
Md Alamin

A SOCIAL PLATFORM FOR SOFTWARE DEVELOPERS: USING

MODERN WEB STACK MERN

Thesis

CENTRIA UNIVERSITY OF APPLIED SCIENCES

Information Technology

December 2022

 1

ABSTRACT

Centria University

of Applied Sciences

Date

December 2022
Author

Md Alamin

Degree programme

Information Technology

Name of thesis

A SOCIAL PLATFORM FOR SOFTWARE DEVELOPERS: USING MODERN WEB STACK

MERN

Centria supervisor

Kauko Kolehmainen

Pages

42

Instructor representing commissioning institution or company

Kauko Kolehmainen

The aim of the thesis was to explore the MERN stack and JavaScript library Redux to build a social

platform application for developers. The thesis has been shown how it works for frontend and

backend. Why a developer needs to know the MERN stack and what made it so popular. or organiza-

tions, there are several reasons why the MERN stack is a good choice. From the ease and speed at

which it helps developers to create and maintain applications to its reliability to the excellent usability

of developers, and interactive elements for web pages, enhancing the user experience.

The thesis is divided into two parts, theoretical and practical. The theoretical part will cover the

MERN stack. The MERN stack is short for ReactJS, Express JS, Node JS, and MongoDB. And the

practical part will cover details the project idea, flowchart, and implementation details.

After months of doing research, the project was built successfully and fully works functionally. The

project created a social media for software developers platform where around the world developers

can interact with each other. For example, they can share their knowledge as a post, like, and com-

ment. Also, they can build their professional profiles. The application was created from scratch. One

of the interesting points about the application is that the application will be fully real-time (SPA) with

no loading time, data will render in a few seconds.

Key words
Express JS, MongoDB, NodeJS, REST API, React JS, Redux JS, Social network.

 2

CONCEPT DEFINITIONS

MERN MongoDB, Express, React, Node

API Application Programming Interface

URL Uniform Resource Locator

NPM Node Package Module

UI User Interface

HTML HyperText Markup Language

JS JavaScript

CSS Cascading Style Sheets

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

JWT JSON Web Token

JSX JavaScript XML

AJAX Asynchronous JavaScript And XML

XML Extensible Markup Language

 3

ABSTRACT

CONCEPT DEFINITIONS

CONTENTS

1 INTRODUCTION ... 1

2 FRONTEND DEFINITIONS ... 2
2.1 Hypertext Markup Language (HTML) .. 2
2.2 Cascading Style Sheets (CSS) .. 2
2.3 JavaScript .. 3
2.4 React .. 3

2.4.1 JSX .. 4
2.4.2 Virtual Dom .. 4
2.4.3 Components .. 5

3 BACK-END DEFINITIONS... 6
3.1 Node Js ... 6

3.1.1 Node Package Manager (NPM) ... 6
3.2 Express ... 7

3.2.1 Asynchronous Programming .. 7
3.2.2 JWT... 8
3.2.3 Understanding middleware .. 8

4 DATABASE... 9
4.1 MongoDB ... 9
4.2 Mongoose ... 10

5 IMPLEMENTATION OF THE PROJECT .. 11
5.1 Tools and Technologies ... 11
5.2 Backend Creation .. 11

5.2.1 Server Creation .. 12
5.2.2 Database Creation .. 15
5.2.3 Authentication and Authorization ... 18
5.2.4 Controllers .. 19
5.2.5 Routes.. 23

5.3 Frontend Creation ... 25

6 CONCLUSION ... 34

REFERENCES... 36

FIGURES

Figure 1. Workflow of backend …………………………………………………………………….....12

Figure 2. NPM package JSON…………………………………………………………………………13

Figure 3. declare package and library………………………………………………………………….14

 4

Figure 4. Database connection and Main API routes ………………………………………………...14

Figure 5. Server PORT and running server ………………………………………………...…………15

Figure 6. User Schema………………………………………………………………………………...16

Figure 7. Post schema………………………………………………………………….……………….17

Figure 8. MongoDB Objects…………………………………………………………………………...17

Figure 9. Authentication……………………………………………………….………………………18

Figure 10. Controller workflow……………………..………………………………………...……….19

Figure 11. User registration…………………………………………………………………………....19

Figure 12. Users check. ………………………………………………………………………………..20

Figure 13. Encrypt password and JWT token activation.……………………………………………...20

Figure 14. Sending email method……………………………………………………………………...21

Figure 15. Email sending and Verification.………………………………...………………………….21

Figure 16. Routes testing from the postman …………………………………………………………..22

Figure 17. followers and following connections in user object………………………………………..22

Figure 18. Declare library and modules.…………………………….…….….….….…………………23

Figure 19. User routes………………………………………….………………………………………24

Figure 20. MyProfile route data.…………………………………………………………………….…24

Figure 21. Post routes.…………………………………………….……………………………………25

Figure 22. Register form and API connection………………………………………………………….26

Figure 23. Frontend visualization…….….……………………………………………………………..27

Figure 24. Signup.……………………………………………………………………………….……..27

Figure 25. Sent activation email and activation page.…………………………………………………28

Figure 26. Login page and Dashboard.……………………………………………………….………..29

Figure 27. Create profile page…………….……………………………………………………………30

Figure 28. User education.….………………………………………………………………………….31

Figure 29. Experience page. …………………………………………………………………………...32

Figure 30. Dashboard. …………………………………………………………………………………33

 1

1 INTRODUCTION

The thesis consists primarily of two major parts. The theoretical part focuses on giving a deep under-

standing of the MERN technologies stack and one of the JavaScript library Redux JS. The MERN

stack, short for M, stands for MongoDB, E for ExpressJS, R for ReactJS, and N for NodeJS. Express is

a server-side web framework, and NodeJS is a popular and powerful JavaScript server platform. And

ReactJS contributed to the client side.

