

Heikki Taavettila

OVER-THE-AIR COPY PROTECTION

Using commonly used techniques

OVER-THE-AIR COPY PROTECTION

Using commonly used techniques

 Heikki Taavettila
 Master’s thesis
 Spring year 2015
 Degree Programme in Information Technology
 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology

Author: Heikki Taavettila
Title of thesis: Over-the-Air Copy Protection
Supervisor: Teemu Korpela
Term and year of completion: Spring 2015 Number of pages: 81

This Master’s thesis examines how copy prevention and market segmentation via
licensing could utilize the fact that virtually all mobile applications have connection to
the Internet at least occasionally. It surveys existing technical tools and methods for an
author of a software product to be able to provision features on units at another edge of
the world. The thesis is about a project to replace an old copy prevention and system
which was based on the installing a software license using an installation package.

The thesis will examine basic building blocks for secure communication. It will review
modern cryptography techniques and how a public key cryptography enables two
parties without pre-existing acquaintance to be able to agree a common secret key using
an unsecure channel. Also, it studies an RSA asymmetric cryptography and a symmetric
Rijndael cryptographic algorithm behind the AES standard. The thesis will discuss how
cryptography is used together with Internet communication protocols establishing
secure sockets over unsecure channels. The thesis will drill down to practical
considerations of how a key token, a license file, can be used in product segmentation as
well as unauthorized copy prevention. It discusses practical protection methods against
attempts to work around copy prevention from network, server and mobile application
points of view. This thesis will also examine the possibilities of implementing a server
from different levels of cloud computing to having servers in own premises.

This thesis will offer a summary of available tools for designing any client/server
solution with a demand for a high availability and secure communication. Naturally,
there is room for a further development such as Elliptic Curve Cryptography and how it
could be utilized in all relevant platforms. In addition, dockers as a technology is
becoming increasingly mature and it might allow interesting opportunities. Also,
business models like in-app-purchases are not covered at all.

Keywords: copy protection, cloud computing, cryptography, rsa, aes

4

PREFACE

This thesis was supposed to be a project report of implementing an Over-The-Air copy

prevention, license distribution and management system for a smartphone application I

designed and implemented in Oulu, Finland during spring 2013. However, the original

plan was overcome by events. After the project was completed, I moved to Virginia,

USA with my family into a completely new role. Before I had personal resources to

allocate to this thesis, we moved again, this time to Texas.

Now we have settled down here and I was able to dedicate enough time for this thesis.

The server application has been replaced by its successor and the product portfolio of

Amazon Web Services, Google and has been changed a lot. Instead of writing about

obsolete approaches taken in history, I will focus on what should be taken into

consideration if I would do a similar project today.

I’m in gratitude for my family and friends supporting me in finishing this work. Today,

it’s been a full week since I was home awake at the same time with my daughter.

Finishing this thesis was actually a huge effort for me but it may have been even greater

effort for my wife as in addition to putting up with a tired, cranky and absent version of

me, she has kept things rolling.

I want to thank Richard Milam for words of wisdom: “You just need to be ruthlessly

efficient. You got time for TV when it’s done.” And I want to thank Sauli Mönttinen

and Timo Kumpumäki for encouragements: “Get it done. You’ll be sorry if you don’t”.

Also I want to thank Roy Rivera for his highly appreciated viewpoints.

And last but not least I want to thank Teemu Korpela for all the support, advices and

deep knowledge of security.

Texas, USA, 19.04.2015

Heikki Taavettila

5

TABLE OF CONTENTS

ABSTRACT ... 3

PREFACE ... 4

TABLE OF CONTENTS ... 5

TERMS AND ABBREVIATIONS .. 7

1 INTRODUCTION ... 10

2 INTELLECTUAL PROPERTY INFRINGEMENT ... 12

2.1 Entertainment industry against little girls .. 12

2.2 Big boys against pirates ... 13

3 SECURE COMMUNICATION .. 16

3.1 Modern Cryptography .. 17

3.1.1 Public key exchange .. 19

3.1.2 Prime numbers and primitive roots ... 20

3.1.3 RSA ... 21

3.1.4 AES ... 23

3.2 Security over unsecure channel .. 26

3.2.1 Secure Shell ... 28

3.2.2 HTTP Over TLS .. 30

3.3 SECURITY MAINTENANCE .. 33

4 PRACTICAL CONSIDERATIONS ... 36

4.1 Copy protection techniques .. 37

4.1.1 Key token .. 37

4.1.2 Phone home ... 39

4.1.3 Segmentation ... 42

6

4.1.4 What can be trusted ... 43

4.2 Case study: Reverse Engineering Android APK ... 47

4.3 The Server .. 52

4.3.1 Platform as a Service ... 54

4.3.2 Infrastructure as a Service ... 59

4.3.3 On-premises .. 67

4.3.4 Containers ... 70

5 CONCLUSIONS ... 73

REFERENCES .. 75

7

TERMS AND ABBREVIATIONS

AES Advanced Encryption Standard. Encryption standard defined

by NIST.

API Application Programming Interface. API defines an abstract

programming interface.

APK Android Application Package. Installation package for

Android applications.

ASCII American Standard Code for Information Interchange.

ASCII is a one 8 bit character.

AWS Amazon Web Services.

Base64 Base64 is binary-to-text encoding scheme.

Bash Shell for unix/linux.

CPU Central Processing Unit. Commonly known as processor.

DES Data Encryption Standard. Deprecated encryption standard

defined by NIST.

DNS Domain Name System. System that translates hostnames

into IP addresses.

ECC Elliptic Curve Cryptography.

ESN ESN. Electric serial number.

FAQ Frequently Asked Questions.

GAE Google App Engine. SaaS cloud provider by Google.

GNU GNU’s Not Unix. Unix like operating system.

GPS Global Positioning System. Satellite based positioning

system.

GSMA GSM Association.

HTML HyperText Markup Language. Markup language designed

for multimedia content.

HTTP HyperText Transfer Protocol. Data transfer protocol.

HTTPS HTTP over TLS. Secure transfer protocol.

IAM AWS Identity and Access Management.

8

IMEI International Mobile Station Equipment Identity. Similar to

ESN.

IP Internet Protocol. OSI layer 3 communication protocol.

JAR Java Archive. Package file for Java application.

JNI Java Native Interface. Interface for accessing native methods

from Java.

LAN Local Area Network. A local computer network.

MAC Media Access Control. MAC address is a layer 2 address for

interface.

MCC Mobile Country Code. Country code in cellular networks.

MSDN Microsoft Developer Network.

NIST National Institute of Standards and Technology. US

standardization organization.

NTP Network Time Protocol.

OpenSSL Open source implementation for SSL and TSL protocols.

OTA Over-the-Air.

P2P Peer-to-Peer.

PC Personal Computer.

PGP Pretty Good Privacy. Cryptosystem.

ROT13 Rotate by 13 places. Similar weak encryption than Caesar

cipher.

RSA Public key cryptosystem.

SDK Software Development Kit.

SQL Structured Query Language. Language for database queries.

SSH Secure Shell. Encrypted network protocol text based shell

session.

TCP Transmission Control Protocol. OSI layer 4 communication

protocol.

TIM Trustworthy Internet Movement.

TLS Transport Layer Security. Provides secure connection that

for example HTTPS.

9

UPS Uninterrupted Power Supply. Provides battery backup for

electric devices.

URL Uniform Resource Locator. Usually Internet address

including protocol.

WIFI Wireless LAN technology.

VM Virtual Machine.

VMM Virtual Machine Manager.

VPC Virtual Private Cloud. Cloud version of Virtual Private

Network.

XML Extensible Markup Language. Really generic markup

language.

10

1 INTRODUCTION

There’s no business like software business. Write it once, sell it unlimited times. Back

in a day selling a copy of software product involved a marginal material and labor cost.

Software products where stored on physical media like a diskette, CD or DVD, which

was delivered to a buyer. Today, digital distribution, which virtually removes all

material costs, is an increasingly common method for selling software products. In fact,

I haven’t bought a computer with an optical media drive since 2011.

An ability to sell a product without any manufacturing costs doesn’t come free. The

ability to copy data is not limited to copyright holders and there are a lot of people

around the word utilizing that ability. A co-founder of Microsoft, Bill Gates, wrote a

famous open letter to hobbyists where he accused Altair hobby computer users for

instead of buying Altair Basic, copying without payment and therefore stealing it

(Gates, 1976). Bill Gates argued that software should not be considered free and

something that could be shared whereas only hardware would be paid. Richard

Stallman, a founder of a free software movement and GNU project, disagreed and he

thought that software should not be only free of charge; also, source code should be

freely available to everybody (Stallman, 2015).

Since those days the interest groups for proprietary software have been active to stop all

software that users can use free of charge and associate Open Source Software to piracy

(Johnson, 2010). For business users Microsoft argued that Open Source Software

violates its patents and for its users are in risk for lawsuits (Parloff, 2007). Steve

Ballmer, the former CEO of Microsoft, described Open Source as communism and that

“Linux is a cancer that attaches itself in an intellectual property sense to everything it

touches” (Green, 2001) (Graham, 2000).

Today software industry has done a bit of a soul searching and found that it can actually

benefit from Open Source Software. Microsoft actually contributes to Open Source

projects and offers cloud services for free of charge (Metz, 2012). However, illegal use

11

of Microsoft products persists. During the twenty years that I have been using

Microsoft’s products, they have come up with technologies to prevent illegal copies but

effectively caused annoyance for those users who have had a purchased copy of their

product and who didn’t have a copy protection bypassed.

Having said this I don’t aim to prevent an illicit use of our product. I merely attempt to

ensure that our legit customers have a smooth user experience and perhaps a bit of a

challenge for those whose legitimacy is limited.

