

Jaakko Oinas

Implementing Bluetooth LE in
a Tracking Device

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

21 January 2015

 Tiivistelmä

Tekijä(t)
Otsikko

Sivumäärä
Aika

Jaakko Oinas
Bluetooth LE:n toteuttaminen paikannuslaitteessa

46 sivua
21.01.2015

Tutkinto Insinööri (AMK)

Koulutusohjelma Tietotekniikka

Suuntautumisvaihtoehto Sulautettu tietotekniikka

Ohjaaja(t)

Projektipäällikkö Marko Nirhola
Tutkintovastaava Anssi Ikonen

Insinöörityön aiheena oli Bluetooth low energy (LE) -teknologian liittäminen osaksi paikan-
nuslaitejärjestelmää. Lopputyö tehtiin osana Navigil Oy:n tuotekehitysprojektia, jossa tutkit-
tiin Bluetooth LE:n hyödyntämistä paikannuslaitesovelluksissa. Projektia varten oli ennalta
valittu ML7105-järjestelmäpiiri, mikä tarjoaa mahdollisuuden LE-teknologian käyttöön.
Työhön kuului tutustuminen LE-teknologiaan ja sen ominaisuuksiin kyseisessä järjestel-
mäpiirissä. Lopullinen tavoite työssä oli toteuttaa ohjelmisto, joka toimisi ohjelmarajapinta-
na (API) paikannuslaitejärjestelmän ja ML7105:den välillä.

Tuloksena tehdystä työstä saatiin toimiva API. Sen kautta Navigil pystyi käyttämään hy-
väksi Bluetooth LE-ominaisuuksia paikannussovelluksissaan. Tämä ohjelmointirajapinta
mahdollisti muun muassa seuraavien Bluetooth LE-ominaisuuksien käytön ohjelmointifunk-
tioiden kautta: skannaus, mainostus ja yhdistäminen. Näitä ominaisuuksia käyttämällä on
mahdollista muiden Bluetooth LE-laitteiden etsiminen, laitteen näkyväksi asettaminen ja
yhdistäminen haluttuun toiseen laitteeseen.

Navigil hyödynsi tätä API:a S1-turvapuhelinrannelaitteessa sisäpaikannusmenetelmän
toteuttamisessa. Tulevaisuudessa tätä API:a voitaisiin käyttää yhdistämään paikannuslaite
erilaisiin langattomiin sensoreihin (esim. sykevyö) ja hyödyntää niistä saatua tietoa palve-
luiden kehittämiseen.

Avainsanat Bluetooth low energy, BLE, paikannuslaite, ohjemointirajapinta,
API, ML7105

 Abstract

Author(s)
Title

Number of Pages
Date

Jaakko Oinas
Implementing Bluetooth LE in a Tracking Device

46 pages
21 January 2015

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Embedded Engineering

Instructor(s)

Marko Nirhola, Project Manager
Anssi Ikonen, Head of Information Technology Degree
Programme

The final year project described in this thesis dealt with integrating Bluetooth low energy
(LE) technology to a tracking device system. The project was part of a larger research pro-
ject of Navigil Ltd, where the possibilities of utilizing Bluetooth LE in a tracking device sys-
tem were studied. The ML7105 system-on-chip, which offers possibility for LE technology,
had already been chosen in the project and it was also used in this final year project. The
final year project included studying the LE technology and its features in the ML7105. The
final target was to implement a software module which would act as an application pro-
gramming interface (API) between the tracking device system and the ML7105.

As result of the work, a functioning API was created. Through the API Navigil was able to
utilize Bluetooth LE features in their tracking applications. This API enabled specific fea-
tures such as scanning, advertising, and connecting. By using these features a tracking
device can discover other Bluetooth LE devices and to be visible to them, as well as to
connect and to be connectable to them.

Navigil has already used this API in their S1 safety wristwatch phone product for creating
an indoor positioning method. In the future this API could be used by a tracking device to
access different kinds of wireless sensors (e.g. a heart-rate belt) and to use the data gath-
ered to develop services.

Keywords Bluetooth low energy, BLE, tracking device, application pro-
gramming interface, API, ML7105

Contents

Abbreviations and Terms

1 Introduction 1

2 What Is a Tracking Device? 3

3 Bluetooth in General 5

4 Low Energy Technology 6

4.1 Limitations 6

4.2 Radio 7

4.3 Functionality 7

4.4 Security 8

4.5 Protocol Stack 8

4.6 Bluetooth Device Address 10

4.7 Device Discovery 10

 Advertising 12

 Scanning 12

 Practical Example 13

4.8 Connections 14

5 Lapis Semiconductor ML7105 15

5.1 Operation Modes 16

 BACI Mode 17

 HCI Mode 18

 RAM Mode 19

6 Implementation of the ML7105 20

6.1 BACI Interface 21

 BACI Protocol 22

 BACI Commands 24

 BACI Events 25

 BACI Data 27

6.2 BACI Host 28

 Architecture of the BACI Host 28

 Design Guidelines 29

 Application Programming Interface 30

 Control and Management 34

 Interface Driver 42

7 Conclusions 44

Reference List 45

Abbreviations and Terms

API Application Programming Interface is a set of routines, protocols, and

tools for building software applications.

BACI Bluetooth Application Controller Interface

GPIO General-Purpose-Input-Output is a generic pin in integrated circuits which

can be programmed as an input or an output.

GPS Global Positioning System is developed by the United States Department

of Defense.

GLONASS Global Navigation System is an alternative to GPS operated by the Rus-

sian Aerospace Defense Forces.

GNSS Global Navigation Satellite System is a system of satellites that provide

autonomous geo-spatial positioning with global coverage utilizing GPS,

GLONASS, Galileo, or Beidou systems.

ISM Industrial, Scientific and Medical radio bands are radio bands reserved

internationally for the use of radio frequency energy for industrial, scien-

tific and medical purposes.

LE Low Energy is a Bluetooth sub-standard.

LSI Large Scale Integration is an integrated circuit containing at least 10,000

transistors.

SIG Special Interest Group

SPI Serial Peripheral Interface is a type of serial communication bus

UART Universal Asynchronous Receiver Transmitter

1

1 Introduction

Tracking devices can be used to track anything from humans to vehicles. The location

of the target can be found with up to one meter accuracy on the globe by using satel-

lites. To be able to track anything anywhere, devices have to be battery-operated. In

these kinds of devices battery lifetime is the key-word in the sales market. Thus, the

most common problem with tracking devices is power consumption. When adding new

features to a device where battery lifetime plays an important role, the power consump-

tion has to be taken into account.

Short range wireless communication is becoming more popular nowadays. The modern

semiconductor manufacturing process has made integrated circuits cheaper and more

power efficient than before. In addition to that, wireless technologies have advanced

and therefore it is more tempting to replace cables with wireless links. This has created

many opportunities for new innovations. For example, a cheaply produced sensor unit

can broadcast data at a 50-meter radius for years, with only one coin-cell battery

[2,18.].

One of these advanced wireless technologies is the newest core version of the Blue-

tooth. Bluetooth core version 4.0 brings along a whole new sub-standard known as

Bluetooth low energy (LE), which was developed with energy efficient applications in

mind. [3.]

