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Moon Manager, tai Kuuhallinnoija, on kolmannen osapuolen verkkosovellus käytettäväksi 
islantilaisen tietokonepeliyhtiön julkaiseman avaruusaiheisen tietokonepelin yhteydessä. 
Peliyhtiö tarjoaa sovellusrajapinnan peliään varten, mikä mahdollistaa ulkoisen sovellus-
kehityksen. Peli käsittää lentämistä avaruusaluksilla muun muassa taistelun, tutkimusmat-
kailun, tieteen, teollisuuden ja kaupankäynnin parissa. Insinöörityö käsitti sekä sovelluksen 
suunnittelun että toteutuksen. Sovellus on tarkoitettu käytettäväksi asiakkaan Kuutiimin 
ylläpitäjille. He voivat sovelluksen avulla hallinnoida ja saada yleiskuvan erinäisille yksilöille 
ja korporaatioiksi kutsutuille pelaajayhteisöille jaetuista kuiden käyttöoikeuksista. Sovellus 
antaa myös tavallisten käyttäjien tarkastella heille määriteltyjä kuiden käyttöoikeuksia. Heil-
le esitellään myös näkymät resursseista ja polttoaineesta ”torneissa”, jotka he ovat sijoitta-
neet kuiden kiertoradoille käyttöoikeuksiensa mukaisesti. 
 
Sovellus tehtiin korvaamaan asiakkaan vanha järjestelmä, ja se toi mukanaan joukon uu-
sia toiminnallisuuksia, kuten uusia hakutoimintoja tuhansien kuiden ja kuumineraalien jou-
kosta. Tämä lähes mahdollistaa kuiden yhteensovittamisen automatisoinnin kemiallisia 
reaktioita varten vaadituiksi joukkioiksi. Reaktioiden avulla valmistetaan kehittyneempiä 
rakennusmateriaaleja. Skaalautuvuuden ansiosta sovelluksella on mahdollista ylläpitää 
jopa satojen tuhansien kuiden ja usean tuhannen käyttäjän tehokasta hallinnointia. 
 
Sovellus valmistui onnistuneesti kehitysprosessin aikaisista aikatauluvaikeuksista huoli-
matta. Nämä aikatauluongelmat liittyivät geopoliittiseen muutokseen, jonka peliin tulossa 
olevat tiettyihin pelimekaniikkoihin kohdistuvat päivitykset ovat aikaansaamassa. Ketterien 
sovelluskehitysmenetelmien käyttö ohjelmointityössä vahvisti projektinhallintaa insinööri-
työssä. Sovellukseen lisättiin useita ominaisuuksia alkuperäisten suunnitelmien lisäksi, 
mutta moni toiminto ja lisäominaisuus jäi pois sovelluksen ensimmäisestä versiosta aikara-
joitteiden vuoksi. Sovelluksen jatkokehitys alkaa tämän insinöörityön valmistumisen jäl-
keen. 

Avainsanat Verkkosovellus, sovellusrajapinta, kolmannen osapuolen sovel-
lus, hakualgoritmit, sisällönhallinta 
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Moon Manager, eller ”Mån Förvaltaren”, är ett tredjepartsprogram som kan användas i 
samband med CCP Games datorspel EVE Online. Spelbolaget CCP Games erbjuder ett 
programmeringsgränssnitt som kan utnyttjas av spelare för att skapa deras egna program 
med hjälp av data från spelet. Spelet handlar om att flyga omkring i rymdskepp och man 
kan underhålla sig bland annat genom att delta i strider, rymdutforskning, vetenskaplig 
undersökning, industri, eller handel. Slutarbetet inkluderar både programmets planering 
och genomförning. Programmet kommer att användas av kundens “Mån team” admin-
istratörer. Med hjälp av programmet kan de administrera och få en överblick över månar 
som har blivit tilldelade åt individer eller spelargemenskap som också kallas företag. Pro-
grammet låter individer granska detaljer för månar som de har rätt att använda. De pre-
senteras även med information om resursser och bränsle i “kontrolltorn”, som de har plac-
erat på omloppsbanor kring månar enligt sina användningsrättigheter. 
 
Programmet kommer att ersätta kundens gamla program och för med sig ett antal nya 
funktionaliteter, som till exempel nya sökfunktionaliteter för tusentals månar och månmin-
eraler. Detta gör det nästan möjligt att automatisera kombinering av månar till helheter 
som behövs för att konstruera kemikaliska reaktioner. Genom reaktionerna produceras 
byggmaterial av högre kvalitet utav månmineralerna. Tack vare programmets skalbarhet 
kan hundratusentals månar och flera tusen användare kontrolleras med samma system. 
 
Programmet blev färdigt oberoende av svårigheter med tidtabellerna i utvecklingpro-
cessen. Dessa problem med tidtabellerna är relaterade till den geopolitiska förändringen 
som kommer att ske i EVE Online -spelet, då vissa spelmekanismer blir uppdaterade inför 
sommaren. Utnyttjandet av agila systemutvecklingsmetoder i programmeringsarbetet 
förstärkte projektledningen för ingenjörsarbetet. Ett antal funktionaliteter har tillsats utöver 
den ursprungliga planen, men flera funktionaliteter blev utanför den första versionen av 
programmet på grund av tidsbegränsningar. Vidare utveckling av programmet kommer att 
fortsätta efter detta ingenjörsarbete är färdigt. 

Nyckelord Webbapplikation, nätverks api, tredjepartsprogram, sökalgoritm, 
innehållshantering 
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The Moon Manager web application is third party software designed for use with a com-
puter game published by an Icelandic software company. The company provides an API 
for the game for use in exterior software development. The game involves interstellar activ-
ities with spaceships including combat, exploration, science, industry and commerce. This 
thesis portrays an application designed as a supplemental toolset for community manage-
ment and meta gameplay in a limited section within industry and logistics in the game. 
Presented in the thesis are both the plans and the implemented product. The application is 
intended for use by the client’s Moon Team administrators to manage and gain an over-
view of the allocation of moons to various entities such as individuals and player communi-
ties called corporations in the game. The application also provides the ability for regular 
users to view information about moon setups that have been assigned to them as well as 
data projections of resources and propellants in “control towers” they have deployed on the 
assigned moons. 
 
As an upgrade to the client’s old software, the Moon Manager application provides a num-
ber of new features to the client, such as new search functionalities within the scope of 
thousands of moons and moon mineral deposits, allowing administrators to nearly auto-
mate the matching of moons into reaction setups (or assignments) required for advanced 
material production. Scalability will allow the software to potentially support data entries for 
hundreds of thousands of moons and provide efficient management overview for several 
thousands of users. 
 
The application was created successfully despite undergoing rough schedule changes 
during the development process. These schedule changes relate to the geopolitical impli-
cations of changes that have been announced to certain gameplay elements. Working with 
agile software development methods improved the project management aspect of the the-
sis. Multiple features were added to the application beyond the original plans, but several 
features and extra functionalities also had to be left out of the first version of the applica-
tion due to time constraints. Further development of the Moon Manager web application 
will continue beyond the scope of this thesis. 

Keywords Web application, API, third party application, search algo-
rithms, content management 
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Abbreviations 

CCP CCP Games is an Icelandic game development company for computer 

and console games. CCP Games have published games such as “EVE 

Online” and “Dust514” and are developing “EVE Online: Valkyrie”. 

EVE EVE Online is a spaceship game with large amounts of interstellar travel-

ing along with possibilities to do combat, exploration, science, industry 

and commerce. 

Sandbox A sandbox game refers to a game world/universe where the game com-

pany takes as little part as possible in the development of the game’s lore 

and content creation. This means players themselves are a large factor in 

creating actual gameplay content for themselves through for example 

large scale warfare with other player entities. 

NPC Non-Player Character. This refers to an entity within a game that is not 

controlled by a human player. 

PvP, PvE The terms ”Player versus Environment” and “Player versus Player” are 

well-established terms used in connection to computer games. They por-

tray in what kind of activities players are involving themselves, whether 

they are playing against the game world NPCs or competing against other 

players. 

API Application Programming Interface. A server may provide a connection 

point where no actual web page resides, and instead respond with unfor-

matted data as for example JSON or XML. 

CDN Content Delivery Networks are servers where providers in a uniform 

manner deliver their digital contents to users. 
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1 Introduction 

The video game company CCP Games published a game called EVE Online (com-

monly known just as “EVE”) in 2003. The game has amassed hundreds of thousands 

of players over the course of its 12 year history. Players are all connected to one an-

other and can both communicate and interact in other more direct ways. This is thanks 

to what is called a single shard universe architecture with multiple physical and virtual 

server machines hosting a singular persistent environment. [1.] 

In EVE Online players first create a character to represent them and have the option to 

complete tutorial missions to familiarize themselves with the game’s mechanics regard-

ing space travel and basic combat with their first spaceship. After the tutorials are com-

pleted the player is free to pursue their own path within the game. The multitude of op-

tions available to the player and the open nature to which they are presented is often 

referred to as a “sandbox” style of game play. Beyond the starting tutorials players can 

also opt to follow chains of missions that delve deeper into the various ‘careers’ within 

the game, for instance advanced combat, commerce, industry or exploration. In the 

early stages of the game players often remain in the inner ‘empire controlled’ areas of 

the game world. These areas are protected by game controlled police forces and offer 

the new players a measure of security. As players gain more experience with how the 

game functions, they inevitably encounter the choice of remaining in secure space, or 

venturing into more lucrative and dangerous areas. 