I will begin looking into what I’m up against to and how others have addressed the

question of intellectual property infringement. In the next chapter I will discuss tools

available with respect to secure communication. And finally, I will address the question

how to grant usage on legit users in far away lands.

12

2 INTELLECTUAL PROPERTY INFRINGEMENT

Some Vikings had a superior sword called Ulfberht. Its metallurgy was far better than

other swords during those times and these swords had a signature in the blade; a

trademark. However, it was observed that some of these swords had a fault in signature.

Also, the swords that had faulty signatures had metallurgy that was like any other

during that era. Ulfberht was a victim of intellectual property violation. Somebody had

forged a forged Ulfberht. (Stalsberg, 2015)

In addition to a possible loss of revenue to a genuine Ulfberht-smith low quality copies

may have tainted an image of quality for genuine ones. Ulfberhts were signed and even

though forgeries had invalid signature Vikings lacked method to validate it. Forging a

sword requires a skill that not all possess. Even a child can copy a chunk of bits from

media to media and that’s what software, music and videos are; a chunk of bits.

2.1 Entertainment industry against little girls

Back in a day when music was on analogic media, making copies always resulted in an

inferior sound quality. CD albums didn’t really change the setup as unauthorized copies

tended not to work always as the reliability of first generations of CD burners was poor.

Purchasing an official copy of CD assured the superior quality of a product.

However entertainment industry became increasingly worried about people making

copies at home and they began embedding a copy protection to music albums. As result

of this, consumers were not able to use their official copy in computers and some car

stereos had problems playing copy protected CD-like products. With regard to being

appropriate Sony Entertainment crossed the line with a worldwide scandal. Their copy

protection was in fact a malware that violated consumer’s privacy in addition to

exposing their computer to other malware. (Nykänen, 2003) (Schneier, 2005)

At this point, industry turned the tables by making pirate music of higher quality than

official copies had. When Napster introduced an easy and fast online distribution for

13

music instead of offering a legit service for purchasing music online, the music industry

began legal actions randomly pursuing individuals, boys and girls downloading music

(Teosto, 2012). After music industry began offering a legit music online, it began to

look like p2p users actually would buy more that non-users (Karaganis & Renkema,

2015).

FIGURE 1. Music collections collection p2p users vs non-users (Karaganis

& Renkema, 2015).

My interpretation is that the lesson to take home here is the following: “In your effort to

prevent an unauthorized usage of your product, don’t jump on toes of a paying customer

while insulting him/her verbally. Instead, pursue a smooth and convenient user

experience for the main source of your income”. My interpretation could be wrong but

I’ll go with it anyway.

2.2 Big boys against pirates

So what is the extent of software piracy? The Software Alliance (BSA) does an annual

survey which seems to be the number refered to in most sources I’ve seen. According to

BSA, the value of unlicenced (pirate) software on planet earth is $62.7 billion (BSA,

14

2014). According to Business Action to Stop Counterfeiting and Piracy (BASCAP)

group, digital piracy cost the EU more than 20 billion euros between 2008 and 2011 and

creative industries would be expected to see revenue losses up to 240 billion euros

between 2010 and 2015 resulting up to 1.2 million job losses (Baker, 2014) (TERA

Consultants, 2014). The Economist magazine has accused BSA for inflating its figures

to suit its political aims (The Economist, 2005) (The Economist, 2012). The Economist

isn’t completely alone with that thought as preventing software piracy is not easy while

trying to respect the freedom of speech and right to privacy and therefore justification

needs to be considerable (McCullagh, 2002) (Wikipedia, 2015).

As legislation has given copyright holders better tools to inform copyright violators to

law enforcement agencies, copyright violators have started to use encrypted tunnels for

preventing monitoring of their Internet usage. BBC Worldwide considers it to be

reasonable that ISP’s would be obligated to identify and take action for a suspicious

behavior such as high data volumes and use of IP obfuscation tools (BBC Worldwide,

2014). At this point I want to note that copyright violators use the same technology to

hide their Internet traffic from copyright holders than business and government use for

secure communication.

China has reported to have arrested 60,000 people for a copyright infringement in 2013

(Muncaster, 2014). Meanwhile, the Office of the United States Trade Representative

concluded in its annual The Special 301 Report that China’s Government has reported

to complete legalization at a central and provincial level. However, US software

companies have seen only modest increase in sales to China’s Government. In addition,

it seems that Chinese companies are stealing IP’s under government protection:

“Particularly troubling are public reports by independent security firms that actors

affiliated with the Chinese military and Chinese Government have systematically

infiltrated the computer systems of a significant number of U.S. companies and stolen

hundreds of terabytes of data, including IP, from these companies.” (Marantis, 2013)

The Russia’s Government has been accused of using copyright infringement as a

scapegoat suppressing critics of the current regime (Levy, 2010). The Special 301

15

Report notes that even though online piracy is growing in Russia, the number of

criminal raids has decreased (Marantis, 2013). I can’t avoid wondering if Russia has run

out of opposition or opposition has run out of computers. Also, I just wonder who were

those 60,000 arrested for piracy in China.

I believe that the take home lesson here is the following: “Preventing an unauthorized

usage is likely to be a too big bite to chew. Instead try to provide a bit of a challenge for

pirates and focus on a smooth and convenient user experience for the main source of

your income”.

16

3 SECURE COMMUNICATION

An ability to communicate securely is crucial when attempting to prevent an

unauthorized usage. I feel gratitude for smart individuals who have developed standard

techniques that enable a secure communication without requiring me as a developer to

re-invent a wheel, which wouldn’t necessarily be completely round.

In the previous chapter we took a peak to history 1,200 years back. This time we’ll stick

to more recent events. Mary, Queen of Scots, was convicted of high treason and

beheaded on February 8, 1587. For her misfortune, Diffie-Hellman Key Exchange and

AES were not available those days. Mary had the impression that she would have a

secure communication with her allies by exchanging encrypted messages in beer kegs.

Thomas Phelippes, a cryptanalyst, was cryptanalyzing her messages and even added his

own content for getting Mary’s allies to reveal more information than Mary had

originally requested. (Kahn, 1973)

Mary’s communication was under man-in-the-middle attack. Her messages were not

private anymore and they were corrupted. A failure to ensure confidentiality, data

integrity and authentication caused her a head. The world might look a bit different if

Mary’s conspiracy had not been revealed. Moreover, what if cryptanalysts had not been

able to reveal the contents of German messages encrypted with Enigma.

When a plaintext is processed through cryptosystem, it is encrypted into a unreadable

ciphertext. On opposite direction a cipher text is processed through a cryptosystem and

it is decrypted back to a plaintext. In many examples Alice and Bob are sending

messages to each other. However, evil Eve is eavesdropping and tries to find out the

content of Alice’s and Bob’s messages. Eve is a cryptanalyst trying to break ciphered

messages, also called cryptograms. (Kahn, 1973)

17

DIAGRAM 1. ‘Secret message’ encrypted and decrypted with Caesar cipher.

(Kahn, 1973)

Caesar used to write encrypted messages by replacing a letter with a letter standing

three places further down the alphabet. A couple of years ago in Finland a murderer

ended up giving police discriminating evidence by leaving a ROT13 encrypted letter to

his brother who was also accomplish. ROT13 is almost identical to Caesar and from a

cryptography point of view it’s ridiculous. (Iltalehti, 2012)

DIAGRAM 2. Caesar alphabets. (Kahn, 1973)

3.1 Modern Cryptography

Instead of secret methods modern cryptography relies on secret keys with commonly

known methods.

18

Modern cryptography falls into two major categories. Symmetric cryptography uses

same secret key to encrypt a plaintext to a ciphertext which then decrypts a ciphertext

back to a plaintext.

Asymmetric cryptography, also known as public key cryptography, uses key pairs; a

secret private key and a public key. A public key can be used to encrypt messages that

can be decrypt only with a private key. Also, a private key can be used to add digital

signature messages which can be a verified by public key to verify data integrity and

authority.

Message Digest summarizes the contents of a message with a few bytes long hash. A

hash function is a one-way function which is easy in one way and hard or infeasible in

the other way. It is infeasible to find a message that created hash and it is infeasible to

find two messages that would an produce identic hash. (NIST, 2012)

Message digest is often used to store passwords or verify data integrity. When

passwords are stored as message digests or hashes, credentials can be verified without

storing actual passwords. Hash is also often used to verify data integrity for files shared

in the Internet. Message Digest may be used to verify that data has not been changed

after hash has been calculated but it does nothing to verify who calculated the hash

checksum. MD5, SHA1, SHA-256, SHA-512 are commonly used hash functions.

FIGURE 2. List of Hash checksums for Eclipse download.

19

There are interesting cryptographic solutions like Quantum Key Distribution where

man-in-the-middle attack would be revealed by the physical laws of photons. Also,

Pretty Good Privacy (PGP) and Elliptic Curve cryptography seem very interesting.

However, I will stick to the ones that are best supported by most operating systems and

platforms as default. Therefore, I will take a bit deeper dive to a public key

cryptography, RSA and an AES Rijndael algorithm.

3.1.1 Public key exchange

Before Diffie-Hellman public key exchange, secure communication required that a

commonly used secret key was agreed before secure communication could be initiated.

A public key exchange gave an answer to a question: “How two people with no

previous acquaintance agree on a secret key”. Public key exchange enables agreeing on

a secret key over an unsecure channel. (Diffie & Hellman, 1976)

Whitfield Diffie and Martin Hellman came up with the idea of using mathematical one-

way functions that would be to easy calculate one way but it would be unfeasible to

reverse the calculation even though the result and most ingredients used in the

calculation would be commonly known.

Bob and Alice will both share their public key (Y) openly, in addition α and q are

shared openly.

