

Bachelor’s Thesis

Turku University of Applied Sciences

Bachelor of Engineering, Information and Communications Technology

2022

Dhruv Verma

A Comparison of Web Framework Efficiency–

Performance and network analysis of modern web

frameworks

Bachelor’s Thesis | Abstract

Turku University of Applied Sciences

Bachelor of Engineering, Information and Communications TechnologyBachelor

of Engineering, Information and Communications Technology

2022 | 115

Dhruv Verma

A Comparison of Web Framework Efficiency

- Performance and network analysis of modern web frameworks

The world of web frameworks has evolved from its early days of being a static

website to now a dynamic and interactive web application. With the ever-

growing web development technologies, many developers are struggling to pick

the best framework.

Subjective and individual opinions are no longer relevant to decide a good

framework. Therefore, the goal of this thesis was to implement a chat

application using modern web frameworks and provide an efficiency

comparison by performing an in-depth network and performance analysis based

on surveys and reports, of frameworks such as React, Angular, Rails, Flask and

Swift.

Though, it cannot be successfully deduced that any framework performance

better than the other. The performance of a framework depends on the type of

application in development. However, it can be predicted that for a simple

application the results imply that the combination of React JS and Rails is the

best.

Keywords:

WebSocket, Requests, Responses, Protocol, Development, Frameworks,

Native Applications

CONTENTS

List of Abbreviations 9

1 INTRODUCTION 11

1.1 Background Theory 11

1.2 Research Problem 13

1.3 Research Method 14

1.4 Review of Literature 14

1.5 Structure of thesis 15

2 CONCEPTUAL LAYOUT OF THE RESEARCH 17

2.1 Network Traffic 17

2.1.1 TCP 18

2.1.2 HTTP 19

2.1.3 WebSocket 19

2.2 Website Components 20

2.2.1 Front-End 21

2.2.2 Back-End 21

2.3 Brief History of Web Frameworks 22

2.4 Evolution of Web Frameworks 23

2.4.1 Early Web Development 23

2.4.2 Modern Web Development 28

3 DATA AND METHODS OF RESEARCH 32

3.1.1 Native and Cross-Platform Applications 33

3.1.2 Web Applications 36

4 IMPLEMENTATION OF THE APPLICATIONS 40

4.1 GUI Flow 41

4.2 Models 41

4.2.1 Chat Message Model 42

4.2.2 User Model 42

4.3 Web Applications 43

4.3.1 React JS and Rails 43

4.3.2 Angular JS and Flask 47

4.3.3 Vue JS and Laravel 50

4.4 Native and Cross-Platform Applications 53

4.4.1 Swift 53

4.4.2 React-Native and Express 57

5 COMPARISON MODEL FOR THE FRAMEWORKS 61

5.1 Benchmarks 61

5.1.1 Development and Ease of Modification 61

5.1.2 Ease of Deployment 61

5.1.3 Generated HTML Structure 62

5.1.4 Framework Performance 62

5.1.5 Corresponding to modern standards 63

5.2 Frameworks 64

5.2.1 Angular JS and Flask 64

5.2.2 React JS and Rails 69

5.2.3 Vue JS and Laravel 74

5.2.4 Swift iOS 79

5.2.5 React Native and Express 83

6 RESULTS AND CONCLUSION 88

6.1 Frameworks in consideration 88

6.2 Results of Web-Application Frameworks 90

6.2.1 Benchmark Analysis 90

6.2.2 Network Analysis 91

6.3 Results of Native-Application Frameworks 94

6.3.1 Benchmark Analysis 94

6.3.2 Network Analysis 95

7 Conclusion 98

8 Bibliography 100

Equations

Equation 1. Server Time Delay - Windows 37

Equation 2. Sever Time Delay - Windows 37

Equation 3. Resulting Server Time Difference 37

Figures

Figure 1. TCP Model. 18

Figure 2. HTTP Model 19

Figure 3. WebSocket Connection. 20

Figure 4. Front-End Example. 21

Figure 5. Evolution of Web Frameworks. 22

Figure 6. AJAX Requests. 23

Figure 7. Three Layer Architecture. 24

Figure 8. Added Layers - Three Layer Architecture. 25

Figure 9. MVC Structure. 26

Figure 10. MVVM Structure. 27

Figure 11. Modern API Request Structure. 28

Figure 12. Example - Web Application. 29

Figure 13. Example – Native Application. 31

Figure 14. Schema of Study. 33

Figure 15. Network Flow – Android. 35

Figure 16. Captured Packet Details – Android. 35

Figure 17. Network Flow - iOS 36

Figure 18. OSI Model (Imperva, 2021). 38

Figure 19. CSV - Generated Chart. 39

Figure 20. Chat Application Structure. 40

Figure 21. Chat Application - GUI flow. 41

Figure 22. Chat Application - Data Models. 42

Figure 23. React JS - User Login. 44

Figure 24. Rails - Broadcasting Channel. 45

file:///C:/Users/dukes/Downloads/Dhruv_Thesis_final_draft%20(1).docx%23_Toc105835757

Figure 25. React - Working Chat Application. 46

Figure 26. React - Chat Application server logs. 46

Figure 27. React - Chat Application Postman Test. 47

Figure 28. Angular – Login. 47

Figure 29. Flask - WebSocket Connection. 48

Figure 30. Angular – Working Chat Application. 49

Figure 31. Angular - Chat Application server logs. 49

Figure 32. Vue - Login Components. 51

Figure 33. Xampp - Apache server & SQL Database. 51

Figure 34. Laravel - Pusher API. 52

Figure 35. Vue – Chat Application Server Logs. 52

Figure 36. Vue - Working Chat Application. 53

Figure 37. Swift UI Components. 54

Figure 38. Swift - WebSocket Connection. 55

Figure 39. Swift - Data Hashing. 55

Figure 40. Swift - Chat Application Server Logs. 56

Figure 41. Swift - Working Chat Application. 56

Figure 42. Swift - Manual Connection Test. 57

Figure 43. React-Native Navigation Stack. 58

Figure 44. React-Native WebSocket Connection. 58

Figure 45. React-Native Chat Application Server logs. 59

Figure 46. React-Native Working Chat Application. 60

Figure 47. Application Deployment Criteria. 62

Figure 48. Angular-Flask HTTP Packet Numbers. 64

Figure 49. Angular-Flask HTTP Packet Length. 65

Figure 50. Angular-Flask - No. of TCP Packets. 65

Figure 51. Angular-Flask - Length of TCP Packets. 66

Figure 52. Angular-Flask WebSocket Data Quantity. 67

Figure 53. Angular-Flask WebSocket Data Length. 67

Figure 54. Angular-Flask WebSocket Stalling Time. 68

Figure 55. Angular-Flask WebSocket TTFB. 68

Figure 56. Angular-Flask Application Performance. 69

file:///C:/Users/dukes/Downloads/Dhruv_Thesis_final_draft%20(1).docx%23_Toc105835783

Figure 57. React-Rails Number of HTTP Packets. 70

Figure 58. React-Rails Length of HTTP Packets. 70

Figure 59. React-Rails Number of TCP Packets. 71

Figure 60. React-Rails Length of TCP Packets. 71

Figure 61. React-Rails Quantity of WebSocket Data. 72

Figure 62. React-Rails Length of WebSocket Data. 72

Figure 63. React-Rails WebSocket Stalling Time. 73

Figure 64. React-Rails Chat Application Performance. 74

Figure 65. Vue-Laravel Number of HTTP Packets. 75

Figure 66. Vue-Laravel Length of HTTP Packets. 75

Figure 67. Vue-Laravel Number of TCP Packets. 76

Figure 68. Vue-Laravel Length of TCP Packets. 76

Figure 69. Vue-Laravel Quantity of WebSocket Data. 77

Figure 70. Vue-Laravel Length of WebSocket Data. 77

Figure 71. Vue-Laravel WebSocket Stalling Time. 78

Figure 72. Vue-Laravel Chat Application Performance. 78

Figure 73. Swift - Number of HTTP Packets. 79

Figure 74. Swift - Length of HTTP Packets. 80

Figure 75. Swift - Number of TCP Packets. 80

Figure 76. Swift - Length of TCP Packets. 81

Figure 77. Swift - Quantity of WebSocket Data. 82

Figure 78. Swift - Length of WebSocket Data. 82

Figure 79. React-Native-Express - Number of HTTP Packages. 83

Figure 80. React-Native-Express - Length of HTTP Packages. 84

Figure 81. React-Native-Express - Number of TCP Packages. 84

Figure 82. React-Native-Express - Length of TCP Packages. 85

Figure 83. React-Native-Express - Quantity of WebSocket Data. 85

Figure 84. React-Native-Express - Length of WebSocket Data. 86

Figure 85. React-Native-Express - WebSocket Stalling Time. 86

Figure 86. React-Native-Express - Chat Application Performance. 87

Figure 87. Web Framework - Benchmark Comparison. 91

Figure 88. Web Applications - HTTP Analysis. 92

Figure 89. Web Applications - TCP Analysis. 93

Figure 90. Web Applications - WebSocket Analysis. 93

Figure 91. Native Applications - Benchmark Analysis. 95

Figure 92. Native Applications - HTTP Analysis. 96

Figure 93. Native Applications - TCP Analysis. 96

Figure 94. Native Applications - WebSocket Analysis. 97

Tables

Table 1. Framework based on programming language. 29

Table 2. Framework - Benchmark Criteria (Percentage). 63

Table 3. Web Frameworks for Chat Application. 88

Table 4. Native Frameworks for Chat Application. 88

List of Abbreviations

AJAX Asynchronous JavaScript And XML (AJAX) is a method

which allows the web pages to be updated

asynchronously rather than loading one part of the

webpage at one time.

API Application Programming Interface (API) is an

intermediatory layer which allows two applications to

communicate with each other.

CSV Comma-Separated Values (CSV) is a delimited text file

which separates values by using commas.

GUI Graphical User Interface (GUI) is a graphic based

interface that uses icons, menus and clicks to perform

interactions with the application.

HTTP Hypertext Transfer Protocol (HTTP) is an application

layer protocol which used to transmit media documents

such as generated HTML structures.

MVC Model-View-Controller (MVC) is a common software

design pattern that is used to implement user interface

while separating the functions and database layers.

MVVM Model-View-View-Model (MVVM) is a software design

 pattern that allows the separation program logic and

user interface control layers in the web application.

