p3),sin(p3),(-y3*cos(p3)+x3*sin(p3)),1; 
       cos(p4),sin(p4),(-y4*cos(p4)+x4*sin(p4)),1]; 
  inversA=inv(A); 
  else 
       
  %actual wheel speeds… 
  W=[a1, a2, a3]; 
  A=[cos(p1),sin(p1),(-y1*cos(p1)+x1*sin(p1)); 
       cos(p2),sin(p2),(-y2*cos(p2)+x2*sin(p2)); 
       cos(p3),sin(p3),(-y3*cos(p3)+x3*sin(p3)); 
       cos(p4),sin(p4),(-y4*cos(p4)+x4*sin(p4))]; 
  inversA=inv(A); 
  end 
  %use the inverse of A here since matrix division is not allowed 
    
  B=W*inversA; 
  
%?? 
X=Xold+B(1); 
Y=Yold+B(2); 
%rotation=B3(3); this is not needed if rotation is omitted 
end 
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veloToWheel.m 
 

 
 

function [w1,w2,w3,w4] = veloToWheel(Vx,Vy,Vp,X,Y) 
%Calculate the individual wheelspeed based on the three component  
%vector velocity of the robot 
%|Vx|    |W1| 
%|Vy| -> |W2| 
%|Vp|    |W3| 
%        |W4| 
%Desired speed vectors 
 
%Angle of each wheel in Rad 
p1=2.49582083; %143 deg 
p2=3.92699082; %225 deg 
p3=5.49778714; %315 deg 
p4=0.645771823; %37 deg  
  
%Co-ordinates of each wheel in Meter 
[x1,x2,x3,x4,y1,y2,y3,y4]=wheelsXYfromXY(X,Y,p1,p2,p3,p4); 
  
if 0 
    %Wheel 1 
    x1=0.0677;y1=0.0511; 
  
    %Wheel 2 
    x2=-0.0599;y2=0.0596; 
  
    %Wheel 3 
    x3=-0.0599;y3=-0.0596; 
  
    %Wheel 4 
    x4=0.0677;y4=-0.0511; 
end 
  
%Transformation Matrix 
A=[cos(p1),sin(p1),(-y1*cos(p1)+x1*sin(p1)); 
   cos(p2),sin(p2),(-y2*cos(p2)+x2*sin(p2)); 
   cos(p3),sin(p3),(-y3*cos(p3)+x3*sin(p3)); 
   cos(p4),sin(p4),(-y4*cos(p4)+x4*sin(p4));]; 
  
%3 component vector matrix 
B=[Vx;Vy;Vp]; 
W=(A*B); %Matrix solution giving result for velocity of each wheel 
w1=W(1); 
w2=W(2); 
w3=W(3); 
w4=W(4); 
end 
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Figure 11.4 – The output of the robot path plotting 

The blue line in figure 11.4 shows the planned path of the robot trajectory. 
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12 CONCLUSION, CHALLENGES AND 

RECOMMENDATION 

12.1 Conclusion 

In this work, the PID controller was used as a vital technical tool used in system 

modelling and control. It started with the analysis and reasons why an absolute 

précised control is important in drives particularly the BLDC motors and then the 

mathematical modelling. Also, the use of the MATLAB®/SIMULINK® to develop 

the robot football pitch model and the trajectory planning were additional parts to 

this work. 

 

12.2 Challenges 

Some of challenges faced include: the intensive study of 

MATLAB®/SIMULINK® and the various modelling techniques. More also, the 

knowledge of mathematical methods was needed to enhanced my modelling 

ability in this thesis as it required more mathematical skills. In additional, some of 

areas of control systems engineering had to be studied to have a blend of 

understanding in the areas of system stability. And one major challenging part 

was the aspect of model the path of the robot from one point to another. This part 

required some advanced mathematical skills which could not be implemented. A 

straight path was gotten in the trajectory simulation. 

 

12.3 Recommendations – Possible improvement 

This work could be improved by incorporating the hardware testing and possible 

laboratory testing. Also, to have a more précised PID parameters, new methods of 

PID tuning (the use of genetic algorithms) could be employed for optimal values. 

In addition to the use of PID controller, another instance of Single-Input-Single-

Output (SISO) could be used under the MATLAB versatile toolbox. 

More also, the real testing and program implementation of the BLDC motor could 

be harnessed by using the MATLAB®/SIMULINK® utilities and being able to 
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incorporate C-programming with the microcontroller. And more technical 

resources should be available to the student for proper execution of the work. 
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The use of the general type dc motors has its long history. It has been used in the industries for many years now. They provide simple means and precise way of control [1]. In addition, they have high efficiency and have a high starting torque versus falling speed characteristics which helps high starting torque and helps to prevent sudden load rise [2]. But with such characteristics, the dc motors have some deficiencies that needed to be attended to which gave rise to design of some other alternative types of dc motors. For example, the lack of periodic maintenance, mechanical wear outs, acoustic noise, sparkling, brushes effects are some of the problems that were needed to overcome the defects in dc motors. As a result, emphatic studies have been made on synchronous dc motors with brushless commutators. So, current researches have been tailored towards developing brushless direct current motors, which are fast becoming alternatives to the conventional dc motor types. The BrushLess Direct Current (BLDC) motors are gaining grounds in the industries, especially in the areas of appliances production, aeronautics, medicine, consumer and industrial automations and so on.

The BLDC are typically permanent synchronous motors, they are well driven by dc voltage. They have a commutation that is done mainly by electronics application.

Some of the many advantages of a brushless dc motor over the conventional “brushed dc motors are highlighted below [3]:

1. Better speed versus torque characteristics

2. High dynamic response

3. High efficiency

4. Long operating life

5. Noiseless operation

6. Higher speed ranges

7. Low maintenance (in terms of brushes cleaning; which is peculiar to the brushed dc motors).

Another vital advantage is that the ratio of torque delivered to the size of the motor is higher, and this contributes to its usefulness in terms of space and weight consideration.

The BLDC motors come in different phases, for example, single phase, double-, and triple- types. In depth discussion would not be made in this regards, but the most commonly used of all these is the three phase type.

For this purpose, a brief perspective will be considered on how the BLDC motors could be compensated in terms of control and stability. Therefore, this report would presents a theoretical background of DC and BLDC motors, design of simple model of basic DC motors tailored towards developing a BLDC motor model. In addition, a brief introduction of a very essential tool of stability determinant would also be discussed under “PID auto-tuning”. Thereafter, a MATLAB®/SIMULINK® model of the BLDC motor would also be reported accordingly. 

The PID controller is applied in various fields of engineering, and it is also a very important tool in telecommunication system. If there is a system and stability is desired, then PID could be very useful.

A simple systematic approach to these tasks is given in chapter format as given below. The chapters 2 and 3 present the “DC motor and design concepts” while chapter 4 gives a brief introduction into the Brushless DC motor and its model concept. It also elaborates the basic concept of their mathematical representations in simple format. The particular BLDC motor used is a maxon motor and chapters 5 – 7 present the whole modelling idea of this specific motor and the open loop response analysis was also included as part of the pre-analysis needed for the subsequent control. 

Also, the idea of the PID (Proportional-Integral-Derivative) controller and its design concepts, control mechanism and tuning methods are presented under chapters 8 and 9.

Chapters 10 – 12 present the work done on the robot trajectory planning and simulation. The chapter 10 was used to elaborate the required standard football pitch layout model; chapter 11, for the analysis and computation for the robot four-wheeled motors and the chapter 12 gives the planning stages and corresponding coding schemes.

The results analysis and discussion is presented under the 13th chapter; and finally the chapter fourteen focuses on the conclusion, challenges and recommendation and possible improvement needed in future works.
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A brief illustration and mathematical representation of DC motors will be discussed in the section based on the general concepts of electromagnetic induction. 



The DC motors are made of a number of components; some of which are [1]:

1. Frame

2. Shaft

3. Bearings

4. Main field windings (Stator)

5. Armature (Rotor)

6. Commutator

7. Brush Assembly[footnoteRef:1] [1:  This is a major difference between the DC and the BLDC motors] 


The most important part of these components that needs detail attention is the main field and the rotating windings (the stator and the rotor respectively).







[bookmark: _Ref247392853][bookmark: _Toc248224065]Figure 2.1 – Sectional illustration of a DC motor [2]



As shown in figure 2.1, the stator is formed by the metal carcass with a permanent magnet enclosure which a magnetic field inside the stator windings. At one of the ends is the brush mountings and the brush gear which are used for electrical contacts with the armature (the rotor).

