

Navigation application in the building via
two-dimensional barcode recognition

Michal Banik

Bachelor’s Thesis
May 2014

Degree Programme in Software Engineering
Technology, communication and transport

DESCRIPTION

Author(s)
Banik, Michal

Type of publication
Bachelor´s Thesis

Date
14. 05. 2014

Pages
62

Language
English

 Permission for web
publication
(X)

Title
Navigation application in building via two-dimensional barcode recognition

Degree Programme
Software Engineering

Tutor(s)
Mieskolainen Matti

Assigned by
University of Žilina

Abstract

The aim of this thesis was to create a navigation application working on the principle of recognizing
two-dimensional graphical codes. This application should support the creation and editing of two-
dimensional maps of the building and assign specific information to the objects on the map. The
thesis describes the basic algorithms usable for indoor navigation, followed by a brief description of
available techniques and methods of navigation. The description of QR codes used in this work to
locate the position of the building is included as well.

In the design part the study, more detailed description requirements are added and the concept of
the application implementation is described. The model building used in the study presents the
building as an object with floors and rooms. It distinguishes two types of rooms, the plain rooms on
one floor and the rooms connecting the floors. The implementation is divided into map editing
section and navigation section. Two applications have been created based on the requirements.
FriBasicMapEditor, as editing application, provides functions for creating and editing two-
dimensional maps of the building and matching QR code to objects in maps. The navigation
application, FriNavigate uses a map created by FriBasicMapEditor application and provides for user
the navigation functions in the building described by loaded map. The navigation is based on the
recognition of generated images of QR codes.

The application can be used to navigate in any standard building or used as a basis for more
complex, respectively more extensive projects related to navigation in buildings.

Keywords
indoor navigation, QR code, model of building, map editor

Miscellaneous

1

CONTENTS

Contents ... 1

Figures ... 3

Tables ... 5

1 Introduction ... 6

2 Algorithms for finding the shortest path... 8

2.1 The basic algorithm .. 8

2.2 Dijkstra's algorithm .. 9

2.3 Bellman-Ford's algorithm ... 10

2.4 A star algorithm .. 11

2.5 Comparison of algorithms .. 12

3 Options for navigation .. 14

3.1 GPS navigation ... 14

3.2 Compass and pedometer ... 15

3.3 Accelerometer and gyroscope .. 15

3.4 RFID ... 16

3.5 Wi-Fi .. 17

3.6 Bluetooth .. 18

3.7 Video camera or camera ... 18

4 QR codes (Quick Response Codes) .. 20

4.1 Properties of QR codes ... 20

4.2 Standardization ... 23

4.3 Structure of the QR code .. 23

5 Design and implementation .. 26

5.1 Thesis assignment .. 26

5.2 Two dimensional code selection .. 26

5.3 Programing language selection .. 26

2

5.4 Basic layout of the design .. 27

5.5 Building mapping (map format) ... 28

5.6 Application FriBasicMapEditor ... 30

5.6.1 Class MapCanvasForEdit .. 31

5.6.2 Class RoomInfoPanelForEdit .. 32

5.6.3 Class NewRoomDialog ... 33

5.6.4 Class Mainframe.. 35

5.6.5 Class QRWork ... 37

5.7 Application FriNavigate ... 38

5.7.1 Class LoadLocationDialog .. 40

5.7.2 Class SelectRoomDialog ... 41

5.7.3 Class MainFrameNavigate .. 41

5.7.4 Class Dijkstra .. 42

6 Description of created applications ... 44

6.1 FriBasicMapEditor ... 44

6.1.1 Map creating .. 46

6.1.2 Rooms editing.. 49

6.2 FriNavigate ... 50

6.2.1 User position actualization .. 53

6.2.2 Set destination of the user path.. 54

7 Discussion ... 55

References ... 56

Appendix 1 Electronical materials.. 59

Appendix 2 QR Codes maximum data limitation ... 59

3

FIGURES

Figure 1. Principle of the shortest path algorithm finding (Palúch 2008, 72) 8

Figure 2. System of GPS satellites (Navrchol.sk 2006) ... 15

Figure 3. Gyroscope (tahaky-referaty.sk 2008) ... 15

Figure 4. Passive RFID tag .. 16

Figure 5. Wi-Fi network example (Image 2012) .. 17

Figure 6. QR code recognition (Image 2009) .. 18

Figure 7. QR code and bar code comparison (Denso Wave 2011) 20

Figure 8. Structured linking of QR codes (Denso Wave 2011) 22

Figure 9. QR code structure (ISO/IEC 2000) ... 24

Figure 10. Version example (Denso Wave 2011) .. 25

Figure 11. Basic design .. 28

Figure 12. Diagram of building map model ... 29

Figure 13. Main classes of FriBasicMapEditor application .. 31

Figure 14. Form window - class RoomInfoPanelForEdit .. 33

Figure 15. Form window - class NewRoomDialog .. 34

Figure 16. FriBasicMapEditor application - main window .. 37

Figure 17. Dialog window – class LoadLocationDialog ... 40

Figure 18. Dialog window - SelectRoomDialog .. 41

Figure 19. Main window of FriNavigate application .. 42

Figure 20. Elements of FriBasicMapEditor application .. 44

Figure 21. Overview of the context menu File .. 45

Figure 22. Overview of the context menu Edit .. 45

Figure 23. Loading of map background ... 46

Figure 24. Dialog window for creation of new room ... 47

Figure 25. Updated application after room creation .. 48

Figure 26. Changing the picture of map after edge is created between two vertices

(points) ... 49

Figure 27. Calling the dialog for changing the name of room 50

Figure 28. Changed name of the room ... 50

Figure 29. Elements of application FriNavigate .. 51

Figure 30. Overview of the File context menu in application FriNavigate 52

Figure 31. Overview of the Navigate menu in the application FriNavigate 52

4

Figure 32. Overview of the View menu in the application FriNavigate 52

Figure 33. Dialog for updating the user's location ... 53

Figure 34. User's current position displayed on the map ... 53

Figure 35. Setting the destination room ... 54

Figure 36. Path found from the current user position to the target room is displayed . 54

5

TABLES

Table 1. Comparison of algorithms for finding the shortest path (Le, Saragas & Webb

2009, 36) ... 12

Table 2. Two-dimensional codes comparison (Denso Wave 2011) 21

Table 3. Levels of error correction ability (Denso Wave 2011) 22

Table 4. Format of single record in result of Dijkstra's algorithm 43

6

1 INTRODUCTION

In the Middle Ages, the first mariners used stars to determine their position on their

journeys. It could be said that the stars navigated them to areas that they did not know.

It is normal that orientation can be lost when in unknown areas. The more this area is

ragged, the more this statement is true. In prehistoric times the humans mapped the

land where they lived. They found food, pastures and also they needed to know how

they can get back home. The orientation is made easier using some devices, from the

first maps in the rock caves through compasses and to electronic navigation systems

used today.

The idea of navigation is not only to find some path from one point to another point,

because some connection of two points exist almost every time on the real map, in the

real world. The principle of navigation consists in optimizing the length of the found

path to make it as short as possible. This results in other positives that are, for

example, saving transition time from one point to another or saving costs for transit

between these points. One option how to optimize this distance is to use algorithms

from a mathematical discipline called graph theory, i.e. specific algorithms for

calculating the shortest path between two given points. Therefore, the beginning of

this thesis introduces the basic algorithms for finding the shortest path.

To use the algorithms is not sufficient. Before applying the algorithms it is needed to

know the position where one is and also the position where one wants to find the path

to. If using a paper map somewhere outside mostly it is not problem. The problem

occurs, however, when at an unknown place and there is no knowing of how to

orientate at this place, nor is there knowledge of the position which could be given to

the algorithm as a starting point. There are many techniques, devices and systems to

locate the position some of which are to be described in the next part.

The main aim of this thesis was to create an application which would facilitate visitor

orientation in an unknown building and provide navigation to a given destination.

Complicated electronic systems for localization consume a great deal of funds,

therefore they are not too effective mainly in terms of finance. The application which

is the content of this thesis uses recognizing two dimensional graphic codes for

localization. For scanning these codes it is sufficient to have some device for

7

recording images, e. g. camera. The navigation application demands only to transfer

the scanned image of graphic code from the recording device. This way, the

navigation is financially and technologically very convenient. The system does not

need any radio link for communication and thus it works very quickly, without

connection drops and without interferences with other devices. Because the navigation

is based on recognizing two dimensional codes, the thesis work contains also the basic

description of the selected 2D code – description of QR code.

8

2 ALGORITHMS FOR FINDING THE SHORTEST

PATH

Algorithms for finding the shortest paths are in practice highly desired. These are

mainly used for optimization tasks of different transport networks, but they are also

and often part of other algorithms.

2.1 The basic algorithm

The basic algorithm seeks the oriented path from a fixed vertex 𝑢 to a reachable vertex

𝑣 in positively valued and directed graph (i.e. a digraph). The complexity of the

algorithm is 𝑂(𝑛3).

Almost all algorithms for finding the shortest paths in graphs with the fixed starting

point use the principle of the basic algorithm. This principle is based on assigning

two variables to each vertex, 𝑡 and 𝑥. With these variables the steps of the algorithm

are performed, which are described below. The first variable 𝑡(𝑖) describes the last

found shortest path to this vertex from the starting vertex, the second variable 𝑥(𝑖) is

the previous vertex of the found path.

Figure 1. Principle of the shortest path algorithm finding (Palúch 2008, 72)

During calculation the condition is applied: if vertexes 𝑖 and 𝑗 are the incident and if is

it true that 𝑡(𝑗) > 𝑡(𝑖) + 𝑐(𝑖, 𝑗), where 𝑐(𝑖, 𝑗) is the value of edge starts in vertex 𝑖 and

ends in vertex 𝑗, then the last found path to the vertex 𝑖 with length 𝑡(𝑖) extended by

the edge from 𝑖 to 𝑗 with length 𝑐(𝑖, 𝑗), is shorter than the previously found path to the

9

vertex 𝑗. In the case when this condition is true variable 𝑡(𝑖) and 𝑥(𝑖) is overwritten as

follows: 𝑡(𝑗) = 𝑡(𝑖) + 𝑐(𝑖, 𝑗) and 𝑥(𝑗) = 𝑖. This part is also called the edge

relaxation.

