

Designing architecture for invoice based automated re-

porting

Jaakko Hirn

 Bachelor’s Thesis

Degree Programme in Infor-

mation and Communications

technology

 2015

 Tiivistelmä

Päiväys 30.4.2015

Tekijä(t)

Jaakko Hirn

Koulutusohjelma

Tietojenkäsittely

Opinnäytetyön otsikko
Automatisoidun laskupohjaisen raportointipalvelun arkkitehtuurin suunnittelu

Sivu- ja
liitesivumäärä

19 + 1

Designing architecture for invoice based automated reporting

Www-sovelluspalvelut ovat moderni tapa toteuttaa elektronisia palveluita. Monet suunnitte-
lumallit, kuten palvelukeskeinen arkkitehtuuri (SOA) auttavat luotettavan järjestelmän suunnit-
telussa ja teknisissä valinnoissa.

Opinnäytetyö on tehty osana Yritys x:n Y hanketta. Hanke tähtää luomaan uusia taloushallin-
non innovaatioita, jotka automatisoivat finanssitransaktioita.

Tämä opinnäytetyö pyrkii löytämään keskeiset periaatteet Www-sovelluspalvelu arkkitehtuuri-
suunnitteluun. Nämä periaatteet tunnistetaan ja avataan osaksi tarkempaa tarkastelua. Tar-
kastelulla yritetään löytää mitä lisäarvoa ne tuovat projektille. Uutta suunniteltua kausiv-
eronpalautus ohjelmaa käytetään esimerkkitapauksena, jotta nähdään miten näitä käsitteitä
voidaan ottaa käytäntöön mukaan ja mitkä ovat parhaat käytännöt www-sovelluspalvelun to-
teuttamiseksi.

Tutkielmassa päädytään siihen, että on olemassa useita projektia edistäviä suunnitte-
lumalleja, jotka auttavat modernin palvelun tuottamisessa. Yleisimmin käytössä olevat mallit
ovat laajasti hyväksyttyjä, eivätkä aiheuta suurta vastakkainasettelua.

Asiasanat

www-sovelluspalvelu, palvelukeskeinen arkkitehtuuri, rajapinta, Ohjelmisto suunnittelu

 Abstract

Päiväys 30.4.2015

Author(s)
Jaakko Hirn

Degree Programme in Information and Communications

Report/thesis title

Designing architecture for invoice based automated reporting

Number of pages
and appendix pages
19 + 1

Web services are the modern style to produce electronic services. There are a set of Design
patterns, such as Service oriented architecture (SOA) and large numbers of technological
approaches, which will help in planning a viable service.

Thesis is made as part of company X PROJECT Y, which aims to introduce new financial
management innovations. As a part of this project, it is intended to produce a new service
that automates certain finance transactions.

This thesis intends to find core principles in web service architecture designing. The princi-
ples are identified and opened up for closer examination on what they bring in to the project.
The new planned taxation service is used as a case study to see how these ideas can be
implemented and what the best practices to achieve web service architecture are.

The study concludes that there are number of helpful designing patterns, which help to real-
ize modern day service. The most utilized design patterns are usually accepted across the
board and don’t trigger a lot of controversy.

Keywords

Web service, Service oriented architecture, Interface, software design

Table of contents

1 Preface.. 1

1.1 Background ... 1

1.2 Choosing the subject ... 1

1.3 Research subject and goals .. 1

1.4 Research method .. 2

2 Web service Architecture... 3

2.1 Service oriented architecture (SOA) .. 3

2.2 Cloud computing ... 4

2.3 How does example technologies run a web service .. 5

2.4 Web Services Description Language (WSDL) ... 6

2.5 Simple object based protocol (SOAP) ... 7

2.6 Representational state transfer (REST) ... 7

3 Architecture design implementation ... 9

3.1 Service description .. 9

3.2 Proof of concept as a guide ... 9

3.3 Service requirements .. 10

3.4 Feature design .. 10

3.5 Inter service APIs .. 11

3.6 Infrastructure ... 12

4 Results .. 12

5 Conclusion .. 14

Sources ... 16

Appendices .. 19

1

1 Preface

This thesis gives an overview of the web service design. The thesis has been made as
part of a business project, which intends to manufacture new automated financial service.
Through architectural planning, the thesis researches for the best practices on web ser-
vice implementation and discovers how utilize them in the best possible manner.

