

Improving social collaboration possibilities by implementing

a Social App for SharePoint 2013

Niko Lönnberg

 13 November 2014

 Abstract

 Date of presentation of thesis

Business Information Technology

Authors

Niko Lönnberg

Group

X

The title of your thesis

Improving social collaboration possibilities by implementing a So-
cial App for SharePoint 2013

Number of
pages and ap-
pendices
42 + 2

Supervisors

Juha Pispa, Niina Kinnunen

This document will show how and why an App is implemented on top of SharePoint
2013.

The document will give a brief insight to what SharePoint 2013 is and used for. The
document will present the historical background and the evolution that has led to the
current functionalities of SharePoint 2013.

This document will reflect on why the social features are important in a modern intranet
and what the app aims to do to improve them.

The document will show how to set up the development environments for developing
with a connection to Microsoft Azure, the Microsoft cloud hosted service platform, or on
premises development. The document will reflect on the advantages and disadvantages
of both development models.

The logical and desired layout of the app is explained and ways of achieving the de-
sired effects will be included in the document

The implementation section will cover how to access SharePoint with the app, explain-
ing in detail the use of the built in artefacts and how they are accessed. The document
will show what files the app solution consists of and how the different files in the solu-
tion are related to the final product and deployment. The document will demonstrate
with code snippets and screen screenshots the main methods and give explanations on
what is achieved with them. A brief troubleshooting section is included as a reference
for the usual and critical errors that were encountered.

The document will reflect upon the outcome and the further development possibilities of
the product.

In the summary part of the document the greatest obstacles for the project and sugges-
tions for improvements will be enclosed.

Key words
JavaScript Object Model, App, SharePoint 2013, Social collaboration, Visual Studio

Table of contents

1 Introduction .. 1

1.1 SharePoint Intranet and competitors .. 2

1.2 SharePoint history in brief .. 3

1.3 SharePoint 2013 .. 5

1.4 The apps approach .. 6

2 The project staging ... 8

2.1 The Goal .. 8

2.2 Available resources .. 9

2.2.1 Distinguishing good resources .. 9

2.3 Criteria of a successful project ... 10

3 Preparation for Implementation .. 11

3.1 Hosting the App ... 12

3.2 APIs ... 13

3.3 The Logic for the App ... 14

4 Implementation ... 17

4.3 Connecting to SharePoint .. 23

4.4 SharePoint hosted libraries .. 24

4.5 Programming waypoints and resources available............................... 24

4.5.1 Implementing People Picker .. 27

4.5.2 Implementing the PRAISE to the social feed 30

4.6 SharePoint Artefacts .. 30

4.6.1 Updates on the list items ... 34

4.7 Permissions ... 35

4.8 Deploying the the App .. 36

4.9 The user interface .. 36

4.10 Troubleshooting errors ... 36

5 Conclusions of the project .. 38

5.1 Achievements .. 38

5.2 Obstacles ... 39

5.3 Successes ... 39

5.4 Misleadings .. 40

5.5 Areas for Improvement ... 40

6 Summary .. 41

7 References ...

8 Appendices ..

8.1 Glossary ...

8.2 About the author ..

8.3 Appendix 1 How to set up the development environment

8.4 References of appendices ..

 1

1 Introduction

“And between what you've seen in Windows 8, what you've seen in the new
Windows 8 devices and are still to see, and what you will see in Office 15, this
will be the best year ever, ever, ever to be a Microsoft partner.” (Balmer 2012)

In 2012 Microsoft announced that, in forth coming year most of the Microsoft

products are going to be renewed. Announcements were made about Win-

dows 8, Office15, Windows Server 2012, Azure, and Office 365. The empha-

sis was of course on Windows 8 with the Internet Explorer 10 but, it also

meant the beginning of cloud services and the start of Platform as a Service

(PaaS) era. Microsoft renewed all of its major products and was ready to take

them to cloud.

With the PaaS solution end users get the most benefits from their applications

as access has become the priority.

The reason why the service is offered from cloud is reliability and in some ex-

tent control. Compared to on-premises deployment Cloud is less likely to have

system-down-time and other flaws, the service is available in chunks, so cus-

tomers only pay for what they need and now also as a result of actions by the

American Government it is very secure. In short Office 365 is easy to use with

various devices and it’s available securely for the end users.

There are some not so well known challenges however. The development and

administration for such applications has become harder as the old-fashion

back-end development is no longer possible. With on-premises deployed solu-

tions there is always the possibility to investigate the functionalities using tools

like reflector, or if the database entries and commands need to be checked

they can be opened with SQL Server Studio. The resources of the applications

are visible and easy to use if a developer wants to make a customization or

otherwise utilize the existing resources of a Microsoft application. The draw-

back with cloud deployed applications, such as Office 365, these are ob-

scured. Finally, SharePoint online is maintained automatically by Microsoft.

This can bring new unwanted features or remove old, liked, features literally

over night as well as change the styles and other User Interface (UI) elements.

(Korhonen 2014)

 2

To make the resources of SharePoint and other web applications, which are

deployed to cloud, accessible to the developers and administrators Microsoft

had to come up with a new way of allowing these resources to be tapped. With

no back-end coding possible the SharePoint resources had to be available

from the front-end. This project aims at finding out how to develop an applica-

tion using only these front-end resources.

1.1 SharePoint Intranet and competitors

SharePoint is designed mainly as an intranet/extranet platform although, if

SharePoint 2013 licence is purchased for intranet, SharePoint 2013 can be

used freely as internet platform for the enterprise.

The modern Intranet could be described with a couple of sentences. Employ-

ees need to be able to work anywhere without compromising security, in short,

having a digital workspace. Documents and other file types need to be man-

aged and shared properly, all kinds of news and other information is distrib-

uted as needed, and it is the company wide social media.

 (Del Monte 2014, Matthews 2014)

Not all intranet software provide all these features but SharePoint 2013 comes

with them all. The main competition have one more major disadvantage, they

are not being a part of the Microsoft Office family, SharePoint is a part of the

Office package thus interaction with Microsoft Excel and Microsoft Word and

the rest of the Microsoft Office family are at the core of its functionalities.

A recent blog, based on a larger research, lists the following trending features

to be of notice in intranets:

 Carousels, all award winning intranets have useful carousels that save

space and give improved visual functionality. Some criticism exists on

the usefulness of the carousel but with responsive pages and smaller

devices they are invaluable.

 Persistent right rails, quick access to all intranet data via clear struc-

tural navigation

 Functional footers, with added navigation there is less need of scrolling

to the main navigational elements, especially useful on responsive

sites viewed on smaller devices.

 Local search, the better the scope for search the lighter it is on the

system

 3

 Mega menus with shrinking displays, where all needed tools can be

added and used but without interference to the normal navigation and

usability

 Filmstrip, embedded viewing experience for most important content

and links

 The Metro look, boxier, flat and app like functionalities with minimal UI

and live tiles. The Metro look is more than just looks, it is the way

things are made to work. Content of the application is displayed in the

tile instead of some Chrome and motion is made a part of the dis-

played content. (Turnbull 2013)

 Social, the intranets are becoming more like social networks

(Caya, Nielsen, Pernice & Schad 2014)

SharePoint is offering most of the list OOTB (Out Of The Box), making it highly

competitive as the base for an intranet.

The main alternatives for SharePoint are Drupal, Joomla!, Liferay, Lotus

Notes, IBM WebSphere and SAP Net Weaver Portal, however SharePoint has

an estimated market share of more than 50%, making the competition solu-

tions chosen because of more specific needs of the customer.

1.2 SharePoint history in brief

To understand how SharePoint evolved to be the intranet typified, a brief his-

tory summary will enlighten the matter. In 1996 Microsoft Site Server was re-

leased for easier management of all needed functionalities of a complex appli-

cation, these included content management, authorization, indexing and

search, document management and analytics. The features were not neatly

wrapped as one product but were more like separate tools to choose from. In

1998 Microsoft announced Exchange 2000 Server with a new added element

code named “Tahoe” which introduced a new technology called WebDAV. It

introduced document handling with version control and authoring as well as

better search/indexing features. In 1999 Microsoft wrapped this basis of their

new technology as their first portal framework calling it Digital Dashboard. It

also introduced content management from different sources in form of “Nug-

gets” which would later evolve in to Web Parts, the main content management

feature of SharePoint.

 4

Microsoft was running two database platforms side by side but in 2000 SQL

Server was chosen as the further developed platform while Exchange Server

evolved to be the modern mail server and contact management platform run-

ning on the SQL Server. The first product named SharePoint was announced,

the SharePoint Portal Server 2001. The new product which included the Digi-

tal Dashboard was not supported by the core development platform by Mi-

crosoft, Visual Studio, so there was limited support possibilities. It was aimed

at the growing portal market but did not perform as well as it should. In 2001

Microsoft also acquired the content management vendor nCompass and re-

named it Microsoft Content Management Server 2001 (MCMS 2001). On top

of these two Microsoft had also released an add on called SharePoint Team

Services (STS) to Office as a team collaboration feature.