The field windings are mounted on the poles pieces to create electromagnetism. The strength of this electromagnetic field is determined by the extent of interaction between the rotor and the stator. Also, the brushes serve as the contact-piece for the commutator to provide electrical voltage to the motor. Consistent dirt on the commutator causes disruption in the supply of dc voltage, which creates a number of maintenance applications. This sometimes could lead to corrosion and sometimes sparks between the carbon made brushes and the commutator.

One of the major challenges is the control of the speed (speed precision); but this could be done by varying the applied voltage. Varying the supply voltage might involve the use of a variable resistor (or a rheostat) which will be connected in tandem with the armature to form a series connection. But this kind of arrangement is not efficient enough as a result of power dissipation. In recent times, solid state electronics has made its implication in this regard through the use of controlled rectifiers and choppers. This arrangement could be efficient as they are used for highly efficient varying dc voltage. In most cases, the most commonly used device is the thyristor (this allows for voltage variation by varying the firing angle of the thyristor in question) [4]. Consider the simple arrangement in figure 2.2.







[bookmark: _Ref247392913][bookmark: _Toc248224066]Figure 2.2 – A dc motor operation with a thyristor arrangement using the thyristor firing angle to vary the dc voltage [4].
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[bookmark: _Toc248224141]Mathematical model of a typical DC motor

A typical dc motor equivalent circuit is illustrated as shown in the circuit shown below in figure 3.1 and figure 3.2:





[bookmark: _Ref247392938][bookmark: _Toc248224067]Figure 3.1 – A typical DC motor equivalent electrical circuit.







[bookmark: _Ref247392961][bookmark: _Toc248224068]Figure 3.2 – A typical DC motor electromechanical system arrangement.



The basic component represented are the armature resistance, R and the armature inductance L; in addition, there is the back emf, e. From the in figure 3.1 and figure 3.2 above, the following equations are used to describe the relationship of operation.

Using the Kirchhoff’s Voltage Law, KVL, the following equation 3.1 is obtained:

		

		

		(3.1) 







At steady state (DC state of zero-frequency),  .

Therefore, for the non steady-state, equation 3.1 is rearranged to make provision for the back emf, as shown in equation 3.2 below:

		

		

		(3.2) 







Where, 

Source voltage



Similarly, considering the mechanical properties of the dc motor, from the Newton’s second law of motion, the mechanical properties relative to the torque of the system arrangement in figure 3.1 and figure 3.2 would be the product of the inertia load, J and the rate of angular velocity,  is equal to the sum of all the torques; these follow with equation 3.3 and 3.4 accordingly.

		

		

		(3.3) 



		

		

		(3.4) 





Where, 









,

Where the electrical torque and the back emf could be written as:

		

		 and 

		(3.5) 





Where,





Therefore, re-writing equations 3.2 and 3.3, the equation 3.6 and 3.7 are obtained,

		

		

		(3.6) 



		

		

		(3.7) 







Using Laplace transform to evaluate the two equations 3.6 and 3.7, the following are obtained appropriately (all initial conditions are assumed to be zero):

For equation 3.6,

		

		

		(3.8) 





This implies,

		

		

		(3.9) 





For equation 3.7,

		

		

		(3.10) 





This implies,

		

		

		(3.11) 





At no load (for  equation 3.11 becomes:

		

		

		(3.12) 





From equation 3.12, i is made the subject for a substitute into equation 3.9.

		

		

		(3.13) 



		

		

		(3.14) 







Equation 3.14 becomes:

		

		

		(3.15) 





And equation 3.15 finally resolved to 3.16:

		

		

		(3.16) 





The transfer function is therefore obtained as follows using the ratio of and the angular velocity,  to source voltage, Vs.

That is,

		

		

		(3.17) 





From these, the transfer function could be derived accordingly as follows:

That is,

		

		

		(3.18) 







Considering the following assumptions:

1. The friction constant is small, that is, , this implies that;

2. , and

3. 

And the negligible values zeroed, the transfer function is finally written as;

		

		

		(3.19) 







So by re-arrangement and mathematical manipulation on “JL”, by multiplying top and bottom of equation 3.19 by:





Equation 3.20 is obtained after the manipulation,

		



		

		(3.20) 







From equation 3.13, the following constants are gotten,

The mechanical (time constant),

		

		

		(3.21) 







The electrical (time constant),

		

		

		(3.22) 







Substituting the equations 3.21 and 3.22 into equation 3.20, it yields;

		

		

		(3.23) 
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One of the major differences between the DC motor and the BLDC is implied from the name. The conventional DC motor has brushes that are attached to its stator while the “brushless” DC motor does not. Also, unlike the normal DC motor, the commutation of the BLDC could be done by electronic control [3]. Under the BLDC motor, the stator windings are energised in sequence for the motor to rotate. More also, there is no physical contact whatsoever between the stator and the rotor. Another vital part of the BLDC is the hall sensor(s); these hall sensors are systematically attached to the rotor and they are used as major sensing device by the Hall Effect sensors embedded into the stator [3]. This works based on the principle of Hall Effect.

The BLDC motor operates in many modes (phases), but the most common is the 3-phase. The 3-phase has better efficiency and gives quite low torque. Though, it has some cost implications, the 3-phase has a very good precision in control [6]. And this is needful in terms of control of the stator current.
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Typically, the mathematical model of a Brushless DC motor is not totally different from the conventional DC motor. The major thing addition is the phases involved which affects the overall results of the BLDC model. The phases peculiarly affect the resistive and the inductive of the BLDC arrangement. For example, a simple arrangement with a symmetrical 3-phase and “wye” internal connection could give a brief illustration of the whole phase concept.







[bookmark: _Toc248224069]Figure 4.1 – Brushless DC motor schematic diagram



So from the equations 3.20 – 3.22, the difference in the DC and BLDC motors will be shown.

This difference will affect primarily the mechanical and electrical constants as they are very important parts of modelling parameters.

For the mechanical time constant (with symmetrical arrangement), equation 3.21 becomes:

		

		

		(4.1) 







The electrical (time constant),

		

		

		(4.2) 







Therefore, since there is a symmetrical arrangement and a three phase, the mechanical (known) and electrical constants become:

Mechanical constant,

		

		

		(4.3) 





Electrical constant,

		

		

		(4.4) 







Considering the phase effects,

		

		

		(4.5) 







Equation 4.5 now becomes:

		

		

		(4.6) 







Where  is the phase value of the EMF (voltage) constant;



Also, there is a relationship between  and ; using the electrical power (left hand side) and mechanical power (right hand side) equations; that is:













		

		



		(4.7) 





Where, 





Therefore, the equation for the BLDC can now be obtained as follow from equation 3.23 by considering the effects of the constants and the phase accordingly.

		

		



		(4.8) 
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[bookmark: _Toc248224145]Maxon EC 45 flat 45 mm, brushless DC motor

The BLDC motor provided for this thesis is the EC 45 flat 45 mm, brushless, 30 Watt from Maxon motors [8]. The order number of the motor is 200142. The parameters used in the modeling are extracted from the datasheet of this motor with corresponding relevant parameters used. Find below in Table 5.1 the major extracted parameters used for the modeling task. 



		

		Maxon Motor Data

		Unit

		Value



		

		Values at nominal voltage

		

		



		1

		Nominal Voltage

		V

		12.0



		2

		No load Speed

		rpm

		4370



		3

		No load Current

		mA

		151



		4

		Nominal Speed

		rpm

		2860



		5

		Nominal Torque (max. continuous torque)

		mNm

		59.0



		6

		Nominal Current (max. continuous current)

		A

		2.14



		7

		Stall Torque

		mNm

		255



		8

		Starting Current

		A

		10.0



		9

		Maximum Efficiency

		%

		77



		

		Characteristics

		

		



		10

		Terminal Resistance phase to phase

		Ω

		1.20



		11

		Terminal Inductance phase to phase

		mH

		0.560



		12

		Torque Constant

		mNm/A

		25.5



		13

		Speed Constant

		rpm/V

		37.4



		14

		Speed/Torque Gradient

		rpm/mNm

		17.6



		15

		Mechanical time constant

		ms

		17.1



		16

		Rotor Inertia

		gcm2

		92.5



		17*

		Number of phases

		

		3







[bookmark: _Toc248224172]Table 5.1 – BLDC motor parameters used [8]
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The mathematical model of the BLDC motor is modelled based on the parameters from table 5.1 using the equation 4.23. This is illustrated below:



		

		



		(6.1.) 





So the values for  need to calculated to obtain the motor model.

From equation 4.4,





		

		

		(6.2.) 





