

David Lundy

A Teaching Tool for the IEC 61850

Substation Configuration Language

Moodle Integration for Energy Technology ICT

Information Technology

2015

Keywords IEC61850, Moodle, LTI, Teaching Tools

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author David Lundy

Title A Teaching Tool for IEC 61850 Substation Configuration

Language

Year 2015

Language English

Pages 66 Pages

Name of Supervisor Smail Menani

This thesis work was made in cooperation with Dr. Smail Menani and Vaasan Am-

mattikorkeakoulu. The main purpose of this thesis was to create a teaching tool that

would provide students of the Energy Technology ICT course with online tasks that

could demonstrate an understanding of IEC 61850 Substation Configuration Lan-

guage.

The development of the thesis work involved research into the integration interfaces

allowing an external web application to provide content to the Moodle Learning

Management System, and into OAuth security signing. It also provided an oppor-

tunity to research and apply new developments in standalone web application tech-

nology on the JVM using Spring Boot.

The result of the thesis project is a stand-alone web application that acts as an LTI

1.1 Tool Provider for Moodle and other learning management systems that enables

instructors to provide tangible learning experiences for students learning the IEC

61850 Substation Configuration Language.

 1(66)

CONTENTS

ABSTRACT

ABBREVIATIONS .. 6

1 INTRODUCTION .. 8

2 RELEVANT TECHNOLOGIES .. 9

2.1 Java 7 .. 9

2.2 Spring Boot ... 9

2.3 Spring Data JPA .. 10

2.4 Spring Framework .. 10

2.5 Flyway... 11

2.6 Freemarker Templating Engine .. 12

2.7 Moodle .. 12

2.8 LTI 1.1 Specification .. 12

2.9 OAuth 1.0 .. 14

2.10 jQuery ... 14

2.11 CKEditor ... 15

2.12 jQuery.XMLEditor.. 15

2.13 XMLUnit... 15

2.14 JsDiffLib ... 16

3 PROCESSES AND TOOLS ... 17

3.1 Development Process .. 17

3.1.1 Risk Management.. 17

3.1.2 Architectural Philosophy ... 17

3.1.3 Code Organization .. 18

3.1.4 Convention Over Configuration .. 19

3.2 Tools ... 20

3.2.1 Moodle 2.8 Development Installation ... 20

3.2.2 jQuery.XMLEditor xsd2json .. 20

3.2.3 Git / Github ... 20

3.2.4 Fiddler ... 21

3.2.5 IntelliJ Idea 14 ... 21

 2(66)

3.3 MySQL Workbench .. 21

3.4 Apache Maven .. 22

3.5 Brackets... 22

3.6 GulpJs ... 22

4 SYSTEM DESCRIPTION AND DESIGN ... 24

4.1 General Description .. 24

4.2 Security ... 25

4.3 Functional Specification ... 26

4.3.1 Must Have Functionality ... 26

4.3.2 Need to Have Funtionality .. 26

4.3.3 Nice to Have Functionality ... 27

4.4 Flow Chart .. 27

4.5 Sequence Diagram .. 27

4.6 Domain Model .. 28

4.6.1 Consumer .. 28

4.6.2 Nonce .. 29

4.6.3 ProblemSet .. 29

4.6.4 Problem ... 30

4.6.5 AnswerSet ... 31

4.6.6 Answer .. 32

4.6.7 OAuthMetadata ... 33

4.7 Database Structure .. 35

5 IMPLEMENTATION .. 37

5.1 Spring Boot Web Application ... 37

5.2 Configuration .. 38

5.2.1 Java Configuration .. 38

5.2.2 Application.Properties ... 39

5.3 Persistence Repositories.. 40

5.4 Spring MVC Controller .. 42

5.4.1 Autowired Dependencies .. 42

5.4.2 Method Implementations .. 43

5.5 OAuth Validation .. 45

 3(66)

5.5.1 Moodle Request Validation... 45

5.5.2 Nonce Validation .. 46

5.5.3 POST Parameter Validation .. 47

5.6 User Interface .. 50

5.6.1 Description Component UI (CKEditor Rich Text Editor) 52

5.6.2 Problem and Key Components (jQuery.XMLEditor) 53

5.7 Grading Options .. 54

5.7.1 Automatic Pass / Fail Grading .. 54

5.7.2 Manual Grading .. 55

5.8 jQuery.XMLEditor Modifications .. 56

5.9 Grade Reporting Service ... 57

5.9.1 Grade Report Format... 57

5.9.2 Building the Authorization String ... 58

6 CONCLUSIONS .. 61

6.1 Overall Result ... 61

6.2 LTI Specification .. 61

6.3 Challenges ... 62

6.3.1 LTI Implementation .. 62

6.3.2 jQuery.XMLEditor .. 63

6.4 Future Work .. 65

6.4.1 Continue Rewrite of jQuery.XMLEditor 65

6.4.2 Extract 0-Legged OAuth signing library..................................... 65

7 REFERENCES ... 66

 4(66)

LIST OF FIGURES AND TABLES

Table 1 : ToolController Route Mappings ... 43

Figure 1. Spring Framework Overview. ... 11

Figure 2. LTI Communication. .. 13

Figure 3. Zero Leg OAuth Process. ... 14

Figure 4. Code Organization. ... 19

Figure 5. User Interface Flow. ... 27

Figure 6. User Sequence Diagram. .. 28

Figure 7. Consumer UML Diagram. ... 29

Figure 8. Nonce UML Diagram. .. 29

Figure 9. ProblemSet UML Diagram. ... 30

Figure 10. Problem UML Diagram. .. 31

Figure 11. AnswerSet UML Diagram. .. 32

Figure 12. Answer UML Diagram. .. 33

Figure 13. OAuthMetadata UML Diagram. ... 34

Figure 14. Database Schema. ... 35

Figure 15. Flyway Database Migration Script Conventions 36

Figure 16. Sample Migration – AnswerSet. .. 36

Figure 17. Spring MVC Controller Function. .. 42

Figure 18. User Interface - Instructor Home. ... 50

Figure 19. User Interface - Description Component. 53

Figure 20. User Interface - Visual XML Editor Component. 54

Figure 21. User Interface - Manual Diff Grading. ... 56

Figure 22. jQuery.XMLEditor Code Organization. .. 56

Code Snippet 1. Application Main. .. 37

Code Snippet 2. WebMvcConfigurerAdapter. ... 39

Code Snippet 3. Sample application.configuration file. 40

Code Snippet 4. No Implementation ConsumerRepository. 41

 5(66)

Code Snippet 5. Convention based query methods – AnswerSetRepository. 41

Code Snippet 6. Native Query Definition – NonceRepository. 42

Code Snippet 7. Grade Student Attempts Controller Method. 44

Code Snippet 8. View Template Definitions. .. 44

Code Snippet 9. Grade Student Attempts View Template. 45

Code Snippet 10. Nonce Validation. .. 47

Code Snippet 11. POST Parameter Validation. ... 47

Code Snippet 12. Compute OAuth Signature. ... 48

Code Snippet 13. Encoding Parameter Keys and Values. 48

Code Snippet 14. Parameter String Concatenation. .. 49

Code Snippet 15. Base String Concatenation. .. 49

Code Snippet 16. Encrypt and Hash the Base String. 50

Code Snippet 17. Edit ProblemSet View Template. .. 51

Code Snippet 18. Edit ProblemSet View Template Scripts. 52

Code Snippet 19. Autograder Implementation. ... 55

Code Snippet 20. Sample Modification - jQuery.XMLEditor. 57

Code Snippet 21. ReplaceResultRequest Grade POST Format. 58

Code Snippet 22. Build Grade POST Authorization String. 59

Code Snippet 23. Building the Body Hash for the Grade POST. 60

Code Snippet 24. Signing the Grade POST. ... 60

 6(66)