The exact steps of the basic algorithm for finding the shortest path are as follows.

 Step 1. Initialization. Assign two variables 𝑡(𝑖) and 𝑥(𝑖) to each vertex 𝑖 ∈ 𝑉,

(𝑡(𝑖) describes an upper estimate of the last found shortest path from the vertex

𝑢 to the vertex 𝑖 and, 𝑥(𝑖) describes the previous vertex of this path, 𝑉 is the

set of all vertices). Set the variables 𝑡(𝑢) ≔ 0, 𝑡(𝑖) ≔ ∞ for 𝑖 ∈ 𝑉, 𝑖 ≠ 𝑢

and 𝑥(𝑖):= 0 for all 𝑖 ∈ 𝑉.

 Step 2. Find out whether there is an oriented edge from 𝑖 to 𝑗, 𝑖, 𝑗 ∈ 𝐻 (𝐻 is the

set of all edges of the graph) such that the following applies 𝑡(𝑗) > 𝑡(𝑖) +

𝑐(𝑖, 𝑗), where the 𝑐(𝑖, 𝑗) is the value of edge starts in vertex 𝑖 and ends in

vertex 𝑗. If such an edge exists, set 𝑡(𝑗) ≔ 𝑡(𝑖) + 𝑐(𝑖, 𝑗), 𝑥(𝑗) ≔ 𝑖 and repeat

step 2

 Step 3. If there is no edge to satisfy the condition of step 2, create back the

shortest path from vertex 𝑢 to vertex 𝑖 using the variables 𝑥(𝑖), 𝑖 ∈ 𝑉. The

shortest path will be: 𝑖, 𝑥(𝑖), 𝑥(𝑥(𝑖)), 𝑥(𝑥(𝑥(𝑖))), . . . , 𝑢 (displayed from ending

vertex to initial vertex).

 END

After the algorithm ends, the shortest path is known from vertex 𝑢 to any vertex 𝑖 ∈ 𝑉,

the length of which is in the variable 𝑡(𝑖). If 𝑡(𝑖) = ∞, the vertex 𝑖 is not reachable

from vertex 𝑢. (Palúch 2008, 73)

2.2 Dijkstra's algorithm

Dijkstra's algorithm is one of the most used algorithms for finding the shortest path

between two vertices. The basic algorithm is able to find a path between the start and

some other reachable vertex. Dijkstra's algorithm solves finding only one shortest path

connecting two vertices of an oriented graph with non-negative valued edges. This

gives the Dijkstra’s algorithm less complexity 𝑂(𝑛2). In case when the path from

starting vertex to the concrete only one ending vertex needs to be known, then this

algorithm is better, however the algorithm fails in case when the graph contains a

negative valued edge. (Matulová 2009, 25)

10

As hinted above, Dijkstra’s algorithm is based on the basic algorithm. It assigns the

same variables to vertices 𝑡(𝑖) and 𝑥(𝑖) but with one difference, two states of the

variable 𝑡(𝑖) are recognized. This variable can be set as final, and then it is no longer

able to change or can be sat as temporary. (Le, Saragas & Webb 2009, 29)

The algorithm consists of the following steps (Palúch 2008, 80):

(The shortest path between vertices 𝑢 and 𝑣 is looked for)

 Step 1. Initialization. Set each vertex’s variables 𝑡(𝑖) and 𝑥(𝑖). Variables 𝑡(𝑖)

will have two types namely the temporary or final. Set 𝑡(𝑢) ≔ 0, 𝑡(𝑖) ≔ ∞

for 𝑖 ∈ 𝑉, 𝑖 ≠ 𝑢 and 𝑥(𝑖) ≔ 0 for all 𝑖 ∈ 𝑉. Select the pilot vertex 𝑟 ≔ 𝑢 and

variable 𝑡(𝑢) (resp. 𝑡(𝑟)) as final, the remaining variables 𝑡(𝑖) set as

temporary.

 Step 2. If 𝑟 = 𝑣, END. If 𝑡(𝑣) < ∞, the variable 𝑡(𝑣) indicates the shortest

path from 𝑢 to 𝑣. The path can be found back from variables 𝑥(𝑖). If 𝑟 ≠ 𝑣, for

all edges from 𝑟 to 𝑗, where the vertex 𝑗 is set as temporary, check

condition 𝑡(𝑗) > 𝑡(𝑖) + 𝑐(𝑖, 𝑗). If the condition is true set 𝑡(𝑗) ≔ 𝑡(𝑖) +

𝑐(𝑖, 𝑗), 𝑥(𝑗) ≔ 𝑖 and changed variable keep set as temporary.

 Step 3. From all vertices marked as temporary find one vertex with the lowest

value of variable 𝑡(𝑖) and set this variable as final and choose it as pilot

vertex 𝑟 ≔ 𝑖. Continue to Step 2 (If there are multiple vertices with the lowest

value of 𝑡(𝑖) select one of these vertices, the other will be used in next

iteration.)

The algorithm can be easily remade for searching the shortest path from the starting

vertex to all other vertices when the condition for terminating is changed to the

condition: END when all the variables 𝑡(𝑖) are marked as final.

(Palúch 2008, 80) (Le, Saragas & Webb 2009, 29)

2.3 Bellman-Ford's algorithm

The next algorithm to find the shortest path is Bellman-Ford's algorithm. The main

advantage of this algorithm is, that unlike the Dijkstra’s algorithm, it is able to find the

shortest path in the graph with a negative valued edges until the graph does not

contain a cycle with negative length. (Le, Saragas & Webb 2009, 35)

11

The specific steps of the algorithm are as follows:

 Step 1. Initialization. Assign two variables 𝑡(𝑖) and 𝑥(𝑖) to each vertex 𝑖 ∈ 𝑉

(𝑡(𝑖), is length of the shortest path found in last iteration and 𝑥(𝑖) is the

previous vertex of this path). Set variables 𝑡(𝑢) ≔ 0, 𝑡(𝑖) ≔ ∞ for 𝑖 ∈ 𝑉, 𝑖 ≠

𝑢 and 𝑥(𝑖) ≔ 0 for all 𝑖 ∈ 𝑉.

 Step 2. Edge relaxation. Apply the condition 𝑡(𝑗) > 𝑡(𝑖) + 𝑐(𝑖, 𝑗) for all

edges|𝑉| − 1 times, where 𝑐(𝑖, 𝑗) is the value of edge from vertex 𝑖 to vertex 𝑗.

If condition is true, set 𝑡(𝑗) ≔ 𝑡(𝑖) + 𝑐(𝑖, 𝑗), 𝑥(𝑗) ≔ 𝑖 and repeat step 2.

 Step 3. Relax the edges again. If there will not occur an updating of

variables 𝑡(𝑖) and 𝑥(𝑖) the algorithm ENDS. The shortest path from vertex u to

any other vertex in the graph could be constructed using reference

variables 𝑥(𝑖). If the vertex variable 𝑡(𝑖) is ∞, this means that the vertex is not

reachable from vertex 𝑢. If at least one updating of variables 𝑡(𝑖) or 𝑥(𝑖)

occurred during the relaxation it means that the graph contains a negative cycle

and the length of the found path will not be correct.

(Demaine 2011, 1)

This algorithm is used for example in network protocol RIP. The complexity of this

algorithm is 𝑂(|𝑉| ∗ |𝐻|), where |𝑉| is the number of vertices and |𝐻| the number of

pages in the graph (Hedrick 1988, 2).

2.4 A star algorithm

A* algorithm, eventually A star algorithm, finds the shortest path between the starting

vertex 𝑢 and the ending vertex 𝑣 in undirected graph using the heuristic method. It is

similar to Dijkstra's algorithm. The difference is in choosing the next vertex. Vertices

are selected on the basis of the function 𝒇 which is associated to each vertex. This

function represents the last found length of the shortest path to this vertex and

estimation of distance to the target vertex. Heuristics are used to calculate this

estimation, because the real distance to the target vertex is known after the shortest

path has been found. The calculation of the estimation can be obtained by various

methods. Vertex with a minimum value of function 𝑓 is marked as visited and the

calculation continues from this vertex, this vertex is no longer classified as a candidate

for further calculation. Next, during the execution the procedure is like in Dijkstra’s

12

algorithm, and thus if any edge exists that optimizes the shortest distance to the vertex

currently visited, this vertex will store this better distance and also the vertex which

precedes it (aforementioned relaxation) (Matulová 2009, 25)

The complexity of this algorithm is 𝑂(|𝐻| + |𝑉| ∗ 𝑙𝑜𝑔|𝑉|). Because the solution is

not always mathematically optimal, it is not guaranteed whether the resulting path

found is the best solution. (Matulová 2009, 25) (Lester 2005)

2.5 Comparison of algorithms

The following table compares the algorithms, their advantages and disadvantages as

well as complexity. (Table 1.)

Table 1. Comparison of algorithms for finding the shortest path (Le, Saragas & Webb

2009, 36)

Algorithm Advantages Disadvantages Complexity

The basic

algorithm

simplicity of

implementation
slowest 𝑂(𝑛3)

Dijkstra’s

algorithm

speed, optimality of

solution, option to

terminate after the

shortest path was

found

does not work with

negative valued

edges
𝑂(𝑛2)

Bellman-Ford

algorithm

works with negative

valued edges
less speed 𝑂(|𝑉| ∗ |𝐻|)

A* high speed
not guaranteed

optimal solution
𝑂(|𝐻| + |𝑉| ∗ 𝑙𝑜𝑔|𝑉|)

The fastest of the above mentioned algorithms are Dijkstra’s and A*. If the task

requirement would be to work with negative valuation of edges it is necessary to use

the Bellman-Ford's algorithm. In case when there is a sensitive task requirements to

find the shortest reachable path then it is the best adept Dijkstra's algorithm, since A*

algorithm does not guarantee optimality of the found path. (Le, Saragas & Webb

2009, 29)

The given task does not require to work with the negatively valued edges, what

confirms the selection Dijkstra’s or A* algorithm. Therefore, there is the choice from

13

two algorithms. Because of the ease of implementation Dijkstra’s algorithm was

chosen. (Le, Saragas & Webb 2009, 29)

In case of the navigation, an autonomous or semi-autonomous mobile robot in an

unfamiliar environment would be good to consider to use the histogram navigation

algorithms. They are the potential based methods which use histogram grid map area.