REST REpresentational State Transfer (REST) is a set of

architectural rules which transfer a representation of the

state of the data in the application.

SPA Single Page Application (SPA) is a web application that

interacts with the end user by dynamically changing the

data of the current user page rather than re loading the

new page.

SSDP Simple Service Discovery Protocol (SSDP) is a text-

based protocol which uses User Datagram protocol

(UDP) to transport packets.

SSL Secure Socket Layer (SSL) is a standard security layer

that establishes an encrypted link between a server

and a client.

TCP Transmission Control Protocol (TCP) is a

communication standard which provides a way for the

devices to communicate with each other and send

packages.

WS WebSocket (WS) is a TCP based communication

connection which provides a constant communication

between the client and the server over a single

handshake.

1 INTRODUCTION

Since the introduction of the Internet and World Wide Web in the early 1990s,

there have been many remarkable discoveries in the terms of technologies of

sharing data and communication. In recent years, many organizations have

witnessed unprecedented growth in the field of Web Development. Most of the

working sectors and businesses have adopted the internet as their primary

platform. As a result, the need for fast, dependable, and engaging internet

applications has increased. (EDUCBA, 2019)

1.1 Background Theory

Early websites used to depend on HTML to exchange information and data. While

HTML- based websites can easily transmit static content such as text documents,

photographs and blogs, its application for more complicated models is quite

restricted. HTML cannot meet the requirements for application integration,

flexible models, and portable environments which led to the introduction of a

three-tier architecture which allows the separation of logic layers in an application.

Thus, this improved three-tier architecture including a presentation layer, a

business layer and a dedicated database layer. The presentation layer supports

the user and web application interface, and the business layer handles data

retrieval and posting, validation and rules enforcement. Lastly, the data layer

connects to the database using the given modules, classes, and models. In

general, this architecture allows web applications to work with complex models

and structures while at the same time decoupling the database and present layers

of user interface from the business layer. In addition to the common benefits of

modular software, this architecture was designed to allow any of the three tiers

to be upgraded or changed independently if any technology or requirement

changes. (IBM Cloud Education, 2020)

Numerous frameworks emerged due to this architecture, and subsequently,

many companies developed technologies to complement each layer. For

instance:

UI Layer: HTML, CSS, and JavaScript

Back End Layer: Perl, PHP, C#, and ASP

Database Layer: SQL, mySQL and Oracle

Browser-Server Communication Layer: XML and AJAX

Building a website or hosting a server with these technologies is a tedious

process. A web framework eliminates the need for programming and setting up

basic code from scratch. Therefore, the introduction of frameworks rendered

these mentioned technologies obsolete.

In today’s era of website technology, there are three main types of applications:

native, web and progressive web. Native applications are platform-dependent

and require specialized programming languages and development kits, whereas

Web apps are platform-independent webpages that feel like native apps in many

respects. Native applications access the device hardware while web applications

have limited access. However, both applications have their own advantages and

shortcomings based on the used framework and platform. On the other hand,

Progressive Web Applications (PWA) are developed using a specific set of

standard patterns that allows these applications to run on the native environment

while still having the common web architecture.

Today, Web applications are developed using PWA templates and

methodologies to enhance user experience and reduce server load. Additionally

using a CMS makes developing the application much easier and it provides better

integration and stability. Instead of writing the source code, CMS allows the

developer to create, edit and manage data fields such as text, images, audio, and

videos.

The study is used as a foundation for examining a real-life web development case

and implementation of a chat application across different platforms and devices.

The document’s structure is divided into three sections. The first part provides a

deep insights into web and mobile frameworks. The second one presents the

comparison of different application framework models to gain a better

understanding of their attributes. The methods chosen to assess the

effectiveness of each framework are also discussed. Following that, the

implementation of one application using different frameworks is analyzed.

Afterward, the frameworks’ relative performance is evaluated, and all the findings

are summarized.

1.2 Research Problem

Various web frameworks have been developed in the field of web development

in recent times. Of these, frameworks such as Angular, React, Swift, Laravel,

Express, and Flask have prospered. These web frameworks provide different

capabilities which are suited for different types of applications. As a result, there

are several comparative studies regarding the web frameworks such as

Comparison of Mobile Web Frameworks (Heitkötter, et al., 2014), and A

comparison model for agile web frameworks (Ignacio Fernández-Villamor, 2008).

These comparative studies examine the frameworks and perform a subjective

analysis of their capabilities.

There is not a comparison model based on the performance and network analysis

of the applications. Therefore, the research on the comparison of web

frameworks will be focused on analyzing the web frameworks using different

benchmark criteria, network, and performance analysis.

The motivation of the thesis is to examine the performance of the concerned

frameworks by developing the same chat application across popular web and

mobile frameworks. The determined performance is used to conduct a cross-

comparison among all the concerned frameworks.

1.3 Research Method

Web development framework combinations such as React and Rails, Angular

and Flask, React Native and Express, Vue and Laravel, and Swift have been

used in the analysis. A test chat application has been implemented using all these

framework combinations. This application would allow for an in-depth comparison

analysis of the frameworks.

For comparison analysis, benchmark criteria like development, ease of

deployment, ease of modification, framework performance are considered.

Similarly, the network analysis of the frameworks includes analyzing HTTP, TCP,

and WebSocket Packets.

The implemented chat application was run for a span of 10 minutes and was

refreshed frequently to generate unique traffic. This traffic was then captured for

detailed analysis.

1.4 Review of Literature

A comparison model aims to ensure the stability and integrity of the framework

while aiming for high performance. The main components of the comparison

model include development, network, and performance analysis.

The problem with majority of the comparison models is that almost all of them

compare at least two frameworks, but none of them compare data acquired from

network measurements. The study Comparing Web Frameworks (Raible, 2006)

is based on personal experience of the author. The lack of case studies only

leaves an author’s personal opinions on the frameworks. The study describes

some frameworks using examples with source code. The comparison criteria,

however, are only limited to internationalization, AJAX support, and validation of

the framework. Some results are based on the author’s perspective and therefore

can vary from person to person while choosing a modern web framework.

The study Evaluation and Implementation of Progressive Web Application

(Thakur, 2018) does refer to frameworks such as React and Angular but does not

drive any comparative conclusion. The study refers to the implementation of

Progressive Web applications using React JS. The author describes using this

framework due to its popularity among the developers. However, there is no

mention of a technical comparison. The study only gives an overview of the

development process of a news application.

Another research Comparative study on Python web frameworks: Flask and

Django (Ghimire, 2020) describes a comparison study between Flask and

Django. Both of these frameworks are developed using Python. However, the

comparison criteria only include design patterns, request routing, flexibility, and

error handling. These results do not offer any technical comparisons for the

frameworks.

1.5 Structure of thesis

The thesis is divided into seven chapters.

Chapter 1 presents the motivation for the research and the research problem and

objectives. It introduces web development and web frameworks

Chapter 2 provides the conceptual layout of the research. It describes the origin

and evolution of web frameworks. It deeply explains the network flow within the

application. It explains HTTP, TCP and WebSocket and gives an in-depth

knowledge of the working principle behind the network.

Chapter 3 presents the methods used to capture the required network data from

the running application. The methods include the research carried out on the web

applications and the native applications.

Chapter 4 discusses the implementation of the application using every concerned

framework.

Chapter 5 describes the comparison model and the analysis carried out on the

frameworks.

Chapter 6 discusses the results of the analysis

Chapter 7 discusses the conclusion that have been made from the observations.

2 CONCEPTUAL LAYOUT OF THE RESEARCH

With the emergence of the new web development technologies every year, the

developers must analyze each application framework suitable for the project. The

analysis are based on technical prospects such as network analysis of the

application. The newly released framework may offer new benefits and integrity,

but it might only be for specified platforms and operating systems. Therefore, it is

becoming a necessity to choose frameworks that are well suited for the project.

This suggests several important questions such as:

1) What is a framework?

 2) How is network analysis of a framework performed?

 3) Is there a comparison model for frameworks?

Accordingly, the following sections will determine the concept for network

analysis, the definition and classification of modern frameworks, details about

frameworks and a comparison model for the frameworks. With a prior knowledge

of compared results of different frameworks, it is easier to select the framework

which would work the best with the required project management methodology

and operating platform.

2.1 Network Traffic

Network packets make up the network traffic. Network analysis, also known as

network traffic analysis, can be described as a method for analysis network

packets. It includes the monitoring of different network activities such as HTTP,

TCP and WebSocket, collecting relevant information and analyzing it in real-time.

It can be used for a variety of purposes, like detecting fault on a network, studying

the behavior of the network, and identifying malicious activities. Moreover, it is

also helpful in identifying the vulnerable protocols which might be the target of

any malicious activity in the future. While it might not be of a big use in a personal

level, but it is extremely important on an enterprise level, where thousands of

machines are connected to various chains of servers and network devices. These

devices produce a vast amount of traffic. So, these servers are most suitable

choice for most attackers, therefore network analysis provides a great deal of

identification to overcome these threats. (Techopedia, 2019)

The main network requests in an application are followed through the transfer

protocols which are: Transmission Control Protocol (TCP), Hypertext Transfer

Protocol (HTTP) and WebSocket (WS).

2.1.1 TCP

TCP is connection-oriented protocol which defines how the computers send the

packets of data to each other. TCP establishes a connection and maintains it until

the exchange of the packets is finished. It is used to organize the packets of data

in a secure way to ensure the proper transmission. TCP plays an important role

in establishing the rules and standard procedures to carry out the communication

over the internet.

TCP (Figure 1) is stacked in a conceptual model for data exchange which is the

TCP/IP stack model. The TCP/IP stack model repackages data at each layer

based on the functionality and transport protocols.

Figure 1. TCP Model.

2.1.2 HTTP

HTTP (Figure 2) is a protocol which utilizes the services of the TCP ports to

facilitate the transfer of a document over the internet. Unlike the other connection

the HTTP uses only one TCP connection which is ‘Data Link’ to proceed with the

transfer. It is client-server protocol that fetches the HTML documents to exchange

information on the Web. The client-side delivers the request message into the

webserver which sends the requested content back to the client. During the

request and the response, HTTP uses the Secure Socket Layer (SSL) to secure

the entire communication.