The aim for using Bluetooth LE technology in tracking devices is to solve power con-

sumption issues for example in person tracking applications. Another obvious benefit is

that it allows a tracking device to wirelessly access any Bluetooth LE enabled devices

nearby.

In person tracking, as can be imagined, the tracking device spends most of its life time

relying on the battery, and the energy budget is very constrained. The situation is not

helped by the fact that the user will probably spend much of the time indoors. Indoors

the tracking device tends to be relatively oblivious of the exact location because of the

number of visible satellites is practically zero. In this situation the device would drain its

battery in matter of hours by trying to acquire the location without success.

2

The Bluetooth LE technology could be used indoors for creating a very accurate and

low power positioning method. It could also be used for wireless sensors which would,

for example, provide a great way of gathering useful information of the health of the

user. Since it is wireless, it would guarantee cheap and easy installation of the sensors.

This final year project is made for a Finnish company called Navigil Ltd. Navigil is a

tracking device manufacturer headquartered in Espoo, Finland. They are a leader in

the field of engineering embedded intelligence and low power consumption into track-

ing devices. [1.]

The main task in this project was to build and implement a software module for Nav-

igil’s tracking device system. The module’s purpose is to form an application program-

ming interface (API) between the application and the ML7105 integrated circuit. The

final goal was that the application could utilize the Bluetooth LE functionality that the

ML7105 provides through API functions of the software module that was built during

this final year project.

3

2 What Is a Tracking Device?

A tracking device is a device that is able to autonomously figure out its current location

anywhere on the globe by using techniques and methods that are generally available.

To allow many different use cases, the device must be remotely controllable, so that

the location and possibly other information that the device gathers is remotely accessi-

ble in real-time to the user.

A tracking device can be used to track anything, such as humans, animals, vehicles, or

personal assets. This means the tracking device must be small so that the device is

easy to hide and mobile so that it can be installed anywhere. This again means that the

device must be operated with a relatively small battery for weeks or months depending

on the use case.

A simplified schematic of the hardware of a typical tracking device is illustrated in figure

1. The Global Navigation Satellite System (GNSS) block shown in the figure is a com-

bination of GPS and a GLONASS receiver. It is used for acquiring a very accurate loca-

tion of the device by using GPS and GLONASS satellites together. In order to work

properly, the GNSS requires a clear view to the sky.

The Global System for Mobile Communications (GSM) network is used to provide re-

mote access to the device. It is also used for positioning, as it will expose identification

of the base station, which can be converted to actual coordinates by using the Open-

CellID database [4.]. However, this gives only a hint of the actual location since a GSM

cell tower covers an area from a few meters up to tens of kilometers [5.]. Nevertheless,

a hint of the location is better than no location at all.

The accelerometer is providing information on how the device is moving. The infor-

mation is used to determine how often the device should acquire a new location with

the following principle: if the device is not moving, its location has not changed and

acquiring a new location would be useless. Thus, the accelerometer is used to save

power.

Last but not least is the application processor which is binding the whole system to-

gether. The application processor contains all the software logic that controls and inter-

acts with the other components forming a tracking device system.

4

Figure 1. A simplified flow-chart of the contents of a tracking device.

5

3 Bluetooth in General

Bluetooth is a short-range wireless communication technology, and like many other

wireless communication technologies, it employs radio waves to transmit and receive

information in universal 2.4 GHz ISM-band. In fact, it is just a set of requirements in

form of a specification, which the product needs to satisfy, in order to achieve interop-

erability with other Bluetooth devices. [3.]

The Bluetooth SIG is the organization behind the Bluetooth specification. The organiza-

tion consists of over 20,000 companies including all the leading technology companies.

Its responsibility is to develop the Bluetooth standard and supervise products that are

using it. A company that is using Bluetooth technology in a product must become a

member of the SIG in order to use Bluetooth SIG’s intellectual property and the Blue-

tooth brand. [6.]

Bluetooth was originally invented to replace serial cables with wireless links. However,

like most great inventions, Bluetooth expanded. Nowadays Bluetooth can be found

almost in every consumer device, serving a wide range of different use cases. For ex-

ample, it is used in products like smart-phones, toothbrushes [7] or even in valve caps

of the car tire [8], not to mention today’s trend, the wearables, in which Bluetooth has

become a standard. In addition, it is playing a significant role in today’s automotive in-

dustry by providing solutions for hands-free communication and in-car entertainment.

Also, it has been considered as a break-through in concepts like smart home and the

internet of things. [9.]

The Bluetooth specification version 1.0 was released in the year 1999, with the Basic

Rate standard, which is often known as the classic Bluetooth. After that, the specifica-

tion has been frequently updated especially to satisfy ever-increasing amount of data.

Along with the specification version 4.0 in the year 2010, a totally new standard was

introduced to the world, known as Bluetooth low energy (LE). Bluetooth LE is repre-

senting a completely new way of thinking since it is the first time that Bluetooth has

dramatically decreased the data speeds and protocol complexity to achieve the lowest

possible power requirements, this way adding opportunities for new kind of use cases

and innovations. [10,26.]

6

4 Low Energy Technology

Bluetooth LE is a new technology, an alternative to classic Bluetooth, not a replace-

ment. It is created to support completely different use cases and market segments than

its parent. [10,37.]

LE is intended to be used in devices which have to operate with a limited amount of

energy (e.g. coin-cell battery) for very long periods of time. These devices can be any

kinds of detectors, indicators, or sensors. It is not useful in products like wireless head-

phones which involve long connection periods in which large amount of data is ex-

changed. [10,26.]

It has been claimed to consume only a fraction of power compared to classic Bluetooth.

These power savings are the outcome of great sacrifices in performance, which causes

limitations for the technology. For example, LE technology is not capable of audio

streaming. [10,29.]

Although LE technology carries the Bluetooth brand, it is not directly compatible with

the classic Bluetooth. However, it has borrowed a lot of technology from its parent. This

allows it to be implemented in the same silicon with the classic Bluetooth with almost

zero additional costs. [10,75.]

Bluetooth Smart and Smart Ready are new marketing names for Bluetooth enabled

products. Smart is the name of the product that is carrying LE technology inside and

Smart Ready is the name for a hybrid product that supports classic and LE technolo-

gies. [11,15.]

Typical smart products are peripheral devices which have a very limited energy capaci-

ty like car keys, TV-remote controllers, or any type of sensor units. Smart Ready prod-

ucts are central devices such as smart-phones, tablets, or TVs.

4.1 Limitations

The technology with the lowest possible power consumption has its limitations. First of

all, the speed of data over the air from application to application, i.e. application

7

throughput, has the absolute theoretical maximum of 250 kilobits per second with bulk-

transmission. However, when taking into account possible signal fading, interference,

and packet overhead, a more realistic estimate for application throughput is about 5

kilobits per second. Still, maintaining this kind of speed for longer periods of time would

draw a relatively large amount of power and thus kill the concept of low power. [11,19.]

