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Tämä opinnäytetyö tehtiin osana espanjalaisen tutkimusryhmä PIMA:n tutkimusta 
biopolymeerien käytöstä pakkausmateriaaliteollisuudessa. Tämän opinnäytetyön 
päätavoitteena oli tutkia, voitaisiinko riisinkuorta käyttää vahvistavana täytemate-
riaalina PHBV pohjaisessa biopolymeerissä, joka on biohajoava. Opinnäytetyön 
tarkoituksena oli tehdä biohajoava biopolymeeri riisinkuoresta ja PHBV:stä, jolla 
olisi paremmat mekaaniset ominaisuudet verrattuna puhtaaseen PHBV:seen. 
 
Metodi opinnäytetyötä varten kehitettiin kirjallisuuslähteiden avulla. Erään lähteen 
mukaan emäskäsitellyllä riisinkuorella on paremmat mekaaniset ominaisuudet 
kuin käsittelemättömällä. Kahta erilaista riisinkuorityyppiä (NaOH käsiteltyä ja 
käsittelemätöntä) testattiin ja verrattiin keskenään, jotta voitiin todeta pitikö kysei-
nen lähde paikkansa. Riisinkuorta käsiteltiin 5 % ja 10 % NaOH – liuoksella kahta 
käsittelyaikaa (24 ja 48 tuntia) käyttäen. Riisinkuoren pinnan morfologiaa tutkittiin 
SEM:illä ja mikroskoopilla. Todettiin, että paras tulos saavutettiin kun riisinkuorta 
käsiteltiin 24 tuntia 10 % NaOH – liuoksella. Kalvojen valmistuksessa käytetyt 
olosuhteet löydettiin kirjallisuudesta. Emäskäsitellystä riisinkuoresta ei saatu kal-
voa aikaiseksi, koska emäskäsittely laski riisinkuoren viskositeetin niin alhaiseksi 
että se meni pilalle. 

Adheesio on hyvin voimakasta riisinkuoren ja PHBV:n välillä. Mekaanisten omi-
naisuuksien määrityksen perusteella kimmokerroin kasvoi 20 % verrattuna puh-
taaseen PHBV:seen, kun kalvon annettiin hajota 1 päivän ajan. Kun 15 päivän 
kuluttua näytteet mitattiin uudestaan, oli kimmokerroin enää 5 % parempi verrat-
tuna puhtaaseen PHBV:seen. Polymeerisekoituksen kiteisyysaste oli säilynyt 
melkein yhtä suurena kuin puhtaan PHBV:n. Sulamis- ja kiteytymislämpötilat las-
kivat odotetusti alhaisemmaksi kuin puhtaan PHBV:n. Tämä johtui riisenkuoren 
lisäyksestä polymeeriin. Kaikki polymeerinäytteet olivat epämuodostuneita tai 
muuten epätäydellisiä lämpömuovauksen jälkeen, koska jauhetun riisinkuoren 
partikkelit olivat liian suuria verrattuna kalvon paksuuteen. Jotta riisinkuoresta ja 
PHBV:stä voitaisiin tehdä kalvoja, täytyisi kalvojen olla paksumpia kuin tässä 
opinnäytetyössä tehdyt (>140 μm). 
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This thesis is a part of the research group PIMA’s research about the usage of 
biopolymers in the packaging industry. The objective of this thesis was to re-
search the usage of rice husk (RH) as a strengthening fiber in PHBV based bio-
composite that is biodegradable. The aim of this study was to make a biode-
gradable biocomposite, made of PHBV and RH that should have better mechani-
cal properties compared to pure PHBV. 

According to the literature review, alkaline treated RH has better mechanical 
properties than untreated RH. Two different types of RH (untreated and NaOH 
treated RH) were tested to see whether the chemical treatment of RH would im-
prove its mechanical properties or not. RH was treated with 5% (w/w) and 10% 
(w/w) NaOH and it was left for 24 hrs or 48 hrs. The surface morphology of RH 
was investigated with Scanning Electron Microscopy (SEM) and microscope. Ac-
cording to the surface morphology, the best results were achieved with 10% 
(w/w) NaOH solution when treated for 24 hrs. Used melt blending & other pro-
cessing conditions were discovered from literature. NaOH treated RH was not 
suitable for film pressing because it lowered too much its viscosity during the melt 
blending. All the NaOH treated RH was lost during the melt blending. 

The adhesion between untreated RH and PHBV was great. According to the re-
sults from the determination of the tensile properties, the modulus of elasticity 
improved 20% (max.) compared to pure PHBV with the samples that were meas-
ured after 1 day of degradation. After 15 days of degradation in the desiccator, 
the modulus of elasticity was improved only slightly, with the increase of 5% 
(max.) in the modulus of elasticity. The degree of crystallinity of RH and PHBV 
polymer remained almost the same as the pure PHBV Mezclado. Melting tem-
peratures of the RH blends were lowered, due to the addition of RH into the pol-
ymer. All the samples were ruptured during thermoforming. PHBV + RH films 
could not be thermoformed because the RH particles are too huge compared to 
the size of the film. In order to make films that could be thermoformed, the films 
would have to be thicker than 140 μm. 
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VOCABULARY  

Copolymer Polymer that is made of two or more different repeating 

monomers 

Homopolymer Polymer that is made of one repeating monomer 

PH3B Poly-3-hydroxybutyrate 

PHBV Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), biode-

gradable polymer used in this study. 

PHV Polyhydroxyvalerate 

PE Polyethylene, most used polymer that doesn´t degrade 

in the nature. 

PUR  Polyurethane 

RH  Rice husk 
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1 INTRODUCTION 

This thesis researches the usage of rice husk (RH) as a strengthening fiber in 

PHBV based biocomposite that is biodegradable. This biocomposite consists of 

two matrixes: 1.) biodegradable polymer (PHBV) and 2.) natural fiber (rice husk) 

that improves the mechanical properties of polymers. The aim of this study is to 

make a biodegradable biocomposite, made of PHBV and RH that resulting in bet-

ter mechanical properties compared to pure PHBV.  

RH was chosen as the fiber matrix in biopolymer composite because in Castellon 

there is an abundance of RH as a by-product of rice industry. Millions of tons of 

RH are created every year from rice milling processes. According to FAOSTAT, 

in 2013 the estimated total world production of rice paddy was 745 million tons 

[1]. On average 20% of the rice paddy is husk, giving an annual total production 

of 150 million tons.  

RH is considered waste by many rice milling companies, which is the reason why 

it is often left to compost in the nature or burnt as a source of fuel [2]. Both meth-

ods produce unwanted by-products (composting the RH produces methane and 

burning RH produces toxic fumes). It would solve quite many big problems re-

garding waste management of plastics and environmental protection if an eco-

nomically reasonable way to combine RH to biodegradable polymer was devel-

oped. In the long run it would help the environment and ease the waste man-

agement of rice husk and polymers.  