Figure 2. HTTP Model

2.1.3 WebSocket

WebSocket (Figure 3) is a stateful protocol which means that it sends a request

to the server and expects a response. In case a response is not received, the

stateful protocol resends the request. WebSocket maintains the connection

between the client and the server until it is terminated by either side. The data is

shared between the client and server continuously which eliminates the request

polling time. The server does not have to wait for the client’s state before

responding to the client’s request. Unlike HTTP requests, the WebSocket

maintains a bi-directional connection with the client and the server. After the client

requests the connection with the server, a handshake between both parties

happens. WebSocket does not require continuous handshaking, because it

keeps the connection alive.

The WebSocket serves the main purpose of transferring real time information

from the server to the client faster than HTTP. So, the trading applications,

gaming applications, and chat applications use WebSocket.

The figure 3 shows the HTTP request handshake is performed between the client

and the server. This handshake is soon followed by the bi-directional

communication and then the closure of the connection.

Figure 3. WebSocket Connection.

2.2 Website Components

A website is basically divided into two core parts: The Front-End and The Back-

End. These core parts refer to the separation of the UI layer and the data layer.

2.2.1 Front-End

The front-end (Figure 4) of a website can be described as the interface of the

website or web application which is accessible by the user. It is also known as

the Client-Side of the website or web application. The front end is created using

technologies such as HTML, CSS, and JavaScript. All the interactions to the

server are made possible by the front end. The front end is responsible for the

website’s architecture to provide a simple, yet elegant user experience without

affecting any functionality.

Figure 4. Front-End Example.

2.2.2 Back-End

The back end or the server-side of the website handles the server functionality.

All the requests and responses are handled by the server of the website or web

application. This may include retrieving data, posting information, updating data

from and to the databases. It also processes all the logic that the website or web

application requires. After completing the requests, the back end sends the

response to the front end so that it could render the view for the user.

2.3 Brief History of Web Frameworks

Web Frameworks are considered to be the most important part of any web

application. Web framework is a set of tools that helps build a website thus

avoiding the bugs and conserving time. Both static and dynamic web pages can

use frameworks. (Curie et al., 2019). Accordingly, a web application framework

can be defined as the reusable set of programming language code libraries and

tools designed to support the web application development. The upside of using

web frameworks is the comprehensive efficiency and code organization.

There are countless types of web frameworks (Figure 5), but they all fall into the

category of being progressive, native or hybrid. These frameworks are created

for the general purpose of adding more web components to the original

programming language.

Figure 5. Evolution of Web Frameworks.

Web frameworks grew in popularity as JavaScript became more capable in the

browsers. In 2004, the development of Asynchronous JavaScript and XML

(AJAX) (Figure 6) technique went in demand for building dynamic websites

without the need for full-page refresh. The demand for web development using

JavaScript mandated the W3C to implement new set of rules. These rules

required the browser vendors to implement the technologies which facilitate

standardized web technologies such as HTML, JavaScript/ECMAScript, and

CSS.

Figure 6. AJAX Requests.

To overcome the poor user experience and at the same time facilitate DOM

manipulation, web frameworks started to evolve. The next generation of

frameworks enforced good client-server architecture, followed modern web

standards and were quite stable which offered advanced user experience. The

emergence of AngularJS framework and Backbone framework proved that it was

viable to create web applications which could run natively in the browser without

the need for extremely fast computers.

2.4 Evolution of Web Frameworks

2.4.1 Early Web Development

Before the evolution of web frameworks, the websites followed a simple

software architecture. It consists of: Presentation Layer, Business Layer and

Persistence Layer. The concept of isolating each layer results in each layer

working independently of the other. No layer is affected by the refraction of

the other layer (Berninger, 2001). This isolates the changes and makes it

easier to further develop that layer (Figure 7).

Figure 7. Three Layer Architecture.

Presentation Layer

Presentation layer is known as the user interface (UI) Layer is the topmost

layer of the old software architecture. This layer provides presentation

services which include the demonstration of the content to the end user using

Graphical User Interface (GUI). The layer can be accessed through different

client devices such as laptop, desktop, mobile, and tablets. The layer presents

the content by interacting with other layers in the software architecture model.

Business Layer

Business layer is also known as the application layer which is the middle layer

of the software architecture. The layer follows the set of rules which are

required for the application to work. Hence, this layer comprises of Business

Logic which typically runs on one or more application servers.

Persistence Layer

Persistence layer described as the data layer. It is the lowest layer of the

software model. This layer is concerned with the storage and retrieval of the

application data from the database, file server or any other storage media.

Large businesses followed the same suite of designing responsive websites

using this software architecture. Though some websites require high cohesion

where the pieces of codes are linked to each other. Therefore, to solve this

problem, some additional layers are added to the software architecture

(Figure 8).

Figure 8. Added Layers - Three Layer Architecture.

During the rise of web development in 2000s, many internet sites relied on the

servers to render out the views for the client side. The browser acted like a

viewer which would display all the generated result. This result included

dynamically generated HTML and CSS pages by the server. These websites

followed a standard Model-View-Controller structure or MVC structure.

Model-View-Controller

Model View Controller or MVC (Figure 9) is a web architecture that follows the

standard software architecture. The model layer comprises of the data layer

which handles all the modification logic. Similarly, the controller layer handles

the business logic and provides communication between the view and the

model layer. Lastly the View layer comprises of the presentation layer and

handles all the UI that is accessible to the user. (Majeed & Rauf, 2018)

Figure 9. MVC Structure.

All the requests and responses can then be handled by jQuery or AJAX to

make the web page interactive. Though this architecture faces a lot of

complications such as coupling of components, front-end (views) and back-

end (model and controller) integration which results in insufficient architecture.

In the 2000s many companies faced the same coupling problem with the MVC

architecture which drove the developers to use the decoupled APIs from the

server. Though this required the application to run with browser plugins which

needed separate installation. These plugins were often outdated and had

various security vulnerabilities making them obsolete to run web and native

applications.

Model-View-ViewModel Architecture

The early 2000s provided a fix to these problems by introducing a Model-

View-ViewModel (MVVM) architecture client with a Representational State

Transfer (REST) API.

REST is an application programming interface or API which allows multiple

clients to communicate with the server. It provides great flexibility to the

developers as it eliminates the dependence of code libraries to access the

web-services. It handles the request in a parameter form. These parameters

include – the endpoint of the API, the method of the API and the data

transferred using the API.

The Endpoint: The Endpoint is a unique URL which represents the data

object. HTTP requests are directed to the endpoint to interact with all the data

resources. The data is also referred as the body of the request which

represents the resource. The data contains the required information about the

resource.

The MVVM (Figure 10) decouples the view, and the logic and model layers

which makes development of the GUI a lot easier as compared to the MVC

architecture. The ViewModel layer of this architect communicates with the

Rest API to provide the requested resource to the client and present it using

the View layer.

However, both the client and server side implement their own software

architecture layers which makes the architecture complicated.

Figure 10. MVVM Structure.

The early web frameworks such as Backbone and AngularJS struggled to

develop the websites with ill-designed architecture. In some cases, API(s)

returned data models which exposed the relational data models to the web

applications which introduced a new security vulnerability. Moreover, the badly

mapped structure of data created uncontrolled coupling between layers of the

architecture which created unconditional complexities. Hence, the need for new

web frameworks arose (Strawn, 2018).

2.4.2 Modern Web Development

The modern web development follows the modern frameworks. These

frameworks enforce good architecture, follow modern web standards, provide

scalability and, stability.

The modern applications (Figure 11) use API layers to flatten the data model

before sending the response to the client which makes the data transfer optimal

and the need for specialized API(s) is eliminated.

Figure 11. Modern API Request Structure.

Web Applications

In web development terms, a web application can be described as a client-side

and server-side software application in which the client runs and requests in a

web browser. The examples for these web applications include messaging

services, retails websites, email clients and online forms.

The table 1 lists some modern web application frameworks, categorized by the

back-end and front-end programming languages.

Table 1. Framework based on programming language.

Programming Language Front-End Framework Back-End Framework

JavaScript React, Vue, Angular Express (Node JS),

Next.js

Python Turbogears, Django Django, Flask

Ruby Ruby Rails

PHP Nil Laravel, Symfony

A web application (Figure 12) requires a web server, an application server and a

database to operate. All the requests from the client are managed by the web

servers while the requested task is completed by the application server. All the

required information is stored to the database.

These applications can be accessed through multiple browsers, can be accessed

by multiple users at the same time and do not require any download. Hence these

applications are a perfect candidate to deliver content to the users.

Figure 12. Example - Web Application.

Native and Cross-Platform Applications

The modern web development defines native applications as a program which

is written to work on a specific platform. These native applications (Figure 13)

are developed for the iOS and Android platforms. These applications work with

the mobile device’s OS to deliver the request content faster and provide more

flexibility than the alternative applications.

The cross-platform frameworks operate on the idea of developing reusable

code for building applications for different OS. For instance, the same code for

an Android application can be used to develop an iOS application with a

different architecture.

These applications can access the device’s functionalities such as microphone,

gyroscope or push notifications. Therefore, the practical uses for these

applications range from simple music programs such as ‘Black Player Ex’ to

social applications such as ‘Twitter’ or ‘Facebook’.

Below are the native and cross-platform application frameworks, categorized by

the device OS:

Android: React-Native (JS), Native Scripts (JS), Flutter and Java

iOS: Swift (Objective-C), Flutter, React-Native (JS) and Xamarin (C#)

Figure 13. Example – Native Application.

3 DATA AND METHODS OF RESEARCH

The objective of this study is to analyze the performance of different frameworks,

running the same application on the same server. Network capturing

methodology has been used to get the required dataset for various frameworks.

The most important part of network capture was to isolate the other network

background running activities from the chat server network requests (Figure 14).

Obtaining data for the web applications is easier compared to the native

applications because background communication makes it difficult to obtain the

required dataset. Hence, it is important to isolate external networks from the main

chat server.

3.1 Data Generation

3.1.1 Native and Cross-Platform Applications

The native and cross-platform applications are divided into two categories:

Android and iOS. There are different devices and tools to categorize the

generated data which are fundamentally explained in the following sections:

Android

For the Android applications, Android emulator is used to generate the dataset.

The emulation devices used are Pixel 4 (Android version 11), Pixel 2 (Android

Figure 14. Schema of Study.

version 10) and a physical handheld device One Plus 8T with Android 12. On

these devices ‘Packet Capture’ application has been installed to block the

external data and capture the required packets. The best way to isolate

application’s network activity is to block all the unnecessary connections and thus

only accepting required requests from the dedicated chat server. Hence

unwanted traffic generated can be avoided. The native framework uses the

WebSocket and TCP packages to send the requested data and receive the

response. The generated data was collected using the network packages in

PCAP format. The server-side network protocol-stack was captured using the

Wireshark application to isolate the TCP, HTTP & WebSocket packets.

