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Summary 

This Bachelor’s thesis was done for Wärtsilä at the department “Ship Power Engines, Research & 

Development” situated in Vaasa. The goal of this thesis was to create a design tool for simplifying 

the generation of partitioning lists. Some of the requirements issued were semi-automatic 

updating of information sources, export functionality for completed lists and also a concept study 

on how all this could be improved in the future. The end result is a tool based on Microsoft Excel, 

with functions coded in Visual Basic for Applications. 
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Tiivistelmä 

Tämä lopputyö on tilattu Wärtsilän Ship Power Engines, Research & Development -osastolle 

Vaasassa. Työn päämääränä oli luoda suunnittelutyökalu partitiontilistojen suunittelutyön 

helpottamiseksi. Työkalulle asetetut vaatimukset olivat muun muassa tietolähteiden semi-

automaattinen päivitys, valmiiden listojen vienti PDF-muotoon ja myös tutkimus siitä, miten näitä 

prosesseja pystyttäisiin tulevaisuudessa parantamaan. Lopputulos on työkalu, joka perustuu 

Microsoft Exceliin, ja johon on lisätty VBA:lla ohjelmoituja toimintoja. 
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Abstrakt 

Detta examensarbete gjordes åt Wärtsilä på avdelningen Ship Power Engines, Research & 

Development i Vasa. Målet med arbetet var att skapa ett designverktyg för att underlätta och 

förenkla genereringen av partitioneringslistor. Några av kraven på verktyget var semi-automatisk 

uppdatering av informationskällor, export av färdiga listor till PDF och även en undersökning på 

hur detta skulle kunna förbättras i framtiden. Slutresultatet blev ett verktyg baserat på Microsoft 

Excel, med funktioner programmerade i Visual Basic for Applications.  
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UNIC = UNIfied Control 

UNITool = Wärtsilä engine software configurator tool 

CR = Common Rail 

DF = Dual Fuel 

SG = Spark ignited Gas engine 

VBA = Visual Basic for Applications 

ISO code = Standardized instrument code and description 

CSV = Comma Separated Value file 

USC = Unic Standard Component list 

SID = Standard Instrument Database 

RFC = Request for change 

PME = Project Management & Engineering 

IDM = Internet Document Manager 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1 Introduction 

Wärtsilä is a global corporation with its headquarter situated in Finland. It consists of 200 locations 

scattered across 70 countries and it employs more than 17,700 workers as of 2014. The company 

divisions Ship Power and Power Plants specialize in complete lifecycle solutions for the marine and 

power generation market. Wärtsilä also has a division called Services. It aims to provide everything 

from spare parts, field service, commissioning to environmental solutions. Wärtsilä is listed on 

NASDAQ OMX. [1] 

 

Figure 1. Wärtsilä logo [2] 

1.1 Background 

I first became a trainee at Wärtsilä in 2012 for a summer job at the department “Ship Power Engines, 

Research & Development”, situated in Vaasa. My daily tasks there were making configuration 

packages and maintaining these configurations for laboratory engines. What the configuration does 

is that it tells the software package used on the engine how many cylinders are present, and how all 

the instruments are wired. Troubleshooting errors caused by bad configurations were also a 

common practice here. My contract got renewed in 2013, and I’ve worked part time in between 

summer jobs. In the middle of the summer 2014, I attended a workshop with the topic “UNIC design 

tool”. The outcome of the workshop was an opportunity for me to start my Bachelor’s thesis. The 

work was to develop a tool to simplify the way of working with partition lists. After my current 

contract ended I was hired to develop this tool. 

1.2 Thesis objectives 

The timespan for this thesis spans from Q3 2014 to Q2 2015.The end goal is a tool that simplifies 

making device/partitioning lists for the UNIC system. The tool should also semi-automatically fetch 

the newest available instrument information from external sources. To make the tool more 

compatible with other in-house tools, it was decided that it should be based on a Microsoft Excel 

template, running all specialized features as VBA code. Figure 2 shows how the Design Master’s 

import/export features should function. 
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Figure 2. Data flow visualized. Design Master template semi-automatically updates data sources 

(USC and ISO) with VBA. It can also export the completed design as a .PDF file 

Semi-automatic updating implies that the user may initiate an update of the data sources via a 

macro equipped button, and must manually confirm the revision he wishes to update to. Fully-

automated updating would fetch the newest revision directly from the database, but the current 

SIDEX database doesn’t support this type of queries yet. This functionality would be possible to add 

further down the line when the database matures. 

