

Thang Nguyen

JAMSTACK: A MODERN SOLUTION FOR E-

COMMERCE

School of Technology
2022

 2

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Thang Nguyen
Title Jamstack: A Modern Solution for E-commerce
Year 2022
Language English
Pages 30 + 2 Appendices
Name of Supervisor Smail Menani.

As technology continues to advance, new approaches are developed to solve
real-world problems. This thesis aims to research the modern web development
architecture called Jamstack, exploring its strengths and limitations to e-
commerce.

To support this research, an e-commerce website was built with Jamstack,
explaining in detail each technology used as well as showing the contrast
between them and other common technologies.

The result is satisfactory as it fulfills all the requirements of an e-commerce site.
In addition, it makes use of all the benefits Jamstack offers to achieve a more
performant, more secure, and more scalable web application.

Keywords E-commerce, JavaScript, web programming

CONTENTS

1 INTRODUCTION ...7

1.1 Traditional Website ..7

1.2 Jamstack ...8

2 REQUIREMENTS, SPECIFICATIONS, AND DESIGN ... 10

2.1 Requirements .. 10

2.2 Specifications .. 10

2.3 Design .. 11

2.3.1 Backend design ... 12

2.3.2 Frontend design .. 13

3 TECHNOLOGIES ... 17

3.1 Introduction .. 17

3.2 NextJS .. 17

3.2.1 NextJS vs ReactJS... 17

3.2.2 Features... 17

3.2.3 Trends .. 18

3.3 Headless CMS .. 19

3.3.1 Introduction .. 19

3.3.2 Headless CMS vs Traditional CMS ... 19

3.3.3 Sanity ... 20

4 IMPLEMENTATION .. 22

4.1 Environment Setup ... 22

4.2 Headless CMS .. 22

4.3 Frontend.. 24

5 TESTING AND RESULTS ... 27

5.1 Testing with Cypress ... 27

5.2 Results in Browser... 27

6 CONCLUSIONS .. 30

REFERENCES .. 31

APPENDIX 1. THE FOLDER STRUCTURE OF SANITY ... 32

 4

APPENDIX 2. THE FOLDER STRUCTURE OF NEXTJS ... 33

 5

LIST OF FIGURES

Figure 1. User shopping activity diagram 11

Figure 2. Jamstack workflow 12

Figure 3. Database relationship 12

Figure 4. The browser sends requests and displays the data 13

Figure 5. Wireframe of Home page 13

Figure 6. Wireframe of the Products page 14

Figure 7. Wireframe of Product Detail page 14

Figure 8. Users send requests to CMS 15

Figure 9. Wireframe of the Authentication page 15

Figure 10. Wireframe of the Cart page 16

Figure 11. Download numbers of React and NextJS on NPM Trends 19

Figure 12. User Interface of Sanity dashboard 24

Figure 13. Vendor information is connected to the product via type reference 24

Figure 14. Test results in terminal 27

Figure 15. Home page 28

Figure 16. Login successfully 28

Figure 17. Checkout with PayPal testing account 29

 LIST OF CODE SNIPPETS

Code snippet 1. Product item schema 23

Code snippet 2. Page initialization in _app.tsx 25

Code snippet 3. The Layout component contains Header and Footer 25

Code snippet 4. Adding AWS Amplify to Profile page 26

Code snippet 5. Fetching with the SSG method 26

Code snippet 6. Fetching with the SSR method 26

 6

LIST OF APPENDICES

APPENDIX 1. The folder structure of Sanity

APPENDIX 2. The folder structure of NextJS

LIST OF ABBREVIATIONS

API Application Programming Interface

CDN Content Delivery Network

CMS Content Management System

CSS Cascading Style Sheets

DOM Document Object Model

GROQ Graph-Relational Object Queries

HTML HyperText Markup Language

ISR Incremental Static Regeneration

PHP Hypertext Preprocessor

SEO Search Engine Optimization

SPA Single Page Application

SSG Static Site Generation

SSR Server-Side Rendering

SWR Stale While Revalidate

UI User Interface

URL Uniform Resource Locator

 7

1 INTRODUCTION

The main purpose of this thesis was to introduce a new web development

architecture Jamstack, exploring its benefits and comparing it to traditional

approaches. In this context, a website was built with NextJS, Tailwinds, and Sanity

to fulfill the requirements specified in e-commerce.