ABBREVIATIONS

AOP Aspect Oriented Programming

API Application Programming Interface

BSD Berkeley Software Distribution

CSS Cascading Style Sheets

GPL GNU Public License

HTML Hypertext Transport Markup Language

IDE Integrated Development Environment

IEC International Electrotechnical Commission

IED Intelligent Electronic Device

JAR Java Archive

JPA Java Persistence API

JPQL Java Persistence Query Language

JSON Javascript Object Notation

JVM Java Virtual Machine

LGPL Lesser GNU Public License

LMS Learning Management System

MPL Mozilla Public License

MVC Model View Controller

NIO Nonblocking Input Output

 7(66)

OAUTH Open Authentication

POM Project Object Model

RDBMS Relational Database Management System

SCL Substation Configuration Language

SQL Structured Query Language

URL Uniform Resource Locator

WAR Web Archive

XML Extensible Markup Language

XSD XML Schema Definition

 8(66)

1 INTRODUCTION

Energy Technology ICT is a Professional Basic Studies course in the Bachelor of

Engineering – Information Technology degree at Vaasa University of Applied Sci-

ences.

IEC 61850 is a standard for Substation Automation design that focuses on modeling

the information available from different primary equipment and from the substation

automation functions, specifying the communication between the IEDs of the sub-

station automation, and on defining a configuration language used to exchange con-

figuration information. (Zhang and Gunter 2011, 8)

The primary objective of the Energy Technology ICT course is to provide students

with an understanding of data communication in the field of power distribution and

transmission networks, with focus on the IEC 61850 Standard and the Substation

Configuration Language (VAMK Curricula, 2014). Such understanding is essential

to providing value to local industries which focus on the energy business and de-

veloping marketable skill growth for students entering professional life.

However, reaching this objective from a pedagogical standpoint has proved chal-

lenging with regard to providing the students with tasks which can measure their

understanding of theoretical concepts as taught from the textbook and other lecture

driven sources.

This thesis work has the goal of providing such tools to the Energy Technology

ICT course to aid the course instructors in challenging students to learn with

hands on application of their studies and measure their aptitude in a concrete and

specific manner.

 9(66)

2 RELEVANT TECHNOLOGIES

The project solution was written in Java, leveraging Spring Projects to provide

dependency injection, embedded http server, dynamic interface driven persistence

support, and an MVC web application pattern on the Tool Producer server code.

Application data is persisted to MySQL RDBMS. The jQuery library was used to

supplement the client side Javascript code which integrates the jQuery.xmleditor

and CKEditor components and communicates user input back to the server.

2.1 Java 7

Java SE 7 was a major release of the Java language and class libary in 2011. The

primary language features introduced were the new diamond operator for

instantiation of generic types, using strings in switch statements, automatic resource

disposal in try statements, the new file system API (NIO 2.0), and support for

dynamic language implementation on the JVM via the new java.lang.invoke

package.

2.2 Spring Boot

Spring Boot is a project that enables building stand alone web applications that do

not carry a dependency on an application server or an external servlet container.

Web applications built with Spring Boot carry an embedded version of Tomcat or

Jetty and produce a single runnable java archive (JAR). Spring Boot does also

provide configuration options for generating a web application archive (WAR) that

may be deployed to a lightweight servlet container or application server.

A key innovative feature of Spring Boot is that of automatic detection of

dependencies and default configurations by convention which minimizes the

amount of configuration required to build and deploy a web application. When the

provided default configurations are unsuitable for use, override is possible by either

providing an implementation of a base class or interface and registering with the

application context or via specification in a configuration file.

 10(66)

Spring Boot was first released with 1.0.0.RELEASE in March of 2014, and at the

time of this project was on version 1.2.2.RELEASE.

2.3 Spring Data JPA

Spring Data is a sub-project of Spring Data, which is a parent project containing

sub-projects which enable easier use of databases and data access technologies.

The Spring Data JPA project simplifies the implementation of application data

layers by eliminating the need for repetitive boilerplate code to implement simple

queries and functionality such as pagination and auditing. By inspecting classes

annotated with JPA annotations Spring Data JPA can provide full default repository

implementations complete with a DSL specific to your entity classes for query

generation by simply declaring an interface of the desired type.

Spring Data JPA version 1.0.0.RELEASE was first introduced in July of 2011, with

the current version at the time of this project being 1.7.2.RELEASE.

2.4 Spring Framework

Spring Framework is an open source programming model for building enterprise

applications. Key features are dependency injection, transaction management,

support for aspect oriented programming (AOP), an implementation of request

based Model View Controller pattern, web service and webservice client support,

and integrated support for object relational mappers. An overview of the Spring

Framework runtime is shown below in Figure 1.

 11(66)

Figure 1. Spring Framework Overview (Pivotal, 2014).

One advantage of building applications with Spring Framework is that a full Java

Enterprise Edition capable application server is not necessary as a deployment and

runtime dependency. Spring Framework was initially introduced in 2005 and at the

time of this project is currently on version 4.1.5.RELEASE.

2.5 Flyway

Flyway is a database migration tool that can be embedded in an application archive.

The tool is configured with the destination schema, and creates its own version table

in the schema in which it stores a list of changes to the database schema and or data

and a checksum of each script that is run. The schema migrator works by reserving

a directory in the project structure for sql files named according to a specified

convention.

On every application startup, the Flyway tool will query the database version table

and compare the entries and checksums with the files in the reserved migration

directory. Should there be migrations that have not yet been applied to the database,

Flyway will execute the missing migrations to bring the database up to current state.

The benefit of such a tool is that the application and database states can be

synchonously updated in deployment without consideration for executing database

 12(66)

scripts in downtime, and deployment of applications can be a much more

streamlined and automated process.

2.6 Freemarker Templating Engine

Freemarker is a Java class library which focuses on merging Java objects with a

defined template file to produce a text output. While Freemarker can be used to

generate any format of text output given a suitable text template and object, the

primary focus of the library is to provide a practical and efficient engine for

generating HTML pages in an MVC architecture. The current version of the

Freemarker library is 2.3.20 and it is provided under the BSD license.

2.7 Moodle

Moodle is a configurable open source all-in-one learning platform that is used by

tens of thousands of learning environments around the world. While it is backed by

Moodle HQ, an Australian company with a dedicated team of developers

financially supported by Moodle Partners (Moodle 2015.), the project is developed

in an open source model with hundreds of international contributors. Moodle is

implemented in PHP language and at the time of this project was on Moodle version

2.8.

2.8 LTI 1.1 Specification

Learning Tools Interoperability (LTI) is a specification backed by IMS Global

Learning Consortium as a ”standard way of integrating rich learning applications

with platforms like learning management systems, portals, or other educational

environments.” (IMS Global 2015: Developers)

The LTI specification is implemented by both the learning management system,

called the Tool Consumer, and the external tool, which is called the Tool Producer.

Competing implementations of Learning Management Systems include

Blackboard, Moodle, Desire2Learn, Sakai, Coursera and Instructure.

 13(66)

LTI 1.0 was initially released in 2010 providing basic access to external tools from

learning management systems, with an update following in 2012 to LTI 1.1 which

provided basic support for returning a grade back from the external tool to Moodle.

An LTI launch diagram shown below in Figure 2 shows the launch process. The

user visiting Moodle in their browser clicks on a link to a resource configured to

launch a Tool Provider. Moodle prepares a set of launch parameters and securely

signs them using OAuth and then sends them back to the users browser, where

Javascript code in the Moodle page the user is on will POST those parameters to

the Tool Provider, which will, if the parameters are validated, deliver the content to

the users browser to be embedded in the Moodle page.

