"T’) Tampere University of Applied Sciences

Code Obfuscation
Methods and Practicality Within Automation

Kurtis Wilhoite

BACHELOR’S THESIS
August 2022

Software Engineering

ABSTRACT

Tampere ammattikorkeakoulu
Tampere University of Applied Sciences
Bachelor’s Degree Programme in Software Engineering

Wilhoite, Kurtis:
Code Obfuscation
Methods and Practicality Within Automation

Bachelor's thesis 53 pages, appendices 6 pages
August 2022

This thesis discusses, analyses, and explains the four primary methods of code
obfuscation: renaming, control flow, debug, and string obfuscation, as well as
briefly covering two other notable protections: tamper-proofing and watermark-
ing. Examples of implementations were outlined and explained, as well as con-
siderations to the various forms that these implementations could take.

Four code obfuscation solutions were selected for their professionalism, cost,
security, and being reliably updated when compared to other solutions: Confus-
erEx2, Eziriz’'s .Net Reactor, Eazfuscator, and Babel.

Tests were then explained and implemented to assess the four code obfusca-
tion solutions and their qualities of functionality preservation, usability, the level
of obfuscation they deliver, and the performance cost prevalent in each. The ob-
fuscation methods offered by each tool were outlined, as well as any other pos-
sibly unique protection features.

Functionality was performed as a pass or fail test using a real sample process
prevalent in an automation company. Usability was scored using a base of cre-
dentials and qualities. Obfuscation level was analysed and various techniques
the tools implement were noted and explained. Performance cost was tested
through the timing of a sample process from start to finish, and then cross refer-
enced with the non-obfuscated sample code’s original performance.

Lastly, comparisons were drawn between the four compared tools, and each
were ranked based on each test and their performance. Ultimately, it was con-
cluded that .Net Reactor was the most favourable of these, using the typical en-
vironment of an automation company, due to the strong level of obfuscation, low
performance cost, and easy to use Ul (User Interface).

Key words: obfuscation, automation, security, code, protection

CONTENTS

1 INTRODUCTION ... 6
1.1 What is Code Obfuscation?cooriiiiiiiiiiii e 6
1.2 Why is code obfuscation beneficial?cccoiiiiiiiii i, 7
1.3 How useful is obfuscation within automation?................cccuvveeneeeee. 8

2 OBFUSCATION METHODS ... e 9
2 T (=1 0 F=1 11 T PSPPI 9

2.1.1 Methodologyccuiiiiiiiiiee e e 9
2.1.2 ANAIYSIS ..cooiiiiiiiiiiii e 11
2.2 Control Flow: Dummy Code, and Opaque Predicate Insertion..... 13
2.2.1 Methodologyouoiiiiiiiie e e 13
2.2.2 ANAIYSIS ..cooiiiiiiiiiiiii 15
2.3 Debug and Unused Code Removal...........ccccceevieiieiiiiiiiiiiieneee, 16
2.3.1 Methodologycuoiiiiiiiiee e e 16
2.3.2 ANAIYSIS ..coeiiiiiiiiiiiii 18
2.4 String ENCryption........cccooiiiiiiceee e 19
2.4.1 Methodologycuuoiiiiiiiiie e e 19
2.4.2 ANAIYSIS ..cooiiiiiiiiiiiiii e 20

3 OTHER NOTABLE PROTECTIONS ... 21

3.1 Tamper-Proofingcooiiiiiiiieee e 21
3.1.1 Methodologyccooviiiiiiiiiii 21
3.1.2 ANAIYSIS ... 23

3.2 Watermarking..........cooiiiiiiii e e 24
3.2.1 Methodologycccooviiiiiiiiiiii 24
3.2.2 ANAIYSIS ... 26

4 TESTING PLAN ..o 27

4.1 Qualities and TeStS ...covviveiiiiiiie e 27
4.1.1 Functionality Preservationc.ooooiiiiiiiiiiiiee e 27
4.1.2 Obscurity and Resilience............oevvvvveiiiieiiiiiiiiiiiiiiiieeeeeee 28
4.1.3 Performance Cost..........oooiiiiiiiiiiiiiee e 30
4.1.4 USADIlItYoveeieiiiiiiiiiiieeeeeeeeee e 30

ST {0 1 | R 1 31

5.1 CONFUSEIEX2Z ... 31
5.1.1 Functionality Preservation and Usability............................. 31
5.1.2 Obscurity and Resilience..........cccccvvvvviiiiiiiiiiiiiiieeeeeeee 32
5.1.3 Performance COSt........ccooiiiiiiiiiiii e 33

5.2 BZINZ'S INEet REACIONo e 35

5.2.1 Functionality Preservation and Usabilitycccccccoee. 35

5.2.2 Obscurity and Resilience...........cccccceeiiiiiiiiiiiiiieeeeeeee 36

5.2.3 Performance COSt........coooiviiiiiiiiiii e 37

5.3 BEazZfuSCatOro 38
5.3.1 Functionality Preservation and Usability.................ccccc... 38

5.3.2 Obscurity and Resilience............cccvvvviiiiiiiiiiiiiiiiiiiiiiieeeeee 39

5.3.3 Performance COSt........cooovviiiiiiiiii e 39

ST T | o= PP 41
5.4.1 Functionality Preservation and Usability...............ccccccooe. 41

5.4.2 Obscurity and Resilience...........ccccvvviiiiiiiiiiiiiiiiiiiiiiieeeeee 42

5.4.3 Performance Cost.........ccccccvviiiiiiiiiiii e 43

SR I O7o] o1 o F= 1 - [44
5.5.1 Functionality Preservation and Usability................ccccccooo. 44

5.5.2 Obscurity and Resilience...........cccccoevieiiiiiiiiiiiiiieee, 44

5.5.3 Performance COSt........ccoovviiiiiiiiiii e 45

6 DISCUSSION ..o e e e nnnes 46
REFERENGCES ...ttt 47
APPENDICES. ... 48
Appendix 1. Usability Test Criteria.............ooeiiiiiiiiiiiiiii e, 48
Appendix 2. Obfuscated ConfuserEx Sample.........ccccccceeeeieeeeiennnnnnnnn. 49
Appendix 3. Obfuscated .Net Reactor Sampleccccceeevveeeienennnnnnn. 50

Appendix 4. Obfuscated Babel Sampleccccccoiiiiiiiiii e 52

GLOSSARY

Build

Compilation

Debug

Decompilation

Deployment

Dynamic

Encryption

Environment

IDE

Obfuscate

Pipeline

Project

Source code

The process of converting source code into a
standalone software program which can be run. Com-
pilation is a part of the building process.

Translation of source code from a human readable and
understandable language into low level binary under-
stood by computers.

To identify or remove errors from software.

The act of transforming a compiled program or assem-
bly back into readable source code

The act or process of providing a software publicly or to
a customer.

Used to signify something’s ability to be adapted or
changed.

The act or process of encrypting something: a conver-
sion of something (such as data) into a code or cipher.
A set of programs, libraries, files, and utilities used in
the creation of a cohesive software program.

An integrated development environment: a software
which combines development and building tools into
one UL.

To make obscure: not readily understood or clearly ex-
pressed.

An automated series of processes used to compile,
build, test, or deploy code.

All assemblies and files that make up a program

A program’s human-readable base code before being

compiled or otherwise changed.

1 INTRODUCTION

The field of technology is well known for constantly expanding and twisting in new
and inventive directions. Companies, both large and small, work diligently to ex-
pand their programs and innovations with new features, protections, and optimi-
zations. Some programs are large, simulating entire worlds for users to get lost
in. Some are small, perfecting features down into fewer and fewer lines as they
go along. Whether the program is made only with the intent to hone the devel-
oper’s skills or to offer an invaluable tool like no other, all programs have two
things in common: 1. They all have time, effort, and/or knowledge put into them
and 2. Their source code can all be understood, if given enough time, by nearly

anyone with a working knowledge of coding.

That second part is worrisome and maybe even terrifying depending on who you
ask. What do you do if you are selling this code as a product? What happens if a
customer takes it upon themselves to alter your company’s code themselves?
Anyone who can reverse engineer a program may be able to see this source

code and copy or change it as they please.

While it may be impossible to completely prevent this possibility, there are many
layers of security that companies and individuals can go through to minimize this
risk. Encryption, nondisclosure agreements, firewalls, multi-factor authentication,
and data loss prevention tools (just to name a few), all exist for the purpose of
giving more control over who sees a company’s source code. One additional se-

curity layer is called “Code Obfuscation”.

1.1 What is Code Obfuscation?

To obfuscate something is to make it obscure: not readily understood or clearly
expressed (Merriam-Webster n.d.). Applying this to the context of software, code
obfuscation is the act of making source code more difficult to understand.

There are many methods to achieve this, which will be discussed in depth later,

but in essence they all try to transform source code in some way to make it less

7

readable while keeping its original purpose. Many methods can even be used in

combination with each other for extra layers of coverage.

One rudimentary example would be a program swapping variable names to re-
main consistent but more difficult to read (Figure 1). While this is not an example
of a secure level of obfuscation (which will be explained further later), this exem-
plifies why, over the span of an entire program and in addition to other forms of

obfuscation, this would result in the code being mostly indecipherable.

Original Code Obfuscated Code
public int rectangularPrismArea(int length, int width, int height) public int Afs3mnB4p(int Bfp12Q4, int 1Isk5dSSc2, int Po2Kls4M5)
{
if (length = 0 && width > 0 && height = 0) if (Bfp120Q4 = 0 && 1Isk5dSSc2 = 0 && Po2Kis4M5 = 0)
intsides1=2* length * width; |::>. ©intM4n2ensd2l=2* Bip12Q4*~ 11sk5dSSc2;
int sides2 = 2 * length * height; int Is3k9dmM4Kke12= 2 * Bip12Q4* Po2Kls4M5;
int sides3 = 2 * width * height; int be1sas324dkme3= 2 * 1IskbdSSc2* Po2Kls4M5;
return sides1 + sides2 + sides3; return Mdn2ensd2l+ 1s3k9dmM4Kke 12+ be1sas324dkme3;
return -1; return -1;
} H

. AN /

Figure 1. Rudimentary example of obfuscated code using a renaming technique

1.2 Why is code obfuscation beneficial?

Obfuscation acts as a layer of protection and a deterrent. The code can be mixed
to the point where it is incomprehensible while still being fully functional by ma-
chines. The intent is to make the code overly troublesome to read/modify in case
of the program is being reverse engineered, while still allowing the code to func-

tion as it was intended to.