This grid, which is additive, is updated by robot dynamically according to the distance

detection of barriers. There are several methods for this kind of navigation. (Babinec

& Vitko 2010, 26)

14

3 OPTIONS FOR NAVIGATION

Nowadays there are several options available for realizing the navigation in the

building. In each case the solution is specified by something else and it includes

smaller or larger time and financial costs.

For indoor navigation there is the choice, for example between these technologies and

their combinations.

 High sensitive GPS sensor

 Pedometer

 Compass

 Accelerometer

 RFID chips

 Wi-Fi

 Bluetooth

 Camera

3.1 GPS navigation

GPS navigation is designed to be used in open areas, roads, or to navigate in the city

streets, however, also there is sometimes a problem in large cities to capture the signal

from the GPS satellites. (Le, Saragas & Webb 2009, 4)

Due to lack of bad localization in urban area, the navigation in a building needs a very

powerful GPS receiver. The alternative is to amplify the GPS signal strength (using a

device called GPS Repeater – signal repeater) in every single building and a

technology called A-GPS (Assisted GPS), which provides additional information

through the available communication data links. GPS devices cannot obtain this

information themselves due to signal attenuation. (Le, Saragas & Webb 2009, 5)

15

Figure 2. System of GPS satellites (Navrchol.sk 2006)

3.2 Compass and pedometer

Pedometer together with compass, depending on their quality, provides sufficiently

accurate detection of the position on the prepared map. In this method of navigation

the user determines the starting point on the map and the average length of step.

After this initialization, the device records the direction of movement and travelled

distance, which can be given to the user as the current location. (Ausmeier 2011, 8)

3.3 Accelerometer and gyroscope

Using a similar principle as the previous example, also the navigation based on

accelerometer and gyroscope works. A gyroscopic device can determine its

orientation in space, following the comparison with the previous orientation it can

determine the directional change. (fyzmatik.pise.cz 2008)

Figure 3. Gyroscope (tahaky-referaty.sk 2008)

Accelerometer measures the acceleration of a device in space and isolates vertical

movements from which the number of steps can be determined. Then the number of

steps is multiplied by the average step length, from which the distance is obtained. By

16

combining these two devices there is another way to determine the current position of

the device, and thus the user. (Ausmeier 2011, 8) (Lin, Smith & Wehrle 2011, 1)

3.4 RFID

Radio Frequency Identifier (RFID) is one of the possible ways to determine position

in the building. RFID identifier, further RFID tag contains a small chip and an

antenna or also the battery. The chip size can be only 0.5 mm2 and the thickness of

the entire tag is so small that it can be inserted into the paper. RFID tags can

communicate in a range up to several meters. The cheaper passive RFID tags do not

contain a battery. The energy for replying is obtained from received signal. (RFID

Tags - Radio Frequency Identification Tags 2009)

RFID tag contains 96-bit information, which is sufficient data capacity for storing any

significant practical identifier. (ibid.)

There are different types of RFID tags. Furthermore, there are four categories divided

by frequency in which a tag communicates with the reader, and thus there are LF

(125 or 134.2 kHz), HF (13.56 MHz), UHF (868-956 MHz) and microwave (2.45

MHz). (ibid.)

The main categories are active and passive RFID tags. (ibid.)

 Passive RFID tags, as mentioned above, have not their own power supplies,

but when the signal from the reader is received also a small current is created

which is sufficient to send a short reply back to the reader. Thanks to the fact

that no power source is contained in the passive RFID tags they may have

much smaller size. These tags can communicate over a distance of 1

centimetre to 6 meters.

Figure 4. Passive RFID tag

17

 Active RFID tags contain their own power, what gives them a longer time

period for the reading and they can also store large amounts of data. Thanks to

the source, which is able to keep the tag alive up to 10 years, it is possible to

store the information sent by the transmitter. These tags can be read from a

longer distance. The size of active RFID tags is the size of a one coin,

however, they are more accurate, more reliable and more powerful in

difficult conditions than the passive tags.

The major advantages over conventional bar code are listed below (RFID Tags -

Radio Frequency Identification Tags 2009)

1. Possibility to communicate over longer distances

2. It has a larger data capacity

In navigation systems, RFID technology can be used for getting the exact location of

an object in real time.

3.5 Wi-Fi

The need to use the Wi-Fi technology for indoor navigation was caused due to the

increasing use of access points in public and private buildings. The principle is based

on a sufficient deployment density of access points of Wi-Fi network. In short, it can

be said that the mobile device with Wi-Fi receiver periodically scans the surrounding

for occurrence of access points. (Work 2003, 1)

Figure 5. Wi-Fi network example (Image 2012)

In the beginning of navigation the users set their position and the device maps the area

where the nearby access points are located. The found access points are stored in the

18

list together with their signal strength. Devices are looking for available access points

periodically while the users are walking in the building and compare the signal

strength with the last found value, which can determine the position change relative to

the navigation start point. Then the application can check whether the user is moving

along the route, which should be followed to reach the destination. (Work 2003, 1)

3.6 Bluetooth

Bluetooth navigation is mainly limited by signal range, because of which the

Bluetooth technology is used mostly for connecting an external navigation device.

Using the Bluetooth navigation separately is possible with a high density of Bluetooth

transmitters. (Ausmeier 2011, 5)

3.7 Video camera or camera

Use of the camera or video camera for navigation in buildings is possible in several

ways. One of them is, for example dynamic image processing. The second method is

based on capturing some reference mark, which contains location information. By

recognizing this information the application can inform the user about the current

location. (Ausmeier 2011, 7)

Figure 6. QR code recognition (Image 2009)

The subject of this thesis work will be an easier alternative, the recognition and using

reference marks assigned to certain places on the map. Specifically, it will be based on

two-dimensional graphical codes. This reference mark clearly defines and identifies

the object on the map. It cannot happen that two objects have been assigned to one

and the same mark.

19

This type of navigation system is based on the existence of these reference marks

and thus before the process of navigating starts these tags must be assigned to the

map objects. In this case, the user does not enter a starting point, but the point is

automatically set when the first reference mark is loaded, to which the user arrived.

After updating the user's position, this position is displayed on the map. This update

occurs with each detected reference mark (different or same if user has returned to this

place). This update causes the calculation process of path to the destination specified

by the user. Furthermore, each reference mark may include additional information

about the assigned object, on the basis of its data capacity.

20

4 QR CODES (QUICK RESPONSE CODES)

The barcodes have become very popular because of their feature to be simple,

accurate and fast readable. After the global expansion of barcodes the market

demanded codes which could store more information, however, maintaining the same

processing speed that is provided in barcodes. The barcodes can store information in

one axis, in other words, they are one-dimensional codes. In response to these

mentioned requirements, the two-dimensional codes began to appear. (KRUPA 2011,

3)

QR Code (Quick Response Code) is a kind of two-dimensional graphical code (2D

barcode), developed by DENSO WAVE Inc. QR code unlike the barcode contains

information stored in the vertical and in the horizontal axis (two-dimensional),

therefore it is able to store several times more information. (Denso Wave 2011)

Figure 7. QR code and bar code comparison (Denso Wave 2011)

Except QR codes, also other two-dimensional codes have been developed. Typical

two-dimensional codes are shown in Table 2.

4.1 Properties of QR codes

The QR codes provide a greater data range compared with conventional bar codes.

As it is shown in Table 2, this feature is maintained also in comparison with other

two-dimensional codes. QR codes can store up to 7089 digits or 4296 digits combined

with letters - alphanumeric characters. (Denso Wave 2011)

QR codes can be displayed on a smaller area than barcodes. Because the QR code

contains the information in two axes, it reduces the area which will be displayed (or

printed), in some cases up to 10 % of the conventional bar code with the same

21

information value. For small amount of information the reduced version of QR code

called Micro QR Code can be used. (ibid.)

QR codes have the ability to repair the damaged part of its area. Error correction is

based on the Reed - Solomon algorithm. It is an efficient algorithm, which has the

capability of correcting clusters of errors. With this algorithm the detection part of the

code can be simply allocated and it can be used for application defined by standards

CSN EN 50159-1 and EN 50159-2. (Franeková M. 2003, 3)

The following table compares different types of two dimensional graphic codes. It

shows company which developed the specific code, capacity limitation, advantages

and organizations which standardize specific code. (Table 2.)

Table 2. Two-dimensional codes comparison (Denso Wave 2011)

QR code PDF417 DataMatrix Maxi code

Code example

Developed (country) DENSO (Japan)

Symbol

Technologies

(USA)

RVSI Acuity

CiMatrix

(USA)

UPS (USA)

Type matrix
composite bar

code
matrix matrix

Maximum

capacity

Numeric 7,089 2,710 3,116 138

Alphanumeric 4,296 1,850 2,355 93

Binary/byte 2,953 1,018 1,556 -

Kanji/kana 1,817 554 778 -

Main advantages

large capacity,

small size after

print, high

reading speed

large capacity

Small size

after print,

large capacity

High reading

speed

Standardized

AIM

International,

JIS,

ISO

AIM

International,

ISO

AIM

International,

ISO

AIM

International,

ISO

Depending on the level of error correction that was used when the code was

generating, the data up to 30% of the total area can be restored. Together with

increasing level of error correction the size of the code is also increased. The available

levels are shown in Table 3 together with the value of bug fixes. The most common

level is M, i.e. 15% of information stored in the code can be damaged without being

lost.

