

Ville Tamminen

Combat hit detection system for 3D ac-
tion role-playing games in Unity

Bachelor’s thesis

Information and Communication Technology

Game Programming

2022

Degree title Bachelor of Engineering
Author (authors) Ville Tamminen
Thesis title Combat hit detection system for 3D action role-playing games in

Unity
Commissioned by South-Eastern Finland University of Applied Sciences, XAMK

Gamelab
Time October 2022
Pages 54 pages, 1 appendix page
Supervisor Niina Mässeli, Pekka Vilpponen

ABSTRACT

The objective of this thesis was to create a combat hit detection system in the
Unity game engine that can be used in 3D action role-playing games. The the-
sis also explored game mechanics that require hit detection such as weapon
damage and weak spots. This thesis emerged from a lack of tutorials that
would explain the implementation of a hit detection system while utilising mul-
tiple colliders in characters. Modern games use multiple colliders to achieve
more accurate hit detection. The hit detection system created in this thesis as-
pires to be similar to the Dark Souls franchise games.

The start of the thesis, a simple hit detection system was implemented for
characters using one hurtbox, and this was later elaborated into the use of
multiple hurtboxes. Hit detection has multiple steps, with each step improving
the previous one by including more combat mechanics. Also, features of char-
acters such as damage accumulation, weak spots and target differentiation
were implemented.

This thesis presents two solutions for the creation of a hit detection system
that relies on Unity’s collision detection components. The first solution passes
information of a weapon attack to a character which will make a final decision
if the attack hit should count. The second solution is a rework of the first one
with hit detection functionality integrated to the weapon's code. In this thesis,
damage and character weak spots were also implemented, and a means to
distinguish enemies from friendly characters during attack hits was created.

Keywords: hit detection, game programming, Unity, C#, action role-playing
game

CONTENTS

1 INTRODUCTION .. 6

2 FRAMEWORK OF THESIS .. 6

2.1 The objective of the thesis .. 6

2.2 Research methods .. 7

2.3 Research problems ... 7

2.4 Characteristics of action role-playing games .. 7

2.5 Physics ... 8

2.6 Collision detection ... 10

3 UNITY ENGINE .. 12

3.1 Unity engine components and related terms .. 12

3.2 Physics collisions .. 14

3.3 Physics execution order .. 17

3.4 Finding and calling methods ... 18

3.5 Mecanim animation system .. 19

4 HIT DETECTION IMPLEMENTATION ... 20

4.1 Solution 1 .. 20

4.1.1 Setup preparations ... 20

4.1.2 Hit detection with one hurtbox ... 22

4.1.3 Basic multi-hurtbox hit detection ... 23

4.1.4 Advanced multi-hurtbox hit detection .. 27

4.1.5 Chain-attacks .. 29

4.1.6 Use of multiple animation layers for attacks .. 31

4.2 Solution 2 .. 35

4.2.1 Reworking the hit detection ... 35

4.2.2 Reworking animation events ... 37

4.2.3 Alternative ways to ignore hits .. 39

4.2.4 Ragdoll death mechanic ... 39

5 DAMAGE-RELATED MECHANICS IMPLEMENTATION ... 40

5.1 Damage implementation ... 40

5.2 Differentiate targets .. 42

5.3 Weak spots ... 44

5.4 Projectiles ... 45

5.5 Invincibility .. 46

6 RESULTS ... 47

6.1 Conclusions from implementation ... 47

6.2 Further development ... 48

7 SUMMARY ... 49

REFERENCES .. 51

LIST OF FIGURES

APPENDICES

 Appendix 1. Link to GitHub repository

ABBREVIATIONS

3D-model Three-dimensional model

Box2D 2D Physics engine that is utilised by Unity’s 2D physics

C# A scripting language used in Unity

Collider A component that provides collision detection

Dynamic Collisions and movement are driven by a physics engine

GameObject A container where components are gathered to create functional-

ity

GUID Globally Unique Identifier

Hitbox A trigger collider used in things that can hit

Hurtbox A trigger collider used for things that can get hurt

Kinematic Collisions only happen with dynamic GameObjects, and move-

ment must be handled by scripts

Mecanim Unity’s animation system

Mesh Skin geometry made of vertices to represent a 3D model

Nvidia A tech company specializing in graphics technology

PhysX Physics engine made by Nvidia that is utilised by Unity’s 3D phys-

ics

Prefab A reusable asset of a GameObject

Ragdoll A state where the character's body is completely limb

Rigidbody A component that enables GameObject to be affected by physics

RPG Role-playing game

Static A GameObject with a collider but no Rigidbody. No collisions ap-

ply to it and the physics engine does not consider it to be moving.

Trigger Collider Collider that doesn’t physically react to collisions

Unity A game engine made by Unity Technologies

6

1 INTRODUCTION

This thesis explores ways to implement a hit detection system that can be

used during character fights in action role-playing games. The focus is on pro-

ducing scripts that form a functioning hit detection system in the Unity game

engine. Mechanics tied to hit detection, such as applying damage, are also ex-

plored in the context of hit detection working with multiple colliders.

The thesis was commissioned by XAMK Gamelab, located on the Kotka Cam-

pus of Southeast Finland University of Applied Sciences. This thesis aims to

help students to understand the process of creating a functioning hit detection

system for action RPG games.

The inspiration for this thesis came from action RPGs, notably the Dark Souls

game franchise. There are many tutorials available that show how to make a

hit detection system, but they only use one hurtbox per character. Modern

games require more realistic and accurate hit detection, which can be

achieved by using multiple smaller hurtboxes in character bodies.

The implementation of hit detection consists of multiple parts where each part

is a direct continuation of the previous one. Each part addresses a problem

that emerges in the previous part and provides a solution for it. The implemen-

tation process presented in Chapters 4 and 5 describes each aspect in detail.

2 FRAMEWORK OF THESIS

2.1 The objective of the thesis

The aim of this thesis is to produce a functioning hit detection system in Unity

that utilises multiple colliders in characters. The system aimed for action role-

playing games that usually involve a third-person view combat. There are

many tutorials available that show how to make a hit detection system, but

they use only one collider per character. This results in the most basic and

rough hit detection. If only one collider is used for the character's hit detection,

it is often shaped like a cylinder and so big it covers the whole character. The

problem in this can be illustrated by imagining a sword striking forward under

7

a character’s arm without hitting him. Despite not visually hitting the character,

the sword does go through the collider and therefore results in a hit. This will

not feel right for the player. Modern require more realistic and accurate hit de-

tection that uses multiple smaller colliders in characters' bodies. In addition to

the aforementioned phenomenon, this thesis examines also other mechanics

related to hit detection such as dealing damage upon hit.

2.2 Research methods

Primarily, this thesis aims to present information about the common practices

in how physics and collision detection function in video games, and the com-

ponents and methods Unity offers to implement a hit detection system. This

thesis is mainly based on the Game Physics Engine Development by Ian

Millington, Real-Time Collision Detection by Christer Ericson, and official Unity

documentation. Optimization in games is always appreciated, so programming

solutions that require the least processing power in a computer should be fa-

vored during implementation.

2.3 Research problems

The objectives this thesis tries to answer are 1. Process of creating a hit de-

tection system that uses multiple colliders in Unity engine 2. Process of imple-

menting damage dealing mechanics which are related to hit detection. In order

to achieve this objective, possible ways to implement damage dealing must be

taken into consideration when creating a hit detection system. The solution is

expected to have levels of complexity depending on the requisites of an action

role-playing game. These needs can be e.g. the number of characters fighting

at the same time against each other, the number of attacks can they do at

once, and the nature of the character to decide whether or not they should re-

ceive hits during attacks.

2.4 Characteristics of action role-playing games

Action role-playing games (RPG) are games that combine both action-orien-

tated combat and role-playing. Unlike traditional RPGs where combat is turn-

based or menu-based, action RPGs take combat to another level with fights

played in real-time. The other RPG mechanics such as character levels/stats,

8

weapon upgrading, and trading with NPCs are presented in the traditional

manner.

The developer studio of the Dark Souls game franchise, FromSoftware, re-

leased a new action RPG called Elden Ring in March 2022. The game has

been overwhelmingly positively reviewed. Previously, all Dark Souls games

have been reviewed positively on the Metacritic website which compiles re-

views of games. Elden Ring received an average of 96/100 metascore on

Playstation 5 and 94/100 metascore on PC (Metacritic 2022). The Dark Souls

series is the source of inspiration for this thesis, and the final hit detection sys-

tem is expected to resemble it to some degree.

Elden Ring’s combat mechanics can be summed up as attacking, blocking,

and dodging. The Player character's attacks and actions can be halted by en-

emy attacks or by the environment. Receiving hit will result in staggering while

by dodging the player becomes momentarily immune to receiving hits. The

Player's melee attacks will go through the enemy's 3D-models, while hitting a

wall will usually make attack animations halt, making the attack movement

seem more realistic. Weapons include different kinds of melee weapons,

bows, magic staffs, or throwable bombs/daggers.

Elden Ring is by no means the first game to utilise realistic hit detection. Video

games have used physics and collision detection since the first games were

created (Millington 2007, 1). Elden Ring’s combat style shares many similari-

ties with Severance: Blade of Darkness game released in 2001, which has ac-

curate body hit detection and even body-part slicing mechanics (Kasavin

2001).

2.5 Physics

Physics is a vast field with hundreds of subfields. Many aspects of physics can

be utilised in games. For example, optics can be used to simulate how light

travels and bounces, which is illustrated in the use of ray tracing. However,

this is not what is meant when the reference is to game physics. Game phys-

ics relate to classical mechanics with gravity and other forces pulling or push-

ing objects. Mass, inertia, bounce, and buoyancy give life to objects to achieve

9

realistic simulations. As processing power increases, possibilities grow. Ob-

jects can be stacked, and walls can collapse into smaller pieces. These phe-

nomena are part of Rigidbody physics which can also make softer objects

such as clothes and ropes have realistic movement. Human characters can

trip due to ragdoll physics which makes realistic joint movements possible.