The use of RH as a strengthening fiber in biocomposite is not the best option 

everywhere in the world because you would have to have the infrastructure ready 

for growing & transporting rice and you have to have fresh water & fertilizer for 

growing it, which is not self-explanatory  for example in  the driest parts of Africa 

or Middle East. One of the main points in my thesis regarding this problem is that 

you have to focus on local possibilities. In Spain we have rice husk, in the Middle 

East they have almond shells and so on. In the world there are many good 

sources of usable fiber (wood fiber, bamboo, kenaf...) that are often by-products 

or waste of some processes. [3] As the old saying goes, one man’s trash is    
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another man’s treasure.  

 

This thesis was made as a part of research group PIMA´s (founded 2010) re-

search about the biopolymers in the University of Jaume I, Castellón de La Pla-

na, Spain.  
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2 POLYMERS AND FOOD PACKAGING 

This chapter is about the theory of polymers, polymer classification and the us-

age of polymers in food packaging. Polymers are used in food packaging be-

cause they are cheap and easily available anywhere in the world. 

2.1 Polymers 

Polymers are composed of smaller structural units (monomers) that are attached 

together. This bonding forms longer chains of monomers that are called poly-

mers. Monomers are molecules that have a double bond between two carbons 

and they have one or more side groups (e.g. H, CH3, Cl, F...). Polymers are mac-

romolecules, which can be composed of hundreds or even thousands units of 

monomers. These huge chains are the reason why polymers have their unique 

physical and chemical properties.  

2.2 Polymerization 

Polymers are formed by polymerization – a reaction in which monomer´s double 

bond opens up and bonds to another monomer with a single bond (Figure 1). In 

the case of polyethylene, the typical length of chain is n ≈ 20 000 [4].  

Figure 1 Polymerization of polyethylene 

There are two types of polymerization: addition and condensation polymerization. 

In addition polymerization monomer units join together by breaking their double 

bonds without losing anything from their structure (See Figure 2). When the dou-

ble bond breaks, the electrons available from the double bond are used to bond 

two monomers together [5]. When several monomers do this, long chains of 

monomers are formed. These chains are, as previously said, polymers. 
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Figure 2 Addition polymerization of PVC 

 

In condensation polymerization (See Figure 3) monomers join together by gener-

ating and eliminating a small molecule (e.g. H2O) from their structure [6]. To put it 

shortly; homopolymers are formed in addition polymerization and copolymers in 

condensation polymerization.  

 

Figure 3 Condensation polymerization of nylon (6,6) [7] 
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2.3 Classification of polymers 

Polymers are usually classified based on their chemical structure, but there are 

also other ways to classify them. For example, based on the origin of the polymer 

they can be classified as natural, semi-synthetic or synthetic polymers.  

2.3.1 Homo- and copolymers 

Polymers can be divided into groups based on their origin, structure, features, 

purpose of use, crystallinity and the way how monomers are attached together. 

Depending on how many different monomers polymer is composed of, it can be a 

homopolymer made out of one repeating monomer (Figure 4) or a copolymer that 

is made of two or more repeating monomers (Figure 5). This structural difference 

gives each polymer their unique mechanical and chemical properties. 

 

Figure 4 Homopolymer made of monomer C 

 

Figure 5 Copolymer made of monomers A & C 

 

There are four different kind of copolymers (Random, Alternating, ABA –triblock 

and Graft copolymers) [8], but only alternating copolymer is depicted above in 

the Figure 5. This is because this thesis is about PHBV and the polymerization of 

PHBV (Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)), where PH3B and PHV 

are polymerized, follows the order of alternating copolymerization. In Figure 6 

below the four different types of copolymers are represented. 

In random copolymerization monomers are organized in a random order. In block 

copolymerization the monomers of the same kind are in groups (blocks). Alternat-

ing copolymerization has monomers organized in alternating turns. In Graft co-
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polymerization monomers form sc. “backbone” that has side chains. These side 

chains can tangle to each other and this phenomenon is known as cross-linking. 

 

Figure 6 Types of copolymerization 

2.3.2 Natural, semi-synthetic and synthetic polymers 

Polymers can also be divided into three subgroups based on their origin and 

source of availability: natural polymers, semi-synthetic polymers and synthetic 

polymers [9].  

Natural polymers are polymers that are mostly made of mono- or polysaccharides. 

They can be obtained from plants and animals and they are vital for life because 

DNA and RNA are both composed of polysaccharides. Starch, cellulose, proteins 

and nucleic acids are natural polymers. Natural polymers are biodegradable. 

Semi-synthetic polymers are natural polymers that have been treated chemically 

to have certain properties. Semi-synthetic polymers are trying to combine the 

good properties of natural and synthetic polymers. Natural polymers are e.g. vul-

canized natural rubber, cellulose nitrate and cellulose diacetate [10]. 
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Synthetic polymers are produced in laboratories by chemical processes. They 

are mostly made of petroleum based raw materials and they are not biodegrada-

ble. It takes so long (in some cases hundreds of years or more) for synthetic pol-

ymers to degrade in the nature that they are called nondegradable polymers. 

2.3.3 Thermoplastics 

Polymers are usually divided into three major groups, based on their thermal pro-

cessing behavior [11]. Those polymers that can be remolded after heating multi-

ple times are called thermoplastics. There is no strong chemical bonding be-

tween thermoplastic polymers. Thermoplastics are hold together by long linear 

polymer chains that have a weak chemical bonding (van der Waals force) be-

tween them. When thermoplastics are heated, weak bonds between polymers 

break and the plastic ‘melts’. It can be then remolded into new shape. When plas-

tic is cooled, new weak bonds form between the polymers and plastic can keep 

its form. 

2.3.4 Thermosets 

Polymers that cannot be remolded after heating again are called thermosets. 

This is because of their chemical structure that has strong chemically bonded 

and cross-linked polymer chains. When heat is applied, thermoset polymers will 

not change their form because the energy used to break strong bonds between 

the polymers is not enough. If enough heat is used, thermosetting polymers will 

not return to their original state [12]. 