Figure 2. LTI Communication (IMSGlobal, 2015)

The LTI 1.2 specification update provides for a smoother transition to LTI v2.0,

with some existing optional parameters being upgraded to recommended status, and

profiles for tool consumers which will allow dynamic discovery of functionality by

Tool Providers.

LTI 1.2 technically supports LTI Outcomes Management version 2.0, which

extends the basic outcomes, i.e. grades, but is being documented seperately by the

specification which means that a Tool Consumer or Learning Management System

 14(66)

can be certified as LTI 1.2 compliant without actually implementing the basic

outcomes extensions.

The 1.2 specification was finalized along with a revision to the v2 specification in

early January of 2015, following the public draft of the LTI Outcomes Management

v2.0 on December 14th of 2014.

2.9 OAuth 1.0

OAuth is an open standard for authorization which specifies a manner of accessing

secured resources or assets without sharing login information. OAuth 1.0 has

several authetnication mechanisms which may be used to secure access, including

a two-legged mechanism which generates an additional prompt for users to log in.

This approach is used frequently on internet sites which provide the option to log

in with your Facebook or other social account credentials.

Another approach, shown in Figure 3, is a zero-legged or signed fetch mechanism

where an application that has already authenticated the user builds a request and

signs it using a cryptographic hash, which it submits to a service which will

authenticate the request and provide access to the restricted resources.

Figure 3. Zero Leg OAuth Process.

2.10 jQuery

 15(66)

jQuery is a powerful open source Javascript library which provides a useful and

necessary abstraction layer over the inconsistent Javascript and CSS rendering

engines of the various web browsers. It also provides straightforward

implementations of document object model manipulation and asynchronous

javascript data exchanges with servers.

2.11 CKEditor

CKEditor is a highly configurable open source What You See Is What You Get

Javascript text editor component that can be embedded in an html page to provide

word processor like features in line with page content.

It is provided under the GPL, LGPL, and MPL open source licenses, and at the time

of this project was on version 4.4.7.

2.12 jQuery.XMLEditor

jQuery.XMLEditor is an open source web browser based XML editor. It is a

Javascript component which provides a graphical tool for creating or modifying

XML documents from inside the web browser. In the right hand pane of the tool a

list of current options for next elements is provided given the current location in the

structure, which is represented visually in the main pane to the left of the schema

pane.

In the default configuration of the component there is a mode selector at the top of

the menu bar that allows switching between the visual XML representation view

and a view populated by a rich text editor which shows the raw XML structure that

has been built in the visual representation view. This feature has been disabled due

to an incompatibility with the integration of this 3rd party component and the

CKEditor used on the same page.

It is provided under the Apache 2.0 license and is released unversioned from the

project Github repository.

2.13 XMLUnit

 16(66)

XMLUnit is a Java class library which allows semantic comparison of XML data

structures. A semantic comparison evaluates the meaning of the structure instead of

only the exact duplication. This is important because whitespace and element

ordering are often irrelevant when comparing structures. While XMLUnit is

developed with unit testing in mind, we will be using it at runtime to compare the

XML structures created by the students with the XML ’key’ structures created by

the course professor to determine whether they are correct or incorrect.

The XMLUnit class library is provided under the Apache 2.0 license and is

currently nearly v2.0 release. However, in this project we are using version 1.6.

2.14 JsDiffLib

JsDiffLib is a Javascript library which shows a user friendly difference between

two texts, and contains a built in beautification function that can display HTML or

XML structures in a nicely formatted structure instead of one long string.

It is released unversioned on Github (https://github.com/cemerick/jsdifflib) under

the BSD License.

https://github.com/cemerick/jsdifflib

 17(66)

3 PROCESSES AND TOOLS

3.1 Development Process

Due to the Moodle integration issues being the largest unknown of the project work

the adopted development process was executed in a way to get up and running as

quick as possible with Moodle. This approach allowed us to take a more iterative a

feature focused development plan once that integration was completed.

3.1.1 Risk Management

From the beginning of this project it was recognized that there are quite many

components that needed to be integrated smoothly to achieve the final project

deliverable. To manage this risk the functional specification of the application has

defined a core feature set which must be completed to deliver the project, with

remaining nice to have features that may be planned for future work.

3.1.2 Architectural Philosophy

The application structure was designed in a flattened 3 tier structure.

As with a traditional 3-layer application structure we have a domain, service, and

presentation layer. The domain layer contains the objects which represent the model

our system is concerned with manipulating and encapsulated business logic. The

service layer contains the repository interfaces which manage persisting objects in

the domain which require it and scheduled services which perform periodic tasks

in the system. The presentation layer contains our Spring MVC web application,

which depends on the service layer for persistence concerns and on the domain layer

to execute business logic.

Unlike a traditional 3-layer application, a hard division does not exist between

layers and all three tiers exist in the same root package. In larger systems with many

developers working on the same code base this approach is worth the extra time

investment to ensure that the application does not become ”dependency entangled”

as it grows and thus become hard to maintain and extend. With that risk being

 18(66)

minimal for this project we avoid that extra configuration and project management

overhead and ”flatten” the tiers.

We do, however, respect the logical boundaries of the tiers; i.e. domain classes may

not reference service classes or presentation classes, and service classes may not

reference presentation layer classes. All dependencies must point down through the

tiers and codependencies are not allowed across tier boundaries.

3.1.3 Code Organization

As previously discussed in Architectural Philosophy, the project was organized into

a flattened 3-layer model, discussed in detail below, with leaf level package names

in italics, and an image of the code layout later in the discussion.

Our domain layer consists of the entity classes which must be persisted to the

application database and encapsulate domain logic, grading business logic, classes

containing oauth related logic, and utility classes which provide common validation

logic and enumerations useful for strong-typing string based comparisons.

The service layer consists of the repo.interfaces package which contains the

repository interfaces that Spring Data JPA will provide default implementations for

and the scheduled package containing the services which periodically clean the

Nonce table in the database and report available grades back to Moodle. It also

includes one class in the oauth package which validates OAuth requests.

The presentation layer consists of the web package which contains our Spring MVC

web application consisting of configuration classes, controllers, view models which

will be used to transfer data to the view rendering engine, and the Application main

which bootstraps the application and the Spring context.

This code structure layout is shown visually in Figure 4, presented on the following

page.

 19(66)

Figure 4. Code Organization.

Also included in the presentation layer are the static and templates directories in the

root namespace. Spring Boot MVC applications can serve static content from

several locations, but to provide the flexibility of also being able to build as a WAR

instead of only as a runnable JAR, it was necessary to use the static folder in the

root package. By the same token the project’s dynamic templates exist in the

templates directory. These templates are combined with the view models on the

server side to generate the views that will be injected back into the Moodle IFrame.

3.1.4 Convention Over Configuration

Spring Boot was chosen as the platform for the ease and quickness with which one

can get up and running quickly with a basic web application where the behavior is

configured with sane defaults. In aspects where we wish to change those

configurations we may do so but where we do not wish to change those sane

defaults we save quite a bit of man hours that would have been wasted on manually

setting up these configurations.

 20(66)

3.2 Tools

3.2.1 Moodle 2.8 Development Installation

It was essential that we be able to test the development of our LTI Tool Provider

with an LTI Tool Consumer, and since Moodle is the target LMS system it made

sense to install that latest version of Moodle on the development machine.

This also enables the creation of a guide for user administrators guide to setting up

the Tool Provider and configuring access that can be selected by the course

professor or system administrator. In addition, black box acceptance testing was

conducted from the use cases described using the Moodle web interface only. While

access directly to the tool Provider was possible in the development environment,

this is removed for Production use.

3.2.2 jQuery.XMLEditor xsd2json

jQuery.XMLEditor xsd2json is a utility that builds a Javascript Object Notation

(JSON) representation of an XML Schema (XSD). This utility was required to

create JSON representations of the Substation Configuration Language schema

which provide the structure samples for the jQuery.XMLEditor component.