(Millington 2007, 2.)

Instead of coding physics into the game, some games use physics engines.

Physics engines have two advantages: saving time and improving quality.

Building physics into a game from scratch takes time, so sometimes it is better

to use a premade physics engine. Having all physics run under one program

is better than having multiple different programs running separately, as even if

they may work flawlessly on their own, combining them might be difficult.

(Millington 2007, 3–4.)

Physics engines also have disadvantages. It takes a significant amount of pro-

cessing power to run a general-purpose physics engine. Because it is general,

it cannot make assumptions about the kinds of objects it is simulating. If the

game environment is very simple, processing power is wasted, which is partic-

ularly a problem for mobile devices. The physics engine operates by receiving

data and creating a simulation based on that data. It may require data that is

not relevant in a game but essential for the engine to function. This means it

can sometimes be simpler to create a specific code for physics rather than

use a physics engine. (Millington 2007, 4.)

Collisions are needed for objects to interact with each other in a simulation.

Collision physics can vary depending on the types of colliding objects. Particle

collisions are easiest to implement, as a basic particle system can be pro-

grammed in only a hundred lines of code (Millington 2007, 3). 3D objects, on

the other hand, can be much more complex, varying from simple shaped

spheres and boxes to complex shapes such as humanoid characters.

A 3D object's geometry is made of vertices. Together, vertices form polygons,

and polygons form a mesh. Building objects from polygon meshes is one of

the most common methods for creating geometrical models in games. Polygo-

nal objects are said to have explicit representation. Implicit objects refer to

10

spheres, cones, cylinders, and other geometric primitives that can be defined

by a mathematical expression. (Ericson 2005, 9.)

2.6 Collision detection

The process of collision detection can be the most time-consuming part of

physics simulation. Any object in a game may collide with another object, and

each event of collision must be examined. A game with hundreds of objects

may require hundreds of thousands of verifications. Even worse, each verifica-

tion must comprehend the geometry of the two objects, which may include

thousands of polygons. This enormous workload cannot be finished in the

fraction of time available between frames. (Millington 2007, 232.)

The collision detection system is responsible for calculating any geometrical

properties, such as when and where two objects are in contact, and the con-

tact normal between them. There are many different algorithms used for iden-

tifying contact points. Some collision detection algorithms can predict the likeli-

hood of future collisions by looking at how objects are moving. (Millington

2007, 111.)

The process of identifying intersection between moving objects at specific mo-

ments in time is known as static collision detection. Each time this occurs, the

objects are managed as though they were stationary with zero velocities. In

contrast, dynamic collision detection considers the continuous motion of ob-

jects over a specified duration. Dynamic collision testing typically reports the

precise moment of collision and the initial points of contact. Although static

tests are less expensive than dynamic tests, the duration between tests must

be brief enough for the movement of the objects to be less than their spatial

extents. Otherwise, the objects can just pass one another from one time step

to the next without a collision occurring. This phenomenon is called tunneling.

(Ericson 2005, 17.)

In order to improve collision detection, the number of possible collisions

should be decreased, and collision verifications should be made less expen-

sive. In order to reduce the number of verifications, a two-step process can be

utilised. First, groups of objects that are likely to be in contact with one another

11

are searched in the game. This eliminates the vast majority of possible colli-

sion verifications, and it is known as coarse collision detection. Inside said

groups, objects are examined to determine whether they are colliding. This is

known as fine collision detection. (Millington 2007, 232.)

A bounding volume is a 3D shape that contains an object. A simple shape,

usually a sphere or a box, is used for coarse collision detection. Size of the

shape should be sufficient to contain the whole object, and ideally as close-fit-

ting as possible, as this further decreases unnecessary collision verifications.

If two objects have bounding volumes that overlap, then these objects are

likely in contact and will proceed to undergo fine collision detection. Fine colli-

sion detection takes into account the real shapes of objects to determine if

they are in contact. Contact points are needed for Rigidbody physics. The ge-

ometry of an object is typically simplified to reduce the time required for verifi-

cation. (Millington 2007, 233.)

Polygonal meshes and bounding volume hierarchies are regarded as the in-

dustry's golden standards for collision detection, but they both have draw-

backs. Meshes must be extremely detailed to achieve high geometric preci-

sion, which slows down mesh-based algorithms, and bounding volume hierar-

chies are implemented for very quick, low-accuracy proximity queries by de-

sign (Gonçalves 2015, 57). This, however, is not as serious a problem in

games as it is in robotics where the highest possible precision is required.

Coarse collision detection is not limited to using only bounding volumes. Many

different approaches use spatial data structures. A bounding volume hierarchy

groups objects together based on their relative positions and sizes. The hier-

archy moves if the objects move. For different sets of objects, the hierarchy

will have a quite different structure. An advantage of hierarchies is that whole

branches can be excluded. A spatial data structure is locked to the world. An

object found at some location will be mapped to one position in the data struc-

ture. No matter what objects are inserted into a spatial data structure, it re-

mains the same structure, which makes it much easier to build. The distinction

between bounding volume hierarchy and spatial data structure is blurred, and

a combination of both techniques is sometimes used. It is worth noting that

12

even when bounding volume hierarchies are not used, it is common to use

bounding volumes around objects. (Millington 2007, 251.)

3 UNITY ENGINE

Unity is a game engine developed by Unity Technologies. Unity was chosen

as a game engine for this thesis for its familiarity and popularity. Unity uses C#

coding language, and it has a large documentation manual. Contents of Unity

Documentation may slightly differ depending on which Unity version is used,

and this thesis uses the currently most recent long-term support version of

Unity, which is 2021.3.0f1 from March 2022. Long-term support versions offer

a stable base for game projects.

This chapter describes the operation of Unity’s physics engine and methods or

components that can be utilised in a hit detection system. The main contribu-

tion to the creation of hit detection in this thesis comes from Rigidbodies, Col-

liders, and collision/trigger-orientated methods.

3.1 Unity engine components and related terms

Everything in Unity’s scenes is made of GameObjects: characters, items,

scenery, lights, cameras, and special effects. They act as containers for com-

ponents which give GameObjects their functionality. GameObjects always

have an unremovable Transform component on them which dictates their po-

sition, rotation, and scale. GameObjects can have multiple components on

them, and using different combinations can help achieve the desired outcome.

Unity has several different built-in components, and making new components

is possible with Unity’s scripting API. (GameObjects 2022.)

In order to group GameObjects together, Unity uses the concept of parent-

child hierarchies or parenting. Linking GameObjects together makes it easier

to move, scale, or transform a group of them. Changing the Transform of the

top-level GameObject, or parent GameObject, changes all child GameOb-

jects. Other GameObjects can inherit the properties of a parent GameObject.

The top-level GameObject is also referred to as root GameObject if it has child

GameObjects. (Hierarchy 2022.)

13

Rigidbody is the most fundamental physics component in Unity. It allows

GameObjects with Colliders to be affected by gravity and collisions or even

forces via scripting. If the Rigidbody is set to be kinematic, it will not physically

react to collisions, and it can receive trigger messages. If it is not kinematic,

Rigidbody receives collision messages. Being kinematic also allows Rigidbod-

ies to switch control from physics to animations. Rigidbody has a collision de-

tection mode, which has four different modes: discrete, continuous, continu-

ous dynamic, and continuous speculative. Discrete collision detection is the

default setting and it is used against all other Colliders with Rigidbodies in the

scene. Continuous collision detection is for GameObjects that can be ex-

pected to collide with fast-moving GameObjects, and continuous dynamic col-

lision detection is meant for those fast-moving GameObjects. Continuous

speculative collision detection is for static Colliders, and it tends to be less ex-

pensive than sweep-based continuous collision detection. (Rigidbody 2022.)

The Character Controller is a component meant to be added to characters. It

makes it easier to implement movement that uses Colliders and gives basic

Collider responses without having to use a Rigidbody component. It moves

only when the Move function is called, and it is not affected by forces. The

main advantage it provides is the amount of control over characters, but it also

requires that everything is done with code. (IronEqual 2017.)

A collider is a bounding volume, an invisible perimeter that is used for colli-

sions by a physics engine. Although it has a geometric look, it is not made

from mesh data (Rodrigues 2018). Colliders are algorithmic and geometrically

optimized verifications that use only the minimum required amount of data

(Rodrigues 2018). They can have a simple primitive shape such as a box,

sphere, or capsule, or it can be a complex MeshCollider which builds its col-

lider based on a 3D model's mesh asset (Mesh collider 2022). Collider type

will affect the number of contact points that occur during collisions. A

SphereCollider usually has one contact point and a BoxCollider usually has

one, two, or four (BEST PRACTICES FOR RIGID… 2014). Mesh colliders can

have hundreds of contact points, so they provide more accurate collision de-

tection at the cost of higher performance. Static Colliders are GameObjects

that have colliders but no Rigidbody component attached to them. A common

mistake is to move a static collider as this would mean that the whole game

14

world must be recalculated by the physics engine (Macek n.d.). Compound

Colliders are made from multiple single colliders.

A hitbox is a collider with a trigger setting. A Trigger Collider lets other

GameObjects pass through it since it does not physically react to collisions

(Learning unity3d eBook, Chapter 7: Collision). A hitbox is designed to be

used on weapons and items that deal damage. A hurtbox is similar to a hitbox,

but it is designed to be used on anything that suffers damage, such as charac-

ters, to form a shape where damage is received (Ranney 2017). The distinc-

tion in names aims to make it less confusing when referring to weapon hit-

boxes hitting character hurtboxes. The use of the word “box” in these terms

stems from the fact that in the early days of game programming, box shape

was the least math-intensive way to calculate collisions.

GUID is short for Globally Unique Identifier and is also known as UUID (Uni-

versally Unique Identifier). A GUID is a 128-bit integer number used for unique

identification (Guid struct 2022). The purpose of generating identifiers is to

minimise the chance of having duplicates. An example of GUID in Unity can

look like this: 9d28a64e-5e45-4971-80e0-1afb6ce75985. Letters appear in

GUID because it uses hexadecimal numbers. Identifiers are important since

GameObjects can have identical names.

