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1 INTRODUCTION 

 

Biomass has long been used for global heating. Combustion of biomass produces fewer 

emissions compared to fossil fuels, and it poses less ecological impacts. It can also be argued 

that biomass can be seen as a renewable source of energy. Understandably, biomass is 

increasingly becoming an important part of energy supply, especially for industrial uses. 

 

In 2009, biomass shared 10,2 % of global energy supply, of which 13,5 % were used in 

industrial production of heat and power (Vakkilainen et al. 2013). It is estimated that by 2030 

the demand for biomass will double (International renewable energy agency 2014). Therefore, 

more trade of biofuels will take place, and consequently, there will be a greater need for 

technologies to assess biomass quality. 

 

Suppliers of solid biofuel are bound to provide specifications of their product. However, often 

fuel is sold for a higher price than its actual market value, for example, due to a greater 

concentration of pollutants than provided in the specifications. Therefore, there is a great 

interest and demand for equipment that could provide a fast and reliable fuel quality control. 

 

An existing technology for solid fuel quality control is to send fuel samples to a laboratory for 

analysis. It is time-consuming and may be expensive in a long term. The X-ray Fluorescence 

(XRF) technology brings about high quality, fast and non-destructive measurements of fuel 

samples on site.  

 

This thesis project was a preliminary study on feasibility of using a handheld XRF-analyser 

for solid biofuel quality control, particularly for recovered demolition wood. The thesis 

consisted of theory and practical work. The theory covered an overview of global bioenergy 

production, properties of recovered wood fuel and its classifications, description of the XRF 

technology, its limitations and current applications in solid biofuel quality control. The theory 

was obtained from previous publications and research as well as from different public web-

resources of XRF-equipment manufacturers. The practical work was done with a handheld 

XRF-analyser in a laboratory at Mikkeli University of Applied Sciences, Finland. The aim 

was to test how measurement time, distance to a sample, and wood moisture affected the 

results of XRF analysis. The radiation rate doses during the testing were checked, and 

radiation safety was ensured. The thesis was commissioned by Inray Oy Ltd company. 



3 

2 GLOBAL BIOFUEL PRODUCTION 

 

Biofuel is fuel derived from biological material, such as biomass, in forms of solid, liquid or 

gas. Solid biofuel mainly include wood, peat, forest residues, sawdust, animal manures and 

crops. Compared to conventional fossil fuels that are extracted and shipped worldwide, 

biomass is typically produced and consumed locally, and on a small scale. 

 

In 2009, biomass was accounted for 10,2 % of global energy supply as shown in the Table 1. 

65,4 % of biomass was consumed for residential use such as for heating and cooking while 

34,6 % was utilised in industries. More detailed information is summarised in the Table 2. 

With regards to the geographical distribution of global biomass usage, around two thirds are 

used in developing countries (mostly residential use), and the rest is in developed countries 

(mostly industrial use). (Vakkilainen et al. 2013.) 

 

TABLE 1. Global energy supply in 2009 (Vakkilainen et al. 2013) 

Fuel type Energy, EJ % share 

Oil 171 33,6 

Coal 138 27,1 

Natural gas 106 20,8 

Biomass 52 10,2 

Nuclear 29 5,7 

Hydropower 12 2,4 

Other 1 0,2 

Total 509 100,0 

 

TABLE 2. Global biomass supply in 2009 (Vakkilainen et al. 2013) 

Usage Energy, EJ % share Usage category Energy, EJ % share 

Industrial use 18 34,6 

heat and power generation 7 13,5 

industry 8 15,4 

transportation 2 3,8 

other 1 1,9 

Residential use 34 65,4    

Total: 52 100,0    

 

The international renewable energy agency estimates that the global bioenergy demand will 

almost double by year 2030, from 53 EJ in 2010 to 108 EJ in 2030. Particularly, the growth 

will be high in the heat and power generation industry which will expand to around one third 

of total global biomass consumption by 2030. (International renewable energy agency 2014.) 
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3 RECOVERED WOOD FUEL 

 

Recovered wood fuel is defined as wood material received from different categories of waste 

as fuel for heat or electricity generation. Wood waste sources may be grouped into 3 sectors: 

domestic sector, construction and demolition sector, and commercial and industrial sector 

(wooden packaging, wood products manufacture, treated timber products). (PAS 111:2012.) 

 

3.1 Characteristics 

 

Solid recovered fuel (SRF) includes all material mixes that can be incinerated and are certified 

according to the EN 15359 standard “Solid recovered fuels – specifications and classes”. The 

source of SRF is mainly municipal solid waste, commercial and industrial wastes. Typical 

composition of SRF is as follows (in wet weight %): paper: 40-50 %, plastics: 25-35 %, and 

textiles: 10-14 %. In literature, solid recovered fuel category often includes recovered wood 

fuels. (Bankiewicz 2012; Jones 2013.) 

 

Recovered waste wood (RWW) is all wood-based material which originates from waste and is 

intended to be processed for further use. It mainly comes from construction and demolition 

processes. In addition to wood material, RWW typically contains metal parts (nails, wires), 

plastics (flooring, electrical wires), paints and wood preservation treatments (CCA, creosote). 

The Table 3 below summaries different contaminants found in recovered waste wood. 

(Bankiewicz 2012; Jones 2013.) 

 

TABLE 3. Recovered waste wood contaminants (Bankiewicz 2012) 

Contaminant Share, wet weight % 

Surface treated wood 15 

Preservative treated wood 3,5 

Soil 0,6 

Plastics 0,1 

Iron, steel 0,5 

Concrete 0,05 

 

With regards to the chemical composition, RWW is problematic due to the high concentration 

of heavy metals, particularly Cr, Cu, Zn, Cd, Hg, Pb. Paints, lacquers, binders and 

preservatives contribute to the problem of heavy metals the most. SRF is reported to be high 

in chlorine and bromine because of plastics present in the fuel made from municipal waste. 

(Bankiewicz 2012, Vainikka 2011; Jones 2013.) 
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3.2 EN classification 

 

This chapter is divided into 3 parts where each part is a review of a standard for solid biofuel 

classification. Firstly, EN ISO 17225-1:2014 focuses on classification and specification of 

biofuel with amount of halogenated organic compounds and heavy metals not exceeding the 

values of virgin wood. Secondly, EN 15359 gives classification for solid recovered fuel. 

Lastly, a specification PAS 111:2012 (UK) is also described. 

 

EN ISO 17225-1:2014 

The recent standard EN ISO 17225-1:2014 on specifications and classes of solid biofuels is 

binding for the European Committee for Standardization (CEN) members to adopt it to their 

national legislation. The standard is only intended for solid biofuels, including chemically 

treated wood, that do not contain halogenated organic compounds or heavy metals in amounts 

greater than those of typical virgin wooden material or virgin wooden material of a place of 

wood origin. If these elements exceed the norm, then the standard EN 15359 should be used 

for recovered wood classification instead. The Table 4 summarises concentration variations of 

elements in virgin coniferous wood given in the standard. For Cl the values are given in 

percentage of sample’s dry weight. The Table 5 below shows classification of origin and 

source of recovered wood. 

 

TABLE 4. Properties of virgin coniferous wood, ppm dry weight (ISO 17225-1:2014) 

Element Z 

Without or with insignificant 
amount of bark, leaves and needles 

Logging residues 

Typical value, 
ppm dry basis 

Typical variation, 
ppm dry basis 

Typical value, 
ppm dry basis 

Typical variation, 
ppm dry basis 

Na 11 20 10 – 50 200 75 - 300 

S 16 <200 <100 - 200 <200 <200 - 600 

Cl, weight % 17 0,01 <0,01 – 0,03 0,01 <0,01 – 0,04 

K 19 400 200 – 500 2000 1000 - 4000 

V 23 <2 <2 0,6 0,1 - 1 

Cr 24 1,0 0,2 – 10,0 1 0,7 - 1,2 

Mn 25 150 100 – 200 130 80 - 170 

Ni 28 0,5 <0,1 – 10 1,6 0,4 - 3 

Cu 29 2 0,5 – 10 10 10 - 200 

Zn 30 10,0 5 – 50 20 8 - 30 

As 33 <0,1 <0,1 – 1 0,6 0,2 - 1 

Cd 48 0,1 <0,05 - 0,50 0,2 0,1 - 0,8 

Hg 80 0,02 <0,02 - 0,05 0,03 - 

Pb 82 2 <0,5 - 10,0 1,3 0,4 - 4 
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According to the EN ISO 17225-1:2014, specification of solid biofuels includes normative 

(compulsory) and informative (voluntary) properties. There are several criteria to specify solid 

biofuels: 

1. origin; 

2. traded form; 

3. properties such as dimensions, moisture and ash contents.  