However, there were some possible limitations to this study. Firstly, it is a

subjective opinion of the author, a fact remains that many people are still using

traditional architecture and WordPress. Secondly, the approach is relatively new,

thus, there are not many documents available on the internet. Lastly, there is a

massive number of frameworks and libraries that may confuse beginners in the

first place.

1.1 Traditional Website

Previously, we needed a folder of HTML files and CSS for the interface. HTML is

the bone structure of the layout and CSS describes the attributes of HTML

elements on the screen such as sizes and colors. Together, they determine how

websites are displayed by browsers to the users. Then we need to set up a backend

with PHP or .NET, creating a CMS which allows our customers to input their

content. It will be saved into one or more databases, for example, Apache or

MySQL, we can fetch records from here and display the content on our website.

This was how websites were built in a traditional way which is complex.

Later, due to the high demand for online shopping, WordPress was released. It is

open-source which helps to build and deploy a website within minutes. On the

market, there are a variety of themes to choose from for WordPress with different

functionalities, it does not require much knowledge to code a WordPress site since

everything is already built-in. Until today, it is still one of the most popular

frameworks with a contribution of 39.5% of all the websites in 2021, according to

 8

a study. However, there are some limitations in WordPress that we need to

overcome.

• Slow speed: There are some factors affecting the speed of a WordPress site

such as bad themes, and lots of scripts running in the background due to the

high number of plugins and size (Cortez, n.d.).

• Large size: WordPress is a huge framework, in version 5.5.1, the size of its core

is 30.8MB, which leads to a total of 47.7MB. This is one of the main reasons

why WordPress is slow (Morey, 2018).

• Vulnerability: Heavily relying on themes and plugins, WordPress sites can be

attacked easily if those themes and plugins contain viruses. Since it is open-

source, anyone can contribute to the core functionalities leading to security

issues. In addition, with its high popularity, it is likely to be the primary target

of hackers. According to measurements by Wordfence, more than 86 billion

blocked password attacks during the first 6 months of 2021 (Dewhurst and

Chamberland, 2021, p2).

1.2 Jamstack

Jamstack is an architecture designed for the modern website, it is not a specific

programming language or tool. Jamstack is a new approach to development to

achieve faster, more secure, and better-scale websites, JAM stands for JavaScript,

API, and Markup language.

The main difference between Jamstack and other technologies is that it does not

need a server. Instead of using databases, our website is connected to services

using APIs and served as static files. This approach has several advantages making

it one of the best ways to build websites these days.

One of the advantages is speed. Instead of rendering page contents on the

server at request time, all the pages are built on CDN and ready to serve. It

 9

makes Jamstack websites much faster than ones built in traditional methods

(Wlosik, 2021). Research from Google has shown that 53% of users left the site

if it does not load within three seconds (Kirkpatrick, 2016). Meanwhile, since

Jamstack pages are statically built, the content is displayed very quickly.

While WordPress sites use pre-built themes, Jamstack has full control of the

content and HTML structure. It is easy to add page titles, descriptions, and alt

texts, helping crawler bots work more effectively. It results in the site’s index

being boosted naturally with less effort. In addition, page speed contributes

largely to SEO as Google has recognized desktop speed as a key factor to rank

websites (Southern, 2022).

Jamstack sites are safe due to their designs which have fewer attack

possibilities since most potential connections to web applications or database

servers are eliminated by serving pre-rendered static HTML. Meanwhile,

dynamic functions in a WordPress setup are vulnerable to hackers.

