

Sampsa Oksa

Pathfinding in a 3D-environment Using Unity3D

Thesis

Kajaani University of Applied Sciences

School of Business

Business Information Technology

Autumn 2014

 OPINNÄYTETYÖ
 TIIVISTELMÄ

 Koulutusala Koulutusohjelma
Luonnontieteiden ala Tietojenkäsittely

 Tekijä(t)
Sampsa Oksa
 Työn nimi
Reitinhaku 3D-ympäristössä Unity3D pelimoottorilla

 Vaihtoehtoiset ammattiopinnot Ohjaaja(t)
Peliohjelmointi Leena Heikkinen

 Toimeksiantaja

-

 Aika Sivumäärä ja liitteet
Syksy 2014 37
 Opinnäytetyön tavoitteena oli luoda toimiva reitinhakualgoritmi 3D-ympäristöön käyttäen Unity3D
pelimoottoria. Täysin toimiva A* reitinhakualgoritmi toteutettiin niin, että se pystyi suorittamaan kaksi eri testiä
useammalla eri graafilla. Opinnäytetyö keskittyy reitinhaun toteutukseen ja siitä saatujen tulosten arviointiin.
Tämän vuoksi opinnäytetyö ei keskity liiaksi eri variaatioihin ja optimointimahdollisuuksiin joita A* tarjoaa.

Opinnäytetyö alkaa reitinhakuun tutustumisella ja tarjoaa perustietoa siitä, mitä se on ja miten sitä voidaan
käyttää. Kun perustiedot on käyty läpi, opinnäytetyössä esitellään vanhempia hakutekniikoita, jotka ovat
muokanneet tietä nykyaikaiselle reitinhaulle. Tämän jälkeen A*-algoritmia tarkastellaan tarkemmin, selittäen sen
toiminnallisuutta ja avainominaisuuksia. Opinnäytetyössä tutkitaan tämän jälkeen eri tapoja, joilla A*-algoritmia
voidaan muokata, jotta se toimisi parhaimmalla mahdollisella tavalla siinä sovelluksessa, jossa sitä käytetään. Osaa
tiedoista käytetään myöhemmin opinnäytetyön toiminnallisessa osassa.

Kun kaikki tekniikat, joita A* voi käyttää, on esitelty, opinnäytetyön toiminallinen osa esitellään. Se määrittää
toiminnallisen osan tavoitteen ja miten se toteutetaan. Esittelyssä kuvataan, miten reitinhaku lisätään ympäristöön
ja kuinka siitä saatuja tietoja myöhemmin analysoidaan.

Opinnäytetyön loppu keskittyy projektin dokumentoimiseen ja testiympäristöjen järjestelyyn sekä itse testeihin.
Dokumentaatio selittää myös minkä vuoksi tiettyjä asioita on käytetty ja millä tavalla ne vaikuttavat testien
lopputulokseen. Tämän jälkeen tuloksia analysoidaan ja koko opinnäytetyön onnistumista arvioidaan.

Kieli Englanti
Asiasanat Reitinhaku, A* algoritmi
Säilytyspaikka Verkkokirjasto Theseus

 Kajaanin ammattikorkeakoulun kirjasto

 THESIS
ABSTRACT

School Degree Programme
Business Business Information Technology

 Author(s)
Sampsa Oksa
 Title
Pathfinding in a 3D-environment Using Unity3D

 Optional Professional Studies Instructor(s)
Game programming Leena Heikkinen

 Commissioned by
-

 Date Total Number of Pages and Appendices
Autumn 2014 37
 The goal of this thesis was to create a working pathfinding algorithm for a 3D environment running in Unity3D
game engine. A fully working A* pathfinding algorithm was implemented so that it was able to run two different
types of tests using two different graph representations. The thesis strictly focused on the implementation and
analysis of the results produced by the algorithm. Because of this, the thesis did not delve too much in to the
different variations and optimizations available for the A*.

The thesis starts with an introduction to pathfinding and provides some basic information what it is and how it
can and should be used. After the basics the thesis represents some older search techniques which have been in a
major role for the modern pathfinding algorithms. After that the A* algorithm is reviewed in a more detailed
manner, explaining its functionality and some of its key factors. The thesis then explores different ways the A*
algorithm can be modified to satisfy the needs of the game it is applied to. Some of the findings are used later in
the practical part of the thesis.

After introducing all the techniques the A* can use, the practical part of the thesis is presented. It defines the
goal of the project and how the execution will happen. The introduction of the project describes how the
pathfinding will be added to the environment and how the received results are later analyzed.

The end of the thesis focuses on documenting the process of setting up the test environments and running the
tests. The documentation also explains why certain things are made and how they affect the outcome of the
tests. The conclusion of the thesis analyzes the results gained from the project and reviews the success of the
thesis as a whole.

Language of Thesis English

Keywords Pathfinding, A* algorithm
Deposited at Electronic library Theseus

 Library of Kajaani University of Applied Sciences

CONTENTS

1 INTRODUCTION 1

2 BASICS OF PATHFINDING 2

3 EARLY PATHFINDING METHODS 4

3.1 Depth-first search (DFS) 4

3.2 Breadth-first search (BFS) 5

3.3 Dijkstra’s algorithm 6

3.4 Greedy best-first search 7

4 A* ALGORITHM 9

4.1 A* basics 9

4.2 Heuristics 10

4.3 A* core loop 12

5 MAP REPRESENTATIONS 15

5.1 Grid graph 15

5.2 Polygonal graph 15

5.3 Navigation mesh graph 17

6 OPTIMIZATION TECHNIQUES 19

6.1 Open list operations 19

6.2 Heuristic function 20

6.3 Search optimizations 20

7 PROJECT DOCUMENTATION 22

7.1 Preparations 22

7.1.1 Node class 22

7.1.2 Pathfinder class 23

7.1.3 Map setup 24

7.2 Pathfinding tests 24

7.2.1 Stress test 25

7.2.2 Application in a 3D-environment 30

8 CONCLUSIONS 36

REFERENCES 37

LIST OF SYMBOLS

FPS Frames Per Second, the frame rate of a game.