But  is a function of R, J,  and ,

Where,

R =  = 1.2 ;

= 92.5 gcm2 = 9.25  Kgm2;





From equation 4.6,  could be obtained:

That is,









Therefore, the G(s) becomes:





		

		



		(6.3.) 





The G(s) derived above in the equation 6.3 is the open loop transfer function of the Brushless DC maxon motor using all necessarily sufficient parameters available.




[bookmark: _Toc248224147]OPEN LOOP ANALYSIS OF THE MAXON MOTOR MODEL

The open loop analysis would be done using the MATLAB®/SIMULINK®. And the corresponding stability analysis is given likewise to see the effect thereafter when there is closed loop system incorporation.
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With the aid of the BLDC motor parameters provided, the open loop analysis is done by considering the stability factors and making the necessary plots for this analysis. Some of the plots include the step response, root locus, nyquist diagram, and bode plot diagram.

For this, separate m-files were created for the constants, evaluated constants and the main files

constants.m



 (
%
%
 Start of code
% Maxon flat motor parameters used in the modeling
%
% Characteristics parameters
R = 1.2;        
% Ohms, Terminal Resistance phase to phase
L = 0.560e-3;   
% Henrys, Terminal Inductance phase to phase
Kt = 25.5e-3;   
% Nm/A, Torque constant
Ks = 37.4       
% rpm/V, Speed constant
tm = 17.1e-3;   
% seconds, s, Mechanical Time constant
J = 92.5e-7;    
% kg.m^2, Rotor inertia, given in gcm^2
p = 3;          
% Number of phases
%
%
 End of code
)



evaluatedconstants.m



 (
%
%
 Start of code
%
% Evaluated parameters not given
%
constants
te = L/(p*R);               
% seconds, s, Electrical Time constant
Ke = (3*R*J)/(tm*Kt);       
% Back emf constant
%
 End of code
)

topenloop.m



 (
%
%
 Start of code
%
% includes constant parameters
constants
 
% includes evaluated constants
evaluatedconstants
 
% Transfer function
G = tf([1/Ke],[tm*te tm 1]);
 
% Plots the Step Response diagram
figure;
step(G, 0.5);
title(
'Open Loop Step Response diagram'
);
xlabel(
'Time, secs'
)
ylabel(
'Voltage, volts'
)
grid 
on
;
 
% plots the Root-locus
figure;
rlocus(G);
title(
'Open Loop Root Locus diagram'
);
grid 
on
;
 
% plots the Nyquist diagram
figure;
nyquist(G);
title(
'Open Loop Nyquist diagram'
);
grid 
on
;
 
% plots the Bode Plot
figure;
bode(G);
title(
'Open Loop Bode plot diagram 1'
);
grid 
on
;
 
% plots the Bode Plot
figure;
bode(G,{0.1 , 100})
title(
'Open Loop Bode plot diagram with wider frequency spacing'
);
grid 
on
;
 
% plots the Bode Plot
figure;
GD = c2d(G, 0.5)
bode(G,
'r'
, GD,
'b--'
)
title(
'Open Loop Bode plot diagram with discreti
s
ied response'
);
grid 
on
;
%
 End of code
)
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[bookmark: _Ref247393193][bookmark: _Toc248224070]Figure 7.1 – Open Loop Step Response
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[bookmark: _Toc248224071]Figure 7.2 – Open Loop Step Root Locus with Gain = 0, Overshoot % = 0 and Damping = 1 for both poles
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[bookmark: _Toc248224072]Figure 7.3 – Open Loop Step Nyquist Diagram
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[bookmark: _Toc248224073]Figure 7.4 – Open Loop Step Bode Plot Diagram
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Alternatively, the open loop step response could be done by using the SIMULINK tools as shown in figure 7.5 below.
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[bookmark: _Ref247393240][bookmark: _Toc248224074]Figure 7.5 – Open loop step response simulink arrangement

From the simulation of figure 7.5 and using a step input of at t=1, the following were obtained.
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[bookmark: _Toc248224075]Figure 7.6 – Step input for the open loop simulink arrangement (at t=1)
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[bookmark: _Toc248224076]Figure 7.7 – Open loop step response output for the simulink arrangement



With the step response moved to 0.05 for a better display, a joint output of the step input and open loop step response was simulated to give figure 7.8 below. This shows the effect of the system model on the step input.
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[bookmark: _Ref247431525][bookmark: _Toc248224077]Figure 7.8 – Combined step input and open loop step response span over t=0.5 s
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The Proportional-Integral-Derivative (PID) controller is about the most common and useful algorithm in control systems engineering [7]. In most cases, feedback loops are controlled using the PID algorithm. The main reason why feedback is very important in systems is to be able to attain a set-point irrespective of disturbances or any variation in characteristics of any form. 

The PID controller is always designed to correct error(s) between measured process value(s) and a particular desired set-point in a system. 

A simple illustration on how the PID works is given below:

Consider the characteristics parameters – proportional (P), integral (I), and derivative (D) controls, as applied to the diagram below in figure 8.1, the system, S is to be controlled using the controller, C; where controller, C efficiency depends on the P, I and D parameters [8].







[bookmark: _Ref247393123][bookmark: _Toc248224078]Figure 8.1 – A typical system with a controller [8]



The controller provides the excitation needed by the system and it is designed to control the overall behaviour of the system.

The PID controller has several categories of structural arrangements. The most common of these are the series and parallel structures and in some cases, there are the hybrid form of the series and the parallel structures.

The following shows the typical illustrative diagrams of common PID controller structures.

Typically, the function of the form shown in equation 8.1 is applicable in this kind of PID controller design.

		

		

		(8.1) 





[8].

Where,
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[bookmark: _Toc248224079]Figure 8.2 – PID parameters schematics



Considering the figure 8.1, variable, e is the sample error, and it is the difference between the desired input value, R and the actual output, Y. In a closed loop, e will be sent to the controller, and the controller will perform the integral and derivative computation on the error signal. Thereafter, the signal, u which is the output of the controller is now equal to the sum of [the product of proportional gain, KP and the magnitude of the error], [the product of the integral gain, KI and the integral of the error] and [the product of the derivative gain, KD and the derivative of the error].

That is, 

		

		

		(8.2) 







The signal value, u is sent continuously to the plant with every corresponding new output, Y being obtained as the process continues. The output, Y is sent back and subsequently new error signal, e is found and the same process repeats itself on and on.

Also, it is very typical to have the PID transfer function written in several forms depending on the arrangement structure. The following equation shows one of these (a parallel structure):



		

		

		(8.3) 





Where,









[bookmark: _Toc247087690][bookmark: _Toc248224151]Some characteristics effects of PID controller parameters

The proportional gain  will reduce the rise time and might reduce or remove the steady-state error of the system. The integral gain will eliminate the steady-state error but it might a negative effect on the transient response (a worse response might be produced in this case). And the derivative gain  will tend to increase the stability of the system, reducing overshoot percentage, and improving the transient response of the system. In all, the table below will give comprehensive effects of each of the controllers on a typical closed-loop system.





		Parameter

		Rise time

		Overshoot

		Settling time

		Steady-state error



		

		

		

		small change

		



		

		

		

		

		eliminate



		

		small change

		

		

		small change



		

		

		

		

		



		Legend

		

		Decrease

		

		



		

		

		Increase

		

		







[bookmark: _Toc248224173]Table 8.1 – PID controller parameter characteristics on a typical system [8]



The ability to blend these three parameters will make a very efficient and stable system. It should be noted that the relationship between the three controller parameters may not exactly be accurate because of their interdependency. Therefore, it is very possible to compute particular parameters which effects would be noticed on the other two.



[bookmark: _Toc247087691][bookmark: _Toc248224152]PID controller design tips

Designing a PID controller might require some of the following steps to obtain a more efficient and stable system [5]:

1. It is advisable to obtain the open-loop response of the system first and subsequently determine what to improve;

2. Add a proportional gain control to improve the rising time;

3. Then, add a derivative gain to improve the overshoot percentage;

4. And perhaps, add the integral control to eliminate the steady-state error;

5. Thereafter, adjust each of the parameters might be important to achieve an overall desired performance (or output).

And most importantly, all the three PID controller parameters might not be necessarily used in some cases. In most cases, the tuning stops at the PI – control combination.

More also, it should be noted that the major goal of the PID parameters is to obtain a fast rise time with minimum overshoot and no (almost no) steady-state error.