Normative properties to be stated depend on the origin and traded form. 

 

TABLE 5. Classification of origin and sources of recovered wood (ISO 17225-1:2014) 

Origin Source Sub-source 

1.2. By-products 

and residues 

from wood 

processing 

industry 

1.2.1. Chemically untreated 

wood by-products and 

residues 

1.2.1.1 Broad-leaf with bark 

1.2.1.2 Coniferous with bark 

1.2.1.3 Broad-leaf with bark 

1.2.1.4 Coniferous with bark 

1.2.1.5. Bark (from industry operation) 

1.2.2. Chemically treated 

wood by-products, residues, 

fibres and wood constitutes 

1.2.2.1. Without bark 

1.2.2.2. With bark 

1.2.2.3. Bark (from industry operation) 

1.2.2.4. Fibres and wood constituents 

1.2.3. Blends and mixtures 

1.3. Used wood 

1.3.1 Chemically untreated 

used wood 

1.3.1.1 Without bark 

1.3.1.2. With bark 

1.3.1.3. Bark 

1.3.2. Chemically treated 

used wood 

1.3.2.1. Without bark 

1.3.2.2. With bark 

1.3.2.3. Bark 

1.3.3. Blends and mixtures 

 

The EN ISO 17225-1:2014 gives 21 major traded forms of solid biofuels and their typical 

particle sizes. Among them are wood chips (5 mm – 100 mm), hog fuel (varying size), 

logwood (50 cm – 100 cm), firewood (5 cm – 100 cm) and sawdust (1 mm – 5 mm). 

However, other forms which are not included in the standard are also possible to be used. 

 

Specification of fuel properties is dependent on fuel’s origin and traded form. For example, 

properties for wood chips and hog fuel are listed in the Table 6 below. 
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TABLE 6. Normative and informative properties for wood chips and hog fuel (ISO 

17225-1:2014) 

Property Value 

Normative for all wood: 

Dimensions (P), mm: 
P16S, P16, P31S, P31, P45S, P45, P63, P100, 

P200, P300 

Fine fraction (F), <3,15 mm weight-

%: 

F05 (≤5%), F10 (≤10%) ... F30 (≤30%), F30+ 

(>30%)   

Moisture (M), weight-% as received: 
M10 (≤10%), M15 (≤15%) ... M55 (≤55%), M55+ 

(>55%) 

Ash (A), weight-% of dry basis: 
A0.5 (≤0,5%), A0.7 (≤0,7%) ... A10 (≤10,0%), 

A10.0+ (>10,0%) 

Informative for all wood: 

Net calorific value (Q), 

MJ/kg or kWh/kg as received,  

or  

energy density (E), 

MJ/m
3
 or kWh/m

3
 loose 

Minimum value to be declared 

Bulk density (BD), kg/m
3
 ≥150, ≥200 … ≥400, ≥450 

Ash melting behaviour, °C Should be declared 

Normative for chemically treated wood 1.2.2 and 1.3.2,  

and  

informative for not chemically treated wood: 

Nitrogen (N), weigh-% of dry basis: 
N0.2 (≤0,2%), N0.3 (≤0,3%)…N3.0 (≤3,0%), 

N3.0+ (>3,0%) 

Sulphur (S), weight-% of dry basis: 
S0.02 (≤0,02%), S0.03 (≤0,03%)…S0.10 (≤0,10%), 

S0.10+ (>0,10%) 

Chlorine (Cl), weight-% of dry basis: 
Cl0.02 (≤0,02%), Cl0.03 (≤0,03%)…Cl0.10 

(≤0,10%), Cl0.10+ (>0,10%) 

 

An example of fuel specifications may be as follows: 

 Origin: Chemically treated used wood (1.3.2) 

 Traded form: Wood chips 

 Properties: Dimensions P45, Fine fraction F20, Moisture M20, Ash A1.5, Nitrogen 

N1.0, Sulphur S0.08, Chlorine Cl0.10, Bulk density BD400. 
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EN 15359 

If recovered wood contains amount of halogenated organic compounds and heavy metals 

exceeding the values of virgin wood, the EN 15359 standard “Solid recovered fuels – 

specifications and classes” should be applied instead of EN ISO 17225-1:2014. According to 

EN 15359 standard, solid recovered fuel (SRF) is fuel derived from non-hazardous waste. If 

properties of solid fuel cannot be confirmed with EN 15359 standard, then this fuel cannot be 

classified as solid recovered fuel. The standard includes demolition waste wood. It gives 5 

classes of SRF for incineration as shown in the Table 7. The purpose of EN 15359 is to 

quickly give a class of solid fuel according to its economical, technical and environmental 

information that are represented by net calorific value, chlorine and mercury respectively. 

(European recovered fuel organisation.) 

 

TABLE 7. Classification of SRF according to EN 15359 

Classification 

property 

Statistical 

measure 
Unit 

Class 

1 2 3 4 5 

Net calorific 

value, NCV 
Mean 

MJ/kg  

(as received) 
≥25 ≥20 ≥15 ≥10 ≥3 

Chlorine, Cl Mean % dry basis ≤0,2 ≤0,6 ≤1,0 ≤1,5 ≤3 

Mercury, Hg 

Median 
Mg/MJ  

(as received) 
≤0,02 ≤0,03 ≤0,08 ≤0,15 ≤0,50 

80
th

 

percentile 

Mg/MJ  

(as received) 
≤0,04 ≤0,06 ≤0,16 ≤0,30 ≤1,00 

 

There are normative and informative values of SRF used for specification in this standard. 

They are grouped into physical and chemical parameters. The Table 8 below provides a list of 

these properties. 

 

TABLE 8. EN 15359 normative and informative parameters for SRF (Merlini 2013) 

Normative physical 

Particle form, particle size, ash content (% dry basis), moisture 

content (% as received) and net calorific value (MJ/kg as 

received/dry basis). 

Normative chemical 

Cl (% dry basis) and all heavy metals listed in the 2000/76/EC 

Waste Incineration Directive, namely Sb, As, Cd, Cr, Co, Cu, Pb, 

Mn, Hg, Ni, Ti and V, mg/kg on a dry basis. 

Informative physical 
Bulk density (kg/m

3
), Content of volatile matter (%) and ash 

melting behaviour (°C)  

Informative chemical 

Al, C, H, N, S, (% dry basis); 

Br, F, PCB, Fe, K, Na, Si, P, Ti, Mg, Ca, Mo, Zn, Ba, Be, Se, 

(mg/kg dry basis) 
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PAS 111:2012 

PAS 111:2012 is a Publicly Available Specification (PAS) designed to provide producers and 

end-users of waste wood in the United Kingdom with a tool to classify wood into several 

categories based on its quality. Waste wood is defined as any type of wood that has been 

discarded or is intended to be discarded. It should be noted that the PAS 111 is not a British 

standard, and other restrictions may apply such as from the 2000/76/EC Waste Incineration 

Directive. The Table 9 below summarises information on how to give a grade to waste wood. 

According to PAS 111:2012, there are 4 classification grades of waste wood: 

“grade A” Clean recycled wood,  

“grade B” Industrial feedstock,  

“grade C” Fuel,  

“grade D” Hazardous waste. 

 

TABLE 9. Grades of waste wood (PAS 111:2012) 

Grade Description 

A 

Solid softwood and hardwood. Packaging waste, scrap pallets, packing cases and 

cable drums. Residues from the production of untreated product. 