Node Node is a term in pathfinding for a point which is used in the

pathfinding. A node holds information about its location and

different values which are used to calculate the best route. Additional

information related to the node can also be stored in it.

Graph A graph is some kind of a form in which the nodes used in the

pathfinding are presented.

Heuristic A heuristic means the approximation of distance in pathfinding. It is

an estimation how much it costs to get to the end node from a

particular node.

DFS Depth-first search, a search algorithm that visits nodes as deep as it

can before switching to another branch.

BFS Breadth-first search, a search algorithm that goes through nodes one

level at a time before delving deeper in a tree graph.

AI Artificial Intelligence, behavior of the computer controlled units in a

game which tries to mimic intelligent behavior.

1

1 INTRODUCTION

Pathfinding is an important part of the AI (Artificial Intelligence) systems present in video

games. It adds value and works as a pretty strong backbone for any AI unit which attempts

to replicate intelligent behavior in some manner. While pathfinding as a concept seems

pretty straightforward, it does have many things that need to be taken in to consideration

when it is designed and implemented. In this thesis a pathfinding algorithm is created and

used in a 3D environment. The practical part of the thesis is restricted to a simple

pathfinding implementation in two different ways to demonstrate the flexibility of the

algorithm.

This thesis explores the core functionality of pathfinding and ways to modify and improve it

to fill the needs of a particular game it is implemented to. Because the main focus of this

thesis is the practical part, none of the information provided in the theory part is explored

too deeply because it is beyond the scope of this work. Later in the thesis this information is,

however, used to create a working A* algorithm that can be used in 2D and 3D video

games. The goal is to create a pathfinding algorithm which finds optimal routes in

reasonable time so that it is theoretically possible to implement to an actual game.

The created pathfinding algorithm was developed solely for this thesis using the Unity3D

game engine. Unity3D was chosen for its easy visual editor which allows an easy way to

document and visualize the algorithm in runtime. The engine’s visual 3D tools also enabled

fast prototyping and modification of the test environments so that the algorithm could be

tested in a myriad of ways. All the findings of the thesis are applicable to future projects

involving pathfinding and AI programming.

2

2 BASICS OF PATHFINDING

What is pathfinding? At the simplest level, pathfinding is a way to find a route between two

points. In modern video games this is used as a part of the artificial intelligence (AI) to

control the movements of non-player characters (NPC). Pathfinding is required to avoid

unintelligent behavior which might lead to breaking the immersion of the player. (Anguelov

2011.)

Since video games are largely visual experiences, a lot of improvements have happened in

the recent years to provide players better experiences. Games are usually required to run at

least at 30 FPS (Frames Per Second), to appear smooth, and it sets a lot of performance

constraints for the AI in general to be able to complete all the necessary tasks every frame.

This means that the time given for the pathfinding process is quite a small amount of

milliseconds. Since computers also have a finite amount of memory, optimization is in place

when making large features like pathfinding. This is why different algorithms have been

developed to find the most efficient paths. (Anguelov 2011.)

If pathfinding is not present in a little more complicated environment, it might lead to

unintelligent behavior. If a NPC moves around only by trying to reach its goal using a direct

line between points, it might get stuck behind a wall or a tree. This kind of behavior breaks

the illusion of thinking creatures which also means that the gaming experience is interrupted.

(Anguelov 2011.)

What pathfinding does is that it calculates possible routes between two points and finds the

most optimal solution. It takes into account different obstacles that might block the way or

slow down the movement of the unit. Depending on the algorithm used, the found path

may vary a lot from a path found with another algorithm. This requires that the programmer

gives the program some kind of understanding of directions and distances and how to use

them. (Patel 2014.)

Figure 1 shows a basic difference between the moving with and without pathfinding. The

blue line represents the movement with pathfinding on and the red line without pathfinding.

3

Figure 1. Movement with and without pathfinding (Patel 2014)

Other applications also benefit from pathfinding, most notably real life navigation systems

that use GPS to track their user’s position. These applications give the user different route

suggestions which they can then use to get to certain locations. Usually the algorithms have

different variables in them, which enable them to filter out different results. These results

might include the most ecological route, shortest route and the fastest route. (Puthuparampil

2007.)

Because of the performance constraints set by the computers it is nearly impossible to make

a pathfinding algorithm that is suitable for every purpose. That is why the algorithms are

usually tailored for their specific purposes. This allows the algorithm to work as optimally as

possible and do just the necessary job that is required of it. (Patel 2014.)

4

3 EARLY PATHFINDING METHODS

Mathematicians have explored different types of pathfinding algorithms for decades and

found a myriad of solutions. The basic algorithms are quite simple to understand while the

more complex ones are very challenging to comprehend. The early algorithms were

uninformed graph searches that did not take into consideration any costs when traversing

nodes. The more modern algorithms are cost based, meaning they can more precisely

analyze the cheapest paths to reach the target destination. (Buckland 2005, 209-210.)

3.1 Depth-first search (DFS)

The depth-first search is an algorithm that searches through a graph by going as deep as it

possibly can. The algorithm follows a branch until it reaches a dead end or the destination. If

the branch is a dead end, the algorithm then backtracks to a more shallow depth where the

next branch begins and searches that branch in full depth. (Buckland 2005, 210 - 213.)

Since DFS (Depth-first search) is an uninformed algorithm, it does not take into

consideration where the end destination is. Even though DFS usually finds a path, it is not

guaranteed to be optimal in any way. Using DFS instead of an intelligent cost based

algorithm may lead to unwanted behavior. (Eranki 2002.)

The problem DFS has is that it may or may not find the path very quickly. If the algorithm

has luck and it picks the correct branch in the very beginning, it might find a route to the

destination very fast. On the other hand it might also search through the whole graph before

finding the way. If the graph size is very large this usually leads to a situation where the

algorithm takes a very long time. In the worst case scenario, the algorithm might also end up

in an infinite loop without ever finding a path. (Buckland 2005, 213 - 224.)