[bookmark: _Toc248224153]PID CONTROLLER TUNING PARAMETERS

Under this section a critical analysis would be done on the PID tuning criteria and the parameters involved. Before a detail analysis is done, a quick look at the tuning methods is considered first and thereafter, specific tuning parameters are computed for the BLDC maxon motor. Some of the generally used tuning methods are the Trial and Error method, the Ziegler-Nichols method (1st), Improved Ziegler-Nichols method (2nd), Cohen-Coon method, Genetic Algorithms and so on. For this work, the Ziegler-Nichols tuning method would be given a priority.

[bookmark: _Toc248224154]The PID arrangement

As a general form, a full schematic of the PID controller arrangement with the System model arrangement is displayed in figure 9.1 as a start for the tuning procedure.



[image: ]

[bookmark: _Ref247393274][bookmark: _Toc248224080]Figure 9.1 – PID Schematic for a full PID Controller with System model arrangement



The figure 9.1 is under no saturation, but the saturation is included in figure 9.2. Both figures would be used for our analysis.



[image: ]

[bookmark: _Ref247393303][bookmark: _Toc248224081]Figure 9.2 – PID Schematic for a full PID Controller (with saturation) and system model arrangement



For an initial computation, P, PI and PID would be considered in that order to observe the best part for the PID parameters to be obtained.



[bookmark: _Toc248224155]Trial and Error tuning methods

This method is crude but could help in getting an overview of what the PID parameters could be like and their effects on the whole system model. It is particularly time consuming because of its trial and format. But a computational stability rule was needed to set a mark for the trial and effect. This is done by using the Routh-Hurwitz stability rule as shown below. Under this, emphasis would be mainly on the PID combination.



[bookmark: _Toc248224156]The Routh-Hurwitz stability rule

From the various designs needed for this trial, a brief stability check is needed to make the trial and error at the first instance. It would be observed that the only design near the perfect (open-loop – which is without compensation or controller) is the PID. To have a more appropriate trial and error value, the following steps would be followed for only the PID structure.

From the PID controller equation 9.1,



		

		

		(9.1) 







Similarly,

		

		

		(9.2) 







This is used in the m-file tclosedloopPID_TrialError4.m and it is convuled with the motor model.

Keeping the KP part, with TI and TD set to infinity and zero respectively. A controller gain, KC could be obtained that would sustain the oscillation output. This value serves as the ultimate gain, KCU. For a proper oscillation, KC is set to be less than KCU.

Assumed the figure 9.9 below with a gain of KCU and the system model:



[image: ]

[bookmark: _Ref247434843][bookmark: _Toc248224082]Figure 9.3 – Trial and Error PID computation diagram



By obtaining the characteristics equation of the figure 9.9, a limiting gain could be obtained just before sustained oscillation and this is assumed as the KCU.




tclosedloopPID_TrialError4.m



 (
% Start of code
clear
close 
all
% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
 
num = [1/Ke];
den = [tm*te tm 1];
 
%Ziegler-Nichols parameter computed
Kp = 13.11;     
%Proportional gain
Ki = 0
%1310.6;         %Integral gain
Kd = 0
%0.0763;         %Derivative gain
% For the PID equation
numc = [Kd Kp Ki];
denc = [1 0];
 
% convule "num with numc" and "den with demc"
numa = conv(num, numc);
dena = conv(den, denc);
 
% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac, denac] = cloop(numa, dena);
% Plotting the new step-response
t = 0:0.00001:0.5;
step(numac, denac, t);      
% across 0.01 seconds timing
title(
'Closed loop step response for ZN - Kp, Ki and Kd'
);
xlabel(
'Time, [s]'
)
ylabel(
'Voltage, [volts]'
)
%grid on;
 
% New G1 for overall closed loop trasnfer function
G1 = tf(numac, denac);
% End of code
)





Therefore, we have:



		

		

		(9.3) 







		

		

		(9.4) 







Equation 9.4 becomes,

		

		

		(9.5) 







So for stability purposes, KCU’s range of values could be obtained by using the Routh-Hurwitz condition of stability. This is computed below:



		

		

		







According to Routh-Hurwitz condition, the obtained characteristics equation 9.5 should be spread into column as shown above and the s0 is evaluated as follows (because it has the assumed unknown KCU which would be evaluated):



		

		

		







		

		

		







For stability sake, the 1st column after the s-column must not have any sign change (that is, no change from + to – or – to +). Therefore, , must be greater than zero.

This implied that,



Then,









This implies that KCU has its main value in the positive range. With a rough trial and error tuning, KP, can be fixed to full value of the system model numerator, which is 13.11. The KI and KD were set initially to zero to see the effect of the KP on the system. This resulted into the figure KI about the inverse of 0.0763 = 13.106, and KD = 0.0763. After this, 



[bookmark: _Toc232320707][bookmark: _Toc248224157]Proportional control

Based on the M-file – “tclosedloopP.m”, the following figure 9.3, figure 9.4, figure 9.5 and figure 9.6 were obtained as an improvement to the open-loop system. By making an initial raw guess of the value of KP just before applying the Routh-Hurwitz condition.
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[bookmark: _Ref247393327][bookmark: _Toc248224083]Figure 9.4 – Proportional controller gain effect on the system
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[bookmark: _Ref247393368][bookmark: _Toc248224084]Figure 9.5 – Root locus diagram for the proportional controller gain effect 
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[bookmark: _Ref247393383][bookmark: _Toc248224085]Figure 9.6 – Nyquist diagram for the proportional controller gain effect
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[bookmark: _Ref247393396][bookmark: _Toc248224086]Figure 9.7 – Bode plot for the proportional controller gain effect
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[bookmark: _Toc248224087]Figure 9.8 – Trial and error value used for the P parameters output, with KI and KD set to zero

[image: ]

[bookmark: _Toc248224088]Figure 9.9 – Trial and error value used for the P parameters output, with KI and KD set to zero (zoomed display)



The above figure 9.3 – 9.7 show how the proportional controller has reduced the rising time and the steady-state error, the overshoot is reasonably increased but the settling time is also decreased slightly. The subsequent figures show the effects of the trial and error method of tuning applied. The detail analysis would be under the results and analysis section.



[bookmark: _Toc232320708][bookmark: _Toc248224158]Proportional-Integral control

To improve on effect of the KP, an additional KI was also set based on the Routh-Hurwitz condition used above. This is implemented with the same m-file – “tclosedloopPID_TrialError4.m”, the following figures 9.10 – 9.11 was obtained as an added improvement. To make a more visible on the step response, the integral parameter was scaled by 1000 to see its effects, that is, KI= 1310.6. And another “supposed” improvement was also obtained (figures 9.12 – 9.13). 
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[bookmark: _Toc248224089]Figure 9.10 – Trial and error values used for the PI parameters output
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[bookmark: _Toc248224090]Figure 9.11 – Trial and error values used for the PI parameters output with Kd=0 (zoomed)
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[bookmark: _Toc248224091]Figure 9.12 – Trial and error values used for the PI parameters output with Ki multiplied 1000 and Kd=0
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[bookmark: _Toc248224092]Figure 9.13 – Trial and error values used for the PI parameters output with Ki multiplied 1000 and Kd=0 (zoomed)

[bookmark: _Toc232320709][bookmark: _Toc248224159]Proportional-Integral-Derivative control

But for a more critical assessment of the trial and error method, the M-file – “tclosedloopPID_TrialError4.m”, was used to obtain a more perfect output for the system response as shown in the following figure 9.8. Though, all the PID parameters might not be needed sometimes, but it needful to examine it to check the effect and the difference from the other P and PI combinations. For the implementation of the PID guessed parameters based in the trial and error, the KI and KD were set to 1310.6 and 0.0763 respectively. On the first trial the figure – was obtained.
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[bookmark: _Ref247393505][bookmark: _Toc248224093] Figure 9.14 – Trial and error method for PID – control effect on the system response (first trial with Kd set at 0.0763)

[bookmark: _Toc248224094][image: ]Figure 9.15 – Trial and error method for PID – control effect on the system response (first trial with Kd set at 0.0763, zoomed)



The trial and error gave a reasonable level comfort but it is time consuming and requires extra techniques to be able to have guesses that are appropriate and near efficient.

For an overall assessment of the P, PI and PID parameters effect, the following figure was generated for appropriate comparison effects using the UpdatedPPIPID_TrialError.m.



		

		PID Type

		

		

		



		1.

		P

		13.11

		

		0



		2.

		PI

		13.11

		1310.6

		0



		3.