The game world in EVE is comprised of roughly 7,800 star systems, most of which are 

connected to each other by stargates, allowing for nearly instantaneous interstellar 

travel between two nearby stars. The known parts of the galaxy which EVE is based on 

are divided into galactic regions, some controlled by the non-player factions, and some 

declared as outlaw space. Each star system in EVE has a security value determining 

how safe the star system is. This value comes into play in certain game mechanics 

relating to unauthorized combat, but it also has another implication. 

A star system’s security value can range from 1.0 to -1.0. A system with a security val-

ue between 1.0 and 0.5 is determined as a Hi-Sec (High Security Space) system and is 

controlled by one of the game’s four main NPC factions. A Hi-Sec system is also moni-

tored by “CONCORD”, the computer controlled police faction in the game. A system 



2 

  

with its security value between 0.4 and 0.1 is rated as a Low-Sec (Low Security Space) 

system and is likewise also controlled by one of the main NPC factions, but does not 

have CONCORD policing it. This makes Low-Sec areas preferable locations to host 

PvP combat (Player versus Player). The lore of the game details an interstellar war 

being waged between the four main factions and this is manifested in the game with 

capturable Low-Sec areas along the borders of each of the empires. Lastly there are 

the vast areas of space where star systems have a security value ranging between 0.0 

and -1.0. These areas are called Nulsec (Null Security Space, or Outlaw Space), and 

the systems are free for player controlled corporations and alliances to claim as their 

own. 

Corporations are player created communities with a large number of game mechanics 

involved in their management. The number of players in a single corporation may 

range from a single member to several thousand players. Any number of corporations 

may band together to form an alliance. The largest and most influential alliances nearly 

hold control of up to a hundred star systems [2]. 

These large alliances wage war against each other for control over better space and 

valuable resources. When a spaceship in EVE is destroyed in combat, it is lost forever, 

unlike in most other games where a player would simply spawn anew in a similar ship. 

Thus the economy flourishes as players harvest resources, build new ships and sell 

them on the in-game markets. The influx of new ships to the market is more or less a 

daily event even in the most remote areas of the galaxy. 

This final year project is based on a small part of the resources available in the game. 

Essentially it is a third-party toolset which also utilizes the API provided by CCP Games 

for software developers to enrich their external tools and applications. When alliances 

in EVE Online claim space for themselves, the corporations therein gain access to a 

group of special commodities that are obtainable only from harvesting the moons in a 

star system.  These ‘moon minerals' are the second-most valuable crafting materials in 

the game. A browser based application was created for this final year project. The ap-

plication is a toolset for individuals appointed by an alliance to manage assignments of 

moons to corporations and individual players as well as providing the possibility to per-

form complex searches for combinations of different deposits of moon minerals. Play-

ers will also be able to view their own assignments and those owned by their corpora-

tion. There are over 100,000 moons in the game, and 20 different moon minerals ap-
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pearing in different quantities and rarities. The application has been tailored for an alli-

ance called “Fatal Ascension” (essentially the client of this work) that inhabits a region 

called “Fountain” in the western part of the game map. For this purpose only the 4,849 

moons in the Fountain region are included in the first installment of the application. [3.] 

A database including the moon mineral deposits already exists. The data in it has been 

gathered through the combined effort of players in Fatal Ascension flying to each of the 

moons in Fountain one by one and scanning it with slow moving probes. This database 

has been data mined and the contents combined together with external data from the 

EVE API to create the basis for the database used in the Moon Manager toolset – the 

application made for this final year project. At the time of writing this, alpha testing of 

the application is already underway and once the application is deemed finished, it will 

enter a beta testing stage where the client (the Fatal Ascension moon team administra-

tors) will use both the old and the new application simultaneously before the application 

is officially handed over.  
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2 Background 

2.1 Algorithms 

An algorithm is an ordered list of steps to take in order to reach a certain kind of result. 

In computer science, these steps are lines of code and specific commands or rules that 

have been ordered to one line after another programmatically strive towards the de-

sired outcome. When a large amount of computational processing is required, the way 

that the computations are organized and ordered makes a great difference. An algo-

rithm can be repeated multiple times in order to achieve absolute accuracy and time 

efficiency. It may be that a certain block of code achieves a certain goal, but takes a 

great deal of time in doing so. At this point a developer often has to find a way to opti-

mize the algorithm in order to find a more suitable arrangement that takes less time to 

execute. Occasionally mistakes can even be made where the result is correct, but the 

same processes are repeated multiple times by accident without noticing it. [4; 5; 6.] 

The way algorithms are constructed very often affects their processing time. This be-

comes extremely apparent when dealing with a large number of mathematical compu-

tations. Two differently constructed algorithms leading to exactly the same result may 

have very large differences in their execution times. The main reason for this is the 

train of thought put into the functional sequence the algorithm goes through. Very often 

similar results can be achieved through very different roads and unnecessary steps are 

included which ultimately could be transformed into fewer lines of code doing the same 

thing. [4; 5; 6.] 

2.2 Search Algorithms and Recursion 

Search algorithms are simply algorithms constructed to find targets by comparing a set 

of values to those found on a gathering of entities. The search algorithms exist in many 

different forms and for various purposes. Some of the most common search algorithm 

types focus on matching a string of text against longer text blocks, or mapping connec-

tions and routes in a network. 

Text searches are very straightforward and are most often programmed through the 

use of a pattern that is processed through a body of text. This is commonly known as 
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the “needle in a haystack” problem. A simple way to perform such a search is to com-

pose a set of steps in which the two strings, the searched text and the pattern to find, 

are looped through in a multidimensional “for loop” – a loop cycling through a set of 

commands for a predetermined number of times. The first loop completes a circle for 

each of the characters in the text to be searched through. Within the first loop, a sec-

ond loop is initiated which compares the first character of the pattern to the character 

active in the first loop. If it is a match, the inner loop continues to circulate comparing 

the following pattern characters to the next characters in the searched text until either a 

mismatch breaks the loop, or the entire pattern gets matched returning a desired out-

come. In PHP there are several built-in functions to handle basic string searching, for 

example strpos() to find the first position of a pattern in a string, strstr() to select the 

rest of the string after the first match of a pattern, and strpbrk() used to select the rest 

of the string after an occurrence of any character in a pattern. [7.] 

Another common way to perform a pattern match is through the use of regular expres-

sions. Regular expressions are text strings by themselves, but they follow a certain 

syntax in order to express a pattern. A regular expression can either depict a specific 

character or a collection of characters that need to be matched, and multiple such col-

lections can be combined and ordered after one another to form search patterns that 

do not necessarily point to a specific word or phrase. [8.] 

\b[A-Za-z0-9]{3-5}\b 

Listing 1. A regular expression pattern. 

In the above code example (see Listing 1) a string pattern is shown which will match a 

string containing any capital or small letters or even numbers, but is specifically 3-5 

characters long. The \b markings (or \^ and \$ for comparing a string’s entire structure) 

at the beginning and end of the pattern point out the borders of the pattern. Everything 

inside them is a part of the pattern. The [ and ] characters indicate the beginning and 

end of the criteria for a specified length of characters to be matched at a specific point 

in a string. Paired by a dash in-between, the capital A and capital Z indicate that any 

capital letter from A to Z may be matched. Any number of such pairings may be cou-

pled together to form a collection of possible matches. The length of the string portion 

to be matched can be indicated in three different ways by adding the indication directly 

after the [ ]: the { and } characters containing a single number or the minimum and 
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maximum number of characters to specify an exact length. A * can be used to indicate 

that a character can appear zero or more times in that specific portion of the pattern, or 

a + sign can be used to show that at least one or more characters must be matched 

towards this portion of the pattern. 

The second code example below (see Listing 2) shows a complete pattern, which can 

be used to find out if a string collected to be analyzed is an email address. At any point 

where a backslash appears alone, it means that the following character will ignore its 

regular use and be a part of the matched characters instead. 

\^[A-Za-z0-9._-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}\$ 

Listing 2. A complete regular expression pattern for email validation. 

An example with accidental bad algorithm design was discussed in section 2.1. A faulty 

construction such as the one in the example may happen for instance when initiating 

an object, and then populating it multiple times in several different places, once right 

after the object is created, and once within the object, and perhaps even a third time in 

an internal function called when a supplemental function is called. When this is done in 

a family tree, the result can be a lot of wasted computing time, and processing times 

may turn from half a second to half a minute. The increased processing time would be 

the result of each of a person’s children getting initiated in the same manner several 

times, with each looping recursion cumulatively adding up more and more processes 

on top of each other. Recursive code must be precise and rarely forgives developers 

for making errors such as the one exemplified. In extreme cases a section of code can 

be put into a state of endless recursion that never completes and results in an applica-

tion going unresponsive. 

Recursion in programming may be presented in a number of ways, but generally it im-

plies that a function calls itself for a deeper level of computing [9]. A function may also 

process a number of functionalities which end up calling the same function from within 

another object. In the above example of the family tree, there are two places where 

recursion occurs. At first when a user requests to see a person’s family tree, a function 

is run that creates a Person object, and that object’s function “initFamily()” is called. 

Within the second function, a database query is done to find out if the person has any 

children, and for each child a new Person object is created, and that object’s “initFami-
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ly()” function is called, until a person does not have any registered children. At this 

point the child objects are simply stored nested within their parent’s object. Then in the 

view-layer of the family-tree application this nested family-tree is then circulated 

through a view-helper object’s “parseWithFamily()” function, which compiles a data 

projection on a person’s information. During compilation of the data projection, the 

function calls a new instance of itself to create a data projection for each child, nested 

within the parent’s view element. 