The ‘Packet Capture’ uses the Android’s built in VPN functionality to record all

the network traffic which makes classification for different applications easier. To

run the native chat application, ‘Expo Go’ was used. The ‘Packet Capture’

establishes a network interface which then configures the routing rules and

provides the application with a descriptor. Each descriptor provides informative

analysis on every incoming and outgoing packet on the network interface. The

application establishes the local VPN connection with the main server via a tunnel

(Figure 15). The captured packets are further sent to the external network and

then further analysis can be made.

Figure 15. Network Flow – Android.

The packets are captured in the PCAP format which are then analyzed in the

Network-Analysis application. (Carstens, n.d.) The packets are graphically

represented to provide better analysis of the framework (Figure 16).

Figure 16. Captured Packet Details – Android.

iOS:

For the iOS application, the devices used to capture the network are all emulators

which are: iPad (9th Generation with iOS 15.4), iPod touch (7th Generation with

iOS 15.4) and iPhone 13 pro (with iOS 15.4). Since all the runs are executed in

the emulators, so external network needs no filtration. All the unnecessary

requests are filtered by assigning a simple server proxy which is “Localhost” in

this case (Figure 17).

Figure 17. Network Flow - iOS

All the required network packets (HTTP, WebSocket and TCP) were captured

and monitored through Wireshark and the network graphs were generated.

3.1.2 Web Applications

The network traffic analysis of web applications is less challenging compared to

the native applications. To capture the network data of the web applications on

Windows and Mac, a loopback network adapter is used to log all the relevant

packets. In this was all the unnecessary background network traffic is restricted.

The testing of Applications on Mac environment is different than those on

Windows. To solve the problem a special proxy was defined for Mac environment.

The proxy runs at the “Localhost” server which filters out the unnecessary

network packets.

For the Windows application testing, the delayed time taken by constant

communication between the Simple Service Discovery Protocol (SSDP) and the

localhost has been neglected.

The following equation defines the relationship between the total time taken by

the application and the time taken by SSDP during communication.

Equation 1. Server Time Delay – Windows.

𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒𝑎𝑝𝑝1
= 𝑡𝑖𝑚𝑒𝑎𝑝𝑝1

+ 𝑡𝑖𝑚𝑒𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑆𝐷𝑃1

Equation 2. Sever Time Delay – Windows.

𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒𝑎𝑝𝑝2
= 𝑡𝑖𝑚𝑒𝑎𝑝𝑝2

+ 𝑡𝑖𝑚𝑒𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑆𝐷𝑃2

In all the scenarios, the time taken by SSDP remains a constant, therefore it can

be neglected from the final time difference. This gives out a precise measurement

of the time difference between the applications which results is better analysis.

𝑡𝑖𝑚𝑒𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑆𝐷𝑃1
= 𝑡𝑖𝑚𝑒𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑆𝐷𝑃2

Equation 3. Resulting Server Time Difference.

⇒ 𝑡𝑖𝑚𝑒𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑡𝑖𝑚𝑒𝑎𝑝𝑝1
− 𝑡𝑖𝑚𝑒𝑎𝑝𝑝2

Wireshark application has been used to extract the required network packets.

The application is configured to run over the chat-server network to capture the

WebSocket and HTTP traffic. It captures the network packets in the form of “Bits”

from the local ethernet adaptor of the system and presents them according to the

standard OSI reference model.

The Layer 7 or the Application layer of the OSI model handles the initiation of the

requests while the Layer 4 (Transport) and Layer 3 (Network) handle all the

network requests over the TCP, HTTP and WebSocket packets (Figure 18).

Figure 18. OSI Model (Imperva, 2021).

Methods

Wireshark is used to open the PCAP file which contains the generated packets,

and the selected displayed fields are extracted to a Comma-Separated Values

(CSV) file. The CSV files are classified into TCP, WebSocket and HTTP requests.

All these CSV files contain the ‘time taken by the source requests’, ‘time taken by

the destination requests’, ‘the length of the packets’ and ‘number of packets per

each request’.

The CSV files have the information regarding the number and length of packets

generated during a specific time period. The detailed CSV files are plotted as a

graph to have a clear understanding of the comparison between different packets

for different applications including native and web applications (Figure 19).

Figure 19. CSV - Generated Chart.

4 IMPLEMENTATION OF THE APPLICATIONS

The objective of this chapter is to provide insight on the implementation of the

chat application using the considered frameworks – React JS and Rails, Angular

and Flask, Vue and Laravel, Swift with Objective-C, and React-Native with

Express. Every chat application is based on only one pattern which includes

similarly designed front-end, back-end and the database model. Therefore, the

application is similar on all the frameworks.

The chat application deals with text-based communication over the network using

Web Sockets. In the application, a text-based chat communication can be set-up

between two or more users. A chat room also allows multiple users to message

and interact at the same time.

The application is divided into two modules which include a basic login screen

and the chat room. This is further explained in the GUI flows of the said

application. A GUI flow is a visual representation of the path taken by a user while

using that application.

All the data is managed by models running in the back-end while the front-end

has controllers which gets the information to display to the user (Figure 20).

Figure 20. Chat Application Structure.

The data sent by the user to the server passes through the message and user

channel which facilitate saving of the information in the database. Similarly, the

data requested by the user is displayed on the front-end via the controllers and

the database.

The front-end maintains a continuous connection with the server using Web

Sockets. The connection persists until it is closed by any party that is participating

in the communication. The communication is said to be over when all the

WebSocket packages are transferred through the TCP port and there is no

request or response left.

4.1 GUI Flow

The application is divided into two modules. The first screen is a simple login

page, where the user is only required to enter the username. The second screen

which is a chat screen is only accessible after the login screen.

The chat screen allows communication either between the two users or among

all the users in the chat room (Figure 21).

Figure 21. Chat Application - GUI flow.

4.2 Models

Like the GUI flows, the Domain Model is also divided into two classes: User and

Message. The user model holds the user schema which defines how the user is

added and modified in the database. Similarly, the chat message schema defines

the addition and presentation of the chat message (Figure 22).

Figure 22. Chat Application - Data Models.

4.2.1 Chat Message Model

In the figure 22, it is clear that the chat message model contains certain

parameters like:

Content: This is the body of the chat message. This is the communication

message which is sent by the user either to other user or to the chat room for

other users to read.

Created/Updated At: These parameters define the date and time of the

message. These parameters include the time when the message was created by

the user and the time when the message was updated.

User ID: This parameter defines the user of the message. It is directly linked to

the user model to present the username with the sent message in the chatroom.

4.2.2 User Model

Like the chat model, the user model contains the parameters which are explained

as:

User ID: This is the “ID” parameter for the users. It is linked to the Chat Model

acting as a foreign key. It is used to display the messages linked to the user.

Username: This parameter defines the username. The username is presented in

the chat room whenever the user sends a message.

Status: This parameter defines the status of the user. It tells the other users if

the said user is active or not.

Created/Updated At: These parameters define the date and time of the

message. These parameters describe the timestamp of the message i.e., the

time of the creation of message and when the message was updated by the

user.

4.3 Web Applications

All the web chat applications follow the similar idea of implementation. Apart from

the framework dependencies, every application has been installed with a

WebSocket dependency and a CORS dependency (Cross-Origin Resource

Sharing) as well. The CORS is a HTTP protocol-based header. This allows a

server to load resources to any foreign domain to load resources other than the

permitted local domain.

4.3.1 React JS and Rails

The first chat application is developed using the front-end framework – React JS

and the back-end framework Rails. React is based on the programming language

JavaScript while Rails emerged from the language Ruby. Similar to the other

implemented applications, this one is too based on figure 21 GUI flow and figure

22 database model.

Front-End

For the said technologies in consideration, the main application is divided into

multiple modules. Before the application is build, the navigation between multiple

modules is implemented.

After testing the navigation, the application is divided into multiple components.

These components include - Chat Module, Message Module, User List Module

and User Module. All these components work together to form a navigation stack

to build the UI of the application which is perceived by the user.

As explained by the figure 23, it clearly depicts that a user needs to login in first

before it can join a chat. The ‘currentUserLoggedIn’ component determines the

accessibility of the chat screen.

Figure 23. React JS - User Login.

Only the authorized users are given access to navigate through the chat and

message screen where they can also communicate and interact with each other.

After the login screen, the user is navigated to the chat screen. The chat screen

allows the communication between the users.

Back-End

The back-end of this application is built using Rails. In the initial stage, a

development environment is set up where the application can run. After the initial

stage, the installation of dependencies required for the application takes place.

The front-end and back-end are connected using WebSocket. All the client’s

requests and responses are send/received through WebSockets. These requests

are then passed to the server which are stored in the database. PostgreSQL is

used as the database for this case.

The ‘ApplicationCable’ module in figure 24 helps in integration of WebSocket in

the application. The connection is further broadcasted and streamed on the

application which allows multiple users to interact without facing any port

problems.

Figure 24. Rails - Broadcasting Channel.

Working Example

The chat screen displays the active users and the communication channel (Figure

25).

Figure 25. React - Working Chat Application.

The server also logs into the console which helps in debugging the connection

between the client and the server. The console displays every message ranging

from user registration to messages (Figure 26).

Figure 26. React - Chat Application server logs.

Testing

The testing includes two tests. The ‘Conn Report’ test-case checks for the status

which should be 200. This status means that the response by the server is ‘OK’.

The ‘Response Add’ test checks if the sent data is received by the server without

any data errors.

From the figure 27, it is clear that the application has passed both the tests in the

server test application (postman in this case).

Figure 27. React - Chat Application Postman Test.

4.3.2 Angular JS and Flask

The second chat application was developed with front-end framework Angular

and the back-end framework Flask. The application follows the figure 21 GUI flow

and figure 22 database model.

Front-End

It follows the same initialization steps as described in previous case.

As seen in the figure 28, the path ‘chat’ in the Routes section has a parameter

‘canActivate’. This parameter has the value AuthGuard which forces the user to

log-in the application before it can use the chat functionality.

Figure 28. Angular – Login.

Back-End

The back-end of the application in this case is coded using Flask. In the initial

step a virtual environment is prepared so that application can run and tested. The

preparation of the environment is soon followed by the installation of the

dependencies of the application.