� = ����� �, ��� 1 ≤ � ≤ � − 1 FORMULA 1

� = ������ ���

� = ������� ���

� = ���� (��������� ���� �� �)

� = ������ (����� ������)

The received Y from other party is combined with own secret key in a same way that Y

was calculated and both parties end up with the same secret key.

20

��� = �������� � = ��
����� � = ��

����� � FORMULA 2

��� = ������ ���

�� = ������� ������� ���

�� = ����� ������� ���

TABLE 1 is an example of how Alice and Bob agree to use the number 16 as a secret

key without saying it directly. At the beginning α and q are agreed publicly (α = 11 q =

29). Alice has a private key Xa = 7 and Bob has a private key Xb = 12.

TABLE 1. Diffie-Hellman public key exchange in values.

Alice

Variable

Value

Value

Bob

Variable

Xa 3 12 Xb

Ya = 113 mod 29 26 23 Yb = 1112 mod 29

Yab=233 mod 29 16 16 Yab=2612 mod 29

3.1.2 Prime numbers and primitive roots

In the previous example all values between 1 and 28 (q - 1) would have been equally

likely. The crucial requirement is that q is a prime number and α is a primary root. I

was going to illustrate this with Excel but 11X results become bigger than Excel can

handle and therefore I did the calculation with Java. Notice how every allowed X value

(1 ≤ X ≤ q - 1) results a unique Y value but there isn’t a recognizable pattern that could

be used. Except that there is; when X = 1 and X = q – 1 values are always α and 1.

21

FIGURE 3. Clock arithmetic example with primary roots.

Evil Eve would not need a super computer to try enough combinations to figure out

Alice’s and Bob’s private and therefore secret key for mod 29. However, if q is a big

number closer to 10300, it takes much longer. Just to give an idea how long it would take

to go through all values between 1 and 10,300 assuming that one CPU could check 8

keys in one nanosecond. Adding more CPU’s gets the job done faster but it is still a

long wait even if a correct key would be found before going through 1% of possible

keys.

TABLE 2. Rough time estimates for trying all combinations for 300 digits long key.

3.1.3 RSA

In addition to a public key exchange, Diffie and Hellman came up with a whole concept

of public key cryptography with digital signatures and a trap-door function but they did

not introduce a practical implementation of that concept (Diffie & Hellman, 1976). Ron

22

Rivest, Adi Shamir and Leonard Adlerman introduced an implementation called RSA

(Rivest, Adi and Adlerman) (Rivest, Shamir& Adleman, 1978).

RSA’s version of one-way function is multiplying two large prime numbers. Factoring

large numbers is much harder than multiplying them even for computers and when

multiplied numbers are big enough factoring them becomes unfeasible. RSA uses Euler

totient function for ϕ(p) where p is a prime number. (Rivest, Shamir& Adleman, 1978)

RSA public key has two parts; the RSA modulus (n) and the RSA public exponent (e). n

is a multiplication of two large primes. RSA private key has also two parts; n and the

RSA private exponent (d). d is a large random integer that is relatively prime with ϕ(n).

Relatively prime means that d and ϕ(n) do not have a greater common divisor than 1. e

can be calculated from an equation below. (Rivest, Shamir& Adleman, 1978)

 FORMULA 3

A plaintext message (m) is encrypted into a ciphertext (c) using n and e parts from a

public key. c is then decrypted back to m by using d and n parts from a private key.

(RSA Laboratories, 2012)

 FORMULA 4

RSA digital signature (s) works in the same way that decryption with a deviation that

private d is used for message encryption and e for decryption. With a signature signed

message isn’t usually encrypted instead a message digest, also known as hash is

encrypted. The output of hash function is then compared. (RSA Laboratories, 2012)

(NIST, 2012)

 FORMULA 5

23

Recommended length for n mentioned in the original paper published in 70’s is 200

decimal digits which has a corresponding bit length of 662 bits (Rivest, Shamir&

Adleman, 1978). Today practical key lengths are between 1024 – 4096 bits. Also the

current RSA Cryptography Standard allows more than 2 prime factors for making the

calculation more feasible for less efficient hardware. The maximum length of one RSA

ciphertext is n – 1. Random padding defined by a standard needs to be added if

message is shorter than n – 1. (RSA Laboratories, 2012).

I did some experimenting using Java API’s and noticed that there’s a quite big variation

between what time it takes to generate a key pair. Creating a 4096 bit key pair took

between 560 ms and 13,694 ms an average being 3,689 ms for 100 key pairs. It is my

understanding that big differences are due to the fact that finding large prime numbers

may take some time and a mere prime number check would be time consuming if it

would not be optimized. In addition, d value needs to be factored for verifying that it is

relatively prime with ϕ(n). Even though generating an RSA key pair may be CPU

intensive, using a created key pair is not.

TABLE 3. Generation time statistics for 100 key pairs.

Key length Minimum ms Average (ms) Maximum (ms)

1024 13 43 166

2048 41 296 1490

4096 560 3689 13694

3.1.4 AES

In November 2001 US National Institute of Standards and Technology (NIST)

Announced Rijndael cryptography algorithm as Advanced Encryption Standard (AES)

superseding old Data Encryption Standard (DES). Rijndael is a symmetric block cipher

designed by Vincent Rijmen and Joan Daemen. Rijndael encrypts 128 bit plaintext

24

blocks into 128 bit ciphertext using 128, 192 or 256 bit keys. Algorithm itself supports

other block sizes but they are not adopted by AES. (NIST, 2001)

Rijndael was born in a totally different world than public key cryptography. When

Diffie and Hellman came up with a public key exchange, they invented something that

had not been thought before. In addition, they came up with a concept of asymmetric

cryptography. Rivest, Adi and Adlerman invented an implementation for an asymmetric

cryptography concept. Rijmen and Daemen used the existing cryptographic primitives

for building a robust cryptosystem and then participated in a competition for the next

AES. Even though they didn’t invent anything new per se, they used the existing

primitives better than for example IBM and Ron Rivest.

AES takes 4 plaintext words and a 4-, 6-, 8-words key as input and processes it from 10

to 14 rounds depending on a key length. A word in this context is 32 bits or 8 bytes. A

key is a random number; any random number. (NIST, 2001)

FIGURE 4. Key-Block-Round combinations (NIST, 2001).

While a plaintext data is undergoing encryption process it is called state. Bytes are

organized logically in 4 x 4 tables.

FIGURE 5. Input, state and output tables (arrays) (NIST, 2001).

25

Encryption starts with AddRoundKey which is an Exclusive OR (XOR) operation

between state and key. The first step in a loop is SubBytes transformation where bytes

are changing places according to a substitution table (S-box). ShiftRows transformation

shifts bytes within rows and MixColumns transformation scrambles contents of each

column by multiplications. A state array is looped through these functions from 10 to 14

times and encryption is done.

FIGURE 6. Pseudo code for Rijndael cipher (NIST, 2001)

I did some testing between RSA and AES to compare an output of two almost identical

messages. I encrypted 'My Secret Message' twice to see what is the difference between

AES which does not use pseudorandom padding, and RSA which uses padding. In

addition, I encrypted a third message with a 2-bit difference in one byte (M -> N). Two

identical plaintext messages are identical as a ciphertext also with AES. Also, only 8

MSB bytes have changed when a message with two 2-bit differences was encrypted.

RSA has that pseudorandom padding included so all ciphertexts seem unique.

RSA ciphertext is 1024 bits which is also the length of the n value in a public key (and a

private key). It needs to be recognized that RSA and AES key lengths cannot be

26

compared. A secret part of RSA private key is the prime number factor of n which could

be calculated from a public key if eternity would be the deadline. AES secret key is a

128-bit long pseudorandom number, which could be anything between 0 and

340,282,366,920,938,463,463,374,607,431,768,211,456.

FIGURE 7. AES and RSA encryption output test.

3.2 Security over unsecure channel

The Internet; everything is connected to the Internet. So are the devices running our

applications and we will use it to communicate with applications in the scope of this

project. Therefore, a few topics of the Internet need to be addressed as a foundation for

discussion in the next chapter.

Virtually, all traffic over the Internet travels in IP packages (Internet Protocol) between

two network interfaces associated with the IP address. There are two versions of IP

(IPv4 and IPv6) commonly used and both make a lot of sense to computers but not so

27

much for a human being. Servers are often given a more human friendly hostname

which a computer uses to find a corresponding IP address by requesting it from Domain

Name Server (DNS). For example my computer (IP 10.7.100.158) will send DNS

(10.7.100.101) a query asking what is the IP address for a server called ec2-52-28-53-

105.eu-central-1.compute.amazonaws.com. DNS will acquire the requested IP address

and sends it back to my computer. Now my computer knows what IP to use for that

host.

FIGURE 8. DNS request response content.

All data between my computer and the server in Frankfurt travels in IP packages which

has a source and a destination address in IP package headers. My computer passes this

package to a gateway defined in a network interface configuration and relies that the

gateway will know how to reach the destination address. In fact there are many hops

before the destination server is reached and we have no control over the hobs once ab IP

package has left our premises on the second hop.

FIGURE 9. IP packet path from Dallas to Frankfurt.

Some packages will not reach their destination and some packages end up traveling a

different and faster route passing another package with a slower route. Transmission

Control Protocol (TCP) ensures that all packages are received in a correct order and it

28

handles retransmissions if any packages are missing or corrupted. TCP has a method for

identifying transfer errors and corrupted data but it does not offer any protection against

attacks. TCP/IP is a perfect example of an unsecure channel.

3.2.1 Secure Shell

I’ll discuss briefly about Secure Shell (SSH) because it is a good example of using the

methods mentioned in this chapter and SSH implementations usually don’t try to hide

its behavior. In a picture below it is nicely visible how a client and a server agree on a

secret key over an unsecure channel. When the Server and the Client have sent ‘New

Keys’ –message, the communication is encrypted and an eavesdropper would only see

that TCP is carrying encrypted SSH packets.