 

The tool is by its nature a short term solution, which will be used for a few years until a better 

alternative is available. While AutoCAD electrical matures, the need for a better alternative is 

growing fast. Part of the thesis was also to plan for a future alternative.  
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2 Theory 

2.1 USC and ISO lists 

The Unic Standard Component (USC) list contains instruments used on Wärtsilä engines. This list goes 

into detail on what make and model the instruments are, and technical drawing links as well. The USC 

list is an .xslx file maintained on the Wärtsilä intranet. 

The ISO code list contains code abbreviations and their descriptions. This list also contains min/max 

values for communication protocols, hardware limits and much more. This task will only focus on the 

abbreviations and the code descriptions. An example of an ISO code would be TE101. The TE part 

defines it as a temperature associated code, and the 101 number defines it as fuel output. There are 

thousands of ISO codes, the list constantly increasing with time. The ISO codes are maintained in the 

SID database and can be fetched from this database via a Java applet. 

The Design Master needs these two information sources to automate and autofill content when 

creating a partitioning list. This reduces manual labour. Handling the revision number for these data 

sources is also crucial. This functionality is described in chapter 4.1. 

 

Figure 3. Information sources and their formats. Note that ISO codes can be in .CSV or .XML format 

2.2 UNIC 

UNIC is Wärtsilä’s engine automation system. It stands for UNIfied Controls – “One system for one 

Wärtsilä”. Depending on the complexity of the engine, different levels of automation are required. 

By having a unified system, Wärtsilä can optimize reliability, flexibility and cost efficiency. The same 

architecture can be applied to all engines, regardless of fuel setup, amount of cylinders or rated 

engine output. Especially gas engines have paved the way for more electronics and adaptive 

software. Diagnostics and fault tracing also become easier with a standardized system. 
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Figure 4. UNIC Bus design and main components. [3] 

The engine control system on a Wärtsilä engine consists of different modules connected with a dual 

CAN bus for redundancy. All these modules have sensors, actuators, injector outputs etc. wired to 

appropriate hardware channels. These channels are in turn named after their instruments’ intended 

functions, e.g. Analog Input X, Digital Output Y etc. They can be further broken down into pin 

numbers, for instance X25-1, X25-2 etc. The main concern when creating a partitioning list is 

connecting the instruments to hardware channels. Factors like but not limited to cable length, bank 

division, previous installations or specialized instruments, all affect the planning phase of the 

hardware partitioning. [3] 

2.3 Partitioning / Device lists 

The device and partitioning lists contain information on what instruments are used on an engine, 

and where they are connected. These lists can in turn be used to create drawings for electrical 

connections or used as templates when creating configuration packages for the engine automation 

system. A partitioning list shows hardware channel, ISO-code, ISO-code description, Material nr, 

Drawing nr, Article and a few additional descriptions. A device list filters away everything that 

doesn’t have a material number and sorts the system from A – Z. All engine installations have their 

own lists, but the lists created with this tool will mainly be for upcoming engine types. The current 

way to handle these lists are in spreadsheet format for speeding up automated processes but can 

also come as a regular text file to improve readability. 
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2.4 AutoCAD Electrical 

AutoCAD Electrical 2015, a product made by Autodesk, was selected as the preferred tool within 

Wärtsilä when it comes to creating electrical drawings and schematics. To make AutoCAD more 

efficient for Wärtsilä’s purpose, custom blocks and functions containing the models and naming 

schemes for the UNIC system have been created. During the test runs with it, software limitations 

were noted and reported directly to Autodesk, and the application will hopefully improve with 

future releases. Getting the link between partitioning lists and AutoCAD is not in the scope for this 

thesis, but it is relevant for future development. Achieving this link would imply quicker creation of 

content and less re-entering of already existing information.  