In 2002 the next version of Microsoft Content Management Server was re-

leased, the major difference was ASP.NET front end and thus better support

from Visual Studio. The next year a new Microsoft Office 2003 was released

along with a new server and the next generation of SharePoint. SharePoint

Team Services was renamed Windows SharePoint Services (WSS) and the

main SharePoint content management system was named SharePoint Portal

Server 2003 (SPS 2003). The features remained pretty much the same as be-

fore but performed better.

It became pretty clear that the document management and portal features

needed to be incorporated and with SharePoint 2005 Content Management

Server was included into Windows SharePoint Services, this was a huge step

forward for SharePoint, but yet Windows SharePoint Services lacked synchro-

nization and other important features. The most notable improvement in the

upgrade that became available in 2005 was the inclusion of Web Parts and

workflows. The workflows really improved content and document management

by adding approvals, comments and other features to the publishing process.

In previous versions this was possible with heavy customisations which

couldn’t be migrated to the newer versions. Because of this some the heavily

customized MCMS portals are still in use today.

The last SharePoint with separate WSS was the 2007 SharePoint, Microsoft

Office SharePoint Server (MOSS). In MOSS the content is now displayed

mostly by web parts instead of regular .aspx pages. With the help of master

pages the style- and content hierarchy are easily manageable and navigation

 5

editing tools are available OOTB. MOSS still posted restrictions to the user by

having some functionalities that only worked with Internet Explorer, such as

document sharing and editing online.

In 2010 SharePoint had absorbed WSS and was divided in to three levels, the

free one was called SharePoint Foundation and SharePoint Server could be

bought on top of it. The full-scale platform was SharePoint Enterprise. The in-

terface was changed drastically and support for browsers other than the cur-

rent Internet Explorer was added. The API: s were introduced and Client Side

Object Model (CSOM) was taken as optional approach to the traditional

SharePoint API (SharePoint Server Object Model). (Crown Canyon Systems

2014, Khartikeyan 2013)

1.3 SharePoint 2013

The latest SharePoint version was introduced in 2012 and made commercially

available in 2013. It boasted all the previous features and huge improvements

to search and collaboration features. The social features are in a huge role in

the new SharePoint. Users have by default their own MySite site where they

can post blogs, follow people or documents and manage favourite contents

when working in an authenticated mode. The documents do no longer need to

be uploaded from the UI, drag and drop features are making the UX (User Ex-

perience) even better. The biggest difference though, was that the built in fea-

tures are now apps, all libraries and lists and even sites are in displayed as

apps.

The designing of pages has been made a lot more comprehensive, it is possi-

ble for end users to create style packages with their own master pages and

deploy them across the web application. Further styling of the sites can for the

first time be done by editing images which are already deployed, the size and

dimensions can be pre-set or the images can even be cropped and filtered to

fit the visual needs perfectly.

To enhance the possibility to create the perfect look, SharePoint 2013 comes

with pre-set view states for mobile platforms such as tablets. The default view-

ing device and browser types can be defined to fit organizational needs.

There is now Search Engine Optimization (SEO) OOTB. The feature can be

configured site specifically by the site administrator or owner.

 6

1.4 The apps approach

What can the apps development model be like compared to the traditional so-

lution development model? Is there a large contrast between these develop-

ment models or can previous knowledge of the classic development model be

used when developing apps?

Apps are not only significant parts in SharePoint but also in all the new Win-

dows 8 and Office 15 Microsoft products. Windows 8 is running all features as

apps this is including the desktop. Apps are downloaded from the App Store or

installed straight to the Office program or operat-

ing system.

Apps are not only deployed on the SharePoint

host but can also execute in browsers or external

web servers as cloud service.

Although these apps can now be developed using

almost any programming language, the fact is

that, SharePoint is a Microsoft product and thus

the best available development platform is Visual

Studio. The resources available for developing an app are in such extent avail-

able for Visual Studio and the new development tool called Napa, which is free

and purpose specific for developing these apps.

Taking the apps approach thus makes the software much easier to discover,

purchase and install, than other forms of retail software.

There is minimal or no need for marketing an app or being online sales ser-

vices as the App Store provides for both.

The app has minimal effect on future upgrades of the platform, which is a

huge bonus considering the problems faced with upgrading heavily custom-

ized solutions. With the flexibility of the app it can be deployed to a new plat-

form and use the same hosting server when using the provider hosted deploy-

ment model.

For a developer who has little or no experience in developing SharePoint spe-

cific solutions the app development is much easier, as the programming can

be done with more familiar languages and SharePoint internal information can

be accessed through JavaScript. Additionally the app can use remote applica-

tions that can be built on any platform stack. These applications could be built

Figure 1 The App Store
icon in Windows 8

 7

using LAMP (Linux, Apache, MySQL, PHP) stack and displayed through an

app IFrame window in an app-part. The apps are also able to use external,

non-Microsoft platform stack, databases and storages increasing versatility.

The App uses SharePoint components, including customized parts such as

content types and event handlers, even external event handlers can be used.

The app cannot however use all SharePoint components making app incapa-

ble to do some functionalities that traditional solutions can.

The app can run on host machines or remote servers, the only place from the

app cannot run is the SharePoint server itself, making the SharePoint server

less vulnerable and the app easier to sell to potential customers who are con-

cerned with safety of their application. (Microsoft 2014a)

 8

2 The project staging

When this project was started SharePoint 2013 had just come out to the mar-

ket and the first customer solution projects had just begun. The information re-

lating to customization of SharePoint 2013 was scarse as most online-manu-

als that were published were focused on configuration through the UI. There

were no books published, and still most of the books that could have been

used as sources to this project are programming language related more than

SharePoint related.

Fortunately SharePoint is, according to various surveys, the most used intra-

net platform in the Fortune 500 companies so there was genuine interest in

the development community for building customized solutions, apps being an

important new part of the solutions package (Sisler 2012).

Microsoft responded to the needs by offering a 30 day trial (extendable to 90

days) Office 365 Developer Site, a site that has been preconfigured for Share-

Point apps development. In April 2014 the offering is still 30 days but for sub-

scribers to MSDN (Microsoft Developer Network) there is a one year free sub-

scription available. (Microsoft 2014b)

As SharePoint 2013 was published the software vendors had to get as much

information about the new product as possible, in the shortest possible time.

Conferences on SharePoint 2013 possibilities where held alongside with

smaller workshops for Architects and Project Managers, everything that

needed to be known had to be known fast. In the hectic environment some

smaller issues were easier to explore through trial. Small projects were started

and discarded alike, to learn more about the flexibility and possibilities Share-

Point 2013 had to offer.

2.1 The Goal

One of the improved features in SharePoint 2013 compared to the previous

versions are the social features. There was an expressed interest on how

these social features could be tapped to full extent to allow better collaboration

between employees by an app using the built in resources SharePoint. As a

recent study shows happy workers are more productive (Oswald, Proto &

 9

Sgroi 2014). Could an app improve on the happiness and productiveness of a

worker? If co-workers appreciate an employee’s effort and can share that

thought through the social hub it could increase the happiness of the com-

pany.

The goal was set to see if the social features can be improved with endorsing,

praising and other Social Media kind of features with some gamification in-

cluded. This was to be done by an app called the 9 to 5 app, symbolizing the

work hours. Other specification was that deployment and use should not be

cumbersome, the user’s credentials should be sufficient for the app to work.

Furthermore the app should use only client side API: s for communicating with

SharePoint resources. The outcome would be an easy to use interface with

three different layouts to choose from, the personal view, endorsement view

and admin view. As the project was started the ambitious goal on the views

were to populate empty divs, a division or a section mark of the Hyper Text

mark-up Language (HTML), with JavaScript according to the view.

2.2 Available resources

Soon after the release of SharePoint 2013 blogs on small projects and experi-

ments and hints on connections and configurations started appearing, most

were obviously small scale, but some larger tutorials were also published. At

first there was scarce official documentation on the subject but over the course

of two years the Microsoft MSDN documentation has grown quite substan-

tially. The printed media is limited to Programming in HTML5 with JavaScript

and CSS3 by Glenn Johnson, a book aimed at taking Microsoft Certification in

programming for SharePoint. This book was published a year after initial de-

velopment begun, and thus not available in the initial stages.

2.2.1 Distinguishing good resources

Distinguishing good resources is easiest done by debugging. There are now

quite good references in the MSDN documentation, showing clearly the struc-

ture and properties of the social client class, but the only really good method is

to implement the code and see if that does what is wanted. Many of the blogs

were extremely helpful on troubleshooting issues that started immediately

when setting up implementation environments and continued having excellent

advices when error messages were encountered. The most important criteria

for a good source was not the source itself but asking the right question, when

 10

the knowledge base of the technology is at novice level getting help with er-

rors is fundamental. Because the author has familiarized himself to the Share-

Point environment during this project, a good source is not necessarily giving

the exact information but has specific information that points the author in the

right direction.