The thesis showed how users could register, log in, and store their information in the database. Each

component in the stack and the associated technologies. The MERN stack makes it very scalable, so

many users can interact with this app simultaneously. This web application ("Developer Meet") is built

to connect developers worldwide, share their experiences, and gather others' experiences.

 2

2 FRONTEND DEFINITIONS

Every software has a frontend and a backend component. The frontend, also known as the client side,

refers to the user interface that the user interacts with. In the past, the frontend was simply responsible

for the visual aspects of a website, such as its layout, color scheme, and font choices. However, with the

evolution of programming languages and tools like React, Vue, and Angular JS, the frontend has become

more dynamic and capable of handling more complex tasks. One of the primary responsibilities of the

frontend is to retrieve data from the backend through an application programming interface (API). The

frontend then presents this data to the user in a visually appealing and intuitive way. For example, on a

social media platform like Facebook, the frontend might display a news feed component that retrieves

updates from the backend and presents them to the user in real time. In summary, the frontend plays a

crucial role in how users interact with and navigate a website or application. It combines design skills

and programming knowledge to create a dynamic and user-friendly experience. (Le 2020.)

2.1 Hypertext Markup Language (HTML)

HTML is a HyperText Markup Language. HTML uses tags to identify a web page's elements and tells

a browser how to lay a web page out on a screen. It uses tags to define elements of a webpage. Without

HTML, nothing is possible in the software, especially the consumer base. So, HTML is a most popular

language and what people see in the user interface. For example, people can post, like, comment and

retweet in Twitter. It happens because of HyperText Markup. HTML is a design of the text. Nowa-

days, people can use HTML in many ways such as- one JavaScript library called react comes with the

JSX. HTML and JSX are quite different, but they work more similar. JSX (JavaScript Extension) is a

React extension that allows writing of JavaScript code that looks very similar to HTML and develop-

ers can use HTML in PUG. (Larsen 2013.)

2.2 Cascading Style Sheets (CSS)

CSS is a Cascading Style Sheet. It describes how HTML objects are displayed on the browser. CSS is

the document style. For example, page layouts, colours, and text fonts are all determined with CSS.

Such as on Twitter, Facebook, or Instagram, user can see responsive and mobile views, lots of colours

and text styles. If a developer needs some colours, buttons, text, menu or any style, developer can

 3

make these by CSS. Nowadays, CSS is quite different from one of the libraries that came with Tealium

CSS. Tealium CSS is like SASS. So basically, SASS combines with the class. If developer write pure

CSS, it takes long time than SASS. Developers try to ignore customs CSS nowadays. They use Tea-

lium CSS, and Tealium CSS is something that if developers write one or two-line codes, they can see

major changes in the front end. (Larsen 2013.)

2.3 JavaScript

JavaScript is one of the most popular language. Before 2014, JavaScript was a complicated program-

ming language. Back in 2014, JavaScript developed with the new structure ES5 and ES6. So, JavaS-

cript widely use around the world and 90% of the applications is now using JavaScript. Without JavaS-

cript, consumers or public based software are impossible to develop. So, JavaScript language play vital

role in the framework and library. JavaScript is like the parent of many libraries or frameworks. And

JavaScript appears with asynchronous systematically. Back in 2014-15, Facebook was quite slow, and

nowadays, Facebook, Twitter, and YouTube are faster because of the ES6’s asynchronous which is up-

dated version of JavaScript. When a user clicks the Like button on a post, at the mean time another

user also clicks on that. Then asynchronous don't wait for others. If your internet is faster than another

user, your Like will be added first. Before it would work as- if a user would click on the Like button

and JavaScript kept the user Like on proceed, then show serial by serial. Nowadays, in modern JavaS-

cript, there is no waiting time and it works faster. On the other hand, JavaScript is a language with an

extensive community in Google. If we compare C++, C, C# Python and JavaScript, among them Py-

thon and JavaScript, is quite popular. Whenever developers face some critical or challenging time,

they can easily find out solutions from Google. Nowadays, JavaScript is more modern than past, a de-

veloper can write one function three times or four times, but JavaScript is reusable today. (Shute

2019.)

2.4 React

React.js is one of the most popular and open-source JavaScript libraries. React is a flexible, reliable,

and declarative library for building user interfaces specifically for single-page applications. And React

allows us to create reusable UI components. It is a component-based front-end library which creates

large web applications that can change data without reloading the page. The main purpose of React is

to be customizable, easy, and fast. React was created by Jordan Walke, a software engineer working

for Facebook. React was first deployed on the Facebook newsfeed and later used in its products like

 4

Whatsapp, Instagram, Uber, Airbnb, Pinterest, Netflix, Amazon, Twitter, and many other companies.

Facebook developed React in 2011 but it was released to the public in 2013. For instance, the number

of views of a particular video, in a platform like Youtube, can be seen automatically, without having to

wait for it to load. Furthermore, without having to reload the page, the number of reactions, on a cer-

tain post or video, can be obtained. This phenomenon is resulted by the React Js. Facebook, Instagram,

and Twitter as a whole, with their trillions of posts and billions of users are counting quadrillions of

likes, comments, and shares every day, which necessitates numerous speeds. This speed can be

achieved with React JS. (Cory 2015.)

2.4.1 JSX

JSX allows us to write JavaScript Html code. JSX converts HTML tags to react elements. JavaScript

extension XML and JSX syntax use in React Js. JSX is an extension to write XML code for elements

and components. JSX tags have a tag name, attributes, and children. JSX is not a necessity to write re-

act applications. Developers can use React without JSX. And JSX makes react code simpler and more

elegant. JSX ultimately transpiles points to an understandable pure JavaScript browser. JSX (JavaS-

cript Extension) is a React extension that allows the writing of JavaScript code that looks very similar

to HTML. Which makes it easier to create templates. (Richey 2019.)