 

Figure 5. AutoCAD Electrical Logo [7] 

3 Visual Basic for Applications 

Visual Basic for Applications, a product made by Microsoft, is an implementation of their 

programming language Visual Basic. VBA is included in every Microsoft Office application. VBA is an 

event-driven programming language determined e.g. by mouse clicks, key presses or messages from 

other programs. The ability to record macros, to turn complex manual labour and formatting into 

easily understandable code is one of the main selling points for this programming language. VBA can 

also import data from external sources and files, a functionality which is crucial for the Design 

Master. VBA has been used in many custom tools inside Wärtsilä, mainly because of its simplicity, 

but also because it is readily available on every workstation within the organization. 

3.1 Microsoft Excel & VBA 

Microsoft Excel, current version 2013, is a spreadsheet application. All workstations within Wärtsilä 

come with the Microsoft Office package preinstalled, with Excel being one of the members in this 

package. During the planning stage for the thesis, the decision whether to use Access or Excel had to 

be made. They both contain VBA capability in their standard form. Access can be more useful when 

it comes to complex queries or bigger projects that won’t fit in a single spreadsheet. [8] Since a 

typical list created with the Design Master will only contain around 350 entries, it was decided that 

Excel will be more than enough for the task.  
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3.2 Modules and subs 

All code written in the VBA language is put into modules. These can be edited with the Visual Basic 

Editor. These modules can contain subs and functions. A sub is code that executes a manipulation 

with objects. A function is like a sub but returns a value when it has finished. Figure 6 contains an 

example of a sub and a function. [8] 

 

Figure 6. Sub and function example 

3.3 Recording macros 

An example on how to record a macro can be seen in figure 7. By first clicking the Record Macro 

button, under the Developer tab, the recording starts. The user can then manually step through the 

task that needs automating. In this case, the user starts by selecting the A column, right-clicking it 

and selecting hide. After that the recording is stopped by pressing the Stop Recording button also 

found under the Developer tab. The generated code can then be viewed and saved. 

 

Figure 7. Macro record and resulting code 

By generating code this way, no previous coding experience is required. It might not always be the 

most resource efficient way to complete the task, but it’s a good place to start. After generating the 

code, it can be placed in a module and the functionality can be verified easily by debugging it with 

the F8 key, one line at a time.  

 

3.4 Declaring data types 

A variable declaration system is essential to coding languages, and VBA is very flexible in this aspect. 

Commonly used data types in many languages are Integer, Double and Long, but VBA has a special 
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datatype called Variant. This datatype can contain all types of data. While convenient, this can cause 

increased resource allocation. In a small script this is not a problem, but when applications become 

more complex, careful thought should be given to defining data types. Clearly defined data types 

also improve code readability. Figure 8 contains the data type list sorted by size, lowest first. 

Type Size in bytes Description 

Byte 1 Number between 0-255 

Boolean 2 True(0) or False (-1) 

Integer 2 –32,768 to 32,767 

Long 4 –2,147,483,648 to 2,147,486,647 

Object 4 Any object (ActiveX, Access or Class) 

Single 4 –3402823E38 to –1.401298E–45 

Currency 8 Monetary value between ±922,337,203,685,477.5808 

Date 8 Date and time, Jan1. 100 to Dec.31 9999 

Double 8 28-digit number,±1.79769313486232e308 to ±4.94065645841247e–324  

Decimal 14 ±79,228,162,514,264,337,593,543,950,335 

String  String length Set of characters from 1-65400  

String (variable) 10 + length Set of characters from 0-20E9 

Variant (num.) 16 Any valid numeric data type up to the size of a double 

Variant (char.) 22 +length Stores any valid non-numeric data type or types larger than a double 

 

Figure 8. Some of VBA’s datatypes sorted by order of size [8] 

An example on how the flexible variable declaration works in VBA.  

 

 

Dim stands for dimension, z is the variable. The declaration above would assign the variant data type 

to the z variable, resulting in maximum flexibility for storing data. The z variant would then consume 

16 bytes of memory. Suppose we know that the z variable will only contain integers between 0 – 

255. It is then smarter to declare z like this: 

 
 

This will cut down memory usage from 16 bytes to 1 byte, which is a 94% decrease in resource 

usage. Another benefit is that it becomes easier to debug. 
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3.5 Form Controls 

One of the advantages of automating with VBA is the easy linking between scripts and form controls. 