 Because the website is primarily static content, it can be easily deployed as files

from CDN servers in multiple locations. This means that the website can be quickly

and inexpensively published from new web locations, providing scalability options

for businesses expanding into new markets or anticipating increased traffic from

various locations.

However, it is important to note that WordPress sites do not require any coding

because they are supported by a large number of themes and plugins, web

development knowledge is needed to work with Jamstack.

 10

2 REQUIREMENTS, SPECIFICATIONS, AND DESIGN

2.1 Requirements

To achieve all the requirements of an e-commerce website, the project needs the

following features in the frontend

• Layout

• Login/register page

• Profile page

• List page

• Product detail page

• Cart/checkout page

• Multi-language button

The backend features include CMS.

2.2 Specifications

The specifications for the frontend are as follows:

• The layout provides a better visual experience to users with interactive

elements allowing them to navigate through the website. The layout is also

responsive which means it displays well on both desktop and smaller devices.

• The login/register page helps users to create an account and log in, to be more

secure because the registration process comes with email verification. It is

possible to change the password or get a new one if the users forget their

password.

• The profile page comes after users have logged in, they can manage their

favorite items or view their purchase history.

• The list page shows all the products with pagination and filters.

 11

• The detail page provides product information, and functionalities that allow

users to purchase, add or remove items to their favorite.

• The cart page lets customers increase or decrease the number of products, or

delete them. The checkout section comes with multiple payment methods

such as PayPal and Visa cards.

• The multi-language button to control the language of the website, available in

English (by default), Finnish and Swedish.

The specifications for the backend include:

• CMS is a dashboard where the clients input and manage data such as images

and content through UI, which is served later on the frontend side.

2.3 Design

The objective of this chapter is to illustrate users’ shopping process and the

workflow of Jamstack.

Figure 1. User shopping activity diagram

As can be seen in Figure 1, when users open the application, they see the home

page where they can browse or search for products and view product details. After

choosing desired items, users might add them to the cart and manage quantities.

If they are not satisfied with the current items, they can delete them and start

 12

again, otherwise, they may proceed to checkout. Then they can cancel the order

or make a payment, and with a successful checkout, users are redirected to a

success page and receive a notification email.

2.3.1 Backend design

Figure 2 illustrates the interaction between the backend and frontend, Sanity

takes care of the CMS part, and all the content information of the project is

managed here. It is possible to add brands and products in multiple languages,

then these contents are served to the frontend as APIs.

Figure 2. Jamstack workflow

Figure 3. Database relationship

 13

As seen in Figure 3, the Brand field connects to the Product field using the ID, so

from one brand, the information of all the products belonging to that brand can

be retrieved. Similarly, the User field connects to the Comment, Favorite, and

Order, and users can write a review, manage their favorite products, and view

their order history.

2.3.2 Frontend design

When users visit the application, depending on the page, the specific requests are

sent to the CMS to get information and display it on the browser as shown in Figure

4.

Figure 4. The browser sends requests and displays the data

 Figure 5. Wireframe of Home page

 14

Figure 5 describes the layout of the Home page, users can navigate to other

pages with links on the header section. Below is the product section which

displays a list of product items based on the requests. To be specific, in the

application, three requests for discount, new and best-selling products are

dispatched.

Figure 6. Wireframe of the Products page

As shown in Figure 6, users can view all the products fetched from the CMS. They

can use sort and filter functions to display the items more precisely according to

their needs. The request with corresponding parameters will be sent to get the

desired products.

Figure 7. Wireframe of Product Detail page

From the product list, users can choose to view the detail of each product which

is given in Figure 7, where users may add the item to their favorite list or the cart.

 15

Amplify then verify users’ status, if they are logged in, a request is sent to the CMS

to save the favorite item or the cart to the database as in Figure 8.

Figure 8. Users send requests to CMS

Figure 9 illustrates the layout of the Authentication page where users are

redirected if they are not logged in. From there, users can sign in or create a new

account.