Searching through a map of entities connected by links and plotting routes or finding 

connections is a network search. These searches are commonly made directly into 

databases, but may also be done through data on the scripting layer. In the case of 

direct database queries, initial requirements for datalinks are made first. After that a 

database table containing information about connections or links between two nodes in 

a network, is called multiple times – recursively – and the query statement connects 

data from the table to the other end of a copy of the same table. This connection of one 

end of the table to the other end of a new copy is done over and over again until a de-

sired amount of recursions are reached. 

It is not always necessary for network search algorithms to indicate the best route from 

point A to point B, if for example only finding out whether A and B are connected is 

enough. However, in most cases directly finding the best suited option is a desired out-

come. Occasionally this cannot be achieved by going through the database with only 

one query, and a supplementary scoring system needs to be implemented. The scoring 

system can score routes based for example on arbitrary distance by calculating the 

amount of links, by physical total distance of a route, total time required to traverse the 

route, or a number of other factors related to supplemental data. Usually a mixture of 

these values are used, and results are rated by the best overall score. In the case of for 

example traffic navigators however, the quickest route is usually selected by default. 

The situation may even be that no scoring is given for a route’s length or travel time, 

but instead the route is scored for the direct physical distance between the beginning 

and end of the network route, as long as a connection exists. Such would be the case 

for example when finding out which two members of the same family-tree live physical-

ly closest to one another. 
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2.3 Technologies behind the Application 

HTML5 was introduced at the end of October in 2014. It is the 5th installation of the 

Hypertext Markup Language and provides interface designers with new opportunities 

for faster and easier workflow. This becomes evident through the large amount of 

modified functionality as well as several new elements having been included. One new 

element in particular is worth mentioning: the <canvas /> element. The canvas element 

has caused a lot of excitement among web developers and is a revolutionary step in 

terms of what is and has been possible in web development. It allows a developer to 

draw graphs onto the screen, within the boundaries of the canvas, directly in front of 

the end user. This requires scripting, but the concept of being able to draw graphics in 

a browser window is something developers have waited a long time for. Partially this 

has already been accomplished with the new functionalities brought forth by CSS3, but 

even CSS3 has not had full support from all web browsers until very recently. [10; 11.] 

The biggest source for enabling interaction and real time events in a user's client (in 

this case on a web browser) is JavaScript. JavaScript is a scripting language that runs 

locally within the client's browser. This differs from what traditional web programming 

does, in that there is nothing happening on the host's server when a JavaScript com-

mand is executed, unless it involves an AJAX call. AJAX (Asynchronous JavaScript 

and XML) is not as much a coding language itself, but rather stands for a method of 

using multiple pre-existing technologies in a very fluid and unobtrusive way. What this 

means is that a user's client does not get a new page request every time they click 

something, and the browser does not freeze up as the main thread (computer process 

sequence [12]) that the page is running on is not stalled for the duration of the AJAX 

call. Instead for example a loading bar can be displayed where the new content is 

about to show up, while the user can still continue to use/read the rest of the webpage 

they have active in an unobstructed manner. 

JavaScript can be utilized for much more than simply altering things in a browser view. 

JavaScript also enables communication with the server without having to bother the 

user. An end user will generally not see all the JavaScript that is loaded alongside a 

single page-view. The amount of code exceeds multiple full screens’ worth of text even 

in a “minimal” compact form. The JavaScript code can communicate with the servers 

asking them for updates and checking for new content. Such processes can be run on 

top of large layers of timers created in the JavaScript, building an overhead (computa-
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tional load) within the browser, but minimizing the amount of traffic the servers actually 

have to endure. All essential parts of an application are loaded at one single time, and 

most processes and content that do not require transferring the user to a third party 

application page, for instance moving to a settings page, can be loaded through real 

time asynchronous XMLHttpRequests (with AJAX). This improves the user experience 

as the user constantly sees the page he or she is on, and barely ever has to stare at a 

blank new page with content slowly loading into the browser. [13.] 

‘jQuery’ and ‘Less’ are a library and framework respectively for JavaScript and CSS. 

They provide premade functions and data structures that ease the use of both JavaS-

cript and CSS in web application development. jQuery contains a number of functions 

such as pre-programmed animations and shorthand links that hasten a developer’s 

work. The main idea behind it is to hide away the heaviest lower-level details of the 

JavaScript, and make it more user friendly. For example the syntax to select an indi-

vidual element is extremely simple compared to multiple selectors in regular JavaScript 

code. ‘Less’ in turn is a kind of framework essentially providing more in-depth ways to 

work with stylesheets on the server-side of an application, essentially enabling struc-

tured and heavier code packages to be delivered to a user’s browser and allowing per-

forming a large part of code refactoring by simply altering variables. The idea behind 

Less is to directly provide the server means to read and understand new and simplified 

ways to construct CSS markup, through which a developer can spend less time coding, 

and more time getting quick results. In other words, jQuery is a library providing an 

easier way to write JavaScript code, while Less aims at partially removing the need to 

write new CSS every time alterations need to be made. [14; 15.] 

The main programmatic structure of the Moon Manager application is based on the 

Zend Framework core utilizing PHP and MySQL. PHP is a server side programming 

language for building dynamic web pages, and MySQL is a relational database system 

for storing and connecting large amounts of information efficiently. 

When a bundle of premade code, classes of various kinds, is organized into neat folder 

hierarchies, and those classes are generic or abstract in nature in order to provide 

supporting tools for application building, the bundle can be called a framework. A 

framework is just that, a collection of pre-made abstractions of useful objects, which a 

developer can extend to their own needs. The Zend Framework also provides the fun-
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damentals of a fully working application, but also allows for a use-at-will style of pro-

gramming, akin to a regular class library. [16.] 

Most server-side frameworks provide (or even expect) a pre-organized application 

structure that a developer can tap into with ease. Particularly in web development the 

phrase Model-View-Controller (MVC) is often brought up in frameworks and other ob-

ject oriented coding. Model-View-Controller stands for application structure patterns for 

creating and delivering projected data to user clients. What it involves is creating your 

entire application divided into three main areas. Controller refers to the application log-

ic, what happens, what models are called for processing information, and what varia-

bles are passed onwards to the view layer (data contents are unimportant at this level). 

Model refers to the code designed from a company’s or specific website’s point of view, 

including the business logic for the specialized needs of the software in question. View 

refers to the view layer that includes all of the application’s data projection and other 

visual content, as well as determines exactly what data is presented and how it is pro-

jected to the user client. [17.] 

The entire MVC-process assumes that all application logic can be found on the control-

ler layer. Incoming data is processed and output data is requested from business mod-

els. This data is then passed to the view layer, which displays the data as a response 

to the client browser. At no point in time does the controller actually know what kind of 

data is going through. It simply receives the original page request, passes it onto mod-

els of choice, and transfers the response from those models over to the view layer. 

Technically multiple applications could be created, doing diverging but still very similar 

tasks without as much as touching the controller layer, and simply applying changes in 

the model layer with minor changes to the view layer. [17.]  
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3 Planning the Moon Manager Application 

3.1 Reasons for Replacing the Old Application 

The EVE alliance Fatal Ascension (FA) houses over two thousand players. In addition 

it controls space in the game covering nearly the entirety of the Fountain region (73 

Star Systems) as well as several other key locations. It would be a monumental if not 

impossible task for a handful of administrators to keep track on paper over thousands 

of players and their allocated assignments, not to mention nearly five thousand individ-

ual moons. The Moon Manager application functions as a daily toolset used by the ap-

pointed administrators to oversee all aspects of owner relations for moons and monitor 

activity. An example of possible straightforward use cases has been compiled (see 

Figure 1). 

The application must contain all the necessary functionalities for searching through 

moons and mineral deposits. There are 20 different moon minerals including mundane 

gases and basic metals. The rarest alloys only appear a handful of times in thousands 

of moons in a single region. Within the game these minerals are distinguished by rarity: 

R0, R8, R16, R32, R64; the higher the number, the rarer and more valuable the miner-

al usually is. Administrators of the application must be able to distinguish their searches 

by basic rarity as Fatal Ascension has a guideline stating only a certain number of the 

rarest minerals are distributed per corporation, and only the most common metals will 

be available to individual players to make use of according to the rules of the FA Moon 

Franchise program (an internal program allowing players to utilize moon minerals in 

alliance owned space for purely personal benefit, by paying a small rental fee per type 

of moon mineral on the moons used). 

In addition to simply searching through moons and the mineral deposits, the application 

must also be capable of coupling minerals together for pre-determined reaction sets. 

The way moon minerals are essentially utilized is by erecting a starbase control tower 

close to the moon (only one can be in place for each moon) and installing a moon har-

vesting array on the starbase. The harvester will gather the resources from the moon 

on an hourly cycle, and transfer them into a silo that the player has also installed onto 

the control tower. Two silos with specific minerals in them are then connected to a 

“simple reaction array”. EVE employs a construction system utilizing blueprints. One 
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Figure 1. Portrayed from left to right: Use case scenarios for the application. 
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desired simple reaction blueprint is then placed inside the reaction array, which can 

then be coupled to an output silo. The blueprint determines which materials are re-

quired for the reaction and what the product is. A simple reaction array outputs inter-

mediate materials which are then coupled into a “complex reaction array” with a com-

plex reaction blueprint (see Figure 2). This process results in the end product, ad-

vanced moon materials, which are used in the building process of higher quality space-

ships. 

 

Figure 2. Silos and reactors are linked to each other in the EVE Online in-game moon interface. 