2.3.5 Elastomers 

Polymeric compounds that can be stretched and are capable to recover their 

original form rapidly are called elastomers [13]. Elastomers are polymers that 

have properties from both thermoplastics and thermosets. Elastomers have long 

chain-like molecules that are cross-linked to each other – similar to the structure 

of thermosets, but elastomers are not as cross-linked as thermosets. They have 

mostly ion and hydrogen bondings between molecules [14].  Most elastomers are 

thermoset elastomers, but some of them have the ability to be remolded after 

heating. These elastomers are called thermoplastic elastomers. 
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2.4 PHBV  

PHBV aka Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) is a biodegradable co-

polymer. It is produced by either indirectly by micro-organisms or directly by 

plants [15]. PHBV is a copolymer that is made of two different monomers as it 

can be seen from Figure 7. These two monomers are PH3B (Poly-3-

hydroxybutyrate) and PHV (Polyhydroxyvalerate). Mechanical and thermal prop-

erties of PHBV are relative to the ratio of PH3B and PHV. The higher ratio of 

PH3B is compared to PHV, the stiffer PHBV becomes [16]. Higher ratio of PHV 

makes polymer more flexible and lowers the melting temperature [17].  

 

Figure 7 Polymerization of PHBV 

 

PHBV as a material is hard, very brittle and it has low strain at break. It is also 

expensive compared to the petroleum based plastics, which is the reason why 

there has been a growing interest for finding a good filler material to cut the price 

of PHBV. The problem is that the filler material that is being used with PHBV has 

to have good adhesion properties with PHBV and it cannot lower the mechanical 

properties of PHBV. 

2.5 Rice husk 

Rice husk (or hull) is the exterior part of grain of rice (See Figure 8). During the 

milling processes rice grains and husks are separated from each other. It is made 

of mostly from lignin, cellulose and silica. Because of the materials it is made of, 

RH is mostly inedible for humans. Lignin reacts in the same way in our bodies as 

the cellulose does. Because humans do not have the same kind of enzymes as 

grass eating animals (like cows) do have, humans cannot digest cellulose or lig-

nin to glucose. RH is considered waste by the rice milling industry and it is usual-

ly left to rot outside the factories or used as fuel for heating the factories [18]. RH 
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is rich in silicone, which makes it a perfect source for e.g. electronics and cement 

manufacturing. 

 

Figure 8 Cross-section of rice: 1. rice grain; 2. rice husk and 3. rice bran 

2.6 Cellulose 

Cellulose is a plant polymer that has a simple chain structure. It is a homopoly-

mer that is made of repeating units of monosaccharides (glucose monomers), 

which can be seen in Figure 9. These long chains of monosaccharides are called 

polysaccharides. Polysaccharides form cellulose that acts as a strengthening 

component in the fiber walls of wood and plants. Depending on the size of the 

cellulose chain, the smaller the chain is the more hydrophilic (soluble to water) it 

is. Longer chains of cellulose are hydrophobic (insoluble to water). Cellulose can 

be degraded into monosaccharide units by certain enzymes or with an acid and 

high temperature treatment. This is due to the strong hydrogen bonds between 

monomers. 

 

Figure 9 Structure of cellulose 
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2.7 Lignin 

Lignin is a plant polymer that has a high molecular-weight and very complex 

structure, as it can be seen from the Figure 10 below. Lignin is the only polymer 

in plants that is not made of monosaccharide monomers. 

 

Figure 10 Structure of lignin 

 

The structure of lignin is composed mainly of three different phenyl propane 

monomers (Figure 11) that are cross-linked to each other. There are many differ-

ent bonding patterns that can occur between different phenyl propanes. Lignin 

provides structural stiffness to many plants and trees that would bend under their 

own weight without it. Lignin owns a chemical structure that makes it less hydro-

philic [19]. 
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Figure 11 Lignin alcohols 

2.8 Polymers in food packaging 

There are many ways to store food. The best way to do it is to wrap the food into 

a material that protects the food from outside environment and improves the 

transportability and storability of the food item. The packaging materials vary from 

metals to polymers. Depending on the purpose of use, certain packaging material 

is used that has the required properties to do its job. Metal, glass, plastics, paper 

and cardboard are used as packaging materials for food around the world. 

In order to be a good food packaging material, it has to have the following proper-

ties: material has to withstand changes in the out and inside environments, it has 

to be safe for consumers to be used in food packaging, it has to protect the prod-

uct and if food preservation gases are used, it has to be gastight. There are many 

other requirements too, but the presented ones are the main ones. 

Polymers are most widely used in the food packaging industry because they are 

cheap and versatile for use in a large variety of applications. Polymers can be 

used to give products shock resistance, they can be used for restricting the 

movement of the product in the package and they can be used for creating an 

air-tight environment. Most commonly used polymers in food packaging industry 

are polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride 

(PVC) and polyethylene terepthalate (PET) [20]. 

Waste management of polymers has been done so far by recycling them, burning 

them or using them as s landfill. Recycling of polymers is hard because they are 
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usually covered in other materials (food, metal, glass, wood…) that are not easy 

to remove. Because it is costly to recycle polymers, they are often just burned. 

Burning polymers releases high amounts of heat that can be used for producing 

electricity. However, burning certain polymers (like PVC) produces toxic gases 

that can be harmful to people. Using polymers as landfill is also problematic be-

cause it produces greenhouse gases like methane and it might be an unstable 

ground for buildings to be built on. 

2.9 Problems with polymers in food packaging 

The use of polymers in food packaging has been increasing steadily over the 

past 15 years. The latest trend in the packaging industry has been the increase in 

the usage of biodegradable biopolymers as packaging material for products in-

stead of petrochemical plastics. Nevertheless, petrochemical polymers are used 

widely almost in every technical application that exists today. As a result of this, a 

huge amount of polymer waste is created every year. In 2012, a total of 32 million 

tons of plastic waste were created according to US EPA (United States Enviro-

mental Protection Agency) [21]. Some polymers can be recycled and used again, 

but in most of the cases the plastic that has been used in food packaging will not 

be used again nor recycled. This is because of the remains of food in the polymer 

waste, which makes it harder and more expensive to recycle. 

In order to reduce the amounts of polymer waste created every year, more effec-

tive measures than recycling & burning old materials has to be introduced. Even 

if 95% of all the polymer waste created every year were collected, there would 

still be left that 5% of waste in the nature. Some polymers (for example PE, poly-

ethylene) degrade chemically into smaller pieces in the nature over long periods 

of time, so they can basically last forever. That does not mean that polymers 

cannot physically degrade into smaller pieces. When polymers are mechanically 

grinded into smaller pieces, it makes it almost impossible to collect those tiny 

pieces from water. A good example about this problem is the sc. the seventh 

continent of plastic also known as the Great Pacific garbage batch. This “conti-

nent” is made entirely out of polymer waste that has been grinded into smaller 
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particles [22]. This garbage batch is not one of its kind, there are four other simi-

lar garbage batches but the one in the Pacific is the biggest. 