1.1 Background

The thesis is mandated by Company X. It is made as part PROJECT Y, which is a part of

bigger undertaking called project Z. Project Z pursues to advance the automation busi-

ness transactions nationwide. PROJECT Y establishes a network of financial and tech-

nical specialist and policymakers. The project goal is to innovate services for automated

systems and consolidate financial management information streams. There are multiple

partners across industries and academic establishments. (Aalto) (PROJECT Y)

 Production of one of the innovations was started in collaboration with Haaga-

Helia. A proof of concept program was developed as a coursework by Haaga-Helia stu-

dents and stakeholder advisors. The program automates process of declaring Finnish

periodic tax return form. As a continuation of that project this thesis was assigned.

1.2 Choosing the subject

I had relative free hands in choosing the subject within the project. There was a lot of ac-

tion and ideas around the PROJECT Y, but very little had been decided or specified. It

was challenging to choose the subject. I tried to find something that would help launch the

production of the service and add value towards the project in some meaningful manner.

Because of my degree programme I thought that it would be good if the thesis was tech-

nical in nature, although there was a lot of business side questions still left unanswered.

Technical meeting with project leader revealed that Company X developer team has their

own very specific tools, which they work with. The developers use their company’s frame-

works, which are standard in their production. That is why I decided to make the thesis as

technological neutral as possible. I ended up choosing to work on Architectural design,

because it offers a good overview of the project as well as some solid substance.

(Company X technical meeting 15.2.2015)

1.3 Research subject and goals

Architectural design is especially relevant PROJECT Y, because the service is largely

undefined and still very much in planning. As of right now the reduced idea is to have ser-

vice that automates filling out tax return form and possibly incorporates additional ac-

2

counting features. The main question of this thesis is: how to design architecture for ac-

counting web service? Some additional questions are: What are the benefits of architec-

ture design? Which are the current core web service architecture design ideas and what

are they about? What it takes to realize this service from a technical standpoint -should it

even go to production?

 What this thesis excludes are: specific technologies and libraries used to build a web

service. What are seen as outdated design models and frameworks or those, which are

intended for completely different kind of services of that which PROJECT Y project in-

tends to produce.

1.4 Research method

This a is functional thesis, which means that it tries to produce academic result and yield

some value to real life project through those results. The study uses PROJECT Y as a

case study to figure out the best solutions. The research method used is qualitative and

with the research knowledge chapter followed by empirical data. My approach is to re-

search large array of technologies, frameworks, designing models and pick the most used

and relevant ones for closer inspection. Many of these didn’t make it to the final thesis,

because of time limitations, but I tried finding ones that matter and possibly might add

some kind of value towards the project or raise unanswered questions. I had a couple of

extensive books to guide my way, but I sought to find the latest relevant academic papers

from web sources to back up my research, since web model trends are developing at

such rapid phase. The idea was to read into the subject before writing anything and try to

construct cohesive overview about the subject in question. There are also presentation

events for key stakeholders and potential future users which I will partake. The idea is to

present current proof of concept program for them and to collect general feedback, which

might reveal about the direction this project should take to bring out viable service.

3

2 Web service Architecture

Standard web technologies such as HTML are designed to transmit static information.

This does not simply suit the requirements of modern businesses. Web-services are the

key to providing environment which is able to automate different processes in a larger

scale and enable interactive exchange of information between the different stakeholders.

(Alonso, Casati, Kuno & Vijay Machiraju 2003, 99)

 A crude description of the web-service model could be that it is a program

that is able to access different programs over the internet. For much more exact descrip-

tion one could quote World Wide Web Consortium (W3C), in which they state:

 “A software application identified by URI, whose interfaces and bindings are capable of being

defined, described, and discovered as Extensible Markup Language (XML) artifacts. A Web service

supports direct interactions with other software agents using XML-based messages exchanged via

Internet-based protocols”. (Austin, Barbir, Ferris, Garg 2002, C.1.1)