A drag-n-drop system makes planning the worksheet layout a breeze. Figure 9 is an example on how 

to make the connection between a script and a button. 

 

Figure 9. Linking a command button control to VBA script 

 

3.6 ActiveX 

ActiveX is a software framework and an alternative to the Java programming language. ActiveX 

components can be more tailored than standard Excel form controls. For instance their appearance, 

fonts or behaviour can be customized. ActiveX can only be run on Microsoft Windows operating 

systems. In Excel, a few ActiveX components are included by default and can be used with or 

without VBA. [8] 

  

Figure 10. Option button, Form controls compared to heavily modified ActiveX counterpart 

 

The negative side of ActiveX is that you rely on a third party plugin for your functions. During the 

development of the Design Master, ActiveX components were used due to their more appealing 

aesthetics. After the infamous December 2014 Windows update launched, KB2553154, ActiveX 

components stopped working altogether in VBA. This was patched within a month but was enough 

to switch development over to standard Excel form controls to avoid similar incidents in the future. 
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3.7 Error handling 

Error handling is also an important part when designing an application. Most VBA coding neglects 

this part and when things go wrong, very cryptic messages appear to the end-user. Sadly, you don’t 

have much to choose from in VBA, it is not as polished as other programming languages when it 

comes to error handling, “On Error” combined with “GoTo” being the most common remedy. An 

implementation of this can be seen in figure 11. 

 

Figure 11. Code snippet for terminating erroneous scripts gracefully in VBA.  

4 Development, problems and solutions 

To keep the information easily readable and manageable, each entity in the partitioning list is added 

as a row in the main worksheet. To start things off, a toolbar was placed on top of the worksheet. A 

few different clickable form controls were placed on this toolbar. The clickable elements are then 

linked to macros. The toolbar is always on top when scrolling. This is achieved by using the “Freeze 

panes” function. 

 

 
Figure 12. Completed main application toolbar with form controls 

 

4.1 Importing data sources 

Semi-automatic update of data sources was one of the first requirements issued at the start of the 

development. It is also one of the more challenging tasks, mainly because there are three different 

file types to handle. Macros to import data from .XLSX (USC), .XML/.CSV (ISO) were constructed.  
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Figure 13. Updateable data sources. Current revision number next to update button. 

 

To kick off this task, four form buttons were placed on the toolbar. The update buttons are linked to 

individual update macros. The exception buttons are used to add exceptions to the data sources, a 

function that jumps to the end of the data source so the user can add his nonstandard instrument at 

the bottom of the list. This is to be used in the event that a nonstandard component is needed, and 

data sources haven’t yet included it.  

 

Figure 14. Flowchart for ISO-code import macro 
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The macro behind figure 14 is constructed like this. First, it asks the user to locate the file he wishes 

to import. The macro checks if the selected file is in the right format and determines the correct 

approach. For instance, ISO codes can be updated either as an .xml or as a .csv file. A backup of 

current exceptions is created, on a temporary sheet. The new data is then copied over to the Design 

Master document, overwriting the entire page. Finally, the exceptions get reimported at the end of 

the macro. If the import should fail, the error handler takes over and ends the macro gracefully. The 

macro behind the very similar USC import can be viewed in appendix #1. 

An issue when it comes to importing data is that the screen flickers a lot when switching between 

sheets, selecting data and jumping between the two open documents. The solution is to disable 

refreshing the screen while the macro is running. Another benefit here is that it doubles as a speed 

optimization. This optimization is applied at the beginning and end on all macros that have any 

tendency to flicker.  

 

Figure 15. Code snippet for disabling screen updating 

However, caution should be used when using this snippet. If the macro ends prematurely and screen 

updating isn’t reverted to true, excel will appear frozen and won’t respond to any input. This can be 

disastrous for the end user, so the re-enabling of screen updating must be coded into the error 

handler.  

If the planned macro is going to take a long time to execute, disabling screen refreshing will make it 

look like Excel has stopped responding. Another approach to this inconvenience would be to use the 

status bar in the lower left corner to inform the user what stage of completion the code is at. The 

macros for the Design Master are fairly quick, so disabling screen updating is enough for the task. 