 

May contain nails and metal fixings. Minor amounts of paint, and surface coatings. 

B 

May have 60 % of grade “A” material, plus building and demolition material and 

domestic furniture made from solid wood. 

 

May contain nails and metal fixings. Some paints, plastics, glass, grit, coatings, 

binders and glues. Limits on treated or coated materials as defined by the Waste 

Incineration Directive. 

C 

All materials given in “A” and “B” grades, plus fencing products, flat pack 

furniture made from board products and DIY materials. High content of panel 

products such as chipboard, MDF, plywood, OSB and fibreboard. 

 

May contain nails and metal fixings. Paints coatings and glues, paper, plastics and 

rubber, glass, grit as well as coated and treated timber (but non CCA or creosote) 

D 

Fencing, transmission poles, railway sleepers, cooling towers. 

 

Contains material with CCA treatment and creosote. 

 

The following abbreviations are used the Table 9: 

DIY – Do It Yourself 

MDF - Medium Density Fibreboard 

OSB - Oriented Strand Board 

CCA - Chromated Copper Arsenate 
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3.3 Challenging chemical elements 

 

Totally 19 elements of interest have been identified. Of those, 4 elements (Na, K, Br and Zn) 

are included due to their corrosive effect during combustion as found on literature reviews, 

and the other 15 elements are mandatory for solid biofuel quality assessment based on 

recovered wood classifications from the previous chapter. The Table 10 lists the identified 

elements and their source of information. Negative effects of several elements on combustion 

reactors are also discussed below. 

 

TABLE 10. Elements of interest for recovered wood fuel quality control 

# Symbol Element name 
Atomic 

number, Z 
Source of information 

1 N Nitrogen 7 EN ISO 17225-1 

2 Na Sodium 11 Bankiewicz 2012; Sandberg 2011 

3 S Sulphur 16 EN ISO 17225-1 

4 Cl Chlorine 17 EN 15359, EN ISO 17225-1 

5 K Potassium 19 Bankiewicz 2012; Sandberg 2011 

6 V Vanadium 23 EN 15359 

7 Cr Chromium 24 EN 15359, PAS 111:2012 

8 Mn Manganese 25 EN 15359 

9 Co Cobalt 27 EN 15359 

10 Ni Nickel 28 EN 15359 

11 Cu Copper 29 EN 15359, PAS 111:2012 

12 Zn Zinc 30 Bankiewicz 2012; Sandberg 2011 

13 As Arsenic 33 EN 15359, PAS 111:2012 

14 Br Bromine 35 Bankiewicz 2012; Vainikka 2011 

15 Cd Cadmium 48 EN 15359 

16 Sb Antimony 51 EN 15359 

17 Hg Mercury 80 EN 15359 

18 Tl Thallium 81 EN 15359 

19 Pb Lead 82 EN 15359 

 

Chlorine 

Chlorine is considered to be the most dangerous element for combustion reactors. Chlorine is 

common in biomass and present in relatively high concentration. At the superheated 

temperature zone (600 – 700 °C) chlorine forms gaseous compounds such as HCl and Cl2 

which react with iron and chromium in the reactor’s steel causing it to corrode. (Viklund 

2013; Valmari 2000.) 

 



11 

Potassium and sodium 

Potassium, being an important plant nutrient, is a dominant alkali metal in biomass followed 

by sodium. In combustion reactor, they can react with chlorine to form very low melting 

temperature compounds thus creating favourable conditions for ash and soot formation at 

lower superheated temperatures. Ash causes fouling and corrosion of reactor’s surface. 

(Bankiewicz 2012; Sandberg 2011.) 

 

Bromine 

Deposits of bromine compounds (KBr and NaBr) develop corrosion of boiler steel. Bromides 

may cause high temperature corrosion of furnace’s steel as well corrosion of boiler surface at 

low temperatures more extensively than caused by chlorides. (Bankiewicz 2012; Vainikka 

2011.) 

 

Lead and zinc 

Lead and zinc are both heavy metals, and they can react with chlorine and sulphur in a 

combustion reactor forming salt mixtures that have a low melting temperature. Due to the low 

melting temperature, they deposit on the boiler’s heat exchanging surfaces inducing fouling 

and slagging as well as corrosive effects already at 300 – 400 °C. (Bankiewicz 2012; 

Sandberg 2011.) 
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4 XRF TECHNOLOGY 

 

X-ray Fluorescence (XRF) is widely used for a non-destructive elemental analysis. Compared 

to other analytical techniques, XRF is fast and reliable, and it does not require sample 

preparation. Samples do not need to be dissolved or destroyed in other ways. There are Energy 

Dispersive and Wavelength Dispersive XRF-analysers, and they differ considerably in their 

properties. However, the XRF technology has its limitations, and thus it is essential to know 

when and how an XRF analysis may give incorrect measurement results. 

 

4.1 X-Ray Fluorescence principle 

 

X-ray fluorescence is a phenomenon observed when an X-ray shines on material and generates 

a secondary X-ray, called fluorescent. The Figure 1 below schematically illustrates the XRF 

principle. A primary X-ray originated from an X-ray source is beamed at the material sample 

and accidentally hits an electron in an atom, e.g. on the K-shell. This electron is ejected from 

its electron shell creating a vacant place which is immediately occupied by an electron from a 

higher energy shell, e.g. L-shell or M-shell. When the electron makes the transition between 

the shells, a photon is emitted forming electromagnetic radiation, namely fluorescent X-

radiation. The fluorescent X-ray carries energy unique to each chemical element, therefore by 

examining the energy level it is possible to understand the elemental composition of the 

sample. The XRF technology utilises such principle to analyse materials. (Amptek Inc.) 

 

 

FIGURE 1. X-ray fluorescence principle 
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Additional letters alpha (α), beta (β) and gamma (γ) are used to classify the originating 

electron shell of fluorescent X-rays. An X-ray Kα is formed during the electron transition 

from the L-shell to the K-shell. An X-ray Kβ is created during the electron transition from the 

M-shell to the K-shell. Similarly, an X-ray Lα is emitted during transition from the M-shell to 

the L-shell. Moreover, there are several sub-levels in each electron shell, and every sub-level 

is distinguished by numbering. Therefore, X-rays are given labels such as Kα1 and Lβ2 for 

more detailed information on their origin. (Amptek Inc.) 

 

4.2 Handheld XRF-analyser 

 

The Niton XL3t 980 GOLDD+ is a handheld Energy Dispersive XRF-analyser (EDXRF) 

manufactured by Thermo Fisher Scientific Inc. It features an X-ray tube of 50 kV and 200 μA 

as an X-ray source as well as a large area Silicon Drift Detector (SDD) with resolution of less 

than 185 eV at 60 000 counts per second (Thermo Fisher Scientific Inc). Its analytical range of 

elements is from Mg to U. This portable XRF-analyser can be controlled either directly with a 

touch screen or remotely with computer software. The Figure 2 below illustrates the location 

of the X-ray tube and detector inside the analyser. Its software allows several analytical modes 

by default, of which TestAll Geo was used in this study. 

 

 

FIGURE 2. Handheld XRF detection principle (left), and Niton XL3t 980 (right) 
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Analyser’s radiation safety 

In Finland, according to the guide on the “use of control and analytical X-ray apparatus” 

available from the Finnish radiation and nuclear safety authority, the effective annual radiation 

dose should not exceed 0,3 mSv. A human presence in the area with the dose rate over 1,5 

μSv/h must be limited to one hour per day. Additionally, if the work is done in the area with 

the dose rate over 5 μSv/h, special safety procedure should be made to restrict the annual 

radiation dose to 0,3 mSv. (Finnish radiation and nuclear safety authority 2008.) 

 

According to X-ray tube radiation survey certificate which is shipped along with the analyser, 

maximum radiation dose rates measured for a steel sample are as follows: at 5 cm distance it 

is 1,23 μSv/h while at 10 cm it is 0,36 μSv/h (Thermo Fisher Scientific Inc 2014). 

 

4.3 Limitations of XRF analysis 

 

Technologically, the XRF analysis gives different measurement results due to its limitations. 