Some methods may add a bit of randomness to their obfuscation and trusting that
the developer has the source code copied on a more secure platform. Thus, mak-
ing an obfuscated version much more demanding to reverse engineer. In this
case, not even the developer obfuscating the code may know what the final prod-

uct will be or be able to understand it.

8

Many methods have their own separate benefits as well: some are easy to use,
can be automated using already existing software building and deployment pipe-
lines or development features, and some can even increase efficiency by short-

ening code, compressing files, or removing unused functions or variables.

Like the locks we use on our homes, it is there to dissuade others who may try to
enter, but an experienced crook may have ways around it. In either case, the level
of entry to access our belongings is heightened. The NIST (National Institute of
Standards and Technology, part of the U.S. Department of Commerce) lists ob-
fuscation among a list of other valid techniques for cyber resiliency, when used

alongside other approaches (Ross et al. 2021).

1.3 How useful is obfuscation within automation?

Code obfuscation can be particularly useful in the automation industry. Highly
customized programs can be prevalent inside an international customer’s sys-
tems for decades. Combined with the market being heavily competitive, the
source code only becomes that much more valuable making heightened levels of

security perpetually needed.

Code obfuscation’s ability to be automated using a pipeline or applied during de-
ployment is a valuable feature to note in the automation industry as well. Once
setup, obfuscation programs can be run with use of a pre-existing command and
simply become a quick way of adding more protection when giving customers

access to software.

In this work, the environment of an automation company was used to provide a
more realistic, consistent, and real-world example of what is sought after within
this field. As well as to answer the foremost questions prevalent to those within

this area.

2 OBFUSCATION METHODS

There are many kinds of code obfuscation, some are easier to implement, and
some need more time and complex logic. Many types of obfuscation also con-
sider the deobfuscation tools used to reverse engineer code back into readable
source code, such as destroying code patterns that decompilation software often
use or removing string references which can be searched to find the purpose of
the outputs of the program (PreEmptive Solutions n.d.). Obfuscation methods can
be used alongside one another as well, meaning each method can potentially

supply added effort and experience to break the security.

2.1 Renaming

Renaming obfuscation is a technique in which variables, function and class
names, and their corresponding implementations are swapped with less intelligi-
ble names. This produces code which is less readable and troublesome to follow
while still being fully functional, as these names are used purely for the sake of

developer understanding.

2.1.1 Methodology
There are two important things to consider that may affect overall security: What
happens when the obfuscation program runs into a variable with the same name,

and should new names be unique or reused characters in a new context?

Perhaps the simplest way to implement renaming obfuscation would be a simple
program that, upon encountering something which it can rename, creates a

scrambled sequence that it replaces all other instances with.

With that simple method of rename obfuscation in mind, the “Complicated & Sta-
tistically exchanged Names” (Figure 2) would be one possible outcome of the

given source code.

While it does look confusing and not easily read, it is leaving a breadcrumb trail
of hints behind it, which hackers may look for. Take the renaming of the variable
“Total” as an example: we can tell it is an integer which is being added to in a
while-loop and is the output of the function. It is not too difficult to find that “bl2b”

10

indicates the total of something due to it being initialized as 0 and added onto
inside of a loop. Also, because the program has seen that word previously, it
swaps all instances of the word “Total” into “bl2b”, meaning the name of the func-
tion “CalculateTotal” also holds the same phrase at the end (“tst3b/2b”). From
this, a hacker can then infer that any time the phrase “bl2b” is encountered, it is

simply the renaming of the word “Total”.

This can also potentially blow the cover of multiple other functions using this one
simple one, many of our calculations could now be found by a simple search of
that new name. Simple one-to-one exchanges of names are not a good thing

within obfuscation as it can leave hints like this behind.

What if another direction was taken, and any time a new variable, class, or func-
tion was met, it entirely got a simpler new name, and only the iterations were
changed? “Simple & Dynamically exchanged Names” (Figure 2) displays this,
and in addition to removing some of the hints of the first iteration, it also lowers

the overall file size as a bonus. However, this can be taken one step further yet.

[Original Code]

/ private int CalculateTotal(ShoppingList cart) \
i

var total = 0;
while (cart. HasMoreltems())

* var nextltem = cart.item.Next();
if (Inventory.Stock. Confains(nextitem))
I

1
cart SetError("Cut of stock™);
return -1;

Inventory. RemoveltemsFromStock(cart.item, cart.item.quantity);

total += cart.item.cost;

return total:

-

[Complicated & Statically exchanged Names] [Simple & Dynamically exchanged Names]
/ private int ist3bi2b(mrion35lk cdd3) \ / private int a(b c) \
i i

varblzb = 0; vard=10

while {cdd3.chgmnop323cs()) while (c.e())

© var bbm2323c = cdd3.323c bbma(); ~ varf=cgh();
if (li.j.k(R)
I

if (Im1n0p.podru.4mipo(bbm&323c))
I

1
cdd3.tuén42("Out of stock™);

-

AN

1
c.I("Out of stock™);

return -1; return -1;
}
min0p.opo43323cs0b83kpodruicdd3.323c, cdd3.323c.5mkdl); i.m{c.g, c.g.n);
bl2b += cdd3.323c.cl200; d+=cg.0;
return bi2b; return d;

/

Figure 2. Complicated and Static vs Simple and Dynamic name changes

11

Taking the idea of simplification one step further, what if we check each class,
function and variable and name it as simple as possible with consideration to the
fact that these things can share names in certain contexts (For example, a class
and variable can both have the name “a”, if the machine can interpret them sep-
arately). This can increase the level of confusion even further as what is being
referred to by the divergent functions, classes, and variables is not easily under-

stood.

Figure 3 displays the “Unique names” we had previously in Figure 2 but compare
it to the new “Reused Names” where there are multiple elements with the name
“a”’, “b”, and “c”. This additional complexity is all due to them being used in differ-
ent contexts but having no connection to one another. The renaming is applied
as the simplest answer every time it meets something that can feasibly be
changed to the simplest option without breaking the code. This is a concept re-

ferred to as Overload Induction by PreEmptive Solutions (n.d.).

Original Code

[
e

}

private int CalculateTotal(ShoppingList cart)
{
var total = 0;
while (cart HasMoreltems())

\

* var nextitem = cart item Next();
if (linventory. Stock. Contains(nextitem))

i
cart.SetError("Out of stock™);
return -1;

Inventory. RemoveltemsFromStock(cart.item, cart.item.quantity);

fotal += cart.item.cost;

return total;

-

Unigue names

[

Reused Names

[

/ private int a(b c)
{

vard=0;

while (¢ 2())

' varf=cgh()
if (1i.j. k(T

{
cI("Out of stock”),
return -1;

iLm(c.g, c.g.n);
- d+=cgo;

return d.

.

s

/ private int a(a b)
{

vara=10;
while (ba())

" varc=baa()
if(id.a.alc)

1
b.b("Out of stock”)
return -1;

i
d.a(b.a, b.a.a)
a+=bab;

return a;

.

Figure 3. Unique vs Reused naming

2.1.2 Analysis

Renaming obfuscation is often considered the most quintessential, but basic,

form of code obfuscation. It certainly does, as all code obfuscation methods

12

should, scattering the code and making it harder to decipher. Depending on the

complexity it can be tricky to tell what the code is trying to do at all.

However, as shown by “Methods”, this is highly dependent on the complexity of
obfuscation, otherwise a breadcrumb trail of clues is left behind that could poten-
tially risk the security of recurring names. In addition to this potential issue, re-
naming does little to stop decompilation, as decompilation software can still de-
tect a consistent pattern in the code and IDEs can still maintain a semblance of

understanding as to how the variables link together.

Renaming obfuscation is quite easy to implement, and it does keep some level
of protection if decompilation of a project’s code does happen. It can also be done
alongside any other method of obfuscation, so it is not necessary for it to be the
only level of security. Lastly, it can be automated using pre-existing build pro-
cesses, and its high potential to make it dynamic for it to work with nearly any

project makes it a necessary and consistent foundation of protection.

13

2.2 Control Flow: Dummy Code, and Opaque Predicate Insertion

A common term used in the field of software engineering is “spaghetti code”,
which refers to code in which the order of events is tangled up and awkward to
follow. This is usually considered an unintentional bad practice. Control flow ob-

fuscation is meant to mirror this but in an intentional way.

Control flow obfuscation refers to the use of dummy code and opaque predicate
insertion to scatter the way that code may work into multiple different “dead-end”
routes, which can confuse both hackers and the decompilation tools they may be

using to recreate source code (PreEmptive Solutions n.d.).

Dummy code insertion refers specifically to the addition of code with the intent to
deceive any tools or malicious users with code that may seem important or rele-

vant but ultimately has no effect on the output.

Opaque Predicate insertion refers to the addition of unnecessary conditional
statements (if, while, switch, etc.) which do not detract from the original intent of
the code, to offer deceptive “alternative” routes the code could take, some of
which it never does. Like dummy code insertion, the intent is to fool malicious

users and the tools they may use.

2.2.1 Methodology

Opaque predication and dummy code insertion go together as usually conditional
expressions do not work well if the leading up to a condition can easily explain
which route will be taken (Collberg C. & Thomborson C. 2000, 10).

In Figure 4, we can see control flow obfuscation taking place through dummy
code and opaque predicate insertion. Emboldened in each insertion are the new

parts that have been added but will not be followed when the code is executed.