2.4.2 Virtual Dom

The Virtual DOM is a memory of the real DOM that acts as an intermediary between the state of the

application and the DOM of the graphical interface that the user sees in the interface. The document's

structure is defined by it, and the web page or document is converted by the browser. Which is the-

object representation of the document and can be changed or manipulated using a scripting language

like JavaScript. React makes two copies of Virtual Dom from HTML DOM. The virtual Dom is the

main reason for the excessive speed of the React. (Cory 2015.)

 5

2.4.3 Components

Component is considered core building block of any React application, and a single app usually con-

sists of multiple components. Interestingly, React JS allows to use custom React components inside

another concept. Everything in React is a component that makes building UIs much easier. Mainly Re-

act has two types of components one is Functional component and the other one is Class component.

Because they do not have memory, functional components always receive data from other compo-

nents. Additionally, Class Components possess memory and can store data. (Richey 2019.)

 6

3 BACK-END DEFINITIONS

Backend refers to everything data related. The controller is the location where logical operations occur.

The backend takes responsibility for security and what kind of data and logic goes to the front-end.

The backend provides some API. And API is a form of integration. The frontend does not comprehend

everything in the backend, it just comprehends what the backend says. They comprehend one another

because of the API. The backend is the area that houses the business logic, handles security concerns,

and maintains a connection to the database. (Vickler 2021.)

3.1 Node Js

Node JS is a JavaScript runtime environment built on Chrome's V8 JavaScript engine that allows to

run JavaScript code on the server side. NodeJS is open source and open community. Any company or

individual does not own it. It works on all major operating systems, including Windows, macOS, and

Linux. The fact is the OS of choice for many embedded applications. NodeJS gives us access to data-

bases, storage systems, authentication services (such as Auth) and many other capabilities. Node de-

velopers can find many good resources on the web and learn more about Node.js. One good starting

place is the Node.js website. Another good place to learn more about Node.js is in a blog post series.

NodeJS also has many libraries. These libraries can help you with tasks such as connecting to a data-

base. (Herron 2016.)

3.1.1 Node Package Manager (NPM)

Node Package Manager is the default package manager for JavaScript runtime environment Node.js. It

is completely written in JavaScript. We can install any package using NPM on a Node.js project. A

package contains all the source code of modules and can be included in a Node project based on re-

quirements. NPM has two types of packages, public package, and private package. Public package is

like, a developer can create and publish packages that anyone can download and use in their own pro-

jects. Private package is a developer can publish a package the is only visible to you and chosen col-

laborator. Private packages always have a scope, and scoped packages are private by default. NPM

 7

basic commands npm i <packageName> used to install a package from json file in local environ-

ment. And npm i -g <packageName> used to install a package from json file in global environ-

ment. The command npm un <packaeName> used to uninstall a package in local environment.

Some Node.js frameworks Express.js, Koa.js, Socket.io, Nest.js. (Mardan 2014.)

3.2 Express

Express.js is one of the most popular backend web application NodeJS framework. It is very easy to

use and provides a wide range of features that make it perfect for web and mobile application develop-

ment. Express.js has an extensive web community, which is used for commercial applications. The

confidence to use this framework for any project, no matter how big or small, is given to developers by

this framework. With Express.js, you can take advantage of various support packages and additional

features. This will help developers create better programs. However, it does not slow down the perfor-

mance of NodeJS. Express.js is a core component of one of the most popular platforms today that is

NodeJS. Express.js was introduce by TJ Holowaychuk and was first released in 2010. Error handling,

HTTP requests, sessions, and routing were all managed by Express JS. In addition, it reduces the

amount of time for programmers and helps in delivering apps more quickly and efficiently. Using Ex-

press, developers can easily connect to databases like MySQL, MongoDB, and Redis. It is very easy to

learn and manipulate Express.js is for JavaScript developers. (Brown 2019.)

3.2.1 Asynchronous Programming

Asynchronous programming is a programming method that, has been used to speed up our code and

make it more responsive. Asynchronous helps us to move on to another task without waiting for the

first task to finish. Asynchronous programming is widely used in application and web programming, as

it allows an application to continue running without blocking input/output operations. In synchronous

programming, the program flow is blocked until an operation is completed. In asynchronous program-

ming, the program flow is not blocked; instead, the program registers a callback function to be called

when the operation is completed. Asynchronous programming can be implemented in various ways,

such as using threads, callbacks, or promises. The native implementation of promises was added to Ja-

vaScript in 2015. It is a solution to the problems inherent in callback-based asynchronous program-

ming. A Promise is an object that represents a task that will be completed at some point in the future.

 8

Promises have two key methods then() and catch(). Then() method is used to specify what should hap-

pen when the task represented by the promise is completed. And catch() method is used to specify

what should happen if the task represented by the Promise fails. Async/Await is a syntax extension

built on top of promises. It makes working with asynchronous tasks in JavaScript much easier and

more readable. The async keyword is used to create a new async function. (Wilson 2018.)

3.2.2 JWT

JSON Web Tokens (JWTs) define a way to securely transmit the information as a JSON object in a

compact and self-contained way. self-contained means for sending JSON data to the database and re-

turning JSON object data. Additionally, the sending data is protected by digitally signing it with the

HMAC method or by signing it with RSA using a public/private key pair. The digital signature on this

information guarantees its authenticity and trustworthiness. In addition to providing secrecy, JWTs can

also be encrypted. Payloads are encrypted so anyone cannot see the token. There are three main parts

of a JWT header, payload, and signature. Parts are divided with a dot. The header contains the signing

algorithm (HMAC/RSA) and the token type (JWT). Payloads contain information about entities in the

form of claims. Claims are separated into three types: public, private, and registered. (Brown 2019.)

3.2.3 Understanding middleware

Middleware can be used to verify a user's credentials, to verify that a user is authorized to access a re-

source, to log requests, or to perform any other action that needs to be performed before the request is

handled by the controller. In many cases, the controller will use a variety of middleware to verify the

user's credentials and to verify that the user is authorized to access a resource. Some middleware op-

tions that used include, session id, cookies, URL, and authorization. A session ID is used to verify the

user's credentials and to ensure that the user is authorized to access the resource. Cookies are used to

store user data and to ensure that the user is authorized to access the resource. A URL is used to verify

the user's credentials and to ensure that the user is authorized to access the resource. And the authoriza-

tion is used to ensure that the user is authorized to access the resource. (Wilson 2018.)