 

Figure 16. Code snippet for displaying progress with StatusBar code 
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4.2 Lookups from data sources 

The tool automatically fetches ISO code descriptions, drawing numbers, article descriptions, part 

status etc. from data sources. The information is located in two sheets attached to the main Design 

Master document. More than half of the partition/device list is automatically generated with these 

“vlookup” functions. 

 

Figure 17. Vlookup for ISO Code description field 

If a vlookup fails, there is a way to avoid “N/A” showing up instead of the failed fetched value. An 

IfError wrapped around the vlookup makes the partitioning list a much more visually appealing list. 

This can also be seen in figure 17. 

4.3 Filter by system type 

Filtering the list is probably one of the most important feature in the whole spreadsheet. Lack of a 

good way to filter columns makes the tool appear unstructured. This is the idea behind the System 

column, as seen in figure 18.  

ISO codes in the UNIC system are labelled in hundreds, ranging from 100-900 depending on what 

type of system they belong to (i.e. Charge Air System = 600, Gas System = 900). To quickly get a 

better overview of the list, Excel’s built-in filter function needs to format the whole list by looking at 

the system number. The system number column contains a number ranging from 1-9 and is 

automatically derived from the adjacent ISO code. This column requires no user input. 

 

Figure 18. Function for extracting first digit. The two columns are ISO-Code and System Number. 
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Figure 18 looks at what number comes first in the ISO code, in the previous example, LS107A (blue 

box) is the adjacent ISO code entered, and “1” is extracted to the system number column seen in the 

green function box above.  

4.4 Filtering list with views 

Sometimes a view of the entire partitioning list is wanted, but also the ability to switch to device list 

mode. The functionality to switch between these different modes is set up with option buttons on 

the toolbar and linking them to macros.  

 

Figure 19. Different views section on toolbar 

Another part of the view toolbar is the possibility to change between a print friendly mode, and a 

maintenance mode for regular usage of the tool.  The print mode hides unnecessary tabs like system 

number, cylinder, PIP etc. This makes the spreadsheet more suitable for landscape printing without 

clipping the content. The document automatically enters print mode when exporting as pdf. 

The macro switches the hidden true/false attribute on the columns depending on which view mode 

is desired.  Screen updating is also disabled when this macro runs, a functionality which can be seen 

in figure 15. 

4.5 DASLO lifecycle model 

All instruments currently in use by Wärtsilä have a designated lifecycle status noted in the USC list. 

DASLO stands for Development, Active, Supported, Limited and Obsolete. The target is to keep the 

automation systems in an Active status. After the Active lifecycle state follows the Supported state. 

The policy for this stage is to be able to provide new spare parts. Finally the instrument enters the 

Limited lifecycle status which implies that Wärtsilä can no longer guarantee availability of new spare 

parts. The length of these different lifecycles are confidential and cannot be included in this 

document. [4] In figure 20 the different stages are visualized: 
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Figure 20. DASLO model from Wärtsilä powerpoint [4] 

It is very convenient to be able to spot discrepancies in the planned hardware. The Implementation 

of this is a “vlookup” function that determines the lifecycle status for the planned hardware. This 

information is fetched from the USC sheet. A conditional formatting is applied to the whole column, 

which paints the cell to match the DASLO model colour. Note that “Obsolete” is striped to help 

distinguish it for colour-blind users. 

 

Figure 21. The five different lifecycle models as they appear in the Design Master 

 

4.6 Exporting as PDF 

Hassle free sharing of these lists is achieved by exporting them as PDFs. In this way you only share 

the actual content and get a smaller file size. The PDF format is perfect for a human readable 

printout, guaranteed to have the same formatting no matter what device you open it with. 

A macro is applied here, to quickly get the formatting right. The macro selects the “Print” view, and 

formats the whole document as a landscape template. The header sheet is put as the first page, and 

then the design master sheet follows. The export also suggests a filename according to current date 

& time. If the export should fail for some reason, the error handler takes over and ends the macro 

gracefully.  
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Figure 22. After pressing the export button, the PDF export window appears  

5 Finished program overview and results 

The application was put in use in Jan.2015. A draft for an upcoming engine type was created with 

the tool. After reviewing the work process with the end-user, corrective fixes for a few bugs were 

applied. An example of what the finished tool looks like, with dummy values for secrecy reasons, can 

be viewed in appendix #2. 