Second of all, the coverage area (i.e. range) is typically not more than 10 meters. It is

not restricted directly by the specification but by the power consumption. The more

power is used to transmit the signal, the further it will radiate. It is left for the user to

decide the best range – power consumption ratio. [11,21.]

4.2 Radio

LE operates in 2.4 GHz unlicensed ISM radio band. The spectrum range is from 2402

to 2480 MHz, which is divided into 40 individual 2 MHz wide RF-channels. Technology

uses a technique called frequency hopping to combat against interference at the wildly

used spectrum. Three of the 40 channels are used only for broadcasting advertise-

ments and these are located in the spectrum as far from the known channels used by

the Wi-Fi access point as possible to allow robust device discovery. [10,97.]

4.3 Functionality

From the application developer point of view the LE technology will provide capabilities

to advertise, scan, and connect. These capabilities can be used to discover other de-

vices and to be discoverable to other devices as well as connect to other devices and

be connectable to other devices. [11,34.]

A device could use advertising to inform about its presence to nearby devices and even

include small amounts of dynamic data to the advertisement, e.g. services that the de-

vice supports. A device that uses scanning functionality listens to these advertise-

ments. After receiving one advertisement, it may attempt to request more information of

the advertiser (i.e. a scan request) or initiate connection with it (i.e. a connection re-

quest). When the connection is established, the advertising device becomes a slave of

the connection and the initiating device becomes the master. A master could connect

8

with multiple slave devices at the same time, but a slave can be connected with only

one master. Basically this means that the master can be connected with one or more

slave devices and at the same time scan for other devices. A slave could also advertise

while connected to the master, but that advertising shall not lead to connection. [11,40.]

4.4 Security

Technology has taken security considerations into account by supporting encrypted

connections and private device addresses to combat against eavesdropping and man

in the middle attacks. [11,50.]

A procedure called pairing may be used to create temporary encryption with any on-

going connection with the approval of both devices. A more permanent encryption pro-

cedure is called bonding, where both devices agree to share and save an encryption

key (i.e. a shared secret) to be used to encrypt the link in future connections. [11,51.]

A private device address is a random address that changes periodically, but is resolva-

ble for the bonded device. This can be used to hide the identification of the device from

third parties. [11,50.]

4.5 Protocol Stack

The protocol stack shown in figure 2 describes the software implementation of the pro-

tocols according to which Bluetooth LE operates. As can be seen in the figure, it fol-

lows the same layered architecture as classic Bluetooth. The figure also shows how the

protocol stack is split up in two entities: controller and host. [11,31] This division is

made on the basis that both entities have very different timing requirements from the

system they are running on. As a result, this allows them to be implemented separate-

ly. [12.]

The controller includes the hardware for the radio and the software that controls it. It is

typically implemented separately in the form of a small chip, because the radio control

has strict requirements for the timings. [12.]

9

The host entity is a pure software stack that is responsible for higher level functioning

providing an application programming interface (API) to the application and profiles. It

has many more relaxed timing restrictions compared to the controller. That is why it is

often implemented directly to the application processor along with the user’s applica-

tion.

These two entities are connected through Host Controller Interface (HCI), which is de-

livered either logically (API) or physically (UART) depending on the implementation

[11,44]. The host is controlling the controller with HCI commands defined in the Blue-

tooth specification [13,603].

Generally speaking, the controller is often referred to as the Bluetooth hardware and

the host is referred to as the Bluetooth stack.

Figure 2. The protocol stack of the Bluetooth low energy. Modified from [11,32].

Implementation Options

The host part of the protocol stack is supported natively in generic operating systems

such as Windows, Android, and OSX. This is because devices that are running on

10

these operating systems usually have enough processing power and memory for that.

The controller part is then implemented by the hardware if needed.

Devices like embedded systems, which usually rely on low power microcontrollers, are

not capable of native support of the protocol stack. The only choices are to develop or

purchase platform independent protocol stacks or to use a module that implements the

whole protocol stack in single individual housing (system-on-chip).

4.6 Bluetooth Device Address

Every Bluetooth device has a unique device address that identifies that particular de-

vice from the others. The device address is a 48-bit MAC-address that is divided into

two. The first half of the address is company specific and the other half is device specif-

ic. There are also two types of addresses that the device may use. [11,36.]

Public Device Address

A public device address is a fixed address that is assigned to a particular device. It

must be registered with the IEEE Registration Authority and must never be changed

during the lifetime of the device. [11,37.]

Random Device Address

A random device address is showing to other devices just like the public address, but it

is periodically changed and randomly generated. It hides the identity of the device from

strangers but may be resolvable if desired (i.e. private address). [11,37.]

4.7 Device Discovery

Advertising and scanning procedures are the foundation of every application that is

designed around Bluetooth LE. These procedures used together enable device discov-

ery. Without device discovery, LE devices cannot be aware of each other. Without

awareness, the devices could not connect with each other and without connection they

could not exchange data. A device using advertising is called an advertiser and a de-

vice that is using scanning is called a scanner. How these procedures work in simple

11

terms is illustrated in figure 3. The advertiser broadcasts itself to the nearby terrain and

the scanner listens out for these advertisements. In order to utilize these procedures in

an application, a more thorough explanation is well justified. [11,38.]

Figure 3. Scanner listening advertisements. [10,125]

Before getting to more detail, a few basic concepts must be explained. First of all, LE

employs only one packet format (see figure 4) for all data that is exchanged through

air. The PDU field showing in the figure holds the actual payload inside. LE defines two

types of PDUs: advertising and data. As can be concluded from the figure, the maxi-

mum packet is 376-bit long and the minimum packet is only 80-bit. The LE radio works

with a 1 Mbps bit rate, which means that the longest possible packet would take 376

micro seconds and the shortest 80 micro seconds to transmit over the air. [10,130.]

Figure 4. Over-air data packet format. Modified from [10,140].

Second of all is the concept of channels. As mentioned before, LE technology divides

the over the air traffic into 40 RF-channels. Figure 5 shows how the channels are in-

dexed and spread over a 2.4 GHz ISM-band. The channels are divided into two

groups: advertising and data. Channels 37, 38, and 39 are advertising channels and

only used for device discovery purposes. They are located on the band as far away

from each other as possible to enable robust device discovery even in bad conditions

with the principle that at least one channel is accessible anytime. Another factor which

has affected the location of the advertising channels is the Wi-Fi access point, which

uses the same ISM-band. [10,143.]

12

Figure 5. ISM-band divided into 40 RF-channels [12].

The basic idea behind device discovery is that one device has to listen in the same

channel at the same time when another one is sending a packet. This packet includes

information that identifies the device. In other words, one device has to be an advertis-

er and the other one has to be a scanner. At this point, the devices are not in synchro-

nization with each other, which means that either advertising has to be frequent or

scanning continuous in order for the scanner to receive the packet.

 Advertising

Advertising is a continuous loop which consists of short advertising events that are re-

peated periodically. An advertising event is a process during which the device transmits

an advertising packet in every advertising channel. The interval between advertising

events is user adjustable, and it could be ranging from 20 milliseconds to 4 seconds.

[10,122.]