2.3 Criteria of a successful project

For the project to be successful it must meet a few essential criteria. Firstly an

App which uses JavaScript to connect to SharePoint resources and is able to

add social functionalities for users is ready for use in a SharePoint 2013 envi-

ronment.

Secondly, the resources that were used are well documented and the work is

detailed and analysed.

Finally, the Thesis is well formed and has definite way points of the project.

 11

3 Preparation for Implementation

There are a few things that must be taken into consideration when developing

an app for SharePoint 2013. These choices have a huge impact on what tech-

nology should be used when developing the app as well as on the method of

data transfer between SharePoint and the App.

The following questions should act as a basis when determining the develop-

ment- and deployment methods of the app.

Where will the app be hosted? The implementation methods depend on

choice of hosting, and where the app will be deployed. Further thought must

be taken on if the users are navigating to the app web or will the app be

launched from navigation or be displayed in an app part.

What is the scope of the app? The most basic question of what the app will

do.

Will the App available through the App Store and can it be a universally de-

ployable app?

What are the privileges the app must have to run? Will the app manipulate

data in SharePoint or need to create artefacts and also where the app will do

the manipulation, the permissions of SharePoint 2013 are fine grain and must

be specified with precision.

When starting to break these points down the parameters for development

clarify. The hosting will effectively dictate which programming languages are

available for the app along with resources that can be used by the app. The

hosting also set limitations on how the app can be deployed and thus the UX.

(Microsoft 2014c)

There are four different API: s (Application Programming Interface) that can be

chosen from depending on the approach and preference. These API: s limit

the choices of the hosting if specific techniques are desired. These are the

choices available:

.Net Framework client object model with LINQ (Language Integrated Query)

syntax. The LINQ syntax allows for SQL-like queries to be made against

SharePoint objects, such as lists and sites. When using .Net Framework

COM SharePoint hosting is Autohosted.

 12

Silverlight client object model gives more possibilities than .Net Framework

COM and still allows the use of LINQ. With the code behind available this type

of app is able to manipulate timer jobs and deploy features making it a lot

more versatile than the other types but also needs to place code in the Global

Assembly Cache (GAC) which makes it more hazardous to deploy than the cli-

ent side apps.

 JavaScript client object model (JSOM) offers the SharePoint functionalities

as JavaScript libraries that can be accessed from the client side. This type is

called SharePoint hosted App.

REST (Repetitional State Transfer) endpoints that can be accessed by any

client. REST was initially described in context of HTTP but it is not as limited

as a protocol, in addition of URI: s and other protocol like transfer objects, it

has Request Methods. This is usually a Provider Hosted app, but also Share-

Point hosted apps use REST.

(Microsoft 2014d)

3.1 Hosting the App

An Autohosted app are deployed to cloud where the hosting is in Azure and

Azure SQL. The coding is done with traditional .aspx page in front and c#

code in the code behind, for this purpose multitenancy is provided. There is no

need for an app web, although it can be implemented with one. The possibility

to deploy without the App Web makes it easier for customers to accept an app

solution, after all the need for a custom web for app purposes only is not al-

ways appealing. The app is imported to the app gallery and deployed to App

parts which resemble web parts in many aspects. The app can be deployed to

any page layout through the app part. On May 16th 2014 Microsoft abruptly an-

nounced that the autohosted app development will be shut down starting June

30th (Microsoft 2014e).

The SharePoint-hosted app utilizes the CSOM (Client Side Object Model)

which means the app runs in browser and calls SharePoint JavaScript libraries

for SharePoint related information. This type of app is built from a minimum of

three elements, the HTML5 page, the JavaScript code and the style sheet

 13

CSS3. It is possible to include things such as SharePoint list definitions or li-

braries in the app definition.

Provider-hosted apps are installed within the organisations network on their

own servers. The applications themselves do not have to be programmed us-

ing Microsoft Specific programming languages or even hosted on Microsoft

SQL Servers. These apps will be relayed to SharePoint using App-Parts which

are actual IFrames for the app to be displayed in. As the connection to Share-

Point is done via JavaScript Object Model or JavaScript Object Notation

(JSON) APIs, the code is universally deployable as long as the hosting is

deemed secure. (Microsoft 2014c)

3.2 APIs

SharePoint 2013 has large number of different APIs. In web development

APIs usually mean web service. The API should be chosen according to the

skillsets of the implementer and as the APIs are in some cases overlapping so

the implementation can be done in more than one way.

Figure 2 Overlapping APIs and choices on implementation (Microsoft 2013d)

 14

The Server sandboxed solutions was the default way of development in previ-

ous SharePoint generations but has been depreciated in SharePoint 2013.

Still the .NET framework and Silverlight object models have most features

available to them. JavaScript may be used to utilize the resources available for

server side code with REST web service with almost all API: s. The call is

made an the answer is sent back either as JavaScript Object Notation (JSON)

or Atom which is based on XML, JSON being the choice with AJAX applica-

tions. The Following table displays what features are available for different

APIs.

Table 1 "Features of API: s" (Microsoft 2013d)

Feature .NET
Frame-
work or
 Silverlight
object
models

JavaS-
cript
object
model

REST/OData end-
points called
 from a Windows
platform or Ja-
vaScript

Object-oriented programming Yes Yes No

Batch processing Yes Yes No

APIs for conditional processing
 and exception handling Yes No No

Availability of LINQ syntax Yes No No

Combining list data from different
 SharePoint web applications Yes No Yes

Leveraging jQuery, Knockout,
 and other JavaScript libraries No Yes

No, from Win-
dows platform
Yes, from JavaS-
cript

(Microsoft 2013d)

3.3 The Logic for the App

The final stage before the programming phase is to understand how the pro-

ject could be implemented and what are the SharePoint resources that can be

used. SharePoint can be used as a database as custom lists are available and

are in fact stored in content databases on SQL servers.

The App should inspire people to do more socially within the boundaries of

SharePoint. The way it would do it was by allowing endorsements and reward-

ing achievements for users, the latter is called Gamification.

The App itself should be a list of a User’s skills and endorsements along with a

visual score of Social Activity.

 15

The List of Endorsements should be a global list because the display should

mimic LinkedIn, with one skill and many endorsements. The only reasonable

way to implement this would be a hidden list in the root of the application. The

endorser would be the “Owner” of the item created and it allowing for CRUD

permissions. The App must have Full Control for the web so it can create and

update the list. The Endorsee should be able to see objects concerning the

Social Actor itself. The App is displayed in an app part on a MySite, the logic

demands the use of MySite if it needs to be kept relatively simple. MySite URL

has both the domain and username in the URL and context has the users in-

formation, allowing for the app with a simple check to determine whether this

is a MySite of someone else than the user and enabling the Endorse button

and listing the skillsets of someone else other than the user. The more cum-

bersome method would be to implement a People Picker and have the App

available in other sites, like a workspace.

Later the project had to revert to people picker because the URL rewrites may

make the URL unusable.

The Microsoft Enterprise Social Application Yammer has built in the ability to

praise someone for a job well done. This is something the app will also do, be-

cause it is possible to post to a social feed using REST API. There should be

a button and text field implemented for this purpose, in the text field the con-

text of the praise is described and the post would always start with “User A

PRAISED User B” and then the description. The Praise is rendered to both us-

ers’’ feeds and viewable by subscribers of both feeds.

Unfortunately because it is impossible to write to the user attributes with the

app, therefore the number of praises cannot be used as a social marker. This

could however be easily implemented with a feature with code behind and an

event receiver as server side object model has far greater permissions to the

attributes.(Microsoft 2013f)

The Gamification should use the SP.Social namespaces attributes for refer-

ence calculating a score based on social activities. The App should give hint

son how to perform better in the social network of the application. This is im-

plemented by getting the social feed of the user and scoring point son blogs,

likes, tags etc. and informing the user on the possibility of doing these things.

The Score leads to merits or achievements, i.e. a novice could be called a

 16

“Dormant blogger” while a person with more blogs a “Rising Star of Infor-

mation”. More gamification could be added with providing a three star rating of

the current user along with changing transparent background colour for the

app. The highest merit could be for example three stars and a golden back-

ground.

 17

4 Implementation

As this project was started the clear need was for a JavaScript App for Share-

Point, ignoring the choice of API which would be best suited for the job be-

cause the knowledge on implementing with the Server Object Model existed

already. The clear goal was to see how Apps could be used instead of code

behind web parts. When a project is set up, there has to be a connection to a

working SharePoint 2013 environment. This can be either Office 365 or on

premises SharePoint 2013.

4.1 Developing to cloud

Without a connection to SharePoint the development cannot be debugged,

making the development nearly impossible. The are two different ways to start

the development of any SharePoint app. First is to develop to cloud by sign-

ing up for Office 365 developer site (Microsoft 2014b, Fox 2013).