 In the book web Services ATM is used as an example of a simple web service. In the

example ATM is the interface to customer, where the customer is able to access the in-

formation which is needed without danger of exposing information which might be exploit-

ed by the user. ATM as an example defines well the structure and the benefits of a stand-

ard web service although the cases are usually harder to conceptualize. (Alonso ec 2003,

97)

2.1 Service oriented architecture (SOA)

The benefit of approaching the project from SOA point of the view is to get the big picture

of the services together, as well as to include both business and technical sides and see

how they should come together. With SOA you are able examine the end product as a

service with all of its internal and external components. Web services are the key in un-

derstanding how SOA based service is realized. The goal of the new piece of software is

to add something new, not invent the wheel all over again. We can utilize networks for

linking parts of the existing software to something completely new using web components.

In this way businesses are in control of their respective software and its data even though

that software may be just a piece of longer computer controlled production chain. When

the need for the changes appear, for example a key supplier changes to another firm, it is

possible to simply make the changes to the software in question and leave the rest of the

supply chain’s services untouched. (Papazoglou 2012, 14)

What is the value that the SOA adds towards the project then? SOA is a

complete designing pattern, which answers to many questions which might not even been

4

asked. It offers framework to work with and baseline for architectural planning. The goals

which can be pursued through SOA are best described by SOA manifesto which states:

 “Business value over technical strategy

Strategic goals over project-specific benefits

Intrinsic interoperability over custom integration

Shared services over specific-purpose implementations

Flexibility over optimization

Evolutionary refinement over pursuit of initial perfection”

(SOA Manifesto Working Group)

If these values are shared by the project then the SOA might be the correct tool for it.

Figure 1 presentation of framework elements included in SOA thinking. (Angela Martin)

2.2 Cloud computing

The purpose of cloud computing is to lower demands towards the customer in terms of

required investment and to keep more control over the service in producers hands. By

removing complexity of running a service in user’s perspective you can free up need for

physical devices, the time it takes to set up and manage systems and even lower the

technical know-how. Cloud computing also caters better towards pay by use model, like

5

subscriptions offering expensive tools to wider consumer and business base. (Papazoglou

2012, 2012, 750-754; Manes 2009)

There are three cloud computing models; Infrastructure as a service (IaaS), in which

the whole computing power, memory, network, operating system is provided by the ser-

vice producers. This is basically the whole computer and all the software it contains, leav-

ing the end user only in need of internet connection terminal and knowledge of how to use

the given system. The next level of cloud computing is Platform provider as a Service

(PaaS). This means that the system is provided to user, which might be for example used

as a resource by other systems or a user who doesn’t want to deal with complexity of set-

ting up the system in question, like coding environment. User might be granted access to

configure the environment, but only as much as environment is capable. Final tier is to

only provide Software as a service (SaaS), in which user gains access to software over

the internet. This can be achieved by client software or through an internet page over a

browser that grants access to the user interface. (Papazoglou 757, 2013)

2.3 How does example technologies run a web service

There are a great number of technologies included which form the web service platform.

Some of which are so common that they have become a standard. The client side is usu-

ally accessed by the browser, so there you have at least HTML and possibly some func-

tional front end languages such as JavaScript. Information is handled and processed by

the backend which is run at a service provider’s server. In order for a server to service

multiple clients it needs a servlet to create instances for each customer. Once the in-

stances have their respective sessions, server’s program is able retrieve the information

from database and move it to the client through java applets embedded in html. (Alonso

es, 99-100, 102, 2003)

 Model-view-controller design (MCV) is usually used to represent the user,

software and database interactions. Although it’s not originally web service architecture

model, it is currently widely used in planning them. The model describes hypothetical pro-

gram’s functions as follows. Controller receives the inputs and steers the programs ac-

tions. Model manages and modifies the data and finally view is designed to show the re-

sponse to the user. View data, can be wrapped in different contexts, like multiple forms of

charts. This is the intended logic, which the program follows within the user interface to

the database. (Reenskaug, Coplien 2009) (C2.com 2013)

 When you are designing more complex web service there is also the data

traffic that travels between the different services. Easy data transportation between the

systems over internet is layered method of constructing web components. There are mul-

tiple ways to implement data transportation between applications, which are different, but

6

not necessary competing methods and technologies. It is for example possible to build

method to transform XML-document across to another system purely using SOAP or

REST, but it is also possible to combine these two to take advantage of their best aspects.