14

[Opaque Predicate Insertion

/private int CalculateTotal(ShoppingList cm
{

string a = "ltems";
bool a1;

var total = 0;

int numA = 0;

int numB;

if (a1 == true)

[Dummy Code Insertion]

{
while (cart.HasMoreltems())
private int CalculateTotal(ShoppingList cart’ {

{ var nextltem = cart.item.Next();
string a = "ltems"; numB = 5;
bool af; FunB(numB, a);
Original Code var total = 0;
i =0; switch (numA|
private int CalculateTotal(ShoppingList cart) ::: :ﬂmg o (!
i
case 0:
var total = 0: while (cart.HasMoreltems()) i
while (cart.HasMoreltems()) var nextitem = cart.item.Next(); (lInventory.Stock.Contains(nextltem))
_ . numB = 5;
Vfar nextitem = cart.item.Next(); if cart.SetError("Out of stock”);
i) _
1 numA = numB
('Inventory.Stock.Contains(nextltem)) (_|nvent(ory_smck.Comalns(next\tem)) return -1;
{ " . '
cart.SetError("Out of stock”); ::> ﬁ?.lr:ﬁsAeLEr:rl?rrr(lBO'm of stock") |:'|> }
. = i
return -1; FunB(numB, a); numB = numA;
return -1;
} Inventory.RemoveltemsFromStock(cart.item,
Inventory.RemoveltemsFromStock(cart.item, cart.item.quantity);
cartitem.quantity); numE = numA: total += cart.item.cost;
total += cart.item.cost; ' a1l = false;
} Inventory.RemoveltemsFromStock(cart.item), continue;
I cart.item.quantity); case 1:
) return total; total += cart.item.cost; numB = numA;
a1l = false; a1l =true;
} break;
case 2:
FunA(a1, numA); a="Error";

return total; continue;

NG /
default:

FunB(numa, at);
break;

}
}
}

FunA(a1, numA);

K return total;
} /

Figure 4. Control flow obfuscation through dummy code and opaque predicates

Dummy code’s insertion of variable and functions which will lead off into further
unused code works mostly due to their vague names. This is also why renaming
obfuscation goes very well with control flow obfuscation: Two variables could be
named “a” and “b”, and one or even both may not have any actual function inside
of the code, but both appear to be used. In this example they are named suspi-
ciously vague things such as “numA” or “a1” for the sake of clarity in the transfor-
mation process, but it is important to consider that control flow obfuscation can

potentially make renaming obfuscation stronger and vice versa.

Opaque predicates then create possible avenues that programs could travel to
using conditional “If” and “Switch” statements. In the example (Figure 4), it is ra-
ther easy to follow that the two new conditions will follow the original intent. How-
ever, along with renaming and over the span of an entire program, these can

become far more difficult to understand, as variables may be passed between

15

functions or classes and interacted with and simply have no actual input on the

outcome.

2.2.2 Analysis

For control flow obfuscation to work properly and to affect deobfuscation soft-
ware, the code unfortunately needs to react to the new dummy variables and
functions on some level. Depending on the depth of the interactions and the over-
all size of the project, this can have a varying outcome on the program’s perfor-

mance.

Control flow obfuscation also requires more testing than some other methods,
primarily because it can affect performance and to ensure the program still func-
tions completely as intended. This also means that control flow obfuscation could
possibly introduce more bugs into a system if done improperly, in addition to gen-

erally increasing file size.

On the positive side, control flow obfuscation may inhibit decompilation software’s
usage of code patterns to deduce the source code of a program, which is a large
benefit. It also fits well with the renaming obfuscation method, as now new and
completely irrelevant variables may leave hints to dead ends while looking no
different from variables which may be important. Lastly, it has potential for dy-
namic integration in similar projects and could be automated into existing devel-

opment processes.

16

2.3 Debug and Unused Code Removal

Debugging logs and tools are often used with a project’s code for the sake of
developers’ understanding into what went wrong with a program and why. These
logs often give the direct output and path of travel a program is taking to perform

various actions.

When reverse-engineering and trying to piece together what a program does,
debug information can be immensely valuable. Simply make a small alteration to
the code and see how it effects the rest using the debugging logs. Thus, making
the removal of debugging files and tools potentially particularly important to se-

curing source code.

Unused code, left intentionally or otherwise, can also present important context
to the development process a project followed, providing valuable hints on how a
program works or even the development practices a company follows. Unused

code is usually inconsequential to remove, but potentially consequential to leave.

2.3.1 Methodology

Removing unused code is one of the easiest forms of obfuscating a code’s origi-
nal purpose. Removal of unused code before deployment is a standard practice
but creating an automated system of removal can be used as an added assur-
ance. Exceptions may be necessary in environments using seemingly dead-end

code such as data contracts.

Debug removal can be more complex depending on the environment needed.
Debug logging does have a purpose after all, it helps developers understand what
went wrong in case of a bug or issue. To remove this, in most circumstances,
would make a bug far troublesome to track and fix. So, a level of obfuscation

needs to be decided.

There are four practical options when considering removing debugging: Not re-
moving it at all, removing it entirely, obfuscation through removing error locations,
or swapping/encrypting key information of debugging. In Figure 5, a typical error
message is shown under “No Obfuscation”. This was brought about by forcing a
simple program to try addition on a character value. It shows the exact line and

17

function in which the failure occurs, a useful thing for developers and hackers
alike.

No Obfuscation

System.FormatException
HResult=0x801315637
Message=Input string was not in a correct format.
Source=System.Private.CoreLib
StackTrace:

at System.Number.ThrowOverflowOrFormatException(ParsingStatus status, TypeCode type)
at System.Number.Parselnt32(ReadOnlySpan’1 value, NumberStyles styles, NumberFormatinfo info)

at System.Int32.Parse(String s)
at ConsoleApp1.Program.Main(String[] args) in
C:\Users\User\source\repos\TestApp\TestApp1\Program.cs:line 11

-

/

-~

-

[Location Removal Obfuscation

System.FormatException
HResult=0x80131537
Message=Input string was not in a correct format.
Source=System.Private.CoreLib
StackTrace:
at System.Number
at System.Number
at System.Int32
at ConsoleApp1.Program

~

\

[Location Swapping Obfuscation

/

.

System.FormatException
HResult=0x80131537
Message=Input string was not in a correct format.
Source=System.Private.CoreLib
StackTrace:
at System.Number.(z0)
at System.Number.(m4)
at System.Int32.(c6)
at ConsoleApp1.Program.(a4)

/

v

Figure 5. Debug logging obfuscation types

Simply removing all debugging is a possibility. Keeping in mind that it is important
that debugging be entirely removed and not simply disabled through a setting or

commenting out the code. An attacker is likely to target any debugging system

present and reenable it if it remains.

Leaving only part of the information can be a choice as well (“Location Removal

Obfuscation”; Figure 5), particularly in the case of using other debugging methods

in addition to this. This will have the result of giving developers a solid idea of

18

where the issue is found in the source code, but only a slight hint to attackers.
Since hackers will be dealing with an obfuscated form of the code, this makes it
extra time consuming for them. It is not ideal, but this marks a potential middle

ground, particularly in cases where other tools are available to developers.

Lastly, locations could be swapped with a scrambled string which represents
each class and function (“Location Swapping Obfuscation”; Figure 5) and trans-
lated back by tools available exclusive to developers. One step further to this is

the possibility to encrypt and de-encrypt logging files when needed.

2.3.2 Analysis
Removing unused code from a delivered product results only in benefits, a sys-
tem which would remove functions which are not used anywhere in a project

would not only result in removing vital hints but reduce file size as well.

Debug logging can be valuable to developers, as well as potential attackers. If it
is possible for the system to outright remove debugging after delivering a product,
that likely should be done as debugging can be particularly useful for reverse-
engineering. However, there are middle grounds that can be met which will throw
a wrench in a less-experienced attackers reverse-engineering process while still
pointing a more knowledgeable developer in the correct direction of an issue.
Taken a step further, the encryption or protection of these log files is also possi-
ble.

This is highly dependent on the environment and company at hand and their own
development practices. If a system can log how a user got to a particular issue,
then debug logs may only be secondary and removable. However, in many sys-
tems, it could be the only way a developer has of understanding how to fix any

issues. It may be necessary to proceed with caution or investigate other methods.

19

2.4 String Encryption

String Encryption is about cutting off a key aspect of reverse-engineering. Hack-
ers use output strings given by a program and seek them out inside of the code
to better understand how the code works. Any given string surely must exist
somewhere in the code, and these can be used as landmarks for revealing the

logic of a program.

String encryption tries to solve this by encrypting strings available in a program
and decrypting them on runtime. This can also go in-hand with the previously

mentioned “Debug removal” method of obfuscation.

2.41 Methodology

A common tactic when developers discover an unknown error present in a system
is to take a segment of the error that is particularly distinct. For example, an error
saying, “Error occurred: Items in the cart are currently out of stock!”, the words
“out of stock” may be searched using typical features of an IDE to find points
where the issue may occur. On the negative side of this, hackers may try the
same thing when trying to dissect a program by intentionally causing errors and

then finding more info on how the code processes such issues.

The best way around this is through encryption, and then giving the program the
tools to decrypt the strings it needs, as it needs them. If the strings are all en-
crypted when it is compiled, the resulting reverse-engineered project will also
have only encrypted strings, which look like an extreme mix of characters, num-
bers, and symbols (Figure 6). However, since the system has the tools that it
needs to decrypt only when it needs to, the strings will still show appropriately
when accessed. Resulting in the system showing the intended message but the

message not being searchable in the code.

20

(No Obfuscation (String Encryption

private int CalculateTotal(ShoppingList cart) private int CalculateTotal(ShoppingList cart)
{
var total = 0; var total = 0;
while (cart.HasMoreltems()) while (cart.HasMoreltems())
{ {
var nextltem = cart.item.Next(); var nextltem = cart.item.Next();
if (lnventory.Stock.Contains(nextltem)) if (lnventory.Stock.Contains(nextltem))
{ {
cart.SetError("Out of stock!") cart.SetError(a.b("H320dk|?.92 jFi4%50#%"));
return -1; return -1;
} }
Inventory.RemoveltemsFromStock(cart.item, cart.item.quantity); Inventory.RemoveltemsFromStock(cart.item, cart.item.quantity);
fotal += cart.item.cost; total += cart.item.cost;
} }
logger.Debug("All items in stock and calculated”). logger.Debug(a.b("b%3kK#op3!95B0>.x")).

\ return total; return total;
} }

Figure 6. Simple string encryption example

2.4.2 Analysis

There are a couple of downsides to this form of obfuscation. The first being that
because the system originally simply gave strings, and now must first decrypt all
strings before their usage, this adds some level of performance degradation. Sec-
ondly, if the system is creating strings dynamically it will experience a much
higher performance degradation as the system, then must decrypt a series of

strings as opposed to one-time and direct decryptions.

String encryption can remove an immensely valuable tool out of a hacker’s arse-
nal in a very cut and dry manner. However, encryption and decryption also rely
on keys and the validity of the protection can also hinge on reliability of the en-

cryption method being used.