While support exists to transform these on demand, the Substation Configuration

Language schema is not constantly changing so it made little sense to leverage this

feature when we could generate the JSON representations once and serve them as

static resources in the Tool Provider web application.

3.2.3 Git / Github

Git is a distributed version control system which enables workflows that preserve

development effort and helps manage the complexity of changes to a single file by

different feature set implementations or bug fixes that must be executed in parallel.

Git was used as the version control system for this solution, with GitHub public

hosting being used as the repository provider. Interactions with the public

 21(66)

repository were conducted through the git plugins provided in the IntelliJ Idea

development IDE.

3.2.4 Fiddler

Fiddler is a free web debugging proxy that allow intercepting and monitoring HTTP

traffic on the local machine, and composing HTTP POSTs at a low level outside

the application for quick iterative testing of the interface without requiring changes

to the application code and repeated functional testing.

The Fiddler debugging proxy was also vital in the project for debugging

communication level errors between Moodle and the Tool Provider undergoing

implementation, and exposing the raw HTTP POST and GET requests between the

systems to provide insight to the API when the documentation was not completely

clear.

3.2.5 IntelliJ Idea 14

IntelliJ Idea is the most efficient and sophisticated integrated development

environment for building solutions on the JVM. It supports Java, Scala, Clojure,

PHP, Python, Ruby and Groovy out of the box, along with integrated support for

Enterprise frameworks, version control, database tools, cloud service management,

Java EE application servers, and many productivity boosting features like advanced

refactoring and smart code completion with automated code analysis.

While a commercial product, it is free to open source projects and student

developers who register with an academic e-mail address. The current release is

version 14.1.

3.3 MySQL Workbench

MySQL Workbench is a graphical database design and administration tool. In this

project it was used to both view the structure of data in the Moodle database and

explore possibilities for the structure of the solution database.

 22(66)

One very efficient workflow for creating the structure of the database is to do so via

the visual tools and then test for viability. Once the structure is acceptable you can

use the Workbench tooling to generate ’Create Table’ scripts that can be placed into

migration scripts that Flyway can use to recreate the database structure from a blank

schema.

3.4 Apache Maven

Apache Maven is a declarative project management and build tool that is used to

manage dependencies and build solution artifacts. Maven can be installed

standalone as a command line build tool but in this case is used as a plugin which

comes preinstalled and configured with the IntelliJ development environment.

Instead of defining each step in the build process procedurally, we declare the what

goals to execute in each phase of the structured build process which greatly reduces

the boilerplate code and configuration of previous build systems such as Ant.

The core strength of Maven is in the Central Repository which contains versioned

JARs of publicly available class libraries. Defining a dependency on a specific JAR

in the Project Object Model (POM) file will cause Maven to retrieve that

dependency from the repository and place it in the classpath to be referenced by

code and then later the build process.

3.5 Brackets

Brackets is an open source code editor that is itself written in the languages of the

web; HTML, CSS, and Javascript. It is developed by the Adobe Systems

Incorporated, and has a growing eco-system of plugins, code analysis and

refactoring functionality, and build tools that are useful for working with Javascript

applications, which is an area where most Java integrated development

environments are still quite weak.

3.6 GulpJs

 23(66)

GulpJs is a streaming build system used to create build pipelines for front end web

applications. In this project the primary use was to replace the Ruby build process

for the jQuery.XMLEditor and provide quick integration with the browser to speed

development time when rewriting parts of the jQuery.XMLEditor component. An

example of a ”build pipeline” is ”linting” the Javascript code, combining multiple

files of code into a single file, and then minimizing it, obfusciating it if required,

and then copying it to a distribution directory. ”Linting” is a process which analyzes

Javascript code for errors and bad practices which might create unwanted behavior

in the program.

 24(66)

4 SYSTEM DESCRIPTION AND DESIGN

4.1 General Description

The IEC61850 LTI Tool Producer is a stand-alone web application that is access

from inside Moodle as an external tool resource instance.

Each ”resource” in Moodle is a link on the course page that must be created and

configured as an External Tool by the course or system administrator. When this

resource link is clicked by a course administrator or student the IEC61850 LTI tool

web application will be embedded into an IFrame in the course site.

Course administrators accessing this link will be able to create problem sets

composed of a description, a starting XML structure i.e. the question, and an answer

key XML structure.

Alternatively, if a manual grading option has been specified the course

administrator may access a list of completed problem sets ordered by student for

which they may enter a grade for each student – problem set. Each problem / answer

combination is shown as a ”diff” with color coded markings for deviations between

the answer and problem set. Yellow highlights are for elements which are the same,

but have slightly differing answers. Red highlights are for elements which exist in

one structure but not the other.

Students accessing the link will be able to follow the descriptions entered by the

course administrator, which is read only for students, and create their own XML

answer structures that will be compared to the grading key entered by the course

administrator.

Should manual grading be selected by the course administrator, these answer sets

must await grading. If automatic grading is selected by the course administrator,

the XML answer structures the student creates will be more strictly compared with

the answer key with either a pass or fail grade given.

 25(66)

The student may make a number of attempts on the same problem set equal to the

amount set by the course administrator when configuring the resource link.

In both the automatic and manual grading methods, a scheduled service posts the

grades back to the Moodle grade book for the student – resource.

4.2 Security

As an LTI 1.1 external tool, the IEC61850 LTI Tool Provider depends on Moodle

for authentication and authorization. Users who log into Moodle are assigned a role,

and that role is passed in the POST parameters from the Tool Consumer (Moodle)

to the Tool Provider (IEC61850 LTI).

This approach makes the POST parameters the primary attack vector for malicious

intent toward the IEC61850 LTI Tool provider. This intent is secured by a

cryptographic hash which is generated by a fingerprint of all parameter values in

the POST request and a shared secret between the Tool Consumer and Tool

Provider. This shared secret must be securely configured on both ends by system

administration as it is never transmitted between the two systems.

Each request is also accompanied with a Nonce, which is a generated hash string

unique to each request. The Tool Provider keeps track of all Nonce values used in

requests and prohibits the use of one nonce value more than once. This is combined

with the request timestamp to validate incoming requests against replay attacks. If

the request timestamp is more than 5 minutes old, it is rejected. If the request

timestamp is less than 5 minutes old, the Tool Provider checks to ensure that the

Nonce value hasn’t been used in the last 5 minutes, which is how long it keeps

Nonce values stored in the application database.

Tampering with the Nonce value or the timestamp field alters the post parameters

and thus the cryptographic hash value sent to sign the request to the Tool Provider,

which will also invalidate the request.

Security for the Grade POSTS back to the Moodle system follows a ”Plain Old

XML” pattern and the messages are signed using OAuth body signing to ensure

 26(66)

message integrity. The body of the message is XML that follows the schema for the

service operation being requested and the message is signed using the

oauth_consumer_key and oauth_consumer_secret that was used to execute the

launch. (IMSGlobal, 2014)

4.3 Functional Specification

The following listed functionality describes the requirements that must be met for

the IEC61850 LTI Tool Provider to meet the needs targeted in this project.

The requirements changed slightly throughout the project life cycle as it was

demonstrated to the end users. Automated grading was a nice to have feature that

became a must have functionality late in the project life cycle, but was completed

before the thesis completion.

Other nice to have functionality was not completed due to time constraints that

arose due to difficulties integrating front end components.