It is also possible only to use Hypertext Transfer Protocol (HTTP) for data traffic, but this

sets up certain constraints as for using exact data format, which both software are able to

understand. It is dependent on the functional and quality requirements on which guide-

lines and technologies should include in to a project. (Champion, Ferris, Newcomer, Or-

chard 2002) (Alonso es p.93-96, 118, 2003)

Figure 2 representation of MCV. (Code project 2008)

2.4 Web Services Description Language (WSDL)

WSDL describes information about the application interfaces and services which it con-

tains. The idea is to provide machine readable description to developers who are interest-

ed in the software in question. Developers should acquire essential information about the

possible services interfaces and how to connect to those interfaces. It is even possible to

generate code required to access service in question from WSDL.

WSDL 2.0 is written in XML and it consists of five different parts, which are:

Service exposes services that are accessible by web protocols.

Endpoint provides the services URL used to connect the service.

Interface states the detailed operations and parameters used by these operations.

7

Operation describes the way in which SOAP message is encoded.

Types convey the type of data contained within the service.

(Alonso es 2003, 165-174; Chinnici, Haas, Lewis, Moreau, Orchard, Weerawarana 2007)

WSDL 1.1 differs little from 2.0. The main differences between the two are that 1.1 con-

tains messages as a sixth part, which expresses information that is contained in other five

elements in 2.0. 2.0-version is approved by W3C and is officially endorsed, while 1.1 is

more widely used and supported by wider array of tools. Representational state transfer

(REST) is supported in 2.0 so it doesn’t relay completely on SOAP, however it is currently

recommended that you create both versions of the file if you elect to use 2.0-version.

(Manes 2008)

2.5 Simple object based protocol (SOAP)

SOAP likes to view itself as the name tells us a protocol. The idea behind it is to create an

envelope, in which you include the message in the XML format. SOAP is easy to extend,

meaning that it has libraries which are included to the project depending on which func-

tions are needed. There are many tools to support SOAP, for example to generate inter-

faces. SOAP is independent, so it doesn’t set any requirements to other technologies

used and it can be used with any programming language. Performance wise SOAP might

set some roadblocks if there is huge amount of network traffic. It is usually heavier than its

alternatives. (Kohlhoff & Steele; Moore 2001; Papazoglou 2013, 125-145)

The SOAP message holds three parts: Envelope itself, which is mandatory

and represents the message itself. It guides message to right URI. Header is optional, but

it extends the use for decentralized actions and can be used for example authentication.

In the final part the body converts the data into the XML form and provides the error han-

dling. It also triggers the call to the application programming interface (API). (Don Box ec)

SOA’s principles also dictate that the program should be easy to access by

external resources and SOAP can be send over any underlying protocol, such as HTTP.

Although it takes some guidelines on how to connect one system to other using SOAP if

you don’t have any previous experience with it. That’s why SOAP might not be the easiest

to pick up, if you don’t have any knowledge to start with, but it’s certainly easy to operate

with, once you are familiar with basic concepts and the syntax used in SOAP libraries.

(Company X 2008; Moore 2001; Papazoglou 2013, 125-145)

2.6 Representational state transfer (REST)

REST is compiled best practices for creating architectural model. It uses basic web-

service commands like PUT, GET and POST, but also offers framework in how to use

8

these elements in system to system communication. Just like for SOAP, REST has multi-

ple libraries for different languages. REST is not as much of a technology itself as it is a

guideline for using existing components.

 REST’s basic idea is that it places constraints in how these components are

to be used. These constraints are: Application programming interface (API) should not

limit what protocol is used for data transform, nor should it make any changes to protocol

unless protocol is incomplete to perform its task. API should use its effort in defining re-

sources’ media types. The resource names should be left to be defined by the user. REST

API should be possible to use by someone who does not have beforehand understanding

of its underlying function. The only information that client is assumed to have is uniform

resource identifier (URI) and understanding of the service’s media types. (Roy T. Fielding)

REST is highly modifiable, thus you are able to build extremely specific systems.