5

Figure 2. DFS and the search order of the nodes (Esser 2005)

3.2 Breadth-first search (BFS)

Breadth-first search is much like DFS but instead of trying to reach the end going through

the graph one branch at a time, BFS (Breadth-first search) fans out from the starting point.

BFS searches through all the nodes in one depth before moving on to the next depth. By

searching through the graph this way the algorithm is guaranteed to find a shortest path to

the destination if it exists. (Buckland 2005, 224.)

The real problem with BFS is that this kind of systematic search takes a very long time when

the search spaces are larger. Because BFS searches through the graph one depth at a time,

large searches where there is a high branching factor start to slow down. So even though the

algorithm guarantees a path, it might take a very long time to actually find it. (Buckland

2005, 230 - 231.)

6

Figure 3. BFS and the search order of the nodes (Drichel 2005)

3.3 Dijkstra’s algorithm

Edsger Dijkstra published his algorithm in 1959 to answer the shortest path problem in a

weighted graph that does not use negative cost values (Anguelov 2011). In a graph this

means that the edges between nodes represent the cost to travel to that specific node

(Dijkstra 1959). This makes the algorithm a cost-based graph search and the way the

algorithm works guarantees a shortest path if one exists. (Buckland 2005, 231 - 234.)

Dijkstra’s algorithm works by handling one node at a time. The node gets a value that

describes how much it costs to move to that specific node from the source node using a

specific path. The values are cumulative, meaning that the further the algorithm searches,

the larger the values get. By storing these values the algorithm can evaluate whether another

path is better just by comparing if the cumulative value would be smaller using the new

route (Puthuparampil 2007). The process will be terminated as soon as the algorithm reaches

the destination node. (Buckland 2005, 234.)

Despite the fact that Dijkstra’s algorithm gives the shortest path, it is not very efficient and

is therefore not usually used in video games. Because the algorithm always takes the closest

node under examination, the searched area expands to unwanted directions. This is simply

because the algorithm does not have a sense of direction. The algorithm searches a lot of

unnecessary nodes similar to BFS. (Buckland 2005, 240 - 241.) Figure 4 shows an example

7

of a search using Dijkstra’s algorithm. The red square is the starting node, the blue square is

the end node and the teal colored area marks all the visited nodes required to find the

shortest path.

Figure 4. Dijkstra’s algorithm (Patel 2014)

3.4 Greedy best-first search

Greedy best-first search differs from Dijkstra’s algorithm so that it does not keep track how

much it costs to traverse from the start node. Instead it uses an estimate how much it costs

to traverse from a particular node to the end node. This estimation is called a heuristic. An

algorithm is considered greedy when there is no long term planning involved. Greedy

algorithms choose the option which seems to be the best at the current time. (Madhav 2013,

185.)

Because of the heuristic evaluation, greedy best-first search is much faster than Dijkstra’s

algorithm. The heuristic guides the algorithm towards the end node which reduces the

amount of nodes the algorithm has to visit. However, the path found by the algorithm is not

guaranteed to be the shortest path. (Patel 2014.)

8

Figure 5. Greedy best-first search without obstacles (Patel 2014)

The greedy best-first search is not trouble free. Due to the fact that it does not take the

already traversed path into consideration like Dijkstra’s algorithm, the algorithm might keep

on going straight towards the goal even if the path is not even remotely optimal. This might

lead to weird path choices and especially different types of obstacles cause problems for the

algorithm. (Patel 2014.)

Figure 6. Greedy best-first search with an obstacle (Patel 2014)

9

4 A* ALGORITHM

A* (pronounced A-star) is the most popular pathfinding algorithm used in video games.

While it is in its core very much alike Dijkstra’s algorithm, it also utilizes the heuristic

approximation used in greedy best-first search. A* is fairly flexible and easy to modify, which

makes it ideal for video games. It can find the shortest paths like Dijkstra’s algorithm and

perform fast like the greedy best-first search. A* makes use of three values: G-value which is

the actual cost to travel to a node, H-value which is the heuristic estimate and F-value which

is the combination of the previous two. (Patel 2014.)

4.1 A* basics

A* is guaranteed to give optimal paths if the heuristic estimate is lower or equal to the actual

cost left to travel to the end node. Using the information of the actual cost to traverse to a

node from the start node and the estimated cost left to traverse to the end node gives the

algorithm accuracy and performance, because the actual cost keeps the algorithm on the

right path and the heuristic directs the algorithm to the right way. (Buckland 2005, 241 -

242.)

The G-value marks the true cost to traverse to a node from the starting node. Each node

stores the value how much it costs to traverse to it using a specific path. When the algorithm

examines a node, it searches through the surrounding nodes connected to it. If the

surrounding nodes would get a better value when traversed through the node under

examination, then the path to the surrounding nodes is redirected through the examined

node. Since the G-value is responsible for the accuracy of the path, it is the most important

value of the algorithm in that sense. (Anguelov 2011.)

H-value, which is the heuristic value, is an approximation of the distance still needed to

travel to get to the end node. Heuristic value directs the A* to the most promising direction

and allows the algorithm to ignore nodes further from the end node. This of course requires

that the solution, optimal path, is found from the direction the heuristic value points to. If

the path cannot be found from the initial direction, the algorithm will search the less

potential nodes later on. (Anguelov 2011.)

10

The total value F consists of the actual cost G to travel to that specific node from the

starting point and the heuristic estimation H how much it costs to get to the end node.

Therefore F(n) = G(n) + H(n). When the different values are utilized in this manner, the

algorithm is directed towards the end node in a fashion which gives the algorithm speed and

precision. (Buckland. 2005 241-242; Anguelov 2011.)

Fewer nodes need to be examined since the algorithm does not expand to all directions like

Dijkstra’s algorithm and this is the main difference between the two. When using the F value

to get the best node out of the list of open nodes, A* first tries the most obvious solution

without discarding potential nodes too soon. This feature allows the algorithm to find an

optimal route even if the first searched direction ends up being a dead end. (Buckland 2005

242; Anguelov 2011.)