 Scanning

Scanning is also a continuous loop the behavior of which is controlled with interval and

window parameters. The scan interval is a value from 2.5 milliseconds to 10.24 sec-

onds, which determines how long one advertising channel is active after the channel is

switched. The scan window is a value with the same range as the scan interval; it de-

termines how long one advertising channel is actually listened to. The window shall not

13

be longer than the interval because the radio can be tuned to only one channel at the

time. [10,124.]

 Practical Example

In device discovery, the developer could easily misunderstand the operation principle

of device discovery without having the knowledge of how it works. This section shows a

practical example of a device discovery scenario.

Figure 6 shows an example scenario where the master device is scanning and a slave

device is advertising. The master is using a 50 millisecond scan interval and a 25 milli-

second window and the slave is using a 20 millisecond advertising interval. In this sce-

nario the master would find the slave right away. However, in a real life situation the

start of a scan and advertising would never take place at the same time. As can be

seen in the figure, the master would still find the slave within the first 25 milliseconds of

the start with these parameters, because the scan window is longer than the advertis-

ing interval.

Figure 6. A device discovery scenario.

It is the application developer’s responsibility to determine the right device discovery

parameters so that the device is found within a suitable time window. It must neverthe-

less be taken into account that the density of the advertising or scanning is directly

proportional to the power consumption.

14

4.8 Connections

After the devices have discovered each other, they may decide to form a more perma-

nent relationship, a connection. A connection is initiated when the initiator device sends

a connection request as a response to the advertising packet. An initiator is a device

which acts just like a scanner but is only interested in the specific advertiser. When the

connection is initiated, the initiator becomes the master and an advertiser becomes a

slave of the connection. [10,125.]

15

5 Lapis Semiconductor ML7105

The ML7105 is a Bluetooth LE compliant system-on-chip integrated circuit (later

ML7105 chip). The manufacturer, Lapis Semiconductor, is a Japanese semiconductor

manufacturer specialized in low-power consumption integrated circuits. The ML7105

chip was used in this final year project and the exact model used was a second gen-

eration ML7105-002 chip. [15,1.]

The company behind the Bluetooth LE solution inside the ML7105 chip is called Mind-

Tree. It develops platform independent Bluetooth solutions. The solution used in

ML7105 is their product named BlueLitE. [16.]

The ML7105 chip shown in figure 7 is manufactured in a WQFN package with 32 pins.

The WQFN32 is a standard square shaped package with a width of 5 mm and a height

of 0.8 mm. [17.]

Figure 7. Enlarged picture of the ML7105 system-on-chip [13].

The ML7105 chip has very low peak-current consumption which allows the product to

be powered with one coin-cell battery. During operation it has promised to consume

less than 3 microwatts in sleep state and only 3 milliwatts in active state. For example,

the CR2032 coin-cell battery has capacity of 230 milliamps per hour, which gives a hint

of the overall power consumption. [15,1.]

Since the LE stack can be implemented in various ways, the ML7105 chip provides a

possibility for the user to choose from three implementation setups known as operation

modes. [15,5.] The operation modes and their differences are described in following

sections.

16

5.1 Operation Modes

The operation modes that the ML7105 offers are called BACI-, HCI-, and RAM-mode.

Depending on the use case and the product type, each mode has its advantages and

disadvantages. [15,5.]

The operation mode is selected with physical (i.e. hardware) configuration. At the pow-

er-up, the ML7105 will start in the selected mode and ML7105 is after that used in ac-

cordance with the mode. [15,5.]

Each operation mode has a different host interface, in physical and logical manner. The

interface defines how the chip is physically (i.e. hardware) coupled and how it is logical-

ly (i.e. software) controlled. The same LE features are available in each operation

mode, but the way they are used differs. [15,9.]

The following sections describe each operation mode, their interface and ideal use

case.

17

 BACI Mode

The Bluetooth Application Controller Interface (BACI) mode is the default mode. As

shown in figure 8, it includes implementation of the LE host and the controller stack

which are used through a vendor specific interface, called the BACI interface. [15,5.]

Figure 8. Protocol stack of the BACI-mode. Modified from [15,5].

This means that the ML7105 chip internally handles most of the work that is needed to

accomplish the correct operation and provides a higher layer interface to the user. Ba-

sically, it shuts the user out from the complex logic and allows him or her to concen-

trate on the application. This mode is ideal in products that are using a low-power mi-

crocontroller, like most embedded systems.

The clear advantage is that the user does not necessarily need to know much of the

technology, just the essentials. Also from the developer point-of-view, the software will

be easier to develop because of the higher layer interface.

The disadvantage is that the BACI interface ties the whole system to this particular

system-on-chip. Switching the vendor would mean switching the interface and the

software logic that it is built around it.

18

 HCI Mode

An alternative choice is the Host Controller Interface (HCI) mode. As shown in figure 9,

it includes implementation only of the LE controller stack. That is why in this mode, the

ML7105 chip can be used through a standardized HCI interface. [15,6.]

Figure 9. Protocol stack of the HCI-mode. Modified from [15,6].

This means that the ML7105 chip can be controlled as any Bluetooth LE compliant chip

on the market. This also means that the microcontroller must implement the LE host

stack, which is a complex piece of software that requires memory, processing power

and deep technical expertise to develop. That is why this mode is ideal in products that

already have a powerful processor and generic operating system that has native sup-

port for the LE host stack, like laptops and smartphones.

The advantage in this mode is that the system is not tied to this particular system-on-

chip and it can be changed anytime because of the standard interface.

The disadvantage is the amount of work that is needed to implement this to the plat-

form that does not have native Bluetooth LE host stack support. Also this requires

knowledge of the technology.

19

 RAM Mode

In RAM-mode the ML7105 chip works as a host for user applications, which means no

external microcontroller is needed as shown in figure 10. [15,6.]

Figure 10. Protocol stack of the RAM-mode. Modified from [15,6].

The application developer creates the application code by using APIs provided by the

BlueLitE stack. The code is loaded directly to an EEPROM memory chip, from where

the ML7105 chip is loading it during the start-up procedure. This operation mode does

not require an external microcontroller. The ideal product which would benefit of RAM-

mode would be something very simple, like a temperature sensor unit.

The advantage in this mode is the saving in product material costs, and that with fewer

components the PCB size can be minimized. This allows the user to build smallest, the

most power constrained and the cheapest Bluetooth LE products.

The disadvantage in this mode is that the application code is not necessarily compati-

ble with other systems and it ties the user to this particular system-on-chip. Also, the

application has very restricted size and interfacing resources, which usually becomes a

serious problem when new features are added and the applications size expands.

20

6 Implementation of the ML7105

This final year project was a part of the Navigil’s research project for which the ML7105

chip was chosen and implemented on a tracking device, as illustrated in figure 11. This

final year project was about implementing a software module in the application proces-

sor to interface with the chip and provide an API for the application to use the features

that the chip offers.

Figure 11. A block diagram of a tracking device with Bluetooth LE capability.