This way the developer does not need to setup a development environment

and does not have to have an extreme computer to host SharePoint 2013.

The only procedures that need to be taken are setting up Visual Studio for

SharePoint App development. It was initially chosen as the development

method, as this seemed the to be the obvious way to develop mirroring the

growing numbers of Office 365 based solutions.

The steps needed for setting up the development environment are listed in the

appendix.

 18

Figure 3 Initial choice of app Project creation

When the project is started the deployment-url is demanded.

Figure 4 Connecting to hosting environment

When developing to 365 Developer site the Domain is sharepoint.com, the site

used at the beginning of the project was:

“https://atconsultants.sharepoint.com/sites/at925/”

https://atconsultants.sharepoint.com/sites/at925/

 19

The URL is checked and permissions asked before the development can start.

When everything is done correctly the deployment and retraction is done by

building the project and then debugging it, Visual Studio uploads the project to

the site and starts the default browser at the app site. It is even possible to

make changes while debugging by just rebuilding the project at the go.

4.1.1 Limitations

The greatest limitation when developing to cloud/Azure is the lack of relevant

tools and permissions. Firstly the complete lack of the scripting tool Pow-

erShell is definitely a big problem. On premises the tool can be used to check

status of attributes and the internal names of metadata etc. basically anything

can be checked and changed with PowerShell. The other great limitation is

time. You can only develop for a certain amount of time for free and when de-

veloping for social actors there must be social actors present in SharePoint

thus increasing the costs. Before the app was finished the site was discontin-

ued because of costs and the fact that the company for which the app was de-

veloped had purchased laptops that were capable of running SharePoint

2013.

4.2 Development on premises

When the app development was re-launched the development was transferred

from cloud/azure to on premises solution. This meant that SharePoint that will

host the development site for the app needs to be configured for App Develop-

ment. One more reason not to start from scratch was made on the grounds

that for a Social App, there has to be social activity and actual users who can

test the functionalities and give feedback. The chosen environment is a Share-

Point which is used as a Demo platform for Nintex workflows and other CRM

related customizations. Unfortunately the Site Collection was not set up for

apps development so the first step in the 3 week sprint was to set up the envi-

ronment for the development. This solution for developing on premises is also

perfectly suitable for virtual machines on personal computers, the only prereq-

uisite being that SharePoint 2013 is installed and running, and for that is

needed approximately 200GB of free disk space and 32GB of RAM which

SharePoint 2013 needs to operate.

Firstly the correct services needed to be started from SharePoint Central Ad-

ministration.

 20

Figure 6 Central Administration
Web Application management
menu

The Windows Server 2012 uses apps, so it is to open any known app by just

typing the first letters in tile view:

Figure 5 Everything is an App

In Central Admin the following steps are made:

Click Application Management

 Manage Service applications

Start the following Services if they are stopped

Figure 7 The Services which need to be started

After these are started go to services on server and check that the user profile

service is also started. This should be the case as it is automatically on.

Figure 8 Check that the User Profile Service is running

After this the Isolated app domain must be created, the creation can only be

done by using PowerShell and the permissions of the Farm Account.

First the admin and timer services need to be started just to ensure that they

are running

Figure 9 Run the SharePoint Management Shell as Administrator

 21

The command should result in: The requested service has already been

started. Do the command net start also for sptimerv4.

Next set the app domain with Set-SPAppDomain command, in this project the

command looked like Set-SPAppDomain http://devsp2013.contoso.com/

Check that the services are running by running these commands

Get-SPServiceInstance | where{$_.GetType().Name -eq “AppManagement-

ServiceInstance” | Start-SPServiceInstance . Do the command also for

“SPSubscriptionSettingsServiceInstance”.

The |(pipe) character invokes a method and $ (dollar) character is used to

mark a variable.

The line is read as follows: Get the instance where the following is true name

== AppManagementServiceInstance, and if found start the service.

The Subscription service and AppManagement services also need to be

checked

Figure 10 App Management Service and Subscription Services are running

The main thing in the returning information is that the Status is “Online” for

both.

When these checks have been done the application pool, database settings

and account for AppManagementInstance and SPSubscriptionService can be

defined with code that is provided in MSDN. In the PowerShell code below the

red highlight is a variable and can be named as wished and the green high-

light is the actual Managed Account that was used when the app development

domain was created.

$account = New-SPManagedAccount
$account = Get-SPManagedAccount "contoso0\SP_PortalAppPool"
$appPoolSubSvc = New-SPServiceApplicationPool -Name SettingsServiceAppPool -Account $account
$appPoolAppSvc = New-SPServiceApplicationPool -Name AppServiceAppPool -Account $account
$appSubSvc = New-SPSubscriptionSettingsServiceApplication –ApplicationPool $appPoolSubSvc –Name SettingsServiceApp –Database-
Name SettingsServiceDB
$proxySubSvc = New-SPSubscriptionSettingsServiceApplicationProxy –ServiceApplication $appSubSvc
$appAppSvc = New-SPAppManagementServiceApplication -ApplicationPool $appPoolAppSvc -Name AppServiceApp -DatabaseName AppS-
erviceDB
$proxyAppSvc = New-SPAppManagementServiceApplicationProxy -ServiceApplication $appAppSvc
Set-SPAppSiteSubscriptionName -Name "app" -Confirm:$false

After these steps everything should be ready for deploying apps to the devel-

opment environment. The way to test this by starting the app project which

should now be deployed to your destination app development site if it is al-

ready configured. (Microsoft 2013c)

http://devsp2013.contoso.com/

 22

If there are problems with deploying the app after the management service ap-

plication has been successfully created the SharePoint environment must be

configured to use apps from the apps domain.

4.2.1 Configuring the environment for apps

To able user to use apps in an environment the following steps must also be

taken:

1. Create forward lookup zone for apps in DNS by right clickin Forward
lookup zone and choosing new zone and keep given values until the
app domain name is asked. Choose a name for the zone, apps was
used in the project.

2. Create a new CNAME alias for the new zone by right clicking on the
newly created forward lookup zone and select New Alias. Browse until
the server name is found and double click that, double click Forward
Lookup zone, double click domain, Select same as parent folder and
OK, OK.

3. Create the app domain as the Forward Lookup zone was created but
fill *.app as Alias name before continuing to the double clicking se-
quence

(Microsoft 2014d, van Olst 2012)

4.2.2 Investigative development

When developing for Apps for SharePoint 2013 there is a flood of unexpected

events ranging from permission issues to other unexpected failures. In this

part this document will go through some events that raised issues throughout

the environment setup and programing phases in the order in which they im-

pacted the project.

First issue was insufficient permissions when trying to stage the Subscription

Settings Service Application with PowerShell. The Program returned Farm is

unavailable error even when given Site Collection administrator privileges to

the account in Central Admin and Local Server administrator privileges on the

server. The privileges that were missing were for configuration database not

SharePoint, adding db_owner and db_securityadmin roles to the account

solved the issue and script could be run without errors.

Second issue was when trying to start the program for the first time in debug

mode in on premises environment running on the virtual machine. The Pro-

gram returned error “SharePoint” and as I wrote an alert message the program

was trying to return an object but somehow could not do it correctly. This is

 23

due to insufficient memory to run Noderunner.exe and when checking the

memory usage it was at a steady 94% even if there were no major programs

running. The solution is to shut down some services that are not needed, in

this case there is no need to run search on development farm where there is

only the development site. This is done from Services and disabling the follow-

ing services:

Figure 11 Services that are unnecessary can be shut down in development
environments. If in a live environment these must not be touched

After shutting down the services the Memory was down to 75% usage, which

proved to be insufficient still, so more memory had to be assigned for the

virtual machine. The problem still presisted so some further error handlin was

done to load the script only after some code had been transferred. Finally the

solution to the problem was forcing the context before running any other script:

SP.SOD.executeFunc("SP.js", "SP.ClientContext", function (){ Code Here}

Third issue was losing the current context again. The error message stated

that

0x800a138f - JavaScript runtime error: Unable to get property 'SPClientPeo-

plePicker_InitStandaloneControlWrapper' of undefined or null reference. This

issue never got solved because of hard disk failure which wiped to computer

clean and the project had to be restarted.

4.3 Connecting to SharePoint

As the JavaScript Object Model was the chosen implementation, a brief insight

on how it connects to SharePoint is needed.

Visual Studio 2012 caters for the needed end points when starting an App pro-

ject. The first four lines of the Default.aspx page of the App contains register-

ings of SharePoint Dynamic Link Libraries (.dll) which are deployed to the

GAC which is found in %systemdrive%\Windows\assembly. This is what gives

the App access to the SharePoint resources.

Furthermore the JavaScript libraries are also embedded in SharePoint and

registered in the Default.aspx page. This means that the App does not have to

include these libraries but can call the by Uniform Resource Identifier (URI)

components, basically by adding them to the URL in the browser.