4.2 Heuristics

There are various types heuristic functions that can be used in the A* algorithm and they can

be used to control A*’s behavior. By changing the heuristic function and how it operates,

the algorithm’s speed and precision can be drastically altered. The performance and

precision go hand in hand and usually improving the other leads to the decreasing of the

other. (Patel 2014; Anguelov 2011.)

Heuristics affect the behavior of the algorithm in the following ways:

• The extreme situation where the value of H is 0, only the G value of the A* affects

the algorithm’s behavior. This turns the algorithm to Dijkstra’s algorithm and

therefore is guaranteed to find a shortest path.

• If the heuristic function always estimates the cost to be lower or equal to the actual

cost left to travel to the end node, the heuristic function is admissible and will find a

shortest path. The lower the estimated cost the larger the search area of the

algorithm is. This will also make the search slower.

• If the approximated cost is exactly the actual cost left to travel to the end node then

A* will only follow the most optimal path never expanding its search to unnecessary

nodes making it very fast and optimal. The problem is that this is achievable only in

11

certain special circumstances, but it is good to know that A* will behave perfectly,

given the right conditions.

• If the estimated cost is sometimes larger than the actual cost, the search is a little

more biased towards the H value making it behave more like a greedy search. This

will not guarantee a shortest path but it will make the search perform faster.

• At the other extreme where the H value is way greater than the G value, only the H

values have any weight in the algorithm turning it completely into a greedy search.

(Patel 2014.)

A* algorithm is quite flexible and easily modified by changing the heuristic function. This is

especially useful in video games, where it is often unnecessary to find a perfect route but

rather a solution that is close enough to the best thing. By utilizing the heuristic function in

different ways, speed and precision can be achieved to get the result that is needed for a

specific game or situation. (Patel 2014.)

Since the heuristic function can be modified quite freely, it can be used to filter out certain

types of paths easily. Nodes that are located in these kinds of paths are simply given larger

estimated values making the algorithm to avoid them. Another example of modifying the

function is giving the function some kind of weight. By weighting the values over time or by

other conditions, the algorithm can be more precise in wanted situations and in other

situations focus more on the performance. Figures 7, 8 and 9 show the behavior of A* when

using different heuristic functions on a grid graph. (Patel 2014.)

Figure 7. A* using Manhattan distance (Patel 2014)

12

Figure 8. A* using Diagonal distance (Patel 2014)

Figure 9. A* using Euclidean distance (Patel 2014)

4.3 A* core loop

Even though the A* algorithm may seem like it is a lot of work, the basic implementation

and functionality is quite simple. The algorithm uses two sets, open set and closed set. The

open set contains the potential nodes for examination and the closed set contains all the

nodes that have already been examined. The best node is pulled from the open set to be

examined and put in to the closed set. The algorithm then searches through the adjacent

nodes and adds them to the open set if needed. All the searched nodes are given G, H and F

values, if they do not already have any or if the existing values are worse, based on how

much the costs would be if travelled through the examined node. When all the adjacent

nodes have been searched, the algorithm picks the next best node from the open set and

13

searches the adjacent nodes of that node. This will go on until the end node is reached. The

path construction is based on the information that every node has a link to its parent node,

the node that was used to get to that specific node with the specific values. (Patel 2014.)

The A* loop is easy to comprehend when it is broken down into a few points:

• Initially only the starting node is added to the open set.

• The following is repeated:

o The best node (the one with the lowest F value) is picked from the open set

to be the current node under examination.

o The node is moved to the closed set.

o The adjacent nodes connected to the current node are searched through. If

the adjacent node is blocked or if it is already in the closed set, the node is

skipped.

If the adjacent node is traversable and it is not yet in the open set, it is

calculated the correct values, the current node under examination is set as its

parent node and it is then added to the open set.

On the other hand if the node is already in the open set, its G value is

compared to the G value it would get if travelled to through the current

node. If the G value it would get when traversed through the current node is

better than its existing value, the adjacent node is calculated with new values

and its parent is set to be the current node. Otherwise no action needs to be

taken.

o The search is terminated once the node picked up from the open set is the

end node and it is moved in to the closed set. Alternatively the search ends if

there are not any more nodes available in the open set meaning that a path

does not exist.

• If a path is found then the path is constructed by tracking down each nodes parent

node starting from the end node. The path is constructed when the starting node is

14

reached. The starting node can be identified easily since it does not have a parent

node. (Lester 2005.)

While the basic implementation is easy to understand, the simple example does not take into

account other factors that affect the algorithm. These include other moving units, varying

terrain costs and smoothing of the found path. When the computers’ limited processing

power and memory is taken into account, optimization of the algorithm in every possible

field should be taken seriously. (Anguelov 2011; Lester 2005.)

15

5 MAP REPRESENTATIONS

Grid graph is not the only option when using A*. A* can be used quite easily in many kinds

of graphs which all have their own advantages. Therefore it is important to choose a graph

that best suits the needs of the game A* is applied to. (Anguelov 2011.)

5.1 Grid graph

Grid graph is a very common representation used in games. This is simply because game

worlds consist of different types of tiles which can then be used like a grid graph. Grid

graphs are very useful when different tiles have different sets of rules that affect the path the

algorithm calculates. Grid graph also allows multiple ways for the units to move in the game,

since they can use the tiles’ center points, line centers or even the joining points of the tiles.

(Patel 2014.)

Grid graph does have its bad sides also. It is not very optimal when the map sizes get very

large. The amount of nodes the algorithm has to go through gets larger so the processing

speed may not be the best. If the movement of the units is not constrained to tile

movement, then searching through large open areas node by node is quite useless using grid

graph, when a large amount of those nodes could be skipped in the calculations. When A*

searches through that kind of an area using grid graph, it is not very optimal and it also

produces jagged movement. (Patel 2014.)