4.3.1 Must Have Functionality

 Professor Role : Ability to Create Problem Sets

 Professor Role : Ability to Manually Grade Problem Sets

 Professor Role : Ability to set Problem Sets to Automated Grading

 Professor Role : Ability to view grading of Problem Sets

 Professor Role : Ability to set attempt limits on Problem Sets

 Professor Role : Ability to specify the number of Problems in a Problem Set

 Student Role : Must be able to submit answers to Problem Sets

 System : Must be able to report grades back to Moodle

4.3.2 Need to Have Funtionality

 Must be able to validate an LTI 1.1 specification OAuth signed POST

 Must be able to construct a valid LTI 1.1 specification OAuth webservice

request to the webservice exposed for reporting grades.

 Must be able to automatically grade student attempts on a pass / fail basis.

 27(66)

 Must be able to validate and expire Nonce values in the system.

 Must provide ability to display and edit XML structures in a visual manner.

4.3.3 Nice to Have Functionality

 Could also allow professors or course administrators to pre-select existing

problems to allow for more convenient course management.

 Could also allow copying of the ”problem” XML structure to the ”answer

key” XML structure which would allow more convenient modification of

the answer key instead of having to repeat actions.

4.4 Flow Chart

Figure 5. User Interface Flow.

4.5 Sequence Diagram

 28(66)

Figure 6. User Sequence Diagram.

4.6 Domain Model

4.6.1 Consumer

A Consumer is the entity which represents the Tool Consumer, in this case the

organization running the Moodle instance. It has a key, which identifies the

Consumer name, and a SharedSecret which is used to OAuth sign requests between

the Tool Consumer and the Tool Provider.

 29(66)

Figure 7. Consumer UML Diagram.

4.6.2 Nonce

As mentioned in the Security discussion the system must store Nonce values sent

in requests from Moodle after successfully validating them. This entity class

represents those Nonce values and the timestamp of their arrival.

Figure 8. Nonce UML Diagram.

4.6.3 ProblemSet

A ProblemSet, shown in Figure 9, is a collection of Problem entities that represent

the task for the Moodle resource that is used to access the Tool Provider.

 30(66)

Figure 9. ProblemSet UML Diagram.

The primary key identifier of a ProblemSet is the resourceID, which is the resource

identifier sent from Moodle that corresponds to the activity used to access the Tool

Provider. It has data fields for a description, the number of attempts allowed, and a

flag specifying whether the Problems in the set will be graded by the automated

system or manually by the instructor.

The ProblemSet class also encapsulates functionality to find a specific Problem in

the set by the Problem id, functionality to update all Problems in the set or

individual Problems, and the ability to build a collection of Problems if the

ProblemSet entity is not initialized with the constructor that takes in a raw set.

4.6.4 Problem

A Problem represents a single task that the student must attempt. There may be

many Problems in a ProblemSet or only one, as shown by the UML Diagram in

Figure 10 on the next page.

 31(66)

Figure 10. Problem UML Diagram.

A Problem entity is keyed by a database generated Id, and contains a foreign key

which references the ProblemSet parent for the Problem. Each Problem is also

given a SetNumber which defines the ordering of Problems in the Set. A Problem

also contains the description, the problem definition, and answer key which make

up the task. A default description and problem are also provided to initialize the

entity in a way that ensures we do not have the possibility of NULL values in the

database.

4.6.5 AnswerSet

An AnswerSet represents a student attempt at a ProblemSet. It is keyed by an

incrementing database generated identifier, and contains foreign keys linking to the

related Consumer to which the student belongs, the ProblemSet for which it is an

attempt to solve, how many attempts have been made at the ProblemSet, identifying

information for the student, and fields used by the Grade Reporting service.

 32(66)

Figure 11. AnswerSet UML Diagram.

The fields used by the Grade Reporting service are the readytoSend flag, the

serviceUrl, which specifies the webservice provided in the POST parameters when

the student submitted his answers, the resource callback, which is the SourcedId

needed by Moodle to accept a ReplaceResult grade request, and the grade itself.

The AnswerSet class also encapsulates functionality to set the grade with validation

which also sets the readyToSend flag, to create a human readable and consistently

formatted display string for the transmission date, and the ability to add Answers to

the set and increment the number of attempts at the ProblemSet.

4.6.6 Answer

An Answer is an individual attempt at a Problem which may be correct or incorrect.

Answers are keyed by an incrementing database generated identifier, and contains

a foreign key to the Problem to which it is an attempt, shown here in Figure 12.

 33(66)

Figure 12. Answer UML Diagram.

An Answer also contains a field for holding a difference between the Problem key

and the provided answer, and encapsulates functionality for providing a formatted

version of the answer for display in the user interface.

4.6.7 OAuthMetadata

OAuthMetadata is a class which encapsulates some metadata about the Moodle user

and their Moodle session which is used in view generation to provide a personalized

greeting and allow views to access the special redirect url that Moodle can capture

to end the Tool Provider session and return to the Moodle course view instead of

the resource view with Tool Provider content. A UML diagram is provided below

in Figure 13.

 34(66)

Figure 13. OAuthMetadata UML Diagram.

 35(66)

4.7 Database Structure

The database structure in Figure 14 shows graphically the relationships between

entities described in the domain discussion. In addition, we can see the structure of

the schema_version table which is used by Flyway to manage the database

migrations for changes to the IEC61850 LTI Tool Provider.

Figure 14. Database Schema.

The database structure can be built from scratch on an empty schema by merely

starting up the application. The migration scripts, shown below in Figure 15, will

be executed in numerical order until the schema is complete.

 36(66)

Figure 15. Flyway Database Migration Script Conventions

A sample SQL file is provided below in Figure 16, for the AnswerSet entity, which

not only creates the answerset table in the iec61850lti schema but also configures

the primary key and foreign key relationships.

Figure 16. Sample Migration – AnswerSet.

 37(66)

5 IMPLEMENTATION

5.1 Spring Boot Web Application

The foundation of the IEC61850 LTI Tool Provider is a Spring Boot MVC

application with an embedded Tomcat servlet container. The artifact produced by

the Java compiler is a runnable Java archive or JAR, which creates and runs a

SpringApplication on boot. The code of the Application class is shown below in

Code Snippet 1.

Code Snippet 1. Application Main.

The @Configuration attribute designates the Application class as the primary

source for configuration in the application.

@ComponentScan instructs the Spring Boot application to search the package

containing the Application class and all sub-packages for any application

component annotated with the @Component, @Service, @Repository, or

@Controller annotations. These classes will be registered as Spring Beans and are

eligible for autowiring throughout the application.

The @EnableAutoConfiguration instructs the Spring Application that it should

examine the Java archives present in the classpath and create default

configurations for those libraries which it can support with a sane default

configuration.

 38(66)

For instance, by including the spring-boot-starter-freemarker dependency in our

pom.xml file, Spring Boot automatically configures the Freemarker template

engine as the view resolver in our MVC web application.

@EnableScheduling simply allows the Spring Boot application to instantiate its

own scheduler class which may trigger executions of scheduled services which

have been annotated with @Scheduled and live in packages under the root

package.

5.2 Configuration

There are multiple methods of configuration in a Spring Boot application. While

the old method of XML configuration is possible, it is going out of style in favor of

Java, annotations, and property file based configuration. The IEC61850 LTI Tool

Provider relies on all three methods to configure for proper use.

5.2.1 Java Configuration

For some of the Javascript dependencies on the front end it was desired that we

avoid a front end package manager like Bower or the Node Package Manager as it

didn’t seem to be worth the additional effort in project setup and management. An

alternative approach was to leverage WebJars, which packages Javascript

dependencies as Java archive dependencies and allows them to be managed with

Maven.

However, this is not supported out of the box with Spring Boot, so it was necessary

to implement a WebMvcConfigurerAdapter. This class, shown below in Code

Snippet 2, is annotated with the @Configuration annotation which designates the

Java code in the class as a configuration to be picked up by the Spring Boot

application at startup.

 39(66)

Code Snippet 2. WebMvcConfigurerAdapter.