The coupling of moons for reaction sets becomes an important factor in the application 

because it is rare to find a moon containing multiple types of minerals, and even more 

rare for those minerals to be useable in the same reaction. The most simple of the ad-

vanced reactions require a total of four different moon minerals, while the most com-

plex ones need a total of seven different moon minerals (the most complex reactions 

require eight materials, but in each case two are of the same type). Also very common-

ly it is not possible to get all of the materials from within a single region, so some of the 
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moon minerals will have to be purchased on the open market from players residing in 

other distant regions and imported. The application thus needs to be able to determine 

what a feasible amount of moons would be to use for a single reaction setup. There are 

some moons that may hold both components for the simplest gas based reactions on 

the same moon. The moon assignments thus have to be gathered through a mix of 

settings determining for example how many minerals must be included, how far apart 

the moons may be (in different star systems) and whether moons have to contain more 

than one mineral. 

 

Figure 3. The EVE Online in-game map shows stargate and jump bridge links between stars. 

The search functions will also rely heavily on route mapping algorithms to determine 

distance and viability of specific moons for a reaction setup. A recursive database 

search is necessary to navigate the starmap (see Figure 3.). The distance between 

stars (amount of jumps via stargates) will be used for a ranking system to maintain 

preference for possible setups that have all their moons very close by, even all in the 

same star system if possible. One possible feature suggested by the end users has 

also been to map the distance between stars by their physical distance derived from 

their positions in the xyz-planes (these values are provided via the EVE API). This 

would enable a search functionality that limits searches to star systems that are within 

the maximum jump distance of a given ship’s jump drive engine (e.g. ten light years for 
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a jump capable freighter class vessel and five light years for all other jump capable ship 

classes). 

3.2 Starbase Section 

Beyond merely being a search and assign toolset for moons, the Moon Manager appli-

cation will also include a section for monitoring activity and fuel levels on starbase con-

trol towers deployed onto select moons. Regular users who have starbase roles in their 

respective corporations will be able to view details about the control towers their corpo-

ration has deployed, anywhere in the game world. To achieve this, a leader or director 

of a corporation will need to input valid corporation-type API credentials into the appli-

cation. The EVE API will then be queried periodically for information regarding all the 

control towers that have been deployed on behalf of the corporation. Something worth 

mentioning is that individual players are unable to deploy control towers for them-

selves. In terms of game mechanics a control tower will always be owned by a corpora-

tion, but with Fatal Ascension’s Moon Franchise program, trusted individuals are per-

mitted to deploy towers with the consent of their corporation and utilize the moons for 

personal benefit. 

The information provided by the EVE API is very detailed. A character’s skills and 

amount of experience (skill points) as well as all other details about a character can be 

queried and retrieved as an XML feed. Even financial details including full logs and in-

game mails can be retrieved as well as a character’s active industrial installations. 

Players are able to create their own tailored API keys to EVE Online via the game’s 

account management webpage. These keys can focus on particular aspects of the full 

EVE API and thus provide the player with a measure of data privacy. The Moon Man-

ager application requires an API key that has been tailored to expose information at the 

‘corporation’ level [18]. By enabling a set of API credentials to allow director level ac-

cess, data on the corporation that the player is a director or leader in can be queried 

directly from the API. Part of this data includes the details of all control towers the cor-

poration has deployed, whether they are active or offline. Listed in the application will 

be every tower’s fuel levels, estimated online time, material amounts in the silos, as 

well as internal data to whom the tower has been assigned, be it a corporation or an 

individual, or whether the tower has been earmarked as alliance property (profits would 

then be going to alliance funds such as the ship replacement program). Individual us-
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ers will be able to monitor their personal towers, and corporation leadership will have 

full view over both their own and all other corporate towers. 

3.3 Communication with the Client 

As the initial assignment from the Fatal Ascension Moon Team (the client) had simply 

been to make a plan for a new management tool for moons and assignments, the first 

meeting where the plan was presented gave good insights as to further specifications 

the client desired. The base plan was accepted as is, but some additions were made to 

the search options for moons, most specifically certain flags and notes for assign-

ments. Fatal Ascension taxes moon owners in their sovereign space under a certain 

guideline, but some moons need to have the possibility of being flagged as not taxed. 

There are various undisclosed reasons for this. 

Another high priority addition that had not come up in initial planning is the ability to add 

notes and certain secondary information to assignments and connect data to moons 

regardless of existing assignments. This included the existence of possible control 

towers owned by hostile entities, and generally the capability to see whether assigned 

moons were not occupied. A history listing for moons was also desired, to be able to 

view state changes for a specific moon, and when an assignment had been changed, 

and by whom. Some search functionalities emerged late in the conversation and in-

cluded a hint towards the taxation system by proposing a search filter allowing for all 

taxable moons that are not towered – not occupied by a control tower nor part of an 

assignment – to be listed together with other filters such as mineral rarity. 

There were lengthy discussions surrounding the client’s taxation system and how it 

would be implemented into the application, along with a number of other ideas that the 

client would like to see. However, the taxation related features were not deemed a high 

priority for the first beta release of the application, and will instead be deployed in later 

releases. 

By far the highest priority requirement from the client was that of security. The old sys-

tem seemingly does not properly differentiate between alliance owned moons' fuelers 

and the actual moon team. It is important that only members of the administration team 

can view and alter any assignments. Meanwhile alliance appointed fuelers handling 
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towers owned by the alliance for fundraising purposes must have access to not only 

their personal and their own corporation's control towers, but also viewing rights (no 

editing rights) to fuel and silo content levels in control towers held by the Fatal Holdings 

corporation. 

Another requirement from the client was to facilitate alternative views. It is common for 

corporations to create secondary ‘subsidiary’ corporations to host the ‘personal fran-

chise moons’. Allowing a corporation’s director to view control tower lists for their main 

corporation and those deployed under the subsidiaries was deemed highly desirable. 

This can be accomplished directly through EVE API queries and checking account de-

tails from the host website also containing the alliance's forums. On the alliance forums 

users may connect multiple EVE game accounts to their forum account. 

3.4 EVE Online API 

The Application Programming Interface or API provided by CCP Games for EVE Online 

is based on simple HTTP requests, which return an XML response. The API allows 

third party application developers to query both public and private data from the EVE 

database. There are very few gaming companies providing similar amounts of data for 

external use. The only restriction for use of the data is that commercial selling of prod-

ucts utilizing the data is prohibited. Beyond this there is a limit to the frequency of re-

quests sent to the API server, and a certain amount of errors (incorrectly formed re-

quests) per time limit leads the requesting IP address to be banned from the API for a 

limited amount of time. Another thing to note is that the EVE API does not provide x-

origin support. This prohibits use of XMLHttpRequests to the API webpage, essentially 

preventing AJAX calls. When an AJAX update would feel like the best choice for a sim-

ple request to the API during runtime of the third-party web application, the request 

must instead be made via the application’s host server, which functions as a middle-

man and passes the requested data back to the user’s browser. While the method may 

seem cumbersome, it may be a necessary step to provide fluid functionality. 

A developer or player gains access to the EVE API through the game’s account man-

agement webpage. On the webpage a player can create new API keys and manage 

already existing keys. A player can have multiple API keys at any given time. Keys are 

distinguished from one another by a key ID (keyID) and have a long verification code 
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(vCode). The keyID and vCode form the credentials used to access the API data. Eve-

ry key is also assigned an accessmask, compiled by numeric values determined for 

each accessible data set (see Figure 4). In this manner even though the data available 

from the API is extremely broad, a player can share certain relevant data with a third 

party application – for example a community web page to confirm the player is affiliated 

with the forum’s owners – while still retaining his/her privacy in terms of in-game mail 

and owned assets. 

 

Figure 4. The EVE Online account management webpage allows for API key customization. 

A corporation marked API key requires that a character on the player’s account has 

director or leader level roles in a corporation. This will enable the API key to be used 

for queries regarding a corporation’s financial logs, installed industrial jobs along with 

many other details that regular members would not have access to. The interesting 

data set in regards to the Moon Manager application is the starbase control tower data. 
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As the returned data is provided in the form of an XML document, it is extremely easy 

to navigate with a parser and desired details can be accessed without trouble. [19; 20.] 

3.5 User Friendliness and Visual Design 

When creating dynamic websites the first thing a developer often thinks of is how cer-

tain features can best be deployed and delivered to a user. Occasionally the developer 

forgets to give consideration to what the user actually wants. The Moon Manager tool-

set emphasizes user friendliness and ease of access. No feature available to a regular 

user or administrator is hidden behind multiple links and page loads. The majority of 

the functionality is deployed directly after navigating to the desired main section, and 

sub-functionalities are embedded as asynchronous AJAX calls within the main inter-

face. Other details which have been taken into consideration include employing a minor 

level of interaction to the application. For example the starbase center will show active 

timers ticking downwards, instead of merely the clock times for fuel depletion on tow-

ers. Countdown timers are also present for displaying the time left on moon mineral 

silos filling up. 

A level of consistency has also been upheld in order to make the application look like a 

unified entity, not just a collection of different features. Future users of the application 

have also been interviewed briefly on matters of visuals in addition to functional fea-

tures. Visual elements as well as the styles and appearance of buttons and links have 

been selected to represent the purpose of the application. These graphical elements 

will however not be fully implemented for the beta phase of the application.  
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4 Implementation 

4.1 Base Installations 

In order to clarify the construction of the entire application and to settle the types of 

data available and expected, the MySQL database was elected to be the first part of 

the application to be built. At first the database included 19 tables set up to contain 

various information to be both data mined from the “EVE static DB” – a database con-

taining all the static data for EVE Online such as star system information, map connec-

tions between systems, what planets and moons are in those respective systems, 

along with a multitude of other information. The application’s database also includes a 

lot of manually inserted data as well as input through actual use of the application. The 

core of the database is the registry-table, which holds records of all entities (even ab-

stract) entered into the database with a universal ID assigned for internal use within the 

application. This includes for example users, administrators, moons, planets, regions, 

moon minerals, moon setup assignments, and update/history events for moons and 

assignments. As the database uses a universal ID for all appearing entities and multi-

ple database tables cross reference each other or provide recursive stepping stones, 

no foreign key mappings are used, and instead all linking of tables and data entries is 

done at runtime. 