5.2 Polygonal graph

Polygonal graph is a great easy-to-use alternative to grid graphs. Polygonal graphs is

especially useful when the units in the game can move to any point in the game world from

another point. In polygonal graphs, the nodes are placed either manually or by using the

information different game objects provide. (Patel 2014.)

Nodes placed in polygonal graph do not necessarily have any information whether they are

blocked somehow, if they are leading to a dead end and what they are connected to.

16

Therefore it is the maker’s responsibility to make sure that the nodes have all the

information they need and that they are somehow available to other nodes. The actual

connections between nodes are usually determined by a visibility check. Visibility check

calculates which other nodes a specific node sees from its location. Graphs that are created

this way can be very fast and simple, since they have only the needed amount of nodes in

them. This means that large open areas can be crossed very fast in the algorithm, since there

does not need to be additional nodes in the middle of that area. (Patel 2014.)

Downsides of the polygonal graph are the implementation and the complexity management.

If the polygonal graph is crafted by hand, meaning the nodes are placed manually, it can be

quite a heavy task to do if the game has multiple levels. It would require the maker to place

the nodes for each of the levels, which could be very time consuming if the levels are very

large or if there is just a large amount of them. Also if the level has a lot of nodes in a small

area, the visibility calculations can make a very tangled web of the connections between the

nodes. This mainly uses more memory and is therefore quite costly. (Patel 2014.)

Figure 10. Nodes placed in a polygonal graph (Patel 2014)

17

5.3 Navigation mesh graph

Navigation meshes are maps created from the game world data. It uses the mesh data from

the static objects in the level and calculates a mesh for itself. Since each mesh consists of

different amounts of triangles, the navigation mesh uses those as tiles that are then used in

the A*. Navigation mesh behaves much like a grid graph with the exception that the tile

sizes are not preset and therefore they can be modified when creating the map so that large

areas one big tile, making it sort of a combination of the grid graph and the polygonal graph.

(Patel 2014.)

Navigation meshes are great when there are a lot of levels or very large maps. This is

because navigation meshes are usually calculated beforehand programmatically and they are

then stored as another file. This file is then read when the pathfinding starts and A* uses the

data provided by the navigation mesh to find routes. Because the mesh uses data provided

by the game world, it can store additional data easily, such as varying movement costs or

other info the unit might need to know about that specific tile. (Anguelov 2011.)

The creation of navigation data based on the world data is the most efficient way to

represent complex environments, since it does not matter how the world is structured for it

to make connections based on the principles that have been set for it. Navigation meshes are

able to minimize the amount of nodes effectively and there will be no unnecessary

connections since visibility checks do not have to be made. (Anguelov 2011.)

The major disadvantage navigation mesh has is that it is not very well suited for dynamic

environments where the accessibility of a node might change due to other gameplay factors.

This is simply because the maps are pre-calculated and very heavy, so there is usually no way

to redo them at runtime. (Anguelov 2011.)

18

Figure 11. A navigation mesh based on the level geometry (Patel 2014)

19

6 OPTIMIZATION TECHNIQUES

As stated before, pathfinding can be quite costly for a game’s performance considering the

memory usage and execution speed. There is, however, ways to speed things up and make

the algorithm run more smoothly. Some of these include better container options,

optimization of the heuristic function and modification of the search area used in the

algorithm. (Anguelov 2011.)

6.1 Open list operations

The open list operations in A* are expensive. This is because the search uses certain

operations inside it, which are time consuming. A* constantly finds the best node from the

open set and removes it. When checking the adjacent nodes, A* goes through the open set

to see if the node already exists in the set and inserts it if it does not. The last operation is

when the adjacent node exists in the open list but it gets a better value using the current

route, then the values of that node need to be changed. If the container sorts the nodes

based on their F value, in the worst case scenario the node has to be removed and inserted

again with the new values. (Patel 2014.)

The usual containers, such as arrays, are not very well fit for these requirements. The

dynamic changes in the sets and the required iteration operations make simple

implementation slow and inefficient. A generic way to deal with all of the issues is to

implement a binary heap, which uses indexing to sort and access nodes quickly. A binary

heap works pretty well in most cases and is therefore recommended for a generic use of the

A*. (Anguelov 2011.)

It is important to note that even though A* loop adds requirements to the handling of the

open set, over optimizing the open set handling may not always work in the most favorable

way. If the set implementation uses sorting and is ordered, the time spent in the

optimization functions may be more expensive than simply iterating through the set, turning

it into a de-optimization. (Anguelov 2011; Patel 2014.)

20

6.2 Heuristic function

In addition to the costly open set operations the one calculation that marks the optimality of

the algorithm is its heuristic function. In some cases the cost of calculating the heuristic

value for all the searched nodes may outweigh the cost that the open list operations take.

(Anguelov 2011.)

By increasing the accuracy of the heuristic function fewer nodes are added to the open set

making the algorithm perform faster. This means that the result of the heuristic function

should be as close to the actual path cost as possible, not the distance. The other restriction

for the heuristic function is the optimality of the function itself. Complex calculations make

the heuristic run slower, so the function has to be optimal. Other way to optimize it is to

cache the result of the function after the first calculation since it cannot change during a

search. (Patel 2014.)

6.3 Search optimizations

A* can be optimized in other ways too. Some of these include modifying the search area in

some way and modifying the search itself a little bit. Using them may affect the accuracy of

the algorithm but as stated before, it is usually enough to have movement that looks ok

instead of being perfect to give the A* a better performance. (Anguelov 2011; Patel 2014.)

The search area has a few possible ways to be optimized. One way is to limit the search area

to a smaller set of nodes based on the start and ending positions ignoring all the nodes that

are not included in that specific area. Other way is to use hierarchical maps, where the game

world is divided into different layers to make the search areas stay inside a certain limit. In

this way the game may use a world map to move greater distances and smaller maps to

present the normal movement of players, for instance in a city. The A* is more effective

with smaller sets and therefore it is usually unnecessary to know smaller navigation points

when moving in a larger scale. (Patel 2014.)