Its overall value as an obfuscation method is heavily reliant on the environment it
is built in. Projects which produce heavy string output or dynamically alter strings
may lose more in performance than is gained in security, but for systems that
have general one-to-one direct string usage, this can raise security highly while

only cutting minorly into performance.

21

3 OTHER NOTABLE PROTECTIONS

There are a couple of other notable protection methods available to software de-
velopers which would be amiss to not briefly discuss: Watermarking and Tamper-
proofing. Both of which add layers of protection that do not quite fit into the de-
scription of an obfuscation method, as they do not restrict the code’s readability,

but can still afford it valuable protection from outside threats.

3.1 Tamper-Proofing

Much like how we do not use items from a store where the seal of the item has
been tampered with, a program can refuse to run once modified. Tamper-proofing
can supply more protection if obfuscation fails to protect from reverse-engineer-
ing. Hackers often reverse-engineer code by making changes and analysing how
that affected the results. The goal of tamper-proofing is to limit or completely stop
this process, as when the software is edited outside of the original form or per-
forms atypical behaviour, it can hinder this process in any number of ways defined

by the original developer.

3.1.1 Methodology

Tamper-proofing requires two functions: Detecting the alteration of the program
it is defending and the procedure to perform upon detection. The latter is up to
the developer, and it can be as simple as closing the program or as complex as

alerting the company itself to know their software has been tampered with.

The detection of software modification typically falls under one of three primary
methods via: Examination, Program checking, and Procedural decryption. Figure

7 gives an example of each of these methods’ means of detection.

22

(A.) Examination

Examination Program|
runs

Our program is
scanned

Program specs mee Program is flagged as Our program is
all requirements unmodified permitted to start
Program is flagged as))
.| modified and wil . S;UDDU”t.'S reg“"fd
refuse to start Or continued use

Qur program's results are
continuously checked

Program spec
reguirements are not
met

(B.) Program Checking

Qur program is
started
Checker program is
started

Both programs are

permitted to continue

£ .] Our program is
Defseliltse;r: dorgtr?dee > flagged as modified
P g and will refuse to start
Our program is not
permitted to start
Support is required

for continued use
Program continues to
run
Program decryption
key matches

- Qur program is . .
o Erogdrarn def{rypt{orr: .| fiagged ana wil | Sfupportt_|s reguwﬂed
ey does not matcl refuse to start or continued use

Figure 7. Tamper-proofing detection methods

[

‘Checker program isn't
running

(C.) Procedural Decryption

Qur program is
encrypted outside of >
a starting sequence

Qur program is
started

Program
attempts to decrypt the
necessary segment

Decryption routines
tied to hardware and =]
protected

(Program is modified)

a) Examination is done via requiring an approved examination of the pro-
gram to be able to be started. The program doing the examination should
verify either the whole program or key aspects of the program are identical
to the original every time. For extra security, the checked original could be
off-site.

b) Program checking is running a secondary program or enabling intermit-
tent internal checks inside of the program to ensure behaviour and results
are at expected levels continuously.

c) Procedural decryption is a program which has been mostly encrypted
and decrypts itself as those functions are needed. Variation of any given

point would result in a different decryption key for that segment and the

23

difference in keys could be then used to lock the system or otherwise pre-

vent continued use.

3.1.2 Analysis
The topics covered here are simply the tip of the “Tamper-proofing” iceberg. It is
a highly researched and broad topic which could easily be expounded upon fur-

ther in a separate paper.

Not only does it grant an exterior layer of protection aside from obfuscation, but
it can also help a company avoid or act against less reputable customers or users

who try to change or use their proprietary software outside of the intended use.

The primary downside of tamper-proofing is that it typically must be taken into
consideration at a base level. On-the-fly encryption and decryption of a program
or intermittently checking the results of a program is something that may be diffi-
cult to successfully implement into an existing system. As well, certain coding
languages or environments may not take well to tamper-proofing methods. For
example, Java may be difficult to perform “Procedural decryption” with, as it can-
not perform such actions stealthily, requiring calling an atypical class to perform

encryption or decryption (Collberg & Thomborson 2000, 13).

24

3.2 Watermarking

Watermarks exist in nearly every facet of media these days. For television, Chan-
nels add a watermark at the bottom right or top right of a television program to
signify the current program to be licensed under them and not for redistribution.
For music, companies can add copyrighted sounds outside of the boundaries of
human hearing spectrum which can be used to legally claim copied versions back
to the original owner (Kirovski & Malvar 2003). For photography, stock image
companies insert highly visible watermarks on copies which have yet to be paid

for by customers.

In the realm of software however, more discretion is needed. Obvious signs of
watermarking could be stripped from the code and thus potentially negate any

legal basis of claiming ownership.

3.2.1 Methodology

Successful watermarking in software boils down into fooling the attacker that they
were able to succeed in getting away with copying the code while providing the
original owner a discrete legal basis to definitively prove ownership over a prop-
erty. As such, simple measures taken by other forms of media cannot be so easily
used, as those with knowledge enough to reverse-engineer a program likely pos-

sess the means to find and remove simplistic markings.

A more dynamic approach is necessary in this case and should be given either
in the execution or the structure of the project itself. To maximize discretion of the
watermark, output should not be altered. Dynamic watermarking is not as obvious
as the more static forms we know, it is delving more into the analysis of the ex-
isting metadata of the code or bending it in such a specific way that a copied
version could be found. In Figure 8, examples of dynamic watermarking are dis-

played: Easter eggs, Execution, and Structural watermarks.

25

(a) Easter Egg Watermark

QOriginal Program [
Specific input given
exacutes the same
specific sequence in

(b) Execution Watermark order

Original Program >
Specific input given

{c) Structure \Watermark

Original Program >

Specific input given

Program visibly
outputs predefined
output

Program
Process

Program always

Program
processing
algorithm

Program always uses
the same address to
perform action.

Program variables

Program
Structure

always hold the zame
data after execution.

Figure 8. Dynamic Watermarking examples

“Easter egg” watermarks are the simplest of the three. The only thing separating
them from a static form of watermark is that a particular input is needed to receive
the hidden message. Easter egg watermarks heavily rely on being well hidden,

otherwise they can be simply removed (Collberg & Thomborson 1999.).

Execution watermarks require a more technical analysis of the execution order of
the code producing a specific output in the machine code of the program when
given a specific input. This is less obvious due to the more hidden nature of ma-

chine code when compared to direct outputs.

Structure watermarks are left after the execution of specific inputs by the remain-
ing values of the variables. These could then be extracted either through debug-
ging or an external program and those values could be used to verify ownership
if they provably pertain to the company in some way (i.e., a slogan or a specific

pre-recorded customer code).

26

3.2.2 Analysis

Software watermarking is more difficult than other media’s forms of watermark-
ing. Typically, an attacker will have an understanding deep enough to analyse
and remove surface level watermarking. Metadata of the code is potentially im-
portant in proving ownership in a discrete manner if it can be provably consistent.
Though the watermarks may be overlooked, static and Easter egg watermarks
may also be removed by keen-eyed attackers. Watermarking heavily relies on

this subtlety to be successful.

Certain types of obfuscation may also break or interact with certain types of wa-
termarking. Execution watermarking such as algorithm timings can be altered
once a renaming obfuscation takes place or architectural watermarking may be
added onto dynamically by a control flow obfuscation, thus negating these water-

marks.

Watermarking could be a potential last line of defence for programs, providing
hidden definitive legal proof of ownership. However, when considering water-
marking and the potential positives, it is equally as important to think of its diffi-

culties and the potential effects obfuscation could have on it.

27

4 TESTING PLAN

In the realm of automation, such constant effort is focused into the improvement
of proprietary software that outside tools are far more likely to be implemented to
protect the system, as opposed to a company creating an obfuscation tool from

scratch. Preference would typically be to buy this service from another company.

As such, four tools were chosen to test the quality of the security they offer, usa-
bility, versatility in a multitude of environments, and their cost to both the wallet
and the protected code’s performance. These tools were: ConfuserEx2, .Net Re-

actor, Eazfuscator, and Babel.

All paid tools were tested using trial versions, and as such, the features available
in them may have been subject to pay-walls and may extend outside of those
mentioned here. Default settings were used for the tools to give an impression of
what the results of most developers would be, as well as what the original crea-

tors had intended as their program’s status quo.

4.1 Qualities and Tests

Besides the basic requirements of the tools such as professionalism and cost,
there are quality based requirements which should be tested further. Those being
functionality preservation, obscurity, resilience, performance cost, and overall us-
ability. Without each of these things, an obfuscation tool may be easily negated,

difficult to use, or simply require too much effort for the amount of security given.

4.1.1 Functionality Preservation

Of primary concern is the quality of functionality preservation. This is the ability
of the tool to obscure the given program, while not tampering with the base func-
tionality of the code. If any obfuscation tool were to vary, break, or otherwise
hinder the program’s ability to run as intended, it would defeat the point of obfus-

cation entirely.

This will be performed as a pass or fail test. Our sample project will be obfuscated
using each tool and then run as usual. If this process is performed the same as
the non-obfuscated form, without any errors or issues present in the system, the

28

tool has passed this test. Obfuscation of the program was confirmed using an
open-source program called ILSpy, which is a tool used to disassemble compiled

code and convert it back into source code.

The sample code used is a segment of proprietary code. This means that while it
cannot be displayed, it is a real and in-use example of a process prevalent in an
automation company. It meets the following standards for a balanced test perfor-
mance:
e The sample code does not rely on user input which may affect timings.
e The sample code uses multiple predicates (at least three) and can produce
an error if not executed correctly.
e The sample code branches out into other classes and namespaces of the
project both in input and output.
e The sample code is of reasonable length (20+ lines) and takes at least 100
ms on average to perform.
e The sample code does not use threading which would make timing checks
unreliable.
e The non-obfuscated program performs a task with reliable consistency
with no major outliers in timing.
¢ The program functions as intended, without error or crashing, with reliable

consistency before obfuscation.

4.1.2 Obscurity and Resilience
Obscurity is referring to the human readability of the disassembled source code.
Resilience refers to the obfuscated code’s ability to resist disassembly or deob-

fuscation using malicious software or disassembly tools.

This is an analysis-based test and many aspects of each type of obfuscation are
considered. For example, if Renaming obfuscation has been used: Are the char-
acters limited to those found in the English language? Are extra symbols used?
Is the renaming consistent? These would all be things to take note of when ana-

lysing and considering the level of obfuscation.