High modifiability also means that it scales and offers possibility for a great performance if

configured properly. It is as independent as is currently possible, only requiring client to

know its entry point information. (Pautasso, Zimmermann, Leymann 2008; Pedro Verdeck

2013)

A simple REST program was made to simulate fetching data. It was made using

Jersey library, because after testing multiple ones, it proved to be easiest to handle. The

goal was to see how difficult it would be to use REST library. Program, is included in ap-

pendix 2.

9

3 Architecture design implementation

PROJECT Y project aims to create more information about their innovation to find out

whether the intended service would be viable to execute. This chapter will produce tech-

nical information, more specifically architectural solution. First the current work and plans

will be established. After that the research base (second chapter) findings are used to

design potential architecture for the service. Specifications for the service are still some-

what under a progress, so in some cases options are provided instead heading to a single

core solution.

3.1 Service description

The service seeks to automate creation of periodic tax return form and send it to taxation

administration. The service gathers its data from the electronic bills which are retrieved

from external system(s). The user the ability to remove, modify and add bills within the

program. The original bills retrieved from external system will not be modified, there for

the copied bills are the ones being processed by the program. The user is responsible of

all the changes that are made to the data and the service doesn’t take responsibility for

factual data content.

Some additional accounting features are also planned to be included in the service.

The electronic bills have a possibility to offer vast amounts of data for wide array of func-

tions, but these additional accounting features are yet to be defined. Functions that are

defined are as functional requirements chart in appendix 4. (COMPANY X 2014, ARA use

case diagrams; project meeting 18.2.2015)

Since the automatic value-added tax (VAT) return form is already a well-defined ser-

vice concept shall be referred as automatic VAT reporting (AVR). See appendix 3 for a

chart illustrating AVR architecture. (COMPANY X 2014, ARA use case diagrams; project

meeting 18.2.2015)

3.2 Proof of concept as a guide

Designing architecture from the scratch is extremely difficult and even unproductive. It is

essential to have the difficult questions made earlier in stages rather than later. For this

proof of concept (POC) is excellent tool. It is usually beneficial step to create first low

budget version in order the see all the technical requirements of the service. (Odysseas

Pentakalos 2008)

 For PROJECT Y some groundwork has been made. One of the produce is a

demo version of the AVR program. Demo program was made by a small team of students

10

as a part of the school course; the goal was to prove that such program is at all possible.

Company X also had representatives to work as product owners and specialist educating

about the subject for the students. The focus was more directed to the business logic than

technical requirements and shortcuts were made in order to get the product out in time.

However these technical shortcuts were noted and documented to help the designing of

the end product. One of the shortcuts was excluding EU-trade and VAT-relief from busi-

ness logic. To complete business logic a chart was compiled for EU-trade and VAT-relief

in appendix 3. (Verohallinto 2015)

3.3 Service requirements

The service must be met certain goals, that has been set during the project. First of all it is

designed as a white label service. What this means that the service seeks to gain multiple

big clients and for each of the clients it is meant to be integrated to their existing system.

In order to achieve that for every client there will be a customizable user interface (UI),

bearing the client’s brand and user experience. The end user of the service is assumed to

be small business owner. So it is unlikely, that the software should go through huge

amount of data. As for the services data, currently it might be incomplete to run the soft-

ware’s business logic. Architecturally you can only tackle this problem by recognizing the

incomplete data and exclude it from the actual functions. (Project meeting 18.2.2015)

 There also exists a market outside domestic sphere, which might be tapped

in the future. This would require multiple sister programs, that have different business log-

ic to cater the differences in taxation laws. (Business meeting 27.2.2015)

 Additionally functions to business logic will be a potential user notification

system. A user can be informed through a text message of a pending tax return form or

about the fact that certain monetary thresholds crossed. This might require somewhat

larger processing power in order to conduct the passive calculation checks. It is possible

to hardcode these checks to certain dates and during the timeframes, when the actual

usage is otherwise low. (Project meeting 18.2.2015)

3.4 Feature design

The proof concept software has been presented to multiple key people, like small busi-

ness owners and those who contribute to national financial and political projects. Feed-

back from these people has been positive, but there have always been wishes for more.