22

With three detection patterns at the corners the QR code has not reduced the

readability even in the case of rotated code. The code can be processed with sufficient

speed regardless of the angle of rotation in the range < 0°; 360° >.

The following table shows all levels of QR error correction ability (Table 3.)

Table 3. Levels of error correction ability (Denso Wave 2011)

Error correction ability

level L around 7%

level M around 15%

level Q around 25%

level H around 30%

QR codes support a function called structured linking. This means that the code can

be divided into several smaller QR codes and the reader will reconstruct the code into

a single unit when all parts are loaded, if the reader or decoder supports this function.

This function is used when there is a limited size of the presentation device. QR codes

can be divided up to 16 parts, which then are shown in a row. In Figure 8 this

function can be seen applied. After the decoding process is applied on both top image

and small images at bottom, the information read from the code at the top will be the

same as the information from 4 small QR codes at the bottom. (Denso Wave 2011)

Figure 8. Structured linking of QR codes (Denso Wave 2011)

As symbology developed in Japan, QR codes provide support for encoding Kanji

character set. In case of use Japanese Kanji characters one character is encoded into

23

thirteen bits. QR technology can store approximately 20% more data compared to the

other two-dimensional codes. (Denso Wave 2011)

4.2 Standardization

QR code was introduced in 1997 as a standard for automatic identification as AIM

International Standard (AIM-IDS 97/01). Later in 1999, it was registered as Japanese

Industrial Standard (JIS-X0510). Also, in the same year it was accepted as a standard

two-dimensional symbol usable for EDI transaction forms in the Japanese automotive

industry (JAMA-EIE001). Based on this standardization it has been nominated as an

ISO / IEC JTC 1 SC 31 standard. This standard was approved in 2000, as an

international standard ISO / IEC (ISO/IEC 2000).

As a technology able to handle different character sets it has been adopted in other

"eastern" countries too. In 2000, it was accepted as a Chinese National Standard (GB /

T 18284). Later in 2002 it was accepted as a Korean National Standard (KS X ISO /

IEC 18004) and as a Vietnamese national standard in 2003. (QRBCN 2008, 68)

4.3 Structure of the QR code

QR Code is a graphical square shaped code. The actual structure is the regular grid

divided into data part and functional part. (Denso Wave 2011)

The size of QR code depends on the version of code which corresponds to the data

capacity, further it depends on the type of character, the level of error correction and

the size of the module, which depends on the power of the printing device and reading

devices. (Denso Wave 2011)

One module represents one bit coded and each module is a square with side length of

4 or more points. All modules in one QR code have the same size. (Denso Wave

2011)

The detailed structure of the QR code is shown in Figure 9.

QR codes were developed especially for labelling and tracking parts in the automotive

industry, however, in expanding the codes to the other fields they were begun to be

used for encoding different contact or identification information. Because of the high

reading speed they were also expanded to the field of mobile communication. When

24

the mobile device loads the decoding application only the camera is needed for

decoding code, the device can read the code anywhere, anytime. Therefore the

recognition of various data formats stored in QR codes was implemented into the

decoding application. Many application can nowadays recognize many formats, for

example URI and URL format (email address, phone number, Web address), contact

information, SMS and MMS, geographical location, information about events and

thus the usability of the QR codes is more accessible for more people. (Denso Wave

2011)

Figure 9. QR code structure (ISO/IEC 2000)

The data section contains the actual encoded data words, words inserted by the

aforementioned Reed-Solomon algorithm for fixing code, version information and

format. (ibid.)

Three positioning detection patterns in corners of code provide the possibility to read

the code at any angle of rotation.

The one part of the QR code is also “quiet zone” (according to Figure 9) or separation

zone (KRUPA 2011, 15), with four or more modules on each side of code.

25

QR codes have defined 40 different versions. Each version differs in the number of

modules and thus each is limited to a certain amount and type of data and the error

correction level. Version 1 contains a 21x21 matrix of modules, each additional

version contains 4 more modules on each side up to version 40, which is a matrix

consisting of 177x177 modules. The accurate values of the data limitation based on

version of code are listed in Appendix 2. (Denso Wave 2011)

Figure 10. Version example (Denso Wave 2011)

26

5 DESIGN AND IMPLEMENTATION

5.1 Thesis assignment

The assignment of the thesis was to create the application for localization on the

created map. The navigation is based on two dimensional code recognition. The

application should contains the functions for generating, recognizing and printing of

two dimensional codes. Furthermore, the application should provide environment for

creating and editing two dimensional map of building. Assigning the generated codes

with other information to the map should be part of the map editing function. As a

core application function is considered the navigation from one place to another on the

map.

5.2 Two dimensional code selection

Because of the specification availability, libraries for graphical codes processing for

different programing languages and possibility to assign additional information to the

objects on the map, the QR codes were selected as a main representative of two-

dimensional codes used for the application.

The comparison and advantages over the other graphical codes can be found in

chapter 4.

It will be the best to use external library for QR codes processing which was already

created because of the time available.

5.3 Programing language selection

The language for the implementation can be selected between some possible

alternatives such as C++, Object Pascal or Delphi, or Java. Because the author has the

greatest knowledge of programming in Java language, the Java was chosen.

The Java, originally developed by Sun Microsystems, which is now part of Oracle

Corporation, has a very similar syntax like C language. Unlike the C language the

source code is not compiled directly into machine code, but in the code called byte

code, which is then translated by the JVM (Java Virtual Machine). Thanks to the JVM

exists for every today most spread operating system, the applications written in Java

27

language can be run on almost any platform. There is another advantage of this

language for this work namely that the applications for the Android, as an operation

system for mobile devices are based also on Java language, so the application porting

for using in mobile phones with this operation system will be that much easier.

(Android Developers Portal n.d.)

5.4 Basic layout of the design

Based on the assignment of the work the conclusion was reached that it would be

suitable to solve the requirements as a development of two applications. So this study

was divided into two parts:

 Navigation application (FriNavigate) - includes processing of created maps,

updating the position based on the recognition of two-dimensional printed

codes (QR codes) and navigating from one place to another on the map.

 Map editor application (FriBasicMapEditor) - contains functions for creating

and editing maps, functions for generating QR codes and assigning them to the

place on the map. Output from this application is the map model as an object

file which can be then read with FriNavigate application.

There is a library used for processing the two dimensional codes in the applications

also, namely the processing of QR codes is used. It is a library ZXing (ZXing library

2007).

ZXing is an open source platform for processing two dimensional bar codes developed

in Java language. This library has also a partial ports to other languages such as. C +

+, C #, Objective C, Actionscript. The library is able to encode and decode the

following graphical codes: (ZXing library 2007)

 UPC-A and UPC-E

 EAN-8 and EAN-13

 Code 39

 Code 93

 Code 128

 ITF

 Codabar

 RSS-14 (all variants)

 QR Code

 Data Matrix

 Aztec (beta quality)

 PDF 417 (alpha quality)

28

The figure below describes the basic design how the application works.

Figure 11. Basic design

5.5 Building mapping (map format)

For processing of floor plans of entire building in the application, it is necessary to

change this building to some model. It is necessary to identify single floors and

individual rooms on a particular floor, when navigating inside building. But buildings

contain also places that cannot be really considered as rooms, for example stairs and

elevators. The model for navigating can describe the place like that also as a room,

but with other properties.

Of the logical considerations it is clear that every room in the building is unique and

cannot be defined in two different places at the same time. This limitation means that

each instance of a room can only be on one floor and also may occur only once in a

building. This restriction after a small modification does not apply for elevators and

stairways; however, still, for these "kinds of rooms" it applies that only one instance

of this object may be on a single floor.

Another element which should be included in the model is an object called door. The

doors are more or less the connecting elements between two rooms. Therefore, for the

solid model without any interruption in routes, it is necessary that a door should "know"

29

what rooms it connects. In a building near the door (or doors) is mostly located some

information for visitors about a specific room, such as the name of the employee or name

of the room. This way the building can be modelled for the application. The model of the

map of the building is shown in Figure 12.

Figure 12. Diagram of building map model

The core class of the map model of the building is class Building. This class contains at

least one instance of the class Floor which is a specific floor of the building. Another

necessary element in the structure of the building is room represented by the class Room.

The doors were replaced by two separate classes Edge and Node in the implementation,

which together with class Room can exactly identify a connection between two rooms.

The main reason for implementing classes Node and Edge was using of these classes to

find the shortest path in the building later. Node class represents the one vertex of the

graph, which is used by Dijkstra's algorithm (Palúch 2008, 80). Subsequently, the class

Edge is a representation of the one edge of the graph and thus it logically connects two

instances of the class Node. Each instance of the class Node may have an instance of the

class Room, in which the graph vertex is located. Lists of instances of classes Node and

Edge are contained in classes Floor and Building. Floor class contains all the vertices and

edges located on one floor. The parts of the class Building are lists of edges and vertices

which connect the individual floors of the building. By lists traversal and determining

which room belongs to vertex from the list (or vertex of Edge instance) it can be exactly

identified where the vertex is located in the building.

30

Classes Building, Floor and Room are the main graphical representation of buildings

(resp. parts of buildings). Edge and Node classes represent connection parts of the

building; however, in addition, they are used for orientation in the map and also for

finding the shortest path to the destination place in the building. Each instance of

floors has also relative path to the background image file used for better user

orientation on the map.

5.6 Application FriBasicMapEditor

The main function of this application is in the modifying maps for navigation, i.e. it

shows the map modified right now. Another function needed in this application is the

selection of a particular object on the map, displaying the information about this

object and changing this information. Also, it is necessary to be able to assign two

dimensional graphical codes to these objects. Because the application draws the map,

it is necessary that this map has to be represented somehow by the application.