In order to link with the front-end, a stable connection using the WebSocket. The

requests and responses correspond to the state of the WebSocket. If the state of

the WebSocket is connected, then the connection between the client and the

server is stable (Figure 29).

The application also keeps tracks of the requests and the responses received

and sent by the server. The console messages help in debugging of the

application while at the same time providing an insight to the application’s

requests.

Figure 29. Flask - WebSocket Connection.

Working Example

The chat screen displays the active users and the possibility to communicate with

them (Figure 30).

Figure 30. Angular – Working Chat Application.

The console messages provide the visual concept of the back-end functionality.

The first event describes the stabilized connection between the client and the

server. Following the connection, a new user is registered to the server. The

console displays the ID and the name of the user.

Before getting disconnected from the server, the user’s messages are also

echoed to the console. This provides an insight to the user’s message content

and other attributes related to the message like date, time, sender and receiver

(Figure 31).

Figure 31. Angular - Chat Application server logs.

Testing

The testing includes two tests ‘Response Add’ and ‘Conn Report’. The former

checks for any errors in the application requests and responses while the later

checks for the application status. The application passed both tests with an ‘OK’

response.

4.3.3 Vue JS and Laravel

The third chat application is implemented using the front-end framework – Vue

JS and the back-end framework Laravel. Like other front-end frameworks, Vue is

also based on the programming language JavaScript while Laravel is developed

from the language PHP. Like the other implemented applications, this one is also

based on figure 21 GUI model and figure 22 database model.

Front-End

After the application is initialized as the project, it is also divided into different

couple components. These components include - Chat component and Main

component. The first step is to implement the main login screen for the users and

then the development of the chat screen begins.

Before initializing any other functionality, navigation components are developed.

These components will help the user navigate through the login screen to the

chat screen.

As seen in the figure 32, the components chat includes two components:

‘mainLoginComponent’ and ‘ChatsComponent’. These components describe the

routes in way which determines that the chat screen is not accessible without

logging in the application first.

Figure 32. Vue - Login Components.

Back-End

The back-end of this application is coded using Laravel. The initial step is to

prepare a local server for the application to run. The local server is prepared using

Xampp application (Figure 33).

Figure 33. Xampp - Apache server & SQL Database.

In the figure 33, the Apache and MySQL services are turned on. These services

provide the opportunity to run the server and the database locally.

The pusher API (Figure 34) module in Laravel helps in initializing and

broadcasting the messages using WebSocket. The controllers are configured to

broadcast the chat channel on any origin, thus solving the CORS issue. The

messages and the users are then saved to MySQL database which follows the

same data model as discussed previously.

Figure 34. Laravel - Pusher API.

Working Example

All the activities including requests and responses are logged into the console

which helps in keep tracking of the WebSocket connection. The console data

includes user creation, user events (receiving and sending messages) and user

details (Figure 35).

Figure 35. Vue – Chat Application Server Logs.

The chat screen displays active users and the possibility to communicate with

them (Figure 36).

Figure 36. Vue - Working Chat Application.

Testing

The testing includes two tests. A post request is sent to the server with message

in a JSON format. The ‘Conn Report’ test checks for the response status to be

200 which translates to an ‘OK’ response. The application received the ‘OK’

status response.

4.4 Native and Cross-Platform Applications

Native applications are solely implemented for the mobile devices depending on

the OS. However, cross-platform applications are developed accordingly to run

on multiple-platforms such as both iOS and Android. These chat applications

follow the same ideology of communicating using WebSocket. Apart from the

framework dependencies, these implemented applications have been installed

with a WebSocket dependency with an UI dependency for the client-side.

4.4.1 Swift

The fourth chat application is developed using the libraries of the framework Swift.

Based on the programming language Objective-C, this framework designs the

applications for the iOS platform. The front-end is developed using the SwiftUI

library to provide a lively experience to the user. The back-end is based on the

Foundation library of the Swift framework. Similar to the web applications, this

native app is also implemented using figure 21 model and figure 22 database

model.

Front-End

Similar to the previous cases, the project developed in this case is also divided

into two components which include: Login component and Chat component.

Firstly, the main screen is developed where the user can log in. After this the

navigation link is implemented.

The ‘navigationLink’ (Figure 37) component navigates the user from the login

screen to the chat screen. Before implementing the chat component, the view is

initialized to test out the navigation.

Figure 37. Swift UI Components.

Back-End

The first step is to prepare a socket connection for the application to run. The

socket connection is regularly pinged every 10 seconds in order to check if the

connection between the client and the server is stable. (Figure 38)

Figure 38. Swift - WebSocket Connection.

The data is saved into the local database after defining the models for the Chat

and user components. To secure the application, all the data is hashed (Figure

39) before passing through the WebSocket connection and to the database.

Figure 39. Swift - Data Hashing.

Working Example

The user requests and the server responses are logged to test and debug

correctly. These logs help in keep track of the data in the WebSocket connection.

The terminal outputs the data which includes user login and user chat messages

(Figure 40).

The chat screen displays active users and the possibility to communicate in a

chat room. The working demo is implemented on three different iOS simulators

to verify the multi-device compatibility of the native application (Figure 41).

Figure 41. Swift - Working Chat Application.

 Figure 40. Swift - Chat Application Server Logs.

Testing

The testing of the native application is different than the other web applications.

Swift framework does not allow the access of the local server using third-party

tools such as postman. Therefore, the connection was tested manually using the

console of the safari browser (Figure 42).

Figure 42. Swift - Manual Connection Test.

4.4.2 React-Native and Express

Lastly, this application is developed using the front-framework React-Native and

the back-end framework Express. Both the front-end and back-end frameworks

are based on JavaScript. Like the other implemented applications, this one also

follows figure 21 UI model and figure 22 database model.

Front-End

After the project is initialized, it is also bifurcated into two components: User

component and Chat component. The user component handles the login

functionality, and the chat component handles the message functionality. In this

development case, the main screen is developed along with navigation stack.

The main screen then initializes the login component and after that the chat

component (Figure 43).

Figure 43. React-Native Navigation Stack.

Back-End

The first step is to create the server for the application is to implement the

WebSocket connection. The socket connection is checked for stability. The figure

44 shows the code for the connection between the client-side and the server-

side.

Figure 44. React-Native WebSocket Connection.

Working Example

The user messages are logged into the console. These logs help in keep track of

the data in the WebSocket connection. The terminal outputs the data which

includes username and user chat messages. (Figure 45)

Figure 45. React-Native Chat Application Server logs.

As seen in the figure 46, it is clear that two users join the chat room by logging

in. All the shared messages and the respective usernames are displayed in the

console. The text messages are shared between the connected users.

Figure 46. React-Native Working Chat Application.

Testing

The testing of the Android application is relatively easier compared to the iOS

testing. The windows platform allows Android emulators to run postman tests on

the server-side. Similar to other frameworks, the react-native application also

received a status ‘OK’ response.

5 COMPARISON MODEL FOR THE FRAMEWORKS

Since every web development project has different requirements compared to the

other, it is not easy to determine the proper comparison while choosing a web

framework. Therefore, an attempt has been made to construct a proper model for

this research which tries to include some important aspects of the frameworks.

This chapter concerns with the comparison between all the frameworks that were

used to implement the chat applications. The results will be discussed in the later

chapter.

5.1 Benchmarks

All the web and native applications have been compared according to the

following benchmarks. These parameters were considered from the well-known

benchmarking study by TechEmpower (Techempower, 2021)

5.1.1 Development and Ease of Modification

It is very necessary to consider the total-time spent on developing and the ease

of modifying the applications. A ‘web development’ survey (Overflow, Stack,

2021) provides clear benchmarks for all the frameworks. The benchmarks include

creating, debugging, and testing of the project.

5.1.2 Ease of Deployment

This creation describes the ease with which the application can be deployed to

the server (including the front-end and the back-end). This benchmark depends

on the components, the logic, and the database environment of the application.

Some frameworks require little work for deployment while others may take a lot

of time, therefore it is important to consider while comparing the frameworks

(Figure 47).

Figure 47. Application Deployment Criteria.

5.1.3 Generated HTML Structure

The amount of generated html code represents the flexibility and speed of the

frameworks. A large amount of generated HTML structure means that the

application must render a large amount of data and structure which reduces the

performance. Hence, the amount of generated HTML code by the web application

is inversely proportional to the time spent waiting for the webpage to load.

An application’s generated HTML structure usually includes various JavaScript

and metadata. These values are unique to each framework; therefore, the

generated HTML size varies. The size of the structure is measure in Kilobytes

(KB) per page.

5.1.4 Framework Performance

This criterion describes the performance of a framework and its Command Line

Interface (CLI). The performance includes the starting time, request and response

time, and WebSocket initialization time of the application. The higher time a

framework takes, the lower is its performance score. If the framework

performance is low, then the applications build on these frameworks performs

slower. Since the applications do not perform well with a stable connection, hence

browser’s resources are wasted, and it takes a long time to load the webpages.

5.1.5 Corresponding to modern standards

It is very important for websites to follow modern website development

standards. These standards include HTML 5, CSS 3, and JavaScript coding

standards (ES6 coding standard). Modern browsers support these standards.

Therefore, these frameworks are required to follow the standards as well for

better compatibility.

If the development standards are poorly followed, it will result in weak

generated HTML structure which in result will slow down the application and

thus reduce performance.

All the considered benchmark criteria are sorted in priority order. The priorities

are set according to the notion of predefine concepts. All the benchmarks add up

to a total sum of 100 points. With respect to the web development technologies,

two of major criterion like ‘Development and Modification’ and ‘Performance of

the Framework’ are prioritized above every else, each having 45 and 30 points

respectively. The complete benchmark criteria are defined in the table 2.

Table 2. Framework - Benchmark Criteria (Percentage).

Measurement Criteria Measured Importance (in Percentage)

Development and Ease of Modification 45

Framework Performance 30

Ease of Deployment and Implementation 15

Corresponding to today's Standards 10

5.2 Frameworks

5.2.1 Angular JS and Flask

Network Analysis

Network analysis of this framework includes tracking of the HTTP, TCP and

WebSocket request/responses.

Tracking HTTP Packets: The figure 48 shows the number of HTTP Packets sent

and received for the interval of 100 seconds. The high amount of HTTP traffic

flow leads to a constant communication between the client(s) and the server. It

means that the client must render HTML and JavaScript constantly without

breaking the connection. Total HTTP Packets received at the 100th second are

around 1630.

