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In this study, the effects of renewable NExBTL diesel on engine performance were compared with 
standard diesel and 50-50 % mix of NExBTL and DFO. The target was to determine if it would be 
possible to reduce the fuel consumption of the engine with two research fuels by optimizing fuel 
injection parameters and the use of exhaust gas recirculation, while maintaining nitrous oxide 
emission levels achieved with diesel. Two different rates of EGR settings were used, and in 
addition fuel injection parameters were optimized with lower EGR valve settings to bring NOX to 
the reference level. In the last part of the study a transient cycle was used to compare fuels.  

In-cylinder data was collected and analyzed via a cylinder pressure sensor and engine indicating 
system. The main target was to compare the results of cylinder pressures, heat release rates and 
ignition delays between different fuels. 

The base levels of NOX were quite similar with all fuels. The greatest advantages for the two 
research fuels in comparison to diesel were seen in significantly lower smoke numbers. 

Fuel injection parameter optimization did not produce significant reduction in fuel consumption, 
as the base results of NOX were quite similar with all fuels, which made optimization possibilities 
quite narrow. 

The use of EGR reduced the NOX significantly but simultaneously the amount of smoke rose. 
When NOX was brought back to the reference levels by optimizing the fuel injection parameters, 
notable gains in fuel consumption were noticed. At the same time the smoke numbers were clearly 
higher than the reference level. 

No significant constant differences between the three fuels were seen in in-cylinder results. At 
some lower load points shorter ignition delay of NExBTL was measured.   

The NOX results of transient cycle were quite close to each other when using different fuels. Only 
slight changes in fuel consumption were noticed in these runs. 
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UUSIUTUVAN DIESELÖLJYN VAIKUTUS 
MOOTTORIN SUORITUSARVOIHIN 

Tässä tutkimuksessa tutkittiin uusiutuvan NExBTL-dieselöljyn vaikutuksia moottorin 
suoritusarvoihin. Vertailua tehtiin tavallisella dieselillä ja NExBTL:n ja dieselin sekoituksella 
(seossuhde 50–50 %) ajettuihin tuloksiin. Ensi vaiheessa tavoitteena oli selvittää, olisiko 
moottorin polttoaineen kulutusta mahdollista alentaa optimoimalla moottoria tutkimuspolttoaineille 
paremmin sopivaksi. Typen oksidien (NOX) päästö pyrittiin pitämään standardi dieselin tasolla. 

Tämän jälkeen moottoriin asennettiin pakokaasun takaisinkierrätysjärjestelmä (EGR) typen 
oksidien pienentämiseksi. Käytössä oli kaksi erilaista EGR-säätötasoa, joiden lisäksi 
pienemmällä EGR-säädöllä polttoaineen ruiskutusparametrit optimoitiin siten, että NOX nousi 
takaisin referenssitasolle. Tutkimuksen viimeisessä vaiheessa oli vuorossa transienttisykli kaikilla 
polttoaineilla.   

Sylinterinpainetietoja kerättiin kaikissa staattisissa kuormapisteissä. Käytössä oli 
sylinterinpaineanturi ja indikointilaitteisto. Tarkoitus oli selvittää sylinterinpaineen, 
lämmönvapautumisen ja sytytysjättämän eroja eri polttoaineilla.  

Typen oksidien lähtötasoissa ei ollut suuria eroja eri polttoaineilla kun käytössä olivat vakiot 
moottorinruiskutusparametrit. NExBTL ja 50–50 % -polttoainesekoitus tuottivat selvästi dieseliä 
alhaisemmat savutuslukemat. 

Typen oksidien lähtötasojen olleessa hyvin lähellä toisiaan eri polttoaineilla, 
polttoaineruiskutuksen optimoinnilla ei ollut mahdollista parantaa polttoaineen kulutusta 
merkittävästi, sillä NOX:n piti pysyä samalla tasolla dieselillä mitattujen arvojen kanssa. 

Pakokaasun takaisinkierrätys alensi NOX-päästöjä tuntuvasti, mutta samalla savutus kasvoi. 
Selkeä parannus polttoaineen kulutuksessa oli havaittavissa kun polttoaineen ruiskutusparametrit 
oli optimoitu siten, että NOX nousi referenssitasoille. Savutus tällöin oli kuitenkin selvästi 
lähtöarvoja suurempi. 

Sylinteripaineista lasketuissa tuloksissa ei ollut nähtävissä suuria eroja eri polttoaineiden välillä. 
NExBTL-polttoaineella osassa tutkimuspisteistä havaittiin lyhyempi sytytysjättämä kuin muilla 
polttoaineilla. 

Transienttisyklin NOX-tulokset olivat hyvin lähellä toisiaan kaikilla polttoaineilla. Myös polttoaineen 
kulutuslukemat olivat melko yhteneviä eri polttoaineiden kesken.    

ASIASANAT: Diesel moottori, pakokaasupäästöt, biodiesel, uusiutuva diesel, NExBTL, 
hydrokäsitelty kasviöljy (HVO), pakokaasun takaisinkierrätys (EGR).  
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1 INTRODUCTION 

1.1 Diesel Engine: Use and Challenges 

Currently the diesel engine is very popular in various applications. It is commonly 

used in commercial and personal vehicles and the popularity of diesel engines is 

growing. The challenges with using diesel engines concentrates on three main 

issues: the limited quantity of crude oil reserves, the total amount of diesel fuel 

oil consumed and the exhaust emissions of the burning process.  

The world’s oil reserves are estimated to last for only about 40 years. The price 

of the oil is estimated to rise if demand outstrips supply. This could cause great 

problems not only in the operation of engines but also the balance in the world 

and in the worst scenarios cause an extensive chaos. This causes a need for 

finding alternative fuels to be able to use engines in the future.  

Diesel engines consume a great amount of diesel fuel. For example the road 

usage of diesel engines has an 81 % share of energy consumption in the 

transportation. With the development of suitable alternative fuels the problem 

rises with the volume of production of these fuels. Fuel consumption reduction is 

a priority in the current situation. 

Diesel engine exhaust gas emissions contribute significantly to the world’s total 

pollution. Diesel engines produce mostly NOX, HC, PM/smoke, CO2 and CO 

emissions. These emissions have a negative effect on the health of the 

population (e.g. cancer, cardiovascular and respiratory problems), global climate 

changes and general pollution of air, water and soil. In the last 20…25 years the 

legislation has guided engine manufacturers to develop engines that produce 

less emissions. Focusing on fuel injection optimization, engine combustion and 

parameter control, exhaust gas recirculation and control, exhaust gas after- 

treatment systems and alternative fuels, it is possible to reduce emissions 

considerably.    

(Pahl 2005, 1-3; Kegl et al. 2013, 1-3; DieselNet 2015a) 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Toomas Karhu 
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1.2 Diesel Engine Emission Legislation and Bioenergy Mandates 

The strictest diesel engine emission legislations are found at the moment in the 

European Union, the USA and Japan. The European Union’s emission legislation 

is divided into five different sectors: cars and light trucks, heavy-duty truck and 

bus engines, nonroad (off-road) diesel engines, motorcycles and small utility 

vehicles. (DieselNet 2015a) 

The experimental studies of this thesis concentrated on the performance of an 

off-road diesel engine. The evolution of exhaust gas emission standards for 

engines with net power in the region of research engine (100 kW) can be seen in 

Table 1.1. The standard Stage 3B concerning the research engine is highlighted. 

Table 1.1. Stage I-V exhaust gas emission standard evolution (DieselNet 2015a). 

 

The effort to decrease the effects of greenhouse gas emissions caused by 

transportation exhaust has been taken. The goal is to improve sustainability. The 

direct way is to improve energy conversion and emission control of the engine 

and the indirect way is through a closed CO2 cycle using biofuels. (Mollenhauer 

et al. 2010, 94-95) 

Several countries globally have agreed to certain mandates in the usage of bio- 

and renewable fuels. The European Union has set a goal for 20 % of the energy 

used to be renewable by the year 2020. For transportation, the goal for renewable 

energy use is 10 % of the total energy by the year 2020. (Directive 2009/28/EC) 

Net Power CO HC HC+NOx NOx PM
PN

kW 1/kWh
Stage I 75 ≤ P < 130 1999.01 5 1.3 9.2 0.7 - -
Stage II 75 ≤ P < 130 2003.01 5 1 6 0.3 - -

Stage III A 75 ≤ P < 130 2007.01 5 - 4 - 0.3 -
Stage III B 75 ≤ P < 130 2012.01 5 0.19 - 3.3 0.025 -
Stage IV 56 ≤ P < 130 2014.1 5 0.19 - 0.4 0.025 -

NRE-v/c-5 56 ≤ P < 130 2020 5 0.19 - 0.4 0.015 1×1012

Stage Date†
g/kWh

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Toomas Karhu 
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In Finland the target for renewable energy use in transportation is even greater: 

20 % by the year 2020. (Petroleum & Biofuels Association - Finland 2015) 

1.3 The Aim of the Study 

The aim of this thesis was to study the effects of the use of renewable diesel fuel 

on a diesel engine performance, exhaust gas emissions and qualities. The 

experimental studies were performed with a modern off-road diesel engine. The 

research results acquired by using three different fuels were under comparison. 

The focus was especially on the changes in the heat release and cylinder 

pressure of the engine. Also a literature review was conducted on these matters. 

The studies were performed in co-operation with the Finnish oil and refining 

company Neste Oil, that provided the fuels used in the experimental studies. The 

research engine and software for controlling the engine parameters were 

provided by a Finnish diesel engine manufacturer AGCO Power. 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Toomas Karhu 
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2 BIO- AND RENEWABLE FUELS IN DIESEL ENGINES 

2.1 First and Second Generation Biofuels 

2.1.1 First Generation Biofuels 

The term biofuel indicates that the fuel is made of some other than fossil origin. 

One way to separate different biofuels is to divide them into first and second 

generation biofuels. In some sources the term “third generation biofuels” is also 

used to describe the latest of alternative fuels. The categorization into different 

generations is not completely unanimous, as some variation of terms occurs in 

the literature.  

First generation biofuels are produced primary from food crops. Some examples 

of these fuels are: pure vegetable oils, bioethanol, biodiesel produced from 

vegetable oil and biogas produced from waste. Problems with using first 

generation biofuels lie with the fact that the raw material used for biofuel can be 

used for food and animal feeds.  

Usually diesel engines need a series of modification to be able to successfully 

use first generation biofuels. In some cases it is possible to blend biofuels with 

fossil fuels, for example according to EN 590 and DIN 51628 fuel standards, 

biodiesel can be added to diesel fuel up to 7 % in volume.  

(Sims et al. 2010, 1570-1571; Mollenhauer et al. 2010, 96; Kegl et al. 2013, 76-

78; DieselNet 2015b; Petroleum & Biofuels Association - Finland 2015) 

2.1.2 Second Generation Biofuels 

Second generation biofuels are produced from non-food biomass, but from by-

products, waste and dedicated feedstocks. For example the following fuels can 

be produced so that it is possible to call them second generation biofuels: Gas-

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Toomas Karhu 
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to-Liquid (GTL), Biomass-to-Liquid (BTL), dimethyl ether (DME), alcohols, 

methane, propane and hydrogen. 

Many of these fuels require diesel engines to be modified to enable proper usage. 

For example gaseous fuels require large modifications to the diesel engine to 

even attempt to use it. 

It is possible to blend second generation biofuels with fossil fuels. Currently in 

Finland diesel and gasoline fuels, which contain bio-originated parts are 

commercially available. 

Gas-to-Liquid (GTL) is a fuel which is made by converting gas into diesel fuel by 

using the Fischer-Tropsch process. Biomass-to-Liquid (BTL) uses also the 

Fischer-Tropsch process to produce fuel from biomass. These fuels have quite 

similar chemistry and properties to Neste Oil NExBTL fuel presented later.  

(Sims et al. 2010, 1571; Mollenhauer et al. 2010, 98-99; Kegl et al. 2013, 63-64)     

2.2 Neste Oil NExBTL 

2.2.1 General Information 

The name NExBTL comes from words Next Generation Biomass to Liquid. It was 

developed and patented by the Finnish oil and refining company Neste Oil. Any 

biomass, for example vegetable oil or animal fat, can be used as raw material for 

manufacturing NExBTL. Currently Neste Oil uses twelve different materials for 

making the renewable diesel. (Neste Oil 2015b) 

NExBTL can be blended in all proportions with traditional fossil diesel fuel and it 

increases the quality of the blend. The quality of the NExBTL itself is not 

dependent on the raw materials used. The fuel can be also used in all current fuel 

distribution logistical systems without modifications. (Neste Oil 2015c) 

Since 2012 Neste Oil has been providing customers with Neste Pro Diesel which 

contains the minimum of 15 % of NExBTL. NExBTL can be used to meet the 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Toomas Karhu 
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given bioenergy mandates cost-efficiently. For example in California, USA, it will 

be soon possible to buy fuel that contains 98.5 % of NExBTL (Diesel HPR by 

Propel Fuels). (Neste Oil 2015e; Taloussanomat 2015) 

Currently the majority of NExBTL is used as a traffic fuel but it is also possible to 

use it e.g. in airplanes, ships, generators and turbines. It is also possible to use 

NExBTL as a raw material for renewable plastics by the chemical industry. In the 

future NExBTL can be used as a power source for fuel cells, as it is possible to 

reform NExBTL into hydrogen, because it does not contain sulfur. The product 

family of NExBTL is shown in Figure 2.1. (Neste Oil 2015d; Neste Oil 2015g) 

 

Figure 2.1. Product family of NExBTL (Neste Oil 2015d). 

NExBTL is more user-friendly for the mechanics and maintenance personnel of 

the vehicles and engines, as it is much less toxic than the conventional diesel. It 

has been determined that NExBTL does not irritate the skin or eyes and it is 

biodegradable. (Nylund et al. 2011, 31-32)   

Several studies have been performed by various parties to determine the 

greenhouse gas emissions of producing NExBTL. Table 2.1 shows, that the 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Toomas Karhu 
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reduction of greenhouse gas emissions during the entire life-cycle is 51 % at 

minimum with NExBTL. The level of reduction is determined by the raw material 

used for NExBTL production. When NExBTL is produced from animal fat, the 

reduction is very high, up to 78 %. (Neste Oil 2015a)  

Table 2.1. Greenhouse gas emissions of NExBTL during entire life cycle (Neste 
Oil Annual Report 2010, 45). 

 

2.2.2 The Manufacturing and Chemistry of NExBTL 

The manufacturing process of NExBTL is called Hydrotreating of Vegetable Oils 

(HVO) and it can be used for animal fats as well. The process consists of cleaning 

raw materials of any impurities, after which they are hydrotreated using high 

temperature. This splits the triglyceride into three different chains and expels 

oxygen from the triglyceride molecules. Isomerization is performed to enhance 

the flow quality of the product in cold conditions. The procedure enables to make 

hydrocarbons with similar chemical properties to fossil diesel. The simplified 

process of making NExBTL is presented in Figure 2.2. (Nylund et al. 2011, 26; 

Neste Oil 2015c) 
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Figure 2.2. NExBTL process (Neste Oil 2015f). 

HVO has a blend of straight chain and branched paraffin hydrocarbon molecules. 

The carbon numbers are generally C15…C18. The chemical composition of HVO 

is fairly equal to Gas to Liquids (GTL) and Biomass to Liquids (BTL) diesels made 

using the Fischer-Tropsch process. The isomerization process enables to make 

winter and arctic grades of the fuel. Lubrication additives are necessary for HVO 

to meet the HFRR specification (<460 µm) for fuel injection system wear 

protection. The amount of HVO in blend can be determined using 14C isotope 

methods. The simplified chemical process of NExBTL is shown in Figure 2.3 

below. (Neste Oil 2015c) 

NExBTL can be stored for longer times than conventional second generation 

biodiesel and it does not accumulate water. The NExBTL can be used in cold 

weather conditions as it is possible to alternate the manufacturing process so that 

the cloud temperature of the fuel can be as low as -40 °C. (Neste Oil 2015c) 
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Figure 2.3. Simplified NExBTL chemical process (Neste Oil 2015c). 

NExBTL does not include any aromatics, oxygen and sulfur and it is practically 

odorless. The cetane number of NExBTL is very high, higher than 70, but 

simultaneously the density is low, approximately 780 kg/m3. NExBTL has the 

highest heating value of the current biofuels. Since aromatics affects greatly the 

formation of soot in diesel engines, NExBTL has a promise for lower smoke and 

PM. (Sugiyama et al. 2011, 2; Neste Oil 2015a; Neste Oil 2015c) 

When pure NExBTL is used in the diesel engine without any parameter 

optimization, a small increase in volumetric fuel consumption will occur and 

simultaneously the power of the engine will decrease slightly. Although the 

heating value per mass (MJ/kg) of NExBTL is even higher than that of diesel, the 

lower density of NExBTL causes the volumetric heating value (MJ/l) be lower than 

that of DFO, the difference being 4-6 %. (Nylund et al. 2011, 30) 
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3 HEAT RELEASE IN DIESEL ENGINE AND EXHAUST 
GAS RECIRCULATION 

3.1 Heat Release in Diesel Engine 

3.1.1 Generally about Heat Release 

Heat Release Rate or Heat Release is a term used to describe at which speed 

the chemical energy, imported by fuel to the engine cylinder, is released in the 

combustion reaction. Cylinder pressure and engine crank angle data is used to 

calculate the heat release. The typical cylinder pressure curve of a diesel engine 

is presented in Picture 3.1. (Heywood 1988, 497, Kegl 2013, 15) 

 

Picture 3.1. Cylinder pressure, fuel delivery rate, injection rate and heat release 
in cylinder (Kegl 2013, 15). 