 9

4 DATABASE

A database is a place where data is stored. Consequently, user can easily access and modify the data

from the database. A system that contains database is called a database management system (DBMS).

Databases are very essential components for all modern applications. As users, we interact with many

databases daily by visiting websites and applications on our phones. Phone numbers, other contact in-

formation, and numerous other details that are stored in a database by the mobile devices of people are

an example of a database. There are a few types of databases that are very important and popular like,

NoSQL Database, Relational Database, Cloud Database, Graph Database, Distributed Database. (Ste-

phens 2008.)

4.1 MongoDB

MongoDB is a document-oriented and NoSQL database. The principal explanations behind picking

MongoDB are they have an enormous informational index and MongoDB is truly versatile. Document-

oriented databases are powerful because they allow applications to evolve quickly. Assuming an appli-

cation records client orders, the application may begin with a straightforward data structure that stores

the name of the customer, quantity, and product order. The application might add new fields to the or-

der document, such as the customer's address, order date, and shipping method. The application can

also add new data types to the customer document, such as the customer's credit rating or preferences.

MongoDB is a NoSQL database, and the NoSQL database is a non-relational database. A NoSQL da-

tabase does not use tables and does not require a fixed schema. A NoSQL database is easy to scale.

There are several reasons why MongoDB is the most widely used NoSQL database. The first reason is

that MongoDB is a document-oriented database. This means that it stores data in documents, which are

like rows in a table. Each document has a unique ID and has number of fields. This makes it very flexi-

ble, as we can add or remove fields as needed. The second reason is that MongoDB is very scalable. It

can be easily scaled up or down, depending on our needs. The third reason is that MongoDB is very

fast. It can handle large amounts of data very quickly and can be used for real-time applications.

(Vohra 2015.)

 10

4.2 Mongoose

NodeJS and MongoDB communicate with each other through the Mongoose. Mongoose validates

schemas and helps to connect code objects with MongoDB objects. Mongoose provides Object Data

Modeling (ODM) to NodeJS. It helps to connect code objects with MongoDB objects. Mongoose also

validates schemas. MongoDB acts as a middleman between objects in code and objects in MongoDB,

ensuring that data in the database is valid. Mongoose contains methods and functions to help NodeJS

and MongoDB understand each other better. (Vohra 2015.)

 11

5 IMPLEMENTATION OF THE PROJECT

This application has a signup system so that users can create new accounts and join the Developers

Meet platform allows developers to interact with each other around the world. Additionally, they can

make their professional profiles and learn by commenting and posting on other posts of the developers.

The application implementation consists of two separate parts, the backend, and the front end. This

thesis covers a limited area. A fascinating aspect concerning the application is, it is planned scalably,

API, tools, and utils have also been created. All the things were created individually. It has validation,

authentication, middleware, controller, scheme, micro-service, and email confirmation. It is from

scratch and fully real-time (SPA) with no loading time. In a few seconds, the data will be rendered.

5.1 Tools and Technologies

The project is built using MERN stack and Redux JS. Mostly in the backend, technology(stack) used

node Js, Express JS, and MongoDB. This application utilized React, Redux, HTML, CSS, and JavaS-

cript on the frontend. In this application, the user's data is stored in MongoDB. The main reason for

choosing MongoDB it has large data set. MongoDB is the most popular NoSQL database and is very

scalable. Frontend API is operated by Redux JS. MERN stack has gained popularity nowadays. More

applications are developed using the MERN stack. In terms of tools, we require a source code editor,

Visual Studio Code (VSCode), Google Chrome, Postman, and MongoDB. Postman is used to perform-

ing API calls, while MongoDB shows us what kind of data have in our database.

5.2 Backend Creation

The backend of a software application is responsible for managing and processing data, as well as han-

dling server-side tasks and functionality. One common way to build the backend of a web application is

by using a JavaScript runtime environment called Node.js, along with a web application framework

called Express.js. Node.js allows developers to write server-side code in JavaScript, which can be exe-

cuted on the server rather than in the user's browser. Express.js is a lightweight framework built on top

of Node.js that simplifies the process of building and deploying web applications. It provides a set of

tools and features for routing, middleware, and other common backend tasks. To store data, the backend

can use a database management system like MongoDB. This NoSQL database stores data in a flexible,

 12

JSON-like format and can scale easily to handle large amounts of data. The Mongoose library is often

used to connect to and interact with a MongoDB database from a Node.js application. Finally, the

backend may expose certain endpoints or routes that the frontend (client-side) can access through an

API. These endpoints allow the frontend to send and receive data from the backend, enabling users to

interact with the application and access its functionality.

Figure 1. Workflow of backend.

Figure 1 shows the basic server architecture and how the server works. whenever a user clicks on a

view, such as a dashboard, personal profile, edit, comment, or share. it is hit the API, and the API con-

nect with the server. The server has a route connection. The router has a connection with the controller.

The controller is connected to the router. Additionally, the controller contains all necessary user-spe-

cific logic. As a result, the controller checked the environment variables and matched all the model's

data. All security is checked by the environment, and the model connects to the database. Finally, the

user receives the data via API from the environment and database.

5.2.1 Server Creation

The server side, which also refers to the application's internal workings, is typically referred to as the

backend. Although it is not directly involved with the user, this section of the website oversees manip-

ulating and storing application data. An explanation of the technologies used to create this application

is included in this section. The server creation requires the installation of nodeJs. And then, compile

the command npm init for building the nodeJs project. This command will add basic information

about the project in packageJson. (Figure 2.)

 13

Figure 2. NPM package JSON.