Figure 9. Wireframe of the Authentication page

The Cart page is one of the most important parts of an e-commerce website that

allows users to manage their cart such as updating the quantity or deleting

unwanted items as described in Figure 10. Then users can proceed to the

checkout section which is handled by PayPal. It is available with different

payment methods and supports testing accounts for real checkout on the

website.

 16

Figure 10. Wireframe of the Cart page

 17

3 TECHNOLOGIES

3.1 Introduction

We need at least a Static Site Generator and a Headless CMS to start the

development. There are a lot of choices such as Jekyll, Gatsby, and Nuxt for the

first technology, and Strapi, Ghost, and Netlify for the latter one, NextJS, and

Sanity.io were selected. Along with those, Tailwinds and React Query were chosen

for styling and state management.

3.2 NextJS

NextJS is a framework built on top of React, providing all the features needed for

building extremely fast static websites. Although fairly new technology, Next is

widely used by large enterprises such as Netflix, Uber, and Starbucks. It works well

with Headless CMSs or e-commerce platforms to deliver exceptional performance

and SEO benefits.

3.2.1 NextJS vs ReactJS

The main difference between NextJS and React frameworks is the ability to build

static websites with NextJS, meaning, Next provides React structures plus extra

functionalities.

3.2.2 Features

 The main reason why a lot of companies choose Next is the data fetching method.

While React has only CSR, Next offers three additional ways to fetch data which

are SSR, SSG, and ISR (Gamela and Rebelo, 2021). In CSR, HTML is generated by JS

in the browser, so if JS is not enabled, users only see a blank page. The same

happens when a Google bot crawls the website, HTML structures cannot be

examined, which leads to bad SEO results.

 18

SSR is a popular technique that renders SPA on the server and sends it to the

client. This makes it possible to serve dynamic components as static HTML

markup.

 In SSG, the website is compiled and rendered at the build time, the result is a

collection of static files that include the HTML file itself as well as assets such

as JavaScript and CSS. The difference between those two is that SSG does not

consume an API request, the data is static and only changes at build time, while

SSR is dynamic.

ISR is a mix of SSG and SSR, it allows us to use SSG without rebuilding the whole

site. With revalidate, the number of pages is chosen to generate and the stale

time. Having less build time, the performance is extremely fast.

Generally, SSG is the fastest method, however, data will not be updated until

the site is built again. In addition, rebuilding thousands of pages can be

laborious, therefore, it is more suitable for blog sites, the category page. In

contrast, if there are plenty of items and the information needs to be fresh on

every render, for instance, on e-commerce websites, SSR is the best choice.

If we need SSR and SEO, Next is a better choice, especially when we are building

blogs, news, or e-commerce websites. For applications that are heavily focused on

the client-side, we can go with React.

3.2.3 Trends

Today, people are moving towards Next due to its wonderful features. According

to NPM Trends, a site that records download statistics of JS frameworks, there has

been a rise in Next since 2019. It is increasing rapidly and at the time of writing

this thesis, the download numbers of Next are almost 13 times more than React’s

as shown in Figure 3.

 19

Figure 11. Download numbers of React and NextJS on NPM Trends

3.3 Headless CMS

3.3.1 Introduction

Headless CMS is a form of CMS that has a backend only, it provides accessibility

through Rest API or GraphQL to be displayed to different devices. The term

"headless" refers to the idea of cutting the frontend where the content is

displayed off the backend where the content is stored (Czapla, 2022).

Headless CMS is designed to be frontend agnostic and API-driven. Developers can

distribute content freely to their target audience using the frameworks and

technologies of their choosing.

3.3.2 Headless CMS vs Traditional CMS

There are some advantages of Headless CMS over traditional CMS:

• Flexibility: The front and backend are completely independent of one another,

organisations can freely choose any technologies that best fit their needs.

• Cross-Platform Support: A single content may be simply presented on a variety

of web and mobile devices.