Figure 48. Angular-Flask HTTP Packet Numbers.

The figure 49 describes the length of HTTP Packets sent and received for the

given timeframe (100 seconds). The length of the HTTP Packets is measured in

bytes. It can be inferred that the size of rendered HTML pages is quite big as the

maximum length of the HTTP Packet recorded is around 61006.

0

200

400

600

800

1000

1200

1400

1600

1800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

N
u

m
b

er
 o

f
P

ac
ke

ts

Time

Number of HTTP Packets

Figure 49. Angular-Flask HTTP Packet Length.

Tracking TCP Packets: The figure 50 shows the number of TCP packets sent

and received for 100 seconds. The high number of TCP packets received informs

that the framework’s network design is weak. The maximum amount of the TCP

packet recorded is 540.

Figure 50. Angular-Flask - No. of TCP Packets.

0

100

200

300

400

500

600

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

N
u

m
b

er
 o

f
P

ac
ke

ts

Time

Number of TCP Packets

No.

The figure 51 describes the length of TCP packets (measured in bytes) sent and

received till 100th second. The length of the TCP packets signifies the flow of

data within the application. The constant lower scaling of the TCP packets results

in stable traffic. The maximum length of the TCP packet achieved in this

application is 253 bytes.

Figure 51. Angular-Flask - Length of TCP Packets.

A high variation in TCP flow is witnessed between 1-25 seconds.

Tracing WebSocket: The WebSocket has two states either open or closed.

Moreover, it follows the concept of masking. A masked WebSocket is secure

which means no data can be breached, it means that the given combination of IP

address and port are masked.

The figure 52 shows the number of WebSocket data sent and received for 100

seconds. The amount of data sent and received over a set period of time signify

the delay in time taken by the application server. The amount of WebSocket data

is inversely proportional to the instability in connection. For the application in

consideration, the amount of WebSocket data is 2590.

Figure 52. Angular-Flask WebSocket Data Quantity.

The figure 53 describes the length of WebSocket data sent and received till 100th

second. The length of the WebSocket data is approximately the same for all the

applications. The messages sent in all the applications are the same, thus the

length of the WebSocket data sent and received is approximately equal. For this

application, the average length of the data is 111 bytes.

Figure 53. Angular-Flask WebSocket Data Length.

The figure 54 displays the queue and stalling time for the initial WebSocket

connection. The framework's performance falls as the WebSocket connection

0

500

1000

1500

2000

2500

3000

1 4 7 101316192225283134374043464952555861646770737679828588919497

Q
u

an
ti

ty
 o

f
D

at
a

Time

WebSocket Data

time increases. The queue time for the WebSocket connection in this application

is 5.47 milliseconds while the stalled time is 0.20 milliseconds.

Figure 54. Angular-Flask WebSocket Stalling Time.

 The figure 55 shows the waiting time for the request delivered by the WebSocket

connection. Waiting time is described as the time taken by WebSocket

connection to request the first byte of the data or Time to First Byte (TTFB).

Similar to the stalling time, the waiting time is also inversely related to the

performance of the framework. The waiting time for this application is 562

milliseconds.

Figure 55. Angular-Flask WebSocket TTFB.

Performance Analysis

The performance of the application is tested using the ‘Inspect Element’ of the

browser. The browser helps in generating a Lighthouse report which analyzes the

application. The performance analysis includes the speed index, interactive time,

blocking time and layout shift of the application (Figure 56).

Figure 56. Angular-Flask Application Performance.

5.2.2 React JS and Rails

Network Analysis

Like other applications, network analysis of this framework includes analyzing

HTTP, TCP and WebSocket requests and responses which are sent and received

by the server.

Tracking HTTP Packets: The figure 57 displays the number of HTTP packets

that are delivered and received within 100 seconds. The amount of HTTP packets

for this case reaches 3109.

Figure 57. React-Rails Number of HTTP Packets.

The figure 58 describes the length of HTTP packets sent and received in 100

seconds. The length of the HTTP packets is measured in bytes. For this case,

the maximum length of a HTTP packet is about 946 bytes.

Figure 58. React-Rails Length of HTTP Packets.

Tracking TCP Packets: The figure 59 shows the number of TCP packets sent

and received for 100 seconds. The maximum number of the TCP packets

recorded for the application in consideration is 1780.

0

500

1000

1500

2000

2500

3000

3500

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

N
u

m
b

er
 o

f
P

ac
ke

ts

Time

Number of HTTP Packets

0

100

200

300

400

500

600

700

800

900

1000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Le
n

gt
h

 o
f

P
ac

ke
ts

Time

Length of HTTP Packets

Figure 59. React-Rails Number of TCP Packets.

The figure 60 describes the length of TCP packets (measured in bytes) sent and

received till 100th second. The maximum length of the TCP packet achieved in

this application is 102 bytes.

Figure 60. React-Rails Length of TCP Packets.

Tracing WebSocket: The figure 61 shows the number of WebSocket data sent

and received for 100 seconds. For the application in consideration, the amount

of WebSocket data tracked is 910.

0

20

40

60

80

100

1
5

5
1

0
9

1
6

3
2

1
7

2
7

1
3

2
5

3
7

9
4

3
3

4
8

7
5

4
1

5
9

5
6

4
9

7
0

3
7

5
7

8
1

1
8

6
5

9
1

9
9

7
3

1
0

2
7

1
0

8
1

1
1

3
5

1
1

8
9

1
2

4
3

1
2

9
7

1
3

5
1

1
4

0
5

1
4

5
9

1
5

1
3

1
5

6
7

1
6

2
1

1
6

7
5

1
7

2
9

Ti
m

e

Number of Packets

Number of TCP Packets

0

20

40

60

80

100

120

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Le
n

gt
h

 o
f

P
ac

ke
ts

Time

Length of TCP Packets

Figure 61. React-Rails Quantity of WebSocket Data.

The figure 62 table describes the length of WebSocket data sent and received till

100th second. For this application, the average length of the data is 109.7 bytes.

Figure 62. React-Rails Length of WebSocket Data.

The figure 63 displays the queue time and stalled time for the application. In this

case the queue time for the WebSocket connection is 16.30 milliseconds while

the stalled time is 60.41 milliseconds.

0

100

200

300

400

500

600

700

800

900

1000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

W
eb

So
ck

et
 d

at
a

q
u

an
ti

ty

Time

WebSocket data

Figure 63. React-Rails WebSocket Stalling Time.

Moreover, it also shows the waiting time for the request delivered by the

WebSocket connection for this application which is 92.6 milliseconds.

Performance Analysis

The performance of this application is also measured using the ‘Inspect Element’

of the browser. The Lighthouse report is generated for analyzing the application.

The analysis includes the speed index, interactive time, blocking time and layout

shift of the application (Figure 64).

Figure 64. React-Rails Chat Application Performance.

5.2.3 Vue JS and Laravel

Network Analysis

This test case also includes the tracking of the HTTP, TCP and WebSocket

requests and responses in a given period of time.

Tracking HTTP Packets: The figure 65 displays the number of HTTP packets

that are delivered and received within 100 seconds. The amount of HTTP packets

for this case reaches 11018.

Figure 65. Vue-Laravel Number of HTTP Packets.

The figure 66 describes the length of HTTP packets sent and received in 100

seconds. For this case, the maximum length of a HTTP packet is about 57477

bytes.

Figure 66. Vue-Laravel Length of HTTP Packets.

A big downfall in the HTTP flow traffic was witnessed after 21 seconds.

Tracking TCP Packets: In Laravel based application, the tracing of TCP packets

is done on X11 port. All the TCP requests are forwarded to this port; therefore,

the network is analyzed on X11 port. The figure 67 shows the number of TCP

packets sent and received for 100 seconds. The maximum number of the TCP

packets recorded for the application in consideration is 3613.

Figure 67. Vue-Laravel Number of TCP Packets.

The figure 68 describes the length of TCP packets sent and received in 100

seconds. The maximum length of the TCP packet achieved in this application is

628 bytes.

Figure 68. Vue-Laravel Length of TCP Packets.

0

20

40

60

80

100

1
5

7
1

1
3

1
6

9
2

2
5

2
8

1
3

3
7

3
9

3
4

4
9

5
0

5
5

6
1

6
1

7
6

7
3

7
2

9
7

8
5

8
4

1
8

9
7

9
5

3
1

0
0

9
1

0
6

5
1

1
2

1
1

1
7

7
1

2
3

3
1

2
8

9
1

3
4

5
1

4
0

1
1

4
5

7
1

5
1

3
1

5
6

9
1

6
2

5
1

6
8

1
1

7
3

7

Ti
m

e

Number of Packets

Number of TCP Packets

Tracing WebSocket: The figure 69 shows the number of WebSocket data sent

and received for 100 seconds. For the application in consideration, the amount

of WebSocket data tracked is 2710.

Figure 69. Vue-Laravel Quantity of WebSocket Data.

The figure 70 describes the length of WebSocket data sent and received till 100th

second. For this application, the average length of the data is 111.5 bytes.

Figure 70. Vue-Laravel Length of WebSocket Data.

The figure 71 displays the queue time and stalled time for the application. In this

case the queue time for the WebSocket connection is 2.74 milliseconds while the

stalled time is 0.28 milliseconds.

0

100

200

300

400

500

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

D
at

a
Le

n
gt

h

Time

Length of WebSocket Data

Figure 71. Vue-Laravel WebSocket Stalling Time.

Additionally, it also shows the waiting time which is 129.8 milliseconds in this

case.

Performance Analysis

Similar to other web frameworks, this performance analysis is also done with the

‘Inspect Element’ of the browser. The generated Lighthouse report includes the

speed index, interactive time, blocking time and layout shift of the application.

(Figure 72)

Figure 72. Vue-Laravel Chat Application Performance.

5.2.4 Swift iOS

Network Analysis

Like the web applications, this analysis also follows the tracking of the HTTP,

TCP and WebSocket requests and responses in a given period of time.

Tracking HTTP Packets: Compared to web applications, native applications do

not require a large amount of HTML structure. Also, the iOS platform makes it

easier to render the application structure once. Since there is only a one-time

request to the server, therefore the captured HTTP packets are also less.

The figure 73 displays the number of HTTP packets that are delivered and

received within 6 seconds. The amount of HTTP packets for this case reaches

77.

Figure 73. Swift - Number of HTTP Packets.