29

FIGURE 10. SSH handshake from packet capture

30

3.2.2 HTTP Over TLS

For those who like unix/linux shell SSH is an awesome tool. However, there are many

people who prefer a graphical user interface, namely almost everybody and all of those

who shower. Hypertext Transfer Protocol (HTTP) was developed together with

HyperText Markup Language for transferring a Hypermedia content instead of files.

HTTP sends requests to an HTTP server and it receives responses with a possible

requested content and always with a status code. HTTP is not encrypted and HTML

files are literally plaintext with human readable XML like syntax. The default

authentication with html is sending BASE64 encoded credentials in HTTP headers.

Base64 is encoding for storing binary data where ASCII is only expected and provides

now protection for privacy. (Berners-Lee, 1992) (Berners-Lee, Fielding, Irvine, Gettys,

Mogul, Frystyk, Masinter & Leach, 1999)

Secure Sockets Layer (SSL) and its successor Transport Layer Security (TLS) were

designed to establish a secure connection between two communicating applications and

for encapsulating higher layer protocols. HTTP over TLS (HTTPS) offers an HTTP

functionality with an encrypted channel and an authenticated server. (Dierks &

Rescorla, 2008)

Let’s look into TLS handshake between my computer and Google App Engine server

(GAE). After a TCP handshake is completed, a client sends a TLS Hello message to a

server with various parameters including a list of cipher suites the client supports. The

server replies with a Server Hello message including a cipher suite select server selected

from the list client supports (underscored with blue).

Server Hello is followed by a Certificate message which has a list of SSL Certificates.

The first certificate on the list is the certificate for the server. The certificate includes a

hostname and a public key for verifying the server’s digital signature. The certificate

usually has more information about the organization and/or person certificate issued to.

Each following certificate must directly certify the one preceding it. Before client can

trust a received certificate, it must be able to validate at least one of the certificates. For

31

this reason, web browsers and browser API’s have a built-in list of trusted certificates.

The list is called a certificate chain and last certificate is Root CA Certificate

(Certificate Authority). (Dierks & Rescorla, 2008)

The client will then initiate a key exchange. In this instance the key exchange is done

using Elliptic Curve Diffie-Hellman. Elliptic Curve Cryptography (ECC) has a lot

shorter key lengths compared to RSA with the same level of security. (Blake-Wilson,

Bolyard, Gupta, Hawk & Moeller, 2006)

32

FIGURE 11. TLS Handshake with HTTPS transfer.

33

3.3 SECURITY MAINTENANCE

A chain is only as strong as its weakest link. There has been number of instances that

the secure communication chain has been weaker than the force trying to break it.

FIGURE 12. Total number of vulnerabilities between 2006 and 2014

(Symantec, 2015).

From server point of view it is crucial that software is kept up to date and insecure

cipher suites will not be supported. Defining a correct set of supported cipher suites is a

compromise between security and availability. Browsers are not always updated soon

after update becomes available and therefore it would be inconvenient for a user if the

access to a web server would be prevented because of an outdated set of cipher suites in

the browser. Other side of the coin is that attackers will make sure that their client

supports only the one cipher suite, the vulnerability of which is being exploited (Möller,

2014).

Even though maintaining a server is mostly quite tranquil after the server has been

configured to do its job, there are times when there is no time to lose. Heartbleed is a

bug in an OpenSSL implementation that caused a web server to include the content of

memory to HTTP request. 4 hours after it had been published, Symantec was recording

attacks trying to exploit it (Symantec, 2015).

ShellShock is an interesting vulnerability in a sense that it affects Bourne Again Shell

(Bash) which is used not only in web servers but also in many other devices like routers

34

(Symantec, 2015). When was the last time YOU updated the firmware for a router or a

web camera?

FIGURE 13. Heartbleed and ShellShock attacks between April and

November 2014 (Symantec, 2015).

As general, it seems that system administrators are not really hasty to address

vulnerabilities. According to Symantec, the 3rd most common vulnerability is the

support for SSLv2 which is about 20 years old and as number one is the SSLv3

vulnerability which has been discovered for almost 6 months ago (Symantec, 2015).

According to SSL Pulse less than every fourth site is secure (TIM, 2015).

FIGURE 14. Top 10 vulnerabilities found unpatched on scanned web servers

(Symantec, 2015) and summary for SSL Pulse summary (TIM, 2015).

35

In addition to most servers in the Internet having neglected security concerns, there are

plenty of vulnerabilities on the client side, too. This isn’t really in the scope of this

thesis but it needs to be mentioned for being able to interpret statistic. Also, according

to Google, a support for TLS_FALLBACK_SCSV prevents Poodle attacks and in their

opinion SSLv3 is still safe enough so that the GAE supports it.

FIGURE 15. Plugin vulnerabilities by month and web browser vulnerabilities by year

(Symantec, 2015).

As a conclusion of this chapter, I would like to note that there seems to be a trend to use

HTTPS everywhere. In Google I/O 2014 -developers event there was a talk called

HTTPS Everywhere where Google representatives encouraged developers to use

HTTPS everywhere (Far & Grigorik, 2014). Google also seems to practice what they

preach and youtube uses HTTPS as default (Atkins, 2015). Also, the open source

community is developing an automated service for getting SSL certificates easy, fast

and free. (Kerner, 2015)

There are people helping developers and system administrators to do better choices. For

example, Mozilla and Google have security blogs which seem to be a good source for

information. As for now it seems that a site should be quite secure by following the two

guidelines:

1. Keep server applications and security updates up to date.

2. Don’t support over 10-year-old cipher suites.

36

4 PRACTICAL CONSIDERATIONS

Now we will focus on practical considerations for making the unauthorized use of our

application less convenient. When our application (on left) is being launched, it needs to

know if it’s a legitimate usage. We (on right) need to be able to provide that information

to our application. In this chapter we’ll ponder how to a replace question mark.

FIGURE 16. How application will know if it is authorized or not.

A big part of our products run on smartphones. This introduces a few limitations that

are commonly used in desktop computers. We know from our previous licensing

schemes that copying files to a smartphone may be a hassle. Also, typing or

copy/pasting a cryptic sequence of numbers and letters is error prone cumbersome. An

application needs to be able to acquire knowledge of its authorization without annoying

the user. The obvious answer is a server from which the application can ask if it’s

properly licensed. In this chapter we will discuss methods for application to separate an

unauthorized usage from an authorized and how to transfer that information to an

application.

37

In this chapter I will use an imaginary notepad application called ‘apocalyptic notes’. I

don’t plan to make one; instead I’ll use it in order to discuss features that wouldn’t

make any sense in my real project.

4.1 Copy protection techniques

An unauthorized copying of software has been around from the beginning of the

personal computer era. Therefore, there have been attempts to prevent the usage of

unauthorized copies. Back in a day applications were always sold in a package which

included some physical material like a paper manual. Many applications and games

relied on the fact that an authorized user would have the retail package and in addition

to media, storing the executable authorized user would have all the material that came

with the package. Copying physical items is not as convenient than copying bytes.

One of my favorite games during 90’s was Stunts. At every launch it would ask the

word in a manual in a given position. There were also attempts to prevent copying of

manual by adding random characters on the background with a different color than the

text. These were easy to read but black and white photo copier would produce an

unreadable mess. Lenslok was an optical device bundled with game package which was

used to make a scrambled text on a display readable. The only method from early days

that still remains is a dongle. A dongle is a hardware device that needs to be connected

to computer when the application is used. (Pingdom, 2009)

There are two methods the application can use to determine whether the usage is

authorized or not. It can ask from somebody it trusts and like a child unknowing what

to do, it will phone home. An application has one or more hardcoded URLs for

connecting to a server which will accept or decline the usage.

4.1.1 Key token

The other option is to check if there is a key token available. A key token may be either

hardware or software. A hardware key or a dongle is a hardware device that needs to be

38

connected when the application is used. The software key is basically a chunk of data

that only authorized users have.

A software key is often a file in a mass storage but it doesn’t have to be. It could be

anywhere where it is accessible by the application. As an example I have created a

license for my imaginary notes application. I have used xml in my example just because

it’s easy to read by a human being and the application.

The license contains two important entities. The name of the authorized product and a

digital signature for verifying that <product> entity has not been tampered. When my

‘apocalyptic notes’ will open this license, it would read the ‘product’ entity and use the

signature to verify

FIGURE 17. Simple software key example

There is an obvious weakness in my license. This license can be copied as easily as the

application itself. There is nothing to identify who has been authorized to use my

application. If this application would be shared in P2P networks, the license file would

be included in that same package and everyone would be able to use it.

Before focusing on how to prevent an unauthorized copy of a software key, authorized

users need to be defined. Defining authorized users is more of a question of business

model than a technical one. Usually, defining authorized users will give obvious

limitations to the license.

Authorizing one device is quite a straight forward licensing scheme. A software key

may be bound to any hardware identifier on the device executing the application. Data

capable devices have always an identifier such as ESN, IMEI or MAC address of a

39

WIFI interface. Adding a device identification software key to a tamper proof license

file is a pretty solid copy prevention.

FIGURE 18. Simple software key with device identification

However, using hardware identifiers with PC’s is not that unambiguous. PC’s usually

don’t have one serial number. PC’s are a collection of parts which are interchangeable.

 If authorization is given to a user or a group of users who are authorized to use the

application on more than one device, enforcing a copy prevention is more difficult. One

option is to include an authorized user in the license file. This will not prevent an

unauthorized usage but it will make it less appealing to share the license in P2P

networks. Also, if a software key has been compromised, it can be rejected in the

following software releases.