 20

• Development experience: Headless CMS allows developers to pick

programming languages of choice, which they are most familiar with. In

addition, being API-driven, the interaction with the frontend side is done with

ease, and developers can focus on how content is presented.

• More secure: Headless CMS is likely to be more secure because it simply gives

content via API or GraphQL, whereas traditional CMS allows user content

editors via some interface that is attached to the site, which is more vulnerable

to attackers.

3.3.3 Sanity

There are nearly one hundred Headless CMS frameworks, the most common are

Strapi, Ghost, and Netlify. In this project, Sanity.io was chosen for some reasons,

one of which is stability. While most Headless CMSs require no coding, everything

interacts via UI, Sanity needs to implement with codes. However, it is quite stable

since codes are more accurate and transparent than the UI itself. It allows

developers to control and debug functionalities easily.

 Sanity also comes with already made functions for specific projects such as

blogging and e-commerce. It is not necessary to do everything from the

beginning, we can extend their examples with our new features.

The content editing feature works perfectly as others, in addition, every time

users create or edit the content, it is saved to the version history, allowing

users to undo or redo the exact version they want.

Graph-Relational Object Queries is a declarative language for querying

collections of mostly schema-free JSON objects. It is the best feature of Sanity

that makes it unique among other Headless CMSs. GROQ allows developers to

do the same work as in GraphQL with less effort.

 21

The main purpose of these query languages is to develop faster and more

predictable APIs. To illustrate, there are two API endpoints for books and authors,

in which, a book has one or more authors, and an author may write several books.

It is not recommended to store all authors’ data in books and vice versa, instead,

we store the ID of related items. To display the information of a book with its

author on the front, we need to make complex functions in the REST API which

may include nested loops. GraphQL helps to do this efficiently. In addition, it

allows us to get the exact data instead of getting the whole object, making the API

cleaner and easier for debugging.

 22

4 IMPLEMENTATION

4.1 Environment Setup

The programming was done in JavaScript with Visual Studio Code on macOS, it is

also compatible with Linux or Windows. Sanity was used to build the backend,

which needs Node.js 12.22.0 or later to run, and Sanity CLI was installed to create

the CMS in the terminal.

In the frontend part, React and React DOM are required to run NextJS, including

other third-party libraries:

• AWS Amplify handles Authentication such as registration and login.

• React PayPal makes it easy to integrate with PayPal checkout.

• Tailwinds takes care of the website layout.

4.2 Headless CMS

After having Sanity CLI installed on the computer, the following command was

used to install Sanity in this project.

npx sanity@cli init

There are several options with already made codes such as Blog and E-commerce.

However, the product structure of this application is different because it has a

variety of sizes, so the blank project was chosen for easier customization.

When Sanity CLI finished running, the project backend was created with the

structure as shown in APPENDIX 1.

The most important thing in Sanity is the schema that allows us to build the

structure of contents and manage their relationship. To be more specific, there

are brands, brand details, product details, and users.

fields: [
 {

 23

 name: 'title',
 title: 'Title',
 type: 'string',
 },
 {
 name: 'slug',
 title: 'Slug',
 type: 'slug',
 options: {
 source: 'title',
 maxLength: 96,
 },
 },
 …
 {
 name: 'vendor',
 title: 'Vendor',
 type: 'reference',
 to: { type: 'vendor' },
 },
 {
 name: 'images',
 title: 'Images',
 type: 'array',
 of: [
 {
 type: 'image',
 options: {
 hotspot: true,
 },
 },
],
 }
]

Code snippet 1. Product item schema

Code snippet 1 is the schema code of product items. There are three attributes:

name, title, and type. The name is the ID of the unique field, the title is displayed

on the UI and the type is the data type of the field. The schema types of Sanity

include slug, array, block, string, and number, in which, the slug indicates the URL

on the browser while the rest are the content of the field. Furthermore, the type

of reference is used to define a relationship between two data. This code snippet

connects the product item to its vendor (brand).