The figure 74 describes the length of HTTP packets sent and received in 6

seconds. For this case, the maximum length of a HTTP packet is about 395 bytes.

0

20

40

60

80

100

1 2 3 4 5 6

N
u

m
b

er
 o

f
P

ac
ke

ts

Time

Number of HTTP Packets

Figure 74. Swift - Length of HTTP Packets.

Tracking TCP Packets: The amount of TCP packets is also analogous to the

HTTP packets. The figure 75 shows the number of TCP packets sent and

received for 100 seconds. The maximum number of the TCP packets recorded

for the application in consideration is 32.

Figure 75. Swift - Number of TCP Packets.

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6

P
ac

ke
t

Le
n

gt
h

Time

Length of HTTP Packets

0

5

10

15

20

25

30

35

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

N
u

m
b

er
 o

f
P

ac
ke

ts

Time

Number of TCP Packets

The figure 76 describes the length of TCP packets sent and received in 100

seconds. The maximum length of the TCP packet achieved in this application is

219 bytes.

Figure 76. Swift - Length of TCP Packets.

Tracing WebSocket: The figure 77 shows the number of WebSocket data sent

and received for 100 seconds. For the application in consideration, the amount

of WebSocket data tracked is 487.

Figure 77. Swift - Quantity of WebSocket Data.

The figure 78 describes the length of WebSocket data sent and received till 100th

second. For this application, the average length of the data is 109.5 bytes.

Figure 78. Swift - Length of WebSocket Data.

Through the Wireshark analysis, it is also determined that the queue time for the

considered application is 1.29 milliseconds, and the stalled time is 0.46

milliseconds.

0

100

200

300

400

500

600

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Q
u

an
ti

ty
 o

f
W

eb
So

ck
et

 D
at

a

Time

WebSocket Data

0

50

100

150

200

250

300

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

D
at

a
Le

n
gt

h

Time

WebSocket Data Length

Performance Analysis

The analyses of iOS applications varies significantly compared to the analyses of

the web applications. The iOS applications do not run on the browser, so the

performance measurements are based on response time of the application in the

emulator devices.

5.2.5 React Native and Express

Network Analysis

Like the web applications, this analysis also follows the tracking of the HTTP,

TCP and WebSocket requests and responses in a given period of time.

Tracking HTTP Packets: Compared to the iOS applications, native applications

produce a huge amount of HTTP traffic. Since there is switch between 80 and

443 protocols of HTTP requests hence, the captured HTTP packets are large in

quantity.

The figure 79 displays the number of HTTP packets that are delivered and

received within 100 seconds. The amount of HTTP packets for this case reaches

5247.

Figure 79. React-Native-Express - Number of HTTP Packages.

0

1000

2000

3000

4000

5000

6000

1 4 7 101316192225283134374043464952555861646770737679828588919497

N
u

m
b

er
 o

f
P

ac
ke

ts

Time

Number of HTTP Packets

The figure 80 describes the length of HTTP packets sent and received in 6

seconds. For this case, the maximum length of a HTTP packet is about 1366

bytes.

Figure 80. React-Native-Express - Length of HTTP Packages.

Tracking TCP Packets: The figure 81 shows the number of TCP packets sent

and received for 100 seconds. The maximum number of the TCP packets

recorded for the application in consideration is 871.

Figure 81. React-Native-Express - Number of TCP Packages.

0

500

1000

1500

1 4 7 101316192225283134374043464952555861646770737679828588919497

P
ac

ke
t

Le
n

gt
h

Time

Length of HTTP Packets

0

200

400

600

800

1000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

P
ac

ke
t

N
u

m
b

er

Time

Number of TCP Packets

The figure 82 describes the length of TCP packets sent and received in 100

seconds. The maximum length of the TCP packet achieved in this application is

83 bytes.

Figure 82. React-Native-Express - Length of TCP Packages.

Tracing WebSocket: The figure 83 shows the number of WebSocket data sent

and received for 100 seconds. For the application in consideration, the amount

of WebSocket data tracked is 45.

Figure 83. React-Native-Express - Quantity of WebSocket Data.

0

10

20

30

40

50

60

70

80

90

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

P
ac

ke
t

Le
n

gt
h

Time

Length of TCP Packets

0

5

10

15

20

25

30

35

40

45

50

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Q
u

an
ti

ty
 o

f
D

at
a

Time

WebSocket Data

The figure 84 describes the length of WebSocket data sent and received till 100th

second. For this application, the average length of the data is 108.5 bytes.

Figure 84. React-Native-Express - Length of WebSocket Data.

The figure 85 displays the queue time and stalled time for the application. In this

case the queue time for the WebSocket connection is 2.39 milliseconds while the

stalled time is 1.16 milliseconds. Moreover, the Waiting Time is 10.64

milliseconds in this case.

Figure 85. React-Native-Express - WebSocket Stalling Time.

Performance Analysis

The analyzing of react-native and express application is far easier compared to

the analyses of Swift application. The native framework provides the opportunity

to run the application in the browser. The browser can then test the performance

of the application. The generated report provides values for the speed index,

interactive time, blocking time and layout shift of the application. (Figure 86)

Figure 86. React-Native-Express - Chat Application Performance.

6 RESULTS AND CONCLUSION

The result obtained from the comparative analysis of different web-development

frameworks is presented in the following sections.

6.1 Frameworks in consideration

Table 3. Web Frameworks for Chat Application.

S No. Front-End Back-End

1 Angular JS Flask

2 React JS Rails

3 Vue JS Laravel

The table 3. contains the combination of frameworks that were used in

implementation of the Web-Application.

Table 4. Native Frameworks for Chat Application.

S No. Front-End Back-End

1 Swift Swift

2 React Native Express

The table 4. contains the combination of frameworks that were used in

implementation of the Native-Application.

The front-end framework Angular JS and back-end framework Flask are used

together to implement the chat application. Unlike other popular front-end

frameworks, Angular supports dependency injection which is important while

working with the Flask framework. Moreover, Angular is quite efficient at handling

complex single-page application which directly corresponds to Flask’s ability to

handle multiple routes and still provide a lightweight and fast application. Flask

also allows the application to be coded in an object-oriented style which

correlates with Angular’s object-oriented approach.

The combination of React and Rails provide access to several built-in code

libraries which reduces developing time and effort. The application created with

this combination excels in stability and quality of the application as shown in table

4. Unlike other framework combinations, the lightweight React, and the complex

Rails work together to form an application which uses less memory resources

and increases performance.

Laravel and Vue go hand in hand. Vue can be described as a minimalistic front-

end framework that excels in single page user interfaces while Laravel enhances

Vue’s performance. The built-in libraries for the Vue development in Laravel

framework make them a good combination. The Laravel Vue stacks allows a

developer to efficiently build a single page application with a seamless front-end.

The swift framework is solely used for the iOS application development as there

are no combinations of different frameworks which can be used to develop iOS

applications. iOS follows a strict policy and does not allow third-party applications

to run on the platform.

Just like React, React-Native is also based on the single-page application (SPA).

It means that the mobile application can be accessed from a single native page.

This functionality avoids loading a new page with every action, thus providing a

streamlined user experience. Express on the other hand, creates a server which

corresponds to the React-Native functionalities and this combination creates a

very fast and stable application.

6.2 Results of Web-Application Frameworks

6.2.1 Benchmark Analysis

The figure 87 describes the benchmark scores received by the concerned web

frameworks depending on the criteria. Each of the framework combination is

graded according to their performance and measurements.

Development and Ease of Modification

From the survey, it is witnessed that React and Rails framework combination

achieved the highest score while Vue and Laravel combination scored the lowest.

The score is based on the development, debugging, modifying and testing of an

application.

Performance

It is also clear that React and Rails framework combination wins in this category

while Vue and Laravel combination scored the least points. The performance is

based on the generated lighthouse report and stalling time taken by the

application’s data packets. The figures display the generated lighthouse report

and the stalling time for each framework respectively.

Ease of Deployment

In this criterion, Angular and Flask framework combination ties to React and Rails

one. This criterion is a subjective, yet a significant argument and is measured by

the time and effort spent on deploying the application on a server. By comparison,

it is far easier to deploy Flask and Rails frameworks while Laravel takes a huge

amount of effort.

Figure 87. Web Framework - Benchmark Comparison.

From the given trend, it is also witnessed that Angular and Flask framework

combination consistently remained in the second position except for the ‘Ease of

Deployment’ criterion where it tied React and Rails framework combination.

6.2.2 Network Analysis

This section describes the combined analysis of the concerned web frameworks

depending on the protocols. The protocols used to analyze each application are

HTTP, TCP and WebSocket. Each of the framework is graded according to their

amount of generated traffic.

HTTP

The figure 88 shows the amount (number and length) of packets generated by

the HTTP flow of each application implemented using the concerned frameworks.

It is witnessed that React and Rails framework combination generates less traffic

compared to the other two. It implies that this framework does not require

constant requests to generate the HTML structures. Hence, it performs better

than the other frameworks.

0

5

10

15

20

25

30

35

40

Development and Modification Peformance Ease of Deployment

Framework Comparison based on
Benchmarks

Angular & Flask React & Rails Vue & Laravel

Figure 88. Web Applications - HTTP Analysis.

TCP

The figure 89 shows the amount (number and length) of packets generated by

the TCP flow of each application implemented using the concerned frameworks.

It is noticed that Angular and Flask framework combination generates the least

amount traffic of them all. It implies that this framework does not require constant

packet communication and therefore it performs better in this criterion. However,

it should also be observed that React and Rails framework combination

generates comparable amount of TCP traffic to the Angular and Flask framework

combination.

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

Angular & Flask React & Rails Vue & Laravel

R
es

u
lt

s

Combined HTTP Analysis: Web Applications

Figure 89. Web Applications - TCP Analysis.

WebSocket

The figure 90 shows the amount (number and length) of packets generated by

the WebSocket flow of each application implemented using the concerned

frameworks. It is no surprise that the React and Rails framework combination

generates the least amount traffic of them all. It should also be taken into

consideration that each application received the same amount of data. It implies

that React and Rails framework does not require high number of packets and

therefore it performs the best in this criterion. However, it should also be observed

that Vue and Laravel framework combination generates comparable amount of

WebSocket traffic to the Angular and Flask framework combination.

Figure 90. Web Applications - WebSocket Analysis.