FIGURE 19. Simple software key with user identification

4.1.2 Phone home

The problem with just a key token is that the method for a key validation is locked on

the build time. Even though the author would learn that a software key has been

compromised and is now shared publicly, there is nothing to be done before the next

release. Phoning home allows the application to react on the information acquired after

40

the build time. At this point instead of ‘application’, I will use the term ‘client’, which

phones home to the ‘server’.

Phone home also enables new business models like subscription and volume licensing

that can actually be enforced by Product Activation. Ultraedit, my tool of choice for text

editing, is an example of applications that utilizes Product Activation. Buying an

Ultraedit for a personal use will authorize the user to install that application to 3

devices. The user will do Product Activation by entering the license id and password

acquired at purchase. I made a simplified illustration of this pattern based on Ultraedit

FAQ and observations on a packet capture. I want to emphasize that this is a

simplification excluding all encrypted transfers content of which remains a mystery to

me. (IDM Computer Solutions, 2015)

41

DIAGRAM 3. Simplified illustration of Ultraedit Product Activation

42

When designing phone calling feature, it needs to be taken into account that on wireless

devices a data connection is not always available. Also, when a cellular network is used

for communication, every byte may cost the user hard cold money.

4.1.3 Segmentation

A key token does not have to be a master key that would open every door, in this

context every feature. Neither does it have to last forever. A key token is a versatile tool

to customize one product for a customer’s needs and ability to pay premium for more

advanced features.

Also, anyone selling products globally needs to recognize that there is a difference in

the ability and willingness to pay for software between customers in different

geographical regions. If the product would be priced at the level where developed

markets would bring a good cash flow, it would not sell at all in developing countries.

Therefore, there could be cheaper version for developing countries and a key token

could be used to ensure it wouldn’t be used in developed countries.

Now let’s go back to my Apocalyptic Notes app. I could sell a basic version of my

application with a really affordable price and it would be good for most use cases for

average user. However, I could implement more advanced features that would make

using the application more convenient, for example speech recognition. In my example

Acme Inc purchased my application for making meeting notes. Speech recognition

reduces manual work with notes and allows them to focus more on their core business.

Speech recognition reduces manual work therefore it saves money and has more value.

If I would sell licenses that instead of lasting forever would actually expire at some

point in time, I could expect to sell extensions and perhaps even feature upgrades. A

prospect of getting more sales in future will motivate me to develop my product in

addition to allowing initial an sale prize to be a bit lower. In my example I’ve sold

Acme a license that will be valid until the end of 2016 and after that the license is

considered to be expired (See expiration element). In addition, Acme will get free

43

updates to any version that is released before the end of year 2015 (see updates

element).

FIGURE 20. License with optional feature.

A key token can also be used for marketing paid advanced features which customers

need but are not aware of it just yet. For example, when I’m delivering the Acme license

for their purchased Apocalyptic Notes, I will give them a free of charge feature called

Cloud Sync that will expire in the beginning of July. It is my wish that once it will

expire, users will recognize how valuable feature it was and they want to upgrade the

license with Cloud Sync.

FIGURE 21. License with expiring optional feature.

4.1.4 What can be trusted

In the beginning of this chapter I have described a number of variables that a license

could be bound to. While the price for a licensed product increases, the level of trust for

acquiring these variables decreases. We’ll dig into this but let’s first list variables we

need for enforcing:

44

 Device ID

 Contact information

 Time

 Region (Location)

 Credentials

 Executable

 Cryptographic keys

The level of trust differs a lot between different platforms and methods used to acquire

them. Also, the author of an affordable consumer application can be quite confident that

some of the most extreme measures to forge variables just would not be worth it.

However, for expensive professional tools, your copy protection technique may be

attacked by ‘hackers of fortune’.

For example, let’s take an imaginary company Acme Pacific East Coast that provides

3D modeling services. The company has 1,000 employees doing 3D modeling and all of

them a need copy of 3DS Max $1470 per year. For this company it seems like a

financially sound decision to hire an army of hackers to break the copy prevention

(Doherty, Gegeny, Spasojevic & Baltazar, 2013).

Device ID in smartphones is usually Electronic Serial Number (ESN) or international

Mobile Equipment Identity. That would be a really good way to limit the usage of

application to one device, if it wasn’t changeable. Google will tell you how to do it in

no time. However there is a risk that the device will get blacklisted by operators

globally if a fraud is being suspected (GSMA, 2015). There’s no more obvious indicator

for a fraud than more than one device with one IMEI in one network. Also, some

operators have a whitelist of devices that they accept in their network.

Contact information in data connections means a hostname or a direct IP address. If a

network is in hostile control, it can’t be trusted that the server answering from home

address is actually home. There’s at least a network router between the devices running

45

the application and the Internet. The router intermediates all data client sends, including

requests to Domain Name Server (DNS). All communication in the Internet is done

using IP addresses and DNSs are used to acquire an IP address for a hostname. A router

could direct DNS requests to a rogue DNS server (DNS hijacking), which would give

an address to a ‘forged home’ instead of a ‘home’. Also, packages sent to a ‘home’ IP

address could be redirected to a ‘forged home’ (IP hijacking). A countermeasure to this

attack is to communicate securely with the server and use digital signatures to make

sure we’re really discussing with a legitimate server.

Also, it needs to be taken into account that sometimes networks just don’t work and

especially in wireless systems a data network is not always available. Whether the cause

for not being able to reach home is due to a hostile attack or normal network problems,

it can’t be always be detected by a client.

FIGURE 22. Hostile network.

46

A region can be detected in a number of ways. Mobile devices usually provide Location

API that will use cellular or wifi networks or GPS to detect a location. The location

could be faked with for example an external GPS source that would send NMEA

location messages with fake coordinates. I’ve done that for verifying that the application

can handle situations where a longitude changes from the maximum positive to the

negative maximum by crossing the opposite of the prime median. One way is to check

Mobile Country Code (MCC) which is a quite good indication of current country even

though it can be faked with a network simulator.

What’s the time is not as trivial question as it would first seem. Whether it is a

smartphone or a computer, a user may change the system time freely. Network capable

devices often acquire time using Network Time Protocol (NTP) from private or public

server. However this method is subject to DNS and IP hijacking. GPS can be used to

acquire GPS time, which is subject to a forged GPS source suspicion. A home server is

a dependable source for time and also copy protection dongles often provide a secure

source for time. Also, devices usually provide an uptime or tick count which is a good

time source while the application is running.

Credentials identify the user or organization instead of the device. However it’s difficult

to tell if an authorized user has given his credential to other users. There isn’t really any

feasible way to prevent this. However, there are ways to discourage an unauthorized

sharing of credentials. Team Support (a customer support central web application)

allows only one web client to be logged in for one user account at any given time. So if

you use it with two computers or two browsers at logon, it automatically ends any pre-

existing sessions for your username. Also, utilizing highly personal services for the user

authentication makes the authentication for a legitimate user easy and due to a personal

content, it discourages sharing those credentials. For example, Sports Tracker utilizes a

Facebook logon to enable one click logon when the browser has an open session with

Facebook.

Executable and your code are not safe from attacks either. How much effort and skill is

required for tampering with executable is highly platform dependent. Java applications

47

are especially vulnerable to reverse engineering as Java applications are compiled into a

platform agnostic bytecode. Applications, which are compiled into a platform and CPU

architecture specific executable binary, do not contain high level structures. Distributed

binaries are merely a chunk of CPU instructions. Executable made with C++ can be

converted into assembly which is still quite difficult to interpret. Also, there are

approaches like encrypting the executable and decrypt it on demand. However it

eventually boils down to the fact that CPU must be provided instructions without

encryption and therefore attacker will be able to obtain it.

Cryptographic keys are the essence of verifying the license. Generally, an application

installation package should have only public keys which can be used to verify the

integrity of communication with a home server or the license. As discussed previously,

the installation package should be considered as public. Even though acquiring data by

reverse engineering can be made hard it’s really hard to prevent it completely. If the

application would have a need to store a private key, most platforms provide a secure

method for storing keys (Android, 2015) (MSDN, 2015). But can we trust a platform

provided key store? What if an attacker has its own platform like modified

CyanogenMod which provides a rogue key store?

In short nothing is dependable, everything could be forged. What we can do is to use

different methods together in a way that we’re able to provide a challenge at least and

try to come up new innovative ways to provide a challenge to hackers while trying to

keep the authorized user happy.

4.2 Case study: Reverse Engineering Android APK

All Android applications are packed in the Android Application Package (APK) file

which is a ZIP archive of an executable bytecode (classes.dex) and resources. There are

plenty of tools to reverse engineer apk and Java Archive (JAR) files back to readable

code. In the example below I used dex2jar for converting classes.dex to

classes_dex2jar.jar and jd-gui to read a jar file.

48

FIGURE 23. Path to class files in apk.

FIGURE 24. Original and reverse engineered code compared.

Android development tools a have built-in countermeasure technique for reverse

engineering called ProGuard which obfuscates the bytecode when the installation

package is being created. Obfuscation does a lexical transformation to classes and

variables making it harder to read. However it does not hide the logic or initial values of

local variables which can reveal everything. Also, lines added for a debug logging may

reveal everything.

49

FIGURE 25. Obfuscated code reverse engineered.

Using resources instead of initializing local variables doesn’t really complicate the

reading of original source but it makes a word of difference in reverse engineered code.

Also revealing a debug logging can be stripped by configuring ProGuard properly.

ProGuard is not only a tool making reverse engineers life a bit more challenging but I

chose it as it’s a default with Android tools.

50

FIGURES 26. Original and reverse engineered code compared with text resources.

There’s no going around the fact that Java code is quite easy to reverse engineer but it

doesn’t mean that tampering an Android application would be that easy. Each apk is

digitally signed with the author’s private key. Android does not install an application

that doesn’t have a matching signature and after tampering, the application needs to be

re-signed before it can be installed. In addition, it is easy for the application to read its

signature programmatically.