There are also other reasons why interest in researching the usage of biopoly-

mers has been growing constantly. The biggest reason after environmental pro-

tection is the diminishing sources of fossil fuels. The currently known sources of 

fossil fuels will probably last 40 - 100 years [23]. Without fossil fuels, we won´t 

have petrochemical plastics which are a necessity nowadays. 
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3 METHOD 

This thesis researches the usage of rice husk (RH) as a strengthening fiber in 

PHBV based biocomposite that is biodegradable. This biocomposite consists of 

two matrixes: 1.) biodegradable polymer (PHBV) and 2.) natural fiber that im-

proves polymer’s mechanical properties (rice husk). The aim of this study is to 

make a biodegradable biocomposite made of PHBV and RH, that should have 

better mechanical properties compared to pure PHBV. 

Before a method was developed, literature review had to be done in order to de-

termine what kind of results there already are about PHBV based biocomposites 

and RH. Based on these findings a method was developed. 

3.1 Literature review 

According to the studies of Tran - Bénézet - Bergeret (24, p.58) and Mohammadi 

- Rovshandeh - Pouresmaeel-Selakjani - Davachi - Babak - Hassani -  Bahmeyi 

(25, p.58) sodium hydroxide (NaOH) treated RH possess better mechanical 

properties than non-treated natural RH. This is caused by the lignin removal that 

improves composite by creating porosity and more roughness in the outer sur-

face. NaOH treated RH should also produce more fiber-like structures that should 

improve biocomposites mechanical properties. In order to compare the difference 

in the mechanical results between NaOH treated RH and untreated RH, different 

concentrations of RH and PHBV should be tried. The concentration of NaOH and 

its effect on RH is also studied by making a test, in which two different concentra-

tions of NaOH are used and the duration of treatment is varied. 

An optimal amount of RH in the biocomposite is somewhere between15 (wt.%) – 

20 (wt.%) according to Mohammadi (25, p.58) and Tran - Nguyen – Thuc – Thuc 

– Tan (26, p.58). In these studies the mechanical properties of RH and PLA 

based biocomposite were investigated. Higher concentrations of RH will lead to 

the reduction of mechanical properties, if the lignin is completely removed, ac-

cording to the study of Mohammadi (25, p.58). Singh – Mohanty - Sugie - Takai -  

Hamada (27, p.59) concluded that higher filler concentrations would be achieved 
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with other fiber types than RH, like bamboo fiber and kenaf. Based on these find-

ings, four different concentrations of RH and PHBV are made (See Table 1).  

Table 1 PHBV and RH blends 

Blends (wt %) Rice husk (g) PHBV (g) Total mass (g) 

5 15 285 300 

10 30 270 -//- 

15 45 255 -//- 

20 60 240 -//- 

 

3.2 Experimental 

In the experimental part of this thesis the mechanical properties and surface 

morphology of RH and PHBV based biocomposite were investigated. 

3.2.1 Materials 

Rice husk (RH) was supplied by Herba in Valencia, a company recently pur-

chased by Ebro Foods. PHBV pellets (ENMAT Y1000P) were supplied by TianAn 

Biopolymer. Sodium hydroxide (NaOH) was from Panreac (141687.1211). Acetic 

acid (CH3COOH) was obtained from Probus (010510).  
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Figure 12 PHBV pellets (ENMAT Y1000P) 

 

For washing the lignin from RH, two alkaline solutions consisting of 10% (wt.) and 

5% (wt.) sodium hydroxide (Panreac, 141687.1211) were prepared in distilled 

water. For neutralizing and washing the alkaline solution, an acidic solution con-

sisting of 1% and 10% acetic acid (Probus, 010510) was also prepared. Bühner 

funnel and filter paper (1300/80) were used for suction filtration. Tri-color pH pa-

per was used for determining the pH. Mortar and pestle were used for cracking 

the RH after suction filtration and drying. 

JSM-7001F Scanning Electron Microscope and Leica DM-RME light microscope 

was used for observing the surface morphology of fine RH. Piovan Hot Air Dryer 

was used for drying the PHBV pellets. Thermo Haake Polylab System (equipped 

with Rheomix 3000p mixer and Roller-Rotors R3000 rotors) was used for mixing 

the PHBV pellets and RH. Carver Standard Press (Model 3851-0) was used for-

film pressing. Positest DFT was used to determine the thickness of the films. 

Perkin Elmer Differential Scanning Calorimeter 7 was used for determining the 

thermal properties of the films. Shimadzu AGS-X 500N was used for determining 

the mechanical properties (tensile testing) and Illig Skin and Blister Machine SB 

53c was used for the thermoforming of the films. 
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3.2.2 Grinding of RH 

Liquid nitrogen was used to freeze the material and then it was grinded into 

smaller particles with a coffee grinder. Rough RH was put into a sieve (Filtra Vi-

bracion SL, mesh size of 140 µm) and it was put into a separator. Fine dust of 

the RH was left into the collection bag under the sieve and the rough RH that did 

not pass the sieve was processed again, until there was enough material to work 

with.  

RH was characterized using JSM-7001F Scanning Electron Microscope. Using 

the SEM, the particle size & surface morphology were investigated. It was possi-

ble to achieve particle size of ≤ 0.140 mm (140 µm) with liquid nitrogen method. 

 

Figure 13 Grinded RH 

 

As it can be seen in Figure 13 above, most of the RH particles are within the size 

limit of ≤ 0.140 mm (140 µm). Bigger particles than that would affect to the poly-

mer film because the size of the film would not be too much bigger than 140 µm. 

This could weaken the film and its mechanical properties. The structure of fine 
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untreated RH is not too fibrillated, so the adhesion between PHBV and RH could 

be weaker which would lower the tension properties of the PHBV film. 

 

Figure 14 RH with silica particles (red rings) 

 

SEM revealed that the RH wasn´t as pure as it was thought to be. Small particles 

of silica (See Figure 14) were found to be in the sample, but there is an explana-

tion for this: those silica particles found were from RH itself. RH is full of silica 

and those particles in the sample were most likely from it. This was confirmed by 

the supplier of the RH. 

3.2.3 NaOH treatment of RH 

Rice husks were dried at 100°C for 24 h. Then small batches of RH were im-

mersed in 5% (wt.) and 10% (wt.) sodium hydroxide (NaOH) solution for 24 and 

36 hours. These batches were then left to be in room temperature. 

Suction filtration equipment was prepared and wet RH was put into the filter pa-

per. RH was washed with distilled water to eliminate NaOH, and then the RH was 

washed with acetic acid (1%). Sediment was washed with acetic acid, until the 
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pH of filtrate was 7.0 (neutral). Finally, the RH was washed again with distilled 

water to wash any leftovers of acidic or alkaline solution. When RH was dry 

enough, a spoon was used gently to remove the RH from filter paper to a drying 

plate.  

RH was dried at 100°C for 24 h and mixed occasionally to get rid of the moisture. 