		PID

		13.11

		1310.6

		0.0763







[bookmark: _Toc248224174]Table 9.2 – Results of the Trial and Error method for PID controller parameters






UpdatedPPIPID_TrialError.m



 (
% Start of code
clear
close 
all
 
% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
num = 1/Ke;
den = [tm*te tm 1];
 
%----P starts
% assumed Kp = 13.11
Kp1 = 13.11;
numa1 = Kp1 * num;
dena1 = den;
 
% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac1, denac1] = cloop(numa1, dena1);
%----P ends
 
%----PI Starts
%Trial and Error tuning parameter Kp and Ki
Kp2 = 13.11;
Ki2 = 1310.6;
 
% For the PI equation
numc2 = [Kp2 Ki2];
denc2 = [1 0];
 
% convule "num with numc" and "den with demc"
numa2 = conv(num, numc2);
dena2 = conv(den, denc2);
 
% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac2, denac2] = cloop(numa2, dena2);
%----PI ends
 
%----PID Starts
%Trial and Error parameter guessed with support of RH
Kp3 = 13.11;    
%Proportional gain
Ki3 = 1310.6;   
%Integral gain
Kd3 = 0.0763;    
%Derivative gain
% For the PID equation
numc3 = [Kd3 Kp3 Ki3 ];
denc3 = [1 0];
 
)





UpdatedPPIPID_TrialError.m (contd.)



 (
% convule "num with numc" and "den with demc"
numa3 = conv(num, numc3);
dena3 = conv(den, denc3);
 
% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac3, denac3] = cloop(numa3, dena3);
%----PID ends
 
% Plotting the new step-response
t = 0:0.00001:0.01;
 
% New G1 for overall closed loop transfer function
G1 = tf(numac1, denac1);
 
G2 = tf(numac2, denac2);
 
G3 = tf(numac3, denac3);
 
% Plots the Step Response diagram
figure;
hold 
on
step(G1, t);
hold 
on
step(G2, t);
hold 
on
step(G3, t);
legend(
'P'
, 
'PI'
, 
'PID'
);
title(
'Closed Loop PID Trial and Error step response generated for P, PI and PID combinations'
);
xlabel(
'Time, [s]'
)
ylabel(
'Voltage, [volts]'
)
% End of code
)
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[bookmark: _Toc248224095]Figure 9.16 – Trial and error method for P, PI and PID – control effect on the system response (t-max=0.3s)
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[bookmark: _Toc248224096]Figure 9.17 – Trial and error method for P, PI and PID – control effect on the system response (t-max=0.1s)
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[bookmark: _Toc248224097]Figure 9.18 – Trial and error method for P, PI and PID – control effect on the system response (t-max=0.03s)
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[bookmark: _Toc248224098]Figure 9.19 – Trial and error method for P, PI and PID – control effect on the system response (t-max=0.01s)

[image: ]

[bookmark: _Toc248224099]Figure 9.20 – Trial and error method for P, PI and PID – control effect on the system response (1st zooming)
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[bookmark: _Toc248224100]Figure 9.21 – Trial and error method for P, PI and PID – control effect on the system response (2nd zooming)
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[bookmark: _Toc248224101]Figure 9.22 – Trial and error method for P, PI and PID – control effect on the system response (3rd zooming)



[bookmark: _Toc248224160]Ziegler-Nichols tuning methods

The Ziegler-Nichols method used was done based on obtaining the open loop transfer function and thereafter obtaining the necessary parameter values needed for the various evaluation of the P, PI and PID parameters. The steps taken involve the files topenloop.m used in conjunction with the openloop.mdl model. So, for the Ziegler-Nichols method analysis the m-file topenloop_zn.m was used accordingly.

The open loop step response is characterized by two main parameters, the L (delay time parameter) and T (time constant). These two parameters are computed by drawing tangents to the open loop step response at its point of inflections (basically two points. The inflection points are particularly done so that there would be an intersection with the vertical (voltage axis, which correlates with the steady-state value) and horizontal (time axis) axes.

Based on the Ziegler-Nichols, the following were derived to obtain the control parameters based on the required model:





		

		PID Type

		

		

		



		1.

		P

		

		

		0



		2.

		PI

		0.9

		

		0



		3.

		PID

		1.2

		

		0.5







[bookmark: _Toc248224175]Table 9.1 – Ziegler-Nichols PID controller parameters model [10]
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[bookmark: _Ref247393532][bookmark: _Toc248224102]Figure 9.23 – Ziegler-Nichols step response tuning method [10]



From the figure 9.23, the target is on how to evaluate the two parameters (L and T) needed. This is done as follows with the illustration.












topenloop_zn.m



 (
%
% Start of code
%
% includes constant parameters
clear
close 
all
 
%motor constants
constants
 
% includes evaluated constants
evaluatedconstants
 
% Transfer function
G = tf([1/Ke],[tm*te tm 1]);
 
% Plots the Step Response diagram
figure;
step(G, 0.5);
title(
'Open Loop Step Response diagram'
);
xlabel(
'Time, secs'
)
ylabel(
'Voltage, volts'
)
%grid on;
 
format 
long
load 
openloop.mat
coeff_x=polyfit([6 10 12],openloop(2,[6 10 12]),1)
coeff_y=polyfit([700:900],openloop(2,[700:900]),1)
 
for
 n=1:100
    zn_line_x(n)=coeff_x(1)*n+coeff_x(2);
end
 
for
 n=1:900
    zn_line_y(n)=coeff_y(1)*n+coeff_y(2);
end
 
figure(2)
hold 
on
plot(openloop(2,:),
'red'
)
plot(zn_line_x);
plot((zn_line_y), 
'green'
);
legend(
'1step response'
,
'line'
);
grid 
on
axis([0 400 0 14]);
l=length(openloop(2,:))
L_samples=roots(coeff_x)
 
%inflecton_point=intersect(zn_line_x,zn_line_y)
[a,b,c]=intersect(zn_line_x,zn_line_y)
 
% End of code
)
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[bookmark: _Ref247393584][bookmark: _Toc248224103]Figure 9.24 – Ziegler-Nichols open step response plot computation
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[bookmark: _Ref247393593][bookmark: _Toc248224104]Figure 9.25 – Ziegler-Nichols open step response horizontally zoomed

[image: ]

[bookmark: _Ref247393601][bookmark: _Toc248224105]Figure 9.26 – Ziegler-Nichols open step response vertically zoomed



Therefore, from the figure 9.24, figure 9.25 and figure 9.26, the values of the L and T could be computed as follows:

An assumed sample rate of 1000 was used for the topenloop_zn.m plots

Point of interception of the horizontal line  4.1 (voltage = 0)

Coordinate of the point of interception of the two lines  (T*, K) = (42.7987, 13.1101);

Where,

T* is horizontal trace of the interception on the tangent lines drawn

L = 4.1;

K = 13.1101;

T = T* – L = 4.1 = 42.7987 - 38.6987  38.70

This implies that we have:

L = 0.0041;

K = 13.1101;

T = 0.0387

With the above computation, the P, PI and PID computation was done to get the best suited parameters combination desired.

So the updated table 9.1 would be table 9.2 shown below:



		

		PID Type

		

		

		



		1.

		P

		9.439

		

		0



		2.

		PI

		8.495

		0.0137

		0



		3.

		PID

		11.327

		0.0082

		0.00205







[bookmark: _Toc248224176]Table 9.2 – Results of the Ziegler-Nichols method for PID controller parameters



From table 9.2, the following parameters are obtained based on the equation format (from equation 7.3 above) to become equation 9.1 below:



For P only,

		

		

		(9.1) 





For PI only,

		

		

		(9.2) 





For PID only,

		

		

		(9.3) 







Using the figure 9.1 (above) and m-file tclosedloopP_zn.m, tclosedloopPI_zn.m and tclosedloopPID_zn.m, the outputs of the various PID combinations could be obtained as given below:






tclosedloopP_zn.m



 (
%s
tart of code
clear
close 
all
 
% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
 
num = 1/Ke;
den = [tm*te tm 1];
 
% assumed Kp = 10
Kp = 9.439;
numa = Kp * num;
dena = den;
 
% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tran
s
fer function in this case
[numac, denac] = cloop(numa, dena);
 
% Plotting the new step-response
t = 0:0.00001:0.005
step(numac, denac, t);      
% across 0.01 seconds timing
title(
'Closed step response with proportion, P control; Kp = 9.439'
);
xlabel(
'Time, [s]'
)
ylabel(
'Voltage, [volts]'
)
grid 
on
;
% New G1 for overall closed loop trasnfer function
G1 = tf(numac, denac);
 
% plots the Root-locus
figure;
rlocus(G1);
title(
'Closed Loop Root Locus diagram'
);
grid 
on
;
 