The section of the database of highest interest contains the actual moons and directly 

linked relations to the mineral deposits, but a large number of supplementary tables are 

in place to reduce the load on the tables with the highest frequency in usage, thus en-

hancing performance speed. This was particularly important to note and implement 

already for the first version of the application due to the future plans for broadening the 

scope of the application to include all 150-200,000 moons in the game, as well as po-

tentially hosting over ten thousand monthly users. The extra tables include data such 

as constellations and regions that star systems are located in, free text notes for specif-

ic moons and assignments separated from the actual minimal information anchor ta-

bles for said entities. The amount of database tables increased from the original 19 to 

over 30 with the addition of notes and select other features requested by the client, 

along with the necessity to locally cache parts of the data retrieved from the EVE API. 

The table count is expected to rise over 40 for later versions of the application. With the 
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possible implementation of a caching tool called ‘Memcached’ and some code refactor-

ing, this may be brought back down again later. [21.] 

The database scheme (see Figure 5) shows the structure of the database and reveals 

the relation tables (for example moonrels and systemrels) containing the actual data 

linking entities to one another. For example the systemrels table is the most vital part of 

the recursive mapping search algorithms detailed later in this thesis. The tables con-

taining temporarily locally cached data are prefixed by “cache_”. The main reasons for 

opting to cache certain data locally are both the desire to optimize bandwidth usage 

and the fact that CCP Games actually provides a “cachedUntil” value with every single 

API pull, and wishes that third party developers respect these timers and cache related 

data locally at least until the timers have expired (this varies from 5 minutes to 1 hour, 

depending on the data type). 

 

Figure 5. The original database tables. 
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The second portion of the initialization process for the database was the data mining 

and importing of the information stored in the old application. This meant performing a 

clean system transfer and rebuilding the information into a new format. This was ac-

complished through a simple re-organizer function under the administrator section of 

the new application. The data transfer and an updating algorithm that ended up never 

being necessary, were the first functionalities built for the application along with the 

importing functions for the EVE static DB information. This enabled proper testing with 

existing real data for the rest of the application’s development process. 

For the data transfer functionalities to be properly implemented into locations where 

they could be accessed again at a later time – with as little trouble as possible – the 

core of the backend had to be in place first. The installation of the Zend Framework 

core began with setting up a folder hierarchy for the application, separating the applica-

tion logic from the content viewable for a user (see Figure 6). The first release of the 

application uses the latest version of Zend Framework (version 1.12.11), but will later 

utilize the migration options available, in order to transfer over to a 2.x.x version of the 

framework at a later date. 

 

Figure 6. The folder structure in a Zend Framework application follows a clear hierarchy. 

The bootstrap file index.php is the heart of the application and contains all setup infor-

mation and handles the forwarding of every single request sent to the application. A 

.htaccess file in the server root activates the rewrite engine and handles pointing all 
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non-resource requests back to the index.php file. This technically prevents 404 errors 

from the server and allows handling of even possibly non-existing request addresses. 

In order to avoid possible mishaps due to changing operating systems and database 

migrations in the future, a command “SET NAMES UTF-8;” is also forced into the data-

base at the start of every request loop. The bootstrap file also instantiates the working 

environment for the application. At development stages, the application.ini file in the 

configs folder contains two namespaces containing various details such as visibility of 

PHP errors and database login credentials: production and development. 

The actual page distribution is handled by dividing functions (or more specifically ac-

tions) across a set of controller layer objects. Essentially a controller represents a sec-

tion of the application visible to a user. This provides clarity for both development as 

well as end user experience. In addition to the contents of the main sections there are 

also a number of access points within each controller for handling AJAX calls. The 

main sections are: 

 IndexController: The landing section of the application serves as the main 
index page, welcoming the user and providing a login form as well as 
links to view known hostile towers. 

 AdminController: The administrator section contains all management 
functionalities available for the application. This includes listing all moons, 
searching for specific moons and viewing the moon’s details, listing as-
signments with filters for all / by franchise / by corporation / by alliance, 
managing personnel with various special access levels to the application 
(administrators, senior fleet commanders, alliance fuel technicians, indi-
viduals with viewing rights to other corporations’  towers for undisclosed 
other reasons), viewing the status for corporate API keys to see the validi-
ty of their verification codes, managing various requests for new assign-
ments and alterations, test actions and update/maintenance functionali-
ties with multiple warning prompts confirming intended use. 

 AuthController: The AuthController handles all functionalities related to 
user sessions and functions as a contact layer for the future SSO (Single 
Sign On system) to be integrated with the forthcoming new alliance web-
site (not directly related to this project). 

 AssignmentController: This contains all functionalities for regular users to 
view their own and their corporation’s moon assignments, as well as the 
forms to file in requests for new setups, and requests to alter existing set-
ups. This may be for example changing a single moon in an assignment 
for another one, but maintaining the rest of the assignment intact. 

 ErrorController: This section handles all errors rising out of the use, mis-
use, or inappropriate use of the software; for example database errors, 
non-existing URIs. 
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 StarbaseController: Users can view the active control towers they have 
viewing rights for in the starbase section of the application. Select individ-
uals (mainly directors and alliance fuel technicians) will have the ability to 
select between viewing their own towers or those of another corporation. 

 UserController: Users must maintain valid API keys with active verification 
codes for being able to access the starbase section. Also each corpora-
tion must have valid corporate level API keys entered into the system. 
The user section of the application provides functionality for entering said 
API keys and displays a compact summary of contents to which the ac-
tive users have viewing rights. 

4.2 Optimizing Performance and Bandwidth Usage 

As the Fatal Ascension web servers are operated and paid for by the community 

through internal donations, it is imperative that the forums and all supplementary appli-

cations hosted on the web servers cause as little CPU load as possible and limit to 

some extent the usage of bandwidth. This has also played a factor in the design of the 

moon manager application. It proved difficult to achieve ways to reduce direct computa-

tional load on the servers, as many of the functionalities may require fairly complex and 

bulky algorithm processing, but there are many ways to optimize bandwidth usage. 

Many front end libraries and frameworks provide the code required through a CDN 

(Content Delivery Network). This is the case with for example jQuery. By simply linking 

a resource in the HTML layout’s header to the jQuery CDN, it is possible to bypass the 

necessity to always download the latest version, and inclusion of the jQuery library 

does not cause any bandwidth use for the website’s host servers. Also by avoiding 

unnecessary updates to local CSS and JavaScript files, bandwidth can be saved. This 

can be achieved through setting cache expiry timers for certain types of resources in 

the “.htaccess” file in the server’s web root. These values have been set to two months 

for CSS and JavaScript files as well as various images downloaded from the image 

server hosted together with the EVE API. In order to avoid situations where a recently 

updated file would end up not being refreshed in a user’s browser, a special syntax for 

the filename is used including the output of the filemtime() PHP-function, which delivers 

the timestamp when the file was last modified. Use of the filemtime() function may be 

cumbersome for an extremely high usage website, but use frequency where the layout 

of the Moon Manager application is loaded should not exceed more than a handful of 

page reloads per minute at most. [22.] 
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When creating a website with a lot of AJAX calls, bandwidth usage can be further opti-

mized by only providing the data a user requires at any given time. In the Moon Man-

ager application this is achieved by minimizing the amount of data sent with each re-

quest, and delivering AJAX responses only in the form of JSON. This way only the 

necessary information is delivered for each request, while the JavaScript that has al-

ready been set up on the user’s browser handles the data projection onto the user’s 

view. An extra feature being worked on for a later release of the application is also cre-

ated with the help of the jqPlot -plugin for jQuery, making delivery of visually appealing 

graphs on a <canvas /> element extremely efficient as all the data required comes in a 

simple JSON array format. 

 

Figure 7. The difference of tidy classes in HTML markup, versus inline CSS. 

Local caching of certain data retrieved through the EVE API – only retrieve the data 

again when necessary and when the API’s cache timers have expired – will also re-

duce bandwidth usage significantly. One final optimization step which technically su-

persedes necessity is to entirely avoid using inline style definitions in an HTML docu-

ment, and always provide specific style definitions through HTML-element ID or class 

references in a .css file (see Figure 7). The amount of times a set of style definitions 

causes bandwidth usage is minimized, and only the class keyword for the given set is 

used multiple times. 

4.3 User Management and Access Control 

The Moon Manager application deals with user authentication and comparing against 

access control lists (ACL) already in the bootstrap. At the end of the bootstrap file (in-

dex.php), the Zend Framework FrontController is called and a number of plugins are 

registered. First the “Moonmanager_Controller_Plugin_Auth” is registered. It has been 

designed to ascertain the validity of the user’s credentials and his/her assigned user 

group. The Zend_Auth class is called within the plugin to fetch the information of the 

current user from the session namespace, and a selfmade adapter compares the us-

er’s credentials to the application’s database. The Zend_Auth various success and 

failure result constants are then used to determine the validity of the authentication. If a 
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user is found and credentials match, the Zend_Auth session namespace is populated 

with user data and the session ID is regenerated. Otherwise the user is classified as a 

guest user with access to nothing but the login screen. 