As Picture 3.1 shows, the time passed from the order of the engine management 

unit for the injector to begin injecting to the actual start of injection is called 
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injection delay. Ignition delay respectively, is the time which passes between the 

actual start of the fuel injection until the actual combustion occurs. (Kegl 2013, 

15) 

Heat release is a good tool used for diagnosing engine performance. Heat 

release is determined at each position of the crank angle. The quantities often 

used for heat release are kJ/deg (Hsu) or kJ/m3deg (AVL) (crank angle is in 

degrees). In addition to heat release, the total cumulative heat release can be 

calculated by integration of momentary heat releases at every position of the 

crank, Picture 3.2. (Hsu 2002, 13-14, 18)  

 

Picture 3.2. Heat release rate, cumulative heat release, cylinder pressure and 
temperature in the cylinder (Hsu 2002, 14). 

In the calculations of heat release the same principles are used as in the engine 

combustion modelling, only in reverse. The first law of thermodynamics to an 

open system is used to evaluate the combustion process. The cylinder pressure 

information and the volume of the cylinder at each crank angle are used to 
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calculate the heat release. From Picture 3.2 it is possible to see the heat release 

rate curve of a diesel engine. (Hsu 2002, 13-14) 

It is quite challenging to make a universal model for all applications and some 

assumptions need to be made to simplify the process, but even with the simple 

model a lot of information about the combustion process can be gained. It is 

important to use possible assumptions and simplifications constantly to have 

constant results from the calculations. (Hsu 2002, 13-14) 

The model used to determine the heat release in this thesis is a one-dimensional 

“one-zone” model. In this model the conditions inside the cylinder for pressure, 

temperature and substance composition are dictated by time-dependent values. 

Local changes to these values are overlooked. The time-dependent result curve 

is dictated by using continuity, the first law of thermodynamics and ideal gas 

equation. Inlet and outlet valves are closed during the time of compression and 

gas expansion strokes (high pressure phase). Thus the only changes in the 

cylinder come from the fuel injected, heat loss to the walls of the cylinder and the 

piston ring blow-by. (Hsu 2002, 14-15; AVL 2003a, 5-6) 

Integrated heat transfer to the walls of the cylinder is between 10 and 25 % of the 

total heat released for the total combustion period. The amount of unburned fuel 

in the cylinder at the end of combustion is very small and in many cases it is 

possible to overlook the effect of unburned fuel. (Heywood 1988, 509-511; Hsu 

2002, 16) 

The momentary energy content in the cylinder is dictated by the following 

aspects, Picture 3.3:  

• the volume work of the piston moving (pCdV) 

• the combustion energy (dQF) 

• the heat loss to the walls of the cylinder (dQW) 

• the piston ring blow-by (hBBdmBB) 

(Hsu 2002, 14-15; AVL 2003a, 5-6) 
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Picture 3.3. Energy content in the cylinder at the time of high pressure phase 
(AVL 2003a, 6). 

Every crank angle is equivalent to a specific volume in the cylinder, so that it is 

possible to derive the needed pressure and volume information from the 

measured cylinder pressure and crank angle data. (Hsu 2002, 15) 

Generally speaking, the heat transferred (lost) to the walls of the cylinder is 

usually less than 15 % of the total heat. The blow-by past the piston rings can be 

calculated if the fuel injection timing, duration, quantity and temperature are 

recorded. However, even if this is left out to simplify the calculation model, the 

total understanding of the system is not lost. (Hsu 2002, 17) 

3.1.2 Engine Design and Operation Parameters Effects on Heat Release 

Several variables affect the heat release of the engine. Different engine designs, 

fuels, turbochargers, fuel injection parameters, among other factors, change the 
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cylinder pressure curve and heat release. It has been determined that the primary 

controlling factor on the initial peak of the heat release rate is the mixing process 

of fuel-air. Some factors to the heat release curve are presented in the following 

paragraph. (Heywood 1988, 560-562) 

When the fuel injection is advanced, the peaks of the heat release curve are 

higher, because fuel and air have more time to mix properly. The increasing of 

fuel injection pressure results in higher heat release initial peak, because when 

fuel is injected into the cylinder at a higher pressure, the fuel-air mix is more rapid. 

(Heywood 1988, 560-562) 

The usual effects on heat release are listed in Table 3.1. 

Table 3.1. Effect of engine design and operating parameters on heat release 
rates (Heywood 1988, 562). 

 

Because the cetane number of NExBTL (and Fischer-Tropsch Diesel) is higher 

than that of mineral diesel, the ignition delay is shorter, which usually leads to 

lower heat release peak values. This lowers combustion noise, especially when 

pilot injection is not used. (Kegl 2013, 74; Neste Oil 2015b) 
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3.1.3 The Used Formulas and Methods 

The formula used by AVL IndiCom program to calculate the heat release (Qi) in 

this thesis was: 

( ) ( )[ ]niniininiii ppVVVpKQ −+−+ −⋅+−⋅⋅
−

= κ
κ 1

 

 

Explanation of terms: 

n = interval (1 deg. crank angle) 

κ = polytropic coefficient 

p = cylinder pressure (bar) 

V = volume (m3) 

K = constant (100… due to unit conversion) 

The polytropic coefficient was constant 1.37 for diesel engines. The calculation 

range is usually between -30…+90 degrees and resolution is 1 degree. In this 

thesis however, the resolution of 0.5 degrees was used for higher accuracy. (AVL 

2003b, 11, 73)  

Ignition delays were calculated by using the information from fuel injector needle 

movement compared to the starting of the first rise in heat releases. To determine 

the starting of heat release the limiting value of 7.0 kJ/m3deg was used, i.e. the 

first time the heat release reached more than 7.0 kJ/m3deg the ignition was 

considered to begin. This eliminated the effect of rises in the heat release curve 

without the actual ignition. In the test runs conducted without the pilot injection 

the limiting value at some points needed to be set even higher to ensure accurate 

calculation of ignition delay.  

The difference in crank angle values, achieved from this information, was then 

calculated. This information was then calculated further by using the speed 

information of the engine to determine the time passed between the starting of 

injection and starting of ignition. 
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3.2 Exhaust Gas Recirculation (EGR) 

Currently the critical topics in diesel engine emission regulation are nitrous oxide 

(NOX) and Particulate Mass (PM) control. An important factor for the 

manufacturer, as well as the consumer, is also engine specific fuel consumption 

(SFC). (Kegl et al. 2013, 81)    

To reduce NOX emissions it is important to take measures to prevent them from 

forming. An effective way to do this is to lower the combustion temperature. A 

well-known and widely used method is Exhaust Gas Recirculation (EGR). In the 

EGR system part of the exhaust gas is directed back into the engine by mixing it 

with the intake air of the engine. The increased heat capacity of the inert exhaust 

gas lowers the burning temperature in the cylinder. As the peak flame 

temperatures reduce, less NOX emissions develop. (Heywood 1988, 102, 591, 

Mollenhauer et al. 2010, 71-72; Kegl et al. 2013, 81-82) 

The EGR systems can be divided into internal and external. In the internal EGR 

the recirculation is created by altering the timing of the exhaust and intake valves. 

In the external EGR (eEGR) the exhaust gas is led to the intake manifold via 

controlling the valve and EGR pipes. In this thesis the focus was on the external 

EGR system. 

The EGR system lowers the NOX emissions considerably, but in some cases 

challenges are faced with the increased PM emissions and fuel consumption of 

the engine. Especially the use of higher rate of EGR at the higher loads can cause 

problems. The use of EGR slows the combustion and moves the peak of the 

combustion towards retardation and this can affect the fuel consumption 

negatively. When the EGR system is used, the exhaust gas replaces some 

amount of oxygen in the cylinder which leads to the relatively incomplete 

combustion and rises the formation of PM emissions. (Mollenhauer et al. 2010, 

452-453; Kegl et al. 2013, 61-62, 207) 

However in some cases, especially at lower loads, the use of the EGR can even 

improve specific brake consumption and PM emission as the effects of 
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recirculation depend greatly on the characteristics of the basic engine and 

amount of EGR rates used. (Kegl et al. 2013, 61-62, 208) 

Usually EGR systems are used in turbocharged diesel engines. External EGR 

systems can be divided into several types by the way the exhaust gas is led to 

the intake air. “High pressure EGR” is when the exhaust gas is taken before the 

turbine and mixed with the intake air after the intercooler. In this case the 

turbocharger used is a critical component for producing enough pressure to 

enable recirculated exhaust gas transport to the intake of the engine. In other 

words the pressure in the exhaust manifold must be higher than the pressure in 

the intake manifold. (Mollenhauer et al. 2010, 71-72) 

In “low pressure EGR” the exhaust gas is taken after the turbine and possibly 

after the exhaust gas aftertreatment systems (e.g. Diesel Particulate Filter) and 

connected with the intake air before the compressor. This system, however, can 

stress the conventional compressors and intercoolers. In this case the EGR gas 

flow is enabled by the higher pressure in the engine exhaust pipe than at the 

compressor inlet. (Kegl et al. 2013, 60) 

Both systems require an EGR valve which can be operated electronically, 

pneumatically or hydraulically, to control the amount of EGR gas flow to the intake 

air. If the EGR is additionally cooled via an EGR cooler, connected to the engine 

cooling water circulation, the efficiency of the EGR system rises considerably. 

The cooling of the recirculated exhaust gas also helps control the rise in the 

engine fuel consumption caused by the use of the EGR. (Mollenhauer et al. 2010, 

71-72) 

When using EGR systems the amount of soot in the cylinder can rise. The wear 

of the piston rings, especially the second, third and oil rings, is often increased. 

The total wear of various engine components can occur. (Kegl et al. 2013, 62)  

The EGR system used in the latter experimental phase described in this thesis 

was a “high pressure EGR”. The system was equipped with an EGR cooler and 

the regulation of the EGR ratio was performed by an electronic valve controlled 
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via an engine parameter controlling unit. The position of the EGR valve was 

determined for each load point separately. 

A Testo 350 XL portable gas analyzer was used as an additional analyzer to 

enable calculating the actual exhaust gas recirculation percent (EGR %). Testo 

measured the amount of oxygen in the intake manifold and a Servomex Xentra 

4900 analyzer was used to measure O2, CO2 and CO values from the exhaust 

pipe. Because the Testo and Servomex analyzers showed slightly different 

ambient oxygen levels, it was compensated in the EGR % calculation.  

The EGR percentage was calculated using the following formula: 

ServomexgasexhServomexamb
TestomanifoldinTestoamb

EGR
OO

OO
...

...
%

22

22

−

−
=

 

 

Explanation of terms: 

O2 amb.Testo = ambient oxygen % with Testo 350 XL portable gas analyzer 

O2 in.manifold.Testo = oxygen % from intake manifold with Testo 350 XL 

O2 amb.Servomex = ambient oxygen % with Servomex Xentra 4900 gas analyzer 

O2 exh.gas.Servomex = oxygen % from exhaust pipe with Servomex Xentra 4900 
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4 RESEARCH PROGRAM AND FACILITIES 

4.1 Internal Combustion Engine Laboratory 

The study was performed at the Internal Combustion Engine Laboratory in Turku 

University of Applied Sciences during the summer of 2014. The research engine 

was loaded using a Schenck Horiba W 400 eddy-current dynamometer. The 

controlling of the engine and dynamometer, as well as data logging was 

conducted by a LabVIEW based program, which used National Instruments PXI 

system hardware. The main measurement equipment used in this study is shown 

in Table 4.1. 

Table 4.1. Measurement equipment of TUAS Engine Research Laboratory. 

 

For measuring the cylinder pressure an AVL GU 22C cylinder pressure sensor 

was used along with an AVL IndiSet 642 indicating system. The results were 

analyzed with AVL IndiCom v2.3 combustion analysis software. With this 

equipment the cylinder pressure results were collected at 0.5 crank angle degree 

interval. The results were calculated from one work cycle of the engine. 

The cylinder pressure measurements, as well as engine smoke measurements 

with an AVL 415 S sensor cold be performed only at steady state load points. 

Measurement Instrument
Temperature Thermocouple K-Type

Pressure Keller Piezoresistive pressure sensor
Air Flow ABB Sensyflow FMT-700P

Fuel Mass Flow Micro Motion CMF025M Coriolis flow meter
Smoke (FSN) AVL 415 S

Particle Sensor Pegasor PPS-M
Nitrous Oxide (NOX) Eco Physics CLD 700EI ht

Nitrocarbons (HC) CAI HFID 300

Oxygen for EGR % calc. Testo 350 XL

Carbon Monoxide (CO), 
Carbon Dioxide (CO2) 

and Oxygen (O2)
Servomex Xentra 4900
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The software that enabled the adjustment of engine fuel injection parameters was 

provided by the engine manufacturer. 

4.2 Research Engine 

AGCO Power 44 AWI diesel engine was used as a research engine in this study, 

Picture 4.1.  

 

Picture 4.1. AGCO Power 44 AWI research engine. 

The engine has 4 cylinders with a displacement of 4.4 liters. The engine is 

turbocharged, intercooled, and intended for off-road use. The engine has a 

common rail fuel injection system, and is equipped with 4-valve cylinder head. 
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The engine in the standard form was designed to meet Stage 3B emission 

requirements. The specifications of the engine are shown in Table 4.2. 

Table 4.2. Specifications of the research engine. 

 

The intercooler used in this study was equipped with an external water circulation, 

which had a valve controlled by an engine management program. The water flow 

was regulated so that the air temperature after the intercooler was constant 

during different measurements. Exhaust backpressure, intercooler backpressure 

and intake air pressure loss were all possible to adjust manually to a desired 

level. 

In the second part of the study the engine was equipped with an external Exhaust 

Gas Recirculation system (eEGR). The amount of recirculation was adjusted by 

an EGR valve controlled with the engine’s manufacturer software. 

The common rail system of the engine was able to produce up to 1600 bar of fuel 

injection pressure. It was possible to use up to five different injections during one 

working cycle of the engine. The injection cycles are shown in Figure 4.1. 

 

Figure 4.1. Separate injections of the common rail fuel injection system. 

Engine Agco Power
Type 44 AWI

Cylinder order In-line 4 cyl.
Emission level Stage 3B

Bore 108 mm
Stroke 120 mm

Displacement 4.4 dm3

Fuel injection Bosch Common Rail
Rated Power / Speed 99 kW / 2200 rpm

Maximum Torque / Speed 572 Nm/ 1500 rpm

PostPilot 2 MainPilot 1 Split
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4.3 Fuels 

In this study the total of three different fuels was used. For reference purposes 

normal summer grade diesel fuel oil was used (DFO DIF -5/15). The research 

fuels were Neste Oil’s NExBTL (100 %) and a mixture of NExBTL and normal 

summer grade diesel oil (50-50 % mix). The basic characteristics of the research 

fuels are presented in Table 4.3. More specific characteristics are shown in the 

appendix 1. All fuels were provided by Neste Oil. 

Table 4.3. Characteristics of research fuels. 

 

As Table 4.3 shows NExBTL has quite high cetane number compared to the 

ordinary diesel fuel oil. The cetane number of the 50-50 % mix is quite close in 

the middle point of the fuels used for the blend.  

The density of NExBTL is lower than the density of DFO. The density of the fuel 

mix is exactly in the middle point of DFO and NExBTL. 

Research fuels were stored inside a container outside the laboratory. Each of the 

fuels were in their own 400 liter tank. The fuels were pumped from the storing 

tanks into a smaller tank inside the laboratory from where they were directed 

through a fuel flow meter into the engine. The laboratory tank was washed before 

another fuel was pumped into it. 

The reference Diesel Fuel Oil was only used for reference purposes in steady 

state and transient measurements. All other research tests were performed using 

NExBTL or 50-50 % mix fuels. 

DFO (DIR -5/15) 837.4 42.956 53.2
NExBTL (100 %) 779.7 43.855 74.0

50-50 % -mix 808.6 43.448 63.3

Density 
kg/m3

Net Heating Value 
MJ/kg

Cetane numberFuel
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4.4 Steady State Load Points and Transient Cycle 

Six different steady state load points were used during the first part of the study. 

In the last part of the study a transient cycle was also used for research purposes 

of the engine. Steady state load points (marked with red color and named P1-

P6), as well as the torque curve of the engine are presented in Table 4.4 and 

Figure 4.2. 

Table 4.4. Six steady state load points. 

 

 

 

Figure 4.2. Steady state load points and torque curve of the research engine. 

1 1500 100
2 1300 75
3 1800 75
4 2200 50
5 1800 25
6 1300 25
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In the latter part of the study a nearly 16 minute transient cycle was also used. 

The transient cycle was run automatically via the engine and brake controlling 

program. During the transient cycle runs the eEGR system was disabled. The 

engine torque and speed profile of the transient cycle is shown in Figure 4.3. 

  

Figure 4.3. Engine torque and speed profile of the transient cycle. 

4.5 Test Procedure 

Before the beginning of each measurement the engine was warmed up. The oil 

and water temperature of the engine were above 80 °C before starting the 

measurements. The intake manifold temperature, exhaust back pressure, 

intercooler backpressure and intake air pressure lost were adjusted to constant 

values as precisely as possible at load point 1 (1500 rpm/572 Nm). The target 

values for these adjustments are shown in Table 4.5.   

Table 4.5. Target values for adjustments at load point 1. 
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Intake air pressure loss mbar 20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Toomas Karhu 



36 

In steady state measurements the engine was stabilized for the minimum of five 

minutes. After the engine was stabilized the measured values were collected with 

an engine data acquisition program, usually with a 60 second averaging. After 

the test runs were performed the engine was cooled down before shutoff. 