% plots the Nyquist diagram
figure;
nyquist(G1);
title(
'Closed Loop Nyquist diagram'
);
grid 
on
;
 
% plots the Bode Plot
figure;
bode(G1,{0.1 , 100})
title(
'Closed Loop Bode plot diagram with wider frequency spacing'
);
grid 
on
;
%
end of code
)
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[bookmark: _Toc248224106]Figure 9.27 – P output for the Ziegler-Nichols tuning method
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[bookmark: _Toc248224107]Figure 9.28 – P output for the Ziegler-Nichols tuning method root locus output
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[bookmark: _Toc248224108]Figure 9.29 – P output for the Ziegler-Nichols tuning method Bode plot output






tclosedloopPI_zn.m



 (
% Start of code
clear
close 
all
% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
num = 1/Ke;
den = [tm*te tm 1];
 
%Ziegler-Nichol tuning parameter Kp and Ki
Kp = 8.495;
Ki = 620.07;
 
% For the PI equation
numc = [Kp Ki];
denc = [1 0];
% convule "num with numc" and "den with demc"
numa = conv(num, numc);
dena = conv(den, denc);
 
% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac, denac] = cloop(numa, dena);
 
% Plotting the new step-response
t = 0:0.00001:0.005
step(numac, denac, t);      
% across 0.01 seconds timing
title(
'Closed step response with proportion, P control; Kp = 8.495 and Ki = 620.07'
);
xlabel(
'Time, [s]'
)
ylabel(
'Voltage, [volts]'
)
grid 
on
;
 
% New G1 for overall closed loop trasnfer function
G1 = tf(numac, denac);
% plots the Root-locus
figure;
rlocus(G1);
title(
'Closed Loop Root Locus diagram'
);
grid 
on
;
% plots the Nyquist diagram
figure;
nyquist(G1);
title(
'Closed Loop Nyquist diagram'
);
grid 
on
;
% plots the Bode Plot
figure;
bode(G1,{0.1 , 100})
title(
'Closed Loop Bode plot diagram with wider frequency spacing'
);
grid 
on
;
%e
nd of code
)
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[bookmark: _Toc248224109]Figure 9.30 – PI output for the Ziegler-Nichols tuning method




tclosedloopPID_zn.m



 (
% Start of code
% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
num = 1/Ke;
den = [tm*te tm 1];
 
%Ziegler-Nichols parameter computed
Kp = 11.327;    
%Proportional gain
Ki = 1381.34;   
%Integral gain
Kd = 0.0232;    
%Derivative gain
% For the PID equation
numc = [Kd Kp Ki ];
denc = [1 0];
 
% convule "num with numc" and "den with demc"
numa = conv(num, numc);
dena = conv(den, denc);
 
% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac, denac] = cloop(numa, dena);
% Plotting the new step-response
t = 0:0.00001:0.3;
step(numac, denac, t);      
% across 0.01 seconds timing
title(
'Closed loop step response for ZN - Kp, Ki and Kd'
);
xlabel(
'Time, [s]'
)
ylabel(
'Voltage, [volts]'
)
%grid on;
% New G1 for overall closed loop trasnfer function
G1 = tf(numac, denac);
% plots the Root-locus
figure;
rlocus(G1);
title(
'Closed Loop Root Locus diagram'
);
grid 
on
;
% plots the Nyquist diagram
figure;
nyquist(G1);
title(
'Closed Loop Nyquist diagram'
);
grid 
on
;
% plots the Bode Plot
figure;
bode(G1,{0.1 , 100})
title(
'Closed Loop Bode plot diagram with wider frequency spacing'
);
grid 
on
;
%% End of code
)
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[bookmark: _Toc248224110]Figure 9.31 – Auto-scaled PID output for the Ziegler-Nichols tuning method
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[bookmark: _Toc248224111]Figure 9.32 – Auto-scaled PID output for the Ziegler-Nichols tuning method (zoomed overshoot point)
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[bookmark: _Toc248224112]Figure 9.33 – PID Ziegler-Nichols tuning method Root locus diagram
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[bookmark: _Toc248224113]Figure 9.34 – PID Ziegler-Nichols tuning method Nyquist diagram



[image: ]

[bookmark: _Toc248224114]Figure 9.35 – PID Ziegler-Nichols tuning method Bode plot diagram



For a combined comparison of the Ziegler-Nichols tuning methods for the P, PI and PID, a separate m-file, UpdatedPPIPID_znj.m was created to execute the combination and this was done over different time spans (0.01, 0.03, 0.1 and 0.3). The various outputs figures are shown in figures 9.23, 9.24, 9.25 and 9.26.




UpdatedPPIPID_znj.m



 (
%
% Start of code
%
clear
close 
all
 
% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
num = 1/Ke;
den = [tm*te tm 1];
 
 
%----P starts
% assumed Kp = 10
Kp1 = 9.439;
numa1 = Kp1 * num;
dena1 = den;
 
% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac1, denac1] = cloop(numa1, dena1);
%----P ends
 
%----PI Starts
%Ziegler-Nichols parameter computed
%Ziegler-Nichol tuning parameter Kp and Ki
Kp2 = 8.495;
Ki2 = 620.07;
 
% For the PI equation
numc2 = [Kp2 Ki2];
denc2 = [1 0];
 
% convule "num with numc" and "den with demc"
numa2 = conv(num, numc2);
dena2 = conv(den, denc2);
 
% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac2, denac2] = cloop(numa2, dena2);
%----PI ends
 
%----PID Starts
%Ziegler-Nichols parameter computed
Kp3 = 11.327;    
%Proportional gain
Ki3 = 1381.34;   
%Integral gain
Kd3 = 0.0232;    
%Derivative gain
)



UpdatedPPIPID_znj.m (contd.)



 (
% For the PID equation
numc3 = [Kd3 Kp3 Ki3 ];
denc3 = [1 0];
 
% convule "num with numc" and "den with demc"
numa3 = conv(num, numc3);
dena3 = conv(den, denc3);
 
% For the closed-loop transfer function, the following is obtained
% numac and denac used for the overall closed tranfer function in this case
[numac3, denac3] = cloop(numa3, dena3);
%----PID ends
 
% Plotting the new step-response
t = 0:0.00001:0.3;
 
% New G1 for overall closed loop transfer function
G1 = tf(numac1, denac1);
 
G2 = tf(numac2, denac2);
 
G3 = tf(numac3, denac3);
 
% Plots the Step Response diagram
figure;
hold 
on
step(G1, t);
hold 
on
step(G2, t);
hold 
on
step(G3, t);
legend(
'P'
, 
'PI'
, 
'PID'
);
title(
'Closed Loop PID ZN step response generated for P, PI and PID combinations'
);
xlabel(
'Time, [s]'
)
ylabel(
'Voltage, [volts]'
)
% End of code
)
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[bookmark: _Toc248224115]Figure 9.36 – Closed loop PID response for P, PI and PID with t-max=0.01s
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[bookmark: _Toc248224116]Figure 9.37 – Closed loop PID response for P, PI and PID with t-max=0.03
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[bookmark: _Toc248224117]Figure 9.38 – Closed loop PID response for P, PI and PID with t-max=0.1
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[bookmark: _Toc248224118]Figure 9.39 – Closed loop PID response for P, PI and PID with t-max=0.3
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[bookmark: _Toc248224119]Figure 9.40 – Closed loop PID response for P, PI and PID (1st Zoom)
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[bookmark: _Toc248224120]Figure 9.41 – Closed loop PID response for P, PI and PID (2nd Zoom)
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[bookmark: _Toc248224121]Figure 9.42 – Closed loop PID response for P, PI and PID (3rd Zoom)





[bookmark: _Toc248224161]Comparison effects of Trial and Error with Ziegler-Nichols tuning methods

This is made by creating m-file, UpdatedPID_TErrznj.m for only the PID parameters effects. The generated figure is as shown below in figure--:




UpdatedPPIPID_TErrznj.m



 (
%
% Start of code
%
clear
close 
all
 
% includes constant parameters
constants
% includes evaluated constants
evaluatedconstants
num = 1/Ke;
den = [tm*te tm 1];
 
%Trial and Error PID parameters part
TErrorPID
%Ziegler-Nichols PID parameters part
ZNPIDcomp
 
% Plotting the new step-response
t = 0:0.00001:0.03;
 
% New G for overall closed loop transfer function
GZN = tf(numacZN, denacZN);
 
GTErr = tf(numacTErr, denacTErr);
 
% Plots the Step Response diagram
figure;
hold 
on
step(GZN, t);
hold 
on
step(GTErr, t);
 
legend(
'Trial and Error PID'
, 
'Ziegler-Nichols PID'
);
title(
'Closed Loop PID for Trial and Error/Ziegler-Nichols step response output for PID'
);
xlabel(
'Time, [s]'
)
ylabel(
'Voltage, [volts]'
)
% End of code
)
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[bookmark: _Toc248224122]Figure 9.43 – Closed loop response for Trial and Error/Ziegler-Nichols tuning methods
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[bookmark: _Toc248224123]Figure 9.44 – Closed loop response for Trial and Error/Ziegler-Nichols tuning methods (1st zoomed)
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[bookmark: _Toc248224124]Figure 9.45 – Closed loop response for Trial and Error/Ziegler-Nichols tuning methods (2nd zoomed, right side)
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[bookmark: _Toc248224125]Figure 9.46 – Closed loop response for Trial and Error/Ziegler-Nichols tuning methods (3rd zoomed, left side, with t-max=0.03)


[bookmark: _Toc248224162]FOOTBALL PITCH LAYOUT MODEL

[bookmark: _Toc248224163]Dimensions of the Pitch

The football pitch model serves as the background for the main plot of the trajectory path of the robot wheel. The basic dimensions (in millimetres) used are given below and are scaled down to metres in the model plot.