5.1 Using the Design Master 

The actual usage is straightforward. The columns with black titles require user input. The grey 

columns are automatically filled with vlookups. If a new row is entered, the functions from the 

adjacent grey cell can be copied to the newly generated row. The grey and black columns can be 

seen in appendix #2. 

5.2 Feedback from users 

The feedback sessions gathered good data from the users. These sessions were held monthly during 

development. A very good way to improve usability is to communicate directly with the end-users. 

An example of such an improvement would be the “HW Channel” lookup sheet, which from a user 

perspective speeds up design work significantly. 



16 
 

 

Figure 23. HW channel tab for vlookup, user initiative 

The information for this tab was not available in this format, but it was created manually from 

looking at hardware diagrams. By using the built-in data validation function on the HW channel, 

duplicate entries are avoided. 

6 Discussion and future plans 

The practical part of this thesis was very interesting and also sufficiently challenging for a person 

with no in-depth understanding of Excel’s programming language. I would like to thank my 

supervisor at Wärtsilä for believing in my ability to solve upcoming problems along the way.  

A concept study on how this information flow should be handled in the future was also made as a 

part of this thesis. The Design Master is a short term solution and in the future, these lists are most 

likely automatically generated and imported/exported effortlessly from Unitool. This speeds up the 

process significantly and would be a huge benefit for both PME and Services. The thesis also sparked 

some RFC cases, mainly concerning the content in the USC list. 

Continuous development and tweaking of this tool will continue to be part of my responsibility while 

it continues to develop. Although the code is well documented, it is always faster to have the person 

who made the code in the first place to troubleshoot it.  
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After a meeting with a senior design engineer from product support, Technical Services’ mission 

became clear. The current way of working involves a lot of manual work when it comes to handling 

drawings and wiring diagrams. Electrical drawings made with AutoCAD should have as little user 

input as possible. Information should be fetched from already existing data. It is unnecessary to 

manually input hundreds of entries already existing in some other format into AutoCAD. The risk for 

user error increases when inputting hundreds of similar entries in a list. It became clear to me that 

the scope of this is not part of the original plan with the Design Master, but it can easily evolve into 

so much more. 

6.1 Risk analysis 

Handling the partitioning list in this way still poses a few risks. When relying mostly on automatic 

generation, combined with data validation on entered fields, you have a very small risk of spelling 

errors. The colour formatting is one way to highlight discrepancies, thus reducing the error rate. 

With these ways of working, the error risk is significantly smaller than with a manually generated list. 

The tool itself has its toolbar protected with Excel’s built-in function “Protect Sheet”, which prevents 

any accidental deletion of crucial formulas or macro buttons. 

Loss of data should not be of any concern with this tool. All documents are stored within Wärtsilä’s 

intranet. The partitioning lists are no exception to this. This is a very fool-proof way to handle 

documents. This in combination with Excel’s built-in AutoRecover and AutoSave functionality keeps 

information from being lost if there’s a power outage or if Excel stops responding. 

6.2 Interview with Unitool developer 

This particular interview proved very fruitful with many good ideas. 

Unitool can already generate a partitioning list based on the configuration. This list, however, is in a 

pretty unfriendly format seen from an automation point of view, currently exported in the 

OpenDocument format .odt. If this list were to become available as an .xlsx format, it would be 

easier to automate processes that need to fetch information from a partitioning list. 
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Figure 24. Unitool Partitioning List export function 

Another future idea would be that Unitool would also have access to the USC information and 

include this in the partitioning list export. The USC list could then become a part of the current SID 

database, instead of a free floating document in IDM. [5]  

 

Figure 25. Possible information flow in future 

When evaluating the planned scope for this thesis, it is safe to say that there is much more to be 

done when it comes to automating related tasks within Wärtsilä. The learning experiences at 

Wärtsilä have been invaluable, and I hope to be part of this development in the future. 
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8 Appendices 

Appendix 1: Example of VBA code, USC update macro 

Appendix 2: Completed application overview 
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APPENDIX 1. 
USC Update Macro  

Function USCUpdate_Click() 
'This sub updates the Unic standard component List' 
'It first prompts the user to input a USC list (.xlsx format) 
'Then it backups current USC exceptions, and imports the new USC data. 
'Finally, the USC revision number is imported. 
 