The authentication process includes a query to the web server’s main database holding 

the registered API keys for all users. In the future this process will be dealt with by inte-

grating a Single Sign-On (SSO) system that CCP Games has published for use with 

third party EVE Online applications [23]. This will initially be integrated on the alliance 

web server separately from this final year project. For now the database must be 

checked for existing forum accounts and whether an account has valid API credentials 

confirming they have characters in a corporation in Fatal Ascension and what viewing 

roles they have to starbases. The EVE in-game settings for “starbase technician” and 

“equipment manager” roles can be queried from the API, and this is partially used to 

determine user groups in the Moon Manager application. A user that does not have up 

to date and functioning verification codes associated with their API keys, or who lack 

starbase roles in their corporation, are automatically stripped of access roles in the 

application. Administrators are exempt from this functionality as they are alliance ap-

pointed officials, and their access rights may only be edited by select chief administra-

tors (also called superusers). Administrators also have a separate interface in the ap-

plication where a user’s access rights may be modified to represent for example alli-

ance fuel technicians, and the API keys for corporations may be monitored. 

After the auth plugin has completed its checkup, another plugin called Moonmanag-

er_Controller_Plugin_Acl is registered. The ACL plugin then compares the data instan-

tiated by the auth plugin and the intended destination of the user to the access control 

list composed in the local extension of the Zend_Acl class: Moonmanager_Acl. The 

user’s destination is derived out of the ‘controller’ and ‘action’ variables drawn from the 

HTTP request object. These together form the main resource and activity measured 

within the ACL. All access is defined by the user’s user group. For example a guest 

user has access to nothing but the IndexController resource and its indexAction. A di-

rector of a corporation has access to everything but the AdminController resource, 

while administrators have access to nearly everything with a few exceptions. There will 

be a few select chief administrators who will have access to everything, including the 

production test page and a special resource “appointAdmins”, only to be queried when 

an administrator enters the personnel management section. 
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The ACL essentially provides the capability to hardcode any singular allowed or denied 

resource and action to any given user group. It is important to remember to add any 

new subpages and controller resources to the ACL after they have been implemented. 

Otherwise the system will automatically determine that nobody has access to the re-

source. It will in fact produce an error stating that such a queried resource is not regis-

tered in the first place even if administrators have correctly been granted access to all 

resources through an empty “$admin->allow()” statement. The Zend_Acl class which 

the Moonmanager_Acl is extended from also allows inheritance from one user group to 

another, meaning absolutely all assigned access rights do not have to be written out 

explicitly. 

4.4 Moon Search Functionalities 

All managemental functionalities in the Moon Manager application are located within 

the administrator section. This section is entirely handled by the AdminController class. 

The controller is held to a relatively small size and maintains readability even though it 

contains a plethora of functions. This is thanks to all computational processing being 

passed over to business model classes, thus minimizing the amount of raw code in the 

controller. The amount of viewable pages in the section is not extremely large, but the 

number of different functionalities on each page is numerous. One of these subsections 

is the user management portion, which has already been discussed in the previous 

section of this thesis. 

The part of the Moon Manager application that makes it distinctively stand out from the 

old application used by the Fatal Ascension moon team is the plethora of search algo-

rithms included. The old application employs only basic database searches and value 

modifications, projecting data only as static lists. Thus the administrators have had to 

go through all moons in a region by hand in order to locate matches for reaction set-

ups. This may often lead to lengthy search operations where time and effort are essen-

tially wasted on managemental background work where the same result can be 

achieved much faster through the use of highly diversified search algorithms. 

The first and foremost subsection in the administrator area is the page for listing and 

sorting moons. This page provides search filters for finding a specific desirable moon. 

The main criteria for finding a moon concern the moon’s location. This can be sorted by 
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filters for the region, constellation and even specific system the moon is in. These loca-

tion lists are grayed out and only become available one by one after a specific sur-

rounding area has first been selected, so a constellation cannot be selected until a re-

gion has been specified, and a star system cannot be selected before a constellation. 

This however can be overridden through the use of the search box located above the 

location specific selectors. The search box populates a dropdown menu through an 

AJAX call after user input into the search box in real time. When a search result is se-

lected, the webpage recognizes whether it is a region, constellation or a star system, 

and automatically fills in and enables all appropriate location selectors. This is also true 

for the secondary set of search filters containing information about the moon mineral 

deposits that can be found on a specific moon. After the search filters have all been set 

to desirable values, the administrator is presented with the option to display the search 

results in any one of six additional search lists. Once at least two of these lists have 

been populated, the administrator can either manually look through the lists for poten-

tial reaction setups, or they can process an additional search based on these second-

ary search lists and a final set of filters. 

The additional search on the moon searching page produces an ordered list of sugges-

tions for reaction setups containing moons with all the desired mineral deposits. The list 

will be ordered based upon the final set of filters. The options on these filters are for 

example to order the resulting list by a weight factor prioritizing either absolute proximi-

ty of all the mineral deposits in a network, absolute physical proximity measured from 

the star systems’ X-Y-Z coordinates in the EVE universe, or even by overall proximity 

in relation to a certain origin point (a star system) that can be determined separately. 

During initial testing of the algorithm behind the matchup search, the execution time of 

the query lasted for tens of seconds, and extreme cases could use up to two minutes to 

finish a request to the server. This was unacceptable and improvements had to be 

found. After several evenings of refining and optimizing the formation of the algorithm – 

partially through trial and error – the execution time was greatly diminished and overall 

search time was cut down to merely a few seconds. This was acceptable and work 

could continue on the rest of the application. 
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Figure 8. One of the search sections in the Moon Manager application. 

The search algorithm mapping the matchups first declares requirements for all the 

moon minerals that have been selected and initiates a number of additional functions 

looping through first all, and then a series of fewer moons. By also performing the 

search for a lesser amount of moons than desired, search results can also be provided 

for possible outcomes where deposits are not available for all desired moon minerals. 

Thus corporations and individuals may still be presented with moons for the majority of 

the moon minerals required, and they simply have to import some of the materials re-

quired to complete reaction setups. Within the secondary functions a number of recur-

sive loops for buildup of database queries is processed. The recursion involves a func-

tion dynamically building several temporal instances of the database table “sys-

temRels” containing all information about the connections between star systems, be it 
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through regular stargates or by jump bridges that can connect two distant star systems 

to one another. Jump bridges require no pre-existing connection between two systems, 

but to activate the bridge a module must exist at both ends of the link in order to pro-

vide the considerably much higher energy levels required compared to a regular star-

gate. The query is gradually executed once and results are scored with pre-determined 

multipliers in accordance to given criteria in the search filters. The results are then 

sorted for data projection and the active function calls itself with new altered parame-

ters for the next iteration. The recursive calls continue until 50 or more total search re-

sults have been collected or until no more results can be found for metal moons in the 

search set. A maximum of 50 search results are displayed to the user (see Figure 8). 

The heaviest test runs of the algorithm have produced queries longer than what can fit 

on two full computer screens when printed out. Several such queries are made to the 

database for each reaction matchup search. Currently the algorithm also ignores all 

moons which are already occupied by a control tower. In a future revision however also 

occupied moons may be included in the search, and administrators will be able to dis-

tinguish the search filter even further by whether to include towers already occupied by 

the corporation the search is being made for, or if all moons regardless of being occu-

pied should be included. A similar search is also employed on another administration 

page where the administrator can directly perform a search by inputting a number of 

moon minerals to search for and criteria for limiting the search area. A final search cri-

teria worth mentioning is the ability to have the search only include systems in which 

Fatal Ascension holds sovereignty (this is related to reduced fuel consumption for con-

trol towers in sovereign space). The sovereignty clause only affects the destination 

systems in each recursion and does not exclude systems from simply being a part of 

the connection chain, making it particularly useful as an entire constellation in the 

Fountain region is permanently controlled by a non-player pirate faction. 
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Figure 9. An assignment form presented in the moon search section. 

Supplementary functionality found on the same pages with the matchup searches in-

clude a small overlay with a form enabling the administrator to directly assign the des-

ignated moons to an entity of choice (see Figure 9). This overlay always requires that 

an assignment set is connected to a corporation, additionally connecting the assign-

ment to an individual (in case of a moon franchise assignment). If the assignment is 

designed to be used for alliance income, it will be allocated to a special administrative 

corporation in the alliance: in this case ‘Fatal Holdings’. In special cases where moons 

are alliance property and for other undisclosed reasons, a moon may be marked as not 

being subject to taxation. This is done with a simple checkbox provided in the assign-

ment overlay and can also later be adjusted in the assignment listings. 
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4.5 Other Restricted Subsections 

As previously described, administrators are provided with a personnel management 

area where roles can be verified and special permissions can be assigned. When en-

tering this area an administrator will first be presented with two lists in side by side col-

umns, portraying the most recent visitors to the web application and a list containing 

the most recent additions and changes to roles. More extensive views for the two lists 

are also available. At the top of the page a tab navigation allows an administrator to 

see for example complete lists of all personnel and base access right codes as well as 

roles internally assigned in the application. A second tab contains a search box for find-

ing a user. Selecting a user from the dropdown list will enable a view providing role 

editing options. Clicking a user in any other tab automatically changes tab and opens 

the same view. Possible roles that can be assigned to a user include starbase techni-

cian (default value), director, alliance fueler, admin, and “banned”. The select few chief 

administrators will also appear as regular administrators within the system, they simply 

have the extra ability to select to promote or demote a regular administrator. For a reg-

ular administrator other administrators will have their role selector grayed out and func-

tionality disabled (extra checks also prevent changes on the server even if a brute force 

change was attempted). 