FIGURE 27. Acquiring application signature.

And there’s more. Android Native Development Kit (Android NDK) can be used to

compile C++ code into native libraries that can be called from Java code using Java

51

Native Interface (JNI). In addition to being more difficult to debug, it is also more

difficult to reverse engineer. Also, it can be used together with Java code to detect

tampering by checking a native lib’s hash checksum on Java code and apk’s signature

on native code. Sure it can be done, but it provides a better challenge than mere

obfuscation. Also, native code could implement the communication with the server back

home and allow server to verify that the apk signature is valid.

Obfuscation doesn’t seem like much when studying a small project. However, when I

opened one Android application as example, I noticed that 36 of it’ 6400 .class files

were named a.class.

52

FIGURE 28. Reverse engineered large project.

4.3 The Server

Now I will proceed to discussion about a server. A server is an incredibly broad concept

but at the end it boils down to any device that serves responses to requests clients send

it. Today there are a lot of technical solutions for how a service can be made available to

clients. The final part of this chapter discusses different approaches to provide a server.

53

For example, in a FIGURE 29 there are two totally different approaches for providing

an https server with a battery backup. Another one is a server rack in one of Google’s

data centers and another one is a Raspberry Pi on my desk. The main difference is that

Raspberry Pi involves an initial material cost and it’s less scalable than Google, which

is free to use with a similar work load than Raspberry Pi can handle. Also, Raspberry Pi

is more vulnerable to spilled coffee.

FIGURE 29. Google data center vs Raspberry Pi

Before discussing which one is better, I will discuss a bit what requirements there are

for a license server. The one thing you don’t want to do is to cause paying customers’

employees to be sitting idle unable to work because you spilled your coffee to the

license server. I consider this scenario to be more damaging than somebody being able

to use your product without paying. If the application keeps on being usable even when

the connection to the license server fails, you don’t end up alienating pre-existing

customers and that will give you some room for failures. Also, when we’re discussing

OTA license servers we need to recognize the possibility of breaks in data connectivity.

Also, it needs to be addressed that the application needs to be able to connect to the

server globally. In addition to technical issues, there may be political factors like

Google App Engine can’t be accessed from China without some additional effort. As a

precaution, we should have more than one address for a home server defined and

prepared just in case the primary address would not be available anymore.

With Cloud services hardware skill and will is not required. Figure 30 is describing an

illustration of different levels of cloud computing including required skill sets. Only

54

skill and will SaaS requires is using the application. PaaS requires someone to develop

the application. On top of mentioned IaaS requires someone to design and manage the

platform. (Redcentric, 2015)

FIGURE 30. Different levels of cloud (Redcentric, 2015).

4.3.1 Platform as a Service

Platform as a Service (PaaS) as defined by The NIST: ”The capability provided to the

consumer is to deploy onto the cloud infrastructure consumer-created or acquired

applications created using programming languages, libraries, services, and tools

supported by the provider. The consumer does not manage or control the underlying

cloud infrastructure including network, servers, operating systems, or storage, but has

control over the deployed applications and possibly configuration settings for the

application-hosting environment.” (Mell & Grance, 2011)

PaaS is an awesome starting point for those who want to focus on the application

instead of platform. A developer does neither have a real control nor responsibility over

the platform. There are some differences how much configuration different providers

provide. For example, Amazon Elastic Beanstalk provides a small selection of

Platforms and a possibility to disable auto scaling and load balancing (AWS, 2015).

There are number of PaaS providers but I will focus on the GAE as it is the most

familiar to me.

55

FIGURE 31. AWS Elastic Beanstalk configuration

Google App Engine supports currently four programming languages: Python, Java, PHP

and Go. However not all features and API’s are available, for instance a local file

system is not available. When a developer deploys the application to the GAE, it will

actually be copied to a number of fault tolerant servers running in Google’s data centers.

When a client sends a request, Google will connect the request to one available server.

The same applies for data storing. The GAE supports SQL and SQL like schemaless

data storage location and Google will move that data where it’s needed. (Gibbs, 2008)

(Chun, 2015)

I will demonstrate usage of the GAE with a really simple and inefficient code for

finding next prime number after the initial number given as a parameter with HTTP

GET request. On a client code there is a static method which takes two parameters,

URL and a number of repeats launched simultaneously in their own thread.

56

FIGURE 32. Client and Server implementation.

 I began testing with starting number at 100,000,000 and one request at a time. At the

same time I was observing the GAE Dashboard to see how many requests I’m getting

and how many instances are running my application. At this time one instance was

enough to serve me.

At the second step I selected a smaller starting number for the prime number search and

started sending requests sending 100 requests simultaneously. In addition, I configured

a timer which would resend all requests that had been completed. Usually, my client

got the response it was looking for in a few seconds. After setting a greater initial

number to the prime number search, the GAE added a few more instances and responses

kept on arriving in timely fashion.

57

FIGURE 33. Google App Engine Dashboard after few CPU intensive

requests.

With the Google App Engine it’s incredibly fast to implement an incredibly scalable

server without any need to consider how much CPU or processing power would be

needed for my application. If the GAE recognizes that more resources would be in

order, it will launch another instance and the load will be balanced to one more instance.

Within 30 minutes after installing the Google App Engine SDK, I had a service running.

It was able to handle almost 30,000 CPU intensive requests with up to 30 instances

running simultaneously and without any money spent from my part.

58

FIGURE 34. Google App Engine under stress with 20 CPU intensive request

/ second.

The GAE has a free quota which will be reset every 24 hours. The free quota includes

28 Instance Hours which don’t last long when utilizing 30 simultaneous instances.

When using App Engine to run a service that needs to be available, it is important to

setup a billing account for avoiding running out of free quota and service to become

unavailable. Even if at normal usage the free quota is more than enough, it needs to be

recognized that out of the ordinary situations. For example, administrators’ data base

59

integrity checks may involve a high number of database queries which might exceed the

free quota.

At the development phase there are a few things developer needs to take into account.

The GAE SDK enables running the server locally which makes it faster and easier to

debug and verify that everything goes as planned. The GAE has its own methods for

storing data and it is a good practice to hide the GAE implementation behind a generic

interface as a precaution to event that another service would be chosen or the GAE

would introduce a another method. Anything that differs from a standard way of doing

server code with a particular language should be separated from the core code. The

GAE requires that requests are completed in 60 seconds or it will cancel the request.

Typically, this shouldn’t be a problem but in case of long lasting requests, a task should

be given to backend instead.

FIGURE 35. Error message if App Engine requests takes longer than 60

seconds.

4.3.2 Infrastructure as a Service

Infrastructure as a Service (IaaS) as defined by The NIST: ”The capability provided to

the consumer is to provision processing, storage, networks, and other fundamental

computing resources where the consumer is able to deploy and run arbitrary software,

which can include operating systems and applications. The consumer does not manage

or control the underlying cloud infrastructure but has control over operating systems,

storage, and deployed applications; and possibly limited control of select networking

components (e.g., host firewalls).” (Mell & Grance, 2011)

60

IaaS gives a lot of control and responsibility and only the hardware is provided. IaaS

usually provides one or more Virtual Machine instances where a customer is in a role of

a system administrator and the only authority of those Virtual Machine instances. The

single most haunting responsibility is to keep instances secure. In opposed to PaaS

where there is an army of professionals with bleeding edge information of cyber

security, in IaaS it is only YOU and the set of skills and personnel at your disposal. The

other side of the coin is that there is most likely less skills and ambition attacking

individual IaaS VM instances than Google App Engine. Therefore, IaaS may provide

some Security through obscurity.

A configuration of IaaS instance begins with a selection of region where the server

instance locates followed by a selection of desired hardware resources, operating

systems and the physical location of instance. Amazon EC2 and Google Computing

Engine both provide predefined sets of hardware profiles optimized for different

purposes.

FIGURE 36. AWS region selection.

I will fire up an example server for looking into the process how to create an IaaS

server. Again there are a number of service providers for IaaS but I will focus only one.

Google provides IaaS called Google Computing Engine. However, in this example I

will focus on Amazon EC2 instance.

61

In the first step I will select Amazon Machine Image (AMI) to start with. From 22

choices from Windows Servers to different Linux distributions I will select Ubuntu

Server. At the second step it’s time to select hardware resources. Amazon provides a

selection of 29 instance types. The cheapest comes with 1 virtual CPU, 1 GiB memory,

and a low or moderate network performance. There are options available up to 36

virtual CPUs, 244 GiB memory and a 24 x 2048 GB storage.

FIGURE 37. AWS virtual hardware selection.

At the third step it’s time to select a number of instances and network settings. Instances

may be purchased as spot instances where you can define a price which you are willing

to pay for an instance hour. Depending on Amazon’s hardware utilization and spot

price, the instance may or may not be running. A spot instance is an attractive option for

CPU intensive applications that do not have to be available always.

Each AWS account has one or more virtual networks called Amazon Virtual Private

Cloud (VPC). Also, it can be configured whether a service will be assigned IP

62

automatically from Amazon’s public address pool. If there’s a need for a fast

networking between two servers, they should be located in the same placement group.

If the application running on the server will need any access privileges, it the

application needs to have an access to AWS credentials or those privileges can be

granted to all applications running in this server by selecting the Identity and Access

Management (IAM) role.

FIGURE 38. AWS instance detail configuration.

The fourth step is for configuring data storages. My instances didn’t have any local

storage. Local storages are not persistent and they will be cleared every time the service

stops. Instead I’m using Amazon Elastic Block Store (Amazon EBS) as a data storage.

In the fifth step the server can be configured with key-value pair tags for example

‘purpose’=’webserver’.