This configuration class specifies that we want to add a location handler which

maps all the WebJars into the /META-INF/resources/webjars folder where we can

reference them from our HTML includes.

5.2.2 Application.Properties

The default application.properties configuration file is supplied in the classpath root

and is packaged with the runnable JAR. This default properties file may be

overriden by an application.properties configuration file supplied in the same

directory as the runnable JAR or in an application.properties file in a config

directory which lives in the same parent directory as the runnable JAR, with this

last option taking the highest priority.

A sample configuration file from the development environement is shown below in

Code Snippet 3, which specifies server ports and post urls, delays for the scheduled

services, debug levels for logging, the datasource connection information, and the

Flyway database schema migration configuration.

 40(66)

Code Snippet 3. Sample application.configuration file.

5.3 Persistence Repositories

Persistence in the IEC61850 LTI Tool Provider leverages Spring Data JPA to

generate repository implementations from defined interfaces. We can then

@Autowire these interfaces where needed in our scheduled services and controller

and Spring will inject these dependencies on instantiation of these classes.

For entities where we only need the ability to FindById and do basic CRUD

operations on the Entity type, we can specify a naked interface and have these

method provided for us. For example, the ConsumerRepository shown below in

Code Snippet 4, where we must only extend the CrudRepository<T,K> interface,

where T is the Entity type and K is the defined primary key type.

 41(66)

Code Snippet 4. No Implementation ConsumerRepository.

For more demanding queries it is possible to provide declarations of query methods

in the interface according to the correct convention and Spring Data JPA will

generate the correct query syntax. For example, in the AnswerSetRepository we

need the functionality to search by AnswerSets which are ready to send and by both

the Student Id and the Resource Id. This approach is shown below in Code Snippet

5.

The method name is specified as findByProblemSetResourceIDAndStudentId. This

will create a query that walks the object graph from ProblemSet to AnswerSet

where the ResourceId on the ProblemSet and the StudentId on the AnswerSet are

equal to the provided input values.

Code Snippet 5. Convention based query methods – AnswerSetRepository.

For even more demanding use cases where there is no support for this convention

based query definition it is possible to define the query via annotations, which can

be in either JPQL or in raw native SQL. This approach is visibile in Code Snippet

6, which shows our NonceRepository which batch deletes all Nonces greater than

a specific time limit, which does not have support in the convention based approach.

 42(66)

Code Snippet 6. Native Query Definition – NonceRepository.

By leveraging this convention based approach and only writing our own data access

queries when necessary we greatly improve our development time and the time

required to implement the infrastructure. This was essential because we required

much of our infrastructure to be functional before we could begin the process of

validating POST parameters from Moodle, and the quicker we could get to this

point the better.

5.4 Spring MVC Controller

The Spring MVC Controller handles requests dispatched from the

DispatcherServlet and FrontController according to the annotation mappings on the

Controller. This dispatch pattern is shown here in Figure 17.

Figure 17. Spring MVC Controller Function.

5.4.1 Autowired Dependencies

Each request will result in the creation of a new ToolController instance, each of

which will be injected with a specific set of dependencies that will be scoped to the

 43(66)

user session. The ToolController requires an OAuthValidator, which validates

incoming requests, an Autograder, which grades student AnswerSet submissions if

automated grading is specified, and repository interfaces for ProblemSet,

AnswerSet, and Consumer.

5.4.2 Method Implementations

All instances of the ToolController share a factory injected instance of an slf4j

Logger which reports errors and security violations into the Tool Provider

application logs.

The following route mappings shown in Table 1 are specified in the ToolController,

which handles all use cases for the IEC61850 LTI Tool Provider.

Table 1 : ToolController Route Mappings

Path HTTP Method Returns Consumes

displayTool POST displayTool ModelAndView x-www-form-urlencoded

edit GET editProblemSet ModelAndView

grade GET gradeAttempts ModelAndView

submitGrade POST submitGrade ResponseBody

attemptAnswer POST answerAttempt ResponseBody

saveset POST saveSet ModelAndView

Route-method mappings which return a ModelAndView have a ModelAndView

instance injected into the controller method to which we set the view name, which

resolves the view template, and we add an Object with a String key that can be

referenced by the view template. Example from the grade functionality shown

below in Code Snippet 7.

 44(66)

Code Snippet 7. Grade Student Attempts Controller Method.

In this example the ModelAndView object is populated with a List of AnswerSet

entities with the VIEWMODEL key, and the view name is set to the

INSTRUCTOR_GRADE key. These keys are included in the controller as static

final String values, shown here in Code Snippet 8, which allow us to reference these

throughout the controller in a much more robust way, i.e. a change to the name of

a template requires a change in only one place, not in several.

Code Snippet 8. View Template Definitions.

When the Template Engine, in our case Freemarker, recieves the template name

and the model collection, it resolves the instructor_grade template, shown below

in Code Snippet 9, and injects the model into the locations specified in the

template. In this case, we iterate through the AnswerSet entities and display a list

of Answers with the Student Id and Student Name as a header. At the end of each

AnswerSet we create an input to which we attach a Javascript method

submitGrade to the onClick handler.

 45(66)

Code Snippet 9. Grade Student Attempts View Template.

5.5 OAuth Validation

The first technical challenge to get something very simple working was being able

to accept POST parameters from Moodle through our ToolController methods and

correctly validate them. To accomplish this task efficiently Fiddler was used to

capture raw POST parameters coming from Moodle and these parameters were

hard-coded into the application so that a normal HTTP GET request would have

these parameters injected and redirected into the HTTP POST method on our MVC

controller.

5.5.1 Moodle Request Validation

Moodle request validation has multiple layers that must all validate. First we must

verify that there are a UserId, Roles, and Resource Id present in the POST

parameters. The UserId and Roles information is required to ensure that the user

has been authenticated and authorized in Moodle, and the Resource Id is required

as it makes up the unique identifier for Problem Sets and Answer Sets in the

IEC61850-LTI Tool Provider Domain.

 46(66)

The POST parameters must also contain a valid Tool Consumer Id that has been

registered with the Tool Provider, an OAuth generated Nonce value, and a

timestamp.

Once verified that these values are present we must not only validate the Nonce,

but the POST parameters as a whole.

5.5.2 Nonce Validation

When validating the Nonce we fail-fast, or invalidate the Nonce if it or the

accompanying timestamp does not exist. Then we validate the timestamp, with the

limit being chosen as 5 minutes. This is a window that seeks to minimize differences

between the system clock on the Moodle server and the system clock on the

IEC61850 LTI Tool Provider server.

If the Nonce already exists in the database or if it has been expired, we invalidate

the Nonce. If it has not expired and does not already exist, we validate the nonce

and save it to the Nonces table in the database as an original request. This approach

is demonstrated in Code Snippet 10.

 47(66)

Code Snippet 10. Nonce Validation.

5.5.3 POST Parameter Validation

After ensuring that the Nonce and timestamp for the request are valid, we must then

validate signature of the POST parameters (Code Snippet 11).

First we must remove the OAuth signature key from the POST parameter set, as it

cannot be used to generate itself on the Moodle end. The remaining parameters are

those which were used to sign the request.

Code Snippet 11. POST Parameter Validation.

Then we must compute the signature for those parameters and compare it with the

computed signature that Moodle sent along with the request, with the root method

shown in Code Snippet 12 at the top of the next page.

 48(66)

Code Snippet 12. Compute OAuth Signature.

This process is broken down into 4 steps:

1. Encoding and escaping the keys and values in the parameter map, shown

here in Code Snippet 13.

Code Snippet 13. Encoding Parameter Keys and Values.

2. Concatenating the keys and values in the parameter map into a parameter

string, shown in Code Snippet 14 on the next page.