The algorithm itself can be modified in many ways to make it more optimal. One example of

this is the fast expansion of the successor nodes. The fast expansion means that when going

through the adjacent nodes of a certain node, the adjacent node’s F value is compared to the

21

current node’s F value. If the F value is the same as the current node’s, that node is

immediately expanded without it being ever added to the open list. This is done because it is

likely that the adjacent node would anyway be the next one to be searched. Since this saves

some computational tasks from the open list operations, it is a fairly good way to optimize

the A* in some cases. (Anguelov 2011.)

22

7 PROJECT DOCUMENTATION

The practical part of the thesis focuses on pathfinding in a 3D-environment using Unity3D

game engine. 3D pathfinding differs from 2D pathfinding in one major way, which is the

third dimension. The programming needed to implement it is not that far from the 2D one,

but since the third dimension makes the game world so much more dynamic it does add

some minor calculations to the algorithm.

The aim is to analyze the results of the pathfinding by comparing the optimality of the

found routes and the execution speed of the algorithm. To get more details to determine

these factors, two different tests are made. The first is a stress test to see how the execution

speed and the precision of the algorithm vary when using different values in the algorithm.

The second one shows the algorithm in action in a 3D environment with two different

implementations.

7.1 Preparations

To do pathfinding, three things are required: a representation of a navigation node in the

world, the pathfinder that uses a pathfinding algorithm for the given nodes and some kind

of a test environment where the pathfinding can be executed. Since the tests will require

different setups, the implementation of the node needs to be so that it can be placed on a

grid graph or a polygonal graph. This also puts some requirements for the map

implementation so that it can also display information using both types of graphs.

7.1.1 Node class

The node holds information about itself that is needed for the pathfinding algorithm. The

basic required variables are the G, F and H values the node has during the search. A node

also needs a reference to the node it is connected to which is called its parent node. The

parent node is needed when the search is over and the path is constructed.

23

To make a more generic implementation that supports different graphs, the neighboring

nodes are stored inside the node. These nodes mark all the nodes that can be traversed to

from this particular node. The node class also stores information if the node is unreachable

or blocked somehow. A ground multiplier is also set for the node, which is used in the

second test to determine different ground types that have different costs. That way it is

possible to make preferred roads the pathfinder uses.

7.1.2 Pathfinder class

The pathfinder class is the implementation of the pathfinding algorithm. A basic A*

algorithm is used for these tests without any major modifications to the algorithm itself to

make it run smoother. The simple implementation was chosen to demonstrate how the

algorithm works in its most crude form.

Pathfinder class consists of two static functions: the search itself and path building. The

search function follows the A* core loop. It creates the open and closed node sets and adds

the start node to the open set. It then follows the loop where it gets the best node out of the

open set, adds it to the closed set and searches through its neighboring nodes. The

neighboring nodes get their updated cost values and are added to the open set if they are not

already added. The search ends immediately when the node removed from the open set is

the end node. Once the end node is picked, the path is constructed with the path building

function following the parent nodes starting from the end node.

For visual feedback the nodes are colored to demonstrate how the search has operated:

• Grey nodes are unsearched nodes.

• Black nodes are blocked nodes.

• Blue nodes are searched nodes that have been added to the open set.

• Magenta nodes are visited nodes.

• Yellow nodes are part of the found path.

• Green is the starting node.

24

• Red node is the end node.

Since pathfinding needs to be optimal, the implementation also has a modified version of

the search which uses a priority queue instead of a simple dynamic array. The priority queue

uses a heap to give performance for inserts and removals. It also sorts the sets fast keeping

them in order. Using a priority queue as a comparing point gives a great example how easily

the performance of the algorithm can be increased.

7.1.3 Map setup

With the two different tests, the map has to support two different kinds of graphs. The node

class takes care of much of the logic of providing such a possibility, but the area on which

the nodes operate has some handling for itself. For these testing purposes Unity’s terrain

object was used to enable an environment which is easy to modify.

The stress test requires an area where a large amount of nodes can be placed in a grid graph

and the second test needed an environment with some height differences and varying

ground types to simulate a more dynamic level. Unity’s terrain has some crafty tools to do

the latter while it can also be used as a simple plane. As a plane the terrain works perfectly

for the stress test environment. The terrain tools allow easy terrain modifications to create

hills and ponds and also a way to paint textures directly on the terrain.

When the nodes are placed on the terrain, texture data is read from the terrain data. This

texture data is used to determine the ground multiplier of the nodes, so that the traversing

costs to certain nodes are larger than for others. This way roads drawn on the terrain are

preferred when the pathfinder searches for the most optimal path. This does not guarantee

the usage of roads however, which is intended behavior since sometimes a detour may be a

better option.

7.2 Pathfinding tests

The tests that simulate the algorithm work a little differently from each other and they are

supposed to analyze different things. The stress test demonstrates how the A* performs

25

with a large amount of nodes whereas the second test rather observes the behavior using the

best applicable methods.

7.2.1 Stress test

The stress test environment consists of 10000 nodes on a grid graph. The nodes are placed

in a 100x100 grid where each one of them is connected to the nodes surrounding them. This

allows movement in eight directions. Some of the nodes in the grid are then marked blocked

to give the algorithm some obstacles it has to get around to get to the end node. In the

scenario the pathfinder searches for a path from the upper left corner to the lower right

corner of the map. The setup can be seen in figure 12.

Figure 12. Stress test setup

26

The stress test determines what kind of paths we can produce using three different

heuristics: Manhattan distance, Diagonal distance and Euclidean distance. Using different

heuristics should produce different kinds of paths. The pathfinder also searches a different

amount of nodes depending on how accurate the heuristic estimate is. The test is run a total

of ten times for one heuristic, where five tests use the dynamic array and five use the priority

queue for the open sets.