		

		Part Label

		Dimension (mm)



		1.

		Length

		6050



		2.

		Width

		4050



		3.

		Centre circle (radius)

		500







[bookmark: _Toc248224177]Table 10.1 – Dimensions of the Football pitch layout model

The figure 10.1 below shows the main target design based on the Laws of the F180 League 2009 [12]. The needed design for the thesis is the main pitch shown in white lines.



[image: ]

[bookmark: _Ref247446403][bookmark: _Toc248224126]Figure 10.1 – Dimension of the standard pitch required [12]



[bookmark: _Toc248224164]Football pitch MATLAB design implementation

The figure 10.2 shows the full part label of the football pitch layout. But the main target design is shown in figure 10.1. This follows with the m-files used to generate the whole pitch layout robotpatternUpdated.m, newFieldSpec.m, robotBlockpart.m, semiCircleBottomLeft.m, semiCircleBottomRight.m, semiCircleTopLeft.m, semiCircleTopRight.m and testcir2.m (for centre circle plot) used to generate the actual design and shown in figure 10.2.

The output football pitch generated is given under figure 10.3 below.



[image: ]

[bookmark: _Ref247393759][bookmark: _Toc248224127]Figure 10.2 – Part label of the Football pitch layout model






testcir2.m



 (
%draw circle code
%resolution of plot
t = linspace(0,2*pi,100000); 
 
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0)
cirX=30.25; 
cirY=20.25; 
 
%radius of the centre circle, 500mm=5m
r=5;
 
%circle dual equations
x = r*cos(t)+cirX;                   
y = r*sin(t)+cirY;                   
 
plot(x,y, 
'Color'
,
'black'
);                       
%end of code
)



semiCircleBottomLeft.m



 (
%draw circle code
%resolution of plot
t2 = linspace(2*pi, 3*pi/2,100000); 
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0)
cirX2=0; 
cirY2=18.50; 
 
%radius of the centre circle, 500mm=5m
r=5;
 
%circle dual equations
x2 = r*cos(t2)+cirX2;                   
y2 = r*sin(t2)+cirY2;                   
 
plot(x2, y2, 
'Color'
, 
'black'
)
 
%end of code
)






semiCircleBottomRight.m



 (
%draw circle code
%resolution of plot
t3 = linspace(pi, 3*pi/2,100000); 
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0)
cirX3=60.50; 
cirY3=18.50; 
 
%radius of the centre circle, 500mm=5m
r=5;
 
%circle dual equations
x3 = r*cos(t3)+cirX3;                   
y3 = r*sin(t3)+cirY3;                   
 
plot(x3, y3, 
'Color'
, 
'black'
)
 
%end of code
)



semiCircleTopLeft.m



 (
%draw circle code
%resolution of plot
t1 = linspace(0, pi/2,100000); 
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0)
cirX1=0; 
cirY1=22.00; 
 
%radius of the centre circle, 500mm=5m
r=5;
 
%circle dual equations
x1 = r*cos(t1)+cirX1;                   
y1 = r*sin(t1)+cirY1;                   
 
plot(x1, y1, 
'Color'
, 
'black'
)
 
%end of code
)






semiCircleTopRight.m



 (
%draw circle code
%resolution of plot
t4 = linspace(pi/2, pi, 100000); 
%assumed centre of the circle (cirX, cirY): sets at origin (0, 0)
cirX4=60.50; 
cirY4=22.00; 
%radius of the centre circle, 500mm=5m
r=5;
%circle dual equations
x4 = r*cos(t4)+cirX4;                   
y4 = r*sin(t4)+cirY4;                   
plot(x4, y4, 
'Color'
, 
'black'
)
%end of code
)



robotpatternUpdated.m



 (
%refreshes figures for new ones
clear 
close 
all
 
%activities needed on the robot field layout
 
%test plot sample
%---------------------------------------------
%---------------------------------------------
len=100;
robot=zeros(1,len);
 
%start position
X(1)=-40;
Y(1)=-40;
 
%move to cordinates
x_goal=0;
y_goal=0;
 
%
%just something to plot
%this will be for the actual robot movement path
%
for
 n=1:len
    robot(n)=sin(n)+10;
end
%
 
%plot robot movement
hold 
on
plot(robot, 
'Color'
, 
'red'
)
 
%plot the robot pitch layout
newFieldSpec
)

[image: ]

[bookmark: _Ref247393775][bookmark: _Toc248224128]Figure 10.3 – Generated football pitch model using robotpatternUpdated.m




[bookmark: _Toc248224165]ROBOT 4-WHEEL MOTOR MODEL TRAJECTORY PLANNING

This part involves the cascaded arrangement of all the four wheels with connection to the corresponding system blocks affecting the overall performance of the robot path movement. The block arrangement used is as shown in figure 11.1 below:

After the necessary planning was done, the path simulation would be done on the football model developed with the MATLAB.





[bookmark: _Ref247393813][bookmark: OLE_LINK7][bookmark: OLE_LINK8][bookmark: _Toc248224129]Figure 11.1 – Full robot implementation block

The robot wheels have the following wheel arrangement as shown in figure below figure 11.3 below: the wheels motors are in an asymmetrical arrangement; this is a prototype drawing from the figure 11.2. With radian evaluation, the angles p1, p2, p3 and p4 are related to the angle of the wheel axis – 53O, 53O, 45O, and 45O. The whole evaluations as regards this were done in the codes – robotBlockpart.m, robotControllLogic.m, veloToWheel.m, wheelPIDs.m, and speedToXY.m  based on figure 11.1 implementation plan.



[image: ]

[bookmark: _Toc248224130]Figure 11.2 – An extract from “Omnidirectional control” [13]







[bookmark: _Toc248224131]Figure 11.3 – Asymmetrical robot wheel arrangement based on the Omnidirectional robot control

robotTrajectoryPlan.m



 (
%plots robot trajectory path
clear 
close 
all
len=100;
robot=zeros(1,len);
 
X=zeros(1,100);Y=zeros(1,100);
 
%start position
X(1)=25;Y(1)=25;
a1(1)=0;a2(1)=0;a3(1)=0;a4(1)=0;
a1(2)=0;a2(2)=0;a3(2)=0;a4(2)=0;
a1(3)=0;a2(3)=0;a3(3)=0;a4(3)=0;
 
%move to cordinates
x_goal=0;y_goal=0;
 
n=1;k=3;
robotGain=0.00001;
 
%inlcudes motor constants
constants
% includes evaluated constants
evaluatedconstants
 
num = 1/Ke;
den = [tm*te tm 1];
 
%Ziegler-Nichols parameter computed
Kp = 11.327;    
%Proportional gain
Ki = 1381.34;   
%Integral gain
Kd = 0.0232;    
%Derivative gain
% For the PID equation
numc = [Kd Kp Ki ];
denc = [1 0];
 
% convule "num with numc" and "den with demc"
numa = conv(num, numc);
dena = conv(den, denc);
 
sys = tf(numa,dena,1/1000);
 
integrationSums=[0, 0, 0, 0];
 
% robot block parts
robotBlockpart
 
%plot robot movement
hold 
on
plot(X,Y);
 
%plot the robot pitch layout
newFieldSpec
)

robotBlockpart.m



 (
while
 n==1
    
%done?
    