In the transient cycle studies the engine was first warmed up. After this the engine 

control program was set to perform the transient cycle with a desired engine 

speed and torque values. The values were adjusted at a 1 second interval. The 

results were recorded automatically to a data acquisition program, from where 

they were acquired and processed further.  

The cylinder pressure values and Filter Smoke Number values could not be 

recorded during the transient cycle measurements.  

4.6 Research Program 

The basic assumption for the study was that the use of pure NExBTL and 50-50 

% mix would lower the NOX emissions significantly and bringing NOX back up to 

levels of DFO by optimizing fuel injection parameters would result in advantages 

in the fuel consumption. 

The studies were started by performing reference test runs using normal diesel 

fuel oil (DFO). After this reference test runs with each research fuel were 

performed (NExBTL and 50-50 % mix). In these runs the fuel injection parameters 

of the engine were kept standard. 

Next, the target was to perform the optimization of the engine fuel injection 

parameters. For this purpose the fuel injection parameter tabulation was 

performed with NExBTL fuel. The actual fuel injection parameter optimization was 

performed based on the tabulation using NExBTL and 50-50 % mix fuels. The 

following injection parameters were altered during the fuel injection parameter 

optimization: Main injection advance (Main 1), Common rail pressure, Pilot 1 

injection advance, Pilot 1 injection quantity and disabling of Pilot 1 injection.  
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The steps for the optimization of each fuel injection parameter were determined 

by tabulation so that the NOX result with the research fuels would not rise past 

the reference NOX result with the diesel fuel oil. This resulted in the changes to 

be quite conservative.  

In the second phase of the study the engine was equipped with an external 

Exhaust Gas Recirculation (eEGR). The tabulation for the basis of EGR tests was 

performed with the 50-50 % mix fuel. Two different EGR rates were chosen for 

the test runs performed with both research fuels. In the first option the EGR rates 

were lower than in the second option. After this the fuel injection parameters of 

the engine were optimized using smaller EGR rates.  

In the last part of the steady state test runs, the check for reference values was 

performed with each fuel. 

In the final part of this study transient tests were performed with DFO, NExBTL 

and 50-50 % mix fuel. In the transient cycle runs the EGR was disabled. 

The research program is presented in Table 4.6 below. 

Table 4.6. Experimental research program. 

 

Test Fuel Mode 
Reference DFO, NExBTL, 50-50 % -mix Steady-state

Tabulation of fuel injection parameters NExBTL
Optimization of fuel injection parameters:

* Main 1 advance + 1°
* Rail pressure + 10 Mpa
 * Pilot 1 advance 500 µs

* Pilot 1 quantity 3 mg
* Pilot 1 injection disabled

* Main 1 advance - 1°
Tabulation of EGR-values

EGR-tests:
* EGR valve positions: 0-0-5-10-15-15 %
* EGR valve positions: 0-5-10-15-20-20 %

* EGR valve optimization (0-0-5-10-15-15 %)
Checkup of reference DFO, NExBTL, 50-50 % -mix Steady-state

Transient tests DFO, NExBTL, 50-50 % -mix Transient

NExBTL, 50-50 % -mix

50-50 % -mix

NExBTL, 50-50 % -mix
Steady-state

Steady-state
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5 RESEARCH RESULTS OF FUEL INJECTION 
OPTIMIZATION 

5.1 Reference Results 

At first the engine was run using the three different fuels without any alternation 

to the fuel injection parameters. The objective was to determine the differences 

between the ordinary diesel fuel oil (DFO) compared to the two research fuels: 

pure NExBTL and 50 % - 50 % mixture of NExBTL and diesel fuel oil (50-50 % 

mix). These were also the reference results for all fuels. 

5.1.1 Gaseous Emissions, Smoke, Fuel Consumption and Efficiency 

The assumption was that the use of the research fuels would decrease the NOX 

results significantly, and by performing fuel parameter optimization, the NOX 

would be brought back to the base level of DFO and this would result in fuel 

consumption gains. 

However, in this research the measured NOX was quite similar while using 

different fuels. The 50-50 % mix produced the lowest NOX results, between 1.9 

(P2) and 6.7 % (P1) lower than that of DFO. Results of the nitrogen oxides with 

NExBTL were generally quite close to those measured with DFO, the biggest 

advance for NExBTL was 2.3 % in load point 5. This resulted in situation where 

there was not a lot of possibilities to optimize the fuel consumption, because the 

NOX could not rise past the levels measured with the DFO. 

In nearly all load points, the smoke of the engine was lowest when using 100 % 

NExBTL. Lack of aromatics in NExBTL causes smoke of pure NExBTL and 50-

50 % fuel mix to be lower than DFO. (Sugiyama et al. 2011, 2) 

In all load points, except load point 2, smoke numbers of NExBTL were between 

30 (P6) and 50 % (P4) smaller than those of DFO. Smoke results with 50-50 % 

mix were also lower than those of DFO in nearly all load points. The greatest 
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differences in smoke, in the favor of the research fuels, were measured at lower 

engine loads. Overall the smoke number results were quite low, and slight 

changes in the smoke number resulted in big differences in percentages.  

The volumetric fuel flow was highest when using NExBTL, and lowest when using 

standard diesel. The results with DFO were 4.2-5.2 % lower than those of 

NExBTL. The results of 50-50 % mix were in between of these results. The results 

of diesel were 2.3-3.9 % lower than those of mixed fuel.  

The lower volumetric heating value, due to the lower density of NExBTL and 50-

50 % mix explains this trend. The density of NExBTL is about 7 % lower than the 

density of DFO and the density of 50-50 % mix is about 4 % lower than density 

of DFO. When inspecting specific fuel consumption (g/kWh) results, it was seen 

that engine used 1.2-2.4 % less NExBTL than DFO. On the contrary SFC results 

with 50-50 % mix were quite similar to those measured with DFO.  

The efficiency of the engine was quite similar with DFO and NExBTL, but 

especially at higher loads using 50-50 % mix fuel resulted in slightly lower 

efficiency. 

5.1.2 Cylinder Pressure 

When examining the cylinder pressure results, it was seen that the differences in 

cylinder pressures were quite small. The biggest differences in the cylinder 

pressure, heat release and cumulative heat release results were seen at the 

lower loads, for this purpose results from load point 6 (1300 rpm/139 Nm) are 

shown from the reference test runs.  

In the Figure 5.1 cylinder pressure results from load point 6 are presented. It can 

be seen that the 50-50 % mix resulted in slightly lower maximum curve at crank 

angles -20°…+20°.  

Overall the highest cylinder maximum pressures were measured with DFO. 

Similar results were reported in Master Thesis by Michaela Hissa in University of 
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Vaasa 2014, where results from the engine runs with DFO, HVO and several 

other biofuels were examined. (Hissa 2014, 41, 46, 131) 

The fuel injection parameters are shown in the left upper corner of the following 

figures. 

 

Figure 5.1. Cylinder pressure at load point 6.  

5.1.3 Heat Release 

The results of heat release from load point 6 are presented in Figure 5.2. In the 

picture the movement of the fuel injector needle is also seen. It can be seen that 

in this load point three separate injections were in use.  

The results from the cylinder pressure measurements were at a 0.5 degree 

interval. Because all three fuels are after all quite close to each other in qualities, 

it is quite challenging to discover the differences in ignition delays. 

Figure 5.2 shows that NExBTL seems to produce faster maximum peak of heat 

release from Pilot 1 ignition. The ignition delays for NExBTL and 50-50 % mix 

were 577 µs and for DFO 641 µs, the difference being only 0.5 degrees of crank 

angle. This is quite normal ignition delay for diesel engine, as it may vary between 

300 and 800 µs (Mollenhauer et al. 2010, 67). 
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Figure 5.2. Heat release and injections in load point 6. 

The maximum heat release was recorded with 50-50 % mix, slightly later than 

with other fuels, Figure 5.2. The maximum heat releases of DFO and NExBTL 

were quite similar to each other. Heat releases caused by post injection were 

quite equal with all three fuels. 

Close to the starting of the ignition heat release and cumulative heat release 

curves dips into negative values, because of the injection of the fuel to the 

cylinder, Figures 5.2 and 5.3. The heat is committed to vaporization of the fuel 

and rise of cylinder pressure. (AVL 2003b, 66; Hissa 2014, 41) 

In load points 3, 4 and 5 was seen that Pilot 1 injection resulted in several heat 

release peaks with all fuels. Most clearly the effect was visible in load point 5, 

where it can be seen that heat release curves even dips into negative range for 

DFO and NExBTL fuels, Figure 5.3. Overall the heat release curves were very 

unstable in these load points.  

One explanation for this phenomenon can be that the cylinder pressure is 

measured from the hole made in cylinder head, which forms a slight pothole when 

the sensor is in place. This might result in irregularity in the cylinder pressure at 

the sensor at certain engine speeds and loads.  
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Figure 5.3. Heat release in load point 5. 

5.1.4 Cumulative Heat Release 

In the Figure 5.4 cumulative heat release in load point 6 is presented. Figure 

shows that the curves are quite similar until crank angle 10 degrees which is close 

to where the main injection heat release reaches its maximum. After this the 

cumulative heat release curve of the 50-50 % mix separates itself from the others 

to reach higher values. Similar trend was seen in all low load points at a different 

engine speeds (load points 4, 5 and 6).   

The maximum value of cumulative heat release with 50-50 % mix in load point 6 

(1115 kJ/m3) was 4 % higher than that of DFO (1071 kJ/m3). In five of six load 

points the fuel blend produced highest cumulative heat releases, with maximum 

difference to DFO 4.5 % in load point 4.  

NExBTL resulted in lowest cumulative heat releases in all six load points. The 

greatest difference to those of DFO was 2 % in load point 6 (1051 kJ/m3 vs 1071 

kJ/m3). 
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Figure 5.4. Cumulative heat release in load point 6. 

5.1.5 Ignition Delay 

The calculated fuel ignition delays are shown in Table 5.1. Because the interval 

of the data was 0.5 crank angle degrees, it is difficult to see great differences in 

ignition delays. As it can be seen from the table the ignition delays of DFO in load 

points 1, 5 and 6 are slightly longer than for the two research fuels. The difference 

is only 0.5 degrees of crank angle. However, this is quite logical as NExBTL and 

50-50 % mix have higher octane number than standard DFO and thus ignites 

faster (Mollenhauer et al. 2010, 66).   

Table 5.1. Calculated ignition delays in reference measurements. 
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5.2 Main Injection Advance 

Next, the advance of Main fuel injection was increased by one degree (+1°). This 

meant that the fuel was injected one degree of crank angle earlier to the engine 

than in the reference test runs. Other fuel injection parameters were kept constant 

at a reference level. However, because Pilot 1 and Post injection timings are in 

relation to Main injection, each injection started at a different crank angle degree 

than in the previous tests. The distances between each injection were kept same 

as in the reference tests. These test runs were performed only with NExBTL and 

50-50 % mix research fuels.  

5.2.1 Gaseous Emissions, Smoke, Fuel Consumption and Efficiency 

Advancing the main injection timing by one crank angle degree increased NOX 

results with the both research fuels from the reference levels. With NExBTL the 

values increased 1.7-8.2 %, when compared to the reference. The greatest 

change was recorded in load point 4. Runs performed with the fuel mix 50-50 % 

resulted in 3.0-6.5 % higher NOX than the reference results for this fuel, with the 

biggest change in load point 6. Comparing the two research fuels to each other 

showed, that 50-50 % mix fuel produced lower nitrous oxide results than pure 

NExBTL. The nitrous oxide results of NExBTL were 1.7-5.4 % greater than those 

of 50-50 % mix, and the greatest difference was measured in load point 4. 

Results for the exhaust smoke measured with optical meter were smaller with 

NExBTL, when compared to 50-50 % mix in these test runs. The results with pure 

NExBTL were about 20-40 % lower than those of the fuel blend. Comparing 

smoke results for both fuels to each fuel own reference, the tendency for slight 

decrease was seen in most load points.  

Overall the smoke results were quite low and it was quite difficult to calculate 

precise percentages of changes, as changes of one decimal cause big difference 

in percentages. 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Toomas Karhu 



45 

The volumetric fuel consumption was lower when using fuel blend 50-50 % than 

NExBTL. The consumption was 1.9-3.5 % lower, with greatest difference in load 

point 6. Specific fuel consumption results (g/kWh) shows that the engine used 

between 0.3 and 1.5 % more 50-50 % fuel mix than NExBTL in all load points 

except point 6. This tendency is logical as the density of NExBTL is lower than 

density of fuel blend by 4 %. The fuel consumption results for both tested fuels 

were quite close to the base reference levels as the maximum differences were 

about 1 % for volumetric fuel consumption and SFC results. 

The calculated efficiency of the engine was virtually same for the both research 

fuels. In load point 6 the efficiency of 50-50 % mix was 1.6 % higher than pure 

NExBTL. Comparing the results from test runs with altered Main injection timing 

to the reference results showed, that the efficiency of the engine was virtually 

same with both fuels as the differences at the greatest were about 1 %. 

Out of the all fuel injection parameter changes this change was optimal for 50-50 

% mix fuel. The NOX results increased to the same level as with DFO without 

parameter changes. SFC and efficiency of the engine were slightly better than 

the base levels for 50-50 % mix fuel.  

5.2.2 Cylinder Pressure 

In the following figures the in-cylinder data is compared between the two research 

fuels NExBTL and 50-50 % mix. The fuel injection parameters are displayed in 

the left upper corner of the figures, and changed parameter is displayed in red 

color.  

Advancing the Main injection did not have a great effect on the differences in 

cylinder pressures between two research fuels. The greatest differences were 

found in load points 1 and 2. The cylinder pressure results from load point 1 are 

presented in Figure 5.5. It can be seen that the 50-50 % mix produces a slightly 

higher maximum cylinder pressure of 136 bar, while the maximum cylinder 

pressure of NExBTL is 134 bar. The pressure curve of the fuel blend also stays 
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longer at a higher level than that of NExBTL after the maximum pressure is 

reached.  

 

Figure 5.5. Cylinder pressure at load point 1, Main injection advance change +1°. 

Advancing the start of the main injection produced higher cylinder pressure peaks 

than the reference results for each fuel. This was seen clearest at the higher loads 

(P1-P3). 

5.2.3 Heat Release 

Heat release curves were quite similar with the both fuels researched, except for 

load point 1, where the 50-50 % mix produced higher heat release between 8…23 

degrees of crank angle, Figure 5.6. 

The peak value of heat release was 5.4 % higher with 50-50 % mix fuel than that 

of NExBTL. Fuel blend produced also higher peak value of Pilot 1 heat release, 

although it can be seen that the ignition delay of 50-50 % mix was slightly longer 

than that of NExBTL, Figure 5.6. 

In the load points 3, 4 and 5 the Pilot 1 injection resulted in several heat release 

peaks. Similarly to the reference test run results, the heat release curves in these 

load points were quite unstable.    
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Figure 5.6. Heat release at load point 1, Main injection advance change +1°. 

5.2.4 Cumulative heat release 

As indicated in previous figures, the cumulative heat release of blended 50-50 % 

mix fuel was higher than that of NExBTL between 10 and 90 degrees of crank 

angle, Figure 5.7. 

 

Figure 5.7. Cumulative heat release at load point 1, Main injection advance 
change +1°. 
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In these test runs the 50-50 % mix produced generally higher cumulative heat 

releases in all test point, except load point 2, where heat releases were quite 

similar, and NExBTL produced momentarily slightly higher results for some 

degrees of crank angle. 

5.2.5 Ignition Delay 

The ignition delays for NExBTL in these test runs were same as in the reference 

tests, despite alternation of the fuel injection advance. In two load points, 1 and 

5, the ignition delay of 50-50 % mix was longer by approximately 50 µs, Table 

5.2. This is still quite logical as the cetane number for the NExBTL is higher than 

cetane number of the fuel mix. 

Table 5.2. Ignition delays, Main injection advance change +1°. 

 

5.3 Common Rail Pressure  

Next the common rail pressure was increased by 10 MPa from base level in each 

load point. All other fuel injection parameters were kept same as in the reference 

test runs. The test runs were performed with NExBTL and 50-50 % mix fuels. 

NExBTL: 
M1 Adv: 
+1 deg.

50-50 % -
mix, M1 
Adv: +1 

diff. 50-50 % -
mix-NExBTL

Ref. 
NExBTL

Ref. 50-50 % 
-mix

diff. 
NExBTL:      
test-ref.

diff. 50-50 %-
mix: test-

ref.
1 444.4 500.0 55.6 444.4 444.4 0.0 55.6
2 448.7 448.7 0.0 448.7 448.7 0.0 0.0
3 509.3 509.3 0.0 509.3 509.3 0.0 0.0
4 530.3 530.3 0.0 530.3 530.3 0.0 0.0
5 555.6 601.9 46.3 555.6 555.6 0.0 46.3
6 576.9 576.9 0.0 576.9 576.9 0.0 0.0

Test 
point

Fuel
Ignition delay µs
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5.3.1 Gaseous Emissions, Smoke, Fuel Consumption and Efficiency  

The use of fuel blend 50-50 produced 1.4-6.8 % lower nitrous oxide results than 

use of pure NExBTL. The biggest difference was seen in load point 4. Comparing 

NOX results to the reference results for both fuels it was seen, that rising the 

common rail pressure resulted in increased NOX results in nearly all load points. 

For NExBTL nitrous oxide results were about 5 % higher at a maximum, in load 

points 3 and 5. For 50-50 % mix the NOX results were approximately 4 % higher 

at a maximum in load point 6, but about 4 % lower in load point 4.  