    Dim FilePath As String          'Filepath, ex. C:\\Filename.txt , defined by user input 
    Dim USC_code_version As String  'String used for filename validation. 
    Dim choice1 As String           'Error handling string for message box 
    Dim DesignMaster As String      'Design master filename used when switching between windows 
    On Error GoTo errHandler        'If macro fails, goto errHandler 
     
        DesignMaster = ThisWorkbook.Name            'Establish current workbook name 
                                                    'Ask user to locate the USC list' 
        FilePath = Application.GetOpenFilename _ 
        (Title:="Enter the newest USC List .xlsx", _ 
        FileFilter:="Excel Files *.xlsx* (*.xlsx*),") 
 
        If strFileToOpen = "False" Then             'Error message 
        MsgBox "No file selected.", vbExclamation, "Error!" 
        Exit Function 
        Else 
        End If 
         
        USC_code_version = Right(FilePath, 20) 
                                                    'USC list file validation based on filename 
             
                If USC_code_version = "Components list.xlsx" Then 
                MsgBox "Component list successfully located, will now be updated to this sheet" 
             
            Else 
                                                    'Error message if file is not found or broken' 
            choice1 = MsgBox("USC List not found or invalid, make sure that 1. File path is correct 2. The 
USC file name hasn't changed since last release 3. The export file is in .XLSX format. USC import 
canceled.", vbOKOnly + vbCritical, "Invalid USC List file") 
            Exit Function 
                        
            End If 
            Application.ScreenUpdating = False      'Speed optimization enable (disables screen updating) 

                                                    'Backup custom USC exceptions, these are temporarily moved                                
to the readme sheet 

            Sheets("Components").Select 
            Sheets("Components").Rows("1000:1200").Select 
            Selection.Cut 
            Sheets("ReadMe").Select 
            Sheets("ReadMe").Range("A14").Select 
            ActiveSheet.Paste 
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            Application.DisplayAlerts = False       'Alerts are disabled, to speed up the macro 
          '(Save file prompt when closing disabled) 
            Sheets("Components").Select             'Delete the old component list sheet' 
            ActiveWindow.SelectedSheets.Delete 
                 
                                                    'Import components from USC list' 
                Workbooks.Open (FilePath) 
                Windows("UNIC Standard Components list.xlsx").Activate 
                 
                                                    'Import revision number to design master sheet 
                    Sheets("Title sheet").Range("A13").Select 
                    ActiveCell.Formula = "=KRONO_version" 
                    Sheets("Title sheet").Range("A13").Select 
                    Selection.Copy 
                    Windows(DesignMaster).Activate 
                    Sheets("Design Master").Select 
                    Range("O3").Select 
                    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
                    :=False, Transpose:=False 
                    Windows("UNIC Standard Components list.xlsx").Activate 
                                                    'Resume importing components 
                 
                Sheets("Components").Select 
                Sheets("Components").Copy after:=Workbooks(DesignMaster). _ 
                Sheets(3) 
                Windows("UNIC Standard Components list.xlsx").Activate 
                Application.DisplayAlerts = False   'Alerts are disabled, to speed up the macro 
                ActiveWorkbook.Close                'Close the workbook, we are done with it 
                Application.DisplayAlerts = True    'Alerts re-enabled 
                 
                                                    'Import custom USC exceptions, back from the readme sheet 
                Sheets("ReadMe").Select 
                Sheets("ReadMe").Rows("14:214").Select 
                Selection.Cut 
                Sheets("Components").Select 
                Sheets("Components").Rows("1000:1000").Select 
                ActiveSheet.Paste 
                                                    'Alert the user that USC List update completed' 
                Sheets("Design Master").Select 
                Application.ScreenUpdating = True'Speed optimization disable (screen updating re-enabled) 
                MsgBox "USC List updated successfully" 
                 
exitHandler: 'When completed, exit the function 
    Exit Function 
errHandler: 'On error, jump here 
    MsgBox "Could not update USC. Macro threw exception" 'Tell the user an error occured 
    Resume exitHandler 'Jump to function exit 
                            
End Function 
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