For the purposes of these requirements additional classes were created in addition to

the main class MainFrame, namely:

 Class MapCanvasForEdit – it is responsible for rendering maps

 Class RoomInfoPanelForEdit – it displays information about selected object

from the map

 Building Class – it represents the map of the building itself

 Class QRWork – ensures the generation and loading the QR codes

 Class NewRoomDialog – dialog window which creates a new room in the map.

These classes, along with the main application class, and with classes that represent

the building can be seen in Figure 13.

31

Figure 13. Main classes of FriBasicMapEditor application

The description of the most important classes is listed in next subchapters.

5.6.1 Class MapCanvasForEdit

Class provides the rendering of the current map and thus it must support loading of

some maps. Because it shows only one floor of the building, it is necessary to be able

to load, edit and save only the one floor. It must also be able to handle user actions,

i.e. analyse and evaluate clicking action on a graphical representation of an object

displayed on the map. For more comfortable usage of displayed map, it is good to

implement tools for zooming and moving the map inside the class.

Summary of the properties of the class MapCanvasForEdit:

 Maps rendering

 Maps loading (floor loading)

 Zoom in / out

 Map dragging

 Actions recording - selection (or moving) and evaluate them.

32

MapCanvasForEdit class is implemented as a subclass of JPanel, so it provides basic

functions from parent class and also it provides the functions required for the

assignment.

The main part of the class MapCanvasForEdit is the map background MapBg. The

actions are recorded and performed only above this background.

Map drawing ensures the overwritten method paint(), which extends the basic

inherited paint() method by rendering all the rooms created over map. The loading of

specific floor of map provides method load(floor) with a parameter as a reference to

object floor. This reference will be saved in class attribute for later work with this

floor (floor editing).

The zoom functionality is implemented by methods zoomIn(), zoomOut(),

setToOriginalZoom() and performZoom(). The first three mentioned methods only set

the zoom value. Method performZoom(), which is a part of each of these methods,

applies the set zoom settings and redraws the entire map.

The map dragging is also related to events capture. If this feature is currently enabled,

the point where the mouse button was pressed is recorded into attributes

m_XDifference, m_YDifference and after this "pulling the click" action the entire map

is redrawn on new coordinates every time the user moves the mouse. This function is

only possible if the current size of the map is larger than the used content area of

MapCanvasForEdit instance.

5.6.2 Class RoomInfoPanelForEdit

This class displays information about the selected object on the map. Rooms are

objects primary accessible for the selection. This means that the main information

displayed will relate to specific room. Thus, it is needed to view the name and room

number, some additional information assigned to rooms and possibly a direct

connection to the other rooms. The class needs to have a reference to the room for

reliable access to room information.

CanvasInputable interface is already implemented in this class and therefore it accepts

the receiving messages acceptRoomInfo(room). The class can receive and work with

any reference to an object with type Room by this implemented method.

33

Because of the fact that a class has access to all room features through reference, it is

good to take this opportunity also for changing the data in room. Thus the class

implements methods for updating the room information:

jButtonEditNameActionPerformed(evt) and jButtonEditNumberActionPerformed(evt).

Another of the implemented functionalities permits to generate and to print QR code

which represents graphical reference outside applications. This is implemented in

methods generateQR() and printQR().

The class is ready implementing additional functions for editing another properties of

rooms, for example schedule of occupancy for this room, list of teachers (employees),

who used this room etc.

Thus, the instance of class RoomInfoPanelForEdit is also able to display room

breakpoints of this room. The room breakpoints are shown as a list of points.

Figure 14. Form window - class RoomInfoPanelForEdit

5.6.3 Class NewRoomDialog

This class is responsible for adding a new room to the map. Each room added to the

map has to have a unique identifier. Better clarity for the user is to call room by name,

also it is good to add a description and set the room number according to the structure

of the building.

Since the map can contain three types of rooms, this class must also implement this

option. It can be chosen whether a user adds an ordinary room or stairway (or

elevator) where “the only one per building” rule is not applied.

34

The class is implemented as a subclass of class JDialog. Inherited method

setVisible(true) causes that the instance is visualized. For creating new room into the

map it is needed to enter a room name and room number. This number must be a

numeric type, if not, the application will notify this by a special dialog window.

Further, the room has to have assigned at least three points on the map, because it is

necessary to represent the room somehow graphically.

For adding a special room like stairs or elevator, the specific type by the objects of

type RadioButton can be chosen. If the user wants to add a stairway or an elevator

which already exists on another floor, i.e. connect two floors, there is a list loaded

with all previously added stairs or elevators. It is necessary to store a reference to the

whole map building for updating these lists. The reference is stored in the attribute

called map the type of which is Building. Then the data is obtained from this reference

for lists of type JList.

Figure 15. Form window - class NewRoomDialog

The adding itself is protected by setting the sender attribute of type

MapCanvasForEdit which implements the method for adding a concrete room in

the currently loaded map. This attribute stores a reference to the object, where the

current map is loaded. After pressing the button for adding room it checks all data

fields, creates a new object (or an existing selected object is loaded) and sends the

35

message addRoomToMap reference (room) through the sender with the parameters of

the specific room.

5.6.4 Class Mainframe

This class is the main class of the application which provides access to other elements.

The class has access to the loaded map (Figure 16). This map has to be loaded from

object file at first. It is also necessary to save this map as a file object after modifying.

It is therefore necessary to implement some management for loading and saving the

current map.

Next, it must provide communication between MapCanvasForEdit class, which

ensures the actions recording on the map and class RoomInfoPanelForEdit for

extracting information about the selected room.

It is necessary to provide the user a possibility to select the current floor, whereas

MapCavas shows only one floor. Besides selection also the adding and removing floor

function is required.

The major activity which the class has to be able to ensure is the updating of

currently loaded map. It must be able to add a new room and add a new door for what

it uses classes NewRoomDialog and NewDoorDialog. It is also, however, necessary to

provide changing of properties of the currently selected room or removing the room

from the map.

Class MainFrame is implemented as a subclass of JFrame class from JDK. It represents

the main application window and provides the aforementioned connections between

individual parts of the application such as floor map displaying, showing the

information about the selected room and other mentioned in the text above.

The main activity is mediation of the functions of MapCanvasForEdit class to other

classes. An instance of this class is as a window of user interface which includes a floor

map. This map is an instance of MapCanvasForEdit class. It is stored in the attribute

mapCanvas. The events registered by instance mapCanvas are forwarded to the instance

of RoomInfoPanelForEdit class, which also is accessible via the attribute roomInfoPanel.

Class Mainframe provides an initial setup of communication between these two instances.

When the instance roomInfoPanel is created it is the reference to mapCanvas which is

also set through the calling method setSender(mapCanvas). Because the reference to the

36

object in attribute mapCanvas is changed when the current floor is changed, the message

for setting this communication is called every time when the new map is loaded, even if it

is an empty map. This communication is set by calling method

mapCanvas.setOutForRoomInfo(roomInfoPanel). This provides collaboration in the

selection of objects on the map and changing them by using these instances.

A similar connection is created for showing a list of created rooms on floor. The list is

filled by calling method updateRoomList(). The reference for the designation of a

specific room in the list which was selected, is set by calling the method

mapCanvas.setRoomList(jListRoomList). On the other way the room indication on the

map is provided by catching the selection event in room list jListRoomList.

The loaded floor changing is implemented by using instance jListFloorList. After the

events of the selection are caught on this component an object is selected on the map,

respectively floor is loaded into the instance mapCanvas.

Furthermore, the class MainFrame implements buttons for dialogs creating, with

which the new room or door can be added to the map. Adding a room is implemented

using the method addRoom(), and the method addDoor() provides adding doors into

the map.

Implementation also includes a user interface for zooming methods invocation from

instance mapCanvas. These methods are zoomIn(), zoomOut(), setToOriginalZoom()

which are included in methods jButtonToolbarZoomInActionPerformed(evt),

jButtonToolbarZoomOutActionPerformed(evt),

jButtonToolbarOriginalZoomActionPerformed().

Each map of building can be saved and reloaded back. When saving the whole created

map the object is stored in one object file by using instance of FileOutputStream class.

File path is specified by the user through saving dialogue. The whole saving process is

contained in the saveButton() method. Opening of already created map works

similarly like a saving. It is called by the method openButton(). Opening principle is

based on setting the basic values of attributes of MainFrame class, this occurs by

calling setNewMapCanvas() method. After the file for map loading is selected, the

map is loaded into variable map through the instance of the class FileInputStream, one

floor of this map is loaded, the rooms list and a list of floors is updated, and the

37

communication between mapCanvas and other parts of the program is also set.

Following this, the area which displays the map is updated.

The creating of the new map is very similar than the opening of an already created

map. It creates a new instance of the class Building, which is stored in the map

attribute. Lists of rooms and floors are restored, and references for communication

with mapCanvas instance are set. Subsequently, the area for map displaying is

redrawn and thus restored.

The main window can be seen in Figure 16.

Figure 16. FriBasicMapEditor application - main window

5.6.5 Class QRWork

The tools for generating the QR codes should be implemented for assigning QR

codes to the individual room. Each room should be represented as the unique object in

order to avoid miscalculation when navigating. Each room contains an attribute id

which is uniquely assigned to only one object in the map. This attribute, since it

clearly represents a room on the map, will be used for representing room in QR code.

38

This class thus implements methods for generating QR codes. Specifically, the static

methods:

 generateMatrix (room) - provides creation of QR code bitmap matrix from the

desired room. It is possible to create an image from this matrix which can be

printed later.

 generateQRImage (matrix) - creates the image of type BufferedImage from the

desired bit matrix

 saveImageToPngFile (image, filePath) - saves the specified image to the file

specified by file path

Information about the room is inserted into a QR code in format similar to XML. This

format was chosen for the good quality of word processing, as well as being quite

understandable and readable for the user. The readability is an advantage if the user is

not using this navigation system. After decoding information from a QR code it is

possible to read in front of which room the user is currently located, and thus the

current location.