 24

Figure 12 SharePoint class library controls

4.4 SharePoint hosted libraries

SharePoint JavaScript object libraries are the asset which all code must relate

to. The App uses mostly the sp.userprofiles.js library from where the SPSocial

namespace and SPUserProfiles namespace can be accessed. These

namespaces contain Objects which must be first retrieved and the object has

members; Constructor, Methods and Properties. Each of these have their

unique set of retrieval and posting values that must be in correct form. The

Visual Studio autocomplete function does not know these getters and setters,

which in turn complicate the coding as constant lookup for the correct Methods

and properties must be researched.

4.5 Programming waypoints and resources available

Implementing user specific controls starts with acquiring the user data. This is

done by calling the Sp.UserProfiles.Js and with the Context retrieving the

SP.UserProfiles.PeopleManager object. After this the personal properties can

be extracted with a call to the people manager object with specific user param-

eters domain\user.

personProperties = peopleManager.getPropertiesFor(targetUser);

If the call is successful the personProperties object can be used in the follow-

ing manner:

personProperties.get_displayName();

personProperties.get_userProfileProperties()['Department'];

The displayName can be changed to any of the following attributes:

 25

Table 2 Attributes of SP.UserProfiles.peoplemanager Object

And the Key ['Department'] can be changed to any of the following

Table 3 Additional properties of userProfileProperties Attribute

The output can be assigned to a variable to display if it has value

// Get a property directly from the PersonProperties object.
 var message = " \"DisplayName\" property is "
 + personProperties.get_displayName();

// Get a property from the UserProfileProperties property.
 message += "
\"Department\" property is "
 + personProperties.get_userProfileProperties()['Department'];

// Get another property from the UserProfileProperties property.
 message += "
\"Skills\" property is "

Attribute Outcome

accountName Gets the user's account name.

directReports Gets the account names of the user's direct reports.

displayName Gets the user's display name.

email Gets the user's email address.

extendedManagers Gets the account names of the user's manager hierarchy.

extendedReports Gets the account names of the user's extended reports.

isFollowed Gets a Boolean value that indicates whether the user is being followed by the current user.

latestPost Gets the user's latest microblog post.

peers Gets the account names of the user's peers.

personalUrl Gets the absolute URL of the user's personal site.

pictureUrl Gets the URL of the user's profile picture.

title Gets the user's title.

userProfileProperties Gets user profile properties for the user.

userUrl Gets the URL of the user's profile page.

AboutMe SPS-AdjustHijriDays SPS-LastKeywordAdded SPS-ResourceSID

AccountName SPS-AltCalendarType SPS-Locale SPS-Responsibility

ADGuid SPS-Birthday SPS-Location SPS-SavedAccountName

Assistant SPS-CalendarType SPS-MasterAccountName SPS-SavedSID

CellPhone SPS-ClaimID SPS-MemberOf SPS-School

Department SPS-ClaimProviderID SPS-MUILanguages SPS-ShowWeeks

EduExternalSyncState SPS-ClaimProviderType SPS-MySiteUpgrade SPS-SipAddress

EduOAuthTokenProviders SPS-ContentLanguages SPS-O15FirstRunExperienceSPS-Skills

EduPersonalSiteState SPS-DataSource SPS-ObjectExists SPS-SourceObjectDN

EduUserRole SPS-Department SPS-OWAUrl SPS-StatusNotes

Fax SPS-DisplayOrder SPS-PastProjects SPS-Time24

FirstName SPS-DistinguishedName SPS-Peers SPS-TimeZone

HomePhone SPS-DontSuggestList SPS-PersonalSiteCapabilitiesSPS-UserPrincipalName

LastName SPS-Dotted-line SPS-PersonalSiteInstantiationStateSPS-WorkDayEndHour

Manager SPS-EmailOptin SPS-PhoneticDisplayName SPS-WorkDayStartHour

Office SPS-FeedIdentifier SPS-PhoneticFirstName SPS-WorkDays

PersonalSpace SPS-FirstDayOfWeek SPS-PhoneticLastName Title

PictureURL SPS-FirstWeekOfYear SPS-PrivacyActivity UserName

PreferredName SPS-HashTags SPS-PrivacyPeople UserProfile_GUID

PublicSiteRedirect SPS-HireDate SPS-ProxyAddresses WebSite

QuickLinks SPS-Interests SPS-RegionalSettings-FollowWebWorkEmail

SID SPS-JobTitle SPS-RegionalSettings-InitializedWorkPhone

SISUserId SPS-LastColleagueAdded SPS-ResourceAccountName

 26

 + personProperties.get_userProfileProperties()['SPS-Skills'];
 $get("results").innerHTML = message;

Figure 13 results span after code is run

By adding values in Sharepoint Central Administration where all properties

can be edited or in MySite where some properties can be edited by the user:

Figure 14 Central admin view of managing user profiles

When the property Schools has been assigned the schools value is retrieva-
ble.

message += "
Studying at: "
 + personProperties.get_userProfileProperties()['SPS-School'];

The outcome shows that there was immediate effect.

Figure 15 results span displaying changes when code is run

However these are built in Get-Only Properties, the code cannot write to these

properties or add new ones. With the only interesting property “Skills” we can

 27

fortunately append all skills separately as the return string uses |(pipe) as the

separator. Furthermore after researching the person profile properties from

Central Administration => Manage Service Applications => User Profile Ser-

vice Application => Manage User Profile Properties, we can also use SPS-Re-

sponsibility. It is available for all users in their personal MySites.

Figure 16 The results of changes shown when code was run

Now the app has found these two different Skillsets to use as a base for the

Endorsement list

The PeopleManager is not the only feed about users available in SharePoint,

the feed that could have more use for the App is the SocialFeedManager.

From SocialFeedManager the following Methods are available

Table 4 SocialFeedManager Methods

4.5.1 Implementing People Picker

The App was initially supposed to get the users and domain from URL param-

eters of a MySite, but the idea was discarded. Instead the user can search for

any user to look at their social rankings and endorse them. The initial pick will

of a user will render the users Skillset to a custom control where the skills and

endorsers of the skills. The SPClientPeoplePicker has the following compo-

nents

 An input text box to enter the query

 A span control that shows the names, groups and claims

 A hidden element which is populated by the results

 An autofill control

Method Description

follow Adds the specified actor to the current user's list of followed actors.

getFollowed Retrieves the actors that the current user is following.

getFollowedCount Retrieves a count of actors who the current user is following.

getFollowers Retrieves the users who are following the current user.

getSuggestions Returns Users who the current user might want to follow, as an array of SocialActor objects.

isFollowed Determines whether the current user is following the specified actor.

stopFollowing Removes the specified actor from the current user's list of followed actors.

 28

The picker is dependent on server side JavaScript libraries that must be regis-

tered before the actual JavaScript code can be executed, these codes are ex-

ecuted after initial page load which means that the picker must first be ren-

dered before the calls can be made.

Figure 17 Linked JavaScript libraries to apprehend by the people picker

From the App.js code the div is initiated:

initializePeoplePicker('peoplePickerDiv');

The initialization of the picker is based on a Schema in the App.js file

 var schema = {};
 schema['PrincipalAccountType'] = 'User'; // Changed
 schema['SearchPrincipalSource'] = 15;
 schema['ResolvePrincipalSource'] = 15;
 schema['AllowMultipleValues'] = false; // Changed
 schema['MaximumEntitySuggestions'] = 50;
 schema['Width'] = '280px'; // CSS file will overwrite this

The Microsoft documentation does not say anything about the properties in

the schema. Initially the picker takes multiple values and returns everything,

the form asked to enter names or addresses, not a name and address. So by

using people picker script libraries the look is kept OOTB. By removing un-

wanted Group data and setting AllowMultipleValues to false the schema is

working for this purpose, and the picker is now nicely asking for one name or

e-mail address to look for.

Then the schema is passed to the control:

this.SPClientPeoplePicker_InitStandaloneControlWrapper(peoplePickerEle-

mentId, null, schema);

Now the picker is ready for use, and auto populates the search box with AJAX

elements, so the whole user name or e-mail address does not have to be

typed. The call is initiated by a input.

Figure 18 Start inserting name

 29

Figure 19 The AJAX will start suggestions

Figure 20 A SharePoint user profile was chosen

When the desired user has been selected the App.js retrieves the

PeoplePicker object from the page:

 var peoplePicker = this.SPClientPeoplePicker.SPClientPeoplePick-

erDict.peoplePickerDiv_TopSpan;

And from people picker the user information can be extracted with

peoplePicker.GetAllUserInfo();

The GetAllUserInfo returns a lot of unnecessary values for our purpose. The

one thing that is of interest is the user Key which can be passed as Social Ac-

tor. It is retrieved with

keys = peoplePicker.GetAllUserKeys();

Because the people picker is not allowing multiple values, the returned value

is the domain\userName of the searched account. (Microsoft 2013e)

Figure 21 All the user metadata that the picker returns

With the use of the people picker the needed sets of metadata from user pro-

files can be extracted for any user. And by assigning the picked user as the

social actor it is possible to directly access their feed and comment on it.