Collision layers are used for layer-based collision detection. They can help de-

termine which GameObjects should collide with which layer. If a layer is set to

collide only with itself, the GameObjects on that layer can only collide among

themselves. For example, if multiple colliders are used for characters, it could

be useful to make sure hurtboxes do not collide with physics colliders.

3.2 Physics collisions

Unity has two built-in physics engines for object-oriented physics: Nvidia

PhysX and Box2D. Unity’s built-in 3D physics uses Nvidia PhysX engine inte-

gration, and 2D physics uses Box2D engine integration (Unity Physics 2022).

3D physics will generally interact with meshes, while 2D physics will interact

with 2D sprites which are only rectangular images. 3D physics have Rigidbody

and Collider components, and 2D physics have corresponding Rigidbody2D

15

and Collider2D components. Unity even has a 3D physics simulation for cloth-

ing, which makes movement of clothes look realistic. For data-oriented pro-

jects, Unity offers the possibility to install the "Unity Physics" package or the

"Havok Physics for unity" package. The implementation part of this thesis is

done with PhysX.

Rigidbody physics is becoming more extensively used in games as technology

advances and software capacity grows, as it allows for more varied and realis-

tic simulation. It is important to keep the game's scale in mind when starting to

make a physics-based game. PhysX can be heavy to process on mobile de-

vices and, in general, an optimized game is more satisfying for players. In or-

der to reduce the time and resources that physics simulation takes, it is advis-

able to simplify colliders. Mesh colliders can be expensive as they take the ex-

act shape of GameObject’s 3D-model mesh. More complex mesh colliders

can be substituted with primitive or simplified colliders, such as box colliders

or sphere colliders to approximate the original shape. (Goldstone 2009, 42;

Krogh-Jacobsen 2021.)

The aforementioned colliders will be used by either a Rigidbody or Charac-

terController components for movement. Collisions are needed to prevent

GameObjects from falling through floors or going through walls. Charac-

terController will allow movement constrained by collisions without dealing

with a Rigidbody. If physics are used in the game, a Rigidbody must be pre-

sent to use the following collision verification methods: OnCollisionEnter(), On-

CollisionExit(), OnCollisionStay(), OnTriggerEnter(), OnTriggerExit() and On-

TriggerStay(). While the way movement is achieved can vary depending on

which component is used, it will not matter as the same results can be at-

tained by both CharacterController and Rigidbody (IronEqual 2017). This the-

sis is focused on trigger methods since the inspiration originally came from the

Dark Souls game franchise in which weapons can go through enemy charac-

ters instead of physically reacting to their 3D-models. That is why a Rigidbody

component is necessary for character GameObjects.

Physics.OverlapBox() is another component that is used to detect touching or

overlapping colliders, similar to OnTrigger methods. It computes and stores all

16

colliders that are touching the box or are inside it. It allocates an array of col-

liding colliders on every frame, which generates garbage. OverlapBoxNonAl-

loc fixes this problem by storing collision data into a provided buffer. It does

not attempt to increase the buffer if it runs out of space, which can be prob-

lematic. OverlapBox could be a viable alternative to OnTrigger methods, but

this thesis is only focused on trigger methods.

Collisions have one parameter in their methods which is a class of collision

type. The collision class holds information that describes the characteristics of

the collision, such as contact points and impact velocity. Triggers, on the other

hand, have one parameter in their methods which is a type of collider. This

collider is a reference to the other collider that entered the trigger area. This

makes it possible to manipulate the other collider’s GameObject.

Depending on the Rigidbody arrangements of the colliding GameObjects, a

variety of script events can occur upon collision. Figure 1 shows which event

routines are called. The general rule is that physics will not be applied to a

GameObject that does not have a Rigidbody component attached to it. Excep-

tions to this are combinations that only affect one of the two GameObjects.

(Introduction to collision 2022.)

Figure 1. Collider interaction matrix.

In a collision between two non-trigger colliders, the physics engine calls spe-

cific physic methods in involved GameObjects. The OnCollisionEnter() method

is activated on the first physics update when a contact is detected. Next, On-

CollisionStay() is called during updates while contact between colliders is

17

maintained, and OnCollisionExit() signals that the contact has been severed. If

a collision happens between trigger colliders, similar methods are called. Trig-

gers detect collisions like other colliders, but they simply do not react to them.

There are similar functions for 2D physics, such as OnCollisionEnter2D(). (In-

troduction to collision 2022.)

Raycasting means shooting an invisible ray from an origin point to a direction,

and having a report of anything that it hits. While this can be used to verify col-

lisions, it fails to detect a hit if its origin point is inside a collider. Therefore,

raycasting is not considered in this thesis, as it would be rather problematic in

a close-quarter melee fighting game. The raycast method is more suitable for

shooters where bullets fly fast.

3.3 Physics execution order

Everything runs in a predetermined order in Unity. In initialization, Awake(),

OnEnable() and Start() functions are called first in that order. Common game

tasks a.k.a. game logic are performed in the Update() function, but before that,

another function called FixedUpdate() is actuated. While Update() is called

once per frame, FixedUpdate() is often called more frequently.

FixedUpdate()'s calling rate is determined by a fixed timestep and it can be

called multiple times in a frame if necessary. All physics calculations run im-

mediately after FixedUpdate(). FixedUpdate() is called on reliable time inde-

pendent of the game's frame rate, which means movement calculations do not

need to be multiplied by Time.deltaTime inside it. (Order of execution for event

functions 2022.)

The upper part of Figure 2 illustrates Unity’s physics cycle, and it can be seen

that FixedUpdate() is called first. Triggers and collisions run at the physics cy-

cle’s end. The lower part of Figure 2 presents the game logic cycle, where Up-

date() is called first, followed by WaitForSeconds() and coroutine functions.

LateUpdate() is called last in the game logic cycle, and it is most commonly

used to update camera position and rotation after character movement. After

LateUpdate() come different rendering functions followed by decommissioning

function which processes quitting, disabling, and destroying. Animation up-

dates are present in both physics and game logic cycles.

18

Figure 2. Unity's physics and game logic.

3.4 Finding and calling methods

Calling a method inside a class is as simple as calling its name, but calling a

method from another class can be done in many ways. First, the other class

must be found. If the class script is in the same GameObject, it can simply be

assigned to a public field in Editor or be discovered with GetComponent()

method.

19

Because there are numerous versions of the GetComponent() method, each

with a different performance cost, it is best to use the one with the lowest per-

formance cost. The available alternatives are GetComponent(string), GetCom-

ponent(), and GetComponent(typeof(T)). Because numerous optimizations

have been made to these methods over the years, the fastest version de-

pends on whatever version of Unity is used; nonetheless, in all later versions

of Unity 5 and the first release of Unity 2017, it is better to utilise the GetCom-

ponent() variant. (Dickinson 2017, 44.)

This thesis uses Unity version 2021.3, thus GetComponent() variant will be

used if necessary. Overall, these are micro-optimizations, and the changes

will not give any perceivable performance difference during runtime (Unity per-

formance tests 2015).

If the class script is in another GameObject, it must be found so that its public

methods can be called. Collision methods, such as OnTriggerEnter(), know

when a collision occurs with a GameObject that possesses a collider. Child

GameObjects can also trigger OnTriggerEnter() methods but only if the parent

GameObject with OnTriggerEnter() method has no colliders. The place of trig-

ger method scripts in the hierarchy must be planned accordingly if child collid-

ers are also used. The number of colliders on a GameObject does not affect

trigger methods. OnTriggerEnter() can be used with GetComponent() to ac-

quire the desired class script reference from the GameObject with which the

collision occurs. Next, public methods can be called from the other collider’s

class. This can be done directly by calling the class name paired with the

method name.

3.5 Mecanim animation system

Unity has its own animation system which is sometimes referred to as Meca-

nim. Mecanim has a visual editing window similar to a flowchart where single

animation clips are joined together to form an animation state machine. (Ani-

mation State Machine 2022.)

There are multiple types of animations in Unity: Rigidbody animations,

rigged/bone-based animation, Sprite animation, physics-based animation,

20

morph animation, video animation, particle animation, and programmatic ani-

mation. When animating humanoid characters, animals or monsters, rigged

animation a.k.a. bone-based animation is required. Rigged animation does not

alter the GameObject’s position, rotation, or scale, but the movement and de-

formation of its internal parts between keyframes. It uses special bones to

simulate the skeleton of the mesh, which allows independent control of the

mesh geometry. This is very useful for animating limb/head/mouth move-

ments. Usually rigged animation is made as a complete animation sequence

in 3D modeling software and then imported to unity with a mesh. (Thorn 2015,

5.)

4 HIT DETECTION IMPLEMENTATION

The implementation of hit detection consists of multiple solutions that each

have multiple parts in them. Each part is a direct continuation of the previous

one. Every part answers a problem that emerges in the previous part and pro-

vides a solution for it while trying to keep Elden Ring’s playstyle and mechan-

ics in mind. In order to make explaining simpler, the character that attacks with

a weapon will be referred to as the attacker, and the character that receives

hits will be referred to as the target.

4.1 Solution 1

Solution one of hit detection implementation starts by creating a simple hit de-

tection code that exchanges information of collisions between weapons and

characters, and expands it further to make it suitable for Elden Ring combat

mechanics.

4.1.1 Setup preparations

This thesis uses 3D-models from “POLYGON Knights - Low Poly 3D Art by

Synty” which can be bought from Unity Asset Store. Animations are obtained

from mixamo.com which has a wide variety of free animations. Using ready-

made assets allows more time to focus on writing code. When knight models

are viewed in Unity, an Animator component is already attached in the 3D-

models GameObject. If a model without Animator is used, then one must be

21

attached to the model. New Animator controllers are created for two charac-

ters, and different animations are added to them. With these in place, a testing

setup was made where the attacker is given a continuous looping sword at-

tack animation while another one stands idle and takes hits (Figure 3).