Then RH was cracked into smaller pieces using a mortar and pestle. Fine RH 

was dried at 100°C for 2 h. Small batches of grinded RH were characterized with 

SEM & microscope. The surface morphology of NaOH treated RH was investi-

gated to see if the treatment was successful. 

 

Figure 15 Untreated RH 
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Figure 16 Untreated RH 

 

As it can be seen from Figures 15 and 16, the untreated RH does not have too 

many fiber-like structures in it. The surface of RH is smooth, which does not help 

with the adhesion of PHBV and RH. In Figures 17 and 18 it can be seen that the 

structure of NaOH treated RH is rougher when compared to untreated RH. 

  

Figure 17 5% NaOH for 24 hrs 
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Figure 18 5% NaOH for 24 hrs 

 

In an ideal case the RH has a very porous structure and it has many fiber-like 

structures, similar that can be seen in Figures 19 and 20. 

 

Figure 19 10% NaOH for 24 hrs 



 

 30 

 

Figure 20 10% NaOH for 24 hrs 

 

 

Figure 21 5% NaOH for 36 hrs 
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Figure 22 5% NaOH for 36 hrs 

 

 

Figure 23 10% NaOH for 36 hrs 
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Figure 24 10% NaOH for 36 hrs 

 

The increased porosity of RH can be seen from all the SEM Figures 17 - 24 

above. Treated RH is more porous compared to untreated RH. It seems that 

higher concentrations of NaOH are more effective at washing lignin off than the 

lower concentrations. Also, there seems to be no additional benefits from longer 

chemical treatments of RH. NaOH treated RH after 24 hours of treatment looked 

the same as NaOH treated RH after 36 hours of treatment. 

 

Leica DMR ME microscope was used to roughly estimate the amount of fibrillated 

particles in the sample. The measurements were conducted at room temperature 

(25°C) with the lens magnification of x50. 
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Figure A Untreated RH 

    

Figure B 5% NaOH 24 hrs        Figure C 10% NaOH 24 hrs 

    

Figure D 5% NaOH 36 hrs        Figure E 10% NaOH 36 hrs 
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In Figure A there are many particles that have a round shaped structure. Round 

shape is not the ideal shape for a particle in this case because they do not have 

as much surface area as fiber-like structures. This might lead to the reduction of 

mechanical properties because PHBV and RH will not probably have a very good 

adhesion between each other. 

In Figures B and C, the NaOH treatment has clearly had an effect to the amount 

of fiber-like structures. There are more fiber-like structures and the surface of the 

RH does not look as smooth as it does in Figure A. When the surface area of a 

RH particle is increased, the adhesion between PHBV and RH should increase 

too. This would increase the mechanical properties of the film. 

Figures D and E show that RH has similar fiber-like structure and that there are 

fewer particles than in Figures B and C. This might be the cause of NaOH con-

centration. Even small concentrations of NaOH with enough time will dissolve all 

the lignin from RH. This would cause the structure to be so porous that it would 

crack very easily. 

3.2.4 Melt blending 

PHBV pellets (ENMAT Y1000P) were dried at 80°C for two hours. Piovan Hot Air 

Dryer was used for drying the pellets. This was done in order to remove the mois-

ture from the pellets. If the pellets are not dry enough, PHBV would start degrad-

ing and it would affect to the mechanical properties. 

Both untreated and treated RH was melt mixed into PHBV. Four different blends 

of RH were prepared as shown in the Table 1, page 22. The process of mixing 

was done as shown in Table 2. Total mass of each blend is 300 grams and the 

temperature, in which the blends are mixed, is 175°C. PHBV pellets and RH were 

mixed with Thermo Haake Polylab System (equipped with Rheomix 3000p mixer 

and Roller-Rotors R3000 rotors). 

After melt blending all the blends of PHBV and RH into ´cakes´, they were visual-

ly inspected before processing them into films. This was done in order to check 

that there were no burnt spots or non-melted pieces of PHBV. 
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Table 2 Process table of melt blending 

m= 300 g (total) T= 175°C  

Process RPM (rpm) Time (min) 

Feeding 1 20 rpm ≈ 1 min 

Feeding 2 40 rpm ≈ 1 min 

Mixing 100 rpm ≥ 3 min 

Finishing 20 rpm ≈ 1 min 

 Total time = 6 min 

 

 

 

Figure 25 Thermo Haake Polylab System equipped with Rheomix 3000p mixer 
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3.2.5 Film pressing 

PHBV and RH cakes were broken into pieces with a hammer and a cloth. Using 

a laboratory scale around 1.3g ± 0.1g of polymer was then weighted for one film. 

Polymer was processed with Carver Standard Press (Model 3851-0) that is ca-

pable of polymer forming. It uses heat and pressure to reform the polymer cakes 

into polymer film. 

Polymer was put between two stainless steel plates that were covered with a tef-

lon sheet. Temperature was set to 180°C and the sample was put between 

clamps. Pressure was slowly raised to 1.0 metric tons, until the needle remained 

in its place. Pressure was raised to 2.0 metric tons and the pressure was re-

leased totally to let the polymer reshape. The clamps were put together again 

almost immediately. Pressure was raised to 3.0 metric tons and it was kept for 3 

minutes. After 3 minutes the pressure was raised to 3.5 metric tons, temperature 

was lowered to 25°C, water cooling was activated and the pressure was kept in 

3.5 metric tons until the film was cooled to room temperature. 

 

Figure 26 Carver Standard Press 
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3.2.6 Determination of tensile properties 

As a part of mechanical properties, tensile properties were determined with Shi-

madzu AGS-X 500N. AGS-X 500N was used for determining the force 

(F=Newtons) that is needed to break the sample. Thickness of the films were 

determined with Positest DFT. Tensile modulus (Young’s modulus) of the sample 

can be calculated, after we know the cross-sectional area of the sample (A) and 

the force (F) needed to break the sample. Using the following Formula 1, the ten-

sile strength (usually indicated in megapascals, MPa’s) can be calculated. 

Formula 1 Tensile strength of the sample 

Tensile strength (
 

    / MPa ) =  
                                    

                          
 , where 

Cross-sectional area = thickness of the sample x width of the sample (5 mm) 

Films were cut into bone-shaped samples (Figure 27) using a specific cutter for 

this. Twenty replicates were made for each blend. Pure PHBV Mezclado (Span-

ish word for ´mixed´) was used as a point of reference. In order to see the effect 

of PHBV degradation, ten samples were measured at day one and another ten 

after 15 days. In total, twenty replicates were made from each blend and PHBV 

Mezclado. Samples were stored in desiccator, until they were measured. 