The smoke results of NExBTL were 10 to 40 % lower than those of blended fuel. 

When compared to its reference results, the smoke of NExBTL was quite similar, 

although in load point 2 smoke number was half of the reference result. The 

smoke of 50-50 % mix fuel was lower than the reference in all load points except 

load point 4, where it was identical to the reference. Overall the smoke numbers 

were quite small.  

Measured volumetric fuel consumption was 1.2-2.5 % smaller for 50-50 % mix 

than for pure NExBTL, with the biggest difference in load point 2. SFC again was 

lower for NExBTL than for fuel blend by 0.8-1.8 %, with maximum difference in 

load point 6.  

SFC and volumetric fuel consumption results for both NExBTL and 50-50 mix, 

were inside 1 % of the respective reference values, except in load point 6, where 

these test runs produced about 2 % lower results than the reference.  

Efficiencies of the engine calculated from the results of these test runs were quite 

close for both measured fuels. In majority of the load points NExBTL produced 

slightly better efficiency than 50-50 % mix, with the differences in values less than 

1 %. Comparing the efficiency of this NExBTL run to the reference result, it was 

seen that the differences were inside 1 %, except load point 6, where the value 

was 2.1 % higher than in the reference runs. Similar results were acquired using 

50-50 % mix fuel, with only difference in load point 6, where 1.7 % higher 

efficiency was measured than in the reference test run.  
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5.3.2 Cylinder Pressure 

Raised common rail pressure did not make great differences in the cylinder 

pressure curves for NExBTL and 50-50 % mix fuels when compared to each 

other. The differences in the maximum cylinder pressures for the two research 

fuels were 1.2 % at largest, Figure 5.8.   

 

Figure 5.8. Cylinder pressure with raised common rail pressure in load point 2 
(+10 MPa). 

Increasing the fuel rail pressure by 10 MPa resulted in the slightly higher cylinder 

pressure results at higher loads (P1-P3) for both fuels, when compared to the 

reference results of each fuel. 

5.3.3 Heat Release 

Test runs performed with the increased common rail pressure did not produce 

significant differences between the two fuels in heat release curves. In load points 

1 and 2 50-50 % mix produced slightly higher heat releases than NExBTL. In the 

rest of load points NExBTL produced higher maximum heat releases, Figure 5.9. 

The differences in the maximum heat release peaks were not significant, at the 
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highest 9 % in load point 4. In load points 5 and 6 it was possible to see that 

NExBTL produced peak of Pilot 1 heat release earlier, Figure 5.9.  

 

Figure 5.9. Heat release with raised common rail pressure in load point 5 (+10 
MPa). 

In load points 2, 3, 4 and 5 the Pilot 1 injection produced several heat release 

peaks. Figure 5.9 shows that heat release dips into negative range also after the 

Pilot 1 injection peak. Overall the heat release curves in load points 3, 4 and 5 

were quite unstable for both tested fuels. 

5.3.4 Cumulative Heat Release 

Rising the common rail pressure did not produce significant differences in 

cumulative heat releases between NExBTL and 50-50 % mix. The greatest 

differences were seen in load point 2, Figure 5.10. In this load point the maximum 

of cumulative heat release of fuel blend was about 2.3 % higher than that of 

NExBTL.  
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Figure 5.10. Cumulative heat release with raised common rail pressure in load 
point 2 (+10 MPa).  

5.3.5 Ignition Delay 

Ignition delays for these test runs can be seen in Table 5.3. As table shows the 

only difference noticed was that the ignition delay in load point 1 was shorter for 

NExBTL than for the 50-50 % fuel mixture. In this load point the ignition delay 

was also shorter than in the reference tests for NExBTL. The difference however, 

was only 0.5 degrees of crank angle, which was the minimum resolution for this 

measurement. 

Table 5.3. Ignition delay in test runs with raised common rail pressure (+10 MPa). 
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5.4 Pilot Injection Advance 

For the following test runs the Pilot 1 injection timing was changed from 350 

microseconds to 500 microseconds. It meant that the Pilot 1 injection was farther 

(earlier) from the Main injection. The number indicates the time difference 

between the end of Pilot 1 injection and start of Main injection. All other fuel 

injection parameters were kept same as in the reference test runs. 

5.4.1 Gaseous Emissions, Smoke, Fuel Consumption and Efficiency  

Comparing the nitrous oxide results with the both research fuels in tests 

performed with advanced pilot injection showed that 50-50 % mix fuel produced 

3.1-5.4 % lower results than NExBTL in all load points. The biggest difference 

was in load point 2. Compared to the reference results NExBTL produced higher 

NOX in all load points except load points 1 and 6. The differences were however 

quite small, 1.5 % at a maximum in load point 1. Fuel blend of 50-50 % produced 

lower nitrous oxide results in all load points except load point 1, where NOX was 

1.1 % higher than the reference result. In other load points (2-6) the NOX for 50-

50 % mix was 1.4 to 2.5 % smaller than the reference results, with the greatest 

difference in load point 5. 

Similarly to the previous results, lower smoke numbers were recorded with 

NExBTL. The results in these test runs were about 30-50 % lower for NExBTL 

than for 50-50 % mix. Overall the smoke numbers were quite low. 

Specific fuel consumption figures were 1.8-2.3 % smaller for NExBTL than for 50-

50 % mix. Volumetric fuel consumption on the contrary was 0.7-1.7 % lower for 

fuel mix than for NExBTL. Comparing fuel consumptions to the reference results 

for each fuel showed no significant changes, as the numbers were within about 

1 % of each reference results.  

The calculated efficiency of the engine was higher for NExBTL in each load point. 

The difference to 50-50 % fuel mix was 0.8-1.4 %, and the biggest difference was 
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recorded in load point 6. The engine efficiency results with the both fuels, 

compared with the reference results of each fuel, were quite similar as the 

greatest differences were about 1 %. 

Changing Pilot 1 injection advance from 350 µs to 500 µs, produced optimal 

results for the NExBTL as the NOX results were slightly closer to the NOX results 

of DFO. The difference however, was quite small. Simultaneously SFC and 

efficiency of the engine were slightly better than with the standard fuel injection 

parameters. 

5.4.2 Cylinder Pressure 

NExBTL produced slightly higher peaks of maximum cylinder pressure in all load 

points in the engine runs performed with changed Pilot 1 injection advance. In 

load point 5, Figure 5.11, it is clearly visible, that the cylinder pressure curve of 

NExBTL is higher than that of fuel blend between -30…30 degrees of crank angle. 

The difference between the maximum cylinder pressures in load point 5, for the 

two tested fuels was 2.6 % at peak values (82.1 bar vs 80.0 bar). 

 

Figure 5.11. Cylinder pressure in load point 5, Pilot 1 advance 500 µs. 
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5.4.3 Heat Release 

Heat release curves in the tests performed with earlier Pilot 1 timing were quite 

similar for NExBTL and 50-50 % mix fuels. The differences in heat releases were 

quite small. In load points 3 and 5, both at engine speed 1800 rpm (402 and 134 

Nm), it can be seen that the heat release curves make one extra peak of heat 

release after the initial Pilot 1 peak before the heat release from Main injection, 

Figures 5.12 and 5.13. 

 

Figure 5.12. Heat release curve in load point 3, Pilot 1 advance 500 µs. 

Tendency for a second peak of heat Pilot 1 heat release was also seen in load 

point 4 to a lesser degree.  

Figure 5.13 shows that the heat release curve dips into negative range for 50-50 

% mix fuel at approximately 5 degrees of crank angle. Overall in the load points 

3 and 5 (engine speed 1800 rpm), the heat release curves were quite unstable. 

This is quite similar to the results recorded in the previous test runs. 
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Figure 5.13. Heat release curve in load point 5, Pilot 1 advance 500 µs. 

Increasing Pilot 1 injection advance from 300 to 500 µs produced higher peaks 

of pilot injection heat releases in load points 1 and 2 for both fuels, when 

compared to the reference results of each fuel. 

5.4.4 Cumulative Heat Release 

In most load points the cumulative heat release curves were quite similar for the 

both research fuels. In load point 5, cumulative heat release curve of NExBTL 

was slightly higher than for the 50-50 % mix, Figure 5.14. The difference in peak 

values was about 2 %. 

In the cumulative heat release curve of load point 5, the start of Pilot 1, Main and 

Post injections can be clearly seen from the shape of the curve. 

In load point 6, on the contrary, the cumulative heat release curve of 50-50 mix 

was about 2 % higher than that of NExBTL at the maximum value. 
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Figure 5.14. Cumulative heat release in load point 5, Pilot 1 advance 500 µs. 

5.4.5 Ignition Delay 

No differences in the ignition delays between the two test fuels were seen in the 

test runs performed with earlier Pilot 1 timing, Table 5.4. 

Advancing the timing of Pilot 1 injection did however affect the ignition delay when 

compared to the reference results. In load points 3, 5 and 6 the ignition delays in 

these test runs were longer, and in load point 4 the delay was shorter. The 

differences were same with the both research fuels.  

Table 5.4. Ignition delays, Pilot 1 advance 500 µs. 
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NExBTL, 
Pil1 Adv: 

500 µs

50-50 %-
mix, Pil1 

Adv: 500 µs

diff. 50-50 % 
-mix-

NExBTL
Ref. NExBTL

Ref. 50-50 % 
-mix

diff. 
NExBTL:      
test-ref.

diff. 50-50 %-
mix: test-

ref.
1 444.4 444.4 0.0 444.4 444.4 0.0 0.0
2 448.7 448.7 0.0 448.7 448.7 0.0 0.0
3 555.6 555.6 0.0 509.3 509.3 46.3 46.3
4 492.4 492.4 0.0 530.3 530.3 -37.9 -37.9
5 601.9 601.9 0.0 555.6 555.6 46.3 46.3
6 641.0 641.0 0.0 576.9 576.9 64.1 64.1

Fuel
Ignition delay µs

Test 
point

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Toomas Karhu 



58 

5.5 Pilot Injection Quantity 

Next the fuel injection quantity was increased from 2 milligrams to 3 milligrams. 

The Pilot 1 injection advance was returned to 350 microseconds and all other fuel 

injection parameters were kept constant, similar to reference tests. 

5.5.1 Gaseous Emissions, Smoke, Fuel Consumption and Efficiency  

Similarly to the results from the previous test runs the 50-50 % mix fuel produced 

lower nitrous oxide results than pure NExBTL. The differences were between 1.6 

and 6.9 %, with the biggest difference recorded in load point 4. In load points 1-

4 the NOX results for 50-50 % mix were more than 5 % lower than those of 

NExBTL. 

When comparing results from the test runs with increased pilot injection to the 

reference results for NExBTL it can be seen, that in load points 2-6 reference 

NOX was 1.8-3.9 % smaller than in this test runs. The biggest difference was in 

load point 4. In load point 1 NOX result was 2.6 % lower than the reference result. 

For 50-50 % mix fuel the NOX results were quite similar to the reference with 

exception of load point 6, where the reference NOX was 3.0 % smaller. In all other 

load points the nitrous oxide results were about 1.5 % of the reference results. 

The smoke results in these tests followed previous trend, where NExBTL 

produced smaller smoke by 30-50 % than blended fuel. Increase in Pilot 1 

injection resulted in lower smoke in load point 2 for the both fuels when comparing 

to each reference results. Smoke number for NExBTL was half of the reference 

result and for 50-50 % mix fuel the reduction was around 30 %. Still overall all the 

smoke numbers were on a quite low level. 

Similarly to the previous results, NExBTL produced smaller SFC than 50-50 % 

mix by 1.7-3.1 % (load points 1 and 5 respectively). On the contrary the blended 

fuel produced smaller volumetric fuel consumption than NExBTL in all load points, 
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except load point 5. The volumetric fuel consumption of fuel blend was smaller 

by a maximum of 1.7 % in load point 1. 

Slightly lower fuel consumption results of NExBTL can be seen at lower engine 

loads (load points 4-6) when compared to the reference results. The SFC in this 

test run was 1.7 % and volumetric fuel consumption 1.1 % lower than reference 

results in load point 5.  

SFC and volumetric fuel consumption results for fuel blend were quite close to 

reference results in all load points. 

Efficiency of the engine was higher when using NExBTL than 50-50 % mix. 

Efficiency results with blended fuel were 0.8-2.2 % smaller than results with pure 

NExBTL. The biggest difference was recorded in load point 5. Comparing to the 

reference results NExBTL produced better efficiency at the lower engine loads 

(P4-P6), with maximum difference 1.7 % in load point 5. Blended 50-50 % mix 

fuel did not produce similar performance in efficiency when compared to its 

reference. 

5.5.2 Cylinder Pressure 

Increasing the Pilot 1 quantity by one milligram did not affect the cylinder 

pressures greatly when comparing the results of the two research fuels with each 

other. In Figure 5.15 is presented results from load point 5, where the maximum 

cylinder pressure of NExBTL was higher. In the test runs performed with 

increased Pilot 1 injection quantity pure NExBTL produced higher cylinder 

pressures in all load points, the biggest difference in maximum pressures was 

about 3 %.  

Increase in Pilot 1 quantity produced higher cylinder pressure peak values for 

NExBTL in all load points when compared to results with reference fuel injection 

parameters.  
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Figure 5.15. Cylinder pressure in load point 5, Pilot 1 quantity 3 mg. 

5.5.3 Heat Release 

Comparing heat releases of the two research fuels, it was observed that NExBTL 

produced higher peak heat release rate values than 50-50 % mix. In load points 

with lower engine torque (P4, 5 and 6) it was noticed that pure NExBTL produced 

higher Pilot 1 peak value than fuel blend, Figure 5.16. 

 

Figure 5.16. Heat release in load point 5 with pilot injection of 3 mg. 
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Figure 5.16 (load point 5) shows that both NExBTL and 50-50 % mix fuels 

produced quite unstable heat release values. Especially NExBTL produced two 

peaks of Pilot 1 injection heat release. Similar tendency was seen in load point 3 

(engine speed also 1800 rpm) and to a lesser degree in load point 4 (engine 

speed 2200 rpm).  

5.5.4 Cumulative Heat Release 

Cumulative heat releases did not differ greatly between the two research fuels. 

The greatest difference in maximum cumulative heat release values was seen in 

load point 3, where the difference was about 2 %, Figure 5.17. 

 

Figure 5.17. Cumulative heat release in load point 3 with pilot injection of 3 mg. 

5.5.5 Ignition Delay 

With the exception of load point 1 the ignition delays were similar between the 

two research fuels, Table 5.5. In load point 1 NExBTL ignited faster by 56 µs (0.5 

crank angle degree).  

-500

0

500

1000

1500

2000

2500

3000

-30 -10 10 30 50 70 90

Cu
m

ul
at

iv
e 

he
at

 re
le

as
e 

(k
J/

m
3)

Crank angle (deg.)

Cumulative heat release; load point 3; 1800 rpm / 402 Nm

NEXBTL

50-50 mix

RP: 150 MPa
SOI: 4,3°
P1: 350 µs, 3 mg
Po: -1725 µs, 4 mg

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Toomas Karhu 



62 

When compared to the reference test runs increasing of Pilot 1 injection slowed 

ignition with both fuels in load points 4, 5 and 6, which have lower engine torque. 

Fuel blend did produce slower ignition in load point 1. 

Table 5.5. Ignition delays, Pilot injection quantity 3 mg. 

 

5.6 Pilot Injection Off 

Next the Pilot 1 injection was disabled to see how this would affect the results of 

the engine. However it was seen from the in-cylinder measurements presented 

later, that disabling the Pilot 1 injection still caused the injector to perform two 

phased injection, which can be seen in injector needle movement and in the in-

cylinder results for some load points. The quantity of the Pilot 1 injection was set 

to zero, but the engine management program still opened the injector for 80 µs. 

The injector closed between the pilot and the main injections for only 0.5 crank 

angle degrees. It is debatable whether fuel was injected into the cylinder at this 

point or not. This two phased injector movement however may have had effect 

on some inconsistencies seen in heat release results. 

5.6.1 Gaseous Emissions, Smoke, Fuel Consumption and Efficiency  

With disabled pilot injection 50-50 % mix fuel produced smaller nitrous oxides 

results than NExBTL, similarly to the previous test runs. NOX results for blended 

NExBTL, 
Pil1 qty: 

3 mg

50-50 %-
mix, Pil1 
qty: 3 mg

diff. 50-50 % 
-mix-

NExBTL
Ref. NExBTL

Ref. 50-50 % 
-mix

diff. 
NExBTL:      
test-ref.

diff. 50-50 %-
mix: test-

ref.
1 444.4 500.0 55.6 444.4 444.4 0.0 55.6
2 448.7 448.7 0.0 448.7 448.7 0.0 0.0
3 509.3 509.3 0.0 509.3 509.3 0.0 0.0
4 568.2 568.2 0.0 530.3 530.3 37.9 37.9
5 601.9 601.9 0.0 555.6 555.6 46.3 46.3
6 576.9 576.9 0.0 576.9 576.9 0.0 0.0

Load 
point

Fuel
Ignition delay µs
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fuel were up to 8.7 % smaller than NExBTL in load point 1. In other load points 

the 50-50 % mix produced 1.0-4.5 % lower NOX results than pure NExBTL. 

When the nitrous oxides results of NExBTL in this test run were compared to the 

reference results, only significant differences were seen in load points 5 and 6, 

where NOX results with no pilot injection were 7.1 and 5.9 % lower than the 

reference respectively. These load points had lower engine torques. 