After configuring all the schemas, running the backend to open a dashboard as in

Figure 4, in which information such as brand, product, and product details can be

added by content writers.

 24

Figure 12. User Interface of Sanity dashboard

Sanity provides a playground to test queries and APIs given in Figure 5, those

queries will be used in the frontend part to display data from the CMS.

Figure 13. Vendor information is connected to the product via type reference

4.3 Frontend

The fastest way to install NextJS with Typescript for frontend is to use

npx create-next-app app-name @typescript

The APPENDIX 2 displays NextJS project structure, in which, the most important

file is _app.tsx located in pages folder. It is the root file of the whole project; all

the configurations and libraries will be placed here in the Code snippet 2.

<QueryClientProvider client={queryClient}>

 <ReactQueryDevtools initialIsOpen={false} />

 25

 <Hydrate state={pageProps.dehydratedState}>

 <CartProvider>

 <Layout>

 <NextNProgress

 color='#29D'

 startPosition={0.3}

 height={5}

 showOnShallow={false}

 />

 <Component {...pageProps} />

 </Layout>

 </CartProvider>

 </Hydrate>

 </QueryClientProvider>

Code snippet 2. Page initialization in _app.tsx

NextJS uses the App component to control page initialization. In this code block,

two libraries are used, in which React Query helps to manage and cache server

APIs while NextNProgress shows the loading bar when navigating between pages.

const Layout: React.FC = ({ children }) => {

 return (

 <div className='main'>

 <Header />

 {children}

 <Footer />

 </div>

)

}

Code snippet 3. The Layout component contains Header and Footer

The layout is a component created to reuse shared components. In Code snippet

3 above, Header and Footer will be displayed on every page, it is not advisable to

duplicate them to all the files.

<Authenticator variation='default'>

{({ signOut, user }: AmplifyType) => (

 …

 26

)}

</Authenticator>

Code snippet 4. Adding AWS Amplify to Profile page

After installing Amplify, login and registration functions are ready to use as

illustrated in the Code snippet 4. Anything put in the middle of Authenticator

component is called a private route, which is hidden when the user is not

authenticated and only displayed after the user has logged in.

export const getStaticProps: GetStaticProps = async () => {

 const queryClient = new QueryClient()

 await queryClient.prefetchQuery('all_brands', getAllBrands)

 return { props: { dehydratedState: dehydrate(queryClient) } }

}

Code snippet 5. Fetching with the SSG method

The Code snippet 5 describes the SSG fetching method, in which the data is

fetched only once during build-time and served as HTML later. It does not

consume API requests and only changes if NextJS is built again. This method is

suitable for data that does not change often, in this case, product brands are likely

to stay the same.

export const getServerSideProps: GetServerSideProps = async ({ query }) => {

 await queryClient.prefetchQuery(['product_detail: ' + slug], () =>

 getProductDetail(brand_slug, slug),

)

 return {

 props: {

 dehydratedState: dehydrate(queryClient),

 },

 }

}

Code snippet 6. Fetching with the SSR method

On the other hand, the price, and the quantity of the product change frequently,

therefore, it is better to use SSR as in the Code snippet 6.

 27

5 TESTING AND RESULTS

5.1 Testing with Cypress

Testing plays an essential role in software development since it ensures the quality

of the product before delivering it to customers. Cypress was used in this project

for end-to-end testing. Because it operates in browsers, it allows accurate testing,

whereas other tools, such as Jest and Selenium, run outside of the browser.

The test cases were written based on the functionalities of the website.

The navigation links on the Header component function properly.

The Home page displays the correct components.

The Shop page displays only the products that match the filter.

Users can log in to manage their favorite items and make purchases.

Figure 14. Test results in terminal

When the testing process is finished, a result is exported to the terminal as in

Figure 6.

5.2 Results in Browser

Finally, the application built with Jamstack technologies was successfully

constructed. Figure 7 shows the Home page, allowing users to view products in

 28

different sections, selecting them to view their details. On the top of the page, the

Header displays navigation that links to other pages.