Figure 3. 3D-model setup screenshot.

A hitbox is added to the weapon GameObject which will be used with a script.

The script needs to be on the same GameObject that uses the Animator com-

ponent, so it will be set on the attacker’s top-level GameObject. In Unity, a hi-

erarchy window is used to display GameObjects in a scene. In Figure 4, the

top-level GameObject’s name is Character 1, the visible 3D-model is named

Character_soldier_02, GameObject called Root refers to the root of all bones

used by Character 1, and the weapon with a hitbox is named

SM_Web_Broadsword_01. As for the latter, while a simpler name would be

more memorable, this weapon came with POLYGON Knights pack, and it is

left as it was so that its origin is not forgotten. From Window>Animation>Ani-

mation, an Animation window can be opened where animation events can be

added to animation clips. These animation events will call a script (Figure 5) to

activate and deactivate the sword hitbox during attack animations. This way

the weapon hitbox cannot hit anything when it is off.

A minor problem occurred when animation events could not be added to ani-

mations because FBX-skin (skinned Mesh format supported by Unity) was at-

tached to the imported animations as well. If this happens, the animation clip

can be disconnected from the FBX-skin by duplicating the clip or by re-import-

ing the animation without skin.

22

Figure 4. Screenshot of Character 1 hierarchy.

Figure 5. Weapon hitbox animation events code.

4.1.2 Hit detection with one hurtbox

Using one hurtbox is a generic way to implement hit detection with ease that

many tutorials favor. From the setup in Chapter 4.1.1, the attacker’s weapon

already has a hitbox. Next, a simple hit detection mechanic is implemented

that detects hits from triggers. All characters need a Rigidbody, capsule col-

lider, and short script that uses OnTriggerEnter() method. Using the OnTrig-

gerEnter() makes more sense than using OnTriggerStay() or OnTriggerExit()

methods, as attack hits should count immediately when a collision occurs be-

tween a weapon hitbox and a character's hurtbox. The capsule collider can be

23

turned into a trigger by checking an IsTrigger checkbox. As only one collider is

used, whether the hurtbox is a non-trigger or a trigger will only matter for the

character's movement system. The checkbox is left unchecked, which allows

the Rigidbody to use the capsule collider for physical collision detection. Rigid-

body collision detection has four different modes: discrete, continuous, contin-

uous dynamic, and continuous speculative. For most optimized results, contin-

uous dynamic collision detection mode should be used for fast moving

GameObjects and continuous collision detection mode for other scenarios

(Collision detection mode 2022). In this thesis, characters use continuous col-

lision detection.

A script with OnTriggerEnter() method can either be placed into characters or

weapons. It will not matter for hit detection since characters use only one

hurtbox. OnTriggerEnter() provides a reference to other colliders, whether it is

a target's hurtbox or a weapon’s hitbox. If the script is placed on the charac-

ter's GameObject, it would need to fetch the weapon's script in the attacker’s

GameObject, which could be difficult and unnecessarily complex to find. The

weapon could be anywhere in the attacker’s GameObject hierarchy, so it

makes more sense to place the OnTriggerEnter() method script into the

weapon. This script will be named Weapon_hit_detection class.

4.1.3 Basic multi-hurtbox hit detection

The problem with using only one hurtbox is that it would not only cover the

whole character but also unwanted space between a torso, legs, and arms. In

a case where a sword is swung close to the target and despite not visually hit-

ting the target, the sword might go through the hurtbox and result in a hit. This

will not make hit detection feel right for the player. The use of multiple hurt-

boxes allows more accurate hit detection and player satisfaction in terms of

combat fighting. They can be added to the character's bones to follow their

movement. All colliders can be viewed in Unity’s scene with a physics debug-

ger which allows inspection of the collider geometry (Physics debug visualiza-

tion 2022). Figure 6 shows the character's hurtboxes in yellow. The character

also has a non-trigger collider since a hypothetical movement system could

require one.

24

Figure 6. Screenshot of character hurtboxes (yellow) and ground box collider (green) shown in

a scene with physics debugger.

At this point, layer collision matrix is updated with new layers. Ground, Char-

acter, Hitbox, and Hurtbox layers are added (Figure 7). Hitbox and Hurtbox

layers can only collide with each other. Hurtbox layer might be needed to col-

lide with Default and Ground layers if hurtboxes are used with physical colli-

sions. Character layer is reserved for 3D-model GameObjects that have a

non-trigger collider in case a movement system is created, and it can collide

with Default, Character, or Ground layers. Ground layer is meant for floors,

and it has similar layer settings as Character layer. Layer collision matrix al-

ready has layers as a default before any new layers are added to it.

Figure 7. Layer collision matrix.

If multiple hurtboxes are used, multiple hits can occur during a single attack. A

new method is required to ignore these duplicate hit messages. This method

25

needs an identifier from the attacker and information on the time left in the at-

tacker’s attack animation. The identifier can either be a GUID or instance ID

which is created by Unity for GameObjects at the beginning of the session.

Since both of them change when a new session is started, it will not matter

which one is used (GetInstanceID 2022). This thesis uses a GUID for charac-

ter identification. A new class named Attack_info is created for this information

(Figure 8). While Attack_info is not imperative as information can be passed

as multiple variables to functions, using a class makes it easier to manage this

information.

Figure 8. Attack_info class code.

Attack_info is passed from the weapon’s OnTriggerEnter() method. If OnTrig-

gerEnter() method were on a character, it would need to request information

from the attacker and then the attacker would need to send this information

back. Therefore, it is easier to place OnTriggerEnter() method on a weapon

because less information must be passed between the attacker and the target.

Since characters will have other colliders besides hurtboxes, they must be dif-

ferentiated from each other. An easy way to do this is with a tag. GameOb-

jects will have a tag named “HurtBox” on any of their child GameObjects con-

nected with hurtboxes. In this setup, characters have hurtboxes in their bones

so all bones will receive this tag. Now OnTriggerEnter() method of

Weapon_hit_detection class can first verify whether the other collider has a

“HurtBox” tag. Then, a verification for null value is performed to ensure that

the target has a script in its root GameObject that will receive hits. This script

26

will be named Character_hit_detection and its purpose is to decide whether a

hit from the attacker should be counted or ignored.

Next, necessary information is fetched. attacker_guid can be acquired from

the root GameObject’s Character_hit_detection class, and animation_time_left

is then calculated. Passed animation time is calculated in Figure 9 in float

value named animation_time_passed. The normalized time of Animator-

StateInfo informs how much this animation has progressed on a scale from

zero to one with a value of one marking the end of the animation. The value

zero in AnimatorStateInfo(0) indicates the animation’s layer index number. If

only one layer is used, the layer index is zero. If attacks are grouped on a sep-

arate layer, then that layer’s layer index is used. If attacks are on multiple dif-

ferent layers, a verification is necessary to determine from which layer the at-

tack animation clip is. This layer index verification is not executed in this part

of the thesis as only one animation layer is in use but it is implemented in

Chapter 4.1.6. By taking a decimal percentage of the passed animation and

multiplying it with the length of the clip, the time that has passed in animation

is defined. Reducing this amount of time from the clip length allows to see the

time that is left in animation in the form of a float variable named anima-

tion_time_left. New Attack_info is created with attacker_guid and anima-

tion_time_left and sent into the target’s MultipleHitDetection() method of Char-

acter_hit_detection class as seen at the end of Figure 9. The entirety of the

OnTriggerEnter() method is shown in Figure 9.

Figure 9. OnTriggerEnter() method in Weapon_hit_detection class code.

27

Figure 10. MultipleHitDetection() and IgnoreAttackCoroutine() in Character_hit_detection

class code.

In the Character_hit_detection class, the received Attack_info will be saved

into a dictionary that is called attackDict. A simple verification is performed to

see if a new Attack_info is already contained there with the same unique iden-

tifier. If this is the case, any new hit is ignored. If Attack_info is not in attack-

Dict, it is added there, and a coroutine is started to ignore duplicate hits. Wait-

ForSeconds(X) method suspends coroutine execution for X seconds using

scaled time (WaitForSeconds 2022). Using a coroutine and WaitForSeconds()

together, Attack_info can be stored in attackDict as long as necessary. Wait-

ForSeconds() method will use the float value of animation_time_left, which

means that attacks from the attacker are ignored for the duration left in the at-

tacker’s ongoing attack. The coroutine code is shown in Figure 10.

4.1.4 Advanced multi-hurtbox hit detection

After implementing a working multi-hurtbox hit detection in Chapter 4.1.3, all

hits from the attacker are ignored by using only attacker_guid and anima-

tion_time_left. If the attacker’s attack can be halted, and they have more than

one attack mode e.g., fast/heavy attacks or different weapons they can switch,

the hit detection described in Chapter 4.1.3 is not sufficient. If the attack ani-

mation is halted and a different attack is started, this new attack should not be

ignored even if the last attack’s animation_time_left is not finished in the hit

28

detection code. In order to explain it in simpler terms, if a first attack’s anima-

tion length is 5 seconds and it is interrupted, hit detection should not ignore

the next attack even when the 5 seconds have not passed.

An additional piece of information must be passed in attacks to identify the at-

tacker's attack. This information is named attack_id and it is part of Attack_info

class. The attack_id does not need to be a GUID, since attacker_guid already

differentiates hits between all attackers. Attack_id only needs to identify differ-

ent animations from the Animator controller, so it can be a string instead e.g.

“sword_fast_attack” or “sword_heavy_attack”. The problem is, however, that

both attacker_guid and attack_id are needed for the identification of an attack,

but a dictionary can have only one key per entry, so the attacker_guid will not

be a sufficient key anymore. If attacker_guid and attack_id are combined into

a single string, this string as a key will be unique and usable for a dictionary

(Figure 11). Attack_id is created from the attack animation clip’s name (Figure

12).