The most common feedback has been that there would be more extensive service, than

what the POC offers. It takes great deal of effort to introduce new practices for the people

and it helps if they feel that the benefit of adopting new system is significant. The planned

additional accounting features, which are combined with current AVR system, might help

11

reaching that. However it would require greater investment to launch all these services at

the same time. Web services enable easy way to build larger services piece by piece and

the accounting services could be developed as a somewhat separate service. This would

enable to place its status to secondary place and first go ahead with smaller steps and

launch the AVR service first. (advisory board 20.1.2015; Suomen yrittäjien littto 2.3.2015;

Kunnantaito OY 24.3.2015)

AVR and the additional accounting services use mainly the same data. That is why

a joint database option should be considered as well. Even if AVR and the additional ac-

counting services would be mostly their own entities, it would be possible that work under

a single database solution. This would lead to less interfaces and possibly reduce the

work on the databases. Based on this model, class diagram and relation diagram illustrate

possible database design, which can be found on appendix 5 and 6. There are two extra

tables created in relation diagram to account for multiple users for one company and peo-

ple who might have multiple companies.

The programs interfaces are on an important position when there are high customi-

zable requirements. ARV programming interfaces should be concentrated between the

business logic and backend controller. This way it is entirely possible write a new logic in

case service will be provided on abroad as well. Every country has its own tax laws and

there for requires its own business logic. Whether the user interface should be independ-

ent from back end code depends on the length that the white labeling is necessary to

take. If the clients are prioritizing preserving the user experience, like navigation through-

out their whole service the user interfaces should also be on a high priority. This would

make it possible to retain the navigation to match every clients existing service. The easier

solution is to make a single neutral user interface and rely on modifying style sheets by

utilizing style sheet language tools such as Less.

All the services designed functions and the data moving between these functions

are composed to data flow chart in appendix 8. Squares indicate interface, bubbles func-

tions and open box data storage.

3.5 Inter service APIs

The benefit of the web services can utilize by fact that the server’s program is able extent

its capabilities by accessing other programs interfaces. The transported information is

packaged in XML and send over the network using for example SOAP to convoy the mes-

sage to the target program. Well-structured interfaces allow recursive approach to a ser-

vice, which is the main benefit that service-oriented architecture is trying attain. It might be

worth to implement highly customizable architectural style such as REST. This allows eas-

12

ily extending existing features, such as combined accounting services. (Paul Prescod

2002)

Ilmoitin is the finish tax administration’s web interface that has ability to check the

tax return form format, present your earlier tax fillings and receive filled tax return form. In

order to gain access to interfaces KATSO identification must be acquired, except for the

checking interface, which doesn’t require any identification. Ilmoitin has been has been

made using SOAP and it has extensive guidelines on how to connect a web service to

Ilmoitin using SOAP. Use of SOAP should be somewhat limited if there are intentions to

scale up the amount of data to huge quantities in the future, because of its network per-

formance issues. (Kohlhoff & Steele) (Ilmoitin)

Send function was created for POC to test Ilmoitin’s check interface and experiment

on how difficult it is to create a SOAP message. Ilmoitin web-site has detailed specs about

the interfaces and guide on how to access them using SOAP. Detailed code for this func-

tion can be found on appendix 7. (Ilmoitin)

3.6 Infrastructure

There are multiple ways to offer a service to clients. It is possible to simple handout lease

the software for clients use. However it might be more beneficial to follow the SaaS mod-

el. In SaaS model the server is provided by the same company that owns the software. It

leaves Company X more in control of the service and enables better access to metadata.

This metadata could reveal some useful statistics about the use of the program such as

usage. This would help in future service improvement as well as with marketing to poten-

tial clients. The metadata also enables optional billing methods such as pay per use. Cli-

ent would be charged every time its customer would use the server. SaaS would also offer

the client more complete package, not having to focus on server side choices. (Papazo-

glou 2013, p.757)

 Alternative methods could also be implemented with other clients if they wish

to have the additional control, for example to centralize their services under a single do-

main. (Business meeting 27.2.2015)

4 Results

The concepts researched indicate that all of them have their respective uses in modern

service design. They offer a great way to produce a conventional service. One of the re-

search goals was to find the best practices in service design, but methods in this thesis

aren’t in really competition of each other and can coexist and even complement each oth-

13

er. Of course there are clear alternatives to concepts, which have been studied in this

thesis. However there should be more in depth and specific study to be conducted in or-

der to find the best methods across all the possible alternatives.