%robot control logic - BLOCK 1
    [Vx(k),Vy(k),Vp(k)]=robotControlLogic(X(k-1),Y(k-1),x_goal,y_goal,robotGain);
    
    
%Done
    
%transformation block  - BLOCK 2
    
%transformation matrix from velocity vector to wheelspeeds
    [w1(k),w2(k),w3(k),w4(k)] = veloToWheel(Vx(k),Vy(k),Vp(k),X(k-1),Y(k-1));
    
    
%Done
    
%Wheel PIDs - BLOCK 3
    
%the idividual PID controllers for the wheels including wheelmotor model
    temp=integrationSums;
    oldArray=[a1(k-1),a2(k-1),a3(k-1),a4(k-1)];
    oldoldArray=[a1(k-2),a2(k-2),a3(k-2),a4(k-2)];
    [a1(k),a2(k),a3(k),a4(k),integrationSums]=wheelPIDs(w1(k),w2(k),w3(k),w4(k),temp,oldArray,oldoldArray);
 
    
%motor model
    
%Done
    
%robot position - BLOCK 4
    
%converts actua
l wheel motor speed to robot X Y 
position
    [X(k),Y(k)]=speedToXY(a1(k),a2(k),a3(k),a4(k),X(k-1),Y(k-1));
    
    
%check if close enough to the goal co
o
rdinates
    
if
 abs(X(k)-x_goal)<0.1
%% && abs(Y(k)-y_goal)<0.1
        n=0;
    
end
    
if
 abs(Y(k)-y_goal)<0.1
%% && abs(Y(k)-y_goal)<0.1
        n=0;
    
end
    
    
if
 abs(X(k))>41
        n=0;
    
end
    
if
 abs(Y(k))>41
        n=0;
    
end
    
if
 k>99
        n=0;
    
end
    
%increment loop index
    k=k+1;   
end
)



This will take the main part of the planning and trajectory simulation



robotControlLogic.m



 (
function
 [Vx,Vy,Vp]=robotControlLogic(X,Y,x_goal,y_goal,k)
   
    Mag_x=x_goal-X;
    Mag_y=y_goal-Y;
 
    M=sqrt(Mag_x^2+Mag_y^2);
    
    Vx=k*Mag_x/M;
    Vy=k*Mag_y/M;
    
Vp=0;
 
end
)



wheelPIDs.m



 (
function
 [a1,a2,a3,a4,intSums]=wheelPIDs(w1,w2,w3,w4,intSumsIn,y_old,y_oldold)
    
%actual PIDs here
    
    
%Ziegler-Nichols parameter computed
    Kp = 11.327;    
%Proportional gain
    Ki = 1381.34;   
%Integral gain
    Kd = 0.0232;    
%Derivative gain
   
    inputs=[w1, w2, w3, w4];
 
    
%certainty problem
    
for
 n=1:4
        PIDin=inputs(n);
        sumIn=intSumsIn(n);
        
        [y,sumOut]=myPID(PIDin,y_old(n),y_oldold(n),sumIn);
        
        intSums(n)=sumOut;
        outputs(n)=y;
    
end
        
    a1=outputs(1); 
    a2=outputs(2); 
    a3=outputs(3); 
    a4=outputs(4);
end
)








speedToXY.m



 (
function
 [X,Y]=speedToXY(a1,a2,a3,a4,Xold,Yold)
%Calculate X Y position based on actual wheelspeeds since last sample
% |W1|    |Vx|
% |W2| -> |Vy|
% |W3|    |Vp|  
% |W4|
 
%Angle of each wheel in Rad, these angles does not change in this simulation
p1=2.49582083; 
%143 deg
p2=3.92699082; 
%225 deg
p3=5.49778714; 
%315 deg
p4=0.645771823; 
%37 deg 
 
%Co-ordinates of each wheel in Meter
[x1,x2,x3,x4,y1,y2,y3,y4]=wheelsXYfromXY(Xold,Yold,p1,p2,p3,p4);
 
  
if
 1
      
  
%actual wheel
 
speeds...    
  W=[a1, a2, a3, a4];
  
%transformation matrix
  A=[cos(p1),sin(p1),(-y1*cos(p1)+x1*sin(p1)),1;
       cos(p2),sin(p2),(-y2*cos(p2)+x2*sin(p2)),1;
       cos(p3),sin(p3),(-y3*cos(p3)+x3*sin(p3)),1;
       cos(p4),sin(p4),(-y4*cos(p4)+x4*sin(p4)),1];
  inversA=inv(A);
  
else
      
  
%actual wheel speeds
…
  W=[a1, a2, a3];
  A=[cos(p1),sin(p1),(-y1*cos(p1)+x1*sin(p1));
       cos(p2),sin(p2),(-y2*cos(p2)+x2*sin(p2));
       cos(p3),sin(p3),(-y3*cos(p3)+x3*sin(p3));
       cos(p4),sin(p4),(-y4*cos(p4)+x4*sin(p4))];
  inversA=inv(A);
  
end
  
%use the inverse of A here since matrix division is not allowed
   
  B=W*inversA;
 
%??
X=Xold+B(1);
Y=Yold+B(2);
%rotation=B3(3); this is not needed if rotation is omitted
end
)






veloToWheel.m



 (
function
 [w1,w2,w3,w4] = veloToWheel(Vx,Vy,Vp,X,Y)
%Calculate the individual wheelspeed based on the three component 
%vector velocity of the robot
%|Vx|    |W1|
%|Vy| -> |W2|
%|Vp|    |W3|
%        |W4|
%Desired speed vectors
%Angle of each wheel in Rad
p1=2.49582083; 
%143 deg
p2=3.92699082; 
%225 deg
p3=5.49778714; 
%315 deg
p4=0.645771823; 
%37 deg 
 
%Co-ordinates of each wheel in Meter
[x1,x2,x3,x4,y1,y2,y3,y4]=wheelsXYfromXY(X,Y,p1,p2,p3,p4);
 
if
 0
    
%Wheel 1
    x1=0.0677;y1=0.0511;
 
    
%Wheel 2
    x2=-0.0599;y2=0.0596;
 
    
%Wheel 3
    x3=-0.0599;y3=-0.0596;
 
    
%Wheel 4
    x4=0.0677;y4=-0.0511;
end
 
%Transformation Matrix
A=[cos(p1),sin(p1),(-y1*cos(p1)+x1*sin(p1));
   cos(p2),sin(p2),(-y2*cos(p2)+x2*sin(p2));
   cos(p3),sin(p3),(-y3*cos(p3)+x3*sin(p3));
   cos(p4),sin(p4),(-y4*cos(p4)+x4*sin(p4));];
 
%3 component vector matrix
B=[Vx;Vy;Vp];
W=(A*B); 
%Matrix solution giving result for velocity of each wheel
w1=W(1);
w2=W(2);
w3=W(3);
w4=W(4);
end
)



[image: ]

[bookmark: _Ref247967090][bookmark: _Toc248224132]Figure 11.4 – The output of the robot path plotting

The blue line in figure 11.4 shows the planned path of the robot trajectory.

[bookmark: OLE_LINK5][bookmark: OLE_LINK6]


[bookmark: _Toc248224166]CONCLUSION, CHALLENGES AND RECOMMENDATION

[bookmark: _Toc248224167]Conclusion

In this work, the PID controller was used as a vital technical tool used in system modelling and control. It started with the analysis and reasons why an absolute précised control is important in drives particularly the BLDC motors and then the mathematical modelling. Also, the use of the MATLAB®/SIMULINK® to develop the robot football pitch model and the trajectory planning were additional parts to this work.



[bookmark: _Toc248224168]Challenges

Some of challenges faced include: the intensive study of MATLAB®/SIMULINK® and the various modelling techniques. More also, the knowledge of mathematical methods was needed to enhanced my modelling ability in this thesis as it required more mathematical skills. In additional, some of areas of control systems engineering had to be studied to have a blend of understanding in the areas of system stability. And one major challenging part was the aspect of model the path of the robot from one point to another. This part required some advanced mathematical skills which could not be implemented. A straight path was gotten in the trajectory simulation.



[bookmark: _Toc248224169]Recommendations – Possible improvement

This work could be improved by incorporating the hardware testing and possible laboratory testing. Also, to have a more précised PID parameters, new methods of PID tuning (the use of genetic algorithms) could be employed for optimal values. In addition to the use of PID controller, another instance of Single-Input-Single-Output (SISO) could be used under the MATLAB versatile toolbox.

More also, the real testing and program implementation of the BLDC motor could be harnessed by using the MATLAB®/SIMULINK® utilities and being able to incorporate C-programming with the microcontroller. And more technical resources should be available to the student for proper execution of the work.
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