It should be noted that the animation name that attack_id receives is not the

name used in the Animator, but the name used in the assets. This means at-

tack_id would receive the name melee_attack_1 mixamo.com underlined with

blue rather than Melee_attack1 underlined with red as seen in Figure 13.

Figure 11. attackDictKey is formed by combining attacker_guid and attack_id code.

Figure 12. Attack_id creation from AnimatorClipInfo name code.

29

Figure 13. Animator animation clip with underlined names screenshot.

4.1.5 Chain-attacks

Not all attacks are necessarily performed with a single weapon swing. Games

might have chain-attacks, where attacks are done one after another. This is

suitable for the system described in Chapter 4.1.4, but attacks can also have

one long complex animation with multiple moments where the weapon’s hit-

box activates and deactivates. An example of this could be a repeated thrust

attack with a spear. Instead of doing multiple short attack animations in quick

succession, one longer animation is done where the spear is repeatedly thrust

forward as a special attack. It also prevents unnecessary button smashing for

players. In such a case, the target should take more than one hit, which is not

achieved with the code produced in Chapter 4.1.4. Cutting the animation into

smaller pieces would allow the aforementioned hit detection code to comply

with it. This, however, is not desirable as it requires work that is not directly re-

lated to coding, and the visual impact of halted animation can be quite disrup-

tive.

A more proper way to proceed would be to tweak SetWeaponHitboxOff()

method in Character_hit_detection class. By adding a float parameter to it, the

time of the event length can be passed onto it, although this must be done

manually in the animation window for every attack. With this new float value,

the animation_time_left can be updated to present the correct time until the

hitbox is deactivated. The event time is difficult to estimate in seconds, but

30

frames are easy to observe from the animation window’s time bar. In Figure

14, time is calculated in seconds by multiplying given frames with Time.del-

taTime, which is the time in seconds between the previous frame and the cur-

rent one (Unity manual 2022). The seconds are forwarded to a new method

named UpdateAnimationTimeLeft() (Figure 15) in Weapon_hit_detection

class, which will be used to update a new float variable called anima-

tion_event_time_left. Variable animation_time_left is not updated directly in

case it is in the middle of receiving a new value. Next, a verification is per-

formed to see if animation_event_time_left is greater than zero, in which case

animation_time_left is updated with animation_event_time_left (Figure 16). If

not, then a standard calculation will proceed for animation_time_left.

Figure 14. Calculating seconds of animation event length and forwarding it to Weapon_hit_de-

tection class code.

Figure 15. UpdateAnimationTimeLeft() method code.

31

Figure 16. New verification with animation_event_time_left code.

4.1.6 Use of multiple animation layers for attacks

Multiple animation layers might be used in a game. Separating movement and

attack layer is somewhat standard since in many games characters can walk

while performing other animations with their upper body. This will not pose a

problem for hit detection if attacks are on the same animation layer. However,

characters might have one weapon in each hand. This would make separating

right-hand and left-hand attacks on different animation layers a practical solu-

tion, which also means the previously achieved hit detection described in

Chapter 4.1.5 must be adjusted to manage two attack animation layers.

In order to achieve this, three new animation layers are added. One for right-

hand, one for left-hand, and one for dual-wielding animations (Figure 17). By

creating separate avatar masks for each layer, bone weight and distribution

can be changed to affect only wanted bones (Figure 18). Override setting al-

lows for animations on this layer to replace the animations on previous layers.

The hierarchy is upside down on animation layers, as the ones on the bottom

are higher on the hierarchical stage.

Figure 17. Animation layers.

32

Figure 18. Avatar mask for right hand.

Creating a code to use multiple animation layers for attacks is problematic.

The OnTriggerEnter() method does not know which hand’s weapon is trig-

gered during a hit. In the Elden Ring game, only one attack is possible to do at

a time. If the right-hand attacks, the left cannot, and vice versa. The Elden

Ring has dual-wielding attacks where both weapons can be used at the same

time for greater damage, but it also means both weapons use the same ani-

mation. This would mean while attack animation can be distributed to multiple

layers, only one animation layer can be functioning as an attack layer during

an attack.

Since no player controller inputs or character inventory system are created in

this thesis, a setup for testing multiple animation layers is required. Booleans

will be used as a shortcut to determine if the attacker has a weapon in their

right hand, left hand, or both. CheckWeaponAttackLayerAnimation() method

verifies which animation layer is used by booleans made for this and returns a

corresponding layer index integer (Figure 19). The layer index is then used to

calculate animation_time_left with no changes. While this thesis utilises no

dual-wielding animations, an option for a dual-wielding animation layer is also

created. In a dual-wielding attack, both weapon's hitboxes are used, and at-

tack animation times must be the same for both. This must be ensured when

creating dual-wield animations. If animation times were different during dual-

wielding, the animation state machine would become very complex to man-

age. When the animation layer is changed depending on the attack, the

33

weight of the animation layer can be changed with Animator.SetLayer-

Weight(), so that correct animations will play. This feature will not be added to

this thesis, as creating an animation state machine is not the focus.

Figure 19. CheckWeaponAttackAnimationLayer() method code.

A more serious problem is that animation events can use SetWeaponHit-

boxOn() method only on one weapon, as there is only one reference to

weapon GameObject in Character_hit_detection class. With no inventory sys-

tem for characters, straight references for both weapons must be added to

Character_hit_detection. SetWeaponHitboxOn() and SetWeaponHitboxOff()

methods must be modified to allow both right and left hand weapons to update

their animation_time_left for hit detection purposes (Figures 20 and 21). How-

ever, as the target will ignore the second weapon’s hit after the first weapon

hits it, either another identification parameter is required for ignoring hits, or

damage should be doubled upon the first dual-wield hit to compensate for only

registering one hit.

34

Figure 20. Modified SetWeaponHitboxOn() that updates right and left hand weapons code.

Figure 21. Modified SetWeaponHitboxOff() that updates right and left hand weapons code.

The parameters used to ignore melee hits are attacker_guid and attack_id.

Dual-wield attacks share the same attacker_guid and attack_id, but the at-

tack_id could be altered to differentiate between the left and right weapons. If

an inventory system would be implemented for an action RPG, all weapons in

inventory could have their own id, even duplicates. Since no inventory system

is implemented in this thesis, the hit detection system will use weapon

GameObject’s instance ID, which Unity makes for every GameObject when a

scene is started. By using the weapon’s instance ID as a part of the attack_id

string, both left and right weapons can be differentiated by hit detection code.

This also means an animation clip name does not need to be part of attack_id

35

identification. However, because GameObject instance ID is different between

runtimes, it is not suitable for being used in save files, and an inventory sys-

tem with permanent IDs for weapons would be a preferable solution (Get-

InstanceID 2022).

4.2 Solution 2

Solution two of hit detection implementation is a direct continuation of multiple

animation layer described in Chapter 4.1.7. The objective in solution two is to

rework old code and remove dependencies on the attack_id and animation

times of attacks.

4.2.1 Reworking the hit detection

The hit detection code developed in Chapter 4.1.3 leans on identifying not just

the attacker, but also the attack itself. It requires attacker_guid, attack_id and

animation_time_left since the information is passed from the Weapon_hit_de-

tection to the Character_hit_detection. If hit detection was performed only in

the Weapon_hit_detection, the necessary information required by hit detection

could be reduced. By keeping a dictionary of hit targets, only their GUID must

be stored since the attacker knows how long their own attack animation will

take to complete. Also, storing animation_time_left might not even be neces-

sary anymore, if a new method is done where the dictionary of hits is wiped

clean every time a new attack is started.

When OnTriggerEnter() method detects a hit, instead of sending information

to Character_hit_detection class, it will act similarly to MultipleHitDetection()

method and proceed to verify hit targets. OnTriggerEnter() will store the tar-

get's GUID in a dictionary, which will first verify if the hit has occurred to the

target before. Only one variable must be stored for a reference, so a dictionary

can be substituted with a list. Since this work has no inputs for players or char-

acters, a setup is made to test this new hit detection system. A boolean varia-

ble named startAttack is created and if it is set as true, a new attack will begin,

and this will clear the list in OnTriggerEnter() (Figure 22). It should be noted

that as damage implementation was processed at the same time, a code line

referring to the ApplyDamage() method of the Character_hit_detection can be

seen in Figure 22 on the last code line. Also, to preserve old code, all code

36

from Weapon_hit_detection was copied to a new class named Attack_hit_de-

tection.

Figure 22. Reworked OnTriggerEnter() method code.

As a result, a hit detection method is completed that is equally good as the hit

detection code from Chapters 4.1.3 and 4.1.4. As no attack_id is no more

used, this rework fixes the dual-wielding problems related to attack_id from

Chapter 4.1.6. Before this rework, only one dictionary was used by Charac-

ter_hit_detection to store information, but now that lists are used in both left

and right weapons, it does not matter that the target’s GUID is passed to both

lists. The rework does not, however, comply with the chain-attack implementa-

tion described in Chapter 4.1.5, where a weapon's hitbox is activated multiple

times.

For chain-attacks to function, an input is required to activate new attacks in At-

tackHitDetection() when the weapon’s hitbox activates. In the Charac-

ter_hit_detection class, the methods that activate and deactivate weapon’s hit-

boxes must be modified to not use UpdateAnimationTimeLeft() method in At-

tack_hit_detection class, as animation_time_left is not used anymore (Figures

23 & 24). Also, the startAttack bool must be set to true in SetWeaponHit-

boxOn() method since the work has no controller inputs for testing. With these

modifications done, the hit detection functions with chain-attacks, and it is free

from being bound to attack_id and animation_time_left. For future use, receiv-

ing an input should not automatically start a new attack. For a new attack to

start, it should be inspected if there is any ongoing animation that could re-

strict an attack. For example, giving an attack input should not start an attack

if the player character is climbing a ladder.

37

Figure 23. Reworked SetWeaponHitboxOn() method code.

Figure 24. Reworked SetWeaponHitboxOff() method code.