Afterwards, install Express JS and create an entry file called serverJs, and declare express, mon-

goose, body-parser, cors, morgan. Mongoose translates between objects in code and vali-

dates schema, and it represented of those objects in MongoDB to Node JS. Body-parser is a mid-

dleware service, and it is parsing the incoming request bodies in a middleware before handling. Cors

is used to secure web APIs, and it allows any domains to make requests against web API. With Mor-

gan developer can debug and create log files for HTTP requests and errors in Node JS and Express

JS. Dotenv allows the creation of secret keys for source code and keeps them from the public. (Fig-

ure 3).

Figure 3. declare package and library.

 14

Figure 4 shows the connection between the server and the database. During this part, Mongoose is

used since it contains the necessary methods to work with MongoDB. We can use Mongo driver to in-

teract with MongoDB. It is more convenient with Mongoose. As can be seen in Figure 4 main API

routes. They are later divided into sub-routes inside the routes folder. In this part, when a user clicks

on a route, it takes them to the routes of the router folders. For example, if a user hits /api/users

route or schools, posts routes, it hits all the sub-routes located inside the routes/user.js

file, post.js file, and schools.js files.

 Figure 4. Database connection and Main API routes.

Figure 5 shows the app port and successfully run message. This code sets up a server to listen for in-

coming connections on a specified port. Here define which port this project will run const PORT =

process.env.PORT || 8080. This line defines a constant called PORT and sets it to the value

of the PORT environment variable if it exists. If the PORT environment variable is not set, it defaults

to 8080. The PORT environment variable is often used to specify the port number on which a server

should listen for incoming connections. This allows to easily change the port number without modify-

ing the code. The second line code, app.listen(PORT,() =>(console.log(App lis-

tening on ${PORT}))), This line tells the server to start listening for incoming connections on

the port specified by the PORT constant. The second argument is a callback function that will be exe-

cuted when the server starts listening for connections. In this case, the callback function simply logs a

message to the console indicating that the server is listening on the specified port. The result of run-

ning the project and output looks like this (Figure 5).

 15

 Figure 5. Server PORT and running server

5.2.2 Database Creation

For connecting MongoDB to Express Js, it is necessary to install a Mongoose package. Mongoose is

used to create a schema for MongoDB. Schema interfaces are used to define models. The schema al-

lows the users fields stored to define values and validation methods. In this application, the schema

will store all user information. There are many different types and properties for each field in this

schema. Name, email, and password are the three mandatory fields, and all fields are strings. In

schools, following, followers fields have used square brackets. Square brackets use for ta-

bles, column names, or identifiers. So here one user can study more schools, and users can follow

many people and he may have many followers. Additionally, the user can post multiple times. (Figure

6).

 16

Figure 6. User Schema.

In this DB schema has been used user post details. Each field in this schema has many different types

and properties such as post, post id, postdate, post likes and comments objects. When a

user comments on a post it automatically added user details, name, text, avatar, and date.

As we know, MongoDB uses objects instead of structured tables. These objects also used connections,

references, and data types of properties (Figure 7).

 17

Figure 7. Post schema.

MongoDB database objects are depicted in Figure 8. In the database properties, we can see the user

object id, name, email, phone number, hash password, and avatar, as well as

linked posts, schools, following, and followers. When a user enters a plain password,

a hashed or encrypted version of the password is saved in the database. A user can have many

posts, schools, following and followers that are all linked together, because of all

data are string. (Figure 8)

 Figure 8. MongoDB Objects.

 18

5.2.3 Authentication and Authorization

Authentication is the process of identifying users or anyone else and getting access to logging requests

or performing any other action that needs to be completed before the authentication handles the re-

quest. It is the first step of a system with a user element. After identifying the user's identity, the sys-

tem redirects to the user's profile. Hence, Authorization gives the permissions to the current account

that has just been authenticated.

Figure 9. Authentication

In the authentication method, we can see here is checked x-auth-token key in request object. If

there is no x-auth-token provided, then the function throws an error that “No token, authorization de-

nied”. And if a token is found, then it verifies with the JWT secret key, which is stored in the JWT to-

ken. After verifying, x-auth-token add a new key current user with the value of that verification in

the request object and proceeded to the next function. As request object is wrapped inside the try-catch

block, if any error occurs, the function will return an error saying, "Token is not valid." (Figure 9).

 19

5.2.4 Controllers

Controllers are responsible for handling incoming requests and returning responses to the client. A

controller's purpose is to receive specific requests for the application. Controllers receive the request

from the user, and then the controller function gets the requested data from the models and return it to

the user to view in the browser (Figure 10).

Figure 10. Controller workflow.

In this figure, controller has been used for user registration. Firstly, async function checks for any pos-

sible errors in the request and if any error is found, then sends error status 400 to the frontend. Other-

wise, it passes the request and response to the next functions (Figure 11).

 Figure 11. User registration.

When a user registers the signup form and if this user's given email is found in the database, it sends an

error message saying, "User already exists". Otherwise, the function creates a new user with the given

information name, email, password, avatar, phone, birthdate, with the avatar

size and user can add the gravatar URL. (Figure 12).

 20

Figure 12. Users check.

As shown in figure (Figure 13), a plain password has been hashed by the bcrypt method with a salt

which is generated with bcrypt.genSalt with a specific length value. As part of the authenticate

method, the function receives a plain password and hashes it, afterwards compares it with the en-

crypted version stored in the database. And creates a payload for signing a JWT token with newly cre-

ated user details with JWT_ACCOUNT_ACTIVATION secret and adding an expiry date of 5 hours.

 Figure 13. Encrypt password and JWT token activation.

 21

The registerUserEmail function generates mail object using AWS mail service ses to send verification

email to user mail. After sending the email, the method checks whether it was delivered or not. If it has

been sent to the user then the method shows a message saying, “Email has been sent to user email, Fol-

low the instructions to complete your registration”. Otherwise, the error message “Sorry, We Could

Not Verify Your Email” will be displayed if this method finds any errors. (Figure 14).