63

FIGURE 39. AWS storage selection.

On the sixth step it’s time to configure a firewall for incoming connections. In this

example I enabled incoming connections to default HTTP and HTTPS ports without

any limitations with respect to a source IP address. In addition, I enabled incoming TCP

connections to a default SSH port from my own IP address. Also, I enabled incoming

connections to a port 8080 from my company subnet. Limiting TCP connections to my

company subnet only would allow me to create an administrative interface that would

not be accessible from outside our company network. This is not really a bulletproof

protection but it makes hackers life a bit more difficult.

64

FIGURE 40. AWS firewall configuration.

Finally it’s time to review the instance and launch. For a secure communication with a

new server I had a choice of using existing key pair when I would send a public key to a

newly created server while I would hold on to my private key. Another option is to

create a new key pair where Amazon will create private and public keys. A public key is

stored in my server and I will download the new private key. After this point I’m only

person in possession of the private key.

65

FIGURE 41. AWS instance key pair setup.

Due to unexpected brain fart I ended up losing the private key file. I foolishly assumed

that I would be able to assign another one from the management console. I was wrong.

It’s easy to create or import keys to the AWS management console but a public key is

assigned to instance at launch and changing a key pair after that can’t be done. The only

way to recover from this is to create an image from the instance and launch a new

instance from that image and assign a new key pair. Launching new instances is really

easy. Configuring a new instance with existing AMI and security groups takes less than

a minute and the initialization of the new instance takes a few minutes.

Instead of connecting the server instance directly, it’s a good idea to use a load balancer

as a connection point. The load balancer can be used to handle HTTPS SSL Certificates

and to select which Ciphers are allowed. Making good decisions by enabling and

disabling ciphers requires some knowledge and that’s why choosing predefined security

policy is a sound choice.

66

FIGURE 42. AWS HTTPS supported cipher suite selection.

If there were any reason to pull any instance out of service, it would be enough to

remove that instance from the load balancers instance list manually or by causing load

the balancers health check to fail. As a default a load balancer considers instance to be

healthy if it gets a successful response for GET index.html request. As long as there

remains other healthy instances with enough capacity, pulling instances from service is

completely transparent to end users.

FIGURE 43. AWS load balancer status graphs.

Load balancing isn’t enough when there’s more work to be done than there are workers

working. By configuring an auto scaling, new instances will be automatically launched

when existing instances are not responding fast enough. Dynamically launched

67

instances can be configured with the same or different hardware configuration, which

allows firing up better performance resources when the default performance is not

sufficient.

With load balancing and auto scaling, it needs to be recognized that there is no

guarantee that two consecutive requests would be connected to the same instance, in

fact odds are against it. Andreas Chatzakis, a solution architect in Amazon AWS,

recommends separating a web server and a data storage. Using one separate database

from the web server instance allows spawning new web servers when more capacity is

needed. (Chatzakis, 2014)

Finally, we have reached a point where we have a dynamically scalable service. It’s not

quite as dynamic as PaaS example and its physical location remains where we set it up

to be. There’s one more thing to do for ensuring the data availability in an unlikely

event that there would be issues in the cross continental network. Running web server

instances in more than one continent with Cross-Region Read Replicas for database

provides a good protection against regional disasters in addition to providing better

database read response times. Add geolocation routing together with instance health

checks and we have a similar solution than Google App Engine with respect to

redundancy and decentralizing risks. (Barr, 2013) (AWS, 2015)

Now that we have acquired an idea of what kind of configuration is needed for

hardware resources, we are ready to install a web server. In my example, I’m using

Ubuntu and installing a web server application is one liner in shell ‘sudo apt-get install

tomcat7’ and the platform is ready for an application development.

4.3.3 On-premises

Having own hardware in own premises is the traditional way to run web servers. The

servers on premises rely on system admins’ ability to do good choices instead of bad

ones. There are all the same responsibilities than with IaaS but instead of adding

features from a console, it requires connecting cables and firing up a real hardware.

68

There are a lot of things that should be addressed when doing everything in house.

Cisco’s Data center design guide presents different layers of data center as building

blocks.

FIGURE 44. Data center pyramid of service layers (Cisco, 2014).

For avoiding a whole data center to go black in an event of hardware failure every

component should be duplicated. While using either Amazon’s or Google’s cloud

services, all data storage is redundantly stored to more than one site, which is pretty

much the only protection in case the data center would be destroyed for example in a

fire.

69

FIGURE 45. Data Center core and LAN core change control separation.

(Cisco, 2014)

Also, a physical environment needs to be addressed. Even though servers could lie on

the table, it would be better to dedicate a room for data center devices. Servers should

be located in server racks with arranged cooling. Also, data center may grow up to

consume a lot of power and it needs to be considered how much power must be

supplied to the server room.

Servers and network components all need power to work and the whole chain needs to

be powered or nothing works. Where to get power to run servers in an event of power

outage? Also, it is good to keep in mind that Uninterrupted Power Supplies (UPS) are

usually conversions that actually consume power. Google has an embedded battery

backup in each server for avoiding this (Shankland, 2009).

70

FIGURE 46. Conventional from outlet to ups to computer route.

Now that we have defined nice descriptions between PaaS, IaaS and on-premises, it’s

time to mix them up a bit. Amazon and Google provide a public cloud which is

available to everybody. An organization could manage its own private cloud where

centralized computers would be shared between different users inside the organization.

A private cloud may or may not be on-premises. In addition, on-premises solution could

have a backup for high demand or hardware failure situations. It would do a cloud

bursting to accommodate requests that it is unable to complete in timely fashion. A

private cloud that uses partly own resources and partly public cloud is called a hybrid

cloud.

4.3.4 Containers

Another interesting virtualization technique is containers. In AWS EC2 each server in

Amazon’s data center is running a hypervisor, Virtual Machine Monitor (VMM), which

allocates hardware resources to one or more Virtual Machines (VM). In IaaS example

AWS VMM allocated us a virtual machine instance which loaded full blooded

operating systems of my choice (Ubuntu). Instead of containing an operating system, a

container contains the application and libraries it requires. Therefore container

applications are much smaller than VM images.

71

FIGURE 47. “Comparison of hypervisor and container-based deployments.

A hypervisor-based deployment is ideal when applications on the same

cloud require different operating systems or different OS versions; in

container-based systems, applications share an operating system, so these

deployments can be significantly smaller in size.” (Bernstein, 2014)

Containers and VM do not have to be mutually exclusive, instead they can be used

together. Using a container engine without a hypervisor binds a hardware to one

operating system. With a hypervisor each VM has its own operating system and is

completely isolated from any other VM running on the same hardware. (Bernstein,

2014)

72

FIGURE 48. Possible layering combinations for application runtimes.

(Bernstein, 2014)

The most commonly used container is Docker. Joyent provides a public cloud for

running Dockers in addition to providing the same platform to be used in private clouds

(Fine, 2014). Google Container Engine is powered by an open source project called

Kubernetes for Dockers. AWS has EC2 Container Service for Dockers. It seems a sweet

deal to develop a server application as Docker and to spawn instances where ever it

seems to make sense at the time. The answer might even be different in different

regions. For example, if we had existing on-premises data centers in Americas and in

Europe, we could use AWS ECS Container Service to run same Dockers in Asia that we

run in our on-premises servers. Request to corresponding regions would be managed by

geo routing.

73

5 CONCLUSIONS

Implementing a license enforcing scheme requires resources. There’s only one thing

worse for business than unauthorized users; absent users. Using resources to prevent an

illicit usage takes resources from acquiring more legit users and it comes with a risk of

alienating paying users. Therefore, in my opinion any attempt to prevent the illicit usage

needs to be designed and implemented carefully. The further you go in preventing the

illicit usage, the better equipped you need to be when surprises occur. While keeping

that in mind let’s conclude five approaches with a modified cloud pyramid.

FIGURE 49. Five levels of stress over license server.

The easiest option is not worrying about it. Focus on making your product so good that

people are willing to pay for it. Also, if an application is distributed using mobile

application stores they usually have built-in solutions for reducing an unauthorized

copying.

Using Software as a Service in this context would be a third party copy prevention

solution. This doesn’t really release you from the responsibility to keep paying

customers happy. If paying customers’ experience problems with the copy prevention

solution you have chosen, it’s still your fault.

74

At every step while descending on the pyramid, you increase the number of choices you

need to figure out yourself in good and bad. A correct level is where you feel confident

that your knowhow and resources are best at use and where you feel confident that you

are able to do as good or better choices than commercial service providers; so called

professionals.

75

REFERENCES

Amazon Web Services. Amazon Route 53 Developer Guide (API Version 2013-04-01).