After reworking code, CheckWeaponAttackAnimationLayer() and UpdateAni-

mationTimeLeft() methods have become obsolete in Attack_hit_detection

class, and both MultipleHitDetection() and IgnoreAttackCoroutine() methods

have become obsolete in Character_hit_detection class. Separating the

SetWeaponHitboxOn() and SetWeaponHitboxOff() methods away from Char-

acter_hit_detection class could be beneficial, as it would allow GameObjects

without weapons to use Character_hit_detection for receiving hits.

4.2.2 Reworking animation events

The code introduced in Chapter 4.1.7 allows dual-wielding attacks, but these

attacks must have the same hitbox activation and deactivation times. The

38

Elden Ring game, however, has dual-wielding attacks where weapon hitboxes

can be activated at different times. SetWeaponHitboxOn() and SetWeaponHit-

boxOff() methods must be modified to allow animation events in the animation

window to choose which weapon is activated or deactivated. This can be im-

plemented by either adding a parameter to these methods or by making two

separate activation and deactivation methods for each hand (Figure 25). If

characters had an inventory with weapon slots, a parameter in weapon hitbox

setting methods could reference those slots in the inventory. This would allow

characters to use more than two weapons, which would be beneficial if the

game uses characters with multiple limbs that can hold weapons.

In a case where weapons require more than one hitbox to form a proper

shape of the weapon, all hitboxes will be looped through in weapon hitbox

methods, where they will be enabled or disabled when necessary (Figure 25).

Figure 25. Hitbox activation and deactivation methods for two different weapon hands.

39

4.2.3 Alternative ways to ignore hits

Previous hit detection implementations have been using a dictionary or a list

to keep a tab of targets/attackers that should ignore further hits after the first

hit lands from the attacker. These lists can be substituted with Physics.Ignore-

Collision() method. This method makes collision detection ignore all collisions

between two colliders (IgnoreCollision 2022). If IgnoreCollision() is used to

loop through all hurtboxes in the target, no more collisions will occur. This can

be reversed by looping through them again and setting the ignore parameter

to false. However, to remember which hurtboxes are set to be ignored, a list

must be again used to store references to those colliders, so that ignored colli-

sions can be restored after the attack is finished. This solution would increase

work which is against its purpose of reducing the usage of lists.

4.2.4 Ragdoll death mechanic

In the Dark Souls games, when characters die, their bodies go limb. In video

games, this is called being a ragdoll. Rigidbodies create realistic motion

through four different properties: mass, gravity, velocity, and friction (Gold-

stone 2009, 41). Unity has its own ragdoll wizard that makes creating a Rigid-

body system fast. Ragdoll wizard can be found in a menu bar by choosing

GameObject > 3D Object > Ragdoll. This wizard automatically adds a Rigid-

body, Colliders, and Character joints to chosen character bones. Ragdoll state

in characters can be activated by setting Rigidbody.IsKinematic off and prefer-

ably Rigidbody.UseGravity on for more realistic results. Colliders must be non-

triggers so that they can be affected by gravity and physical collisions. Anima-

tor component must be disabled before the ragdoll state is started. All required

steps to activate the ragdoll state are gathered in a new method named Star-

tRagdoll() (Figure 26). In the same method, the hit detection must be disabled

when the ragdoll state activates. During testing, the ragdoll body disappeared

after few seconds if "Update when offscreen" -setting was not set as true in a

character 3D-model's Skinned Mesh Renderer component. Using this setting

requires more processing power, so it needs to be weighted if it is truly neces-

sary for the game.

40

Figure 26. StartRagdoll() method code.

5 DAMAGE-RELATED MECHANICS IMPLEMENTATION

This chapter relates both to solutions one and two, and damage mechanics

can be implemented with both solutions. The only difference is whether dam-

age values are passed inside Attack_info class or sent directly into damage

methods. Any changes to Attack_hit_detection class from solution two in this

chapter can be made to Weapon_hit_detection class from solution one.

5.1 Damage implementation

Hitting characters is useless if they cannot be damaged. Solution one used At-

tack_info class to pass information on the attacker’s current attack, and it can

also be used to pass different damage values. An int or float variable can pass

a damage value in method calls, which solution two uses, or they can be

added to Attack_info class if solution one is used. RPGs can have multiple dif-

ferent damage types e.g. weapon damage, fire damage, poison damage, and

magic damage. The possibilities for damage types are endless. An array can

be used to store multiple values of the same variable type. Using a float array

which will be named damageStorage, multiple float values can be passed in

one parameter. The float array can be of any size if its size is first specified. In

this thesis the size is not a factor, so a size three array is created. Since dam-

age types in this thesis could be freely named, for simplicity these variables

are named damageType1, damageType2, and damageType3 so that they can

41

represent any type of damage (Figure 27). Their damage values will not mat-

ter either. Adding damage types into the damageStorage array (Figure 28) is

only required once so it is done inside the Awake() method.

Figure 27. Damage type floats are created, and values set code.

Figure 28. Adding damage types into damageStorage code.

Health points of a character will be represented by a float variable named

health. RPG games have resistances for each damage type, so three corre-

sponding damage resistance types are added: damageType1Resistance,

damageType2Resistance, and damageType3Resistance (Figure 29). Ap-

plyDamage() method is called in MultipleHitDetection() method of Charac-

ter_hit_detection class when a hit should damage the target. The question of

who the attack should damage is answered in Chapter 5.2. Final damage val-

ues are calculated in ApplyDamage() by decreasing the damage type re-

sistance percent of each damage type. Next, a verification is performed to see

if the damage value is negative. If the damage value is negative, it is set as

zero because these damage values are subtracted from health and if they are

negative then health would increase. The target should die if health reaches

zero, but this feature is not implemented in this thesis. The full ApplyDamage()

method is shown in Figure 30. It also includes an animator.SetTrigger() code

to make characters do a faltering animation when they receive damage.

Figure 29. Damage type resistance floats are created, and values set code.

42

Figure 30. ApplyDamage() method in Character_hit_detection class code.

In action RPGs, weapon damage can be affected by weapon upgrades and

character level. Two more variables would be needed to scale weapon dam-

age with weapon upgrade level and character level. Adding a method that up-

dates damage values with these variables can be added to any weapon script.

Different games have different scaling for weapon damage, so there does not

seem to be a universal scaling curve.

5.2 Differentiate targets

In RPGs, there are enemies that players can hit, but there are also friendly

characters or destroyable objects. Attack_hit_detection class inflicts damage

to everything with hurtboxes. Being able to hurt friendly characters might not

be desirable for all games so the hit detection system needs a way to choose

which GameObjects with hurtboxes are allowed to be damaged. First, differ-

ences must be made clear between all GameObjects with a HurtBox tag. This

work will use three tags for hittable GameObjects: PlayerFriendly, Enemy, and

43

DestroyableObject. These tags will be used on parent GameObjects since

verificating the parent GameObject’s tag is sufficient.

A simple tag verification system can be implemented with Enum (short for

enumeration). It allows the representation of named constants with numbers.

This way, the tag of the target can be compared to the Enum list, where the

names of tags that the attacker wants to hit are preselected. However, if join-

ing tags together is desired, a Flags system is needed. Flags allow using

Enum values that might appear in a combination. For example, if Enum values

are compared without the Flags attribute, only the first matching value is re-

turned, but if Flags is used, all possible matching combinations can be re-

turned. This would allow mixing tags, which could be useful depending on the

game’s needs. If multiple GameObjects with different hittable tags are present

or the target’s damage sources could change during runtime, mixing tags

could be helpful for future mechanics. This thesis will only show how to imple-

ment Flags tag system it but will not expand it.

The tag verification system will be built in Attack_hit_detection class. A new

Enum type named Targets is created with same names that will be used as

tags on hittable GameObjects (Figure 31). Nothing and Everything options are

automatically added to Enum by Unity. Integer values of Enum names must

be powers of two so that combined enumeration names do not overlap (Enum

Class 2022). New Targets enum is added and named attacker_targets, which

can be selected in the inspector window in Figure 32. Next, the target's tag

must be compared with the attacker_targets Enum. A new method named

CheckTargetTag() is created for this in Figure 33, which can be then called

during OnTriggerEnter() method whenever a hurtbox is hit. Targets Enum is

expandable, as long as new tag comparisons are added to CheckTargetTag().

Figure 31. Enum Targets code.

44

Figure 32. Enum Targets on inspector window screenshot.

Figure 33. CheckTargetTag() method code.

5.3 Weak spots

In games, enemies often have spots where they take increased damage, such

as the head. These are called weak spots or sometimes called weak points,

and while they might not be as important in humanoid enemies, they could be

more prominent in giant monsters. A weak spot in a dragon could be, for ex-

ample, a head, a tail, or wings.

Characters can have multiple hurtboxes, and anyone of those could be tagged

as weak spots. Since GameObjects can only have one tag, this could be im-

plemented by adding a new tag named “HurtBox WeakSpot”. The hit detection

code compares if a tag is precisely called “HurtBox” with CompareTag(). It is

better to instead verify that the word weak spot is contained within the tag with

Contains() method. This means the tag in hurtboxes does not need to be iden-

tical with the search word, as long as a weak spot word is contained within it.

Later, changes will be easier to implement and expand when words can be

added to tags. Verification for a weak spot tag is added to the OnTrig-

gerEnter() method in Attack_hit_detection class, where an extra ten percent of

damage is added to the damageStorage array (Figure 34).

45

Figure 34. Weak spot code.

Since damage values are altered in the case of hitting a weak spot, to pre-

serve original damage values, extra damage is applied straight into dam-

ageStorage values and not into damageType values. Values in damageStor-

age must be returned to their original values after they are sent to Charac-

ter_hit_detection. This is simply done by setting each damageStorage value

as equal to the corresponding damageType value (Figure 35).

Figure 35. DamageStorage values are reset.