There are several aspects that should be taken into consideration when measuring a 

concentration of particular elements.  

 

Resolution of XRF equipment 

The resolution of an XRF detector is a numerical value, measured in eV, which represents a 

difference between the nearest spectra peaks (K or L shells) of elements that the detector can 

recognise in a sample. For example, sodium has Kα = 1,040 keV and magnesium has Kα = 

1,254 keV energies (Bruker). Their spectra peak difference is (1,254 - 1,040) keV = 0,214 

keV, or 214 eV. If XRF equipment has a detector with a resolution greater than 214 eV, it will 

be problematic to distinguish between these two elements. (US Environmental Protection 

Agency 2004.) 

 

There are 2 main types of XRF equipment architecture: Energy Dispersive XRF (EDXRF) and 

Wavelength Dispersive XRF (WDXRF). Their difference lies in the structure, accuracy and 

measurement time. The EDXRF is able to analyse the whole spectrum which is fast while the 

WDXRF focuses only on one element at a time which is very time consuming. After 

reviewing multiple XRF-analyser specifications from different manufacturers, it can be 

summarised that regarding the resolution, EDXRF ranges from 150 eV to 300 eV and above, 

while WDXRF has a resolution as low as 5 eV to 20 eV.  
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Elemental range 

There is a range of elements that can be traced using the XRF technology. A typical EDXRF-

analyser can identify elements from sodium to uranium (Bruker 2012). In comparison, a 

WDXRF-analyser is capable of distinguishing very light elements, from boron to uranium 

(Bruker 2012). Using the EDXRF technology, elements lighter than sodium are not detectable 

(Fellin et al. 2014), and elements lighter than argon are very difficult to detect because the 

energy levels of their fluorescent X-rays are low and fluorescent photons are weakened by the 

air gap between the sample and detector (Thermo Fisher Scientific Inc 2013). Because of 

these low energies, the fluorescent photons can be ejected from the sample only if the targeted 

atoms are close to the surface (Bruker 2008). Moreover, detectability of elements depends on 

other factors such as matrix composition, sample moisture and duration of measurements. 

 

Measurement time 

The measurement time is a crucial limit of the XRF technology. The longer the analysis time 

is, the more accurate the results are, because it produces more counts per second. 

Mathematically, if the measurement time is n-times longer, then the limit of detection (LOD) 

is improved SQRT(n)-times (Thermo Fisher Scientific Inc 2010). If a sample is analysed 4 

times longer, the LOD will increase 2 times. Such dependence is also seen in the research 

made by Fellin at el. (2014) on wooden matrix using an Oxford Instruments X-MET 5100 

EDXRF-analyser with an X-ray source of 45 kV 40 μA. The Table 11 below shows minimum 

detection limits of relevant to this study elements acquired from their work. 

 

TABLE 11. Minimum detection limits (ppm) of elements in wood (Fellin et al. 2014) 

Element 
Atomic 

number, Z 

Time, second 

5 10 15 20 30 60 120 180 600 

Cl 17 23000 16000 13000 11000 9000 7000 5000 4000 2000 

K 19 20000 14000 12000 10000 8000 6000 4000 3000 2000 

V 23 30 19 15 13 11 8 5 4 2 

Cr 24 20 16 13 11 9 6 5 4 2 

Mn 25 19 13 11 9 8 5 4 3 2 

Co 27 15 11 9 8 6 4 3 3 1 

Ni 28 15 10 8 7 6 4 3 2 1 

Cu 29 23 16 13 11 9 7 5 4 2 

Zn 30 20 14 12 10 8 6 4 3 2 

As 33 12 9 7 6 5 4 3 2 1 

Cd 48 29 21 17 15 12 8 6 5 3 

Sb 51 59 42 34 29 24 17 12 10 5 

Hg 80 3 2 2 1 1 0,8 0,6 0,5 0,3 

Pb 82 2 2 1 1 1 0,7 0,5 0,4 0,2 
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Depth of analysis 

There are 3 main variables that affect how deep X-rays penetrate a sample: energy of X-rays, 

density of the sample material, and energy level of analysed element. Firstly, the greater the 

energy of an X-ray photon from analyser is, the greater the measurement depth is. 

 

Secondly, low density material matrix such as wood and plastic allow for a deeper X-ray 

screening, compared to denser material. Low-energy X-rays are not able to enter a high-

density matrix and excite elements, while high-energy X-rays penetrate a low-density sample 

much deeper (Wobrauschek et al. 2010; Anzelmo et al. 2014). For example, in the mining 

industry, depending on a sample density, a typical range for XRF analysis is from several 

microns to 9,5 mm (Thermo Fisher Scientific Inc 2009). 

 

Thirdly, the analysis depth is different for each element due to the elemental excitation energy. 

The higher the atomic energy of an element, the deeper it can be traced within a sample 

(Guthrie 2012; Anzelmo et al. 2014). With regards to the thickness of wood analysis, Fellin et 

al (2014) reported a maximum detection depth of copper (Cu) from 15 mm to 24 mm 

depending on wooden matrix. 

 

Distance to sample 

The distance between an XRF-analyser and sample attenuates the number of fluorescent X-ray 

photons (Wobrauschek et al. 2010). For the best performances it is suggested to have a direct 

contact with tested material (US Environmental Protection Agency 2004; Thermo Fisher 

Scientific Inc 2010). Naturally, having such a distance is crucial for online sorting systems 

where wood comes in different shapes and sizes. Therefore there must be a gap between the 

XRF-analyser and conveyer. In research on XRF analysis of CCA-treated wood conducted by 

Solo-Gabriele et al (2003) it was recommended mounting the analyser at a most practical 

distance of 19 mm above the belt, with the maximum distance for XRF being 30 mm. 

 

Moisture 

If the moisture of a sample is greater than 20 %, then it can negatively affect XRF-analysis 

results. The reason is water contained in the sample, or on its surface, which serves as an 

extra-barrier for X-rays. It is possible to calibrate an XRF analyser for more accurate analysis 

after correction factors are determined with help of a dried sample in a laboratory. (US 

Environmental Protection Agency 2004; Glanzman & Closs 2007.) 
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On the other hand, for CCA-treated wood, Solo-Gabriele et al. (2003) suggest that there was 

no significant difference in detecting arsenic in a wet sample after 30 minutes of soaking it in 

water compared to a dry sample (during 3 second test with a 19 mm air gap). 

 

Particle size 

Firstly, in natural matrix elements are not distributed equally, therefore large particles do not 

represent the whole sample. Secondly, heterogeneous matrix scatters fluorescent X-rays away 

from the XRF-detector which lowers the quantitative results of analysis. Graining to fine 

particles and making a homogeneous sample is highly recommended in order to acquire more 

accurate results. In case of fine homogeneous matrix, the X-rays could reach particles that are 

hidden behind the top particles’ layer therefore making a more representative analysis. 

(Thermo Fisher Scientific Inc 2013; Anzelmo et al. 2014; Glanzman & Closs 2007.)  

 

Spectral matrix effect 

In addition to the above described limitations, there are 3 more that can cause false XRF-

analyser’s readings. Namely, those effects are overlapping, enhancement and absorption. 

 

Overlapping of spectral lines occurs when analysed elements emit fluorescent photons of 

similar wavelength. For example, lead L-peak overlaps with arsenic K-peak. Moreover, if a 

proportion of lead to arsenic is at least 10:1, then concentration of arsenic cannot be measured 

adequately due to a complete overlap. (US Environmental Protection Agency 2004.) 

 

During the enhancement, an XRF-analyser can show a higher concentration of several 

elements because their binding elemental energies are less than those of fluorescent X-rays of 

other elements present in a sample. In addition to the analyser’s X-ray source, these 

fluorescent X-rays become a secondary source of X-rays for the elements with lower 

elemental energies. An example of this can be chromium enhanced by iron. (Thermo Fisher 

Scientific Inc 2013; US Environmental Protection Agency 2004.) 

 

Lastly, there are several elements that absorb or scatter fluorescent X-rays of other elements, 

as it is in the case of iron absorbing copper fluorescent X-rays. The absorption causes an XRF-

analyser to show lower concentration values of elements than there really are in the sample. 