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

Angular & Flask React & Rails Vue & Laravel

R
es

u
lt

s

Combined TCP Analysis: Web Applications

0

100,000

200,000

300,000

400,000

Angular & Flask React & Rails Vue & Laravel

Combined WebSocket Analysis: Web
Applications

The results of these network analyses indicate that React and Rails framework

combination require the least amount of traffic packets to request and response

the same amount of data compared to the other framework combinations.

Therefore, React and Rails framework combination triumphs over the others.

6.3 Results of Native-Application Frameworks

6.3.1 Benchmark Analysis

The figure 91 describes the benchmark scores received by the concerned native

frameworks depending on the criteria. Each of the framework combination is

graded according to their performance and measurements.

Development and Ease of Modification

From the survey, it is witnessed that React-Native and Express framework

combination achieved the higher score compared to the Swift framework.

Performance

It is also clear that React-Native and Express framework combination wins barely

in this category. The performance is based on the time taken by the application

to load and function. Both the frameworks took similar amount of time during the

analyses, but React-Native and Express framework combination secured the

higher score marginally.

Ease of Deployment

In this criterion, both the concerned frameworks secure equal points. It is quite

simple to deploy both the applications. It takes one line of code to mention the

required server and deploy the application in both the cases. They do not require

any effort or excess amount of time. Hence, these frameworks scored the same

points.

Figure 91. Native Applications - Benchmark Analysis.

6.3.2 Network Analysis

This section describes the combined analysis of the concerned native

frameworks depending on the protocols. The protocols used to analyze each

application are HTTP, TCP and WebSocket. Each of the framework is graded

according to their amount of generated traffic.

HTTP

The figure 92 shows the amount (number and length) of packets generated by

the HTTP flow of each application implemented. It is clear that the Swift

framework-based application requires the least amount of HTTP traffic to

generate the UI and its components.

0

5

10

15

20

25

30

35

Development and Ease of
Modification

Peformance Ease of Deployment

Sc
o

re

Combined Benchmark Analysis: Native Apps

Swift (IOS) React-Native & Express

Figure 92. Native Applications - HTTP Analysis.

TCP

The figure 93 shows the amount (number and length) of packets generated by

the TCP flow of each application implemented using the concerned frameworks.

In this case too, the Swift framework requires less amount traffic compared to the

React and Express application. Hence the Swift application scores more in this

criterion.

Figure 93. Native Applications - TCP Analysis.

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

Swift React Native & Express

R
es

u
lt

Combined HTTP Analysis: Native Applications

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

Swift React Native & Express

R
es

u
lt

Combined TCP Analysis: Native Applications

WebSocket

The figure 94 shows the amount (number and length) of packets generated by

the WebSocket flow of each application implemented using the concerned

frameworks. It is a huge surprise that React Native and Express framework

combination generated very less WebSocket traffic compared to the Swift

framework. This signifies that the React Native and Express application has a

more stable connection between its client and server.

Figure 94. Native Applications - WebSocket Analysis.

The results of these network analyses indicate that Swift framework combination

require the least amount of traffic packets to generate the UI and communicate

with the server. However, it required a huge amount of traffic for the chat-

application to work.

0

10,000

20,000

30,000

40,000

50,000

60,000

Swift React Native & Express

R
es

u
lt

Combined WebSocket Analysis: Native
Applications

7 Conclusion

From the results, it can be inferred that the application developed using React

and Rails framework performs better as compared to the other web frameworks.

Also, for the native applications, React-Native framework has better benchmark

compared to the Swift framework. The major drawback of Swift being that it is

only accessible for the iOS platforms whereas React-Native and Express

framework combination utilize the cross-platform functionality.

The benchmark scoring was done for to the chat application that was developed.

It cannot be perfectly concluded that React and Rails will perform better as

compared to other frameworks using analysis because only certain attributes

related to the benchmark criteria were used. Other benchmark criteria like ‘plugin

support’, ‘security considerations’ and ‘AJAX support’ were not used. These

criteria were did not fit into the current chat application as WebSocket themselves

provide an extra layer of socket security during the conversation between the

client and the server.

Similarly for the native and cross-platform applications, it cannot be successfully

deduced that React-Native and Express framework will perform better than the

Swift frameworks. However, it can be predicted that for a given project, these

frameworks can perform better than the others.

Challanges and Limitations

The research study encountered various challenges and limitations during

network capturing and analysis. These challanges are summarised in the

following section:

1. The first challenge was to isolate the traffic on the Windows platform.

The main problem was to overcome the SSDP lag during the packet

transfer.

2. The CORS policy had to be reset quite frequently during the analysis of

the application. It restricted the application from running on different

server which proved to be a huge obstacle.

3. iOS application testing was another challenge that proved to be quite

difficult. Since Apple does not allow any third-party applications,

therefore the performance of the iOS application was measured manually

using the network dataset.

4. Some of the attributes on the benchmark criteria are not mentioned for

the concerned chat application. These criteria depend on the

application’s environment which means some of these criteria will be well

suited for different types of applications.

5. Broadcasting of WebSocket using Laravel did not go smoothly. It took at

least 7 hours to fix the error due to lack of proper documentation.

6. The considered chat application was implemented due to the limited

amount of dataset. So, the benchmark criteria might show different

results while testing on much larger scale.

7. The network packet capturing application on the One Plus 8T Device had

to manually stopped and then relaunched multiple times after the VPN

services provided a stable connection.

8 Bibliography

Berninger, V. S. S. S. D. a. H. D., 2001. CHAPTER 7 - Assessment for Reading

and Writing Intervention: A Three-Tier Model for Prevention and Remediation..

[Online]

Available at:

https://www.sciencedirect.com/science/article/pii/B9780120585700500094

[Accessed May 2022].

Blog by Railsware, 2020. Everything You Need to Know about Ruby on Rails

Web Application Framework.. [Online]

Available at: https://railsware.com/blog/ruby-on-rails-guide/.

[Accessed 2022].

Carstens, T., n.d. PROGRAMMING WITH PCAP. [Online]

Available at: https://www.tcpdump.org/pcap.html

[Accessed may 2022].

Dasari Hermitha Curie, Joyce Jaison. Jyoti Yadav, J Rex Fiona, 2019. Analysis

on Web Frameworks. Journal of Physics: Conference Series, 11, Volume 1362,

p. 012114.

Docs, MDN Web, 2019. The WebSocket API (WebSockets). [Online]

Available at: https://developer.mozilla.org/en-

US/docs/Web/API/WebSockets_API

[Accessed 2022].

EDUCBA, 2019. What is Internet Application | Top 8 Application of Internet with

Advantages. [Online]

Available at: https://www.educba.com/what-is-internet-application/

[Accessed May 2022].

Ghimire, D., 2020. Comparative study on Python web. [Online]

Available at:

https://www.theseus.fi/bitstream/handle/10024/339796/Ghimire_Devndra.pdf

Heitkötter, H., Tim A., R., Majchrzak, B. & Weber, T., 2014. Comparison of

Mobile Web Frameworks. Lecture Notes in Business Information Processing, p.

119–137.

IBM Cloud Education, 2020. What is Three-Tier Architecture. [Online]

Available at: https://www.ibm.com/cloud/learn/three-tier-architecture

[Accessed May 2022].

Ignacio Fernández-Villamor, J. D.-C. L. a. I. C., 2008. A comparison model for

agile web frameworks. Proceedings of the 2008 Euro American Conference on

Telematics and Information Systems.

Imperva, 2021. [Online]

Available at: https://www.imperva.com/learn/application-security/osi-model/

Infosec Resources, n.d. Hypertext Transfer Protocol (HTTP) with Wireshark.

[Online]

Available at: https://resources.infosecinstitute.com/topic/hypertext-transfer-

protocol-http-with-wireshark/

[Accessed 2022].

InterviewBit, 2021. Angular Vs React: Difference Between Angular and React.

[Online]

Available at: https://www.interviewbit.com/blog/angular-vs-react/

[Accessed May 2022].

InterviewBit, 2022. Top 10 Web Development Frameworks [2022]. [Online]

Available at: https://www.interviewbit.com/blog/web-development-frameworks

Majeed, A. & Rauf, I., 2018. MVC Architecture: A Detailed Insight to the Modern

Web Applications Development. [Online]

Available at: https://crimsonpublishers.com/prsp/pdf/PRSP.000505.pdf

[Accessed May 2022].

mraible, 2010. history-of-web-frameworks-timeline. [Online]

Available at: https://github.com/mraible/history-of-web-frameworks-timeline

[Accessed May 2022].

Overflow, Stack, 2021. 2021 Developer Survey. [Online]

Available at: insights.stackoverflow.com

[Accessed May 2022].

portswigger, n.d. Testing for WebSockets security vulnerabilities | Web Security

Academy. [Online]

Available at: https://portswigger.net/web-security/websockets

[Accessed 2022].

Raible, M., 2006. Comparing Web Frameworks. [Online]

Available at: https://equinox.dev.java.net/framework-

comparison/WebFrameworks.pdf

SearchNetworking, n.d. What is the OSI model? The 7 layers of OSI explained.

[Online]

Available at: https://www.techtarget.com/searchnetworking/definition/OSI

[Accessed 2022].

StackHawk, n.d. Laravel CORS Guide: What It Is and How to Enable It. [Online]

Available at: https://www.stackhawk.com/blog/laravel-cors

[Accessed 2022].

Strawn, J., 2018. Design Patterns by Tutorials: MVVM. [Online]

Available at: https://www.raywenderlich.com/34-design-patterns-by-tutorials-

mvvm

[Accessed May 2022].

Techempower, 2021. TechEmpower Framework Benchmarks. [Online]

Available at: https://www.techempower.com/benchmarks/

[Accessed May 2022].

Techopedia, 2019. What is Network Traffic? - Definition from Techopedia.

[Online]

Available at: https://www.techopedia.com/definition/29917/network-traffic

[Accessed May 2022].

Thakur, P., 2018. Evaluation and Implementation of Progressive Web

Application. [Online]

Available at:

https://www.theseus.fi/bitstream/handle/10024/142997/PWA%20thesis.pdf

Tiganov, D., Cho, J., Ali, K. and Dolby, J., 2020. SWAN: a static analysis

framework for swift. [Online]

Available at: https://dl.acm.org/doi/10.1145/3368089.3417924

[Accessed 2022].

Wireshark, n.d. TCP Analysis. [Online]

Available at:

https://www.wireshark.org/docs/wsug_html_chunked/ChAdvTCPAnalysis.html

[Accessed 2022].