 

Figure 27 Measurements of tensile properties sample 
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Sample was placed between clamps straight up. The lower clamp of Shimadzu 

AGS-X 500N (Figure 28) was closed first. Total force was nulled at this point, so 

the results would stay consistent. A little dent was made in the sample before 

closing the upper clamp. This was done because the machine would stretch the 

samples with the programmed pre-force of 5.0 N and without that dent the sam-

ple would stretch unevenly. This would have otherwise distorted the results. 

 

Figure 28 Shimadzu AGS-X 500N Universal Tester 

In order to check the morphology of the films (what kind of adhesion RH had with 

PHBV) polymer samples were frozen with liquid nitrogen and then samples were 

cracked with forceps. The cracked samples were then observed with SEM to see 

if the RH had fiber-like structure in the melt blended polymer and if there was 

good adhesion between RH and PHBV. 
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3.2.7 Differential Scanning Calorimeter (DSC) 

Thermal properties and thermal degradation of PHBV and RH blends were inves-

tigated with Perkin Elmer Differential Scanning Calorimeter 7 (Figure 29) that 

used argon (Ar) as  inert purge gas for DSC cell. Differential Thermal Analysis 

(DTA) is a technique where polymer sample is heated and effects of the heating 

to the sample and the reference material (empty aluminum dish) are investigated. 

Inside DSC there are two pans with their own heater units, one for reference ma-

terial and another for the polymer sample. In this experiment two values are plot-

ted in the graphs: the temperature (x-axis) and the differential temperature (y-

axis) of the reference material and the sample (See Figure 31) [29]. 

 

Figure 29 Perkin Elmer DSC 7 

 

A two-hole punch was used to obtain the PHBV+RH film sample. Laboratory 

scale was used to measure a sample between 6.0 to 8.0 mg. Sample from the 

film was packed between two aluminum dishes and the weight of the sample was 

recorded. Forceps were used for sample handling because the amino acids on 

hands would increase the amount of material in the sample and therefore heat 

needed for warming the sample. Aluminum dishes were closed with Perkin Elmer 
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Universal Crimper Press. After this the samples were analyzed. The following 

temperature program (Figure 30) was used for PHBV+RH films. 

 

Figure 30 Temperature program of DSC (Pyris Software version 9.0.2.0193) 

 

Both pans inside the DSC undergo the same temperature program. DSC 

measures the temperature of both pans individually. Because in the sample dish 

there is more material than in the empty reference dish, it takes more heat in the 

sample pan to keep the temperature even in both pans. This heat difference is 

plotted in the graph and based on that graph the values of Tm (melting tempera-

ture), the degree of the crystallization and Tg (glass transition temperature) can 

be determined.  

Knowing the melting temperature, the degree of the crystallization and the glass 

transition temperature of the polymer helps us to understand the mechanical, 

chemical and thermal properties of the polymer. The degree of crystallization of 

the polymers should be around 30 - 80%. When adding another matrix, like RH 

into polymer, polymer blend lowers its melting and the crystallization tempera-

ture. 
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Figure 31 DSC curve of PHBV Mezclado (Pyris Software version 9.0.2.0193) 

 

Ideal DSC curve would have three curves (called Heating 1 and 2, Cooling 1) that 

are similar in Figure 31 because the program that was used measured three dif-

ferent steps. These steps can be seen in Figure 30, where phases 2-3 are Heat-

ing 1, phases 4-5 are Cooling 1 and phases 6-7 are Heating 2. Using the pro-

grams functions, temperature peak and ∆H of the curve can be determined. 

3.2.8 Thermoforming 

Thermoforming of the PHBV and RH films were investigated with Illig SB 53-c 

Skin Packaging and Blister Forming machine (Figure 32). Thermoforming is a 

technique, where heat is applied to the polymer until it starts to melt and then it is 

subjected to pressure controlled vacuum. Polymer then takes the shape of the 

mould. Based on the shape of the polymer mould after thermoforming, it can be 

said whether the polymer is good enough for thermal processing. 



 

 42 

 

Figure 32 Illig SB 53-c Skin Packaging and Blister Forming machine 

 

When the machine was started, the real temperature Treal of the heating element 

was determined using a digital thermometer and a timer. This was done in order 

to check whether the temperature display was showing accurate results. The real 

temperature Treal should be between 92°C and 98°C.  

Temperature was measured in the intervals of 5 seconds. Used nominal temper-

ature was 600°C. According to the measurements, calculated Treal = 93 – 98 °C 

(Attachment 1). The results were accurate enough, so the thermoforming of the 

films could be done. 

Thickness of the film was determined with Positest DFT. Measuring points were 

in the shape of a cross, the middle of the cross being the center of the film.  Us-

ing a stamp and ink, a grid was made on the film. The sample was cut with scis-

sors into a smaller rectangle. When thermoforming the films, different pressures 

and treatment times (vacuum and heat treatment) were tested. If the films had 

small holes in them, then the time of heat treatment was shortened. If the shape 

of the thermoformed film was uneven, then the vacuum pressure was raised 

and/or the time of the vacuum treatment cut shorter. 
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4 RESULTS 

This chapter is a short review about the findings that were measured from the 

films. Under each title there is also a conclusion about the success of the NaOH 

treatment or something else regarding the titled measurement. 

4.1 NaOH treatment 

The surface and the shape of alkaline treated husks were observed with SEM 

and microscope. After NaOH treatment, the surface morphology of both husks is 

modified. Based on the SEM pictures, the best results were achieved with 10% 

NaOH treated RH. It doesn´t seem to matter whether RH was treated in 10% 

NaOH for 24 hrs or 36 hrs, as it can be seen by comparing Figure 20 (page 28) 

and Figure 24 (page 30). As the studies made by Bergeret – Benezet – Tran - 

Papanicolaou – Koutsomitopoulou (3, p.57), Tran (24, p.58) and Mohammadi 

(25, p.58) suggest, the roughness of RH was increased. Some of the SEM pic-

tures were poor in quality because the RH samples were not dry enough. More 

time in the oven would have fixed this problem. 

4.2 Melt blending 

Melt blending of the untreated RH was successful. RH seemed to be blended 

evenly in the PHBV. In the Figure 33 below, there are polymer “hats” that were 

formed during the melt blending process. The shape of these hats indicate the 

flow of the polymer and if the temperature used for melt blending the polymer is 

inappropriate, the polymer starts to smell burnt. Hat no.1 is the most optimal 

shape because it has a narrow top which tells that the flow of the polymer is great 

and it has a bottom that is not too thick. Hat no. 2 has a thicker shaft that tells the 

polymer is thicker and the flow of the polymer is uneven. This could be because 

of the accumulation of the unmelted PHBV particles because the hat smelled like 

burnt. Hat no. 3 has also a thicker shaft which indicates that there has been an 

accumulation of RH particles and the flow of the particles has been uneven. 
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Figure 33 Polymer "hats" 

 

Melt blending of the treated RH ended up being a failure (Figure 34). When 

NaOH treated RH was mixed with PHBV, it became liquid after mixing and it 

started seeping out from the holes of the machine. It did not behave the same 

way as the untreated RH did during the melt blending process. The melt blending 

of the treated RH was done twice and both times it liquefied. All the treated RH 

was lost and because of the lack of time, another batch could not be done. It is 

highly possible that the NaOH treatment did something to the chemical structure 

of RH. 