Example of embedded information in QR code about the room:

<room_name> agency </ room_name>

<room_number> 325 </ room_number>

<id> 2 </ id>

5.7 Application FriNavigate

The main focus of this work is navigation in building using QR codes. It is possible

to find the shortest path to the selected room on the map created by

FriBasicMapEditor application. It is necessary to interpret this map to the user

correctly and also to the navigation application. Navigation itself would not dispense

without the function for entering the destination position and the current position

where the user is currently located.

For updating the position of the user the application needs to know to decode QR code

printed and placed next to a specific room. QR code is needed to load the application

before the actual decoding. When navigating in the building, an image of the QR code

is printed and placed to the wall or other visible place near the specific room or object.

39

There are two options offered for loading the QR code. The first one is to use

application interface for communicating with a camera or video camera and

dynamically to scan the printed image. For this option the Java Media Framework

could be used. The second option is that digitizing a printed image is exempted from

the application and the external tools for QR code image scanning is used which scan

the QR code and store it to the disk, from where it is downloaded by application.

Because of time opportunities the second way of working with stored images was

selected, thus the digitizing method of image depends on user. The external library

ZXing, mentioned above, was used for decoding loaded image. After loading the

current location and destination place, it is necessary to calculate and thus to find the

shortest path to the entered destination.

The implementation is mostly based on the classes already used in the application

FriBasicMapEditor. It could be said that FriNavigate is the impoverished sister of the

previous application. The applications have the same basic structure, however, they

differ in some structural elements.

FriNavigate is used for displaying map MapCanvasForNavigate class which extends

MapCanvasForEdit by the possibility of communication with the dialog for room

picking. In addition to this extension, the class is identical with class

MapCanvasForEdit.

The aforementioned depletion lies in the removal of features for maps editing, such

as adding and removing rooms, floors, vertices and edges of the graph, also map

saving. Functions for zoom in, zoom out and map moving stay available still. Loading

of generated maps is also accessible.

The class for displaying information about the selected room was modified similarly.

Class RoomInfoPanelForNavigate displays only information about the room, it does

not provide the ability for changing the room data. The new features which cannot

be found in the application FriBasicMapEditor include updating the position of a

user, selection of the target room and calculating resultant path to the destination

room.

40

The functionality is implemented in the two new classes, namely:

 LoadLocationDialog – Class updates the user position

 SelectRoomDialog – Ensures the selection and transferring the target room

reference to main class.

5.7.1 Class LoadLocationDialog

Class provides QR code loading and processing feature for user. An instance of this

class as a subclass of JDialog class is called from the main class MainFrameNavigate

and the main class object is given to this instance as a reference. Through this

reference the LoadLocationDialog has access to the currently loaded map.

Figure 17. Dialog window – class LoadLocationDialog

Bearing in mind that it will use QR code images already created, this class provides a

possibility to choose a particular file with cooperation with instance of JFileChooser

class. It can choose one of the following types of graphics files: files with the

extension .jpg, .jpeg, .png, or .bmp. After image selection, the image is automatically

processed by the method decodeQR() of class QRWork. The information needed for

room identification encoded in QR code is collected and processed by using an

instance of QRTextParser class, by method parseByLine(). These data are compared

in findRoom() method with existing rooms in map. When the match is found the

reference to the found room is stored and the information about the found room is

written on a dialog window. After confirming the dialog the attribute of the current

position in the main class of the application is set using selected room reference and

reference to an instance of the main window (attribute of current location - location).

41

5.7.2 Class SelectRoomDialog

For the selection of the destination of path this class is used. Like the previous class,

an instance of this class is called from the main application class MainFrameNavigate.

The class is implemented as a subclass of JDialog class and it implements an interface

for communicating with CanvasInputable area, where the map of the building is

drawn.

Figure 18. Dialog window - SelectRoomDialog

After an instance of this class is created the instance of the class

MapCanvasForNavigate is informed that it should send information about the click

event on some graphical representation of the room to the entered instance of

SelectRoomDialog dialog. After the information about the selected room is stored this

dialog shows this information to the user.

The dialog will send a message for setting the destination room to the instance of

MainFrameNavigate class after dialog confirming.

5.7.3 Class MainFrameNavigate

As already mentioned above, the application FriNavigate is an impoverished version

of FriBasicMapEditor. The styling and construction of the application is based on the

application FriBasicMapEditor that the main application window reflects. Class

MainFrameNavigate contains the main window.

42

Figure 19. Main window of FriNavigate application

Class provides access to the main functions called by user. It implements the same

approach to functions zoom in, zoom out and map moving. In addition, it provides

features for setting the current user position in the building and setting the

destination room where the user wants to get through this navigation. These options

are provided by methods refreshLocation() and refreshDestination() which create a

relevant dialog. Subsequently dialogs send messages to this instance by methods

setDestination() and setLocationOnMap(), which set necessary references to selected

objects.

After the user has selected the current position and the destination room, the method

findAndShowPathToDestination() is automatically called. This method searches the

shortest path from the entered current position to the target room and after the path is

found it is displayed on the map using the method showPath(). The shortest path is

found by searching a graph using an instance of class Dijkstra.

5.7.4 Class Dijkstra

This class provides calculating of the shortest path from one point to all other points

of the specified graph. Class, as the name suggests, is an implementation of Dijkstra’s

43

algorithm for finding shortest paths, which is described in Chapter 2. (Palúch 2008,

80)

The constructor of this class contains lists of vertices and edges of the graph. These

objects are later needed to calculate the shortest path, and these lists contain two-part

records. The first element of the list item is the ID number of the graph node, resp. ID

of edge. The second element is a reference to the node itself, resp. to edge.

The calculation itself, respectively finding the shortest path runs inside the method

dijkstrovAlgoritmus(idStartNode) where the parameter is an identifier of the initial

node, where the path will start. The method finds the shortest path from the specified

node based on searching the lists of edges and nodes and writes the result to the

resultant list where the list item is composed of 2 elements, resp. 3 elements. Each

record is represented by the ID number of the peak and two-dimensional element

(therefore generally the record contains 3 elements) contains the length of the found

path to this node and the ID of previous path node in graph.

The record in result list has the following form:

Table 4. Format of single record in result of Dijkstra's algorithm

Node ID
Path length

Previous node ID

The detailed documentation of all classes is in the attached JavaDoc documentation.

(Appendix 1)

44

6 DESCRIPTION OF CREATED APPLICATIONS

A map of the building, where the indoor navigation is applied is needed and where the

application itself will be used. This map can be created using FriBasicMapEditor

application.

6.1 FriBasicMapEditor

The application is composed of some graphical, functionally distinct parts. The Figure

below describes the single elements which can be found in main window of

FriBasicMapEditor application.

Figure 20. Elements of FriBasicMapEditor application

 Main Menu – Using the main menu it is possible to access the basic functions.

It contains two items File and Edit.

Context menu
Toolbar

Selection lists

Info panel

Map area

Status bar

45

o After opening the main menu the File menu item is displayed. This

menu provides buttons for creating a new map, opening a map already

created, saving and also a button for exiting the application.

Figure 21. Overview of the context menu File

o Menu item Edit includes options for loading map background and

options for working with the map view. It provides possibilities for

adding a new floor, room, node of the graph and the edges between

nodes.

Figure 22. Overview of the context menu Edit

 Toolbar – It contains all options for map editing. These options are also in the

main menu under Edit item. In addition to these editing tools, it contains also

options for manipulating with the map, such as zoom in, zoom out and moving

the map.

 Map – This part is the most important part of the application because it shows

the map created by user and provides the interaction between the user and the

map model.

 Selection lists - are designed for a selection of rooms and floors created on the

map.

46

 Info panel – It shows the information on the selected object on the map and

provides functionality to change this informations, also it can generate a QR

code for the selected map object.

 Status bar – It shows a text message for users which explains the current state

of the application.

6.1.1 Map creating

The basis for map creating is loading the background of the map. It is possible to

create an own map of the building over this background. Loading the background of

the map is invoked by context menu Edit - > Load new background or by pressing

keys combination CTRL + L.

Figure 23. Loading of map background

After the file with background is selected and dialog window is confirmed, the image

is loaded into the application. The basic element of map is ready.

For adding a new room it is needed to select the appropriate item (Add new room)

from the main menu, from toolbar or click on the button under the room selection list.

Dialog window for creating a new room which is opened after previous action

requires to enter the room name and room number. Also, it is necessary to select the

room on the map by clicking on the map. The point where the user clicked is

transferred to the list of border points in the dialog and stored as a border point of a

graphical representation of the room. It can be chosen from three types of rooms for

determining the type of room, namely ordinary room (room), elevator (lift) and stairs.

The dialog also contains two selection lists for created elevators and stairs, which

become available in the case of choice of appropriate type of room. From these lists,

user can also select an existing room in case user wants to connect two different

floors. This selected room will be copied into the just loaded floor, thereby the link

47

between floors are achieved (since the room will be added on two floors in one map

model).

Figure 24 describes the dialog window for adding new room to the map with entered

name, room number, selected room type and selected 4 border points.

Figure 24. Dialog window for creation of new room

After dialog confirmation the room is created and added to the map. The selection list

of rooms is also updated. The application now allows to select the created room and

shows information about this room in the Info panel section. This way it is possible to

add all the rooms to the map.

Figure 25 shows how the main window are changed after the new room is added,

when the dialog for adding new room is confirmed.

48

Figure 25. Updated application after room creation

Connections still need to be created between the rooms after they have been created.

These connections are formed by vertices and edges. After activating the Add node

option it will be possible to add the vertices to the map without restrictions. It is

expected that the vertices are added to the locations where the user should decide

how to continue to destination place. When the vertices are added it is needed to

connect these nodes and thus to create a graph of the building, which is possible by

creating an edge between two created nodes.

After selecting Add new edge the dialog for selecting two vertices is opened. When

the node vertex is selected in nodes list this is also highlighted on the map. For

creating an edge between vertices exactly two vertices must be selected. After the

selection and dialog confirmation the edge is created and drawn on the map.