Manhattan distance uses the delta difference on the X axis and the Y axis between the

searched node and the end node to produce the heuristic cost. The two values are added

together to form the H value of the node. Since the heuristic does not guarantee that the

estimate is always shorter or equal to the actual cost the Manhattan heuristic is not an

admissible heuristic. Using this kind of a heuristic means that it might not produce the

shortest path but it should perform slightly faster under favorable conditions. In this

particular scenario the heuristic works pretty well and produces a clean path without any odd

looking behavior. Using the dynamic array the pathfinding took an average of 1.8900146

seconds and using the priority queue only 0.02337647 seconds. You can see the found path

in figure 13.

The Diagonal distance works similarly to Manhattan distance, but it takes the possibility of

diagonal movement into account when calculating the heuristic estimate. This makes the H

value to be closer to the actual cost to get to the end point but it also cannot guarantee a

shortest path. This heuristic also produces a quite nice path in the test while the execution

time average is 1.9288332 seconds for the dynamic array and 0.02272949 seconds for the

priority queue. Path found using the diagonal distance can be seen in the figure 14.

27

Figure 13. Path found using Manhattan distance

The last heuristic function is the Euclidean distance. Euclidean distance gets the direct line

length from the searched node to the end node and uses it as the estimate. This makes the

heuristic an admissible heuristic which is guaranteed to produce a shortest path. Euclidean

heuristic is important because it is the one usually used in 3D environments when searching

for a path. The problem with the Euclidean distance is that it makes the A* search nodes in

a larger area than the Manhattan or Diagonal distance. The computational cost of the

heuristic is also a bit heavier since it has to make an expensive square root operation. This

heuristic does find a guaranteed optimal path that looks nice which took 2.06105596

seconds on average using the dynamic array and 0.02224121 seconds using the priority

queue. Figure 15 shows the path.

28

Figure 14. Path found using Diagonal distance

The difference between using a dynamic array and a priority queue is enormous. Priority

queue performed 80 to 92 times faster than the dynamic array in all of the tests executed. All

of the heuristics produced paths that seemed like acceptable behavior for an AI unit in a

game. Figure 16 shows more detailed breakdown of the execution times. The green cells

show the average time it took to run the test using the given parameters.

29

Figure 15. Path found using Euclidean distance

Manhattan Diagonal Euclidean

Dynamic array Priority queue Dynamic array Priority queue Dynamic array Priority queue
1,88269000 0,02435303 1,93579100 0,02258301 2,05871600 0,02185059
1,89758300 0,02252197 1,92504900 0,02246094 2,06958000 0,02197266
1,87396200 0,02264404 1,94201700 0,02282715 2,06030300 0,02233887
1,89874300 0,02374268 1,92004400 0,02282715 2,05944800 0,02258301
1,89709500 0,02362061 1,92126500 0,02294922 2,05725100 0,02246094
1,89001460 0,02337647 1,92883320 0,02272949 2,06105960 0,02224121

Figure 16. Table of the execution times of the algorithm

30

7.2.2 Application in a 3D-environment

The stress test results showed that the priority queue is an obvious choice for the open set

operations using the chosen setup. For the 3D environment application the terrain had to be

modified to represent a 3D game more properly. Using Unity’s terrain tools, the terrain was

changed to include some height differences and different types of ground. The result is

shown in figure 17.

Figure 17. Test environment for the 3D environment test

Pathfinding can be used in different kinds of graphs. Usually 3D games with free movement

use either polygonal graphs or navigation meshes for their pathfinding since they perform

faster than a grid graph and fit better to the game world. The calculation of navigation

meshes is quite tedious and time consuming so this test focuses on comparing the polygonal

graph and grid graph in a 3D environment.

Using the same node generation as the stress test, 10000 nodes are placed on the terrain

taking the shape of the terrain into account. The nodes are connected to the neighboring

nodes regardless how high or low they are on the map. The nodes then use the data

provided by the terrain to determine whether they are on the grass, the road or the mountain

31

rock. Nodes are then colored accordingly so that it is easier to see how they are located as

shown in figure 18.

Figure 18. Grid graph representation viewed from above

In this setup nodes located on a road have normal costs. Grass nodes have a multiplier of

.25 added to them to simulate slower movement and the mountain rock nodes have a

multiplier of .75 added to them to mark them as places to avoid. Even though the map does

not have any obstacles the A* should still avoid a straight path from one corner to another if

a faster path exists by going around something.

Because the third dimension would make the usage of Diagonal and Manhattan distances

produce costs that are quite far from the truth when talking about node to node travel, the

32

chosen heuristic is the Euclidean distance. Euclidean distance works exactly the same as it

does in a 2D environment so no extra work is needed to make it work. The A* does take a

small modification to make uphill and downhill movement more realistic so that the

pathfinding will take them into account when searching for a path. The G cost is modified

by the delta y value between the adjacent node positions. This way uphill movement is more

expensive and downhill movement cheaper.

Using the grid graph the algorithm searches for a best path between nodes in the opposite

corners of the map. A* performs similarly as it did in the stress test using the Euclidean

heuristic and priority queue. Instead of going over the mountains to get a straight path the

algorithm rather finds a faster way by following the road. When the start and end nodes are

switched to other corners the algorithm faces a dilemma where it has to check whether a

path straight between the large mountains with height differences produces a better route

than by using the roads. These two situations are shown in figures 19 and 20.

The ten thousand nodes may be a slight overkill in this situation. There are not that many

places in the map that needs difficult maneuvering skills and it is basically one large area

without any obstacles. The amount of nodes can be easily reduced by introducing a

polygonal graph. In the polygonal graph only a needed amount of nodes are placed on the

map in strategic positions that require a node to guide the movement of a unit. In the map

used in the test this means that nodes placed so that movement goes around the mountains.

Placement of the nodes is easy and they can be placed anywhere. In this map nodes were

first placed in certain intervals on the roads and afterwards with sparse spacing on the grass

area. A total of 75 nodes were placed to demonstrate the routes found by using a polygonal

graph. The nodes made an easy visibility check to see which nodes they are connected to.