The ability to easily update the application’s database is important in the event of future 

updates to the EVE Online star systems. These could be changes such as the further 

addition of new star systems or added/changed connections between stars. For this 

purpose a number of functionalities have been pre-built to allow for scanning through a 

new rendition of the EVE static DB and applying any found new occurrences to the 

Moon Manager database. As jump bridges are player controlled entities – which may 

be taken down and re-deployed elsewhere at any given time – a tool has also been 

constructed for keeping track of the existing connections and altering them at will. The 

site updating subsection also includes the tools to monitor error messages generated 

that any user may have encountered during regular use of the application. These error 

messages will always precisely describe where they have been logged in the system, 

for easy updating and error management corrections. 
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4.6 Moon Assignment Listings and the Starbase Center 

All registered users have access to the moon assignments section in the application. 

Here users will be able to view both their personal and corporate moon assignments. 

This also applies to certain users that do not have starbase technician roles in their 

corporation. If these users have the said roles in an alternative corporation, they are 

allowed to see all towers in that corporation instead. Administrators will not have any 

other listings available in the regular assignment listings section beyond their own cor-

poration and possible alternative corporations. Administrators also need to be specifi-

cally assigned the alliance fuel technician role in the system to be able to view details 

about Fatal Holdings control towers. This can also only be appointed by chief adminis-

trators, who themselves have the possibility to view the details on any corporation’s 

control tower details at will - such data will only be loaded per request through AJAX in 

case of corporations other than a chief administrator’s own corporation, alternative cor-

poration, or Fatal Holdings. 

At the top of the page users with access rights to moons in multiple corporations may 

use a selector to choose which corporation’s assignments they wish to view. By default 

a corporation is selected according to the user’s main character selection on their fo-

rum account. The initially visible list of assignments will display only the assignment ID, 

the amount of moons and which systems are involved, along with a short name/note 

the processing administrator has given the assignment. Users can also set a very short 

name/note for the assignment to be visible directly in the list. When the mouse pointer 

is moved over a list item it is highlighted to indicate further details may be viewed. 

When the list item is clicked, an information box is animated in-between list items 

showing more detailed data for the assignment (see Figure 10). This extra data in-

cludes details such as specific moon locations, taxation information, and details about 

which administrator and when last processed the assignment or made changes to it. A 

colored indicator is also included for whether each assigned moon has a control tower 

deployed on it. 
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Figure 10. The Moon Manager assignment page with details displayed for an assignment. 

The assignment listings page also has a button for requesting a new assignment. 

When the button is clicked, an overlay appears over the assignment list. This overlay 

includes a request form users may fill in with moon mineral types (including empty 

moons with no mineral deposits), location restrictions, and a free text field for additional 

information. Once the request is submitted, it will appear to administrators in the “man-

age requests” section. When an administrator views a request, it will have a button to 

reserve it as being processed by the administrator in question. This way two adminis-

trators will not unknowingly work on the same assignment request simultaneously. The 

user who made the request will also see it as being processed. When a request has 

been claimed by an administrator, he/she can hit a new button that appears in order to 

transfer the request and all pre-selected data over to the moon search view for admin-

istrators. There the request can be processed as a regular assignment. At this time the 

administrator will then have to go back to the request management view and mark the 

request as either fulfilled or rejected. A note can be added to provide further details and 

a response to the requesting user. 

The starbase center is the section expected to be most used by regular users. In this 

section of the application users are presented with control towers their own corporation 

(or a corporation they have viewing rights for) has deployed. Towers that have been at 

least “anchored” in orbit of a moon will be displayed, regardless of a tower’s status be-
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ing online or offline. An offline tower will display a red tinged background, as being of-

fline leaves the tower entirely unprotected by its force field. A tower can only be turned 

online if it has sufficient fuel. For this purpose the starbase center displays real time 

information about control towers, especially regarding their fuel levels. A control tower 

may at most hold roughly 38 days worth of fuel in its hold. 

Each control tower in the list is named accordingly what the tower has been manually 

named within the game, and towers are grouped according to assignments that the 

relevant moons belong to (see Figure 11). Other specific data displayed for each tower 

includes the amount of materials gathered in each silo, timers indicating how much 

time is left before fuel runs out or silos become full, as well as the amount of “Strontium 

Clathrates” that are stored in a secondary fuel compartment in the tower. Strontium is 

used to reinforce a control tower’s force field into an invulnerable state for a limited 

amount of time in the event of coming under attack. 

 

Figure 11. The Moon Manager starbase center with tower details. 

When a moon assignment has been confirmed, it does not automatically show up in 

the starbase center section, unless there are already towers deployed on any of the 

moons. Each deployed control tower owned by a corporation will be displayed in the 
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starbase center, regardless of being deployed on a moon that is part of an assignment 

or not. This allows corporations to also monitor control towers that may be in low secu-

rity space or elsewhere outside alliance territory. Also alliance owned towers that may 

be located outside the Fountain region will be shown for the Fatal Holdings corporation 

and anyone with the alliance fuel technician role. 

4.7 Additional Requests from the Client 

Many extra features requested by the client have already been described, but multiple 

requests came in relatively close to the end of the development process. It was possi-

ble to still add some of these requests to the beta release of the application, but a ma-

jor portion of the requests had to be postponed for future releases of the application. 

Many of the postponed features are described later in this thesis. 

A suggestion that was possible to easily merge into the application before the initial 

version was delivered to the client was the implementation of a section displaying any 

hostile towers that had been detected by players. Users can enter the application and 

navigate to the hostile towers section and enter details for a discovered hostile tower, 

which fleet commanders can then set out to vanquish. The listing of the hostile towers 

entered into the application is the only additional feature publicly visible beyond the 

login screen, and any player registered on the Fatal Ascension forums may file a report 

for a hostile tower. For this purpose the “fleet commander” user role was added for 

internal use in the application. 

Users with any of the fleet commander, director or administrator roles may select a 

hostile tower in the list and report it as having been put into reinforced mode or de-

stroyed. A tower enters reinforced mode when attacked with a sufficiently large fleet to 

cause the automated reinforcement after a certain amount of damage to a tower has 

been dealt. If a hostile control tower is reported as having been put into reinforced 

mode, a countdown timer will be associated with the said tower. This timer will be dis-

played at the top of the public section of the application so that anyone may see when 

they can expect a fleet operation to take place. A similar timer may also be initiated for 

friendly towers if a control tower is attacked by a hostile entity. 
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Another requested feature that was included in the first version of the application was 

the ability to add records for star system ownership. A star system in EVE Online is 

essentially denoted as being owned by the entity with an online Territorial Claim Unit 

(TCU) in the system. These TCUs are controlled by corporations, but the direct owner-

ship of the star system is by definition related to the alliance that the corporation be-

longs to. A lone corporation that is not a part of an alliance may not deploy a TCU and 

turn it online, thus making alliance creation a necessity for claiming sovereignty in out-

law space. The fact that a star system is controlled by a specific alliance reduces fuel 

costs by 25% for any control tower owned by an entity within that alliance. In the Moon 

Manager application this is also related to whether or not a moon is actually subject to 

taxation. Even though the actual taxation fee calculations will be automated in a later 

revision of the application, it is imperative for administrators to be able to determine 

whether control towers are in Fatal Ascension’s sovereign space, as no moons located 

outside Fatal Ascension’s domain are subject to any form of taxation.  



38 

  

5 Results 

5.1 Finishing the Application 

All planned features for the application have been finished and seem to be in a func-

tional state. Additional features that came up during the development have been added 

either partially or fully depending on the importance of their implementation. A large 

number of supplementary functionalities and entirely new features that have arisen 

during the development process have been transferred to the future task list, and will 

be included in later revisions of the application. 

At the beginning of this project there was a fair amount of uncertainty whether the final 

application would end up being used at all. This was due to political strife within the 

EVE Online game and the implications these conflicts had on the future of the Fatal 

Ascension alliance. There are also other reasons for these concerns, which due to their 

delicate nature must be kept secret. The application ended up still getting permission 

from all parties to be created and certain third parties within the EVE community ex-

claimed that a use would be found for the application regardless of the future of the 

alliance. 

The application has been delivered to the client for beta testing and improvements to 

initial features continue to be developed. While beta testing the client’s representatives 

will use both the old and the new application to store moon assignments. This is to en-

sure that data is properly stored in the old system, while confirming working functionali-

ties and completing performance test on the new Moon Manager application. At the 

time of writing this all systems appear to be functioning properly excluding an error 

caused by user session storage relating to the late addition of the hostile tower feature. 

This is being fixed as soon as possible. 

5.2 Analysis 

The aim of the project was to develop a working management toolset for the Fatal As-

cension moon team administrators to use as a toolset in their daily work. The applica-

tion was to replace the old application that had been deemed to provide insufficient 

functionalities to the aid of the moon team. 
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The project proceeded step by step in a fairly smooth fashion. The original timetable 

set for the development process underwent heavy changes due to waiting times and 

unplanned ideas arising for new features. The application itself was however intended 

to be done before the end of May, but this had to be moved up due to previously un-

known deadlines coming to the awareness of the developer. These changes to the 

timetable were not directly caused by the client. There are impending changes to cer-

tain game mechanics relating to how sovereign space is controlled and maintained. 

The resulting impact on the geopolitical landscape in EVE is that many widespread 

coalitions of several alliances are forced to move in more tightly together. For the client 

this means that due to the impending relocation they are faced with, they cannot 

properly commence testing of the application yet. [24.] 

At the same time beginning work on writing the thesis was delayed largely due to un-

certainty related to communication with select external parties. The initial designs for 

the application also changed a lot during the first days of the development process, but 

the effort put into refining the plans early on made the rest of the project easier to grasp 

as a whole. 