49

Figure 26. Changing the picture of map after edge is created between two vertices

(points)

Thus, it is necessary to set all the connections between vertices, including the

connections inside the rooms. The vertices themselves may not only be used for

connecting the rooms, but the room can be divided into a number of places where the

user can change the direction. When a map is being created it cannot forget to create

an edge (via the Add edge option) between all the directly connected adjacent points.

The node which is not located in the room is considered to be a node outside the

building, and therefore after this node is connected to some node in the building, the

created edge is regarded as the entrance to the building.

6.1.2 Rooms editing

Following Figure 27 where the selected room is displayed in the Info panel, editing

this room is the next step. After clicking on the edit option next to the room name or

next to room number these values can be changed. User has to enter a new name of

the room to the opened dialog, resp. room number and confirm the dialog for saving

the changes of value.

50

Figure 27. Calling the dialog for changing the name of room

Figure 28. Changed name of the room

It is necessary to generate appropriate QR code for every room for navigation. By

selecting the option generate QR code in Info panel it opens a dialog for selecting the

output file where QR code will be stored and from where user can then print the code.

6.2 FriNavigate

When the map is created and QR codes are generated it is possible to use this map for

navigation. For this the second application, called FriNavigate is designed, the style of

which is similar to application FriBasicMapEditor.

51

Figure 29. Elements of application FriNavigate

Application window also contains the menu bar, toolbar, area for the map displaying,

rooms and floors selection lists, Info panel and status bar.

Application FriNavigate provides for user other features compared with application

FriBasicMapEditor. The difference is noticeable already in the main menu, which

contains the following elements:

 File – It provides option for opening maps of the buildings and option for

exiting the application.

Context menu
Toolbar

Selection list

Info panel Map area Status bar

52

Figure 30. Overview of the File context menu in application FriNavigate

 Navigate – Options included in this menu are the basic options for setting the

user path.

Figure 31. Overview of the Navigate menu in the application FriNavigate

 View – This menu contains options for working with a displayed map as

zoom in, zoom out, turning on and off the map moving by dragging the mouse.

Figure 32. Overview of the View menu in the application FriNavigate

The element toolbar provides quick access to menu options. This means that it

contains almost all elements contained in the main menu.

The part of the Info panel is depleted room editing functions, however, like in

FriBasicMapEditor application it displays the information about the selected room.

After the map is loaded by clicking on the option Open map in context menu, the

application is ready to navigate the user to any available place in the building.

53

6.2.1 User position actualization

The core part of navigation is determining from where and to where the user should be

navigated. The Refresh location option in context menu Navigate is designed for

setting the place where the navigation should start (only if the map has been loaded).

Upon activation of this option dialog Load location is opened. The dialog contains

options for selecting the image of generated QR code of particular room. After QR

code on the image is recognized, the information about the loaded room is displayed

in loaded room area of the dialog. The current position is set after the dialog is

confirmed by button OK.

Figure 33. Dialog for updating the user's location

After the current position of the user is set, this information is displayed in a map via

highlighting the room where the user is located.

Figure 34. User's current position displayed on the map

54

6.2.2 Set destination of the user path

The option Set destination is designed for determining the destination of the path.

After this option is selected, the dialog which contains information about the currently

selected room on the map is displayed. If the user selects any other room from the

map the information in the dialog is refreshed to the currently selected room.

Figure 35. Setting the destination room

After confirmation of the dialog the destination room is set and navigating starts the

path calculation.

The path calculation is performed with any other change of the current user position

or destination room.

The found path is then highlighted on the map by red colour.

Figure 36. Path found from the current user position to the target room is displayed

55

7 DISCUSSION

The aim of this research project was to create an application which is able to locate the

current user's location based on the recognition of two-dimensional codes. It is able to

navigate to given place using this application. According to the assignment, the

application should also ensure creation of two-dimensional maps and to assign

additional information about objects to the map, and thus to provide functions for

generating and loading two-dimensional graphic codes.

All of these set objectives have been met. The recognition of printed QR codes using

dynamic image processing cooperated with camera has not been implemented yet.

Based on the requirements I solved the study by dividing work into two parts by

implementing two applications. The first part was about developing the application for

creating and editing two-dimensional maps of the building, and thus the application

FriBasicMapEditor. The second part of the work is the application FriNavigate as the

application for navigating the user from one place to another in the building using QR

codes for localization. The first application provides generation of QR codes and

assigning them to the map, the second one recognizes the generated QR Code and on

the basis of this recognition identifies the room on the map. After the destination place

is selected by user the shortest path to this target place is displayed on the map.

Each of these two applications is possible to improve despite the fact that the

requirements were met. FriBasicMapEditor application is ready for implementing the

options for adding other additional information of the object on the map, such as

adding occupancy schedule of classrooms or functions for determining who owns the

this room as an office. The map making could also be further improved in the

application, resp. map displaying, to add multiple supported formats of maps

commonly used for buildings maps and thus creating the advanced map editor from

application FriBasicMapEditor for different formats. Similarly, the application

FriNavigate could be supplemented by components providing localization using other

technologies. I see a continuation of this work further in the creation of applications

for mobile devices such as smartphones and tablets, through which the designed and

developed applications would be practically usable.

56

REFERENCES

Android Developers Portal. N.d. Page on developer.android.com. Accessed on 22

January 2012. Retrieved from http://developer.android.com/

Ausmeier, B. 2011. Indoor Navigation Using Mobile Phones. [Honours project

report] Accessed on 1 March 2012 Retrieved from

http://people.cs.uct.ac.za/~tcampbell/project/resources/brett_report.pdf

Babinec, A., & Vitko, A. 2010. Histogramové navigačné algoritmy - vývoj a princíp.

[Journal article AUTOMA]. Accessed on 1 April 2012 Retrieved from

http://www.odbornecasopisy.cz/res/pdf/41059.pdf

Demaine, E. 2011. 6.006: Introduction to Algorithms.Accessed on 5 March 2012.

Retrieved from http://courses.csail.mit.edu/6.006/spring11/rec/rec15.pdf

Denso Wave Incorporated. 2011. Page on denso-wave website. Accessed on 7 January

2012. Retrieved from http://www.denso-wave.com/qrcode/index-e.html

Franeková M. 2003. Simulácia vlastností RS kódov pre prenosové systémy súvisiace s

bezpečnoťou v programovom prostredí MATLAB [Conferrence report]. Accessed on

15 February 2012. Retrieved from

http://dsp.vscht.cz/konference_matlab/matlab03/franekova.pdf

Gyroscope. 2008. Gyroscope description. Accessed on 12 March 2012. Retrieved

from http://fyzmatik.pise.cz/76205-gyroskop.html

Hedrick C. 1988. Routing Information Protocol [RCF 1058] Accessed on 2 April

2012. Retrieved from http://tools.ietf.org/html/rfc1058

Image of gps system. 2006 Image from webpage Navrchol.sk. Accessed on 20 March

2012. Retrieved from http://www.navrchol.sk/obrazky/cestovatel/gpssystem.gif

Image of Gyroskop. 2008. Image from webpage tahaky-referaty.sk. Accessed on 12

March 2012. Retrieved from http://m1.aimg.sk/tahaky/g_26039_1976.jpg

Image of QR code scanning. 2009. Image from webpage gothamguide.com. Accessed

on 11 March 2012. Retrieved from http://gothamguide.com/images/album/p1.png

http://developer.android.com/
http://people.cs.uct.ac.za/~tcampbell/project/resources/brett_report.pdf
http://www.odbornecasopisy.cz/res/pdf/41059.pdf
http://courses.csail.mit.edu/6.006/spring11/rec/rec15.pdf
http://www.denso-wave.com/qrcode/index-e.html
http://dsp.vscht.cz/konference_matlab/matlab03/franekova.pdf
http://fyzmatik.pise.cz/76205-gyroskop.html
http://www.navrchol.sk/obrazky/cestovatel/gpssystem.gif
http://m1.aimg.sk/tahaky/g_26039_1976.jpg
http://gothamguide.com/images/album/p1.png

57

Image of wifi access points. 2012. Image from webpage AndriodPortal.sk. Accessed

on 13 March 2012. Retrieved from http://static4.androidportal.sk/wp-

content/uploads/2012/02/41408898_wi_fi_inf416.gif

ISO Standardization organization 2000. ISO/IEC 18004 - Information technology -

Automatic identification and data capture techniques - Bar code symbology - QR

Code. Accessed on 21 February 2012. Retrieved from

http://raidenii.net/files/datasheets/misc/qr_code.pdf

KRUPA, M. 2011. Dekódovanie čiarového kódu v obraze v reálnom čase, [Master’s

thesis]. BRNO. Accessed on 12 February 2012. Retrieved form

https://www.vutbr.cz/studium/zaverecne-prace?zp_id=42462

Hung M., Saragas D. & Webb N. 2009. Indoor Navigation System for Handheld

Devices [Project report]. Accessed on 13 February 2012. Retrieved from

http://www.wpi.edu/Pubs/E-project/Available/E-project-102209-

164024/unrestricted/Indoor_Navigation_System_for_Handheld_Devices.pdf

Lester, P. 2005. A* Pathfinding for Beginners. Accessed on 11 March 2012. Retrieved

from http://www.policyalmanac.org/games/aStarTutorial.htm

Lin, J. Á., Smith, P., & Wehrle, K. 2011. FootPath: Accurate Map-based Indoor

Navigation Using Smartphones [Conferrence paper]. Accessed on 10 March 2012.