As mentioned earlier in chapter 2.4.1, the ML7105 chip has three different operation

modes from which the BACI-mode was selected to be used. Figure 12 shows the soft-

ware block diagram of the Bluetooth LE implementation. From the figure it can be seen

that the BACI controller provides access to Bluetooth LE functionality through the BACI

interface. Thus, the BACI interface allows Bluetooth LE profiles and application to be

implemented in a separate application processor.

21

Figure 12. Software block diagram of the Bluetooth LE implementation. Modified from [15,5].

In order to utilize the features that the BACI controller provides, there must be a BACI

host. The BACI host, showing in figure 12, must be implemented in the application pro-

cessor. It is software implementation that interfaces with the BACI controller through a

physical interface, called BACI interface, and provides an interface to the application

and possible LE profiles.

Later sections explain how the BACI host was designed and how it works. Before that

the BACI interface is introduced in more detail.

6.1 BACI Interface

The BACI interface shown in figure 13 is composed of multiple signals which the host

uses to control and communicate with the controller. From the figure it can be seen that

the power control is handled with a reset signal, and communication is based on SPI

transport and that communication flow is controlled with flow-control signals.

22

Figure 13. The BACI Interface. Modified from [5,9].

The communication is half-duplex, meaning that only the host or the controller can

speak at a time. A turn for sending data is requested with a flow-control signal and the

actual data is delivered over an SPI transport layer. The conversation is based on the

BACI protocol, which defines predetermined messages that both parties should under-

stand.

 BACI Protocol

The BACI protocol is a Lapis Semiconductor’s proprietary protocol which allows access

to BlueLitE APIs through a physical BACI interface. It is a message based protocol

which defines commands, events, and data packets. As illustrated in figure 14, com-

mands are requests from the host and events are responses from the controller. The

BACI data packets encapsulates ATT [13,1829], SMP [13,1980], and L2CAP [13,1383]

protocols defined by the Bluetooth specification.

23

Figure 14. The BACI message protocol. Modified from [18,9].

All these packets are packaged in a single BACI packet format showed in figure 15.

The header is a three octet long informative field, which contains all information needed

to decode the payload of the packet. It includes the type of the packet, and an identifier

of a particular command, event, or data packet and the length of the following payload.

Figure 15. The frame of BACI protocol packet. Modified from [18,10].

24

 BACI Commands

The BACI protocol defines 38 different commands. The BACI commands are requests

for the controller to perform a specific procedure. There are also defined commands to

read or write values to registers related, for example, radio characteristics. Every com-

mand may have a set of parameters which are used to adjust the meaning of the com-

mand. The following will introduce a few useful commands to provide better under-

standing of how they are used. [18,4.]

6.1.2.1 Configure

The Configure command is used to start an advertising or a scanning procedure at the

LE controller. As shown in table 1, the command includes a role parameter that deter-

mines which procedure is started. If the role is set to advertising, the advertising related

parameters are filled with desired values, and vice versa. The advertising and scanning

related parameters are well documented in the Bluetooth specification [13].

Table 1. Description of the Configure command. Modified from [18,12].

Value Description

Packet type: 0x01 BACI Command

Command Id: 0x0F Configure command

Length: 0x17 Length of the payload is 23 octets.

Role: 0x00-0x01 Configure as a scanner(0x00) or advertiser(0x01).

Advertising related parameters as defined by the LE Set Advertising

Parameters command in the Bluetooth Specification [13,1058].

Scan related parameters as defined by the LE Set Scan Parameters

Command command in the Bluetooth Specification [13,1066].

15 octets

7 octets

Advertising

Parameters:

Scanning

Parameters:

6.1.2.2 Connect

The Connect command is used to start a connection procedure at the LE controller. As

shown in table 2, the command includes connection related parameters that are well

documented in the Bluetooth specification [13].

25

Table 2. Description of the Connect command. Modified from [18,13].

Value Description

Packet type: 0x01 BACI Command

Command Id: 0x08 Connect command

Length: 0x19 Length of the payload is 25 octets.

Connection related parameters as defined by the LE Create Connection

command in the Bluetooth Specification [13,1058].
25 octets

Connection

Parameters:

 BACI Events

The BACI protocol defines ten different events. The BACI events are responses to

some specific command or indication of some specific event occurring on the BACI

controller. Every event may have a set of parameters giving more information of the

event. The following will introduce a few example events.

6.1.3.1 Start Up

The Start Up event is received after the BACI controller is waken up from sleep or as a

result of the reset. As shown in table 3, the event has only one parameter that indicates

the state of the BACI controller. If the status is not that of a normal startup, the default

configuration has not yet loaded or it is incorrect. After receiving this event with a nor-

mal startup status, the BACI controller is ready for action.

26

Table 3. Description of the Start Up event. Modified from [18,14].

Value Description

Packet type: 0x04 BACI Event

Command Id: 0x01 Start Up event

Length: 0x01 Length of the payload is 1 octet.

Startup state indicates the status of the BACI controller.

0x00 ==> Normal startup

0x01 ==> Request for Get Config Parameters, EEPROM not connected

0x02 ==> Requset for Get Config Parametes, EEPROM connected

0x03 ==> RAM_IMAGE_SIZE_BIG

0x04 ==> RAM_IMAGE_CHECKSUM_FAILED

0x00-0x04Startup State:

6.1.3.2 Command Status

The Command Status event informs about the result of the initiation of processing of

the corresponding command. As shown in table 4, the event has two parameters. The

first parameter is the identifier of the corresponding command. The status of which is

informed in the second parameter.

Table 4. Description of the Command Status event. Modified from [18,15].

Value Description

Packet Type: 0x04 BACI Event

Command Id: 0x02 Command Status event

Length: 0x02 Length of the payload is 2 octets

Command Code: 0xXX Identifier of the command

Status: 0x00 - 0xFF Result. 0x00 represents success.

6.1.3.3 Command Complete

The Command Complete event informs about the completion of the processing of the

corresponding command. As shown in table 5, the event has a few parameters and

variable length payload. The Command Code parameter indicates the corresponding

command the status of which is informed in the Status parameter. If the processing of

the command has not succeed, the status represents an error code. The error codes

are documented in the Bluetooth specification [13]. Because each command can return

a different result, the contents of the Command Parameter field are depending on the

corresponding command.

27

Table 5. Description of the Command Complete event. Modified from [18,16].

Value Description

Packet Type: 0x04 BACI Event

Command Id: 0x03 Command Complete event

Length: 0x03 - 0x23 Length of the payload is at least 3 octets.

Command Code: 0xXX Identifier of the command

Status: 0x00 - 0xFF
Result, where 0x00 represents success. Any other value represents

"Error Codes" defined in Bluetooth specification [13,585].

Command

Parameter

Length:

0x00 - 0x20 Length of the parameters depends on the corresponding command.

Command

Parameter(s):
0 - 32 octets Return parameters depend on the corresponding command.

 BACI Data

The BACI protocol defines three types of data packets for ATT [13,1829], SMP

[13,1980], and L2CAP [13,1383] protocols. Table 6 presents the template of the BACI

data packet.

Table 6. Template of the BACI data packet.