A basic C# sample code (Figure 9) was created for the purposes of giving a clear

and clean example of code before and after obfuscation. The only thing this code

29

does is output the area of a rectangular prism of 3 units in length, 5 units in width,
and 8 units in height, providing an output of “The calculated area of a rectangular

prism is: 158” into a command prompt.

No Obfuscation

using System;

namespace ExampleApp

{

class Program

public int RectangularPrismArea(int length, int width, int height)

{
if (length > 0 && width > 0 && height > 0)

int sides1 = 2 * length * width;
int sides2 = 2 * length * height;
int sides3 = 2 * width * height;
return sides1 + sides2 + sides3;

}

return 0;

}

static void Main(string[] args)

{
var area = new Program();
var number = area.RectangularPrismArea(3, 5, 8);
Console.WriteLine("The calculated area of a rectangular prism is: ");
Console.WriteLine(number);

Figure 9. Non-Obfuscated sample code

The sample code is simplistic but built in a particular way to test certain elements
of renaming, control flow obfuscation, and string encryption/obfuscation, the three
most common types of obfuscation. Math was intentionally introduced in sections
to test if control flow obfuscation would break the necessary order of events to
get a proper output. The rectangular prism’s measurements were tested to not
be 0 in an “if” statement (despite not being necessary here) to ensure control flow
obfuscation would not dismiss this check. Lastly, Console was used to output to
see how the obfuscation would handle a system function, if it would make any
effort to obfuscate such a base-level function and if String obfuscation would in-

teract with the first line written, as it should always remain consistent.

30

4.1.3 Performance Cost

Like functionality preservation, the optimization of the program must also be con-
sidered. If obfuscation causes the quality of a product to drop too significantly,
this causes new issues both in functionality and value to the customer. Some
level of performance cost may be impossible to avoid, but not at the cost of mak-

ing the product inferior to others on the market.

This test is measured by introducing an internal clock to process a task in the
sample program ten times with, and without, obfuscation being introduced. These
values will be calculated then into a percentage of expected estimated perfor-

mance loss.

The sample code used during this test is the same present in the Functionality

Preservation test for the sake of reliability, consistency, and real-world applicabil-

ity.

4.1.4 Usability

Perhaps the most opinionative of these qualities, but important nonetheless, is
that of Usability. In testing this, things such as the various forms of integration
methods available, level of usability present in the program’s Ul (if it has one),

and difficulty of configuration will all be considered.

The usability will have a criteria-based score given on a scale of zero to five for
aspects of Integration, Configuration, and Ul usability (appendix 1). Usability is
generally highly subjective, but an analysis of a program’s positives and nega-
tives in an objective matter alongside a score for the sake of comparison between
the tools may be helpful to less experienced developers or those with time con-

straints.

31

5 RESULTS

5.1 ConfuserEx2

ConfuserEx 2 is the successor to the Confuser and ConfuserEx projects. It is an
open-source project which is intended for the general protection of .Net Frame-
work projects from 2.0 to 4.8. Being an open-source project, update activity is
prone to fluctuation. Its potential reliability is less when compared to a paid prod-

uct, but at the exchange of having no monetary cost.

For testing purposes: Anti-Debug, Anti-ILDASM (an attribute which tries to deny
disassembly through common tools such as ILSpy), Control Flow, Renaming,
Anti-Tamper were all settings which were activated and used as their default set-

tings.

5.1.1 Functionality Preservation and Usability
Functionality was preserved by ConfuserEx2, and a functional form of the pro-
gram was achievable rather quickly after configuration and adjustment of set-

tings. The program received the following scores:

Ul: 3/5
e Ul is simple and rather organized.
e Documentation is needed to understand the purpose of the various set-
tings.
e Editing of configuration files outside of the Ul may be necessary to achieve
desired results.
e Build logging clearly shows what file is being worked on and with what

form of obfuscation.

Configuration: 3/5
e Documentation is descriptive, though tricky to find as it is not listed on the
tool’s website, rather the GitHub the tool is downloaded from.
e Setting parameters are clearly explained, as well as possible incompatibil-
ities, inside of the documentation. Remarks on certain settings give valu-
able hints for further customization and integration.

e Most settings can be modified.

32

e System comes with a list of pre-set protection options.

Implementation: 3.5/5
e Repeated obfuscations using the same settings produced slight variations,
this is worse for testing and implementation but possibly better for security.
e Offers both a Ul and MSBuild integration.
e Configurations are saved and easily passed.
e Stack tracing decoder tool is available within the program.

e Build produces no errors in full use.

5.1.2 Obscurity and Resilience

Features such as Anti-Tamper and Anti-ILDASM aided in making ILSpy and other
deobfuscation tools more difficult to use because an error was produced when
attempting to disassemble the code. This helped in both obscurity and resilience
as, without further investigation, basic tools were not able to access the code.
Obfuscation also varied with repeated attempts, which could improve the security

of the application against deobfuscation tools.

Using ConfuserEx’s obfuscation (Figure 10; appendix 2) the primary purpose of
the code can still be seen with analysis. Emboldened are the renamed and al-
tered, but still maintained, variables of the non-obfuscated code. For the most
part, variables were properly renamed to something vaguer, such as “side” be-
coming “num” or “length” becoming “P_0". Unfortunately, this was not always the
case, as the result variable was simply called “result” and gave an obvious hint

as to the path of the code, despite the control flow being transformed.

Control flow was heavily changed. If not for having the original code, the path of
execution may have been much tougher to follow in the calculation function. How-
ever, it was much easier to decipher is the main function, which was simply en-

cased in a switch and two while cases.

System functions were also left untouched, as well as their strings, leaving behind
the full intent of the code along with it. As such, an obvious hint was left behind

by the program when it ignored changing the string of the WriteLine function.

No Obfuscation

33

Obfuscated (Truncated)]

using System

namespace ExampleApp
i

class Program
public int RectangularPrismArea(int length, int width, int height)

if (length > 0 && width > 0 && height > 0)
{

int sides1 = 2 * length * width;

int sides2 = 2 ~ length ~ height;

int sides3 = 2 * width * height

return sides1 + sides2 + sides3;

}

return 0;

static void Main(string[] args)

{
var area = new Program();
var number = area.RectangularPrismArea(3, 5, 8);
Console.WriteLine("The calculated area of a rectangular prism is
Console.WriteLine(number)

"),

using System

internal class a

public int b(int P_0, int P_1, int P_2)

{
if(P_0>0)

H

goto IL_0008;

1
goto IL_00eb
IL_oood
int result = default(int);
int num4 = default(int)
int num8 = default(int)
int num5 = default(int)
while (true)
{
uint num3;
switch ((num3 = (uint)num2 * 0x54BC4BTAU) % 13u)
{
case 4u:
break;
case Bu:
goto IL_0057;
case 1u
result = num4 + nums + nums;
continue;
case 12u
num8=2*P_0*P_2;
continue;
case 6u
nums=2*P_1"P_2;
continue;
case 10u:
numd=2*P 0*P 1:
continue;
default:
return result;
}
break:
I__0057:
if(P_1>u)
continue;
goto IL_00eb,
}
goto IL_0008;
IL_00e5
num =((P_2>0)?1: 0}
goto IL_00ec:

private static void c(string[] P_0)

{

2 ob) = new a):
nt.:lue = ob).b(3, 5, 8);
while (true)

while (true)
{
uint numz;
swilch ((num2 = (uint)jnum 0x1EB267Eu) % 4u)

L
case 1u:
Tonsole.WriteLine("The calculated rre: of a rectznguiar prism is: ")
continue;
case 2u°
wonsole.WriteLine(. zlue);
continue;
break;

Figure 10. Truncated code obfuscated by ConfuserEx2

5.1.3 Performance Cost

Ten trials were run both with and without obfuscation of which Figure 11 shows

the results. ConfuserEx performed the sample function at around 114.4 ms on

average (104 ms on average with no obfuscation). This is an estimated 10% per-

formance cost, which is quite high. ConfuserEx also had a range of 59 ms (50 ms

on average with no obfuscation), introducing slightly more inconsistency for per-

formance.

34

Performance Cost of ConfuserEx

146

107106 110

D -
2
w
2
=
=
(=
=
o
=
=
o

Trial1 Trial2 Trial3 Trial4 Trial 5 Trial 6 Trial7 Trial 8 Trial 9 Trial 10 Average

No Obfuscation ™ ConfuserEx

Figure 11. Performance cost of ConfuserEx vs normal performance

35

5.2 Eziriz’s .Net Reactor

Eziriz’s .Net Reactor is a versatile tool for both obfuscation and licensing of ap-
plications, with multiple forms of integration available, making it highly adaptive
based on the environment. Currently this application is available for $200 for a

single developer or $300 for a company-wide license.

.Net Reactor’s Necrobit (unique to .Net Reactor and intended to prevent deob-
fuscation), Anti-ILDASM, Anti-Tamper, Anti-Debug, Control Flow, and String en-

cryption features were all used during these tests.

5.2.1 Functionality Preservation and Usability
Functionality was preserved by .Net Reactor with default settings and implemen-

tation. The following user ratings were given of the tool’s usability.

Ul: 5/5
e Professional and well-organized Ul.
e Protection building was clear and descriptive, along with options to make
logging more verbose if necessary.
e Settings and options had provided descriptions within the Ul itself.

e Usage of documentation was not necessary for usage of the program.

Configuration: 4.5/5
¢ Configuration to fit the required environment was quite easy, Configuration
settings were clearly defined.
e Some settings were not completely clear as to their effect on their code,
such as control flow obfuscation’s level system.

¢ Documentation was not necessary for configuration.

Integration: 4/5
e Easily available through command line, Ul, or through Visual Studio Ad-
don.
e Build process was fast and produced no error within full use.
e Stack tracing decoder is available for use.

e Some level of optimization available through dead code removal.

36

5.2.2 Obscurity and Resilience

.Net Reactor has Anti-ILDASM, Anti-Tamper, and Necrobit features which inhib-
ited deobfuscation tools. This caused the deobfuscated code, when using these
features, to show odd results such as most functions returning only null which

increased both obscurity and resilience.

Figure 12 features a highly truncated form of the obfuscated .Net Reactor code
from the sample (appendix 3). Emboldened are the remains of the code which

form the functions of the non-obfuscated code.

Renaming is quite like ConfuserEx2’s sample, in that “side” is swapped to “num”,
and “result” is unfortunately correct. However, string obfuscation did take place,

which helps greatly in creating confusion in the purpose of the code.