Computer software of the analyser is designed to effectively correct these limitations. 

(Thermo Fisher Scientific Inc 2013; US Environmental Protection Agency 2004.) 
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4.4 Online XRF applications in wood fuel processing 

 

Online XRF-systems are widely used in mining industry for quality assessment of extracted 

ores (Nakhaei et al. 2012). However, full-scale working implementations of online XRF-

systems in wood fuel processing have not been found. There is a limited number of studies on 

online wood fuel XRF-analysis. Notably, a pilot project carried out by Solo-Gabriele et al 

(2001) for the Sarasota county, USA, looked at XRF-analysis for sorting of CCA-treated 

wood. It was found that XRF technology can be effectively used to detect CCA-treated wood 

from other types of wood pieces on a moving conveyer. One limitation of online measurement 

is that an XRF-analyser should be mounted above the belt at a distance thus reducing the 

quality of results. Moreover, a slow speed of XRF-analysis is also a limit because it slows 

down the conveyer and minimises the amount of analysed wood per given time. As a result, 

the optimal height above a belt was 19 mm, and the minimum sufficient time was 3 seconds. 

The measurement time can be dramatically reduced to milliseconds if the XRF-analyser is 

built specifically for online measurement and its shatter is constantly open. In addition, 

although paints, coating and stains on wood pieces were found to reduce number of As 

fluorescent X-ray counts, CCA-treated wood was still detectable. (Solo-Gabriele et al. 2001.) 

 

Another field trial research on online sorting of treated wood was done in cooperation of 

Pöyry Forest Industry Consulting Ltd and Waste and Resources Action Programme in the UK, 

2009. In online analysis, XRF technology was capable of identifying Cu in Tanalith treated 

wood with concentration above 40 mg/kg at 2,7 seconds on average. For CCA-treated wood, 

it was found that As and Cr will be easily traced with XRF while Cu analysis gave too high 

uncertainties for conclusive results at 6,2 second measurement time. Detection of clean wood 

takes long time duration (up to 30 seconds). As the concentration of elements increases, the 

analysis time decreases. In the end, as the report suggests, it is questionable if XRF technology 

can be effectively applied to an online recovered wood sorting of recovered wood due to the 

distance between an XRF-analyser and wood on a conveyer, different shapes of wood pieces 

and a long analysis time required. (Waste and Resources Action Programme 2009.) 
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5 METHODS USED IN THIS STUDY 

 

The practical tests formed a preliminary study on XRF-analysis of recovered wood with 

emphasis on simulating conditions for an on-line XRF system. The limitations of the XRF 

technology were tested and observed, particularly, how length of analysis, measurement 

distance to a sample, and wood moisture affect results of the XRF-analyses.  

 

The Niton XL3t 980 GOLDD+ analyser was fixed on a laboratory stand which allowed 

moving the device vertically with a 2 mm step. A backscatter shield was attached to the 

analyser. The analyser was remotely controlled with software on a laptop. In the beginning of 

the practical work radiation levels near the XRF-analyser were measured with a radiation 

detection meter because, being low-density material, wood did not absorb X-rays very well, 

unlike metal matrices, scattering them to the surroundings. The Picture 1 below illustrates the 

initial measurement set-up with the radiation meter in the centre. An improved set-up design 

included lead shielding installed to protect the workplace from the radiation, as seen in the 

Picture 4 (chapter 6.5 “Radiation safety”). 

 

 

PICTURE 1. Initial set-up for XRF-analyser during radiation level measurements 
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For the radiation measurement, oven-dried wood chips in a plastic bag were chosen as a 

sample. The plastic bag was used because it was noticed that most of XRF analyses in the 

laboratory were done with plastic bags. The radiation check points were at 1 cm, 40 cm, 80 

cm, and 120 cm distance to the analyser. The radiation detection meter was placed on a 

laboratory jack stand at the same height as the analysed sample, as seen in the Picture 1 above. 

Two sets of measurement were performed: when the analyser contacted the sample and when 

it was 2 cm above the sample. The analysis mode of the XRF analyser was set to “Soil” as soil 

is closer to wood by density than metal alloys. The radiation dose rate was observed to be the 

highest when the analyser worked in the “Main” elemental range of the chosen mode. The 

analysis time for this range was set to 1 minute to measure radiation in the vicinity. 

 

During the practical work, performance of the handheld XRF-analyser was tested with wood 

samples that were in a form of recovered wood chips. They originated from a building 

demolition site. The chips were screened and separated to chip size groups of “≤ 1 mm”, “≤ 2 

mm”, “≤ 4 mm”, “≤ 8 mm”, “≤ 12 mm”, and “≤ 31,5 mm”. For instance, the label “≤ 2 mm” 

means that this chip size group includes wood particles bigger than 1 mm and not bigger than 

2 mm. The Picture 2 below shows the screened wood chip groups. 

 

 

PICTURE 2. Demolition wood chip groups. From left to right, top to bottom: “≤ 1 mm”, 

“≤ 2 mm”, “≤ 4 mm”, “≤ 8 mm”, “≤ 12 mm”, and “≤ 31,5 mm” chip size groups. 
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Wood chip samples were analysed in an aluminium foil container with bulk density and 

without a plastic bag in order to simulate real-life measurements on a conveyer in open air. 

The finest particles (≤ 1 mm in size) were analysed in test cups provided with the XRF-

analyser. Due to wood’s low density, during the first trials it was checked whether the analyser 

made elemental analysis only of the sample or also detected elements of the sample container. 

It was observed that, at small sample size the analyser could detect not only the elements of 

the container but also some elements of the stainless steel laboratory jack which was used to 

hold the sample. Therefore the set-up was improved to ensure that only the sample was 

analysed, as shown in the Figure 3. Firstly, an empty plastic container was placed on the jack 

to create an air gap between the stand and sample to attenuate fluorescent photons emitted 

from the stand. Secondly, 7 mm of A4 paper sheets were placed on top of the plastic container 

to hold the sample. Paper sheets were chosen because they were not detected by the XRF 

analyser through the sample, and the sheets were strong enough to support the weight. 

Thirdly, enough layers of sample material were used to attenuate fluorescent X-rays emitted 

from the aluminium foil container. As a result, only the sample was analysed by the XRF-

analyser. This design was kept during all practical work. 

 

 

FIGURE 3. Stand design to attenuate fluorescent photons emitted from laboratory jack 

and sample container 
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Another challenging part was to evaluate raw measurement data received from the XRF-

analyser as Microsoft Excel spreadsheet files. The spreadsheet size was too big for convenient 

analysis as it had the detected concentration values of 43 elements. Because typically during 

the practical work, there were only 10 detected elements of interest for this study, their values 

had to be copied from the original Excel file to another file for further analysis. Considering 

the fact that manual copying of data was inconvenient, very slow, and it could lead to copying 

wrong values, a data copying application was developed within Microsoft Excel in order to 

ease working with the raw XRF data. The application interface is shown in the Picture 3 

below. This application made 100 % accuracy during the copying, and it dramatically 

increased the data processing speed. 

 

 

PICTURE 3. MS Excel application designed to extract XRF analysis data 

 

With regards to the demolition wood chips, they had a very strong odour and high 

concentration of harmful elements. Therefore a breath mask and rubber gloves were worn all 

the time, and goggles were additionally used when working with small size particles (“≤ 1 

mm”, “≤ 2 mm"). The laboratory room was constantly ventilated during the practical work. 
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The XRF-analyser allowed working in different pre-set testing modes. For this study the mode 

“TestAll Geo” was chosen because in this mode the analyser could detect all elements, 

including light elements. Other available modes focused on analyses for specific applications, 

leaving out several elements from the analysis. The working principle of the analyser was that 

it divided all elements into ranges and sequentially measured elements of each range. In the 

“TestAll Geo” mode, there were 4 element ranges: light, low, main, and high range. It was 

possible to adjust duration of measurement for each range. All element ranges were set to 

equal analysis time. For convenience in this study, for example, in figures and tables, the 

measurement time corresponds to the analysis time per element range. For instance, a 15 

second measurement time is a time that the XRF-analyser needs to analyse a range. In this 

case the total measurement time needed to analyse all elements is 15 seconds x 4 ranges = 60 

seconds. The analyser took about 0,25 second to switch between the ranges. 