Date of retrieval 25.04.2015

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-

policy.html#routing-policy-geo

Amazon Web Services. Developer Guide (API Version 2010-12-01) Elastic Beanstalk

Walkthrough. Date of retrieval 25.04.2015

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/GettingStarted.Walkthrough.html

Android, Android Keystore System. Date of retrieval 25.04.2015

https://developer.android.com/training/articles/keystore.html

Atkins, R. 2011. Watching You. Date of retrieval 25.04.2015

https://www.youtube.com/watch?v=2uzK3VwzraM

Baker, J. 2014. The Register, Economics prof denies digital pirates plundered €20bn

from EU coffers. Date of retrieval 25.04.2015

http://www.theregister.co.uk/2014/10/08/digital_piracy_is_killing_creative_industries_s

ays_industry_group/

Barr, J. 2013. Cross-Region Read Replicas for Amazon RDS for MySQL. Date of

retrieval 25.04.2015

https://aws.amazon.com/blogs/aws/cross-region-read-replicas-for-amazon-rds-for-

mysql/

BBC Worldwide. 2014. Submission in response to the Australian government’s online

copyright infringement discussion paper. Date of retrieval 25.04.2015

http://www.ag.gov.au/Consultations/Documents/OnlineCopyrightInfringement/OnlineC

opyrightInfringement-BBCWorldwide.pdf

76

Berners-Lee, T., Fielding, R., Irvine, U.C., Gettys J., Mogul, J., Frystyk, H., Masinter,

L., Leach P. 1999. IETF, Hypertext Transfer Protocol -- HTTP/1.1. Date of retrieval

25.04.2015

https://tools.ietf.org/html/rfc2616

Berners-Lee, T. 1992. HyperText Transfer Protocol. Date of retrieval 25.04.2015

http://www.w3.org/History/19921103-hypertext/hypertext/WWW/Protocols/HTTP.html

Bernstein, D., 2014, Containers and Cloud: From LXC to Docker to Kubernetes, IEEE

Cloud Computing, Volume 1, Issue 3

Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Moeller, B. 2006. IETF, Elliptic

Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). Date of

retrieval 25.04.2015

https://tools.ietf.org/html/rfc4492

BSA – The software Alliance. 2014. The Compliance Gap, BSA Global Software

Survey. Date of retrieval 25.04.2015

http://globalstudy.bsa.org/2013/downloads/studies/2013GlobalSurvey_Study_en.pdf

Chatzakis, A. 2014. WordPress: Best Practices on AWS. Date of retrieval 25.04.2015

http://d0.awsstatic.com/whitepapers/wordpress-best-practices-on-aws.pdf

Chun, W. DevBytes - File Storage in the Cloud, Date of retrieval 25.04.2015

https://www.youtube.com/watch?v=vyIap827rHs

Cisco. 2014. Data Center Technology Design Guide. Date of retrieval 25.04.2015

http://www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/Aug2014/CVD-

DataCenterDesignGuide-AUG14.pdf

Dierks, T., Rescorla, E. 2008. IETF, HTTP over TLS. Date of retrieval 25.04.2015

https://tools.ietf.org/html/rfc5246

77

Diffie, W., Hellman, M.E. 1976. New Directions in Cryptography, IEEE

Transacactions, Volume 22, Issue 6.

Doherty, S., Gegeny, J., Spasojevic, B., Baltazar. J. 2013. Hidden Lynx – Professional

Hackers for Hire. Date of retrieval 25.04.2015

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepaper

s/hidden_lynx.pdf

Far, P., Grigorik, I. 2014. Google I/O 2014, HTTPS Everywhere. Date of retrieval

25.04.2015

https://www.youtube.com/watch?v=cBhZ6S0PFCY

Fine, B. 2014. Making Joyent the Best Place to Run Docker. Date of retrieval

25.04.2015

https://www.joyent.com/blog/making-joyent-the-best-place-to-run-docker

Gates, B. 1976. Homebrew Computer Club Newsletter Volume 2. Date of retrieval

25.04.2015

http://commons.wikimedia.org/wiki/File:Bill_Gates_Letter_to_Hobbyists.jpg

Gibbs, K. 2008. Google Campfire one. Date of retrieval 25.04.2015

https://www.youtube.com/watch?v=oG6Ac7d-Nx8

Graham, L. 2000. The Register, MS' Ballmer: Linux is communism. Date of retrieval

25.04.2015

http://www.theregister.co.uk/2000/07/31/ms_ballmer_linux_is_communism/

Green, T.C. 2001. The Register, Ballmer: “Linux is a cancer”. Date of retrieval

25.04.2015

http://www.theregister.co.uk/2001/06/02/ballmer_linux_is_a_cancer/

78

GSMA. Fraud & Security, Date of retrieval 25.04.2015

http://www.gsma.com/technicalprojects/fraud-security

IDM Computer Solutions. Ultraedit Licensing and activation FAQ. Date of retrieval

25.04.2015

http://www.ultraedit.com/support/activation-faq.html

Iltalehti. 2012. Jenna Lepomäen murha: Vankilasta löytyi järkyttävä salakirjoitus. Date

of retrieval 25.04.2015

http://www.iltalehti.fi/uutiset/2012060515670142_uu.shtml

Johnson, B. 2010. The Guardian, When using open source makes you an enemy of the

state. Date of retrieval 25.04.2015

http://www.theguardian.com/technology/blog/2010/feb/23/opensource-intellectual-

property

Kahn D. 1973, The Codebreakers, The story of secret writing, The Macmillan

Company, NY: The New American Library

Karaganis, J., Renkema, L. Copy culture in us and Germany. Date of retrieval

25.04.2015

http://americanassembly.org/sites/default/files/download/publication/copy_culture.pdf

Kerner, S.M. 2015. eWeek, Let’s Encrypt. Date of retrieval 25.04.2015

http://www.eweek.com/security/lets-encrypt-becomes-linux-foundation-collaborative-

project.html

Levy C.J. 2010. The New York Times, Russia Uses Microsoft to Suppress Dissent.

Date of retrieval 25.04.2015

http://www.nytimes.com/2010/09/12/world/europe/12raids.html?_r=0

79

Marantis, D. 2013. Office of the United States Trade Representative, 2013 Special 301

Report. Date of retrieval 25.04.2015

http://www.mpaa.org/wp-content/uploads/2014/02/2013-Special-301-Report.pdf

McCullagh, D. 2002. Wired, Another punch for copy protection. Date of retrieval

25.04.2015

http://archive.wired.com/politics/law/news/2002/03/51400?currentPage=all

Mell, P., Grance, T. 2011. The NIST Definition of Cloud Computing. Date of retrieval

25.04.2015

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Metz, C. 2012. Wired, Meet Bill Gates, the man who changed open source software.

Date of retrieval 25.04.2015

http://www.wired.com/2012/01/meet-bill-gates/

Microsoft Developer Network. Walkthrough: Creating a Cryptographic Application.

Date of retrieval 25.04.2015

 https://msdn.microsoft.com/en-us/library/bb397867(v=vs.110).aspx

Muncaster, P. 2014. The Register, China cuffs 60000 pirates in 2013 crackdown. Date

of retrieval 25.04.2015

http://www.theregister.co.uk/2014/01/24/china_piracy_crackdown_arrests/

Möller, B. 2014. Google Security Team, This POODLE bites: exploiting the SSL 3.0

fallback. Date of retrieval 25.04.2015

http://googleonlinesecurity.blogspot.co.uk/2014/10/this-poodle-bites-exploiting-ssl-

30.html

NIST. 2001. Federal Information Processing Standards publication 197, Announcing

the ADVANCED ENCRYPTION STANDARD (AES) . Date of retrieval 25.04.2015

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

80

NIST. 2012. Secure Hash Standard (SHS) . Date of retrieval 25.04.2015

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

Nykänen, J. 2003. Tekniikanmaailma, Vialliset levyt. Date of retrieval 25.04.2015

http://tekniikanmaailma.fi/vanhat/vialliset-levyt

Parloff, R. 2007. Fortuen, Microsoft takes on the free world. Date of retrieval

25.04.2015

http://archive.fortune.com/magazines/fortune/fortune_archive/2007/05/28/100033867/in

dex.htm

Pingdom. 2009. Wacky copy protection methods from the good old days. Date of

retrieval 25.04.2015

http://royal.pingdom.com/2009/08/26/wacky-copy-protection-methods-from-the-good-

old-days/

Redcentric What is infrastructure as a service (IaaS)? Date of retrieval 25.04.2015

http://www.redcentricplc.com/resources/articles/what-is-iaas/

Rivest, R., Shamir, A., Adleman, L. 1978. A Method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM21.

RSA Laboratories. 2012. RSA Cryptography Standard. Date of retrieval 25.04.2015

http://www.emc.com/emc-plus/rsa-labs/pkcs/files/h11300-wp-pkcs-1v2-2-rsa-

cryptography-standard.pdf

Schneier, B. 2005. Real Story of the Rogue Rootkit. Date of retrieval 25.04.2015

http://archive.wired.com/politics/security/commentary/securitymatters/2005/11/69601?c

urrentPage=all

Shankland, S. 2009. Google uncloaks once-secret server. Date of retrieval 25.04.2015

http://www.cnet.com/news/google-uncloaks-once-secret-server-10209580/

81

Stallman, R. 2015. Free Software Is Even More Important Now. Date of retrieval

25.04.2015

http://www.gnu.org/philosophy/free-software-even-more-important.html

Stalsberg, A. The Vlfberht sword blades reevaluated. Date of retrieval 25.04.2015

http://jenny-rita.org/Annestamanus.pdf

Symantec. 2015. Internet security threat report, Volume 20

Teosto. 2012. Chisu-gatessa sovinto. Date of retrieval 25.04.2015

https://www.teosto.fi/teosto/uutiset/chisu-gatessa-sovinto

TERA Consultants. 2014. The Economic Contribution of the Creative Industries to the

EU in terms of GDP and Jobs. Date of retrieval 25.04.2015

http://www.teraconsultants.fr/en/issues/The-Economic-Contribution-of-the-Creative-

Industries-to-EU-in-GDP-and-Employment

The Economist. 2005. BSA or just BS?, Software theft is bad; so is misstating the

evidence. Date of retrieval 25.04.2015

http://www.economist.com/node/3993427

The Economist. 2012. Online software piracy, Head in the clouds. Date of retrieval

25.04.2015

http://www.economist.com/blogs/graphicdetail/2012/07/online-software-piracy

TIM. 2015. SSL Pulse – Survey of the SSL Implementation of the Most Popular Web

Sites. Date of retrieval 25.04.2015

https://www.trustworthyinternet.org/ssl-pulse/

Wikipedia. 2015. Protests against SOPA and PIPA. Date of retrieval 25.04.2015

http://en.wikipedia.org/wiki/Protests_against_SOPA_and_PIPA