Value Description

Packet type: 0x02 BACI Data

Command Id: 0x01 - 0x06

BACI Data packet type

0x01 ==> ATT event

0x02 ==> ATT command

0x03 ==> SMP event

0x04 ==> SMP command

0x05 ==> L2CAP event

0x06 ==> L2CAP command

Length: 0xXX Length of the payload BACI Data payload.

28

6.2 BACI Host

The BACI host is implemented as a software module that controls and manages the

behavior of the BACI controller to accomplish requested LE procedures, such as scan-

ning, advertising and connections. The software module is designed in accordance with

guidelines and practices used in Navigil. The following chapters introduce the BACI

host software module and describe how it works.

 Architecture of the BACI Host

Figure 16 illustrates the software architecture of the BACI host. It shows how the mod-

ule is built-up from individual components, which are functioning as a whole. Each

component has a clear interface and function. In the source code, the components are

separated in their own folders and each may include multiple files. This eases the

maintainability and further development of the module.

Figure 16. The architecture of the BACI host.

29

 Design Guidelines

Navigil requires that any module that is implemented in their environment follows cer-

tain design-model and architectural appearance.

A module should define a set of interface functions (i.e. API) visible to the user (i.e.

public), including at least initialization and timer functions. Also, the module may have a

set of functions usable only from within the module (i.e. private) and functions that are

introduced and used by the module but should be implemented by the user (i.e.

callback).

All data that a module uses must be in a single data structure owned by the user (i.e.

master). The data structure should contain at least one sub-data structure, an imple-

mentation of initial data, which may include some configuration parameters for the

module (e.g. GPIO lines), and possibly a pointer to the master data structure when

callback functions are used.

The initialization is the first function that the user must call. It should have two parame-

ters, a pointer to the module’s own data structure and a pointer to the initial data struc-

ture. The initial data should be set by the user with the desired configuration. Function

implementation should at least clear its own data structure, and after that, copy the

initial data contents there.

The timer function is called by the user in certain fixed intervals, e.g. 100 milliseconds,

after the module is initialized. The purpose of this function is to provide a sense of time

to the module. The module may utilize this function to count time and trigger time-

related activities.

30

 Application Programming Interface

The Application Programming Interface (API) introduces all possible services that the

module offers to the application. Each API function has at least one parameter, which

is a pointer to its own data structure.

6.2.3.1 Initialization

The initialization function shown in listing 1 is the first function that must be called by

the system in order to ensure correct operation. Its job is to set all variables in the

known initial state.

void ML7105_vInit(tsML7105Data *psData, tsML7105InitData

*psInitData);

Listing 1. The prototype of the initialization API function.

Implementation of the initialization function clears out the data structure of its own and

copies the initial data structure in its own data structure. After that, it ensures that the

ML7105 chip is in shutdown mode by configuring the reset signal to low. Finally it ini-

tializes the interface driver and calls for a state change to the Power Down state from

the control and management component.

6.2.3.2 Timer

The timer function shown in listing 2 must be called periodically with 100 millisecond

intervals, but only after the module is initialized. Its job is to give the module a sense of

time to allow triggering time based activities, for example to count down timeouts be-

tween activities.

void ML7105_vTimer(tsML7105Data *psData);

Listing 2. The prototype of the timer API function.

31

6.2.3.3 Configure

The configure function shown in listing 3 is used to invoke the start-up or shutdown

procedure for the chip. It has two parameters, which are power state and Bluetooth

device mac-address. The power state parameter determines whether the user wants to

shut down or start up the module. When starting up for the first time the Bluetooth de-

vice mac-address must be supplied. In case of restart the mac-address is optional, and

if not supplied, the same address is used as before.

void ML7105_vConfigure(tsML7105Data *psData, BOOL8

bPowerOn, tsBleMacAddress *psLocalAddress);

Listing 3. The prototype of the configure API function.

The implementation of this function simply commands the control and management

component to activate the appropriate state, as shown in figure 17. In case of start-up

or restart, mac-address is passed to the component as an argument.

Figure 17. The flow-chart presentation of the configuration API.

32

6.2.3.4 Control

The control function demonstrated in listing 4 is used to invoke advertising, scanning,

connecting, or disconnecting procedures on the chip.

teBleRequestStatus ML7105_eControl(tsML7105Data *psData,

tsBleControlRequest *psRequest);

Listing 4. The prototype of the control API function.

The implementation of the control function conveys the request to the control and man-

agement state machine, which returns the request status. In other words, the state that

is currently active decides the fate of the request. It has one parameter, which is a

pointer to control request data structure. Listing 5 shows the implementation of the data

structure. It is composed of an identifier and data of the corresponding request.

typedef struct{

teBleControlRequestType eRequest;

tuBleControlRequestData uData;

} tsBleControlRequest;

Listing 5. The implementation of control request data structure.

Listing 6 shows the implementation of the control request identifier, which is an enu-

meration of all possible control requests.

typedef enum

{

 BLEREQ_ADVERTISE,

 BLEREQ_SCAN,

 BLEREQ_CONNECT,

 BLEREQ_DISCONNECT,

} teBleControlRequestType;

Listing 6. The implementation of the control request identifier.

33

The function has a return value, which indicates the status of the request. Listing 7

shows the implementation of the request status and all possible return values.

typedef enum

{

 REQ_STATUS_OK = 0,

 REQ_STATUS_REQUEST_NOT_DEFINED = 1,

 REQ_STATUS_IGNORED = 2,

} teBleRequestStatus;

Listing 7. The implementation of the request status enumeration.

6.2.3.5 Callback Functionality

This software module uses one callback function to inform the user with indications of

certain events during operation. The indication function is introduced by the module but

must be implemented by the user. The prototype of the function is shown in listing 8.

void _ML7105CALLBACK_vSendIndication(void *pvCallbackData,

teBleIndType eType, tuBleIndData *puData);

Listing 8. The prototype of the send indication callback function.

The function has three parameters. The first parameter is a void pointer to the user

master data. The second parameter is the identifier of the corresponding indication, as

listing 9 shows; the identifier is an enumeration of all possible indications. The third

parameter is the data of the corresponding indication.

typedef enum

{

 BLEIND_READY,

 BLEIND_CONNECTED,

 BLEIND_DISCONNECTED,

 BLEIND_SCAN_REPORT,

 BLEIND_SCAN_END,

 BLEIND_ADV_END,

 BLEIND_CONNECT_END,

} teBleIndType;

Listing 9. The enumeration of the types of indications.

34

 Control and Management

The control and management is a state machine, which is composed of states that are

responsible for scanning, advertising, connecting, and managing the connection. Only

one state can be active at once, which is called the current state. The current state has

access to BACI protocol commands to invoke procedures in the chip. It also supervises

the operation of the chip by listening to BACI protocol events from the chip. States can

also send indications of the course of events to the user by callback functionality.

The state may be composed of multiple sub-states, which each have one specific task.

Typically the sub-state’s task is to send one command to the chip and wait for the re-

sponse and move to the next sub-state.

Figure 18 shows all possible state transitions. Transition from one state to another can

be triggered by the current state itself or by the user with configure or control requests.

Figure 18. The control and management state machine.