Figure 14. Sending email method

The sendEmailOnRegister method (Figure14) has successfully sent a verification email via AWS

email service ses to the user email mdalamin.eu@gmail.com for registering user account in the De-

veloperMeet. Afterwards, the user Alamin received the verification email and if the user clicks the

link. User account will be verified and returned the message, “You are registered”. If user exist on the

database, then the message saying, “User already registered” (Figure 15).

Figure 15. Email sending and Verification.

 22

After successful authentication by email, all data of the user is transmitted to the database. In figure 16

the login routes have been tested, and sending email, password body to /api/users/login. After

that, the user was able to successfully log in, and send user id, name, email, token, and

loggedin status true (Figure 16).

 Figure 16. Routes testing from the postman

As shown in figure 17, the followers and following connections between two user with object id, So in

the MongoDB database has been shown, a Testing user follow user Alamin and the Testing user Id

added the user Alamin follower list, Besides, Testing user following list added the Alamin Id. These

users are connected using the reference of their user id. And the posts, schools, follow-

ing, and followers is an array, because a user can have many posts, schools, follow-

ing, and followers.

Figure 17. followers and following connections in the user object.

 23

5.2.5 Routes

To ensure better management and clear structure of a large project, routes files must be grouped into

certain folders. Three router files user, schools, and posts has been created in this project. The user

route file has declared express and other modules from the different directories. For using this method

from the controller, first declare user, follow, profileController and for the authentica-

tion, declared authguard.(Figure 18.)

 Figure 18. Declare library and modules.

In figure 19, different routes for user modules can be seen . So, if somebody hits the route form, then

he will be redirected to that specific route. In addition, the post method for the /register, /login, /acti-

vate, /reset-password, and /profile routes are shown in Figure 19. In addition, the Get method is used

for the routes /current and /myprofile in Figure 19, while the patch method is used for the routes en-

terpassword, edit-user, and experience. The put method applies to the /education and the delete method

applies to the /delete-experience/:id routes, respectively.

 24

Figure 19. User routes

After hitting /user/myprofile and receiving a response from the server, the data are displayed in

Figure 20. It contains all the logged-in user related and nested data. Figure 20 shown a Testing user

details such as, user id, name, gravatar link and social account link, skills. The

user entered his company name, personal website, address, bio, job title,

and starting and ending dates in the experience field. The end date is null because the

user is still employed by his current employer. The user entered the name of his university, de-

gree, and field of study in the education field. The end date is null because the user is still

enrolled in his current institution. (Figure 20.)

 Figure 20. MyProfile route data.

 25

Figure 21 has been shown all the post-related routes. If somebody hits /post/anyotherroute

user will be redirected to that specific route. The /addpost route creates posts using the post method,

while the posts/:id route uses the get method route, which only brings one post, and /post routes, which

brings all posts. Additionally, the patch method is used to edit posts via the id /edit-post/:id route. Fi-

nally, the Put method is used for the /comment-post/:id route to comment on a post and /like-post/:id

routes to like a post.

 Figure 21. Post routes.

5.3 Frontend Creation

The frontend can be discussed at this point. This thesis discussed three core components of the MERN

stack. Now is the time to explain React. But Redux JS has been used in this project. Redux provides us

with client side and Redux behaves consistently across client, server, and native environments and it

easy to test. Prior to this upgrade, all backend functionalities had to be tested using Postman. First and

foremost, this project has installed React and Redux correctly. Additionally, React JS runs with a mes-

sage in the default browser. After that, the Action, View, Store, Reducer, Routes, and Utils folders in

the default-src folder were created. Frontend and backend parts are hosted from different domains. If a

request is called from the client to the server, it will show an error. Therefore, we connected to the CORS

using the env file. A CORS allows to whitelist requests from specific locations by specifying response

headers like 'Access-Control-Allow-Origin'. In cases where it is legitimate to do so, it is an

important protocol to enable cross-domain requests. Additionally, it protects users from malicious web-

sites accessing additional resources unauthorized by them. Fetching data in React and Redux JS all is a

dynamic rendering using API and built most modern applications. Users can get resources from API

endpoints.

 26

Figure 22. Register form and API connection.

Figure 22 shown exports a function called registerUser, which is an asynchronous function that

sends a request to a server to register a new user with the provided user data. The function takes in an

object called userData that contains the data for the new user, and it returns a function that takes in a

dispatch function. The inner function is a "thunk" function that can be used to dispatch actions to a

Redux store. The function first defines a config object, which contains a headers property. The

headers property is an object with a single key-value pair, where the key is "Content-Type" and

the value is "application/json". The function then uses a try-catch block to send a POST

request to the 'api/users/register' endpoint with the userData and config as arguments.

If the request is successful, the function dispatches an action with the type of REGIS-

TER_SEND_EMAIL and the response data as the payload. If there is an error, the function will catch

the error and extract the errors array from the error response. If the errors array is not empty, the

function will iterate over the array and dispatch a setAlert action for each error in the array, passing

in the error message and a string value of "danger" as arguments. Finally, the function will dispatch

an action with the type of REGISTER_FAIL. (Figure 22.)

 27

 Figure 23. Frontend visualization.

At this point it is time to test the result application after creating the front-end, back-end, and connec-

tion between them. Figure 23 displays home page, which contains the signup and login page. And in

the navbar user can see all developers after click Developers. To access the DeveloperMeet, users first

need to create an account by clicking the Signup button using a valid email address and filling all

fields. Afterwards, user can login by clicks Login button. (Figure 23.)

 Figure 24. Signup.

 28

The DeveloperMeet application's signup page with email, name, password, and confirm password is

depicted in Figure 24. The DeveloperMeet user must enter a valid email address and password in all

fields to sign up. In this project defines a Register component that is used for creating a new user

account. The component has a form with four input fields name, email, password, pass-

word2. When the form is submitted, the component checks if the password and password2 values are

the same. If they are, it sends a request to the server to create a new user with the name, email, and

password values. If the passwords do not match, it displays an error message. If the request to create a

new user is successful, it redirects the user to the /notification route. (Figure 24.)