Retrieved from http://www.comsys.rwth-aachen.de/fileadmin/papers/2011/2011-IPIN-

bitsch-footpath.pdf

Matulová, N. 2009. Grafy a grafové algoritmy [Bachelor’s thesis]. Accessed on 15

March 2012. Retrieved from

http://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=16188

Palúch, S. 2008. Algoritmická teória grafov. Accessed on 7 January 2010. Retrieved

from http://frcatel.fri.uniza.sk/users/paluch/grafy.pdf

QRBCN. 2008. Synthesis journal 2008. Accessed on 22 February 2012. Retrieved

from http://qrbcn.com/imatgesbloc/Three_QR_Code.pdf

RFID Tags - Radio Frequency Identification Tags. 2009. [Report of RFID technology]

Accessed on 25 March 2012. Retrieved from http://www.rfident.org/

http://static4.androidportal.sk/wp-content/uploads/2012/02/41408898_wi_fi_inf416.gif
http://static4.androidportal.sk/wp-content/uploads/2012/02/41408898_wi_fi_inf416.gif
http://raidenii.net/files/datasheets/misc/qr_code.pdf
https://www.vutbr.cz/studium/zaverecne-prace?zp_id=42462
http://www.wpi.edu/Pubs/E-project/Available/E-project-102209-164024/unrestricted/Indoor_Navigation_System_for_Handheld_Devices.pdf
http://www.wpi.edu/Pubs/E-project/Available/E-project-102209-164024/unrestricted/Indoor_Navigation_System_for_Handheld_Devices.pdf
http://www.policyalmanac.org/games/aStarTutorial.htm
http://www.comsys.rwth-aachen.de/fileadmin/papers/2011/2011-IPIN-bitsch-footpath.pdf
http://www.comsys.rwth-aachen.de/fileadmin/papers/2011/2011-IPIN-bitsch-footpath.pdf
http://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=16188
http://frcatel.fri.uniza.sk/users/paluch/grafy.pdf
http://qrbcn.com/imatgesbloc/Three_QR_Code.pdf
http://www.rfident.org/

58

Work, E. 2003. UW Campus Navigator: WiFi Navigation.[Report of project result]

Accessed on 5 March 2012. Retrieved from

http://uwcampusnav.sourceforge.net/WifiNav.pdf

ZXing library. 2007. Open source project ZXing ("zebra crossing"). Accessed on 12

January 2012. Retrieved from https://github.com/zxing

http://uwcampusnav.sourceforge.net/WifiNav.pdf
https://github.com/zxing

59

APPENDIX 1 ELECTRONICAL MATERIALS

Resultant applications, the map of the building Faculty of Management Science and

Informatics created by application FriBasicMapEditor, JavaDoc documentation.

APPENDIX 2 QR CODES MAXIMUM DATA

LIMITATION

Maximum data limitation of QR codes based on version of code (capacity are

expressed by numbers of code characters)

Version Modules
ECC

Level
Data bits Numeric Alfanumeric Binary Kanji

1 21x21

L 152 41 25 17 10

M 128 34 20 14 8

Q 104 27 16 11 7

H 72 17 10 7 4

2 25x25

L 272 77 47 32 20

M 224 63 38 26 16

Q 176 48 29 20 12

H 128 34 20 14 8

3 29x29

L 440 127 77 53 32

M 352 101 61 42 26

Q 272 77 47 32 20

H 208 58 35 24 15

4 33x33

L 640 187 114 78 48

M 512 149 90 62 38

Q 384 111 67 46 28

H 288 82 50 34 21

5 37x37

L 864 255 154 106 65

M 688 202 122 84 52

Q 496 144 87 60 37

H 368 106 64 44 27

6 41x41

L 1 088 322 195 134 82

M 864 255 154 106 65

Q 608 178 108 74 45

H 480 139 84 58 36

7 45x45

L 1 248 370 224 154 95

M 992 293 178 122 75

Q 704 207 125 86 53

H 528 154 93 64 39

8 49x49

L 1 552 461 279 192 118

M 1 232 365 221 152 93

Q 880 259 157 108 66

H 688 202 122 84 52

60

Version Modules
ECC

Level
Data bits Numeric Alfanumeric Binary Kanji

9 53x53

L 1 856 552 335 230 141

M 1 456 432 262 180 111

Q 1 056 312 189 130 80

H 800 235 143 98 60

10 57x57

L 2 192 652 395 271 167

M 1 728 513 311 213 131

Q 1 232 364 221 151 93

H 976 288 174 119 74

11 61x61

L 2 592 772 468 321 198

M 2 032 604 366 251 155

Q 1 440 427 259 177 109

H 1 120 331 200 137 85

12 65x65

L 2 960 883 535 367 226

M 2 320 691 419 287 177

Q 1 648 489 296 203 125

H 1 264 374 227 155 96

13 69x69

L 3 424 1 022 619 425 262

M 2 672 796 483 331 204

Q 1 952 580 352 241 149

H 1 440 427 259 177 109

14 73x73

L 3 688 1 101 667 458 282

M 2 920 871 528 362 223

Q 2 088 621 376 258 159

H 1 576 468 283 194 120

15 77x77

L 4 184 1 250 758 520 320

M 3 320 991 600 412 254

Q 2 360 703 426 292 180

H 1 784 530 321 220 136

16 81x81

L 4 712 1 408 854 586 361

M 3 624 1 082 656 450 277

Q 2 600 775 470 322 198

H 2 024 602 365 250 154

17 85x85

L 5 176 1 548 938 644 397

M 4 056 1 212 734 504 310

Q 2 936 876 531 364 224

H 2 264 674 408 280 173

18 89x89

L 5 768 1 725 1 046 718 442

M 4 504 1 346 816 560 345

Q 3 176 948 574 394 243

H 2 504 746 452 310 191

19 93x93

L 6 360 1 903 1 153 792 488

M 5 016 1 500 909 624 384

Q 3 560 1 063 644 442 272

H 2 728 813 493 338 208

20 97x97

L 6 888 2 061 1 249 858 528

M 5 352 1 600 970 666 410

Q 3 880 1 159 702 482 297

H 3 080 919 557 382 235

61

Version Modules
ECC

Level
Data bits Numeric Alfanumeric Binary Kanji

21 101x101

L 7 456 2 232 1 352 929 572

M 5 712 1 708 1 035 711 438

Q 4 096 1 224 742 509 314

H 3 248 969 587 403 248

22 105x105

L 8 048 2 409 1 460 1 003 618

M 6 256 1 872 1 134 779 480

Q 4 544 1 358 823 565 348

H 3 536 1 056 640 439 270

23 109x109

L 8 752 2 620 1 588 1 091 672

M 6 880 2 059 1 248 857 528

Q 4 912 1 468 890 611 376

H 3 712 1 108 672 461 284

24 113x113

L 9 392 2 812 1 704 1 171 721

M 7 312 2 188 1 326 911 561

Q 5 312 1 588 963 661 407

H 4 112 1 228 744 511 315

25 117x117

L 10 208 3 057 1 853 1 273 784

M 8 000 2 395 1 451 997 614

Q 5 744 1 718 1 041 715 440

H 4 304 1 286 779 535 330

26 121x121

L 10 960 3 283 1 990 1 367 842

M 8 496 2 544 1 542 1 059 652

Q 6 032 1 804 1 094 751 462

H 4 768 1 425 864 593 365

27 125x125

L 11 744 3 514 2 132 1 465 902

M 9 024 2 701 1 637 1 125 692

Q 6 464 1 933 1 172 805 496

H 5 024 1 501 910 625 385

28 129x129

L 12 248 3 669 2 223 1 528 940

M 9 544 2 857 1 732 1 190 732

Q 6 968 2 085 1 263 868 534

H 5 288 1 581 958 658 405

29 133x133

L 13 048 3 909 2 369 1 628 1 002

M 10 136 3 035 1 839 1 264 778

Q 7 288 2 181 1 322 908 559

H 5 608 1 677 1 016 698 430

30 137x137

L 13 880 4 158 2 520 1 732 1 066

M 10 984 3 289 1 994 1 370 843

Q 7 880 2 358 1 429 982 604

H 5 960 1 782 1 080 742 457

31 141x141

L 14 744 4 417 2 677 1 840 1132

M 11 640 3 486 2 113 1 452 894

Q 8 264 2 473 1 499 1 030 634

H 6 344 1 897 1 150 790 486

32 145x145

L 15 640 4 686 2 840 1 952 1 201

M 12 328 3 693 2 238 1 538 947

Q 8 920 2 670 1 618 1 112 684

H 6 760 2 022 1 226 842 518

62

Version Modules
ECC

Level
Data bits Numeric Alfanumeric Binary Kanji

33 149x149

L 16 568 4 965 3 009 2 068 1 273

M 13 048 3 909 2 369 1 628 1 002

Q 9 368 2 805 1 700 1 168 719

H 7 208 2 157 1 307 898 553

34 153x153

L 17 528 5 253 3 183 2 188 1 347

M 13 800 4 134 2 506 1 722 1 060

Q 9 848 2 949 1 787 1 228 756

H 7 688 2 301 1 394 958 590

35 157x157

L 18 448 5 529 3 351 2 303 1 417

M 14 496 4 343 2 632 1 809 1 113

Q 10 288 3 081 1 867 1 283 790

H 7 888 2 361 1 431 983 605

36 161x161

L 19 472 5 836 3 537 2 431 1 496

M 15 312 4 588 2 780 1 911 1 176

Q 10 832 3 244 1 966 1 351 832

H 8 432 2 524 1 530 1 051 647

37 165x165

L 20 528 6 153 3 729 2 563 1 577

M 15 936 4 775 2 894 1 989 1 224

Q 11 408 3 417 2 071 1 423 876

H 8 768 2 625 1 591 1 093 673

38 169x169

L 21 616 6 479 3 927 2 699 1 661

M 16 816 5 039 3 054 2 099 1 292

Q 12 016 3 599 2 181 1 499 923

H 9 136 2 735 1 658 1 139 701

39 173x173

L 22 496 6 743 4 087 2 809 1 729

M 17 728 5 313 3 220 2 213 1 362

Q 12 656 3 791 2 298 1 579 972

H 9 776 2 927 1 774 1 219 750

40 177x177

L 23 648 7 089 4 296 2 953 1 817

M 18 672 5 596 3 391 2 331 1 435

Q 13 328 3 993 2 420 1 663 1 024

H 10 208 3 057 1 852 1 273 784