35

6.2.4.1 Power Down State

As a result of initialization, the state machine transits to Power Down state. The Power

Down state can be triggered anytime by the user with a configure request. The purpose

of the state is to run shutdown procedure for the chip. This is done simply by setting the

reset signal to low state. The state is valid until the module receives a configure re-

quest from the user.

6.2.4.2 Init State

As a result of the configure request, the state machine transits to the Init state. The

state can also be triggered by any other state in case of error. An error could occur, for

example, if the chip does not respond to a command within certain time. The purpose

of the state is to reset and execute the start-up procedure to the chip. The start-up pro-

cedure is a multi-step process in which the configuration file is loaded to the chip in-

cluding the Bluetooth address for the device. When initialization is completed, the state

machine will transit to the idle state. The message sequence chart in figure 19 shows a

successful start-up procedure.

36

Figure 19. A message sequence chart of the initialization procedure.

37

6.2.4.3 Idle State

After a successful execution of the Init state, the state machine enters the Idle state.

The Idle state is a standby state, which does not do anything, but it indicates that the

module is ready for a control request. This state will accept control requests for scan-

ning, advertising, and connection procedures. After successful execution of a certain

procedure, the state machine will enter back to the Idle state.

6.2.4.4 Scan State

As a result of the control scan request, the state machine transits to the Scan state.

The purpose of the state is to enable the LE scanning procedure in the chip, which is

described in the Bluetooth specification [13,2229]. Parameters related to the scanning

are supplied by the application, in the control request data of the scan request. The

contents of the data are shown in listing 10.

typedef struct

{

 UINT16 u16ScanDuration_100ms;

 UINT16 u16ScanWindow_10ms;

 UINT16 u16ScanInterval_10ms;

 teBleScanType eType;

 teBleScanFilterPolicy ePolicy;

} tsBleControlRequest_Scan;

Listing 10. The structure of the scan request data.

The scan duration parameter is a timeout value for the state to turn-off the scan proce-

dure when the timeout is expired. If desired, the user can choose to request for a per-

manent scan with duration value of zero.

During the scan procedure the chip will send an advertising event of each found peer

device. The state reports these events to the application with scan reports via a

callback function. The scan report includes information about the address and the sig-

nal strength of the peer device, as well as information about the advertising event type

and possible advertising data, as shown in listing 11.

38

typedef struct

{

 tsBleMacAddr sPeerAddress;

 INT8 i8RssiLevel;

 teBleAdvType eAdvertisingType;

 tsBleAdvData sAdvertisingData;

} tsBleInd_ScanReport;

Listing 11. The structure of the scan report data.

The message sequence chart in figure 20 shows a successful scanning procedure,

where two peer devices were found.

Figure 20. A message sequence chart of the scan state.

6.2.4.5 Advertise State

As a result of the control advertising request, the state machine transits to advertising

state. The purpose of the state is to enable the LE advertise procedure in the chip,

which is described in the Bluetooth specification [13,2222]. Parameters related to the

advertising are supplied by the application in the data of the advertising request. The

contents of the data are shown in listing 12.

39

typedef struct

{

 UINT16 u16AdvDuration_100ms;

 UINT16 u16AdvIntval_10ms;

 teBleAdvType eType;

 tsBleMacAddr sDirectAddress;

 teBleAdvChanMap eChannelMap;

 teBleAdvFilterPolicy ePolicy;

} tsBleControlRequest_Advertise;

Listing 12. The structure of the advertise request data.

The advertising duration is a timeout value for the state to turn off the advertising pro-

cedure when the timeout is expired. If desired, the application can choose to request

for permanent advertising with duration value of zero.

If the advertising parameters allow, any peer device may attempt to request a connec-

tion during advertising. In case of the connection request, the state will transit to the

Connected state and connection indication with the address of the peer will be sent to

the user via a callback function.

The message sequence chart in figure 21 shows the advertising procedure where a

remote device establishes a connection to it.

Figure 21. A message sequence chart of the advertise state.

40

6.2.4.6 Connect State

As a result of the control connect request, the state machine transits to the Connect

state. The purpose of the state is to enable the LE initiating procedure in the chip,

which is described in the Bluetooth specification [13,2231]. Parameters related to the

connection are supplied by the application in the data of the connect request. The con-

tents of the data are shown in listing 13.

typedef struct

{

 UINT16 u16ScanDuration_100ms;

 UINT16 u16ScanWindow_10ms;

 UINT16 u16ScanInterval_10ms;

 teBleInitiatorFiltPol eFilterPolicy;

 tsBleMacAddr sPeerAddress;

 UINT16 u16ConnectionIntval_10ms;

 UINT16 u16ConnectionLatency;

 UINT16 u16SupervisTimeout_100ms;

} tsBleControlCmd_Connect;

Listing 13. The structure of the connect request data.

The initiating procedure will be active until connection is established or until the scan

duration timeout value is expired. If the scan duration is set to zero, the connection

procedure is running until the connection is established. When the connection is estab-

lished the state will transit to the Connected state. If the timeout is reached, the state

will transit to the Idle state and the user will receive connect ended indication.

The message sequence chart in figure 22 shows a successful execution of the connect

request.

41

Figure 22. A message sequence chart of connect state.

6.2.4.7 Connected State

As a result of the connection establishment at the chip, the state machine transits to

the Connected state. The purpose of the state is to monitor the LE connection proce-

dure in the chip, which is described in the Bluetooth specification [13,2231]. The con-

nection may occur as a result of advertising or a successful control connection request.

This state’s job is to monitor the state of the connection. If the chip informs that the

connection is disconnected by the remote device or some other issue, the state will

transit to the Idle state and send disconnection indication to the user.

The message sequence chart in figure 23 shows the situation when the user requests

for disconnection.

42

Figure 23. A message sequence chart of successful disconnection.

 Interface Driver

The interface driver is the lowest layer of the software module. It includes implementa-

tion of each possible BACI command and data message that the upper layers can send

to the controller. More importantly it implements the communication logic needed to

send and receive data between the host and controller.

6.2.5.1 Communication Logic

The communication logic masters the data transfer and flow-control logic with the con-

troller. Its job is to report in-coming event messages to upper layers, while providing

them an ability to send data back to the controller.

Interrupts are used to obtain a short respond time to flow-control. Although the chip

does not require fast interaction, it is mandatory when fast throughput is needed, for

example, it would be needed during the scanning procedure when several devices

have been found in a short period of time.

Even though the transmission is happening in an SPI transport layer, the communica-

tion principle is half-duplex. It means that only the host or the controller can send data

at a time. If one party has data to send, it must request an opportunity for transmission,

and the other party must indicate that it is ready to receive. The flow-control signals are

used for this purpose. The host uses the WAKEUP signal to indicate the request or

ready state, and the controller uses the IRQ signal.

43

Because of the flow-control logic, it was natural to use state machine approach in the

implementation of the communication logic. The communication state machine is com-

posed of Idle, Request, and Ready states, as shown in figure 24.

Figure 24. The communication state machine.

From the host point-of-view, the request state is entered when a request from the con-

troller is detected. The ready state is entered when the controller accepts a request

from the host. Both of these situations are illustrated in figure 25.