Similar results were seen with 50-50 % mix fuel, as only significant differences in 

NOX were seen at the lower engine loads, load points 4, 5 and 6. The nitrous 

oxides results in these load points from runs without pilot injection were 3.0 %, 

10.1 % and 5.0 % lower than the reference results for this fuel. 

With Pilot 1 injection disabled smoke results of NExBTL were lower than those of 

50-50 % mix only in load points 1, 4 and 5. In other load points the results were 

either same or slightly higher (P2) than for blended fuel. 

Compared to the reference results, the smoke numbers of NExBTL were slightly 

smaller in test runs with no pilot injection. The only exception was load point 3, 

where smoke was slightly higher than the reference. Smoke results for 50-50 % 

mix were in all load points 20-40 % smaller than in the reference test runs. 

SFC results with pure NExBTL were 1.4-2.2 % smaller than with 50-50 % mix 

fuel, with the biggest difference in load point 1. Simultaneously volumetric fuel 

consumption with blended fuel was 1.0-2.0 % smaller than with NExBTL with the 

pilot injection disabled. 

With the exception of load point 4, SFC and volumetric fuel consumption in the 

reference test runs were slightly smaller than in the test runs with no Pilot 1 

injection for the both research fuels.   

In other load points than 5 and 6, NExBTL had slightly better engine efficiency 

than 50-50 % mix. Compared to the reference results for each fuel, the only slight 

difference in engine efficiency in these test runs was seen in load point 6 for 

NExBTL, where disabling the pilot injection led to 1.3 % smaller engine efficiency.  
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5.6.2 Cylinder Pressure 

In the test runs performed with no Pilot 1 injection NExBTL produced slightly 

higher maximum cylinder pressures than fuel blend. The difference in the 

maximum pressures was about 3 % at the highest.  

In the load point 3 the Main injection was two phased, and produced one extra 

peak after start of the ignition, Figure 5.18.  

 

Figure 5.18. Cylinder pressure in load point 3 with pilot injection off. 

Disabling the pilot fuel injection resulted in lower maximum cylinder pressures in 

all load points for 50-50 % mix fuel, when compared to the base results of this 

fuel. For NExBTL similar tendency was seen only in the lower engine loads, load 

points 4-6, when compared to the results of NExBTL test runs with no injection 

parameter changes. 

5.6.3 Heat Release 

It was seen from the injection needle movement measurements that the injection 

was two phased in every load point, even though the Pilot 1 injection was 

disabled, Figure 5.19. 
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Figure 5.19. Heat release in load point 2 with no pilot injection. 

In the load points 4 and 5 the heat release curves have clearly two phases with 

the both research fuels, Figure 5.20. As the figure below shows, first the heat 

release peak of the premixed combustion phase occurs. In this phase the nearly 

flammable fuel-air mix, which was formed during ignition delay, combusts rapidly 

and results in a high peak of heat release. (Heywood 1988, 505-506) 

 

Figure 5.20. Heat release in load point 5 with no pilot injection. 
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After the premixed combustion phase the heat release curves of both fuels dipped 

vastly, before new heat release peak was developed. The heat release curves 

differ greatly of the heat release curves measured in the previous test runs of this 

study. 

In load point 6 the peak premixed combustion phase heat release occurred earlier 

for NExBTL than for blended 50-50 % mix, Figure 5.21. Figure also shows that 

the NExBTL produced initial heat release faster than blended fuel. 

 

Figure 5.21. Heat release in load point 6 with no pilot injection. 

Overall the maximum heat release rates were quite close between the two fuels 

at the load points 1, 2 and 3. However at the load points 4, 5 and 6, with lower 

engine torques, the 50-50 % mix produced higher maximum heat release values. 

The difference at the highest was about 10 % in load point 5, Figure 5.20. 

Disabling pilot injection produced significantly higher heat release peaks at the 

lower load range (P5-P6) for both fuels, when compared to the reference results 

of each fuel.  
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5.6.4 Cumulative Heat Release 

With disabled pilot injection high heat release peaks of premixed combustion 

phases were recorded in load points 4-6 for both fuels, which can be also seen 

in cumulative heat release curves, Figure 5.22. As the figure shows, the 

cumulative heat release of NExBTL was greater than that of 50-50 % mix by 5 % 

at the maximum value. The difference is quite significant, considering that the 

maximum heat release value of fuel blend was higher at the same load point, and 

heat release of NExBTL did dip down at the beginning of the combustion. 

 

Figure 5.22. Cumulative heat release in load point 6 with no pilot injection. 

It is noticeable that in the load point 6 the maximum cumulative heat release value 

of NExBTL was 7.0 % higher than the base reference level of NExBTL. On the 

contrary, maximum result of the blended fuel was 3.9 % lower than its maximum 

reference result. 

5.6.5 Ignition Delay 

Ignition delays in the test runs with no pilot injection were a lot slower when 

calculated similarly to the ignition delays in the previous test runs. Determining 
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this proved to be challenging, as runs with no pilot injection actually had slight 

movement of injector needle directly before the main injection by error. The 

duration of false pilot injection was only 80 µs compared to 290 µs of Pilot 1 

injection duration in the reference runs. It is debatable whether or how much fuel 

was injected at this injection.  

Initially the ignition delays were calculated similarly to previous delay results, 

where the beginning of the injection was determined to start immediately after the 

injector is opened for the first time. In this case the ignition delay appeared to be 

a lot longer than in the reference results in all load points and for both fuels. The 

differences to the reference were between 130 and 320 µs, for fuel blend, and 

between 130 and 256 µs for NExBTL. 

However, when heat release curves without pilot injection were compared to the 

reference curves it seemed that in reality the ignition delays were longer only in 

load points 5 and 6. On this account the calculation of the ignition delays was 

altered so, that the beginning of true injection was decided to occur at the main 

injection. The results from these calculations are presented in Table 5.6. However 

these results should be observed critically as it is not known if some fuel was 

injected into cylinder during false pilot injection.  

Table 5.6. Ignition delays with no pilot injection. 

 

The table shows that NExBTL resulted in faster ignition than fuel blend in load 

points 5 and 6. This is quite logical as the NExBTL has higher cetane number. 

NExBTL, 
Pil 1 off

50-50 %-
mix, Pil1 off

diff. 50-50 % 
-mix-

NExBTL
Ref. NExBTL

Ref. 50-50 % 
-mix

diff. 
NExBTL:      
test-ref.

diff. 50-50 %-
mix: test-

ref.
1 444.4 444.4 0.0 444.4 444.4 0.0 0.0
2 448.7 448.7 0.0 448.7 448.7 0.0 0.0
3 509.3 509.3 0.0 509.3 509.3 0.0 0.0
4 492.4 492.4 0.0 530.3 530.3 -37.9 -37.9
5 601.9 648.1 46.3 555.6 555.6 46.3 92.6
6 705.1 769.2 64.1 576.9 576.9 128.2 192.3

Fuel
Ignition delay µs (counted from beginnig of main injection)

Load 
point
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When compared to the reference results, the ignition delays without pilot injection 

were longer in load points 5 and 6. In load point 4 the ignition delays without pilot 

injection seemed to be slightly faster than in the reference test runs.  
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6 RESEARCH RESULTS WITH EGR SYSTEM 

Next step in the study was to equip the engine with an external cooled exhaust 

gas recirculation (eEGR) system. The EGR valve was controlled externally by the 

engine management system. First the EGR valve positions were tabulated for 

each load point using 50-50 % mix fuel. Tabulation was performed at 10-15-20-

25-30 percentages. From these test runs two different EGR position parameter 

sets were selected. One setting was with lower EGR valve openings, abbreviated 

EGR 15 (as maximum opening for EGR valve in these parameters was 15 %), 

and another setting was abbreviated to EGR 20 (maximum opening of EGR valve 

20 %). At the higher engine loads (load points 1-3), EGR valve was either closed 

or only slightly open (5 %). Biggest openings of the valve were in load points 5 

and 6, where speed and load of the engine were lower.  

After these test runs, the engine fuel injection parameters were optimized using 

EGR 15 exhaust gas recirculation parameters. These test runs and engine 

parameters used were abbreviated EGR 15 opt.   

The EGR valve positions used are presented in Table 6.1. It is noticeable that the 

values displayed in this table are EGR valve positions and not actual EGR 

percentages. Also the EGR valve was not completely sealed when closed, and 

some EGR circulation still occurred with EGR valve position 0 %, due to the high 

pressure in exhaust manifold. 

Table 6.1. EGR valve positions for EGR test runs. 

 

Load point EGR 15 EGR 20 EGR 15 opt
1 0 0 0
2 0 5 0
3 5 10 5
4 10 15 10
5 15 20 15
6 15 20 15
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6.1 Lower EGR Valve Positions 

The lower EGR valve position parameters were abbreviated EGR 15, as the 

maximum percentage of the valve opening was 15 % in load points 5 and 6, Table 

6.1. In these parameters the EGR valve was closed at load points 1 and 2, where 

engine load was high.  

The calculated EGR % are presented in Table 6.2. As table shows, small amount 

of exhaust gas circulated even with closed EGR valve, load points 1 and 2. 

Highest EGR % was recorded at load point 5, with EGR valve opening of 15 % 

and engine speed of 1800 rpm. 

Table 6.2 Calculated EGR % with EGR 15 parameters. 

 

For unknown reason the main injection advance in load point 6 of these test runs, 

differed from the reference test runs. In the reference test runs the main injection 

advance at P6 was one crankshaft degree. The timing value in EGR 15 runs was 

about 2.4 crankshaft degrees. This means that the injections in load point 6 were 

earlier than in other EGR test runs. Luckily, in EGR 15 test runs the main injection 

advance was same for both tested fuels, and it did not affect comparability 

between them.  

6.1.1 Gaseous Emissions, Smoke, Fuel Consumption and Efficiency 

In the test runs performed with lower EGR valve openings (EGR 15), NExBTL 

produced smaller results of nitrous oxides than 50-50 % mix in all load points. 

NExBTL 50-50 %-mix
1 2.0 1.3 0
2 0.8 0.7 0
3 8.1 6.9 5
4 13.6 13.6 10
5 25.2 25.2 15
6 17.5 17.3 15

Calculated EGR %
Load 
point

Fuel
EGR-valve 
opening %
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The differences were between 4.6 (P4) and 10.0 % (P1). This trend differed from 

previous NOX results measured in the reference and fuel injection optimization 

test runs, where 50-50 % mix produced generally smaller NOX results than 

NExBTL. The greatest differences in nitrous oxides were recorded in load points 

1 and 2, where EGR valve was closed and only small exhaust gas recirculation 

occurred, Table 6.2. In other load points NOX results of NExBTL were about 5 % 

smaller than the results measured with blended fuel.  

Compared to the reference results EGR 15 parameters produced clearly lower 

NOX results for the both research fuels. For NExBTL the specific NOX results 

(g/kWh), from test runs with EGR 15 parameters, were between 23 (P2) and 55 

(P5 and P6) % smaller than in the reference test runs. Similarly for 50-50 % mix 

fuel specific NOX results were between 12 (P1) and 52 (P6) % smaller than the 

reference results. The biggest advances for NOX were recorded with the biggest 

EGR valve openings in load points 5 and 6 with both fuels. However, it is 

noticeable that for unknown reason the injection advance in load point 6 of these 

test runs was earlier than in the reference test runs. Because of this the results 

in load point 6 are not directly comparable to the reference. 

It is noticeable that specific NOX results from load points 1 and 2 were clearly 

smaller than in the reference test runs, despite the fact that EGR valve was 

closed. EGR valve was not completely sealed and some exhaust gas circulated 

also in these load points. Also the modifications made to accommodate EGR 

system to the engine altered slightly the exhaust manifold system of the engine. 

Air mass flow, in load points 1 and 2 of test runs with EGR 15 parameters, was 

about 5-7 % smaller for NExBTL and about 2-5 % smaller for 50-50 % mix than 

the reference air mass flow.  

Apart from load point 1, NExBTL produced smaller smoke results than 50-50 % 

mix in all load points of test runs performed with EGR 15 parameters. The smoke 

numbers of NExBTL were between 15 (P2) and 40 (P4 and P5) % smaller than 

the results of fuel blend in load points 2-6. 
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Compared to the reference smoke numbers, both research fuels produced clearly 

bigger smoke numbers in EGR 15 test runs, which is quite natural for exhaust 

gas recirculation system, as the air mass flow of the engine decreases. Increase 

in these test runs was between 60-65 % for NExBTL and 45-66 % for 50-50 % 

mix.  

Specific fuel consumption for both research fuels was quite similar in EGR 15 test 

runs, as the differences were only about 1 % at a maximum. Volumetric fuel 

consumption with blended fuel was 2.9 (P3) to 4.8 (P6) % smaller than with 

NExBTL.  

Compared to the reference results of the two fuels, both SFC and volumetric fuel 

consumption were smaller in load points 4-6, where bigger EGR circulation was 

used. The greatest advantage in fuel consumption was measured in load point 5, 

where results with EGR 15 parameters were up to 5.7 % (SFC) and 4.8 % 

(volumetric fuel consumption) smaller than the reference results of NExBTL. 

Similar numbers for 50-50 % mix fuel were 5.7 % (SFC) and 5.9 % (volumetric 

fuel consumption). 

When comparing calculated engine efficiency for both fuels in EGR 15 test runs, 

it was seen that 50-50 % mix produced slightly higher efficiency results in all load 

points, with the difference of 2 % in load point 6. Compared to the base results of 

each fuel it was seen that best efficiencies were recorded in load points with the 

biggest EGR valve openings (load points 4-6). The greatest difference of engines 

efficiency was measured in load point 5, where the reference results for both fuels 

were 5.7 % lower than the results with EGR 15 parameters.  

6.1.2 Cylinder Pressure 

EGR 15 test runs did not show great differences in cylinder pressure curves 

between the two research fuels. The greatest differences were recorded in load 

points 1 and 2, at about 1.5 %. In these load points NExBTL produced higher 

peak values of cylinder pressure the highest being 128.3 bar, Figure 6.1. 
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Figure 6.1. Cylinder pressure in load point 1, EGR 15 parameters. 

6.1.3 Heat Release 

With EGR 15 exhaust gas recirculation parameters heat release curves for 50-50 

% mix fuel did decrease faster after main injection heat release, than for pure 

NExBTL, in load points 1 and 2, Figure 6.2. In these points EGR valve was closed 

but some amount of exhaust gas still circulated to the intake manifold of the 

engine. 

 

Figure 6.2. Heat releases in load points 1 and 2, EGR 15 parameters. 

In the load points 3, 4 and 5 pilot injection produced several heat release peaks, 

similarly to the previous test runs. In these load points the heat release curves 

were again quite unstable, Figure 6.3. 
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The peak heat release of NExBTL was 6.6 % lower than 50-50 % mix fuel in load 

point 4. In load point 5, on the contrary, peak release of fuel blend was 5.8 % 

lower than that of pure NExBTL.   

 

Figure 6.3. Heat release in load point 5, EGR 15 parameters. 

6.1.4 Cumulative Heat Release 

The differences in heat release curves presented in Figure 6.2 can also be clearly 

seen in cumulative heat releases at the same load points 1 and 2, Figure 6.4. 

The cumulative heat releases of 50-50 % mix fuel were lower than those of 

NExBTL between crank angle degrees of 15 to 70.  

 

Figure 6.4. Cumulative heat release in load points 1 and 2, EGR 15 parameters. 
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With EGR 15 parameters no significant changes in maximum values of 

cumulative heat releases were recorded between the two research fuels. The 

greatest difference was measured at load point 6, where maximum peak of 

cumulative heat release of NExBTL was 1022 kJ/m3, which was about 1 % 

smaller than peak of cumulative heat release of 50-50 % mix (1032 kJ/m3). 

6.1.5 Ignition Delay 

With the exception of load point 1, no differences in ignition delays were recorded 

between the two research fuels, Table 6.3. At load point 1 NExBTL produced 

faster ignition than 50-50 % mix by 56 µs. 

Table 6.3. Ignition delay with EGR 15 parameters. 

 

When compared to the reference ignition delay results of each fuel, it can be seen 

that with the exception of load point 2, use of EGR system resulted in slower 

ignition. Particularly big difference of 111 µs was recorded for 50-50 % mix at 

load point 1. 

6.2 Higher EGR Valve Positions 

The higher settings of the EGR valve positions were abbreviated EGR 20, as the 

maximum opening of the EGR valve in load points 5 and 6 was 20 %, Table 6.4. 

With these EGR valve settings the valve was shut only in load point 1.  

NExBTL, 
EGR 15 %

50-50 %-
mix, EGR 15 

%

diff. 50-50 % 
-mix-

NExBTL
Ref. NExBTL

Ref. 50-50 % 
-mix

diff. 
NExBTL:      
test-ref.

diff. 50-50 %-
mix: test-

ref.
1 500.0 555.6 55.6 444.4 444.4 55.6 111.1
2 448.7 448.7 0.0 448.7 448.7 0.0 0.0
3 555.6 555.6 0.0 509.3 509.3 46.3 46.3
4 568.2 568.2 0.0 530.3 530.3 37.9 37.9
5 601.9 601.9 0.0 555.6 555.6 46.3 46.3
6 641.0 641.0 0.0 576.9 576.9 64.1 64.1

Fuel
Ignition delay µs

Load 
point
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The calculated EGR rates are shown in Table 6.4. As table shows, the EGR % 

was even higher at load point 1, where EGR valve was closed, than in load point 

2, where EGR valve was opened 5 %. 

Table 6.4. EGR valve opening and calculated EGR % with EGR 20 parameters. 