 Figure 25. Sent activation email and activation page.

After submission of the registration form, user will see the message "Please check your email and active

your account." And user will receive a confirmation email containing instructions on how to complete

the registration process by clicking an activation link. When the user clicking this link, the activation

page is displayed. Afterwards, user clicks the "activate" button it sends a request to the server to activate

the user's account. The activate method is called when the form is submitted. It prevents the default form

submission behavior and sends a POST request to the 'http://localhost:3000/api/us-

ers/activate' endpoint with the token value as the request body. If the request is successful, it

displays a notification using the react-toastify library. The notify function is called when the

button is clicked. It displays a notification using the react-toastify library and then redirects the

user to the /dashboard route using the Redirect component from the react-router-dom library. The render

method is responsible for rendering the form and handling the rendering of the page based on the value

of the token property in the component's state. If the token property is not empty, it will render a Redirect

 29

component that will redirect the user to the /dashboard route. If the token property is empty, it will

render the form. (Figure 25.)

Figure 26. Login page and Dashboard.

Figure 26 shown the user can login with the email address and password and after login user can see the

dashboard in the DeveloperMeet application. In addition, Figure 26 is result of loginUser function,

the loginUser function takes two arguments, userData and history. Therefore, userData

is an object containing the email and password of the user attempting to log in, and history is an object

containing information about the current location in the application. The loginUser function makes

an HTTP POST request to the /api/users/login endpoint with the userData object as the

request body. If the request is successful, it dispatches an action of type LOGIN_SUCCESS with the

response data as the payload and calls the LoadUser function to set the logged in user. It also uses the

history object to navigate to the /dashboard route. If the request is unsuccessful, the function

dispatches an action of type LOGIN_FAIL and uses the setAlert function to display an error message

to the user. By clicking the Create Profile button, which takes users to a blank form on their profiles, it

is now time to optimize the profile.

 30

Figure 27. Create profile page.

This figure 27 code defines a React component called CreateProfile. The structure for complet-

ing client profiles in the DeveloperMeet application. The component has a state object with several

properties including handle, company, website, status, skills, bio,

githubusername, location. And displaySocialInputs like twitter, face-

book, linkedin, youtube, instagram, snapchat. Profession and skills will be listed

on this page. The user can move on to the next form after completing this one. The component has sev-

eral methods, including onChange, onSubmit, componentDidMount, and compo-

nentDidUpdate. The onChange method is used to update the state when the user types into an

input field. The onSubmit method is called when the user submits the form. It prevents the default

reload behavior and destructures the state object to create a new object called createPro-

fileData, which is then passed to the createProfile method from the component's props. The

componentDidMount method is called when the component is mounted to the DOM, and it calls

the currentUserProfile method from the component's props. The componentDidUpdate

method is called when the component updates and it checks whether the profile property of the profile

object from the component's props has any keys. If it does, then the user is redirected to the dashboard.

 31

Figure 28. User education.

In this figure 28 shows a form of education and defines a React component called Education that

displays a table of education records. The component first declares a variable called educationCon-

tent that will store the JSX element to render in the table. If education is not empty, education-

Content is assigned the result of mapping over the education array and returning a tr element for

each record, and tr defines a row in a table. Each tr element contains several td elements that display

the school’s name, degree, field of study, and duration of the education record. And td defines a cell in

a table. If education is empty, educationContent displays a message saying no education rec-

ords have been added. Finally, the application was built for developers. After submitting this form user

can proceed to the next form.

 32

Figure 29. Experience page.

This Figure 29 defines an Experience form, in this form developers can add any previous or current

job experience. Therefore, user can fill in their previous or current job/internship status. This figure 29,

expects a prop called experience, which is an array of objects containing information about a person's

work experience. The component has a single method called render(), which returns the JSX that

will be rendered to the screen when the component is used. The render() method first checks if the

experience prop is defined and has a length greater than 0. If this is true, it maps over the array of ex-

perience objects and returns a table row <tr> for each object, with the company name, title, and start

and end dates as table cells <td>. If the experience prop is not defined or has a length of 0, the com-

ponent returns a message saying, "You have not yet added your experience". The Moment component

is being imported from another library called "react-moment" and is being used to format the

dates in the form and to fields of the experience objects. After using the submit button to fill out the

form DeveloperMeet can be used by users right away.

 33

 Figure 30. Dashboard.

After successfully submitting all the details from the previous parts, user can see those data in their

dashboard. This figure 30 defines a Dashboard component in React, which is a JavaScript library for

building user interfaces. The component is connected to the Redux store, which is a state management

library for JavaScript applications, and uses the currentUserProfile action to fetch the current

user profile data from the server when the component mounts. The Dashboard component expects two

props, profile, and auth. The profile prop contains the current user profile data and the auth

prop contains the current user authentication data. The component has a single method called ren-

der(), which returns the JSX that will be rendered to the screen when the component is used. The

render() method first destructors the profile and auth props and the loading field from the profile

prop then checks, if the profile prop is null, or the loading field is true. It returns a Spinner component.

If the profile prop is not null and the loading field is not true, the code checks the profile object keys. If

it does, it renders the username and the Profile-Action, Experience, and Education com-

ponents, passing the experience and education fields from the profile object as props. If the profile object

does not have any keys, it renders a message asking the user to create a profile and a link to the "create-

profile" route.

 34

6 CONCLUSION

Using the MERN technology stack, which includes the MongoDB database, Express JS, Node JS, and

the frontend react JS, a social platform application is the aim of this thesis. Using Redux JS, bootstrap,

HTML, and CSS simultaneously, this project explained the client, server, and a few frameworks and

libraries. Consequently, the aim has been accomplished. This application was made to connect develop-

ers all over the world so that they can learn from each other's experiences and share their knowledge.