Figure 25. Data transfer initiated by the host and the controller.

44

7 Conclusions

The goal of this final year project was to create and implement a software module that

provides to the tracking applications access to the Bluetooth LE functionality imple-

mented in separate a ML7105 chip. The project was successful since the Bluetooth LE

functionality has been used through this software module by applications in actual

products. For example, Navigil, the company the work was made for, has brought to

the market the S1 wearable safety wristwatch phone, which uses Bluetooth LE in a

home beacon application [19.].

It was very educational to see how the implementation proceeded from the prototype

level all the way to the finished end product. All the challenges, which were faced on

the way taught a lot about the wireless technologies and embedded engineering and

even about the importance of the documentation.

The project was not without actual problems. The progress of the project was continu-

ously slowed by the poorly documented first versions of the data sheet and the user

manual of the ML7105 chip. That caused a series of misconclusions about how things

should work which then led to incorrect hardware designs and caused instability and

unexpected operation of the chip. In the end, these problems were solved one by one

with the assistance of the support personnel of the manufacturer.

A lot of useful information about Bluetooth LE technology and how it can be utilized in

tracking applications was gained during the project. As a result, Navigil knows what

kinds of features they can design around Bluetooth LE technology in the future. From

now on they have an ability to test and implement the features through the software

module that was created during the project.

45

Reference List

1 Navigil Ltd. About us [online]: Navigil Ltd, 2015.
URL:http://www.navigil.com/about-us/. 18 January 2015.

2 Sandeep K, Joakim L. Measuring Bluetooth low energy power consumption
[online]: Texas Instruments, 2012.
URL:http://ti.com/lit/an/swra347a/swra347a.pdf. 18 January 2015.

3 Bluetooth SIG. What is Bluetooth technology [online]: Bluetooth SIG, 2014.
URL:http://www.bluetooth.com/Pages/what-is-bluetooth-technology.aspx. 2 May
2014.

4 OpenCellID. What is OpenCellID [online]: OpenCellID, 2015.
URL:http://wiki.opencellid.org/wiki/What_is_OpenCellID. 9 January 2015.

5 Linnartz JP. Cellular telephone networks [online]: JPL’s Wireless Communication
Reference Website, 1995.
URL:http://www.wirelesscommunication.nl/reference/chaptr04/cellplan/cellsize.ht
m. 9 January 2015.

6 Bluetooth SIG. About Bluetooth SIG [online]: Bluetooth SIG, 2014.
URL:http://www.bluetooth.com/Pages/about-bluetooth-sig.aspx. 2 May 2014.

7 ORAL-B. SMARTSERIES [online]: ORAL-B, 2014.
URL:http://connectedtoothbrush.com. 3 November 2014.

8 Franco M. Bluetooth sensors constantly check car tire pressure, send alerts
[online]: CNET, 11 September 2014.
URL:http://www.cnet.com/news/bluetooth-device-would-continuously-monitor-car-
tire-pressure/. 3 November 2014.

9 Bluetooth SIG. Markets [online]: Bluetooth SIG, 2014.
URL:http://www.bluetooth.com/Pages/market.aspx. 3 November 2014.

10 Haydon R. Bluetooth low energy: The developer’s handbook. Practice Hall; 2012.

11 Townsend K, Cufi C, Akiba, Davidson R. Getting started with Bluetooth low ener-
gy: Tools and techniques for low-power networking. O’Reilly Media, Inc; 2014.

12 Galeev M. Bluetooth 4.0: An introduction to Bluetooth low energy – Part II
[online]: EE Times, 28.07.2011.
URL:http://www.eetimes.com/document.asp?doc_id=1278966. 6 November
2014.

http://www.navigil.com/about-us/
http://ti.com/lit/an/swra347a/swra347a.pdf
http://www.bluetooth.com/Pages/what-is-bluetooth-technology.aspx
http://wiki.opencellid.org/wiki/What_is_OpenCellID
file:///C:/Users/jeikki/Dropbox/iTyö/iTyö/Viismeistely/iTyö_final_v3.1_JV.docx
file:///C:/Users/jeikki/Dropbox/iTyö/iTyö/Viismeistely/iTyö_final_v3.1_JV.docx
http://www.bluetooth.com/Pages/about-bluetooth-sig.aspx
http://connectedtoothbrush.com/
http://www.cnet.com/news/bluetooth-device-would-continuously-monitor-car-tire-pressure/
http://www.cnet.com/news/bluetooth-device-would-continuously-monitor-car-tire-pressure/
http://www.bluetooth.com/Pages/market.aspx
http://www.eetimes.com/document.asp?doc_id=1278966

46

13 Bluetooth SIG. Bluetooth specification version 4.0: Bluetooth SIG; 2010.

14 Nilsson R. Shaping the wireless future with low energy applications and systems
[online]: Digikey, 20 June 2013.
URL:http://www.digikey.com/en/articles/techzone/2013/jun/shaping-the-wireless-
future-with-low-energy-applications-and-systems. 8 November 2014.

15 Lapis Semiconductor. ML7105 user’s manual [online]: Lapis Semiconductor, 10
June 2013. URL: http://www.lapis-semi.com/en/data/user%27s%20manual-
file_db/telecom/FEUL7105-01.pdf. 3 November 2014

16 Silicon Semiconductor. Mindtree aids Lapis in launch of Bluetooth smart chips
[online]: Silicon Semiconductor, 29 January 2014.
URL:http://www.siliconsemiconductor.net/article/79263-Mindtree-aids-Lapis-in-
launch-of-Bluetooth-smart-chips.php. 3 November 2014.

17 Lapis Semiconductor. Bluetooth Low Energy LSI [online]: Lapis Semiconductor,
2014. URL:http://www.lapis-semi.com/en/semicon/telecom/ml7105.html. 3 No-
vember 2014.

18 Lapis Semiconductor. BACI manual: Lapis Semiconductor; 2013.

19 Navigil. S1 – wearable personal safety wrist watch phone [online]: Navigil, 2014.
URL:http://www.navigil.com/products/s1-wearable-telecare-watch-phone/. 9 Jan-
uary 2015.

http://www.digikey.com/en/articles/techzone/2013/jun/shaping-the-wireless-future-with-low-energy-applications-and-systems
http://www.digikey.com/en/articles/techzone/2013/jun/shaping-the-wireless-future-with-low-energy-applications-and-systems
http://www.lapis-semi.com/en/data/user%27s%20manual-file_db/telecom/FEUL7105-01.pdf
http://www.lapis-semi.com/en/data/user%27s%20manual-file_db/telecom/FEUL7105-01.pdf
http://www.siliconsemiconductor.net/article/79263-Mindtree-aids-Lapis-in-launch-of-Bluetooth-smart-chips.php
http://www.siliconsemiconductor.net/article/79263-Mindtree-aids-Lapis-in-launch-of-Bluetooth-smart-chips.php
http://www.lapis-semi.com/en/semicon/telecom/ml7105.html
http://www.navigil.com/products/s1-wearable-telecare-watch-phone/