Control flow obfuscation was strong with this tool, the given example (Figure 12)
is greatly truncated, and the original is long and loops through multiple different
switches and while loops while still checking for nulls and performing the intended
functions. The main function is also well obfuscated despite requiring less calcu-

lations than the area function.

37

Obfuscated (Truncated) }
using System; private static void tK(string[])
&
internal class NO NO n = default(N0);
int value = default(int);
public int X2(int , int ,int) while (trug)
({)
int num8 = default(int); while (true)
int numS = default{int); {
int result = default(int); switch (num4)
int num7 = default{int);
while (true) case 4
Console.WriteLine(MV.FF(0x24096C91 * <Module>{a}.b.r})
= while (true) case 3
No Obfuscation n= new NO()
IL_0012 break;
using System; int num4 case 1
switch (num2) Console.WriteLine(value);
namespace ExampleApp { break;
case §: case 2
class Program numg=2* *; value = n.X2(3, 5, 8);
) . .) case 6. numd = 4;
public int RectangularPrismArea(int length, int width, int height) break. Rt
IL_0315: 3
if (length > 0 && width > 0 && height > 0) while (true) break
b 2
int sides1 = 2 * length * width; int nUmME; 3 ;
int sides2 = 2 * length * height; switch (numd) }
int sides3 = 2 * width * height; { }
return sides1 + sides2 + sides3; case 9
1 numé = ((»>0)?1:0);
goto IL_035c;
return O, case 1
1 nums=2* * ;
goto IL_0012
static void Main(string[] args) case 6.
it (<=0)
var area = new Program(); goto IL_0012;
var number = area.RectangularPrismArea(3, 5, 8); goto case 2
Console.WriteLine("The calculated area of a rectangular prism is: "); case 2:
Console.WriteLine(number); if(>0)
1 goto IL_0012;
} goto case 5;
i result= num7 + num8 + nums
continue;
IL_00d4:
num7=2% * ;
goto IL_0012;
goto IL_0012;
break;
}
}
return result;
}
}
}
s

Figure 12. Truncated code obfuscated by .Net Reactor

5.2.3 Performance Cost

.Net Reactor performed the sample function at around 106.6 ms on average.
Compared to normal functionality, this is an estimated 2.5% performance cost. It
also had a range of 42 ms, introducing slightly less inconsistency than the original

function.

Performance Cost of .Net Reactor

133131

105401

D -
2
w
E
=
=
o
=
o
=
=
(s

Trial 1 Trial3 Trial4 Trial5 Trial6 Trial 7 Trial8 Trial 9 Trial 10 Average

No Obfuscation ™ .Net Reactor

Figure 13. Performance cost of .Net Reactor vs normal performance

38

5.3 Eazfuscator

Eazfuscator focuses on ease of use and simplicity. Its Ul is a simple drag-and-
drop area which accepts both whole projects and assembled exe or dll files. Con-
figuration is easy, as there is little of it, preferring to exclude classes, functions or
namespaces through declarations which must be made within the source code.
This program’s licensing currently costs $400 for a single developer or $1700 for

a site-wide license with unlimited developers.

5.3.1 Functionality Preservation and Usability
Functionality was preserved with prerequisite alteration of the code to ignore
namespaces and classes which should not be obfuscated. The following user

ratings were given on the tool’s usability.

Ul: 2/5
e The Ul is simple, only using a drag-and-drop system.
e Possibility to drop either full projects or just assemblies.
e Build logging is unclear and only provides a default “Obfuscating assem-

bly: ‘ExampleApp.dII”” message.

Configuration: 0/5
e There are no configuration options.
e The only options are to remove certain files or classes by adding declara-
tions inside of the code, meaning changes to the code are necessary for
functionality preservation typically.

¢ No documentation available, as there are no settings to be changed.

Integration: 3/5
e Has options through both command-line, Ul, and Visual Studio Addon.
e Configurations are not saved.
¢ Modification of base code is necessary for deployment of obfuscated code.
e Build process produced no errors in full use.

e Stack tracing decoder tool is available by default.

39

5.3.2 Obscurity and Resilience
There were no options nor built in protection against deobfuscation. ILSpy was

uninhibited in its effort to disassemble the sample code.

Eazfuscator introduced rudimentary renaming obfuscation and string encryption.
Renaming obfuscation and strings were both replaced with Unicode names. This
may help more in systems reliant on more strings or printing functionalities, how-
ever, the original intent of the sample code is still noticeably clear and follows the

same order.

[No Obfuscation Obfuscated (Eazfuscator)

using System; using System;
namespace ExampleApp internal sealed class \w0005\W0002
{

class Program public int WO002(int \w0002, int WwO003, int \Ww00D5)

public int RectangularPrismArea(int length, int width, int height) 7 (0002 = 0 && w0003 = 0 && w0005 = 0)

int num = 2 * w0002 * wo003;
int nuM2 = 2 *\u0002 * w0005,
int num3 = 2 * w0003 * Ww0005;

if (length > 0 && width > 0 && height > 0)

int sides1 = 2 * length * width;

int sides2 = 2 * length * height return num + num2 + nums3;
int sides3 = 2 * width * height; ¥
return sides1 + sides2 + sides3; retum 0,
} i
return 0; private static void \u0002(string[] Ww0002)
' {
1 L

if (\W0003.\wo002())
static void Main(string([] args) {

% w0005\Ww0002 obj = new \w0005\Ww0O002()
- int value = obj \u0002(3, 5, 8);

var area = new Program() St 4 . .
var number = area RectangularPrismArea(3, 5, 8); Consoie.the!_!neuuoo{)‘s‘.uoooz.\uDOOE(—78884?163]J
Console. WriteLine(value)

Console WriteLine("The calculated area of a rectangular prism is: ");
Console.WriteLine(number); ¥

1 H
} }

Figure 14. Code obfuscated by Eazfuscator

5.3.3 Performance Cost

Eazfuscator obfuscated code was performed ten times at around 106.4 ms on
average, this is an estimated 2.31% performance cost. Eazfuscator also had a
range of 83 ms. This may be due to the outlier in Trial 7, without which the Range

severely decreases.

40

Performance Cost of Eazfuscator

169

&
£ .
w
2
[
=
&
e
L=
=
=
[v8

Trial 1 Trial2 Trial 3 Trial4 Trial5 Trial6 Trial 7 Trial8 Trial 9 Trial 10 Average

No Obfuscation Eazfuscator

Figure 15. Performance cost of Eazfuscator vs normal performance

41

5.4 Babel

Babel focuses on a large amount of customization in its obfuscation methods. It
also offers various other useful tools, such as the ability to merge or embed as-
semblies and obfuscate/deobfuscation stack traces, like debug obfuscation. This
tool has license options for a professional version at 185 euros, 245 euros for an

enterprise version, or 1250 euros for a site-wide license.

For these tests, the Renaming, Control flow, and String encryptions were set to
their highest level. These were all the settings available to the trial version of the

program.

5.4.1 Functionality Preservation and Usability
Functionality was preserved by Babel. The following user ratings were given re-

garding the usability of the tool.

Ul: 5/5

e Ul is well organized and professional.

e Obfuscation building includes statistics on what, and how much, was ob-
fuscated of the given code.

e Building was very quick and verbose.

¢ Rules for each assembly can be set separate from others or settings can
be set globally with exceptions in Rules.

e Features possible optimizations such as cleaning up attributes, removing
dead code, etc.

e Tool required no assistance via documentation for full use.

Configuration: 4.5/5
e Ul clearly defined what each configuration setting did, as well as allowing
multiple different algorithms for certain obfuscation methods.
¢ Random seeds could be given to maintain some level of consistency in the
obfuscation method throughout a system, or conversely set to random
each time for increased security.
o All settings could be customized, including alternative algorithms to use

for more control of the obfuscation.

42

e Documentation, while not typically needed, was relegated to a lengthy
PDF.
e Some settings and algorithms may require usage of the documentation for

understanding but were self-explanatory for the most part.

Integration: 5/5
e Easily available through command line, Ul, or through Visual Studio Ad-
don.
e Several optimizations exist within the tool, some being used by default
which may cut down on inconsistency of processes.

e Tool contains settings which assist with integration.

5.4.2 Obscurity and Resilience
Anti-ILDASM disassembly was prevalent and helped to protect the program from
ILSpy. The full version of the program also features Anti-Reflection, Anti-Debug-

ging, and Anti-tampering tools in addition to this.

Unfortunately, despite settings to include Control flow obfuscation, no opaque
predicates were included. It simply introduced two new dummy functions which

access and check the Date Time (Figure 16; appendix 4)

However, renaming obfuscation took place, doing the “side” to “num” swap seen
in other obfuscation tools. Strings were also encrypted, as can be seen by
WriteLine, which has also been introduced via a dummy code adding a bit extra

intentional confusion to the string that was originally in place.

Overall, the original purpose of the call can be gleamed from the sample without
too much effort, but obfuscation has taken place to make it less readable and to
add extra steps which were not originally there and lead to potential confusion

which could have greater effect in a larger code base.

43

[Obfuscated (Truncated)
using Systen:
No Obfuscation } internal class 2
using System public int a(int &, int b, int c)
{
namespace ExampleApp if@a>0&&b>0&&c>0)
class Program intnum=2*a*b;
intnum2=2=a*c;
public int RectangularPrismArea(int length, int width, int height) nthum3=2*b*c

return num + numz2 + num3;
if (length > 0 && width > O && height > 0)

return g;
int sides1 = 2 ~ length ~ width }
int sides2 = 2 * length * height;
int sides3 = 2 * width * height; private static void Main(string[] a)
return sides1 + sides2 + sides3; {
} DateTime dateTime = new DateTime(™);
if ((dateTime - DateTime.Now).TotalDays < 0.0)
return 0; !
1 int num = (-315578068 * -118937126) + -366575862;
num = ((-(-180754128 + -185828599) + 340932503) * 0x2A2BD35F) / num;
static void Main(string[] args) 1
DateTime dateTime2 = new DateTime(*);
var area = new Program(); if (DateTime.Now > dateTime2 || 1 ==0)
var number = area.RectangularPrismArea(3, 5. 8); {
Console. WriteLine("The calculated area of a rectangular prism is: "); throw new ArgumentException().
Console. WriteLine{number);
} aa2 = new a():
} int value = a2.a(3, 5, 8)
H Console WriteLine(b.a("we05dwe061\el6c”, 57353));

Console.WriteLine(value);

Figure 16. Truncated code obfuscated by Babel

5.4.3 Performance Cost

The obfuscated sample code was performed ten times at around 104.6 ms on
average, which is an estimated 0.58% performance cost. Babel also had a range
of 39 ms meaning that it possibly introduced more consistency in its calculations

than the default performance possibly due to optimizations it makes.