 

6.2.1 Gaseous Emissions, Smoke, Fuel Consumption and Efficiency 

Similarly to the test results from EGR 15 test runs, using of EGR 20 parameters 

resulted in lower nitrous oxide results for NExBTL than for 50-50 % mix. The 

values measured with NExBTL were between 2.4 (P3) to 4.9 (P1 and P6) % lower 

than with 50-50 % mix. Unexpectedly the greatest differences in NOX results were 

recorded with EGR valve shut (P1) and at the maximum opening of the valve 

(P6).  

Compared to the reference results, NOX results with both fuels were significantly 

lower. Nitrous oxides of NExBTL were between 25 (P1 and P2) and 73 (P6) % 

lower than the reference levels with the same fuel. For blended 50-50 % mix the 

NOX results were between 15 (P1) and 71 (P6) % lower than the base values.  

Out of the two research fuels, the NExBTL produced lower smoke numbers than 

50-50 % mix in all load points, except P2 where numbers were same. The smoke 

results of NExBTL were lower by 13-44 % than the results of fuel mix in load 

points 1 and 3-6.  

NExBTL 50-50 %-mix
1 1.8 1.3 0
2 1.1 0.8 5
3 15.2 15.0 10
4 19.2 18.9 15
5 27.2 28.0 20
6 24.8 25.5 20

Calculated EGR % EGR-valve 
opening %Load 

point
Fuel
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As expected the smoke numbers were significantly higher in EGR 20 test runs 

than in the reference test runs. The base values of NExBTL were between 29 

(P2) and 82 (P1 and P6) % lower than NExBTL results in these test runs. For 

blended fuel, reference smoke levels were between 17 (P2) and 82 (P4 and P6) 

% lower than results from the test runs with EGR 20 parameters.  

Specific fuel consumptions of both fuels were quite close to each other, as the 

differences were about 1 % at a maximum. Volumetric fuel flow of 50-50 % mix 

was smaller than that of NExBTL by 2.3 (P3) to 4.1 (P6).  

Compared to the reference results of each fuel it was seen than specific fuel 

consumptions and volumetric fuel flows in EGR 20 test runs were lower in load 

points 4-6. SFC and volumetric fuel flow of NExBTL were about 4 % smaller at a 

maximum in load point 5 than the base result. For 50-50 % mix the difference to 

the reference in same load point was about 6 %.  

The calculated efficiency of the engine was slightly higher for 50-50 % mix than 

for NExBTL. The difference however was only 1 % at a maximum. In load points 

4-6, where EGR valve openings were the biggest, the efficiency of the engine 

was higher in EGR 20 test runs than in reference test runs with both fuels. The 

biggest differences were measured in load point 5, where the base result of 

NExBTL was 4.4 % lower than the result with EGR 20 parameters. For blended 

fuel the difference to the reference was even larger at 5.9 %  

6.2.2 Cylinder Pressure 

Differences in the cylinder pressure curves between the two research fuels were 

quite minimal. The biggest difference was recorded in load point 4, Figure 6.5. 

Overall the cylinder pressure curves were quite similar. 
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Figure 6.5. Cylinder pressure in load point 4, EGR 20 parameters. 

6.2.3 Heat Release 

Contrary to the heat release results recorded with the EGR 15 parameters, no 

significant differences between heat release curves of the two research fuels 

were recorded in load points 1 and 2, Figure 6.6. The heat release curves in all 

six load points were quite close to each other.  

 

Figure 6.6. Heat releases in load points 1 and 2, EGR 20 parameters. 

Similarly to the previous test runs, the heat release curves in load points 3, 4 and 

5 produced several Pilot 1 heat release peaks and were in general quite unstable. 
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The greatest difference in peak values of heat release were measured in load 

point 5, where the difference was 4.8 %, Figure 6.7. 

 

Figure 6.7. Heat release in load point 5, EGR 20 parameters. 

6.2.4 Cumulative Heat Release 

Apart from load points 2 and 5, the cumulative heat release curves of the test 

runs with larger EGR valve settings were virtually identical. In load point 2 the 

maximum value of cumulative heat release of NExBTL was 2.0 % smaller than 

that of 50-50 % mix (2510 vs. 2562 kJ/m3). In load point 5 on the contrary, the 

difference was 2.3 % in favor of NExBTL, with the maximum values of 1184 

(NExBTL) and 1156 kJ/m3 (50-50 % mix), Figure 6.8. 
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Figure 6.8. Cumulative heat release in load point 5, EGR 20 parameters. 

6.2.5 Ignition Delay 

When using larger EGR 20 parameters no difference in ignition delays were seen 

between the two research fuels, Table 6.5. On the other hand, when compared 

to the reference values for both fuels, use of EGR did slow ignition in load points 

1, 5 and 6. The differences were same for both fuels and the biggest difference 

to base level was 111 µs in load point 1. 

Table 6.5. Ignition delays with EGR 20 parameters. 

 

When compared to the values from the test runs performed with EGR 15 

parameters (Figure 6.2.) it can be seen that in load point 2 and 6 the ignition 
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%

diff. 50-50 % 
-mix-

NExBTL
Ref. NExBTL

Ref. 50-50 % 
-mix

diff. 
NExBTL:      
test-ref.

diff. 50-50 %-
mix: test-

ref.
1 555.6 555.6 0.0 444.4 444.4 111.1 111.1
2 448.7 448.7 0.0 448.7 448.7 0.0 0.0
3 509.3 509.3 0.0 509.3 509.3 0.0 0.0
4 530.3 530.3 0.0 530.3 530.3 0.0 0.0
5 648.1 648.1 0.0 555.6 555.6 92.6 92.6
6 641.0 641.0 0.0 576.9 576.9 64.1 64.1

Fuel
Ignition delay µs

Load 
point
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delays were same for both fuels. In load point 1, where EGR valve was closed in 

both EGR parameters, the only difference was measured with NExBTL, where 

with EGR 20 parameters the ignition was slightly faster. In load points 3 and 4 

the ignition was faster with EGR 20 parameters despite larger exhaust gas 

recirculation. In load point 5 the values measured with larger EGR valve opening 

resulted in slower ignition than with lesser EGR valve opening parameters. 

6.3 Lower EGR Valve Positions and Optimized Fuel Injection Parameters 

In the following test runs the EGR valve positions at each load point were returned 

to the lower EGR 15 parameters. Simultaneously the fuel injection parameters 

were optimized so, that the nitrous oxide results, decreased by the use of EGR, 

increased close to the values measured with diesel fuel oil in reference runs. The 

objective was to improve the fuel economy and efficiency of the engine. Modified 

fuel injection parameters are presented in Table 6.6 and the modifications of 

parameters are highlighted in red colour.  

Table 6.6. Optimized fuel injection parameters, EGR 15 opt parameters 

 

The fuel injection parameters were optimized by altering the injection timing of 

Main 1 and Pilot 1 injections. As the EGR valve was closed in load points 1 and 

2, the optimization was done in load points 3-6. As Table 6.6 shows, the Main 1 

injection advance was increased, which means that the fuel was injected earlier 

into the cylinder than in the reference test runs. The injection was advanced by 

2.6 degrees (P3), 4.6 degrees (P4), 7.4 degrees (P5) and 8.4 degrees (P6). The 

Pilot 1 timing was increased in load points 4-6, which means the pilot injection in 

REF
EGR 15 

OPT REF
EGR 15 

OPT REF
EGR 15 

OPT REF
EGR 15 

OPT REF
EGR 15 

OPT REF
EGR 15 

OPT

Rail pressure MPa 130 130 135 135 150 150 160 160 130 130 120 120

Injection advance M1 ° crankshaft 5.3 5.4 0.7 0.7 4.5 7.0 4.0 8.5 1.9 9.0 0.9 9.0

Injection timing P1 µs 350 350 350 350 350 350 350 550 350 500 350 550

Injection timing P0 ° crankshaft -2000 -2000 - - -1725 -1725 -1300 -1300 -1300 -1300 -1300 -1300

Injection quantity M1 mg 92.5 94.2 70.3 71.0 64.5 64.2 37.5 35.2 20.6 17.8 23.6 22.7

Injection quantity P1 mg 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Injection quantity P0 mg 4.0 4.0 0.0 0.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

Load point 6Load point 1 Load point 2 Load point 3 Load point 4 Load point 5
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these points was injected earlier than in the reference runs. In P4 and P6 Pilot 1 

injection timing was increased from 350 to 550 µs and in P5 from 350 to 500 µs. 

EGR valve openings and calculated EGR % are shown in Table 6.7 below. 

Table 6.7. EGR valve opening and calculated EGR % with EGR 15 opt 
parameters. 

 

6.3.1 Gaseous Emissions, Smoke, Fuel Consumption and Efficiency 

Advancing the beginning of the main fuel injection in load points 3-6 resulted in 

differences in NOX results of the two fuels to vanish. In these load points NExBTL 

produced only 3 % smaller NOX results than 50-50 % mix at a maximum (in P3), 

when before the fuel injection advance optimization the difference was up to 6 %. 

Overall the greatest difference in nitrous oxides results was measured in load 

point 1, where NExBTL produced 5.6 % smaller result than the fuel mix. 

The optimization of the fuel injection advances brought NOX clearly closer to 

reference results of each fuel. In optimized load points 3-6, nitrous oxides 

measured with EGR 15 opt parameters were 13 % for NExBTL and 11 % for 50-

50 % mix smaller at a maximum. In load points 1 and 2, where no optimization 

was done, the NOX results were quite similar to the results of EGR 15 test runs. 

Similarly to the results from previous test runs pure NExBTL produced lower 

smoke number results than 50-50 % mix. The numbers of NExBTL were 16 (P1) 

to 47 % (P4) smaller. Compared to the results from the reference tests EGR 15 

NExBTL 50-50 %-mix
1 2.0 1.2 0
2 1.3 0.6 0
3 8.4 7.2 5
4 13.7 13.7 10
5 26.2 25.8 15
6 18.6 17.5 15

Calculated EGR % EGR-valve 
opening %Load 

point
Fuel
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opt parameters produced significantly higher smoke numbers for both research 

fuels. 

Specific fuel consumption was quite similar for both fuels and volumetric fuel 

consumption of 50-50 % mix was lower than with NExBTL. The volumetric values 

of blended fuel were smaller by 2.2 (P3) to 4.2 (P6) %.  

Both SFC and volumetric fuel consumption did improve with optimized timing of 

the fuel injections. At a maximum, in load point 5, SFC and volumetric fuel 

consumption measured with both fuels were up to 8 % lower in the EGR 15 opt 

test runs than the reference results. Without fuel injection parameter optimization 

the results were about 4 % and 6 % lower than the reference figures, for NExBTL 

and 50-50 % mix respectively.        

Similar improvements were seen in calculated efficiency of the engine. Similarly 

to the previous test runs, the maximum difference in efficiency of the engine was 

measured in load point 5. The reference engine efficiencies were about 8 % lower 

for both research fuels in load point 5. Without the injection parameter 

optimization the same differences to reference were about 4 and 6 % for NExBTL 

and 50-50 % mix respectively.  

6.3.2 Cylinder Pressure 

Cylinder pressure of NExBTL was higher than 50-50 % mix in all load points in 

the test runs performed with optimized EGR 15 parameters. The greatest 

difference in maximum cylinder pressures was measured in load point 6, Figure 

6.9. The difference in peak values was 3.5 % (79.4 vs. 76.6 bar). 
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Figure 6.9. Cylinder pressures in load point 6, EGR 15 opt parameters. 

6.3.3 Heat Release 

In load points 1 and 2, where the fuel injection parameters were not altered, the 

heat release curves between the two research fuels were quite similar. In these 

load points the EGR valve was also closed.  

Similarly to the previous test runs, in load points 3, 4 and 5 the pilot injection 

produced several heat release peaks, Figure 6.10. Also the heat release curves 

at these load points were quite unstable. This trend was also similar to the results 

of the previous test runs. 

 

Figure 6.10. Heat releases in load points 4 and 5, EGR 15 opt parameters. 
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In load points 4, 5 and 6 it was clearly seen that NExBTL produced faster ignition 

than 50-50 % mix, Figure 6.10 and 6.11. The greatest ignition delay difference of 

128 µs was measured in load point 6. These results were quite logical as NExBTL 

has higher cetane number than 50-50 % mix. 

 

Figure 6.11. Heat release in load point 6, EGR 15 opt parameters. 

The greatest difference in peak heat release values was measured in load point 

5, Figure 6.10. In this load point the peak heat release value of fuel blend was 

8.8 % lower than similar value of NExBTL (84.6 vs. 92.7 kJ/m3deg). 

6.3.4 Cumulative Heat Release 

Cumulative heat release curves in the first three load points (P1-P3) were quite 

equal for both fuels. In load point 4 blended 50-50 % fuel mix produced slightly 

higher peak value of cumulative heat release. On the contrary the greatest 

difference in peak values of cumulative heat release was recorded in load point 

5, Figure 6.12. The peak value of blended fuel was 4.4 % smaller than the peak 

value of NExBTL (1142 vs. 1091 kJ/m3). 
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Figure 6.12. Cumulative heat release in load point 5, EGR 15 opt parameters. 

It can be clearly seen in the cumulative heat release curves from load point 6 that 

NExBTL ignited faster and produced heat release rates earlier than blended fuel, 

Figure 6.13. 

 

Figure 6.13. Cumulative heat release in load point 6, EGR 15 opt parameters. 
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6.3.5 Ignition Delay 

NExBTL produced faster heat release results than 50-50 % mix in load points 4, 

5 and 6, Table 6.8. The biggest difference of 128 µs was recorded in load point 

6, with biggest EGR valve opening. 

Compared to the reference ignition delay results it was seen that with NExBTL 

the ignition delays were slightly longer in load points 1, 3, 5 and 6 when using 

EGR 15 opt parameters. 

EGR 15 opt parameters resulted in longer ignition delays for 50-50 % fuel mixture 

at all load points, except load point 2, when comparing results to the reference 

results of this fuel. Especially in the load points 5 and 6, where biggest EGR valve 

opening values were used, the difference in ignition delays was significant.     

Table 6.8. Ignition delays with EGR 15 opt parameters. 

 

6.3.6 Summary of In-Cylinder Results 

When comparing in-cylinder results with three different EGR parameters, the 

greatest differences were seen at load points 3-6, where the engine fuel injection 

and EGR parameters differed the most. 

The highest peak values of cylinder pressure in these load points were recorded 

with EGR 15 opt parameters for both fuels, where beginning of fuel injection was 

NExBTL, 
EGR 15 %

50-50 %-
mix, EGR 15 

%

diff. 50-50 % 
-mix-

NExBTL
Ref. NExBTL

Ref. 50-50 % 
-mix

diff. 
NExBTL:      
test-ref.

diff. 50-50 %-
mix: test-

ref.
1 500.0 500.0 0.0 444.4 444.4 55.6 55.6
2 448.7 448.7 0.0 448.7 448.7 0.0 0.0
3 555.6 555.6 0.0 509.3 509.3 46.3 46.3
4 530.3 606.1 75.8 530.3 530.3 0.0 75.8
5 601.9 694.4 92.6 555.6 555.6 46.3 138.9
6 641.0 769.2 128.2 576.9 576.9 64.1 192.3

Load 
point

Fuel
Ignition delay µs
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advanced, Figures 6.14 and 6.15. In load points 3 and 4 the reference cylinder 

pressure was only slightly above the results from the test runs performed with 

EGR 15 and EGR 20 parameters. 

 

Figure 6.14. Cylinder pressures from EGR test runs in load points 3 and 4. 

In load points 5 and 6 the use of the exhaust gas recirculation dropped the 

cylinder pressures considerably with both research fuels. With advanced 

beginning of the fuel injection (EGR 15 opt parameters) the maximum cylinder 

pressures rose above the reference values, Figure 6.15. 

In load points 3-6 it was clearly seen that heat was released earlier in the results 

of the EGR 15 opt parameters with the both fuels, Figures 6.16 and 6.17. This 

was result from advanced beginning of the fuel injections. Similarly to the 

previous test run results, the heat releases curves from load points 3-5 were quite 

unstable. 
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Figure 6.15. Cylinder pressures from EGR test runs in load points 5 and 6. 

 

Figure 6.16. Heat releases from EGR test runs in load points 3 and 4. 

In load points 5 and 6 the peak heat release values from reference test runs were 

highest with both fuels tested, Figure 6.17.   
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Figure 6.17. Heat releases from EGR test runs in load points 5 and 6. 

Cumulative heat release results from test runs performed with EGR 15 opt 

parameters were overall lowest in load points 3-6 with both research fuels, 

Figures 6.18 and 6.19.  

In load points 5 and 6 the reference cumulative heat releases measured with 50-

50 % fuel mix were significantly higher than the results from the test runs with 

EGR 15 and EGR 20 parameters when using the same fuel, Figure 6.19. With 

NExBTL the difference between the results of NExBTL reference and the EGR 

15 and 20 were not as significant as with fuel blend, as the reference cumulative 

heat releases of NExBTL were lower than 50-50 % mix at these load points.  
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Figure 6.18. Cumulative heat releases from EGR test runs in load points 3 and 4. 

 

Figure 6.19. Cumulative heat releases from EGR test runs in load points 5 and 6. 
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7 RESULTS OF TRANCIENT CYCLE 

As the last part of the research matrix a nearly 16 minute long transient cycle was 

run with DFO and both research fuels. The cylinder pressure data was not 

possible to collect from the transient cycle runs. Also smoke number results were 

not possible to measure from these runs. For the transient test runs the EGR 

system was disabled. 

The main results of the transient test cycle are presented in Table 7.1 below. 

Table 7.1. Results of the transient test cycle. 