 

Figure 34 The aftermath of melt blending the NaOH treated RH 
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4.3 Film pressing 

Because the NaOH treated RH was lost, the NaOH treated films could not be 

pressed and their morphology determined. The measured average thickness of 

the untreated RH films was 101 ± 17 μm. Morphology of the films was investigat-

ed with SEM. If there is a gap between RH and PHBV particle it usually means 

that there is very little adhesion or none at all (Figure 35). 

 

Figure 35 Example of poor adhesion 

Poor adhesion usually occurs in polymers, when there is no rough surface on the 

other matrix where the second matrix could hang onto. In Figure 35 there is a 

small gap between the PHBV and RH that is formed during the film pressing. 

When the heated material is cooled down, it shrinks a little bit. This shrinking 

forms a gap between two matrixes, if there is no adhesion. If this same film was 

put under a stress, it would break much more easily because the adhesion be-

tween two matrixes is poor. 
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Figure 36 PHBV + 5% untreated RH (x500) 

 

 

Figure 37 PHBV + 5% untreated RH (x1000) 

 

In the Figures 36 and 37 it can be seen that the PHBV + 5% untreated RH does 

not have too many fiber-like particles in it. In an ideal case Figure 36 should look 

like it would have lots of small hairs coming out of it. This kind of ideal structure 

would, in theory, increase the mechanical properties of the biocomposite. The 



 

 47 

adhesion between RH and PHBV in the mix seems to be great because there is 

no gap between the two matrixes. 

 

Figure 38 PHBV + 10% untreated RH (x500) 

 

 

Figure 39 PHBV + 10% untreated RH (x1000) 
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PHBV + 10% untreated RH seems to have the same problem as 5% untreated 

RH. There are no fiber-like particles. Adhesion between the particles seems to be 

great. If the NaOH treated RH could have been melt blended, it could have had a 

better surface and film morphology compared to untreated RH. 

 

Figure 40 PHBV + 15% untreated RH (x500) 

 

 

Figure 41 PHBV + 15% untreated RH (x1000) 
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Figure 40 shows two massive sized particles of RH. These particles are going to 

be harmful during the thermoforming because when half of the film’s thickness is 

made of a solid piece, it will lower the mechanical stress needed to break the 

film. 

 

Figure 42 PHBV + 20% untreated RH (x500) 

 

 

Figure 43 PHBV + 20% untreated RH (x1000) 
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As the Figures 42 and 43 above show, there are no fiber-like particles in the film. 

None of the untreated RH blends had problems with their adhesion on the two 

matrixes. 

4.4 Determination of tensile properties 

According to the measurements, the modulus of elasticity was improved with the 

introduction of untreated RH to the films. When comparing the results to pure 

PHBV Mezclado, the untreated RH (after one day of degradation in the desicca-

tor) had the maximum improvement of 20% in the modulus of elasticity (Attach-

ment 2). After 15 days of degradation in the desiccator, the untreated RH had 

only the maximum improvement of 5% in the modulus of elasticity (Attachment 

3).  

Young’s modulus (modulus of elasticity) can be calculated using the Formula 1. 

Tables 3 and 4 below show the percentage, how much the modulus of elasticity 

was improved when compared to the modulus of elasticity of pure PHBV Mez-

clado. 

Table 3 Improvement (%) of the modulus of elasticity after 1 day of degradation 

Blend % 

5% RH 20,2 

10% RH 7,4 

15% RH 15,3 

20% RH 10,3 

 

Table 4 Improvement (%) of the modulus of elasticity after 15 days of degrada-

tion 

Blend % 

5% RH 4,6 

10% RH 5,2 

15% RH 0,6 

20% RH -4,3 

 

As Table 3 shows, there was an improvement in the modulus of elasticity, when 

untreated RH was used as a filler material in PHBV based biopolymer. After 15 

days of degradation, the chemical bonding between molecules breaks down due 

to the hydrolysis. In Table 4, with the blend of PHBV+20% RH (w/w), marked as 
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red, there was a decrease in the modulus of elasticity. This decrease could be 

the result of too thick RH particles that pierce the film and make it more vulnera-

ble for hydrolysis. 

4.5 Differential Scanning Calorimetry (DSC) 

The degree of crystallization of these polymers should be around 30 - 80%. If the 

degree of crystallization was higher, it would indicate that the polymer blend is 

really brittle and it could not stand heating. As the Figure 44 shows, the polymer 

blends are well within that zone. Small line on top of the column tells the amount 

of error (%) in the results. 

 

Figure 44 Crystallization degree of PHBV blends 
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Figure 45 Melting temperature of PHBV blends 

 

Figure 45 shows the temperature needed for melting the polymer blend. The 

temperature needed for melting the polymer lowers, if the polymer is a blend. 

This happens because the structure of the polymer is not anymore copolymer 

(made completely out of two elastomers, see Figure 5). When RH is introduced 

into the polymer blend, it will make the structure of PHBV even more random. 

This lowers the intermolecular forces between the polymer chains, which causes 

the drop in the melting temperature. 
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Figure 46 Crystallization temperature of PHBV blends 

 

Crystallization temperature of PHBV blends should be lower compared to pure 

PHBV because there is added matrix (RH) in the blends which will lower the crys-

tallization temperature. As it can be seen in Figure 46 above, the crystallization 

temperature of PHBV blends follows this trend. 

4.6 Thermoforming 

Results of thermoforming the films were disappointing. The PHBV + RH films 

were badly deformed and full of holes, which made them unusable for testing the 

thickness of the thermoformed films. Different conditions of thermoforming were 

tested, but none of them worked for the polymer blend of RH and PHBV. There 

was too much variation in the results, so no conclusion could not be drawn on 

which blend was the best for thermoforming. 

100

102

104

106

108

110

112

114

116

118

120

cr
ys

ta
lli

za
ti

o
n

 t
e

m
p

e
ra

tu
re

 (
ºC

) 



 

 54 

 

Figure 47 PHBV film after thermoforming 

 

In Figure 47 the mold injection points (red rings), where the vacuum treatment 

has sucked the air from the mould can be seen. This is the most optimal form of 

the film that can be achieved with the equipment that was used. There are no 

holes and the film has the same shape as the mould. 