 Benefits for implementing the concepts in this thesis are: a clear blueprint for

development. This enables a well-structured project, which is easy to document and pro-

duce with a bigger more complex team. It is possible to create a scalable service, which

can be realized in phases. That means that it is to restart the development and add addi-

tional functions after the product has been launched. Utilizing the concepts also leads

functional externals APIs and description of the service to stakeholders, who might be

interest to gain access service’s features. Service is also depends less on specific stake-

holders and is easy to configure to use different systems.

PROJECT Y has complex service in hands not only organizationally, but al-

so technically. On the bright side project is very suitable to be implement in stages, as

long as all the architectural considerations are kept in mind while producing software.

There is opportunity to tailor the service for a single customer. Then measure if the project

is still potential enough. Possible additional researches for Company X to conduct next

would be extensive market research, which could clear questions on the business side of

the service and ultimately tell whether it should be launch. As a compiled result a simple

diagram reflects overview architecture of the intended service in appendix 9.

14

5 Conclusion

By this researched I aimed to shed light of different architectural solutions for a software

based service. What I discovered is that the studied field is more like eco system, rather

than different competing ideas. There are very few cases when a single methodology or

technology triumphs objectively over another one. SOA for instance is almost like a moth-

er of concepts in architectural design, which benefits from connecting multiple systems. Its

principals may be utilized in old school CORBA (Common Object Request Broker Archi-

tecture) based development as well as with modern day cloud services.

You can usually manage without deep understanding of architectural design, but it

most likely helps to understand them as then you will be able plan the bigger picture as

well. Fitting analogy could be a programmer, who is well rehearsed in higher level coding

language. One can make functional programs, but if there is lack of understanding of the

underlying processes which take place closer to hardware level. It might leave program-

mer in situations, where is unable to fix a bug, or even conceptualize what it is that he

should be exactly doing. Like this understanding of the underlying processes also under-

standing architecture design might be useful, it help the programmer to have consistent

picture of the software and enables long term right approach, rather than one that simply

seems the best, given the current situation that the project faces.

Understanding web services and the design patterns relating to it is absolutely neces-

sity for someone who is planning getting into software development. It might take some

patience to internalize all the information about the tools and design patterns and how

they are connected. But approaching the subject from a top down perspective starting

from SOA offers great learning experience, which will leave you with insight and ideas.

Information resources for architectural design and interface implementations might be

somewhat scarce and very rarely written in an easy and understandable manner. Tech-

nologies age, but the ideas and concepts usually don’t. The books used in this thesis of-

fered a consistent and cohesive view of concepts. They helped to understand how differ-

ent parts are associated together and what the next subject you should read about is. As

for the web sources used for this thesis they are usually written by someone who is re-

spected professional working on these tools. This does not remove the chance that if an

article for example has been written by a single person and that person writing about ex-

tensive subject, that he might have some misconceptions. Most of the sources are how-

ever written by multiple people who are working with highly regarded establishment as

W3C. In some cases it is unclear who has written the source and in these cases reliably

15

has been sought from establishment which has published it. There is not huge amount of

controversy about the subjects, except for some individual cases like in how easy it is to

adopt use of REST. It was often contrasted to SOAP and the opinions varied. My own

experience working with both during functional side of this thesis is that REST as a con-

cept is seems easy, but the frameworks’ libraries demand a understanding of the project

environment setup. I did not experience same difficulties with rigid, but straight forward

SOAP frameworks.

 I would suggest further research be done about the REST and SOAP

frameworks. There are multiple competing libraries and it would shed new light to have

study of their properties. As for now choosing a library for your project that utilizes REST

feels like lottery game, where you hope to get a easy to configure working tool.

 The process of making this thesis was somewhat challenging. However it

has also been educational. I have always been interested how web services actually work

on a bigger scale and creation of this thesis has absolutely answered that. The most con-

siderable benefit for me and hopefully for the reader was to gain new perspective how

services CAN be implemented and through that introduce new ideas about potential ser-

vices.