 

Virtually no difference in nitrous oxide results were measured in the transient 

cycle between DFO and the two research fuels. All fuels produced NOX results 

within 0.1 g/kWh of each other. Pure NExBTL and blended 50-50 % mix produced 

slightly better results of engine efficiency. Similarly to the steady state results the 

biggest SFC was measured with diesel. Total fuel consumption on the other hand 

was 0.2 liters smaller with diesel fuel oil than with NExBTL. Total fuel 

consumption of 50-50 % mix was in between of DFO and NExBTL results. This 

is quite logical as diesel has highest density of the three fuels. The density of 50-

50 % mix is naturally in the middle of densities of NExBTL and DFO. 

Overall the results measured in transient test cycles of the three fuels were quite 

close to each other. Results were also quite logical when compared to the 

previous steady state results of all three fuels.  

g/kWh % g/kWh liters
DFO 6.6 37.0 226.5 4.4

NExBTL 6.6 37.3 220.2 4.6
50-50 % -mix 6.5 37.2 222.7 4.5

Fuel
NOX

Engine 
efficiency SFC

Total fuel 
consumption
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8 COMPARISON OF EXPERIMENTAL RESULTS TO 
LITERATURE AND OTHER STUDIES 

In this paragraph the results from the experimental test runs performed are 

compared to the theoretical information and findings from other similar studies. 

The comparison to the theory focuses on the main phenomenon in engine 

parameter optimization, and their effects on engine performance and in-cylinder 

results.  

As previously described, the assumption of this study was, that pure NExBTL and 

blended 50-50 % mix would produce lower NOX results than the standard diesel 

fuel oil. With optimization of the fuel injection parameters, with the two research 

fuels, the NOX results would be brought back up at each load point, close to the 

results measured with DFO. Thus the fuel injection parameter optimization 

concentrated mainly on increasing the NOX, which same time usually results in 

gains in fuel consumption of the engine and lower smoke and particle emissions. 

As the initial gains in nitrous oxides with the research fuels compared with DFO 

were quite modest, the optimization steps of each parameter were therefore quite 

minor.  

8.1 Fuel Injection Advance 

Advancing the start of the fuel injection produces higher maximum value of 

cylinder pressure and produces earlier heat release. Earlier fuel injection results 

in higher local and maximum temperatures in cylinder, which lead to increase in 

NOX. With the later injection more of the fuel burns during the later period of 

expansion stroke, where the temperature decreases and that is why the 

maximum temperature in the cylinder is lower. (Hsu 2002, 64-69)  

Earlier fuel injection also produces longer ignition delay and higher initial peak of 

heat release. The relative cylinder efficiency of the earlier injection is higher which 

results in better fuel consumption. In the case of later fuel injection more fuel is 
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burned closer to the end of the expansion cycle and thus the soot generated 

during this period has less time to burn off, which results in higher smoke/PM 

results. (Heywood 1988, 562; Hsu 2002, 64-69)  

In the results from the experimental test runs, performed with advanced timing of 

the main fuel injection, several phenomenon similar to the theoretical statements 

were noticed. The NOX results increased and the smoke decreased. Virtually no 

changes were seen in the fuel consumption results. 

Advancing the beginning of the main fuel injection did result in higher maximum 

cylinder pressures in all load points for both research fuels, as stated in the 

theory. The difference in cylinder pressures can be seen from Figure 8.1 

(NExBTL, P2). 

 

Figure 8.1. Cylinder pressure with reference and advanced main injection for 
NExBTL. 

The heat release curve did shift to earlier crank angle values with earlier fuel 

injection timing in all load points with the both research fuels. Clearly higher initial 

peak of heat release was not widely detected. The shift of heat release curve is 

shown in Figure 8.2 (NExBTL, P2). 

Slight increase in ignition delay was measured only with 50-50 % fuel mix in load 

points 1 and 5. 
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Figure 8.2. Shifted heat release with advanced timing of main injection for 
NExBTL.  

8.2 Injection Pressure  

Increasing fuel injection pressure results in better mixing of fuel and air in cylinder. 

The fuel spray atomization increases and this leads to faster mixing and burning, 

which can also be seen in faster heat release. The local peak temperatures in the 

cylinder rise and this leads to increases in NOX. The biggest advantages of higher 

fuel injection pressure are seen in lesser smoke, due to the better mixing of air 

and fuel. Gains in fuel consumption are seen, especially at later fuel injection 

timings. Increasing the injection pressure also often results in higher initial peaks 

of heat release. (Heywood 1988, 560-562; Hsu 2002, 43-44; Mollenhauer et al. 

2010, 451-452)   

When inspecting results from test runs performed with higher fuel injection 

pressures, it was seen that NOX did rise with increase in pressure, similarly to the 

theory. However, in this case higher fuel injection did not result in big advantages 

for smoke or fuel consumption.   

The maximum cylinder pressure was slightly higher with increased fuel injection 

pressure in nearly all load points with both research fuels. Example of this is 

shown for NExBTL in Figure 8.3. 

-20

0

20

40

60

80

100

120

140

160

180

200

-20 -10 0 10 20 30 40 50

He
at

 re
le

as
e 

(k
J/

m
3d

eg
)

Crank angle (deg.)

Heat release NExBTL; load point 2; 1300 rpm / 417 Nm

ref.

Main adv +1°

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Toomas Karhu 



97 

 

Figure 8.3. Cylinder pressure with standard and higher fuel injection pressure for 
NExBTL. 

Higher initial peaks of heat release were not widely measured. In some load 

points faster heat release was seen with higher fuel injection pressure. For 

NExBTL this can be seen in load point 6 in Figure 8.4. 

Similarly to theoretical statement virtually no changes in ignition delays were seen 

when fuel injection pressure was increased.  

 

Figure 8.4. Heat release with standard and higher fuel injection pressure for 
NExBTL. 
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8.3 Pilot Injection 

Pilot injection has been widely used to reduce combustion noise in the diesel 

engines. Usually the use of the pilot injection increases pressure and temperature 

in cylinder before the actual main injection, which shortens the ignition delay time 

of the main injection. Ignition peak of the cylinder pressure with no pilot injection 

is later than with activated pilot injection. Larger quantity of pilot injection usually 

results in faster ignition. Use of pilot injection can minimize high heat release peak 

of premixed combustion phase. (Heywood 1988, 505-506; Mollenhauer et al. 

2010, 453-454) 

Changes in the peak of the cylinder pressures were seen clearest in load point 6, 

Figure 8.5. As it can be seen from the test run with NExBTL, the rise of the 

cylinder pressure starts clearly later when pilot injection is deactivated. 

 

Figure 8.5. Cylinder pressure with pilot injection activated and deactivated for 
NExBTL. 

Similarly to the theory the ignition delays were shorter when pilot injection was in 

use, but only at the lower engine loads in P5 and P6. Determining the beginning 

of the actual injection proved to be challenging as it was not clear whether small 

portion of pilot injection was in use after all by an error.  
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As Figure 8.6 shows the heat releases without pilot injection were quite different 

in load point 6 for NExBTL. With deactivated Pilot 1 injection the increase in heat 

release did start later than in reference. At this load point the heat release peak 

of premixed combustion phase can be clearly seen when the pilot injection is 

deactivated.  

 

Figure 8.6. Heat release with pilot injection activated and deactivated with 
NExBTL in load point 6. 

In load points 1 and 2 the heat releases with no pilot injection and reference did 

start at approximately same time for the main injections, when observed from 

heat release curves, Figure 8.7. 

Generally the peaks of heat release were higher with deactivated pilot injection 

in all load points for both fuels compared.  
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Figure 8.7. Heat release with pilot injection activated and deactivated with 
NExBTL in load point 2. 

8.4 Comparison with Other Studies 

Results presented in this thesis were compared to the results from several 

studies. The most notable of these studies were Master Thesis of Michaela Hissa 

(University of Vaasa 2014) and SAE publications by Sugiyama et al. (2011) and 

Aaltola et al. (2008). In these studies HVO fuel was compared with DFO and in 

some cases with HVO-DFO blends and bio-diesels. The comparison to this study 

is possible as NExBTL is HVO based fuel.  

The engine used in the Master Thesis of Hissa was quite similar to the engine 

used in this thesis. Sugiyama et al. used an EGR equipped modern common rail 

injection passenger car engine in engine and chassis dynamometer 

(displacement 2.2 litres). Heavy duty direct injection diesel engine was used in 

research by Aaltola et al.     

8.4.1 Heat Release, Ignition Delay and Cylinder Pressure 

Sugiyama et al. reported that due to the higher cetane number of HVO, the 

ignition delay was clearly shorter than with DFO in all load conditions when the 
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pilot injection was not in use. The difference was especially visible under low 

engine loads, because the gas temperatures in the cylinder at the start of the 

combustion were lower. The differences declines as the gas temperature rises 

with increase in the engine torque. (Sugiyama et al. 2011, 6) 

When the pilot injection was enabled in studies by Sugiyama et al., the benefits 

of high cetane number of HVO diminished, and almost no difference was seen in 

the ignition delays and heat release curves of HVO and DFO. This was due to 

the increase in gas temperatures in the cylinder at the start of the combustion, 

caused by pilot injection. (Sugiyama et al. 2011, 7-8) 

Similarly to the results from studies by Sugiyama et al. no significant differences 

in ignition delays were seen between NExBTL and DFO in this study. Pilot 

injection was in use when comparisons between DFO, pure NExBTL and 50-50 

% fuel blend were made. It is debatable whether differences in ignition delay, heat 

release and cylinder pressure between these fuels would have been more visible 

if the comparison tests would be performed also without pilot injection. 

When pilot injection was off, in comparison test runs of NExBTL and 50-50 % 

mix, the ignition delay differences increased in load points 5 and 6, with lower 

engine loads. These results were similar to the results of Sugiyama et al. 

However it was debatable whether in test runs of this study small amount of pilot 

injection was in use after all. 

Similarly to the results presented in the Master Thesis of Michaela Hissa, where 

pilot injection was also in use, the results from this study showed that diesel 

produced higher peaks of cylinder pressure than NExBTL/HVO in all load points. 

Also in both researches the cylinder pressures were quite unstable at higher 

engine speeds and low engine loads. As a result of this the derived heat release 

curves were quite unstable in these load points. (Hissa 2014, 41, 46, 51-52, 131) 
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8.4.2 Nitrous Oxides and Smoke  

Sugiyama et al. reported that when pilot injection was not used, HVO decreased 

the nitrous oxide results when compared to DFO. This was due to the shorter 

ignition delay of HVO, because of the higher cetane number. In the test runs by 

Sugiyama et al. performed with pilot injection no decrease in NOX was observed. 

Aaltola et al. reported that with default settings of the engine NOX decreased 

about 5 % on an average when using HVO. (Aaltola et al. 2008, 5-6; Sugiyama 

et al. 2011, 6-7) 

The NOX results presented in the thesis of Hissa were lower with HVO than with 

DFO in all loads at the intermediate engine speed (1500 rpm) and at higher loads 

at rated engine speed (2100 rpm). The pilot injection was in use in these load 

points. (Hissa 2014, 56) 

In the results of this study NOX of NExBTL was lower than that of DFO only in 

load points 3-6 in the runs with standard fuel injection parameters. The difference 

was about 2 % at a maximum. Load point 3 had quite high engine torque and 

load points 4-6 were with lower engine loads at a various engine speeds. With 

the reference fuel injection parameters the pilot injection was in use in all load 

points.  

The reductions in nitrous oxides measured in this study were not as high as in 

some of the previous studies. It is debatable whether NOX reduction would be 

higher without the use of the pilot injection, as these test runs were not performed 

with DFO.  

The smoke results in all studies proved to have similar trend, as HVO/NExBTL 

generally produced clearly lower smoke numbers than DFO. This was due to the 

lack of aromatics in the HVO fuel. Similarly to results in several studies, the results 

of this study showed smoke reductions of over 30 %. (Aaltola et al. 2008, 5-6; 

Sugiyama et al. 2011, 7-8, 10; Hissa 2014, 54) 

Study by Happonen et al. showed that addition of oxygenate to HVO fuel could 

reduce particle emission further without significantly effecting the nitrous oxides 
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results. Results of up to 25 % reduction in particulate mass were seen with 

addition of DNPE (di-n-pentyl ether) to HVO with the maximum increase in NOX 

of 5 %. However, several problems need to be resolved before wide use of this 

technique could be possible. (Happonen et al. 2013, 385) 

8.4.3 Fuel Consumption 

Fuel consumption in the experimental results of this study compared to the results 

from studies by Aaltola et al. and Hissa were similar, as in all three studies 

gravimetric fuel consumption with HVO/NExBTL was about 2-3 % lower than with 

DFO. Simultaneously volumetric fuel consumption of HVO/NExBTL did increase 

from the results of DFO. This was due to the HVO having lower volumetric heating 

value than diesel. (Aaltola et al. 2008, 2-6; Hissa 2014, 138, 150) 
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9 CONCLUSIONS 

The following conclusions can be made from the results of this research: 

• The greatest benefits of using NExBTL and fuel blend of 50-50 % were 

seen in the reduced smoke numbers in all load points compared to the 

standard DFO. Benefit in smoke was due to the lack of aromatics in 

NExBTL. Fuel mix of 50-50 % showed also clear benefits in smoke 

numbers when compared to DFO. 

• Pure NExBTL produced quite similar results of nitrous oxides compared to 

DFO. Fuel blend of 50-50 % showed lowest NOX results of all three fuels. 

The difference to DFO in these load points was about 2 % at a maximum.  

• Use of NExBTL lowered the gravimetric fuel consumption compared to 

DFO, but simultaneously volumetric fuel consumption was higher. The fuel 

consumption results of fuel blend were in between of pure NExBTL and 

DFO. This was due to the lower volumetric heating value of NExBTL. 

• Only slightly shorter ignition delays were seen with pure NExBTL 

compared to the two other fuels. Possibly this was because the use of the 

pilot injection in comparison test runs with DFO diminished benefits of 

higher cetane number of NExBTL.  

• Due to the low reduction of nitrous oxides with NExBTL and 50-50 % mix, 

no significant gains in fuel consumption was achieved with fuel injection 

parameter optimization. The objective was to keep NOX at the level of 

DFO.  

• Use of the EGR to reduce nitrous oxides was beneficial with both research 

fuels, as the standard smoke number results of these fuels were 

significantly lower when compared to DFO. In the EGR runs NExBTL 

produced lower NOX than 50-50 % fuel blend. However, the use of the 

EGR increased smoke numbers quite significantly even with NExBTL.  

• When the fuel injection parameters of the EGR engine using NExBTL and 

50-50 % mix were optimized, fuel consumption gains of up to 8 % 

compared to reference results with DFO were recorded. In this situation 
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however, smoke numbers were significantly higher than the reference 

results. 
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10 SUMMARY 

The emissions of off-road diesel engines have been limited widely by the 

legislation for the last 20…25 years. The legislation guides manufacturers to 

produce engines with less emissions. Simultaneously it is estimated that oil 

reserves of the world are running out. This leads to situation where the greatest 

challenges in diesel engine development are in decreasing of nitrous oxides 

(NOX), smoke and particulate matter (PM) and fuel consumption. To improve 

greenhouse gas emissions and sustainability, a direction towards use of bio and 

renewable fuels has been taken.  

Finnish oil and refining company Neste Oil has developed a renewable fuel called 

NExBTL. The fuel is produced by Hydrotreatening of Vegetable Oils (HVO) and 

method can be used also for animal fats. The NExBTL has similar chemical 

properties to fossil diesel but has among other things, higher cetane number and 

does not include aromates. It can be blended to fossil diesel up to all proportions.  

In this thesis the results from the test runs with pure NExBTL were compared to 

the results of test runs with standard diesel and fuel blend of the two (50-50 % 

mix). First, fuels were run with standard fuel injection parameters to determine 

base performance of each fuel at six steady state load points. After this the fuel 

injection parameter optimizations were performed with NExBTL and 50-50 % fuel 

mix at same load points. In the next phase of the study the engine was equipped 

with exhaust gas recirculation (EGR) system and ran in steady state load points 

with two different EGR valve settings and additionally with altered fuel injection 

parameters. In the final part of the study the engine was used in transient cycle.   

The results of this study showed several benefits of using NExBTL and 50-50 % 

mix in off-road diesel engine. Biggest benefits of using NExBTL and fuel blend 

were seen in reduced smoke numbers in all load points compared to the standard 

DFO. Benefit in smoke was due to the lack of aromatics in NExBTL. Fuel mix of 

50-50 % showed also clear benefits in smoke numbers compared to DFO.  
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Pure NExBTL produced quite similar results of nitrous oxides compared to DFO. 

Fuel blend of 50-50 % showed lowest NOX results of the three fuels. The 

differences in NOX between fuels were however quite small.  

Gravimetric fuel consumption of NExBTL was slightly lower than that of DFO. 

Simultaneously the volumetric fuel consumption of NExBTL did increase from the 

results of DFO. This was due to the lower volumetric heating value of NExBTL 

compared to diesel. Fuel consumption results of 50-50 % mix were generally 

between results of NExBTL and DFO.   

No significant differences in the in-cylinder results between three fuels were 

observed in this study. The ignition delay of NExBTL was slightly shorter in some 

load points compared to other fuels. It is possible that the use of pilot injection 

before the actual main injection diminished great benefits from higher cetane 

number of NExBTL. 

Because reduction of nitrous oxides with NExBTL and 50-50 % mix compared to 

DFO was quite low, no significant gains in fuel consumptions were achieved with 

the fuel injection parameter optimization. The objective was to keep NOX at the 

same level to DFO.  