 

With regards to limitations of this study, the most important one is that there were no other 

means of checking elemental concentrations found with the XRF analysis. However, the 

analyser was periodically controlled with a Standard Reference Material 2709a available from 

the US National Institute of Standards and Technology. This standard was dry soil, and all the 

control tests were within the standard deviation range given by the manufacturer. Therefore, it 

is confident to say that XRF analysis performed on recovered wood samples is accurate. The 

latest factory quality control of the analyser prior this study was performed on 11 November 

2014. 
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6 PRACTICAL TEST RESULTS 

 

In the tables below the results are expressed in ppm (parts per million). An empty cell means 

that an element was not detected by the XRF-analyser. The colours indicate an elemental 

concentration, where red colour is the highest value and green colour is the lowest value. 

Other colours highlight concentration values between the highest and lowest values.  

 

The XRF analysis results are given with a measurement error, which is two standard 

deviations, also known as two-sigma. The result with this error is at around 95 % confidence 

level. It means that, for instance, if a concentration of Cl was measured to be 1500 ppm with 

the two-sigma error of ±30 ppm, there is a 95 % probability that the true Cl concentration 

value is between 1470 ppm and 1530 ppm. All XRF measurements errors in this study 

correspond to the two-sigma error. (Thermo Fisher Scientific Inc 2010.) 

 

6.1 Particle size and chemical composition 

 

Around 0,5 kg of sample were screened during 5 minutes for size distribution. This sample 

material was used for all following XRF-analyses. The results are presented in the Figure 4. 

The most common chip size is between 8 mm and 12 mm accounting for around 23 % of wet 

weight. The moisture content of the whole batch was 16,3 %. 
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FIGURE 4. Particle size distribution of recovered wood sample by wet weight 

 

For XRF analyses, all particles over 12 mm were combined together to form a group ≤ 31,5 

mm. Totally, there were 6 size groups. The Table 12 shows the bulk density of each group, 

and moisture of selected groups. The “original mix” corresponds to the unsorted raw sample. 

The particles with the highest bulk density were the finest particles (≤ 1 mm). 
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TABLE 12. Bulk density of recovered wood samples 

Particle size, mm Bulk density, kg/m
3
 Moisture, % 

≤1 230 21,9 

≤2 180  

≤4 170 27,1 

≤8 190  

≤12 200  

≤31,5 200 22,4 

Original mix 190 16,3 

 

The Table 13 below provides results of XRF elemental analyses of particles of different sizes. 

For this test, 3 representative samples were taken from each size group, and they were 

analysed during 60 seconds per element range. The values shown in the table are the average 

of these 3 samples. “St. dev” corresponds to a standard deviation between the concentration 

values of the 3 samples. “St. dev” is not the two-sigma error. “N/A” indicates that only one 

sample contained the element and the other two did not, thus it was not possible to calculate 

the standard deviation. It was found that the small wood particles had a higher concentration 

of contaminants than the bigger wood chips. The reason for this could be that the small 

particles, especially the finest (≤ 1 mm), compared to the bigger wood chips, contained higher 

concentrations of particles that were formed by detached paint and treated surface layers. 

 

TABLE 13. XRF analysis of different particle size groups 

Particle size, mm ≤ 1 ≤ 2 ≤ 4 ≤ 8 ≤ 12 ≤ 31,5 

Element Concentration, ppm 

S 11927,44 6587,69 9357,56 4536,68 6176,25 3168,85 

S st. dev 1737,00 544,67 2649,63 1024,97 4786,53 910,06 

Cl 1498,83 960,11 1101,85 728,46 590,52 504,74 

Cl st. dev 246,52 193,78 150,66 311,44 286,02 157,78 

K 3685,48 1996,79 2073,67 1426,90 1074,75 1041,46 

K st. dev 1132,95 294,27 134,73 246,98 125,17 267,71 

Cu 66,33 48,04 31,78 22,19 38,70 16,38 

Cu st. dev 5,39 15,26 5,74 1,43 18,18 N/A 

Zn 462,40 174,17 118,79 65,70 44,94 36,71 

Zn st. dev 79,31 10,82 16,05 25,75 18,61 16,03 

As 47,95 16,04 10,01 9,76 24,33 3,39 

As st. dev 6,99 3,93 2,00 7,91 N/A N/A 

Pb 423,99 79,79 54,75 63,93 24,51 15,65 

Pb st. dev 15,91 8,07 4,53 42,49 9,04 2,15 

V 56,52     8,89     

V st. dev 14,33     N/A     

Cr 67,27     37,17 60,46   

Cr st. dev 1,92     N/A N/A   

Mn 146,16           

Mn st. dev 22,55           
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6.2 Measurement time 

 

How measurement time affects the XRF-analyser’s results may be seen in the Table 14. The 

evaluation was done of the finest (≤ 1 mm) particles at one spot at different time lengths. The 

60 second analysis was conducted 3 times, and all the other measurements were conducted 10 

times. The values in the table are the average of the measured concentrations. 

 

TABLE 14. Detection of elements at different measurement times for ≤ 1 mm particles 

Time, s 4 5 10 15 20 30 60 

Element Concentration, ppm 

S 12557,02 11893,71 12205,77 12680,93 13106,20 13404,74 13594,64 

S error 3641,01 1025,34 418,71 289,33 241,51 190,55 128,59 

Cl 1433,97 1461,76 1421,26 1454,98 1494,13 1544,06 1570,18 

Cl error 848,48 240,33 94,80 64,08 53,00 41,65 27,88 

K 4897,64 4284,64 4421,88 4610,15 4722,49 4903,61 4983,30 

K error 824,06 622,20 324,92 255,35 208,91 165,44 113,59 

V         63,95 69,66 66,76 

V error         41,14 29,21 19,91 

Cr         46,95 54,37 57,86 

Cr error         22,18 16,97 11,57 

Mn     117,18 122,64 144,69 147,44 154,45 

Mn error     60,38 44,46 38,34 30,77 21,59 

Cu 62,59 56,13 54,01 57,11 58,89 59,36 60,94 

Cu error 35,76 39,64 17,75 13,67 11,58 9,30 6,51 

Zn 507,71 481,82 473,01 482,02 515,94 524,91 541,15 

Zn error 50,26 49,72 27,02 20,74 18,00 14,54 10,27 

As 48,96 46,20 37,96 38,72 41,69 42,09 41,08 

As error 39,04 34,73 15,44 11,83 10,21 8,21 5,74 

Pb 420,87 403,66 396,62 402,77 423,59 426,08 430,42 

Pb error 42,54 42,29 23,03 17,65 15,18 12,20 8,54 

 

Interestingly, the results above indicate that there was no significant difference between 

different analysis times. On average, the lowest detected concentration value represents 85 % 

of the maximum concentration value. It is also practically seen that the two-sigma analysis 

error decreased logarithmically as given in the literature (Thermo Fisher Scientific Inc 2010). 

The Figures 5, 6, and 7 illustrate how the measurement time affected the results of XRF 

analysis for Cl, K, and Pb respectively. 
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FIGURE 5. Dependence of Cl detection and analysis error on measurement time 
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FIGURE 6. Dependence of K detection and analysis error on measurement time 
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FIGURE 7. Dependence of Pb detection and analysis error on measurement time 
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6.3 Measurement distance 

 

The depths of analysis in recovered wood (for ≤ 12 mm particles) at different distances above 

a sample are summarised in the Table 15. It was found using a plastic bag filled with pure iron 

powder under the recovered wood sample. Multiple 15 second measurements were carried out 

in order to identify Fe at a contact with the sample, at 1 cm and 2 cm above it. Wood particles 

were added to increase the analysis depth if Fe was still identified during the measurements. 