Figure 15. Home page

When customers log in, they can manage their favorite products and view their

previous purchases as seen in Figure 8.

Figure 16. Login successfully

Figure 9 demonstrates the checkout section using the PayPal testing account. If

the payment is successful, users are redirected to the Success page and the order

information is saved into the CMS.

 29

Figure 17. Checkout with PayPal testing account

 30

6 CONCLUSIONS

This thesis fulfills all the requirements needed for an e-commerce website,

including viewing products, registration and login, checkout, and reviewing order

history. It is also good in SEO and loads extremely fast which increases user

experience, resulting in better sales. Generally, the website works as expected

since it meets all the specifications.

 Two problems occurred during the process. Due to a large number of frameworks

and libraries, choosing one to use was quite difficult. It requires a lot of research

to pick the most suitable ones. In addition, the stack is relatively new, and

searching for information and solutions on the internet was hard.

Overall, Jamstack is a good solution that provides many benefits to web

development. It remains to be seen how well it takes on in the future. Jamstack

is more suitable for frontend or frontend focused full-stack developers and SaaS

applications such as news and e-commerce. Though the technology is still in the

early phases of adaptation and there is no evidence that it will be the future of

web development. Based on this experience, it can be said that Jamstack plays an

important role in web development.

 31

REFERENCES

Cortez, K, n.d. The disadvantages of WordPress. Accessed 28.1.2022.

https://doctorlogic.com/blog/disadvantages-of-wordpress.html.

Czapla, A, 2022. Headless CMS vs Traditional CMS. Accessed 5.2.202.

https://blog.vuestorefront.io/headless-vs-traditional-cms.

Dewhurst, R, and Chamberland, C, 2021. WordPress Security Report. Accessed

28.1.2022.

Gamela, A and Rebelo, G, 2021. Next.js vs React: What are the differences?

Accessed 11.2.2022. https://www.imaginarycloud.com/blog/next-js-vs-react.

Kirkpatrick, D, 2016. Google: 53% of mobile users abandon sites that take over 3

seconds to load. Accessed 2.2.2022.

https://www.marketingdive.com/news/google-53-of-mobile-users-abandon-

sites-that-take-over-3-seconds-to-load.

Morey, R, 2018. How Much Disk Space Does a WordPress Website Need?

Accessed 28.2.2022. https://wp-rocket.me/blog/how-much-disk-space-

wordpress-needs.

Southern, M, 2022. Page Speed and SEO. Accessed 28.2.2022.

https://backlinko.com/hub/seo/pagespeed.

Wlosik, M, 2021. Jamstack for eCommerce at Scale. Accessed 10.2.2022.

https://www.layer0.co/post/jamstack-ecommerce-at-scale.

 32

APPENDIX 1. THE FOLDER STRUCTURE OF SANITY

 33

APPENDIX 2. THE FOLDER STRUCTURE OF NEXTJS

	1 INTRODUCTION
	1.1 Traditional Website
	1.2 Jamstack

	2 Requirements , SPECIFICATIONS, AND DESIGN
	2.1 Requirements
	2.2 Specifications
	2.3 Design
	2.3.1 Backend design
	2.3.2 Frontend design

	3 Technologies
	3.1 Introduction
	3.2 NextJS
	3.2.1 NextJS vs ReactJS
	3.2.2 Features
	3.2.3 Trends

	3.3 Headless CMS
	3.3.1 Introduction
	3.3.2 Headless CMS vs Traditional CMS
	3.3.3 Sanity

	4 Implementation
	4.1 Environment Setup
	4.2 Headless CMS
	4.3 Frontend

	5 Testing and results
	5.1 Testing with Cypress
	5.2 Results in Browser

	6 ConclusionS
	REFERENCES
	APPENDIX 1 . The folder structure of sanity
	Appendix 2. The folder structure of NextJS