 30

4.5.2 Implementing the PRAISE to the social feed

To POST to a social feed the app needs Write permissions to the Tenant

scope. By default the permissions are Read, in the App Manifest the Tenant

Scope is assigned Write permissions which will be granted when the adminis-

trator of the Site Collection approves the app.

Figure 22 App has been given write permissions to tenant scope

By creating two different sets of messages to different SP.ClientContexts, one

for the Social Actor giving the Praise and the other for the target(s) we can

create two slightly different POSTs to respective feeds. The Feed is created

as SP.Social.SocialFeedManager.createPost(targetId, creationData), the tar-

get ID stands for where in the post hierarchy the POST is written and the crea-

tion data is the whole object passed to the feed. When creating the Praise as

a new POST the target ID is null, otherwise it is the ID of the POST where the

current POST is added as a child posting.

We set the SP.Social.SocialDataItemType to user by assigning the value 0 to

the DataItem, the values are: user = 0, document = 1, site = 2, tag = 3, link =

4. The tag would be great, but, once again a proper Tag for PRAISE with a

Global Unique Identifier (GUID) cannot be created, that could be referenced

as the object. A text can be set with set_Text() method to the SP.Social.So-

cialDataItem() to allow the PRAISE to be consistent even with user added

data. For the feed to be noticed better an image of a star or something similar

should be added, but again this is only supported with server side program-

ming. (Microsoft 2013g & Narasiman 2014)

4.6 SharePoint Artefacts

For the app to work some SharePoint artefacts are needed to store data as

the App only runs from the browser. One of these artefacts is a custom hidden

list where the actual endorsements will be stored. To create such a list first the

 31

project is chosen, and a custom list is added. The list contains three columns

Endorser, endorsee and Skill.

The first thing is to set up the list columns. Thi sis done from Visual Studio by

clicking the project and add button

Figure 23 Adding custom Site Column to be used with the list

After all columns are created they must be assigned to a content type to be

able to use them in a SharePoint list. For the app a new content type is

created by adding it from the project menu.

 32

Figure 24 Creating a content type to use in the list

There are numerous choises from where to choose the inheritance of the

content type. For simplicity the Item base content type was chosen.

Next the columns are assigned to the content type and given field type values.

For simpicity the people columns are kept as text, this should be changed later

to display the name and picture.

Figure 25 The columns and their types, Userfield_downleveltTB does not work

The list is created in the same manner, the initial choises are for the type of

list, any type of SharePoint list can be added including announcements and

wikis.

 33

Figure 26 Creating the list

The List cannot unfortunately be added to the root web without a Feature, the

only option is to save it to the app web and hide it by setting the hodden

attribute to true. For the purpose of debugging the list the option is left to false

for the time of implementation.

Figure 27 The List properties in Visual Studio properties window

When deploying the app the list is created under the app web url:

 34

http://app-

9ac9ae87ece4e9.apps.contoso.com/The925/Lists/EndorsementList/AllItems.a

spx

Figure 28 The List in the App domain, still without entries

Because the app will be displayed in an app part of some other web than the

app web the app web must be properly refernced when making calls to the

app resources, or in this case the Endorcement list. For this the cross domain

request calls have to be implemented and authorized. (Mircosoft 2014f)

4.6.1 Updates on the list items

Usually if something changes that should affect the list a custom event re-

ceiver has to be implemented. The event receiver can be primed to monitor

any changes to a list in the web application. Should the user leave the com-

pany or change the skills this should be registered on the Endorsement list,

however this had to be discarded as the app cannot gain access to any Ser-

vice Application, such as user profiles. On the server side it is possible to ac-

cess the Microsoft.Office.Server.UserProfiles.dll assembly and through code

implement monitoring on this library. This is accessed through UserProfi-

leManager.GetChanges() method. (Lapointe & McDermott 2011)

Unfortunately there is no equivalent on client side leaving no alternative but to

iterate each user and look for changes. This can be made by checking each

http://app-9ac9ae87ece4e9.apps.contoso.com/The925/Lists/EndorsementList/AllItems.aspx
http://app-9ac9ae87ece4e9.apps.contoso.com/The925/Lists/EndorsementList/AllItems.aspx
http://app-9ac9ae87ece4e9.apps.contoso.com/The925/Lists/EndorsementList/AllItems.aspx

 35

user against Last Keyword Added Property (SPS-LastKeyWordAdded) and by

doing so only in rendering the UI for specific users the app should be able to

get the information without too long delays.

A JQuery working on it effect should be implemented at later stages.

At the moment the current user is looked for from the Endorsement List and

with each row returned the check is made before rendering the Endorsements.

For this purpose a new last modified column has been added to the list, and if

the endorsee has modified the user profile since this time the whole list item is

updated.

4.7 Permissions

Permissions of the app are as important as the code itself. App permissions

are set from the AppManifest.xml where the metadata of the app is configured.

Without proper permissions the following error will appear on the App page:

Figure 29 Error message for insufficient rights

On the other hand Administrators will not install apps which have too much

power over SharePoint. The App should be given the right set of Permissions

to do what its designed to do.Here are the permissions of the SocialApp

 36

before the list had been implemented:

Figure 30 App manifest XML in editor, can be also edited as the original XML
file

4.8 Deploying the the App

When the app is deployed it creates its own app web under the root web. The

URL can be broken down in the following manner:

Figure 31 The URL components

The endorsement list will be hidden and the The925/pages/default.aspx will

projected to a web part once the app is installed to the app catalog of the host

system.

4.9 The user interface

Given all the obstacles and limited time, the user interface was decided to be

left outside the scope. Because the application logic is working the UI can be

implemented as a separate project to provide for the much needed gamifica-

tion and good UX aspects.

4.10 Troubleshooting errors

During the coding phase numerous errors will be encountered during debug-

ging. Here are listed the ones that were critical and had to be fixed.

 37

Table 5 The Errors and solutions

Error Solution

Unable to get property SP.UserPro-
files.PeopleManager of undefined
or null reference

Register SP.UserProfiles before any
actions:
$.getScript(scriptbase +
"SP.UserProfiles.js", getUserProp-
erties);

getUserProfiles is the method where
Sp.UserProfiles.js is used

JavaScript runtime error: The prop-
erty or field 'PictureUrl' has not
been initialized. It has not been re-
quested or the request has not
been executed. It may need to be
explicitly requested.

This turned out to be an issue with
SP.UserProfiles.js script not loading
even with SP.SOD.executeOrDe-
layUntilScriptLoaded(getUserProper-

ties, 'SP.UserProfiles.js'); de-
clared in the App.js Fix: Declare the
script location in Html <script
src="/_layouts/15/SP.UserPro-
files.js"></script>

Request failed: An app requested
information that is not available
from this location.

No Feed was available, wait if feed
has been creatred. Implement null
check.

For some strange reason the En-
dorser column has been changed to
Title

Create a new view and make that
view default, the Endorser is dis-
played

The property or field 'Id' has not
been initialized. It has not been re-
quested

This had similarities with the previous
error. Then initializing the endorser
field the program throws this error be-
cause it’s expecting Title. FIX: cli-
entContext.load(collListItem, 'In-
clude(Title, endorsee, skill)');

A potentially dangerous request.
Path value was detected from the
client when using REST to upgrade
list

Normally a <%@ Page Vali-
dateRequest="false" would fix this
but it is not allowed in SharePoint
Hosted Apps
The error was not fixed and the Post
was done by CAML query instead.

 38

5 Conclusions of the project

The world of intranets has changed. Only three years ago the balance of work

was in customizing intranets for the customer because the platform did not of-

fer all the capabilities desired. There were numerous systems that were

placed on top of SharePoint for added value. Today SharePoint 2013 is a

huge application with extremely vast capabilities OOTB, improving on these

capabilities is not something that the customizations usually target. This has

led to the shifting from coding projects to consultancy and Support projects.

More work is also done on ensuring the communication between systems.

Microsoft’s vison is to offer SharePoint from the cloud only without the possi-

bility to on premises support has led to the Apps approach. The App is a con-

venient way of doing small tasks, but cannot replace the Server Side Object

Model with its limited capabilities and resources. At the moment the documen-

tation for the JavaScript API is far from complete, the links library in Microsoft

office Dev Center called JavaScript API reference for SharePoint 2013 is still

leading mostly to empty pages, you can assure yourself of this by visiting their

site at http://msdn.microsoft.com/en-us/library/office/jj193034.

Customers are also aware of the dangers with huge data in cloud, there have

been many breaches to these Data Stores even this year.

The social features for SharePoint are good and with the possibility to get

Yammer embedded in SharePoint makes the App nearly obsolete, but with

some further effort it could be an affordable improvement to an existing intra-

net.