 

TABLE 15. Depth of XRF analysis of Fe at different distances to sample 

Air gap, mm Analysis depth, mm 

0 25 

10 20 

20 15 

 

For an online XRF measurement system over a belt, it is necessary to have a distance between 

the analyser and moving materials. Therefore, an influence of an air gap between the XRF-

analyser and a sample (the ≤ 4 mm particles) was studied. The same spot was tested 4 times at 

different time durations and distances. The average values are available in the Table 16 below. 

 

TABLE 16. Detection of elements at different measurement distances to sample and 

analysis times, for ≤ 4 mm particles 

Time, s 5 s 10 s 15 s 

Air gap 0 mm 10 mm 20 mm 0 mm 10 mm 20 mm 0 mm 10 mm 20 mm 

Element Concentration, ppm 

S 2308,20 1437,42 511,34 6595,26 642,26 399,75 6902,11 618,69 455,22 

S error 894,95 539,83 227,32 338,78 194,76 122,97 254,56 137,21 98,51 

Cl 
 
1721,95 

 
1387,04 671,86   1447,77 669,91   

Cl error   2129,69   103,29 1491,05   76,98 2137,95   

K 2617,34 937,21 745,43 2768,71 1030,57 720,73 2868,25 982,25 764,98 

K error 382,74 166,08 110,67 230,48 94,93 65,00 163,24 66,76 50,60 

Zn 121,11 83,63  128,04 73,96  125,52 78,41 
 

Zn error 33,11 70,45  17,79 32,55  13,26 23,79   

Pb 53,45 56,86  54,19 59,00  54,03 53,03 48,87 

Pb error 19,13 29,67  10,15 20,96  7,62 14,86 24,09 

Cu 
  

 44,30 
 

 42,58   

Cu error       20,37     15,24   

As             10,67     

As error             6,22     

V                   

V error                   

Cr     20,71     20,20   16,72 20,29 

Cr error     10,44     6,18   7,41 4,68 
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(continues) 

TABLE 16. Detection of elements at different measurement distances to sample and 

times for ≤ 4 mm particles (continues) 

Time, s 20 s 30 s 60 s 

Air gap 0 mm 10 mm 20 mm 0 mm 10 mm 20 mm 0 mm 10 mm 20 mm 

Element Concentration, ppm 

S 6890,40 613,91 373,46 7681,12 645,04 417,29 7234,20 634,83 435,52 

S error 212,18 114,82 79,22 164,38 92,05 65,72 106,55 62,36 45,25 

Cl 1467,25 703,87   1633,80 661,29   1541,81 722,37 

 Cl error 64,54 1591,83   49,04 1995,27   32,06 1242,60   

K 2956,30 1002,04 787,10 3412,40 1009,71 782,36 3150,55 1012,00 747,08 

K error 137,28 56,33 44,68 112,66 44,51 35,33 76,48 30,35 23,42 

Zn 136,97 80,49 71,80 139,80 91,16 66,73 134,32 89,94 61,74 

Zn error 11,22 20,53 37,77 9,31 17,10 17,66 5,99 11,48 20,36 

Pb 57,21 62,00 54,54 56,84 59,75 66,73 55,08 60,09 68,03 

Pb error 6,37 13,42 21,58 5,22 10,58 17,66 3,39 7,16 12,54 

Cu 37,79 

  

35,95 

  

36,92 

  Cu error 12,27     10,06     6,59     

As 10,95     13,39     12,53   

 As error 5,19     4,32     2,79     

V           5,04   6,12 5,61 

V error           2,57   2,97 1,76 

Cr   15,05 23,02   17,14 22,07   16,47 22,10 

Cr error   6,18 4,16   4,91 3,28   3,33 2,23 

 

In this test, the most accurate result was acquired during a 60 second measurement at a 0 mm 

distance to the sample because the analysis error logarithmically decreased with time and 

there was no air gap that attenuated fluorescent X-rays. It was not possible to measure above 

20 mm because there were not enough counts per second for the XRF-analyser to detect 

elements. It produced an error and caused the analyser to stop the tests. 

 

Analysing the above given results, it can be concluded that the air gap changed the detected 

elemental concentration very much, especially for light elements. For example, for a 60 

second measurement if the XRF-analyser was lifted 10 mm above the sample, it measured S 

concentration to be 1/11 of the value acquired during the contact measurement. Cl was not 

identified at 20 mm distance at all. However, V and Cr were detected at 10 mm and 20 mm 

distances even though the analyser did not identify these elements at the contact measurement. 

It probably occurred because at these distances the detection errors were too high and the 

analyser misanalysed the concentration of these elements. Elements Cu and As were not 

identified at any of the tested air gaps, probably due to their low concentrations. 
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A more extensive testing was conducted in order to find any possible dependence of element 

detection on the elevation distance. Two samples were analysed: oven-dried ≤ 8 mm particles, 

labelled “a”, and oven-dried 6 mm particles received by grinding the ≤ 31,5 mm particles, 

labelled “b”. Three different spots of each sample were analysed, labelling the spots, for 

example, as “a1” or “b2”. The XRF-analyser was elevated above the samples with a step of 2 

mm. The measurement time was set to 5 seconds per element range. 2 measurements were 

taken at each elevation distance, and their average value was used for the calculation. Because 

the analysis results were received in ppm, in order to compare all the measurements regardless 

of their real elemental concentration and find a possible trend, the data was converted to per 

cent. 100 % was set to be the concentration value detected at a 0 mm distance to the wood 

samples. The results of data analysis are presented in the following Figures 8 - 24 below. 
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FIGURE 17. Dependence of detected Zn concentration on distance to sample, % 
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FIGURE 19. Dependence of detected As concentration on distance to sample, % 
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Analysing the Figures 8 – 23 presented above, it can be seen that as a general trend, the 

detected concentrations fluctuated considerably between the measurements of same elements. 

The variations increased with increasing distance, especially above 6 mm. However, K and Cr 

had smooth trend lines. For As and Pb, at low original concentration value (at 0 mm distance) 

the detected concentrations increased with increasing distance; however at high original 

concentration values, their detected concentrations decreased with increasing distance. The 

average trend of all presented elements is illustrated in the Figure 24. It indicates that, 

generally from 0 mm to 12 mm, detected concentrations were proportional to the distance. 

However, detection of elements at a distance greater than 12 mm did not follow the trend. 

 

 

FIGURE 25. XRF analysis at different distances to sample 

 

The observed fluctuations in the detected concentration values may be explained by several 

mechanisms that occurred during the conducted tests. Firstly, the increased air gap attenuated 

fluorescent photons, and it led to a reduced number of counts per second on the XRF detector, 

and thus, the detected concentrations. Secondly, compared to long analysis time, the short 

measurement time used in these tests produced greater errors. Moreover, even those 

concentration values received from the measurements taken for 5 seconds at the same distance 

sometimes differed considerably. Thirdly, because the demolition wood samples were highly 

heterogeneous, when the analyser was moved vertically, its primary X-ray beam could analyse 

a different particle inside the sample, as schematically shown in the Figure 25 above. Due to 

the fact that the X-ray source tube is fixed at an angel inside the analyser, moving the analyser 

vertically created a small displacement at the horizontal level of the initial measurement. 

 

Sample 

XRF 

analyser 

Sample 

XRF 

analyser 



37 

6.4 Wood moisture 

 

The aim of this test was to find out if there was any possible correlation between the measured 

and real elemental concentrations in recovered wood and observe at what wood moisture 

levels the XRF-analyser stopped identifying elements. Two recovered wood samples of 

roughly 50 grams (dry mass) were prepared and soaked in distilled water for 10 days. The first 

sample labelled “a” was the ≤ 8 mm particles, and the second sample labelled “b” was the ≤ 

31,5 mm particles grinded to particles of 6 mm in size. The moisture contents in the samples 

were raised to around 70 % and 80 % for the sample “a” and “b” respectively. The samples 

were dried in an oven at 105 °C and periodically taken for the XRF analysis.  