5.4 Projectiles

All objects that may harm targets might not have a Character_hit_detection

class in them. Magic projectiles, crossbow bolts, throwable bombs/daggers,

exploding barrels, or fire in the ground should inflict damage to targets, but

they act independently of characters, meaning once they are created, they are

not part of the attacker’s hierarchy. Assigning the Character_hit_detection

class to them would not make sense since they do not take damage. The ex-

ploding barrel is an exception as it should take damage, but it should have a

different class as it is not a character. Projectiles and throwable bombs/dag-

gers should be instantiated and then removed by destroying them after they

hit something, be it a target or an environmental GameObject. Instantiation

means a method of creating (also called spawning) GameObjects from a pre-

fab template during runtime and it can be used to duplicate existing GameOb-

jects in the scene (Goldstone 2009, 180).

46

Projectile removal could also be further optimized by making a pre-initialized

pool of projectiles and then initializing them when they are needed. Then, in-

stead of destroying a projectile, it is deactivated and returned to the pool. This

approach is more useful for prefabs that are instantiated often, such as bullets

in first-person shooter games. (Macek n.d.)

A new hit detection script is made for projectiles and other attacks that only hit

once. This script is named Projectile_hit_detection, and its code is copied di-

rectly from Attack_hit_detection, which was produced in solution two. Only

character tag verification and damage-related code are required. Damage will

be applied to ApplyDamage() method in Character_hit_detection if targets are

hit. Whether the projectile hits a character or something else, it is then de-

stroyed with Unity’s Destroy() method. In order to give the projectiles an actual

flight arch, speed and direction variables should be added, and a new method

would be required to calculate the projectiles' flight paths. There are multiple

ways to achieve this. A mathematical calculation can be created for this, or a

Rigidbody can be used with gravity and forces to make the projectile fly in an

arch. A movement system will be omitted from this thesis, as only hit detection

is in the focus.

When a projectile is instantiated, it uses a prefab of a projectile. The prefabs

are instantiated by the attacker, which will provide the necessary parameters

of hittable targets. Projectile prefabs must have a trigger collider attached to

them so that OnTriggerEnter() method can be used. A speed variable should

be universal for the same type of projectiles, but damage should be affected

by either the attacker's level or the weapon's level. That is why damage varia-

bles are public so that they can be possibly updated later.

5.5 Invincibility

Dodging is an important mechanic in the Dark Souls games. A dodge provides

a certain amount of invincibility frames, also known as i-frames, during which

damage is completely ignored from all sources. Invincibility can either be im-

plemented by deactivating all hurtboxes or using a boolean variable to verify if

damage should be ignored. Using a boolean variable is more helpful, as it re-

47

quires less processing power than switching all hurtboxes. Whether a charac-

ter is dodging or a special animation sequence requires an invincibility state,

invincibility verification can be added to ApplyDamage() method in Charac-

ter_hit_detection class, as some damage sources might directly send damage

into it. If deactivating hurtboxes is more favored, it can be implemented by ei-

ther deactivating all colliders with a HurtBox tag by looping through all child

GameObjects or using a stored reference of all child hurtboxes.

6 RESULTS

The first objective of this thesis was to produce a functioning combat hit detec-

tion system in Unity game engine for 3D action role-playing games that utilises

multiple colliders in characters. The second objective was to implement dam-

age which is related to hit detection. All objectives were achieved. Results

chapter of thesis shows conclusions and further development plans.

6.1 Conclusions from implementation

After considering and trying different possibilities, an accurate hit detection

suitable for 3D action RPGs was achieved in Unity. Two solutions were cre-

ated with scripts that took advantage of Unity’s physics by using Rigidbodies

and multiple Colliders. Animation events and tags were also used as a part of

core functionality.

The first solution focused on passing information used to identify an attack hit

from the weapon script to the character script. The hit detection was done on

both scripts, which proved to be unnecessarily complex. It created many de-

pendencies that limited ways of creating fighting mechanics. The hit detection

code was reworked in solution two, and a better way was implemented by

moving all hit detection functionality into the weapon's code to reduce the

complexity of exchanging information between script classes. This reduced

the total amount of code and made a few methods in code obsolete. The over-

all complexity of code varies depending on how data is passed between the

scripts and what the needs of the game are, such as how many characters are

fighting, how many attack animations characters have, or how many weapons

a character can use.

48

Other solutions were explored where all hit detection code was moved from

weapon code to character code. This required a script for each character's

child GameObject and while it worked, it brought no improvements. Replacing

all identifications required in hit detection with one GUID was also tried. This

did not improve code, but it allowed to exercise with a different coding strat-

egy.

OverlapBox is another physics component in Unity that can detect collisions. It

was not used in the implementation part of this thesis but it is very similar to

triggers. It computes and stores all colliders that are touching the box or are

inside it, as was the case in implemented solutions with triggers and lists. It al-

locates an array of colliding colliders on every frame, which generates gar-

bage. OverlapBoxNonAlloc fixes this problem by storing collision data into a

provided buffer. It does not attempt to grow the buffer if it runs out of space, so

the buffer array should be made sufficient size to store a hypothetical maxi-

mum number of collisions in an attack. OverlapBox could have been a good

alternative for what was eventually implemented. Whether a Unity game uses

a trigger collider or an OverlapBox component, a system for multi-hit detection

is achievable.

Mechanics related to damage that rely on hit detection were implemented as

well. This required less effort compared to hit detection, as only damage val-

ues had to be passed forward to other scripts. Weapon attacks can apply dif-

ferent damage values during attacks to targeted characters. Targets are se-

lected in the character’s code, which means friendly characters can be opted

out of being hit during attacks. No movement was implemented, so projectiles

do not fly forward, but their hit detection is a more simplified version of the

weapon hit detection code.

6.2 Further development

Alone, the aforementioned codes do not create a coherent game, but they

provide valuable solutions on how to create a hit detection system. Implement-

ing more mechanics could produce a working 3D action role-playing game.

Below is a list of suggestions that could be further developed concerning hit

detection:

49

• Strategies for hit detection implementation

• Hit detection implementation for non-trigger collisions, such as a colli-
sion using the OverlapBoxNonAlloc component

• Increased attack mechanics

If the content of this thesis was evolved into a real game or imported to an-

other game project, the following factors should be examined in order to cre-

ate a complete game:

• Movement and camera system

• Inventory system

• Animation state machine

• Input controller for movement and attacks

• UI for character health bars

• Character and weapon levels

The hit detection scripts of both solutions produced in this thesis will be up-

loaded to GitHub. The whole content cannot be uploaded there because paid

third-party assets were used as 3D-models. This minor setback, however, is

quite insignificant as the focus was on producing scripts for hit detection.

The produced codes are stored in a GitHub repository, and a link to this re-

pository is presented in Appendix 1.

7 SUMMARY

The first and most important objective of this thesis was to explore ways to im-

plement a hit detection system that could be used for combat in action role-

playing games in Unity. The second objective was to implement mechanics

that were tied to hit detection. Damage, weak spots and projectiles implemen-

tation were explored after hit detection operated with multiple colliders.

This thesis was faced with many challenges. It was surprisingly difficult to find

instructions on creating a hit detection system that utilises multiple colliders.

This was also one of the reasons why this thesis was considered necessary

and beneficial. Research material was difficult to directly utilise, as most of it

only focused on the surface of Unity physics. The source code of PhysX and

mathematical equations of collisions, on the other hand, were omitted from

this thesis as it was deemed they would bring no additional information. The

50

definition of methods to implement hit detection was important, and while two

solutions were created, more options would have allowed more versatility.

The results for the hit detection code were quite specific, as the thesis aspired

to resemble the Dark Souls franchise style games. The first implementation

worked so well that it was developed further to include more combat mechan-

ics, such as chain-attacks and multiple weapons. This, however, posed later

problems, as the complexity of the code increased as more mechanics were

included. The second solution reworked the first one and made it simpler and

more expandable, allowing more flexibility for later updates.

The code in this thesis was built from scratch so there was no inventory sys-

tem to help manage weapons or input controller to help test character attacks.

Public variables were used without restrictions to help with script testing, as

they could be switched smoothly from the inspector window during Editor

runtime. If the scripts were imported to another project for use, most of the

public variables should be made private.

Designing and testing methods to find a functioning solution was a mix of trial

and error. The experience was valuable, and will most likely be very useful for

future game projects.

51

REFERENCES

Animation State Machine. 2022. Unity documentation. WWW document. Avail-
able at: https://docs.unity3d.com/Manual/AnimationStateMachines.html [Ac-
cessed 15 May 2022].

BEST PRACTICES FOR RIGID BODIES IN UNITY. 2014. Digital Opus.
WWW document. Available at: https://digitalopus.ca/site/using-rigid-bodies-in-
unity-everything-that-is-not-in-the-manual/ [Accessed 13 May 2022].

Collision detection mode. 2022. Unity documentation. WWW document. Avail-
able at: https://docs.unity3d.com/ScriptReference/Rigidbody-collisionDetec-
tionMode.html [Accessed 12 May 2022].

Dickinson, C. 2017. Unity 2017 Game Optimization. 2nd ed. Birmingham:
Packt Publishing.

Elden Ring. 2022. Metacritic. WWW document. Available at: https://www.met-
acritic.com/game/playstation-5/elden-ring [Accessed 3 May 2022].

Enum Class. 2022. Microsoft docs. WWW document. Available at:
https://docs.microsoft.com/en-us/dotnet/api/system.enum?view=net-6.0 [Ac-
cessed 20 May 2022].

Ericson, C. 2005. Real-time collision detection. San Francisco: Morgan Kauf-
mann Publishers.

GameObjects. 2022. Unity documentation. WWW document. Available at:
https://docs.unity3d.com/Manual/GameObjects.html [Accessed 10 May 2022].

GetInstanceID. 2022. Unity documentation. WWW document. Available at:
https://docs.unity3d.com/ScriptReference/Object.GetInstanceID.html [Ac-
cessed 28 May 2022].

Goldstone, W. 2009. Unity Game Development Essentials: Build Fully Func-
tional, Professional 3D Games with Realistic Environments, Sound, Dynamic
Effects, and More! Birmingham: Packt publishing.