Working with SharePoint was initially chosen as a natural way to display the

skills learned at the University and at Work. Previously the code used was C#

along with html and CAML query, the SharePoint artefacts were accessed by

referencing SharePoint .ddl: s and the use of SPList, SPlList item, SPWeb and

SPSite had become familiar. This project was not using the familiar com-

mands that could be used with code behind solutions and therefore the learn-

ing curve was steeper than expected.

5.1 Achievements

The project was successful in retrieving the needed data from SharePoint and

in finding ways to manipulate the data in desired ways to get a functioning

App. The insight on how the code should work and how to setup the program-

ming environments was well learned. Upon discovering that the properties

 39

cannot be set from client side, the re-evaluation and assessment produced an

idea for getting the working with other tools. Although installing a list to the

root web of an application can be hard on the system if there are many users

who start using endorsements, but with the idea of raising the ListViewTresh-

old for the application root web this problem can be overcome. The logic of the

App is working and without unnecessary hardcoding and string manipulations,

although some string manipulation has to be used to get the desired part of

the huge mass of data returned by calls to the JavaScript API. The major ob-

stacles that were listed in the implementation phase were overcome by re-

thinking in terms of “what can be done” instead of “can’t do it”.

5.2 Obstacles

At the best of times SharePoint 2013 in is somewhat volatile, something that is

known by all the users. Error messages are not self-explanatory and some-

times quite impossible to understand. When dealing with a rather new technol-

ogy the Online sources are not as abundant on the matter as with some older

versions, thankfully some advice can be retrieved and with a little thought ap-

plied to the latest version as well.

The project was started over three times because of limitations on Office 365

development site lease times and the unstableness of the Hyper-V virtual ma-

chine system introduced with Windows 8. The code was lost once because of

corruption of the virtual machine and once with the corruption of the work-

station Windows 8.

With scrapping of the original idea in 2013, the project was restarted in early

summer 2014 and by then some of the original code no longer was usable be-

cause of new restrictions. The setbacks were cumbersome and had effect on

the motivations on completing the project.

When the running into the fact that Person properties cannot be set or, as

hoped for, created with Key and value multivalued property, the application

seemed to be unable to do what it was intended to do.

5.3 Successes

By far the hardest part and the biggest success was with the setup of the vir-

tual machine environment. With the use of server side tools such as Central

Administration and PowerShell command script the internal names and prop-

erties could be resolved making the client side coding much easier. Unfortu-

nately this was also very time consuming and took up all of the time primarily

 40

reserved for implementing the code. All error messages that were thrown were

resolved and the important ones also documented.

5.4 Misleadings

The one big misleading was the initial assumption that the user properties

could be manipulated with an app, this lead to the whole project being laid

down for a while. At the restart the project needed to be rethought and an al-

ternative solution had to be researched. As the author has gained a lot of

knowledge about SharePoint 2013 from working with in various customer envi-

ronments, there was a lot of ideas that had to be scrapped as the client side

object model did not support the actions that were initially thought possible.

5.5 Areas for Improvement

The area of improvement that is critical for a project of this nature is the

choosing of a scope that is narrow enough but has the challenge that a thesis

must have. This project had far too many big obstacles to overcome to have

had any chance to succeed within the given timeline and effort.

The App could be completed with the gamification and UX in mind, making it a

neat addition to some intranet. By using JQuery effects the and deploying the

app to some landing page it could be something users would adopt.

The project grew not only in scale but the timetable was impossible to keep as

well, due to inexperience in implementing in client side and very limited time

resources of the author.

 41

6 Summary

SharePoint offers many interfaces for programming on the client side. The

documentation on how to access these interfaces is quite good and examples

are abundant. Unfortunately the steps needed to be taken before these

sources are useful are not as straight forward as could be desired. Setting up

the development environment for Apps is a rocky road at its best.

When the using the Azure developer site the developer does not have all the

resources of SharePoint available and thus somewhat more challenging than

the working on premises. The App that is developed for Social data use has

limited resources of social data available unless more users are invited to the

site in the first place to create the social data.

On premise development is on the other hand harder to set up, the isolated

app web needs to be configured exactly right and the developer needs to have

knowledge not only about programming, but also about the infrastructure and

SharePoint Specific server side scripting. The App web needs to be added to

DNS forward lookup zones to be accessed, the apps also need their own

managed accounts to perform correctly in the host environment or even to de-

ploy.

When the environment finally was successfully configured and the App de-

ployed to the host environment, the scale of the product began to grow. When

finding out that an App running on the client side interface could only execute

get commands against user profile properties the logic had to be rethought.

With a new perspective came new obstacles, the app needed to access its

own web from host webs, something that the built in security of web browsers

and SharePoint will try to prevent. One of the most difficult things to implement

is the Cross Domain Request, a ratified way of Cross Site Scripting. The prob-

lems with the ratification could not be solved by the normal declarations in the

page head because the App does not allow these changes.

The last major force to affect this project was volatile software. Not only is

SharePoint 2013 sensitive to slightest changes and may stop working for no

apparent reason, but the Windows 8 operating system and Hyper-V Manager

also behaved eccentrically. This project had to deal with properties being

 42

dropped as services shut down unexpectedly on SharePoint, the complete

crash of the operating system, broken network adapters and broken hard

drives. This could possibly have been avoided if SharePoint would not have

been on a Virtual Machine designed for development purposes. But, if the de-

velopment would have been directed on a live environment the risks would

have been far greater. Some problems were waved by installing Windows 8.1

operating system, which has improved stability compared to Windows 8.

The App Model itself is an easy on the environment and ingenious way of add-

ing some extra features to SharePoint 2013. When the demands for safety

have been met the App can, by using SharePoint specific resources, do a lot

and bring more out of the social features of SharePoint 2013. However with

the next generation of SharePoint it will be obsolete since the general consen-

sus is that Yammer will be integrated fully to the SharePoint package, it is al-

ready available to be embedded to the existing environments and by itself can

be used as an intranet.

7 References

Balmer, S. July 9, 2012. Microsoft Worldwide Partner Conference 2012 Day 1

Keynote. Can be read: http://www.microsoft.com/en-

us/news/speeches/2012/07-09wpcday1ballmer.aspx retrieved 30.3.2013

Caya, P. Nielsen, J. Pernice, K. & Schad, A. January 5, 2014. Can be read:

http://www.nngroup.com/articles/intranet-design/ retrieved 24.10.2014

Crow Canyon Systems 2014. The Evolution of SharePoint: a Brief History.

Can be read: http://sharepoint-applications.com/sharepoint/the-evolution-of-

sharepoint-a-brief-history/ retrieved 22.10.2014

Del Monte, M. August 11, 2014. Top 6 Other Names For Intranet Software.

Can be read: http://www.intranetconnections.com/blog/other-names-intranet-

software/ retrieved 20.10.2014

Fox, S. February 3, 2013. Steve Fox's OBA Ramblings, Setting up your Devel-

opment Environment for O365 & Azure Development. Can be read:

http://blogs.msdn.com/b/steve_fox/archive/2013/02/03/setting-up-your-devel-

opment-environment-for-o365-amp-azure-development.aspx retrieved

30.3.2013

Khartikeyan, E. March 3, 2013. SharePoint Evolution. Can be read:

http://karthikeyane63.wordpress.com/category/sharepoint-evolution/ retrieved

30.03.2013

Korhonen, H October 21, 2014. Intranet-ostajan opas, Intranet pilvestä –

Kolme kokemusta SharePoint Onlinesta. Can be read: http://intranet-osta-

janopas.fi/2014/10/21/intranet-pilvesta-kolme-kokemusta-sharepoint-onlinesta/

retrieved 10.11.2014

http://intranet-ostajanopas.fi/2014/10/21/intranet-pilvesta-kolme-kokemusta-sharepoint-onlinesta/
http://intranet-ostajanopas.fi/2014/10/21/intranet-pilvesta-kolme-kokemusta-sharepoint-onlinesta/

Lapointe,G & McDermott, M. Apr 20, 2011. Monitor SharePoint User Profile

Changes. Can be read: http://sharepointpromag.com/sharepoint-2010/moni-

tor-sharepoint-user-profile-changes retrieved 27.10.2014

Matthews, P. January 28, 2014. 8 Features Your Intranet Must Have In 2014.

Can be read: http://www.claromentis.com/blog/8-features-your-intranet-must-

have-in-2014/ retrieved 20.10.2014

Microsoft 2014a. May 29, 2014. Dev Center, Apps for Office and SharePoint.