 

 

Figure 48 Thermoformed PHBV+ 5% (w/w) RH film 
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Figure 49 Thermoformed PHBV+ 5% (w/w) RH film, another angle 

 

In Figures 48 and 49 can be seen a thermoformed film, that is deformed and rup-

tured. All the films had similar holes in them. The cause of this was observed with 

SEM, which is the enormous particle size of RH compared to the thickness of the 

films. The points where the RH particles pierced the film were also the same 

spots that gave up while thermoforming. Also, it should be noted that the thick-

ness of the films was not even, mainly because of the process used to press 

them. 
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5 SUMMARY 

This thesis is about researching the usage of rice husk (RH) as a strengthening 

fiber in PHBV based biocomposite that is biodegradable. This biocomposite con-

sists of two matrixes: 1.) biodegradable polymer (PHBV) and 2.) natural fiber that 

improves the mechanical properties of polymers (rice husk). The aim of this study 

was to make a biodegradable biocomposite, made of PHBV and RH that should 

have better mechanical properties compared to pure PHBV. 

Two different types of RH (untreated and NaOH treated RH) were tested to see 

whether the chemical treatment of RH would improve its mechanical properties or 

not. NaOH treated RH was not suitable for film pressing. NaOH treatment of RH 

lowered PHBV’s viscosity at 175°C and it turned into liquid during the melt blend-

ing process. Due to lack of time, another batch of NaOH treated RH could not be 

done. 

The adhesion between untreated RH and PHBV was great. This might be the 

main factor for the improved mechanical properties. Even though RH was mixed 

within the PHBV homogenously, the particles did not spread evenly. This could 

be observed from the SEM pictures.  According to the results from the determina-

tion of the tensile properties, the modulus of elasticity improved 20% (max.) com-

pared to pure PHBV with the samples that were measured after one day of deg-

radation. After 15 days of degradation in the desiccator, the modulus of elasticity 

was improved only slightly, with the increase of 5% (max.) in the modulus of elas-

ticity. 

The degree of crystallinity of RH and PHBV polymer remained almost the same 

as the pure PHBV Mezclado. Melting temperatures of the RH blends were low-

ered, due to the addition of RH into the polymer. This caused the structure of the 

polymer to be a random copolymer, which lowers the melting temperature. 

Untreated RH films less thick than 140 μm cannot handle the mechanical stress 

caused by the thermoforming. Almost all the films were ruptured from the corners 

or they were unevenly formed. This was caused mainly by the RH particles that 

were too big compared to the thickness of the films. RH particles were almost 
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half the thickness of the films, when investigated with SEM. In order to make 

films that could be thermoformed, the films would have to be thicker. This would 

also ease the process of making these films. Grinding the RH into particles 

smaller than 140 μm cannot be done without a significant amount of work. 

The untreated RH films are not transparent, which could be a problem with the 

packaging of certain products like fruits. Customers want to see the product they 

are buying, so it could not be used in applications as stated before. Untreated RH 

films could be used as a thick, opaque plastic coating on the products that do not 

need to have a `window` on their side for the customers to see the product itself. 

There are plenty of goods that could be wrapped in opaque RH films. 

By improving the process of making these films, some of the problems regarding 

the polymer recycling could be relieved. There are still some things that needs to 

be figured out, but the results of this thesis are encouraging. Research group PI-

MA will continue its work to find out innovative answers for this kind of problems. 
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ATTACHMENTS 

Attachment 1 Results from the determination of the real temperature Treal 

Test 10s 15s 20s 25s 30s 35s 40s 45s 50s 

1 61 71 80 87 92 96 99 101 102 

2 60 72 83 89 94 98 100 103 105 

3 69 81 89 95 100 103 106 108 109 

4 70 82 91 96 101 106 108 110 112 

5 60 73 83 90 95 99 102 104 105 

6 65 79 89 96 101 105 107 110 111 

7 69 81 91 98 103 106 109 112 113 

   Treal 93°C 98°C     

 

                    

 
    

 

                        

 
  



  

  

Attachment 2 Results of the tensile properties (RH blends after 1 day of degra-

dation) 

 PHBV Mez-

clado 

PHBV + 5% 

RH 

PHBV + 

10% RH 

PHBV + 

15% RH 

PHBV + 

20% RH 

1 1554,73 2790,52 1136,40 1284,85 1876,56 

2 1593,69 2980,64 943,11 1837,34 2249,97 

3 1686,09 1416,17 1477,04 1080,86 1117,33 

4 1635,56 1485,39 1241,70 2099,51 1054,01 

5 1362,18 1980,16 2037,63 2007,66 819,95 

6 1486,48 1538,88 2900,30 1672,52 2331,10 

7 1447,10 1618,87 1243,52 1916,43 1079,17 

8 1576,12 1603,76 2529,03 1135,29 3259,95 

9 1484,87 1611,32 1380,98 1787,74 1755,75 

10 1714,94 1690,59 1763,60 1651,30 1598,71 

11 1372,28 1718,45 1930,49 3505,26 - 

12 - 1694,86 1340,82 - - 

13 - 1574,58 - - - 

14 - 3265,79 - - - 

Media 1537,64 MPa 

± 118,20 MPa 

1926,43 MPa 

± 609,80 MPa 

1660,38 MPa 

± 593,13 MPa 

1816,25 MPa 

± 656,94 MPa 

1714,25 MPa 

± 752,29 MPa 

 

 



  

  

Attachment 3 Results of the tensile properties (RH blends after 15 days of deg-

radation) 

 PHBV Mez-

clado 

PHBV + 5% 

RH 

PHBV + 

10% RH 

PHBV + 

15% RH 

PHBV + 

20% RH 

1 4198,68 4416,45 4428,44 4430,98 3658,09 

2 3917,80 3903,34 4053,52 3923,91 4044,52 

3 3957,50 4077,62 4568,83 3739,07 3519,19 

4 4052,73 3933,18 4546,53 4283,75 3456,05 

5 4315,37 4341,43 4033,58 4000,59 4007,78 

6 4069,73 4783,20 4915,04 4277,01 3077,98 

7 4151,94 4552,07 4377,35 3937,31 4657,05 

8 4195,30 4452,93 4053,64 3853,20 4190,13 

9 4164,19 4098,86 4010,74 4317,47 4262,80 

10 3259,87 3883,30 3843,16 3952,48 3962,32 

11 4254,73 - 4365,45 - - 

12 - - 4078,65 - - 

Media 4048,90 MPa 

± 288,05 MPa 

4244,24 MPa 

± 99,85 MPa 

4272,91 MPa 

± 310,88 MPa 

4071,58 MPa 

± 234,32 MPa 

3883,59 MPa 

± 459,34 MPa 

 