Performance Cost of Babel

115 -
1 111 =
?10 107145 H00s—105 103 10404.6

)
2
w
E
=
=
(=]
=
o
=
=2
w

Trial1 Trial2 Trial3 Trial4 Trial5 Trial6 Trial7 Trial 8 Trial 9 Trial 10 Average

No Obfuscation ™ Babel

Figure 17. Performance cost of Babel vs normal performance

44

5.5 Comparison

Some tools performed clearly better than others due to any number of factors
such as being intended for a different environment than the one used in testing
or due to having more restricted free/trial versions of the program. It is best to
perform these tests within one’s own environment for a more exact fitting of what
suits that system best. However, in the environment listed in the earlier Testing

Plan section, the following information was found.

5.5.1 Functionality Preservation and Usability
All programs kept the base functionality after obfuscation. As said previously, this
was a complete pass or fail test due to the necessity of any obfuscation tool never

changing or removing necessary features from the code being obfuscated.

Regarding Usability, Babel performed the best overall, very closely followed by
.Net Reactor. These are the rankings of the tested tools with their overall score
out of 15:

e Babel - 14.5/15

e .Net Reactor — 13.5/15

e ConfuserEx2 — 9.5/15

e Eazfuscator — 5/15

5.5.2 Obscurity and Resilience

For the obscurity and resilience analyses each tool had its obfuscated code de-
obfuscated using the tool ILSpy. The level of obscurity, if it were to be ranked,
would be as follows:

e .Net Reactor — Code was obfuscated, and unreadable characters were
introduced in certain parts, which could not be said for any of the other
tools.

e ConfuserEx2 — The original intent of the code was challenging to deci-
pher. However, not having string encryption left key details that gave away
the purpose of the code.

e Babel — While still missing opaque predicates, it introduced dummy code
which deceptively appeared to have a purpose while not doing anything to

severely harm performance.

45

o Eazfuscator — Very little was done outside of renaming and string encryp-

tion to prevent access to the code or revise readability.

5.5.3 Performance Cost
Overall, the best performance cost is Babel, having both the best Range and
performance cost, meaning it introduces optimizations which cut down on perfor-
mance inconsistency while also not highly increasing the cost. In order of perfor-
mance cost, the tools are:

e Babel — 0.58% performance cost, 39ms range

e Eazfuscator — 2.31% performance cost, 83ms range

e .Net Reactor — 2.5% performance cost, 42ms range

e ConfuserEx2 — 10% performance cost, 59ms range

Performance Cost

Figure 18. Performance cost of all tools

Table 1. Performance cost statistics

Tool Max Min Average Cost % Range
No obfuscation | 133 83 104 - 50
ConfuserEx 152 93 114.4 10% 59
.Net Reactor 134 92 106.6 2.5% 42
Eazfuscator 169 86 106.4 2.31% 83
Babel 129 90 104.6 0.58% 39

46

6 DISCUSSION

In this thesis, obfuscation methods and other notable protections were outlined
and described. Numerous examples outlined how each method worked using
both theoretical and real examples of obfuscated code. Considerations to bear in
mind when implementing each method were discussed individually, as well as

how each method can pair or clash alongside one another.

Tamper-Proofing and Watermarking were briefly discussed, and the general idea
of protection outside of obfuscation was mentioned and analysed. A testing plan
was drafted, and the qualities sought after in an obfuscation tool were outlined

and tests were planned around those given qualities.

Four tools were chosen (ConfuserEx2, .Net Reactor, Eazfuscator and Babel)
which fit the environment present within an automation company. These tools
were tested for: Functionality preservation, usability, obscurity/resilience, and

performance cost.

When considering all aspects of the tests, Eziriz’s .Net Reactor performed the
best out of the four tested. While Babel's performance cost was lower and overall
usability was marginally better, the obfuscation methods it employs lead to only
a slight detriment to the overall readability of the code (in the trial version). Mean-
while, .Net Reactor performed well with performance, exceptionally well with Us-

ability, and was best in terms of obscurity.

Many people still fervently discuss the validity of obfuscation as a form of security,
many opponents of which say that obscurity can be eventually overcome through
analysis and studying of the obfuscated code. Proponents of obfuscation argue
that, like locking the front door of our homes, the basic level of entry has been
raised and since ultimately any security method can be defeated, it is as valid as

any other.

This thesis proposes that obfuscation can be achieved for little cost while pre-
senting a worth-while deterrent. Peace-of-mind of one’s livelihood is particularly

important, especially so in competitive fields such as automation.

47

REFERENCES

Collberg, C. & Thomborson, C. 1999. Software watermarking: models and dy-
namic embeddings. Association for Computing Machinery

Collberg, C. & Thomborson, C. 2000. Watermarking, Tamper-Proofing, and Ob-
fuscation — Tools for Software Protection. University of Arizona & University of
Auckland. Read on 27.9.2022. https://www.cs.auckland.ac.nz/~cthom-
bor/Pubs/tsewmtpobf.pdf

Kirovski, D. & Malvar, H. 2003. Spread-Spectrum Watermarking of Audio Sig-
nals. Institute of Electrical and Electronics Engineers, Inc.

Merriam-Webster. N.d. Obfuscate. Dictionary. Read 28.8.2022.
https://www.merriam-webster.com/dictionary/obfuscate

Niagra, J. & Collberg, C. 2009. Surreptitious Software: Obfuscation, Watermark-
ing, and Tamper-proofing for Software Protection. Pearson Education.

PreEmptive Solutions, LLC. N.d. Control Flow. Website. Read 23.9.2022.
https://www.preemptive.com/dotfuscator/pro/userguide/en/protection_obfusca-
tion_control_flow.html

PreEmptive Solutions, LLC. N.d. Renaming. Website. Read 7.11.2022.
https://www.preemptive.com/dotfuscator/pro/userguide/en/protection_obfusca-
tion_renaming.html

Ross, R., Pillitteri, V., Graubart, R., Bodeau, D., & McQuaid, R. 2021. Develop-
ing Cyber-Resilient Systems: A Systems Security Engineering Approach. Vol-
ume 2. U.S. Department of Commerce.

APPENDICES

Appendix 1. Usability Test Criteria

48

Usability Criteria
Assessment Target None (0) Poor (1) Satisfactory (2) Good (3) Excellent (4) Perfect (5)
« Ul is professional « Ulis well « Ulis very well
in appearance « Ul is professional organized organized
+ tis possible to and organized + Configuration + Configuration
« Settings and tools | modify most = Configuration setlings have clear | options show
are disorganized configurations settings are réames T $es;:r|ptu:;]ns 4
« Thereis nouser | * Editing of Withirthe:| cleatly e * ‘Jtcume?eg ll:!f; =" "Jl(:w an Ietulse
User Interface (Ul) | jnterface available| ~ configuration files |« Documentation is docamentalion ?nc; n:id in ! :slsis.ataﬁgeu;y "
is still necessary necdedia achieve may.shil.oe ach%eving desired documentation
to achieve desired desired resuits necessary st . Statistics of
results « Build logging exists| Build logging . ”
but may be unclear shows clear errors| E;g\?ws‘ofﬁglggm egfiléls:auon e
on what issues when they occur i
Ay FAAT worked on and with| « Clear and verbose
Y what protection build logging

Configuration

There are no
configuration
options available
« No documentation
is available

There are no
settings which can
be modified

Most configuration

options do not

work by default

« Documentation is
hard to find

+ The code itself

must be modified

to fit the tool

All configuration
options work by
default or potential
incompatibllities
are outlined
Documentation is
readily available
Some settings can
be customized

Tool introduces
some level of
variation with
repeated use
Most settings can
be customized
System comes
with preset
options for
settings

The tool attempts
to correct
incompatibility
issues itself

Tool introduces
toggle-able
variation between
repeated use

All settings can be
customized

Configuration is
simple and
straight-forward
Documentation is
not necessary but
readily available.
All settings
customized and
well explained

Integration

Integration is not
possible or is
extremely difficult
» Usage of the tool
requires large
modifications to
the existing code

Heavy
medifications
necessary for
deployment of
obfuscated code
« Errors may be

produced, even

with sample code
+ Only one method
of implementation
is available

Build process
produced no
errors in basic
usage
Configurations are
not saved

More than one
method of
implement
available

Configurations are
saved and easily
passed between
systems

Build process
produces no
errors in full use

Visual Studio Add-
on is available
Support is
available from
provider

Stack tracing
deobfuscation tool
is available for use

Tools exist in
program to assist
with integration
Optimizations are
available for use

i

/

Appendix 2. Obfuscated ConfuserEx Sample

[Obfuscated (ConfuserEx)

using System
internal class a
public int b(int P_0, int P_1, int P_2)
if(P_0>0)
goto IL_0008;

}

gote IL_00eb,

IL_00eb

int num = Q;

goto IL_00ec;

IL_00ec

bool flag = (byte)num 1= 0;
int num2 = 1602884422
goto IL_000d

IL_oood

int result = default(int);
int num4 = default(int):
int numa = default(int).
int num5 = default(int);
while (true)

uint num3;
switch ((num3 = (uint)num2 * 0x54BC4B7AuU) % 13u)
{
case 4u:
break;
case 8u
goto IL_0057;
case 1u
result = num4 + numa + nums;
num2 = ((int)jnum3 * -2120314644) * 0x22649DE4;
continue:
case 9u:
num2 = (int)((num3 * 1506053200) * 0x7364912A);
continue;
case 7u:
num2 = ((intjnum3 * -252602041) * -1692560988;
continue;
case 12u
numg =2*P_0*P_2;
num2 = (int)(num3 * 559650490) " -2004583213;
continue;
case 3u:
result = 0;
num2 = 744354000
continue;
case Qu:

continue;
case 2u

goto IL_00e5:
case 11u
{

int nume;

int num7;

if (flag)

t

nums = 2140987606
num7 = nume;
}

else

nume = 1304434495,

num7 = nums;
}
num2 = numé ~ ((intynum3 - -2867 19267)
continue;