 

Different spots (a1, a2, b1, b2, b3) of the samples were analysed during 5 seconds per element 

range. Two XRF measurements were taken per a spot. The samples were weighed before the 

XRF analysis and immediately after it. The average of these two mass values was used for 

calculating the moisture content. On average, 1 g of water evaporated during the analyses. A 

paper sheet with marked coordinates of the spots was used in order to constantly place the 

XRF-analyser above the spots. 

 

The detected elemental concentrations were in ppm. However, the concentrations varied 

between the samples and spots considerably, as the example of Cl shows in the Figure 26 

below. Because the aim of the test was to evaluate how moisture affected the XRF readings, 

all result values were converted to per cents of the measured concentration at 0 % moisture 

content. Therefore the detected elemental concentration at the 0 % moisture level was set to a 

100 % elemental concentration, and the other measured elemental concentrations at different 

moisture levels were calculated as proportions to it. 

 

This data presentation method allows easier comparison of the results regardless of their 

actual concentrations. For instance, the Figure 27 represents the same Cl values as the Figure 

26 but in percentage. As a result, the relationship between the detected Cl concentration and 

the wood moisture content can be clearly seen regardless of the measured concentrations. 

Such a representation also helped to create the average dependence across all the XRF 

element measurements using statistical methods. The average trend was calculated up to 70 % 

of moisture level as it was the highest common moisture value for the samples “a” and “b”. 
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FIGURE 35. Dependence of detected Zn concentration on wood moisture content, % 
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 FIGURE 36. Dependence of detected As concentration on wood moisture content, ppm 
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 FIGURE 38. Dependence of detected Pb concentration on wood moisture content, ppm 
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FIGURE 39. Dependence of detected Pb concentration on wood moisture content, % 
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FIGURE 41. Dependence of detected Cr concentration on wood moisture content, % 

 

Analysing the figures above, it can be noticed that regardless of the chemical element and its 

real concentration in wood, the measured concentrations were proportionally affected by wood 

moisture content. Increased moisture content lowered the detected concentrations. It was 

found that each element had its own correlation trend. In the case of K, the detected 

concentration remained at nearly the same level from 30 % to 0 % of wood moisture. For most 

of the presented elements, they were identified even at 70 % moisture content. However, 

elements in high concentrations are traced better at high moisture content than elements in 

low concentrations. The graph in the Figure 42 represents the average of moisture correlations 

of all presented above elements. This figure also shows an order 2 polynomial trend line 

closely fitted to the data which suggests a possibility for mathematical correction of results. 
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FIGURE 42. Dependence of detected elemental concentration on wood moisture content, 

average of all presented elements (S, Cl, K, Cu, Zn, As, Pb, Cr) 
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The results also showed high measured elemental concentration deviations during the course 

of the tests. These fluctuations were most likely to occur because of the short analysis time of 

5 seconds and a minor shift of the analyser above the spots from analysis to analysis. Upon 

drying, the sample particles slightly shrank and enlarged the voids between them. It 

consequently displaced the particles from their original position in the sample. In some 

instances, elements were not detected even though they were detected in the previous and next 

measurements. It led to an increased fluctuation of the average correlation trend. However, 

these visual representations provided a good general estimate of how moisture affected the 

XRF elemental analysis results. 

 

6.5 Radiation safety 

 

Although a backscatter shield was used, it did not protect from radiation that comes sideways 

during XRF analysis of wood chips. For intended laboratory work timeframe, the radiation 

dose rates of the Niton XL3t 980 GOLDD+ handheld XRF-analyser were found to exceed the 

legal radiation limits set by the Finnish authorities. The Table 17 below shows the radiation 

measurement results. 

 

TABLE 17. Radiation dose rates at different distances, “main” range in Soil mode 

Distance from 

sample 

Radiation dose rate  

without air gap, µSv/h 

Radiation dose rate  

with 2 cm air gap, µSv/h 

Typical Max observed Typical Max observed 

1 cm 26,2 - 32,2 39,9 27,3 - 37,8 39,1 

40 cm 2,88 - 3,09 3,45 2,58 - 3,36 3,84 

80 cm 0,77 - 0,90 1,50 0,72 - 0,82 0,86 

120 cm 0,25 - 0,37 0,50 0,39 - 0,44 0,48 

 

The background radiation in the room was in a range of 0,08 – 0,14 µSv/h. Radiation rate was 

also measured under the experiment table below the XRF-analyser (see the Picture 1 in the 

chapter 5 “Methods used in this study”). Even though there were layers of the analysed 

sample, metal jack stand, wooden stand used to fix the analyser, and the table, the dose rates 

were 50,4 – 65,5 µSv/h under the table. When radiation levels were measured in contact with 

the analyser, directly under it, the radiation meter immediately gave an error, most likely 

because its maximum detection limit of 100 000 µSv/h was exceeded. 
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PICTURE 4. Experimental set-up for XRF-analyser with lead shielding 

 

In order to illuminate the unwanted radiation which was scattered from samples during 

analyses, the test equipment was shielded with several 2 mm lead plates as seen in the Picture 

4 above. As a result, the radiation was completely absorbed, and at any distance from the 

shielding the radiation meter showed only the background radiation dose. This set-up was 

used for all measurements of recovered wood samples. 
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7 CONCLUSIONS 

 

The results of the practical tests during this thesis project showed consistency with previous 

studies on XRF analysis, particularly, that moisture, air gap and short measurement time 

negatively affected the detected elemental concentrations. However, the literature review 

provided only general information, for example, that moisture reduced XRF detectability of 

elements without any given correlations. This thesis presented valuable and more detailed 

information on the limitations of XRF analysis. Moreover, now the data is available for 

specific challenging elements in recovered wood fuel. 

 

The literature review and practical work showed that analysis of wood with XRF equipment 

was challenging due to its limitations, however it was practically feasible. Understanding of 

limiting conditions and their effects on the XRF analysis results should improve accuracy of 

solid fuel quality control with a handheld XRF-analyser. Recommendations for better 

measurements are provided below. This study was made with a Niton XL3t 980 GOLDD+. 

 

Firstly, the shortest and yet accurate analysis time for wood samples is 30 seconds per element 

range, or 2 minutes per full analysis. Secondly, a contact measurement with a sample is most 

desirable. Thirdly, wood moisture lowers detected elemental concentrations, however it is 

possible to mathematically correct the measured values when knowing the moisture content. 

Lastly, it was found that the small recovered wood particles (4 mm and less) contained high 

concentrations of contaminating elements. Therefore, it is advisable to illuminate them prior 

combustion. 

 

It should be noted that results of XRF analysis represent only a very small part of a sample. 

One way to improve the accuracy is to make more measurements. Ultimately, an online XRF 

measurement system could be a solution to this issue as it would scan wood chips 

continuously on a moving conveyor. 

 

With regards to an online XRF system, it should be able to analyse all ranges of elements, 

including light and heavy elements, without the need to switch between the element ranges. It 

would increase the processing speed and thus the amount of analysed material on a conveyer. 

The XRF detector of the online measurement system should not be located further than 12 

mm above the sample as the air gap attenuates XRF photons and drastically reduces the 
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detected elemental concentration. Also, this system should have a cooling system because the 

XRF-analyser overheats during long measurements and does not allow working until it has 

cooled down. 

 

Lastly, further studies should be organised for more detailed research on XRF performance in 

recovered wood quality control. Particularly for an online XRF system, a high number of tests 

is needed to create accurate correlation formulas for effects of wood moisture on the XRF 

analysis results. Dependence of measured elemental concentrations on elevation distance 

above wood samples should be further explored for possible usable correlation formulas. 

Finally, performance of the XRF-analyser over moving samples should be studied as a 

simulation of a working conveyer belt. 

 

In the conclusion, the studied XRF analyser can be used in solid biofuel quality control. It is 

capable of identifying the elements listed in the EU biofuel standards and specifications, 

except for N and Na. The XRF analysis is fast and accurate, and its precision can be further 

increased with mathematical corrections of negative effects of known limitations. The 

elemental XRF analysis with the handheld XRF-analyser can be performed by personnel 

without a background in physics or chemistry. However, personal radiation safety must be 

ensured when analysing wood samples due to high radiation dose rates near the analyser. 
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