Can be read: http://msdn.microsoft.com/en-us/library/office/fp161507(v=of-

fice.15).aspx retrieved 05.06.2014

Microsoft 2014b. August 25, 2014. Dev Center, Sign up for an Office 365 De-

veloper Subscription, set up your tools and environment, and start deploying

apps. Can be read: http://msdn.microsoft.com/library/office/fp179924(v=of-

fice.15) retrieved 24.10.2014

Microsoft 2014c. August 27, 2014. Dev Center, Choose patterns for develop-

ing and hosting your app for SharePoint Can be read: http://msdn.mi-

crosoft.com/en-us/library/office/fp179887 retrieved 30.3.2013

Microsoft 2014d. March 3, 2014. TechNet Library, Configure an environment

for apps for SharePoint (SharePoint 2013). Can be read: http://technet.mi-

crosoft.com/en-us/library/fp161236(v=office.15) retrieved 5.9.2013

Microsoft 2014e. May 16, 2014. Office Blog, Update on Autohosted Apps Pre-

view program Can be read: http://blogs.office.com/2014/05/16/update-on-au-

tohosted-apps-preview-program/ retrieved 6.11.2014

Microsoft 2014f. May 11, 2014. Developer Network, How to: Access Share-

Point 2013 data from apps using the cross-domain library can be read:

http://msdn.microsoft.com/en-us/library/fp179927.aspx retrieved 24.10.2014

Microsoft 2013a. July 16, 2013. Dev Center, Choose the right API set in

SharePoint 2013. Can be read: http://msdn.microsoft.com/en-us/library/of-

fice/jj164060(v=office.15).aspx#Factors retrieved 30.03.2013

http://sharepointpromag.com/sharepoint-2010/monitor-sharepoint-user-profile-changes
http://sharepointpromag.com/sharepoint-2010/monitor-sharepoint-user-profile-changes
http://blogs.office.com/2014/05/16/update-on-autohosted-apps-preview-program/
http://blogs.office.com/2014/05/16/update-on-autohosted-apps-preview-program/

Microsoft 2013b. August 25, 2013. Dev Center, Sign up for an Office 365 De-

veloper Subscription, set up your tools and environment, and start deploying

apps. Can be read: http://msdn.microsoft.com/library/office/fp179924(v=of-

fice.15) retrieved 30.03.2013

Microsoft 2013c. August 30, 2013. Dev Center, How to: Set up an on-prem-

ises development environment for apps for SharePoint. Can be read:

http://msdn.microsoft.com/en-us/library/office/fp179923(v=office.15).aspx re-

trieved 5.9.2013

Microsoft 2013d. July 16, 2013. Dev Center, Choose the right API set in

SharePoint 2013. Can be read: http://msdn.microsoft.com/en-us/library/of-

fice/jj164060(v=office.15).aspx retrieved 20.10.2014

Microsoft 2013e. July 2, 2013. Dev Center, SharePoint 2013: Add the client-

side People Picker control to apps. Can be read: https://code.msdn.mi-

crosoft.com/office/SharePoint-2013-Add-the-900e0742 retrieved 20.10.2014

Microsoft 2013f. July 1, 2013. Dev Center, How to: Work with user profiles and

organization profiles by using the server object model in SharePoint 2013.

Can be read: http://msdn.microsoft.com/en-us/library/office/jj163142(v=of-

fice.15).aspx#bkmk_CreateUPProp retrieved 20.10.2014

Microsoft 2013g. August 28, 2013. Dev Center, SP.Social.SocialDataItem ob-

ject (sp.userprofiles). Can be read: http://msdn.microsoft.com/en-us/library/of-

fice/jj679811(v=office.15).aspx#methods retrieved 27.10.2014

Narasiman, S. February 2, 2014. How to publish a post to SharePoint Social

Feed using SharePoint 2013 JSOM. Can be read: http://sundarnara-

siman.net/?p=134 retrieved 27.10.2014

Oswald, A. Proto, E, & Sgroi, D. Thesis: Happiness and Productivity. Can be

read: http://www2.warwick.ac.uk/fac/soc/economics/staff/eproto/work-

ingpapers/happinessproductivity.pdf retrieved 9.11.2014

http://sundarnarasiman.net/?p=134
http://sundarnarasiman.net/?p=134
http://www2.warwick.ac.uk/fac/soc/economics/staff/eproto/workingpapers/happinessproductivity.pdf
http://www2.warwick.ac.uk/fac/soc/economics/staff/eproto/workingpapers/happinessproductivity.pdf

Sisler, L. August 29, 2012. SharePoint Adoptation and Use. Can be read:

http://blogs.perficient.com/microsoft/2012/08/sharepoint-adoption-and-use-in-

fographic/ retrieved 24.10.2014

Turnbull, C. August 27, 2013. Flat Design, iOS 7, Skeuomorphism and All

That. Can be read: http://webdesign.tutsplus.com/articles/flat-design-ios-7-

skeuomorphism-and-all-that--webdesign-14335 retrieved 9.11.2014

van Olst, M. July 29, 2012. Mirjam's thoughts on SharePoint, Setting up your

App domain for SharePoint 2013. Can be read: http://sharepointchick.com/ar-

chive/2012/07/29/setting-up-your-app-domain-for-sharepoint-2013.aspx re-

trieved 10.10.2013

http://blogs.perficient.com/microsoft/2012/08/sharepoint-adoption-and-use-infographic/
http://blogs.perficient.com/microsoft/2012/08/sharepoint-adoption-and-use-infographic/
http://sharepointchick.com/archive/2012/07/29/setting-up-your-app-domain-for-sharepoint-2013.aspx
http://sharepointchick.com/archive/2012/07/29/setting-up-your-app-domain-for-sharepoint-2013.aspx

8 Appendices

8.1 Glossary

AJAX Asynchrous JavaScript And XML, a modern way for the applica-

tion to communicate with the server without having to reload the

whole page

API Application Programming Interface, a connection point to the ap-

plication

BIN Application specific library for compiled code, for universal library

see GAC

CAML Collaborative Application Mark-up Language, a SharePoint spe-

cific query syntax based on XML, used with SPQuery class

CMS Content Management System, software for publishing infor-

mation

CSOM Client Side Object Model

CRUD Create, Read, Update and Delete, abbreviation of full privileges

CSS Cascading Style Sheet, style syntax readable by all browsers

DNS Domain Name System, applies the name and address to the ap-

plication

GAC Global Assembly Cache, the server side system library for all

code that is not application restricted. Code that is application

specific see BIN

HTML Hypertext Mark-up Language, structure syntax readable by all

browsers

JSOM JavaScript Object Model, client side object model using JavaS-

cript

JSON JavaScript Object Notation, easy to understand and lightweight

data transfer format

LAMP Linux, Apache, MySQL and PHP used as a platform for software

LINQ Language Integrated Query, Microsoft syntax for querying data

from application

MOSS Microsoft Office SharePoint Server. Usually MOSS 2007 and

WSS together

MSDN Microsoft Developer Network, The library and discussion forum

on Microsoft platforms and development.

OOTB Out Of The Box, unmodified software

REST Repetitional State Transfer, a dynamic connection endpoint

SDK Software Development Kit

SEO Search Engine Optimisation

UI User Interface, the way the application is displayed to the user

UX User Experience, how the functionalities are portrayed and made

accessible to the user

WSS Windows SharePoint Services, The Server services of Share-

Point 2007

8.2 About the author

The Author of this thesis has worked for two years as Software Developer in a

Maintenance Team, up keeping various customer environments based on

SharePoint 2007, SharePoint 2010, SharePoint 2013 and Microsoft CMS

2002. During this time the author has learned the skills needed for developing

SharePoint solutions in the previous versions of SharePoint, administration of

all versions of SharePoint and troubleshooting a myriad of errors in different

scenarios. The author has made custom web parts, features and hidden

scripts for customer solutions, corrected databases and has worked with the

tools provided for SharePoint maintenance such as STSADM.exe and Pow-

erShell. This project will strengthen the skills in SharePoint 2013 development

but could not be completed without the previous knowledge about the struc-

ture and capabilities of SharePoint 2013 and its predecessors.

8.3 Appendix 1 How to set up the development environment

1. Get the Microsoft developer site started and familiarize yourself with

SharePoint 2013.

2. Install Visual Studio 2012 or later

3. Get the following tools for Visual Studio:

a. Office Developer Tools for Visual Studio 2012

b. SharePoint Client Components (containing the client assem-

blies)

c. Windows Identity Foundation (WIF) SDK

d. Workflow Tools SDK and Workflow Client SDK

e. Windows Identity Foundation SDK and Windows Identity Foun-

dation Extensions.

The correct way to install the needed updates to Visual Studio are

as follows:

In Control Panel, on the Programs and Features page, choose the

product edition to which you want to add one or more components,

and then choose Change.

In the Setup wizard, choose Modify, and then choose the compo-

nents that you want to install.

Choose “Next”, and then follow the remaining instructions. (Fox 2013)

8.4 References of appendices

Fox, S. February 3, 2013. Steve Fox's OBA Ramblings, Setting up your Devel-

opment Environment for O365 & Azure Development. Can be read:

http://blogs.msdn.com/b/steve_fox/archive/2013/02/03/setting-up-your-devel-

opment-environment-for-o365-amp-azure-development.aspx retrieved

30.3.2013