 49(66)

Code Snippet 14. Parameter String Concatenation.

3. Concatenating the POST method with the POST url and the parameter

string, Code Snippet 15, below.

Code Snippet 15. Base String Concatenation.

4. And finally encrypting and hashing the result with the Shared Secret, Code

Snippet 16, next page.

Once the POST parameters and the Nonce have been validated then and only

then will the IEC61850 LTI Tool Provider serve content to the Moodle instance.

 50(66)

Code Snippet 16. Encrypt and Hash the Base String.

5.6 User Interface

After the request has been validated, course administrators are welcomed with a

home view providing the options available. In the test environment the user is

named ”Admin User”, so the course administrator is welcomed by name as shown

in Figure 18.

Figure 18. User Interface - Instructor Home.

When choosing to Create or Edit the Problem Set, the course administrator will be

redirected to the instructor edit view which contains the Problem Set for this

Moodle resource link. This Problem Set may contain one or multiple Problems,

which are blank in the case that this is the first access to this resource, or the

previously saved Problem Set instances if this is a return visit to this resource.

 51(66)

Each Problem is represented by three components, one description component

which may contain rich text and links to images uploaded to the Moodle course,

and two XML editor fields for creating the problem definition and answer key to

the Problem.

Each instance of the description rich text editor and visual XML editor components

are HTML TextAreas that hold the underlying data, which is hidden and replaced

with the respective Javascript components; CKEditor and jQuery.XMLEditor

(discussed below).

We create these dynamically in the Freemarker template based on the quantity

and/or existence of Problems in the ProblemSetViewModel returned from the

controller logic, shown here in Code Snippet 17.

Code Snippet 17. Edit ProblemSet View Template.

After the page successfully loads a script embedded in the page (Code Snippet 18,

below) creates the necessary components for each ProblemSet along with

configuring options for the CKEditor description component to reduce clutter in the

toolbar.

 52(66)

Code Snippet 18. Edit ProblemSet View Template Scripts.

5.6.1 Description Component UI (CKEditor Rich Text Editor)

The Description component for each Problem allows the course administrator or

instructor the ability to provide any instructions or external resources required for

the student to be able to complete the Problem assignment. In the example shown

below in Figure 19, a short instruction is given along with a link to a IED spec sheet.

 53(66)

Figure 19. User Interface - Description Component.

5.6.2 Problem and Key Components (jQuery.XMLEditor)

Both the Problem and Answer Key components provide the ability to create an

XML structure by point and click process with select controls and text fields for

restricted value and free text entries. When an element in the main view is selected,

the element listing on the right hand side of the main pane changes to reflect the

available child elements or attributes for the current selected element in the XML

structure.

When no element is selected, the available elements are the top level elements in

the SCL structure as defined by the IEC61850 standard. In the example shown in

Figure 20, below, a Substation is being configured with a Voltage Level of 10 MV.

 54(66)

Figure 20. User Interface - Visual XML Editor Component.

5.7 Grading Options

The grading option for a Moodle resource instance can be specified by passing a

custom parameter to the IEC61850 LTI Tool Provider with a key value of

auto_grade and a value of either TRUE or FALSE, case insensitive.

5.7.1 Automatic Pass / Fail Grading

Automated grading is implemented for a required use case, and leverages the

XMLUnit testing tool to semantically compare XML structures.

When automatic grading is selected each Problem Key and Answer are semantically

compared, with each comparison being graded either Pass, if no semantic

differences are found between the two XML structures, or Fail, if semantic

differences are found. The implementation of the Autograder which uses the

XMLDifference engine provided by the XMLUnit library is shown below in Code

Snippet 19.

 55(66)

Code Snippet 19. Autograder Implementation.

The final grade for the Problem Set will be the proportion of Problems with a Pass

grade divided by the total number of Problems in the Problem Set, and this grade

will be assigned to the Answer Set, as well as the difference string that marked the

Answer as ”Fail” should it exist to the Answer entity. These will be persisted to the

database for the Grade Reporting service to report back to Moodle.

5.7.2 Manual Grading

If the automatic grading POST parameter is missing or is provided with the value

of FALSE, the course administrator may select the Grade Student Attempts option

to view the AnswerSets that correspond to each ProblemSet for each Student, and

submit a grade for each set.

 56(66)

An example of manual grading is shown below in Figure 21. The Problem

description instructed the student to create a Substation with a 10MV Voltage

Level. However, the student, in this case a student named ”admin” has made an

error and created a Substation with a 12mV Voltage Level.

Figure 21. User Interface - Manual Diff Grading.

5.8 jQuery.XMLEditor Modifications

Unfortunately the jQuery.XMLEditor component was not suitable for our use

straight out of the box. When placing more than one instance of the component on

the page major usability issues arose, specifically that interaction with one instance

of the component would modify all instances of the component. Resolving this issue

required some extensive modifications to the library.

Figure 22. jQuery.XMLEditor Code Organization.

As shown above in Figure 22, the jQuery.XMLEditor library is composed of

multiple files that are concatenated at build time into one single Javascript file

 57(66)

which can be minified and included in the script references for the HTML page.

However, there is not one root object that is created, but rather several root objects

that work together to make up the component. These sub-components have no direct

dependency on each other. Instead, they use jQuery selectors to target elements on

each other, which is the root cause of the observed issue with multiple components.

To resolve this issue, we initialize each component with an id attribute, and we have

modified all of the jQuery selectors to take a specificity argument referencing that

id which limits the selector to the scope of the object with that id.

A diff from a source code commit between the original file and the modified file in

Code Snippet 20 shows the extent of the modifications to the component, where

each this.selector was a selector that targeted the id of the component instance. This

had to be done throughout the component, which resulted in several hundred edits.

Code Snippet 20. Sample Modification - jQuery.XMLEditor.

The first attempt was a re-architecting of the component to bring all the Javascript

code for the component under a single root scope, but this proved to be more work

than anticipated and was eventually scrapped in favor of the jQuery selector which

constrained the selection scope.

5.9 Grade Reporting Service

The grade reporting service must be configured when the resource is created in

Moodle, the Tool Consumer. Specifically, in the site administrative configuration

web-services must be enabled, and then in the resource link grade return from Tool

Providers must also be enabled.

5.9.1 Grade Report Format

The format of a webservice call is a POST of application/xml data to a URL that is

specified by the POST parameters from Moodle during the student answer attempt.

 58(66)

Also required in the XML body of the request is the sourcedId that is also included

in the POST parameters from Moodle during the student answer attempt.

This sourcedId is a JSON structure which contains the instanceid, which identifies

the resource, the userid, which identifies the user, the typeid, which identifies the

type of user, the launch id, which specifies the launch attempt for which the grade

is valid, and a security hash which must be returned with the grade POST.

A sample XML structure for the POST is shown in Code Snippet 21 below.

Code Snippet 21. ReplaceResultRequest Grade POST Format.

5.9.2 Building the Authorization String

The Authorization string is a POST parameter that provides Moodle with an OAuth

signature of the request body with the Consumer information and service location.

 59(66)

Code Snippet 22. Build Grade POST Authorization String.

As shown in Code Snippet 22, we must populate the oauth_nonce,

oauth_timestamp, oauth_body_hash, and oauth_signature parameters. The nonce

value is simply 32 random characters generated with the Java SecureRandom

generator, and the timestamp is simply the number of seconds since the Unix

Epoch.

The oauth_body_hash is slightly more complex, being a base64 encoded

representation of an SHA-1 encrypted output of the XML body content. The

implementation is shown below in Code Snippet 23.

 60(66)

Code Snippet 23. Building the Body Hash for the Grade POST.

Then we must build the oauth_signature for the POST parameters, below in

Snippet 24, which now includes the oauth_body_hash.