E
case Bu:
nums=2*P_1*P_2;
num2 = ((intinum3 * -1518019195) * Ox4FOFEL4A;
continue;
case 10u,
numa=2=P_0*P_1;
num2 = ((int)jnum3 * -1370689115) * 0x2146161F;
continue;
default
return result;

break
IL_005T
it(P_1.-0)

numz = ((int)jnum3 = -170045661) " 0x218B4BB9;
continue;

goto IL_00eb;

}

goto IL_0008

IL_00e5
num={(P_2>0)?1:0);
goto IL_00ec;

IL_0008

num2 = 1533892135;
goto IL_000d

num2 = (int)((num3 * 2018347205) 0X718ADIOF);

private static void c(string[] P_0)

a obj = new a();
int value = obj b3, 5, 8)
while (true)
{
int num = 1904030271
while (true)

uint num2
switch ((num2 = (uint)num * 0x1EB267Eu) % 4u)
{
case 3u
break;
default:
retum;
case 1u:
Console. WriteLine({"The calculated area of a rectangular
prism is: "),
num = ((intjnum2 *-1998630717) * -1962245381;
continue;
case 2u:
Console WriteLine(value);
num = ((int)num2 * -1075282255) " -136791212;
continue;
case Ou:
return;

break;
}
}
}

public a()
{

while (true)

int num = -929268207;
while (true)
{
uint num2
switch ((numz2 = (uintynum * 0xC1A8S880u) % 3u)

case 2u

break;
default:

retum;
case 1u:

goto IL_0028;
case Ou

retumn;

¥

break;

IL_0028

num = (int){num2 * 1976432474) » -2039587032;

49

Appendix 3. Obfuscated .Net Reactor Sample

[Obfuscated (.Net Reactor)]
using System:
using hJ3; case &
using HQ; goto IL_018f:
using Q5; case 9
using RWZ; numé = ((>0)?1:0)
goto IL_035¢
internal class NO case 1
nums=2* *;
internal static object Ve: numz2 = 3;
goto IL_0012;
internal static NO tJy; case 6
if(<=0
public int X2(int , int , int) {
numz2 = 0;

int num = 12;
int num3 = default(int),
int nuMB = default(int);

int result = default(int).
int num7 = default{int);
while (true)

int nUM2 = num;
while (true)
{
IL_0012:
int num4
Switch (num2)
{
case 10:
num4 = 3;
goto IL_0315:
case 9
num4 = 4;
goto IL_0315
case 1
num4 = 0;
if (<Module>{a} b.c == 0)

numd = 0,

}
goto IL_0315:
case 7
num4 =9;
goto IL_0315
case 2
numd4 = 0;
if (<Module>{a}.b.g == 0)
{
num2 = 0:
if (<Module>{d} & f == 0)

num2 = 10;
continue;

}
goto IL_0315;
case 3
num4 = 0;
if (<Module>{a}.b.h == 0}
{

numz2 =9
continue;
}
goloIL_0315
default
num4 = 5
goto IL_0315:
case 4.
num4 =7;
goto IL_0315
case 12:
num3 =8§;
numz2 = 11
continue
case 5
numg=2* *
num4 = 1;
if (<Module>{a} b.i == 0)
{

num4 =1

}

goto IL_0315:
case &

num4 = 12;

goto IL_0315
case 11:

num4 = num3;

goto IL_0315;
case 6

break;

IL_0315.

while (true)

int nume;
switch (num4)
{
case 3

if (flag)

num4 =11
continug;
}
goto IL_018F;
case 4
break;

}

i

if (<Module>{d}.e.j == 0)
{
numz = 0;
}
goto IL_0012;

goto case 2;
case 2.
i >0)
{
numz2 =7;
if (<Module>{d}.e.k I= 0)
{

numz2 = 2
}
goto IL_0012

}
goto case 5;
case 0
goto end_IL_0315
default
numz = 5;
goto IL_0012;
case 7
case 10:
case 12
goto end_IL_0012
case 5
{
numé = 0;
goto IL_035¢;

}

IL_035¢:

flag = (byte)nums 1= 0;
num2 = 2;

if (<Module>{d} & | == 0}

num2 =1;
)
goto IL_0012;

resull = num7 + nums + nums,
num4 =1
if (<Module>{a}.b.m 1= 0)

goto end_IL_0012_2;

continue;

IL_00g4

num7=2* * ;

numz2 =1

i (<Module>{d} e n == 0)
{

num2 =0;

1

goto IL_0012;

IL_018F

result = 0;

num2 =§

if (<Module={d} e 0 1= 0)

num2 = 3;

1
goto IL_0012
continue;
end_IL_0315
break;
}
goto case 5;
end_IL_0012
break:

}
return result
continue;
end_IL_0012_2
break;

}

num = 4;

50 (2)

Obfuscated (.Net Reactor)

private static void tK({string[])
{

int num = 4;

int num2 = num;

int num3 = default(int);

NGO n = default{NG);

int value = default(int);

while (true)

int num4;

switch (numz2)

{

case 1:
num4 = 0;
if (<Module={a}.b.p == 0)
{

numz2 = 2;
continue;
}
break;
case 2:
numé4 = 0;
break;
default:
num4 = 2;
break;
case 4:
nums3 = 3;
numz = 1;
if (<Module>{d}e.q==0)
{

numz2 = 3;
t
continue;
case 3.
num4 = numa3;
break;
while (true)
{
switch (num4)
{
case 4:
Console WriteLine(MV.FF(0x24096C91 * <Module=>{a}.b.r});
numd = 1;
if (<Module>{a} b.s I= 0)
num4 = 1;
continue;
default:
retum;
case 0:
return;
case 3:
n = new NO{);
num2 = 0;
if (<Module={d}.et!=0)
numz = (;
}
break;
case 1:
Console WriteLine(value);
numz2 = 0;
if (<Module={d}.eu==0)
numz = 1;
1
break;
case 2:
value = n.X2(3, 5, 8);
num4 = 4;
continue;
'
break;
}

}

public NO()

{

}

OJ1()
ia();

base..ctor();

int num = 2;

if (<Module={d}.e.v 1= 0)
{

num = 0;

int nuM2 = default(int);
while (true)

int numa3;
switch {numy)
{
case 2.
num3 = 0;
if (<Module={a}.b.w ==

num3 = 0;
}
break;
case 1.
return;
default:
nums3 = num2;
break;
1
switch (num3)
{
case (&
return;
1
num =1;
if (<Module={d}.e x==10)
{
num-=1;
}
}

internal static bool tN()

{
}

return Ve == null;

intemal static NO dk()

}

return (NO)Ve;

internal static void ia()

}

Kw.owj();

internal static bool SJC()

}

return tJy == null;

internal static NO RJF()

}

return tJy;

internal static void OJ1()

}

tIn.irm();

)

51 (2)

52 (2)

Appendix 4. Obfuscated Babel Sample

Obfuscated (Babel)

using System;
internal class a
public int a{int a, int b, int c)

fa>0&&b>08&&C=>0)

&
intnum=2*a*b;
intnum2=2"a=c
intnum3=2*b*c
return num + nUmM2 + num3;

return 0;

}

private static void Main(string] a)

{
DateTime dateTime = new DateTime(-507320940 - 507318917,
((0x2646C78C * OXTCD46BC) »>= 4) - 35174418, -(~(112 =>> 4)), (—116131872 >> 1) + -58065927, ~(-524239247 - -524161391 >» 5) »> 7,
(-235817087 * 0x1DE1ESF5) + 334471828 >> 3);

if ((dateTime - DateTime.Now). TotalDays < 0.0)

int num = (-315578068 * -118937126) + -366575862;

num = ({-(-180754128 + -185828599) + 340932503) " 0x2A2BD35F) / num;
I
DateTime dateTime2 = new DateTime(—129472 >> 6, ((0xD71136F ~ 0x11B32877) + -356699064 >> 3) - 15724011, (-418627933 " Ox17AC9A40) + 257907492);
if (DateTime Now > dateTime2 || 1 ==0)

throw new ArgumentException():

aa2 =newal)

int value = a2.a(3, 5, 8);

Console.WriteLine(b.a("ue06e\ue07c\ue065Wwe068\ue07blue029\ued7 9wed7b\ue060\ue07awe064\ue029\ue060\e07a\ue033we029", 57353));
Console WriteLine(value);

}

}

53 (2)

Obfuscated (Babel) J

using System;
using System. IO,
using System.Reflection;

internal sealed class b

private delegate string a();

private sealed class b

}

private static readonly a a
public static readonly b b;
private byte[] m_c;

static b()

{
a = global:b.b;
b= new b()

1

private b()

Stream manifestResourceStream = Assembly GetExecutingAssembly(). GetManifestResourceStream(a()):
if (((manifestResourceStream == null) ? ({((-925211434 >> 1) - -335542696) + -127063021) * ((~((-{1913667842 + 104474114) »> 1) 0x1CE02CIB) * -612326228) - -70927434)) == 0)
{

this.m_c = new byte[~(-(~((~(1289357402 - 74953515) == 2) - -303600954)))];
manifestResourceStream Read(this.m_c, ~(-(0x296DC6D5 * 0x296DCE04)), this.m_c Length);
H
H

public string c(string a, int b}

{
int num = a.Length;
charf] array = a.ToCharArray();
while ((num = (~(-{1556579721 - 170843424)) >> 2) + -346434073) >= ~(~(-422567354 + -187584031) + -309686959 << 1) + 600928851)
{

array[num] = (char)(array[num] * (this m_c[b & -(~((-396589203 * 0x6662268) - -298146360))] | b))

}
return new string(array);
H

public static string a(string a. int b)

}

DateTime dateTime = default(DateTime). AddYears(~(~-639533677) + 639535699) AddMonths(-(-396042765 + 396042765 << 3)).AddDays(7.37184027777778)
if ((dateTime - DateTime.Now). TotalDays < 0.0)

throw new ArgumentOutOfRangeException();

b
return global:“b.b.b.c(a, b);

public static string b()

charf] array = "\b:\n*". ToCharArray():
int num = array.Length;
while ((num = ~(-(~-1107079082 + -411495317) >> 2) » OXASDTO6E) »= 0 << 5 5> 7)
{
array[num] = (char){array[num] * (-(~(0x219C39B4 * -108090644)) + 669671378));

return new string(array);