Users can now create accounts on this platform. Additionally, they can create professional profiles. Ad-

ditionally, they can acquire the skills necessary for professional success. The application is entirely new.

The data will render in a few seconds and this application will not take any time to load. The thesis

demonstrated that users could sign up, log in, and store their data in the database. This project built a

secure authentication and authorization platform and all the minimum requirements for social media.

 35

REFERENCES

Brown E. 2019. Express is basic framework for building web application and API with node js

server. Available: https://books.google.fi/books?id=-Dq-

DwAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onep-

age&q&f=false. Accessed: 20.06.2022.

Cory G. 2015. React solves a specific set of problems, and in general, a single problem.

Available: https://itbook.store/books/9781484212462. Accessed: 29.03.2022.

Le M. 2020. Different teams will often have very different ideas of what part of their app is the

frontend. Available: https://www.theseus.fi/handle/10024/340287. Accessed: 02.05.2022.

Larsen R. 2013. HTML & CSS: design and build websites. Available:

https://books.google.fi/books?id=QwnWLMtXU7cC&printsec=frontcover#v=onep-

age&q&f=false. Accessed: 03.05.2022.

Mardan A. 2014. NPM allows us to register our packages with a name so that we can im-

port/export this package. Available: https://www.amazon.com/Practical-Node-js-Building-

Real-World-Scalable/dp/1430265957 Accessed: 15.05.2022.

Mardan A. 2014. Node JS is a platform for writing JavaScript applications for server side.

Available: https://www.amazon.com/Practical-Node-js-Building-Real-World-Scala-

ble/dp/1430265957 Accessed: 15.05.2022.

Richey B. 2019. The beauty of building a modern web application is being able to take ad-

vantage of functionalities such as a Progressive Web App (PWA). Available:

https://books.google.fi/books?id=Fs6KDwAAQBAJ&printsec=frontcover#v=onep-

age&q&f=false. Accessed: 22.04.2022.

https://books.google.fi/books?id=-Dq-DwAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.fi/books?id=-Dq-DwAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.fi/books?id=-Dq-DwAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://itbook.store/books/9781484212462
https://www.theseus.fi/handle/10024/340287
https://books.google.fi/books?id=QwnWLMtXU7cC&printsec=frontcover#v=onepage&q&f=false
https://books.google.fi/books?id=QwnWLMtXU7cC&printsec=frontcover#v=onepage&q&f=false
https://www.amazon.com/Practical-Node-js-Building-Real-World-Scalable/dp/1430265957
https://www.amazon.com/Practical-Node-js-Building-Real-World-Scalable/dp/1430265957
https://www.amazon.com/Practical-Node-js-Building-Real-World-Scalable/dp/1430265957
https://www.amazon.com/Practical-Node-js-Building-Real-World-Scalable/dp/1430265957
https://books.google.fi/books?id=Fs6KDwAAQBAJ&printsec=frontcover#v=onepage&q&f=false
https://books.google.fi/books?id=Fs6KDwAAQBAJ&printsec=frontcover#v=onepage&q&f=false

 36

Shute Z. 2019. Speed up web development with the powerful features and benefits of JavaS-

cript. Available: https://books.google.fi/books?id=XiWGDwAAQBAJ&printsec=frontcover.

Accessed: 02.05.2022.

Stephens R. 2008. A database can be a powerful tool for doing exactly what computer pro-

grams do best: store, manipulate, and display data. Available:

https://books.google.fi/books?id=qGgpYBighBcC&printsec=frontcover. Accessed:

10.06.2022.

Vohra D. 2015. MongoDB consist of binary files and services that make the infrastructure of

the server and store the data. Available:

https://books.google.fi/books?id=Ra1PCwAAQBAJ&printsec=frontcover#v=onep-

age&q&f=false. Accessed: 25.06.2022.

Vickler A. 2021. Backend development in simple terms is all the things happening in the back-

ground that you cannot visibly see. Available: https://www.amazon.com/Javascript-Back-End-

Programming/dp/B08YFC7YZG. Accessed: 22.04.2022.

Wilson E. 2018. The MERN stack is a collection of great tools - MongoDB, ExpressJS, React,

and Node - that provide a strong base for a developer to build easily maintainable web applica-

tions. Available: https://books.google.fi/books?id=HnxeDwAAQBAJ&printsec=frontcover.

Accessed: 20.03.2022.

https://books.google.fi/books?id=XiWGDwAAQBAJ&printsec=frontcover
https://books.google.fi/books?id=qGgpYBighBcC&printsec=frontcover
https://books.google.fi/books?id=Ra1PCwAAQBAJ&printsec=frontcover#v=onepage&q&f=false
https://books.google.fi/books?id=Ra1PCwAAQBAJ&printsec=frontcover#v=onepage&q&f=false
https://www.amazon.com/Javascript-Back-End-Programming/dp/B08YFC7YZG
https://www.amazon.com/Javascript-Back-End-Programming/dp/B08YFC7YZG
https://books.google.fi/books?id=HnxeDwAAQBAJ&printsec=frontcover

	1 INTRODUCTION
	2 Frontend DEFINITIONS
	2.1 Hypertext Markup Language (HTML)
	2.2 Cascading Style Sheets (CSS)
	2.3 JavaScript
	2.4 React
	2.4.1 JSX
	2.4.2 Virtual Dom
	2.4.3 Components

	3 BACK-END DEFINITIONS
	3.1 Node Js
	3.1.1 Node Package Manager (NPM)

	3.2 Express
	3.2.1 Asynchronous Programming
	3.2.2 JWT
	3.2.3 Understanding middleware

	4 Database
	4.1 MongoDB
	4.2 Mongoose

	5 Implementation of the Project
	5.1 Tools and Technologies
	5.2 Backend Creation
	5.2.1 Server Creation
	5.2.2 Database Creation
	5.2.3 Authentication and Authorization
	5.2.4 Controllers
	5.2.5 Routes

	5.3 Frontend Creation

	6 CONCLUSION