Code Snippet 24. Signing the Grade POST.

Which is a familiar four part process very similar to building the signature for

comparison when authorizing POST request parameters from Moodle. Those

steps are encoding the keys and values, concatenating the parameter key and value

map into a parameter string, concatenating the POST method and service URL of

the Moodle webservice with the parameter string, and finally encrypting and

hashing that result with the SharedSecret.

 61(66)

6 CONCLUSIONS

6.1 Overall Result

I think the implementation of the IEC61850 LTI tool is a successful project that can

aid educators in teaching the specification to students entering the energy field. One

of my personal goals for this project was to learn new technologies that are

modernizing development on the JVM and on the front end of web applications

with Javascript. I believe I have been successful in this regard as well.

Exposure to Spring Boot has yielded some valuable insight about the future of web

applications which contain their own bare bones application server. While the

official Java EE stack does not appear to be going in this direction, many of the

trends in DevOps are moving toward self contained application servers deployed in

virtual environments that can be spooled up quickly to respond to heavy loads. The

next generation of web application technology from Microsoft, ASP.Net vNext is

also trending in this direction.

In addition to adding some experience on the server side of modern web

applications, the modifications required to the jQuery.XMLEditor allowed me to

explore modern build tools on the client end such as Gulp, which was a new and

valuable experience as well.

6.2 LTI Specification

The LTI specification has become widely implemented by LMS providers but the

feature set is quite limited. One significant impact of the limited feature set of LTI

1.1 is the grading support, which only allows the return of a single floating point

value between 0 and 1. At this point it is not yet possible to return more rich grading

based on models defined in Moodle or significant feedback from manual grading.

The LTI 2.0 specification promises to resolve this issue by providing a free text

field that may be returned via call to the LMS grade reporting web service, but this

is still a very limited feature set that could be improved upon and not all Learning

Management Systems implement the LTI 2.0 specification yet.

 62(66)

Unfortunately the LTI 2.0 specification also brings with it added complexity in the

integration by requiring the development of a Tool Provider proxy, and the feature

set additions aren’t significant enough to warrant taking on the added complexity

of the system design.

The shortcomings of the specification combined with the scarcity of libraries

provided in the LMS ecosystem to execute these integrations and even less current

and up-to-date documentation leave LTI as a poor solution.. but unfortunately one

of the only available solutions.

6.3 Challenges

6.3.1 LTI Implementation

The primary use case of OAuth is that of two-legged authentication which requires

the retrieval of a token which can be approved and signed by the Consumer and

returned to the Producer to authorize access to protected resources. This is the

model used by public APIs like Twitter, Facebook, DropBox, Google, and Tumblr.

The model of zero-legged authentication used by the LTI specification is not so

widely used as it requires some implicit level of trust established between the

Producer and Consumer. The primary challenge this provides is that existing library

support for zero-legged OAuth is very sparse and where existing is often tightly

coupled to other implementation concerns such as Servlets or Spring Security

Filters.

This required that for both accepting the OAuth signed POST parameters from

Moodle to initiate the Tool instance and returning the OAuth signed grade report

back to Moodle that we implement directly from the OAuth specification which

was quite tricky to get correct. The initial estimate on the time investment to

implement the signed fetch process ended up being less than half of the actual time

required to successfully implement it.

With the documentation also being quite sparse, the most successful strategy ended

up being the implementation of a large quantity of logging in the Moodle

 63(66)

implementation recording the requests and responses as they were processed on

Moodle end and resolving errors until requests could be processed.

6.3.2 jQuery.XMLEditor

The jQuery.XMLEditor component provided some difficulty during the

implementation of the thesis work. Initial studies of the component appeared to

show a mature implementation ready to be used in this project, however,

unexpected challenges arose when attempting to integrate this component into the

project.

The specification for the front end requires two instances of the jQuery.XMLEditor

component on the Create / Edit Problem Set page. When placing multiple instances

of the component, it was observed that changes and selections to one component

interacted with both components and broke integration with the underlying

CKEditor components.

Upon investigation, it was found that quite much of the functionality inside

jQuery.XMLEditor was implemented using jQuery selectors that had no qualifier

unique to the component. With investigation showing that no competing component

providing the same or even similar feature set existed, it was resolved that the best

course of action was to modify the source of the component to bring it into a usable

state.

Modifications were made under object oriented design principles where child

components instances are injected into parent component instances and related

components are interacted with via subcomponent interface, not via jQuery

selector.

However, this approach has also proven to have some downsides, as the integration

with the underlying CKEditor is not resolved.

With the specification for the page also using a standalone CKEditor, there are some

conflicts with how jQuery.XMLEditor handles the child instances of CKEditor that

it manages, namely that it can only track via instance number and not via a unique

 64(66)

identifier. As an immediate workaround, the CKEditor functionality has been

hidden from view and disabled.

 65(66)

6.4 Future Work

6.4.1 Continue Rewrite of jQuery.XMLEditor

The jQuery.XMLEditor component was chosen for this project implementation

largely on the fact that it is the only open source component with the feature set

required to meet our needs. It does so, but is very limited due to some design flaws

as previously discussed. The implementation is also based on the jQuery Widget

technology which is quite deprecated in modern web development.

With HTML5 technologies coming to life and wide support on the horizon it might

make sense to re-implement the component as an HTML5 WebComponent or

alternatively a ReactJs component for use in modern single page application

development. Such development should be undertaken with the goal of delivering

a self-contained component that does not play in the global namespace of the

browser DOM.

6.4.2 Extract 0-Legged OAuth signing library

One of the early difficulties was that there doesn’t exist a good library that focuses

on OAuth signing. There are many that focus on providing OAuth security in the

token based 2-legged model, such as is needed to authenticate using Facebook or

Google, and Spring Security also offers a built in solution. However, none support

0-Legged OAuth signing in a straightforward manner that doesn’t also attempt to

intrude and become tightly bound to the application which is not a trade-off worth

making for many applications.

A library which provides straightforward 0-Legged OAuth signing and verification

might be quite valuable to the open source LMS community.

 66(66)

7 REFERENCES

IMS Global Learning Consortium. IMS Global Learning Tools Interoperability

Implementation Guide. Accessed 15.12.2014.

http://www.imsglobal.org/lti/ltiv1p2pd/ltiIMGv1p2pd.html

IMS Global Learning Consortium. Developer Tutorials. Accessed 23.04.2015.

http://developers.imsglobal.org/tutorials.html

IMS Global Learning Consortium. Developers. Accessed 23.04.2015.

http://developers.imsglobal.org/

Moodle. 2015 About Moodle. Accessed 22.04.2015

https://docs.moodle.org/28/en/About_Moodle

Pivotal. Spring Framework Reference. 2014. Accessed 21.04.2015

http://docs.spring.io/spring/docs/current/spring-framework-

reference/html/overview.html

VAMK, University of Applied Sciences, Curricula – Energy Technology ICT.

Accessed 23.04.2015. http://www.puv.fi/opsweb/?lang=en&code=IITA0503

Zang J. and Gunter C. 2011. IEC 61850 – Communication Networks and Systems

in Substations : An Overview of Computer Science. University of Illinois at Ur-

bana-Champaign. PDF. Accessed 23.04.2015. http://seclab.web.cs.illi-

nois.edu/wp-content/uploads/2011/03/iec61850-intro.pdf

http://www.imsglobal.org/lti/ltiv1p2pd/ltiIMGv1p2pd.html
http://developers.imsglobal.org/tutorials.html
http://www.puv.fi/opsweb/?lang=en&code=IITA0503
http://seclab.web.cs.illinois.edu/wp-content/uploads/2011/03/iec61850-intro.pdf
http://seclab.web.cs.illinois.edu/wp-content/uploads/2011/03/iec61850-intro.pdf