Gonçalves, A. A. R. L. 2015. Efficient Contact Detection for Game Engines
and Robotics.

Guid struct. 2022. Microsoft docs. WWW document. Available at:
https://docs.microsoft.com/en-us/dotnet/api/system.guid?view=net-6.0 [Ac-
cessed 20 April 2022].

Hierarchy. 2022. Unity documentation. WWW document. Available at:
https://docs.unity3d.com/Manual/Hierarchy.html [Accessed 10 May 2022].

IgnoreCollision. 2022. Unity documentation. WWW document. Available at:
https://docs.unity3d.com/ScriptReference/Physics.IgnoreCollision.html [Ac-
cessed 24 May 2022].

https://docs.unity3d.com/Manual/AnimationStateMachines.html
https://digitalopus.ca/site/using-rigid-bodies-in-unity-everything-that-is-not-in-the-manual/
https://digitalopus.ca/site/using-rigid-bodies-in-unity-everything-that-is-not-in-the-manual/
https://docs.unity3d.com/ScriptReference/Rigidbody-collisionDetectionMode.html
https://docs.unity3d.com/ScriptReference/Rigidbody-collisionDetectionMode.html
https://www.metacritic.com/game/playstation-5/elden-ring
https://www.metacritic.com/game/playstation-5/elden-ring
https://docs.microsoft.com/en-us/dotnet/api/system.enum?view=net-6.0
https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unity3d.com/ScriptReference/Object.GetInstanceID.html
https://docs.microsoft.com/en-us/dotnet/api/system.guid?view=net-6.0
https://docs.unity3d.com/Manual/Hierarchy.html
https://docs.unity3d.com/ScriptReference/Physics.IgnoreCollision.html

52

Introduction to collision. 2022. Unity documentation. WWW document. Availa-
ble at: https://docs.unity3d.com/Manual/CollidersOverview.html [Accessed 25
April 2022].

Kasavin, G. 2001. Blade of Darkness Review. Gamespot.com. Article. Availa-
ble at: https://www.gamespot.com/reviews/blade-of-darkness-review/1900-
2690848/ [Accessed 5 July 2022].

Krogh-Jacobsen, T. 2021. Optimize your mobile game performance: Get ex-
pert tips on physics, UI, and audio settings. Blog.unity.com. Blog. Available at:
https://blog.unity.com/technology/optimize-your-mobile-game-performance-
get-expert-tips-on-physics-ui-and-audio-settings [Accessed 27 April 2022].

Macek, T. n.d. The 10 Most Common Mistakes That Unity Developers Make.
Available at: https://www.toptal.com/unity-unity3d/top-unity-development-mis-
takes [Accessed 22 April 2022].

Mesh collider. 2022. Unity documentation. WWW document. Available at:
https://docs.unity3d.com/Manual/class-MeshCollider.html [Accessed 12 May
2022].

Millington, I. 2007. Game Physics Engine Development. San Francisco: Mor-
gan Kaufmann Publishers.

Order of execution for event functions. 2022. Unity documentation. WWW
document. Available at: https://docs.unity3d.com/Manual/ExecutionOrder.html
[Accessed 10 May 2022].

Physics debug visualization. 2022. Unity documentation. WWW document.
Available at: https://docs.unity3d.com/Manual/PhysicsDebugVisualization.html
[Accessed 15 May 2022].

Ranney, N. 2017. GameMaker Basics: Hitboxes and Hurtboxes. Blog. Availa-
ble at: https://developer.amazon.com/blogs/appstore/post/cc08d63b-2b7c-
4dee-abb4-272b834d7c3a/gamemaker-basics-hitboxes-and-hurtboxes [Ac-
cessed 15 May 2022].

Rigidbody. 2022. Unity documentation. Available at:
https://docs.unity3d.com/Manual/class-Rigidbody.html [Accessed 14 April
2022].

Rodrigues, J. 2018. A Complete Guide to Fixing Collision Detection in Unity.
Bladecast. E-magazine article. Available at: https://bladecast.pro/unity-tuto-
rial/fix-my-collision-complete-guide-collision-trigger-detection-unity#trigger [Ac-
cessed 12 May 2022].

Time.deltaTime. 2022. Unity documentation. WWW document. Available at:
https://docs.unity3d.com/ScriptReference/Time-deltaTime.html [Accessed 30
April 2022].

https://docs.unity3d.com/Manual/CollidersOverview.html
https://www.gamespot.com/reviews/blade-of-darkness-review/1900-2690848/
https://www.gamespot.com/reviews/blade-of-darkness-review/1900-2690848/
https://blog.unity.com/technology/optimize-your-mobile-game-performance-get-expert-tips-on-physics-ui-and-audio-settings
https://blog.unity.com/technology/optimize-your-mobile-game-performance-get-expert-tips-on-physics-ui-and-audio-settings
https://www.toptal.com/unity-unity3d/top-unity-development-mistakes
https://www.toptal.com/unity-unity3d/top-unity-development-mistakes
https://docs.unity3d.com/Manual/class-MeshCollider.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/PhysicsDebugVisualization.html
https://developer.amazon.com/blogs/appstore/post/cc08d63b-2b7c-4dee-abb4-272b834d7c3a/gamemaker-basics-hitboxes-and-hurtboxes
https://developer.amazon.com/blogs/appstore/post/cc08d63b-2b7c-4dee-abb4-272b834d7c3a/gamemaker-basics-hitboxes-and-hurtboxes
https://docs.unity3d.com/Manual/class-Rigidbody.html
https://bladecast.pro/unity-tutorial/fix-my-collision-complete-guide-collision-trigger-detection-unity#trigger
https://bladecast.pro/unity-tutorial/fix-my-collision-complete-guide-collision-trigger-detection-unity#trigger
https://docs.unity3d.com/ScriptReference/Time-deltaTime.html

53

Trigger colliders. n.d. Learning unity3d eBook. WWW document. Available at:
https://riptutorial.com/unity3d/example/19743/trigger-colliders [Accessed 30
April 2022].

Unity performance tests. 2015. Blog. Available at: https://snowhydra.word-
press.com/2015/06/01/unity-performance-testing-getcomponent-fields-tags/
[Accessed 10 May 2022].

Unity Physics. 2022. Unity documentation. WWW document. Available at:
https://docs.unity3d.com/Manual/PhysicsSection.html [Accessed 10 May
2022].

Unity: CHARACTER CONTROLLER vs RIGIDBODY. 2017. IronEqual. WWW
document. Available at: https://medium.com/ironequal/unity-character-control-
ler-vs-rigidbody-a1e243591483 [Accessed 22 April 2022].

WaitForSeconds. 2022. Unity documentation. WWW document. Available at:
https://docs.unity3d.com/ScriptReference/WaitForSeconds.html [Accessed 20
April 2022].

LIST OF FIGURES

Figure 1. Collider interaction matrix. ... 16

Figure 2. Unity's physics and game logic. .. 18

Figure 3. 3D-model setup screenshot. ... 21

Figure 4. Screenshot of Character 1 hierarchy. .. 22

Figure 5. Weapon hitbox animation events code. ... 22

Figure 6. Screenshot of character hurtboxes (yellow) and ground box collider

(green) shown in a scene with physics debugger. .. 24

Figure 7. Layer collision matrix. .. 24

Figure 8. Attack_info class code. .. 25

Figure 9. OnTriggerEnter() method in Weapon_hit_detection class code. 26

Figure 10. MultipleHitDetection() and IgnoreAttackCoroutine() in

Character_hit_detection class code. .. 27

Figure 11. attackDictKey is formed by combining attacker_guid and attack_id

code. .. 28

Figure 12. Attack_id creation from AnimatorClipInfo name code. 28

Figure 13. Animator animation clip with underlined names screenshot. 29

Figure 14. Calculating seconds of animation event length and forwarding it to

Weapon_hit_detection class code. ... 30

Figure 15. UpdateAnimationTimeLeft() method code. 30

https://riptutorial.com/unity3d/example/19743/trigger-colliders
https://snowhydra.wordpress.com/2015/06/01/unity-performance-testing-getcomponent-fields-tags/
https://snowhydra.wordpress.com/2015/06/01/unity-performance-testing-getcomponent-fields-tags/
https://docs.unity3d.com/Manual/PhysicsSection.html
https://medium.com/ironequal/unity-character-controller-vs-rigidbody-a1e243591483
https://medium.com/ironequal/unity-character-controller-vs-rigidbody-a1e243591483
https://docs.unity3d.com/ScriptReference/WaitForSeconds.html

54

Figure 16. New verification with animation_event_time_left code. 31

Figure 17. Animation layers. ... 31

Figure 18. Avatar mask for right hand. ... 32

Figure 19. CheckWeaponAttackAnimationLayer() method code. 33

Figure 20. Modified SetWeaponHitboxOn() that updates right and left hand

weapons code. ... 34

Figure 21. Modified SetWeaponHitboxOff() that updates right and left hand

weapons code. ... 34

Figure 22. Reworked OnTriggerEnter() method code. 36

Figure 23. Reworked SetWeaponHitboxOn() method code............................ 37

Figure 24. Reworked SetWeaponHitboxOff() method code............................ 37

Figure 25. Hitbox activation and deactivation methods for two different

weapon hands. ... 38

Figure 26. StartRagdoll() method code. ... 40

Figure 27. Damage type floats are created, and values set code. 41

Figure 28. Adding damage types into damageStorage code. 41

Figure 29. Damage type resistance floats are created, and values set code. 41

Figure 30. ApplyDamage() method in Character_hit_detection class code. ... 42

Figure 31. Enum Targets code. .. 43

Figure 32. Enum Targets on inspector window screenshot. 44

Figure 33. CheckTargetTag() method code.. 44

Figure 34. Weak spot code. .. 45

Figure 35. DamageStorage values are reset. ... 45

55

Appendix 1/1

Link to GitHub repository

https://github.com/VilleTamminen/Action-role-playing-game-hit-detection

https://github.com/VilleTamminen/Action-role-playing-game-hit-detection