A number of functionalities and sub-features that were included in the first plans for the 

application were not implemented at all and have also been removed from future plans. 

Upon reviewing the plans during the development process some features were 

deemed entirely unnecessary and others already exist within other third party applica-

tions for EVE Online, thus making their inclusion obsolete. These discarded functionali-

ties also included a number of search algorithms that were eventually deemed to be 

merely overlapping other functionalities, nearly duplicating their results. Choices relat-

ing to whether or not to include a functionality often took a lot of time away from the 

actual development process. From another perspective this may be a good thing, as 

unnecessary features were left out, not wasting time on developing something in vain. 

One such feature would have been to include search algorithm patterns for alchemy. 

Alchemy is a way to turn certain moon minerals into other types with increased cost 

and extra materials. This was seen as unnecessary due to the fact that barely any resi-

dents of outlaw space (such as Fatal Ascension) have to rely on alchemy thanks to the 

abundance of moons available. Alchemy is mostly utilized by players dwelling in low 

security space. 
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The most time consuming task in the entire development process was the creation and 

refining of the network search algorithms. A lot of time was invested into getting very 

precise search results and cutting out overlapping results and execution time factors. 

Due to their in-depth complexity the search algorithms had to go through a lot of trial 

and error development, but the end results are satisfactory. 

The development process was undertaken utilizing agile software development para-

digms. This helped in maintaining good development speed for the application as well 

as speeding up the writing process of the thesis. Developing features one at a time into 

functional form and only having to modify them at later stages if necessary is much 

more efficient than potentially leaving something halfway done in order to first finish 

another feature. If something is left unfinished, it may potentially end up hampering 

testing of other features. The only scenario where such a secondary prioritization 

should be undertaken is if the secondary task is a dependency for the initial task. The 

project also benefited from personal investments of the developer. A magnetic flipchart 

along with an Open Atrium installation for task management were purchased and uti-

lized for project management. The flipchart proved essential for easy visual access to 

various structure designs and core plan listings. 

The choice to begin by designing and constructing the MySQL database proved to be 

an excellent foundation for the project. The database only had to be directly altered 

twice, excluding minor tweaks and enumeration value additions. This aided in keeping 

the project directives clear in terms of the types of data that would be used in the de-

velopment process. The structure of the rest of the application was easy to build up on 

top of the structure of the database. The structure changed a lot during the first few 

days but was then fairly consistent throughout the rest of the development process. 

Towards the end of the development schedule cuts had to be made on the amount of 

extra requested features that could be implemented in the first version. This well repre-

sents an agile development schedule, where features have to be either implemented 

properly, or they will be pushed to the next stable release version of an application. The 

amount of last minute work caused some stress to the developer, but properly formu-

lated plans and workflows kept the development process of the Moon Manager applica-

tion feasibly controllable until the end. One major cut that had to be made due to lack of 

time was the implementation of the Backbone JavaScript framework. As jQuery was 

already a familiar tool for the developer, it was deemed unwise for the scope of this 
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project to force the use of Backbone with a learning curve that may have pushed back 

development progress by several days. 

5.3 Future 

The first version of the application meets all demands for the initial agreement. The 

future plans for the Moon Manager application involve a great deal of further develop-

ment. The current list of features and additional functionalities are not yet ordered into 

a specific priority order. Plans are in place however to change from using the Open 

Atrium platform into the use of Jira Agile for project management [25]. Jira is not a free 

software, but as perpetual use license costs when personally hosted are only $20, que-

ries will be made as to whether Fatal Ascension would be willing to host the service. 

This would allow the Fatal Ascension IT team to collaborate and keep track of any and 

all development processes that volunteer members were doing for services within the 

alliance, while the alliance would provide them with a project management toolset. 

The Moon Manager application will only incorporate the Fountain region in its first re-

lease. Once further development commences, however, the entire EVE universe will 

eventually be incorporated into the system, including all of the 7,800+ star systems and 

between 150,000 - 200,000 moons. The purpose for enlarging the area of space cov-

ered by the application is to possibly enable its use for entities other than Fatal Ascen-

sion (either as a single installation for allied entities or as separate instances). If other 

affiliated alliances would also gain access to the application, this would also require 

alterations to the access control lists and tweaking of the data actually visible to each 

admin. Administrators might for example be able to view assignments and moons allo-

cated to anyone, but only have editing rights and allocation privileges to star systems 

their own alliance holds sovereignty in. 

A feature is planned that will enable administrators to send multiple search results as 

suggestions to a user. The user will then view the suggestions on a page included in 

the moon assignments and requests section. After accepting a specific set of moons, 

the setup will be confirmed as an assignment and a confirmation notice will be sent to 

the admin. This will include every single moon in any of the included suggestions to be 

tagged as reserved until either a 24 hour period passes (subject to change) or the user 
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accepts a setup suggestion. Reserved moons will then not show up in any reaction 

matchup searches. 

When a user views an assignment, a button will be added to show an overlay giving a 

suggested setup for moon harvester arrays, silos and reaction arrays to be used in the 

assignment, based on user input for what racial control tower the user would prefer 

using on each moon. There is a difference between control towers for each of the four 

main factions in EVE, with certain tower types allowing for more industrial modules, 

and others emphasizing the ability to fit more armaments onto the control tower. The 

setup suggestion will take a variable input in the form of what specific reaction a user 

wants to deploy for the assignment, thus also including input silos for any material not 

present in the assignment, thus having to be imported. 

A regular user of the old application has made a request for a profit estimation to be 

included for each assignment. This has been approved to be included in a later re-

lease. The way such a profit estimation will be calculated is through another third-party 

web application called EVE Central. EVE Central is a community collaboration effort to 

provide constantly up to date information about market prices all over the EVE uni-

verse. Any user can open the in-game browser in EVE and navigate to the EVE central 

website. Here they can find a script to run while having the EVE Central website open 

in their in-game browser. The script data mines through hundreds of market orders and 

stores them onto the EVE Central servers. The web application then provides up to 

date market information about sell and buy orders to anyone who seeks such 

knowledge. The way this helps the Moon Manager application and the intended moon 

assignment profit estimations is through the XML API also provided by EVE Central. 

The basic functionality of this API is very similar to the actual EVE API provided by 

CCP Games, using very similar queries and results. However, data provided is limited 

only to market information. Appropriate average values will be retrieved for prices of 

control tower fuel and market values for the end products for various moon mineral 

reactions. These values fluctuate constantly, so a rough moving average has to be 

calculated from data collected over longer periods of time. This data will then be used 

to provide estimates for expenses and profits associated with each moon assignment 

setup for a user’s convenience. [26.] 

An information message system will be implemented in a later version of the applica-

tion. This will be implemented in the form of short messages appearing in a corner of 
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the application layout. The purpose of these messages is to inform users and adminis-

trators about events relating to matters they are involved in. For regular users this may 

for example involve a resolved moon assignment request, an alert for fuel about to run 

out in a control tower, or a suspected siphoning alert. Siphoning units are modules a 

hostile player may deploy in close proximity to a control tower. The siphoning units will 

gradually steal moon mineral resources from the control tower’s silos until they are re-

moved through collecting them into a ship or destroying them. The alert will be pro-

duced through calculations made from the hourly cycles of material produced into a 

silo. If a silo has received less than the intended amount of resources, a suspected 

siphoning unit will be reported. A proposal has been made to also create a mobile 

phone application to support the Moon Manager application. This application would 

include push notifications from the server in order to alert users of for example control 

tower fuel running out or suspected siphoning units. 

Late into the development process the client asked whether checking for the existence 

of jump bridges could be automated into the system through API pulls. At this time 

there is an uncertainty as to whether this data is available through the API or the re-

cently added CREST API. The matter will be investigated though and if possible, the 

manual entering of jump bridge connections will be removed and automated function-

alities implemented. There is, however, a concern relating to whether this feature will 

require a corporate level API key to always be valid. For this reason the investigation 

will include the possible outcome of having both automated functionality as well as the 

possibility to override the data pulled from the API. In addition regardless of the out-

come, a history mapping of jump bridge locations will be added.  
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6 Conclusions 

This thesis has portrayed the planning, development and future plans of the ‘Moon 

Manager’ third party application for the game ‘EVE Online’ published by ‘CCP Games’. 

The client of the project was the ‘Moon Team’ of the player community ‘Fatal Ascen-

sion’. The application is both a content management system as well as a search tool to 

be used as a primary toolset in the daily tasks of the Moon Team administrators. The 

Moon Manager application was created in order to replace the old application used by 

the Moon Team. The application’s starbase section will also serve as a data projection 

and tracker toolset for regular users from the Fatal Ascension community as well as 

appointed alliance fuel technicians. 

Several unexpected issues arose with the timetables originally set for the project. The 

project has been finished on time, but the client is presently unable to begin proper 

beta testing due to factors relating to the impending changes to the EVE Online game. 

The geopolitical landscape in the game will be vastly affected by the coming changes 

and thus the application is unlikely to be put into use until the game has been updated 

at the beginning of June 2015. Before entering proper testing, new moon data will also 

have to be entered into the system for the client’s new local area. There should also be 

time to enhance the visual looks of the application. 

The client’s initial reactions to the application have been positive, but several suggest-

ed improvements and new features have been presented. These additions have been 

added to a backlog for future development, which will continue during the application’s 

beta testing. The application will provide many new features and tracking possibilities 

for the client and other users. Many of the tasks that can be completed with the appli-

cation have previously been done entirely manually. The client has actively taken part 

in open discussion during the development process and thus greatly aided in forming a 

better picture of the final application, beyond what could be interpreted from the initial 

plans. 
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