Because of the way the pathfinder and node class were implemented, they required no

additional changes to work in a different graph. The polygonal graph is displayed in the

figure 21.

33

Figure 19. 3D environment search using a grid graph

Figure 20. 3D environment search using a grid graph

34

Figure 21. Polygonal graph representation of the nodes

Even though the amount of nodes was reduced to a less than one percent from the grid

graph implementation the A* worked well and produced similar paths. The first scenario

produced a path which followed the roads and in the second scenario the best path went

between the mountains. When the amount of nodes was reduced the algorithm performed

four to ten times faster. Figure 22 shows the path that was found for the second scenario

using the polygonal graph.

35

Figure 22. Path found using a polygonal graph

Pathfinding in a 3D environment does not differ that much from 2D pathfinding. It does

however enable more possibilities to introduce intelligent behavior to games. By using a

setup that best suits the game in question the A* will also work very efficiently.

36

8 CONCLUSIONS

The objective of this thesis was to show and analyze the behavior of the A* pathfinding

algorithm in a 3D environment. Since pathfinding as a subject is quite large, the work was

limited to a very simple implementation of A*. In this sense the thesis was a success. The

practical part of the thesis did show and analyze the behavior of the algorithm in different

environments where a lot of data was gathered to support the theoretic part of the thesis.

The initial design for the practical part was to demonstrate more ways to improve the

algorithm’s performance speed, but after learning there were a myriad of different ways to

improve it, it became obvious it was beyond the scope of this thesis. The creation of the test

project also took long to make. The major reason for this was the requirements for it to run

two different grid types to properly show the functionality of the two. Also the amount of

ideas for the analyzable parts of the algorithm was bloated with ideas that were in no way

achievable in the given time.

In the beginning writing the theory and figuring out the full context of the practical part

took very long. Before being able to write theory it had to be learned so that it was not just

writing of other people’s thoughts. The algorithm itself also includes a lot of logic to be

understood.

All in all, the writing of this thesis was a great learning experience. It taught the writer a lot

of new information about pathfinding that was not known before. Therefore, it is important

to note that the information provided by the thesis is not to be taken as the only valid

option to do pathfinding. Even though the test showed that using a polygonal graph instead

of a grid graph produced similar routes with faster processing time, it does not mean that

the grid graph does not have its places of use.

In summary, the thesis did serve its purpose by providing information of the behavior of A*

and by testing and analyzing its use in a 3D environment. The thesis did not, however, give

examples of all the possible ways to make a pathfinding algorithm work more efficiently but

it does give a good base to append to.

37

REFERENCES

Anguelov, B. 2011. Video game pathfinding and improvements to discrete search on grid-

based maps. (Master of Science, University of Pretoria). , 62. Url:

http://takinginitiative.files.wordpress.com/2011/05/thesis.pdf (read 24.6.2014)

Buckland, M. 2005. Programming Game AI by Example. United States: Wordware

Publishing, Inc.

Coles, A., & Smith, A. 2007. Greedy best-first search when EHC fails. Url:

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume28/coles07a-

html/node11.html#modifiedbestfs (read 24.6.2014)

Dijkstra, E. W. 1959. A note on two problems in connexion with graphs.1, 269. Url:

http://www-m3.ma.tum.de/foswiki/pub/MN0506/WebHome/dijkstra.pdf (read

24.6.2014)

Drichel, A. 2005. Breitensuche.png. Url: http://commons.wikimedia.org/wiki/File:Breadth-

first-tree.png

Eranki, R. 2002. Pathfinding using A* (A-star). Url:

http://web.mit.edu/eranki/www/tutorials/search/ (read 24.6.2014)

Esser, W. 2005. Tiefensuche.png. Url: http://commons.wikimedia.org/wiki/File:Depth-

first-tree.png

Lester, P. 2005. A* pathfinding for beginners. Retrieved from

http://www.policyalmanac.org/games/aStarTutorial.htm (read 24.6.2014)

Madhav, S. 2013. Game Programming Algorithms and Techniques. United States: Addison-

Wesley Professional

Patel, A. 2014. Amit's A* PAges. Retrieved from

http://theory.stanford.edu/~amitp/GameProgramming/ (read 24.6.2014)

Puthuparampil, M. 2007. Report dijkstra's algorithm. (New York University). Url:

http://www.cs.nyu.edu/courses/summer07/G22.2340-

001/Presentations/Puthuparampil.pdf (read 24.6.2014)

http://takinginitiative.files.wordpress.com/2011/05/thesis.pdf
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume28/coles07a-html/node11.html%23modifiedbestfs
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume28/coles07a-html/node11.html%23modifiedbestfs
http://www-m3.ma.tum.de/foswiki/pub/MN0506/WebHome/dijkstra.pdf
http://commons.wikimedia.org/wiki/File:Breadth-first-tree.png
http://commons.wikimedia.org/wiki/File:Breadth-first-tree.png
http://web.mit.edu/eranki/www/tutorials/search/
http://www.policyalmanac.org/games/aStarTutorial.htm
http://theory.stanford.edu/%7Eamitp/GameProgramming/

	contents
	1 INTRODUCTION
	2 basics of pathfinding
	3 early pathfinding methods
	3.1 Depth-first search (DFS)
	3.2 Breadth-first search (BFS)
	3.3 Dijkstra’s algorithm
	3.4 Greedy best-first search

	4 A* algorithm
	4.1 A* basics
	4.2 Heuristics
	4.3 A* core loop

	5 map representations
	5.1 Grid graph
	5.2 Polygonal graph
	5.3 Navigation mesh graph

	6 optimization techniques
	6.1 Open list operations
	6.2 Heuristic function
	6.3 Search optimizations

	7 project documentation
	7.1 Preparations
	7.1.1 Node class
	7.1.2 Pathfinder class
	7.1.3 Map setup

	7.2 Pathfinding tests
	7.2.1 Stress test
	7.2.2 Application in a 3D-environment

	8 conclusions
	REFERENCES