16

Sources

Aalto yliopisto http://information.aalto.fi/en/research/rte/ 29.4.2014

PROJECT Y http://www.taloushallinnonrunkoverkko.fi/hankkeesta/ 29.4.2014

Daniel Austin, Abbie Barbir, Christopher Ferris, Sharad Garg 2002

http://www.w3.org/TR/2002/WD-wsa-reqs-20021011 visited 6.4.2015

SOA Manifesto Working Group http://www.soa-manifesto.org visited 8.4.2015

Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik

Frystyk Nielsen, Satish Thatte, Dave Winer 2000 http://www.w3.org/TR/2000/NOTE-

SOAP-20000508/#_Toc478383497 Visited 2.4.2015

Figure 1 Created by Angela Martin based on Michael Bell’s book Service-Oriented Model-

ing: Analysis, Design, and Architecture, Wiley. Figure has been contributed to public do-

main.

Brian Moore 2001 http://www.techrepublic.com/article/an-introduction-to-the-simple-

object-access-protocol-soap/ visited 1.3.2015

Michael Champion, Chris Ferris, Eric Newcomer, David Orchard 2002

http://www.w3.org/TR/2002/WD-ws-arch-20021114/#basicext Visited 1.4.2015

Roberto Chinnici, Hugo Haas, Amelia A. Lewis, Jean-Jacques Moreau, David Orchard,

Sanjiva Weerawarana 2007 http://www.w3.org/TR/wsdl20-adjuncts/#soap-operation-decl-

description Visited 15.4

Code project 2008 http://www.codeproject.com/Articles/25057/Simple-Example-of-MVC-

Model-View-Controller-Design Visited 29.4.2015

Verohallinto 2015 periodic tax return form’s precise information http://www.vero.fi/fi-

FI/Syventavat_veroohjeet/Lomakkeet/Yritys_ja_yhteisoasiakkaiden_lomakkeet/Kausiveroil

moitus/Kausiveroilmoituksen_yksityiskohtainen_t(19441)

17

Anne Thomas Manes 2008 http://searchsoa.techtarget.com/answer/WSDL-11-vs-WSDL-

20 Visited 15.3.2015

Odysseas Pentakalos 2008 https://msdn.microsoft.com/en-us/library/cc168618.aspx Visit-

ed 22.4.2015

Christopher Kohlhoff, Robert Steele

http://www2003.org/cdrom/papers/alternate/P872/p872-kohlhoff.html Visited 30.4.2015

Company X 2008 Technology materials IntroductionToWebservices.pdf

Roy T. Fielding 2008 http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-

driven Visited 30.4.2015

Pautasso, C.; Zimmermann, O.; Leymann, F. 17th International World Wide Web Confer-

ence (WWW2008) www2008-restws-pautasso-zimmermann-leymann.pdf visited 3.3.2015

Pedro Verneck 2013 http://stackoverflow.com/questions/19884295/soap-vs-rest-

differences Visited 1.3

Company X ARA use case charts 2014.

Anne Thomas Manes 2009 http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-

services.html Visited 21.4.2015

C2 2014 http://c2.com/cgi/wiki?ModelViewControllerHistory Visited 26.3.2015

Ilmoitin https://www.ilmoitin.fi/kehittajat/Etusivu 1.5.2015

Paul Prescod 2002 http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html Visited

9.4.2015

Trygve Reenskaug, Jim Coplien 2009 http://www.artima.com/articles/dci_vision.html Visit-

ed 26.3.2015

Gustavo Alonso, Fabio Casati, Harumi Kuno, Vijay Machiraju. Y.2003. Web Services:

Concepts, Architectures and applications. Berlin. Springer

http://www2003.org/cdrom/papers/alternate/P872/p872-kohlhoff.html
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

18

Michael P. Papazoglou. Second edition. Y.2012. Essex. Pearson.

Company X (Technical meeting) 15.2.2015

Company X Business meeting 27.2.2015

 Company X Project meeting 18.2.2015

PROJECT Y presentation to Suomen yrittäjien liitto 20.1.2015

PROJECT Y presentation to Project Z advisory board 2.3.2015

PROJECT Y presentation to Kunnantaito OY and Company X partners 24.3.2015

19

Appendices

Concealed