When exhaust gas recirculation system was in use nitrous oxides were reduced 

significantly when compared to the reference results. The reduction was seen 

with both NExBTL and 50-50 % mix, but NExBTL produced lowest nitrous oxide 

results of the two fuels. The use of the EGR is more beneficial with two research 

fuels then with standard diesel due to the lower base level of smoke. However, 

use of EGR increased smoke numbers quite rapidly even with NExBTL. 

When fuel injection parameters of the EGR engine using NExBTL and 50-50 % 

mix were optimized, fuel consumption gains of up to 8 % were recorded. Smoke 

numbers in this situation were however significantly higher than the reference 

figures. 
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Appendix 1 
 

Fuel characteristics. 

 

 

  

Standardi Mitattu suure Arvo Yksikkö Mitattu suure Arvo Yksikkö Mitattu suure Arvo Yksikkö
ENISO12185 TIHEYS 837 kg/m3 TIHEYS 779.7 kg/m3 TIHEYS 808.55 kg/m3
ASTMD7689 SAME-TARKKA -5.1 °C SAME-TARKKA -37 °C
EN116 CFPP -20 °C CFPP -42 °C
ENISO3104 VISKO40°C 3.45 mm2/s VISKO40°C 2.892 mm2/s VISKO40°C 3.178 mm2/s
ENISO20846 RIKKI 6.6 mg/kg RIKKI <1 mg/kg RIKKI 3.3 mg/kg
ASTMD5291 VETY 13.9 wt-% VETY 15.2 wt-% VETY 14.6 wt-%
ENISO2719 LEIM-PM 68.5 °C LEIM-PM 76.5 °C
ASTMD6890 SETLUKU-IQT 53.2 SETLUKU-IQT 74 SETLUKU-IQT 63.3

ASTMD4809 TEH 
LÄMPÖARVO

43.0 MJ/kg
TEH LÄMPÖARVO 43.855 MJ/kg

TEH 
LÄMPÖARVO 43.448 MJ/kg

ASTMD4809 TEH 
LÄMPÖARVO

36.0 MJ/l
TEH LÄMPÖARVO 34.195 MJ/l

TEH 
LÄMPÖARVO 35.119 MJ/l

ENISO3405 TIS- TA 179 °C TIS- TA 201.8 °C TIS- TA 185.2 °C
ENISO3405 TIS-05 208 °C TIS-05 249.6 °C TIS-05 224.1 °C
ENISO3405 TIS-10 222 °C TIS-10 260.8 °C TIS-10 241 °C
ENISO3405 TIS-20 243 °C TIS-20 268.8 °C TIS-20 257 °C
ENISO3405 TIS-30 261 °C TIS-30 272.7 °C TIS-30 267.8 °C
ENISO3405 TIS-40 277 °C TIS-40 275.3 °C TIS-40 275.5 °C
ENISO3405 TIS-50 291 °C TIS-50 277.4 °C TIS-50 281.4 °C
ENISO3405 TIS-60 303 °C TIS-60 279.5 °C TIS-60 286.8 °C
ENISO3405 TIS-70 314 °C TIS-70 281.8 °C TIS-70 293.5 °C
ENISO3405 TIS-80 327 °C TIS-80 285 °C TIS-80 302.4 °C
ENISO3405 TIS-90 342 °C TIS-90 289.5 °C TIS-90 320.3 °C
ENISO3405 TIS-95 352 °C TIS-95 294.3 °C TIS-95 338.4 °C
ENISO3405 TIS-TL 357 °C TIS-TL 303.9 °C TIS-TL 348.6 °C

EN12916 AROM-DI 1.3 wt-% AROM-DI <0,1 wt-% AROM-DI 0.65 wt-%
EN12916 AROM-TRI 0.13 wt-% AROM-TRI <0,10 wt-% AROM-TRI 0.065 wt-%
EN12916 AROM-DI+TRI 1.4 wt-% AROM-DI+TRI <0,1 wt-% AROM-DI+TRI 0.7 wt-%

EN12916 AROM-kokonais 17.9 wt-% AROM-MONO <0,2 wt-% AROM-MONO 8.95 wt-%

ASTMD4809 KAL 
LÄMPÖARVO

45.9 MJ/kg
AROM-LC <0,2 wt-%
HFRR 333 µm/60°C
TUHKA <0,001 wt-%
HIILTOJ10%-MCR <0,01 wt-%

100% NExBTL 50/50-seosKesädiesel (-5/-15), fossiilinen
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Appendix 2 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-04-25 2014-04-25 2014-04-25 2014-04-25 2014-04-25 2014-04-25

Atmospheric pressure kPa 102.20 102.20 102.20 102.20 102.20 102.10

Relative humidity % 10.00 9.17 9.33 8.85 9.20 10.00

Room temperature oC 28.38 29.70 30.13 30.49 29.70 28.50

Engine speed 1/min 1497.81 1301.22 1797.84 2199.23 1797.85 1300.94

Engine torque Nm 572.33 417.64 402.71 217.83 135.71 140.76

Engine pow er kW 90 57 76 50 26 19

BMEP bar 16.4 11.9 11.5 6.2 3.9 4.0

SFC g/kWh 210 210 216 258 274 246

Lambda 1.49 1.89 1.97 2.98 4.12 3.67

NOx left g/kWh 7.72 8.58 7.02 6.85 6.75 8.25

HC left g/kWh 0.09 0.07 0.10 0.24 0.39 0.30

CO left g/kWh 0.12 0.09 0.16 0.51 0.69 0.31

NOx sensor 1 g/kWh 8.24 9.06 7.55 7.44 7.02 8.38

NOx sensor 2 g/kWh 8.18 8.92 7.51 7.41 7.09 8.35

Smoke FSN 0.031 0.009 0.013 0.027 0.025 0.015

Rail pressure Mpa 129.99 134.83 148.10 159.80 133.41 119.14

Injection timing M1 o crankshaft 5.31 0.70 4.45 3.90 1.91 0.90

Injection timing P1 µs 350.00 350.00 350.00 350.00 350.00 350.00

Injection timing P0 µs -2000.00 0.00 -1725.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 93.20 71.18 65.44 38.48 21.41 23.39

Injection quantity P1 mg 2.00 2.00 2.00 2.00 2.00 2.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1358.38 1079.98 974.33 691.93 584.83 572.97

Injection duration P1 µs 288.50 284.42 275.18 269.20 286.00 297.85

Injection duration P0 µs 359.07 0.00 333.62 320.10 347.93 367.52

T Before compressor oC 25.41 26.24 25.76 25.68 25.22 25.25

T After compressor oC 128.21 112.25 120.16 113.99 93.29 63.42

T Intake manifold oC 46.75 41.60 48.50 50.51 39.60 29.39

T Before turbine oC 597.86 467.32 498.49 399.64 283.83 257.79

T After turbine oC 482.01 367.21 398.15 303.92 204.75 207.36

T Fuel oC 35.66 35.49 36.15 37.51 36.65 35.64

T Oil oC 110.58 106.03 109.15 108.57 102.56 97.56

T Engine coolant oC 85.41 82.45 83.30 81.28 79.83 79.28

T After Charge Air Cooler oC 43.09 36.93 45.40 47.81 35.35 22.33

P Before compressor bar,abs 1.00 1.00 1.00 0.99 1.00 1.01

P After compressor bar,abs 2.24 1.98 2.17 2.06 1.80 1.41

P Intake manifold bar,abs 2.19 1.94 2.12 1.98 1.75 1.38

P Before turbine bar,abs 2.58 2.25 2.77 3.00 2.44 1.69

P After turbine bar,abs 1.17 1.11 1.20 1.23 1.13 1.06

Oil pressure bar,rel 3.23 3.11 3.83 4.24 4.21 3.60

Intake air depressure mbar,rel 22 18 26 31 23 15

Exhaust backpressure mbar,rel 148 86 182 211 106 36

Cooler backpressure mbar, rel 47.205 47.625 57.742 86.602 49.864 28.875

Air kg/s 0.11 0.09 0.13 0.16 0.12 0.07

Air f low kg/h 406.35 327.83 469.69 560.45 419.64 251.39

Fuel f low g/s 5.22 3.31 4.56 3.59 1.95 1.31

Fuel f low L/s 0.01 0.00 0.01 0.00 0.00 0.00

Fuel f low L/h 22.46 14.25 19.59 15.44 8.36 5.63

Efficiency % 40.00 39.98 38.73 32.52 30.58 34.10

HC, C1 w et ppm 41.24 24.55 31.19 43.71 48.62 46.86

NO ppm 1273.67 1095.50 826.37 427.72 277.75 439.03

NOX ppm 1314.50 1143.33 868.32 465.97 309.43 471.93

CO, dry ppm 28.93 16.47 27.87 48.82 44.06 24.87

CO2, dry % 9.82 7.67 7.24 4.76 3.32 3.73

O2, dry % 7.34 10.22 10.79 14.16 16.19 15.59

Smoke FSN 0.03 0.01 0.01 0.03 0.03 0.02

NOX sensor 1 ppm 1279.23 1122.52 871.17 482.65 310.95 461.72

O2 sensor 1 % 6.56 9.53 9.98 13.27 15.22 14.58

NOX sensor 2 ppm 1270.38 1104.41 866.02 480.78 314.06 459.79

O2 sensor 2 % 6.46 9.32 9.89 13.29 15.36 14.71
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Appendix 3 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-04-30 2014-04-30 2014-04-30 2014-04-30 2014-04-30 2014-04-30

Atmospheric pressure kPa 100.50 100.50 100.50 100.50 100.50 100.50

Relative humidity % 14.32 14.00 13.00 12.22 13.00 13.00

Room temperature oC 23.54 24.95 25.83 26.40 25.80 24.70

Engine speed 1/min 1497.46 1300.07 1797.44 2198.76 1797.29 1299.92

Engine torque Nm 571.30 416.67 401.89 217.01 134.91 139.98

Engine pow er kW 90 57 76 50 25 19

BMEP bar 16.3 11.9 11.5 6.2 3.9 4.0

SFC g/kWh 205 205 212 252 270 243

Lambda 1.48 1.86 1.95 2.97 4.04 3.59

NOx left g/kWh 7.81 8.63 6.91 6.73 6.60 8.10

HC left g/kWh 0.09 0.05 0.08 0.19 0.28 0.18

CO left g/kWh 0.12 0.08 0.16 0.45 0.56 0.26

NOx sensor 1 g/kWh 8.25 8.99 7.31 7.19 6.76 8.11

NOx sensor 2 g/kWh 8.16 8.83 7.26 7.17 6.80 8.07

Smoke FSN 0.020 0.010 0.007 0.013 0.013 0.011

Rail pressure Mpa 128.66 134.83 149.51 159.99 132.64 119.33

Injection timing M1 o crankshaft 5.30 0.70 4.26 3.90 1.91 0.90

Injection timing P1 µs 350.00 350.00 350.00 350.00 350.00 350.00

Injection timing P0 µs -2000.00 0.00 -1700.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 92.46 70.30 64.50 37.45 20.61 23.57

Injection quantity P1 mg 2.00 2.00 2.00 2.00 2.00 2.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1344.55 1073.22 965.62 680.90 579.27 574.13

Injection duration P1 µs 288.05 283.72 275.52 269.60 286.93 296.70

Injection duration P0 µs 357.92 0.00 334.15 320.32 348.70 366.38

T Before compressor oC 21.54 22.11 21.53 21.49 21.26 21.53

T After compressor oC 124.94 107.50 116.66 110.39 89.56 60.51

T Intake manifold oC 46.67 39.39 47.50 49.36 39.41 29.00

T Before turbine oC 599.33 469.45 501.31 403.92 291.16 265.05

T After turbine oC 482.28 369.84 400.06 307.87 212.58 214.47

T Fuel oC 34.33 34.62 34.92 35.94 35.52 34.81

T Oil oC 108.05 104.65 108.42 108.00 102.26 96.79

T Engine coolant oC 84.89 82.02 82.79 81.01 79.51 78.83

T After Charge Air Cooler oC 43.28 34.76 44.67 47.05 35.29 22.15

P Before compressor bar,abs 0.98 0.99 0.98 0.97 0.98 0.99

P After compressor bar,abs 2.22 1.95 2.16 2.05 1.78 1.40

P Intake manifold bar,abs 2.18 1.91 2.11 1.97 1.74 1.37

P Before turbine bar,abs 2.56 2.22 2.76 2.99 2.41 1.67

P After turbine bar,abs 1.15 1.09 1.19 1.22 1.11 1.04

Oil pressure bar,rel 3.31 3.16 3.86 4.25 4.22 3.63

Intake air depressure mbar,rel 21 18 26 31 23 15

Exhaust backpressure mbar,rel 146 86 184 213 108 37

Cooler backpressure mbar, rel 41.238 42.332 55.201 84.075 47.399 29.283

Air kg/s 0.11 0.09 0.13 0.16 0.12 0.07

Air f low kg/h 405.56 324.27 467.96 558.62 414.85 248.35

Fuel f low g/s 5.09 3.23 4.45 3.49 1.91 1.29

Fuel f low L/s 0.01 0.00 0.01 0.00 0.00 0.00

Fuel f low L/h 23.51 14.91 20.55 16.12 8.81 5.94

Efficiency % 40.1 40.1 38.8 32.6 30.4 33.8

HC, C1 w et ppm 39.87 18.48 26.14 34.88 34.91 28.83

NO ppm 1237.50 1064.00 782.92 403.20 263.23 424.30

NOX ppm 1296.83 1129.17 836.82 448.48 297.68 458.23

CO, dry ppm 29.87 14.74 28.24 42.54 36.43 21.28

CO2, dry % 9.44 7.37 6.96 4.57 3.21 3.64

O2, dry % 7.40 10.26 10.87 14.21 16.20 15.58

Smoke FSN 0.02 0.01 0.01 0.01 0.01 0.01

NOX sensor 1 ppm 1253.90 1095.80 827.43 457.15 295.07 442.08

O2 sensor 1 % 6.50 9.43 9.92 13.15 15.08 14.42

NOX sensor 2 ppm 1240.36 1075.42 821.68 455.70 296.66 439.64

O2 sensor 2 % 6.47 9.28 9.90 13.26 15.29 14.61
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Appendix 4 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-05-21 2014-05-21 2014-05-21 2014-05-21 2014-05-21 2014-05-21

Atmospheric pressure kPa 101.30 101.30 101.30 101.30 101.30 101.30

Relative humidity % 19.12 19.00 18.03 18.00 19.00 20.05

Room temperature oC 33.28 33.90 34.20 34.10 33.40 32.40

Engine speed 1/min 1498.26 1302.34 1798.30 2199.51 1798.24 1301.98

Engine torque Nm 573.16 418.58 403.41 218.49 136.43 141.25

Engine pow er kW 90 57 76 50 26 19

BMEP bar 16.4 12.0 11.5 6.2 3.9 4.0

SFC g/kWh 209 209 215 254 272 246

Lambda 1.43 1.82 1.93 2.92 3.97 3.50

NOx left g/kWh 7.20 8.42 6.78 6.58 6.58 7.94

HC left g/kWh 0.09 0.06 0.09 0.22 0.34 0.26

CO left g/kWh 0.19 0.10 0.19 0.50 0.62 0.31

NOx sensor 1 g/kWh 7.51 8.65 7.06 6.93 6.65 7.86

NOx sensor 2 g/kWh 7.40 8.45 6.99 6.90 6.69 7.81

Smoke FSN 0.046 0.012 0.012 0.020 0.019 0.016

Rail pressure Mpa 129.63 134.58 148.54 159.90 133.33 119.30

Injection timing M1 o crankshaft 5.30 0.72 4.30 3.90 1.93 0.90

Injection timing P1 µs 350.00 350.00 350.00 350.00 350.00 350.00

Injection timing P0 µs -2000.00 0.00 -1740.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 93.90 71.55 65.96 38.86 21.33 23.47

Injection quantity P1 mg 2.00 2.00 2.00 2.00 2.00 2.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1371.97 1087.77 978.77 695.02 583.45 574.58

Injection duration P1 µs 288.63 284.35 275.43 269.48 286.07 297.05

Injection duration P0 µs 359.28 0.00 334.47 321.00 348.35 366.88

T Before compressor oC 30.21 30.95 30.27 29.78 29.60 29.45

T After compressor oC 134.18 117.65 126.36 119.23 97.89 66.98

T Intake manifold oC 47.88 42.91 49.91 52.54 41.87 30.57

T Before turbine oC 610.77 473.18 503.70 403.40 288.25 262.06

T After turbine oC 493.17 372.39 400.91 305.85 208.71 212.29

T Fuel oC 35.54 35.81 36.46 37.00 36.43 35.83

T Oil oC 111.48 106.66 109.01 108.74 102.70 97.33

T Engine coolant oC 86.10 83.32 83.57 81.64 80.29 79.41

T After Charge Air Cooler oC 1339.72 1339.72 1339.72 1339.72 1339.72 1339.72

P Before compressor bar,abs 0.99 1.00 0.99 0.98 0.99 1.00

P After compressor bar,abs 2.23 1.97 2.17 2.05 1.78 1.39

P Intake manifold bar,abs 2.18 1.92 2.11 1.97 1.73 1.36

P Before turbine bar,abs 2.55 2.23 2.77 2.99 2.41 1.66

P After turbine bar,abs 1.16 1.10 1.20 1.22 1.12 1.05

Oil pressure bar,rel 3.18 3.08 3.82 4.23 4.19 3.59

Intake air depressure mbar,rel 21 17 25 30 22 15

Exhaust backpressure mbar,rel 151 87 182 207 104 34

Cooler backpressure mbar, rel 57.486 49.665 59.208 85.679 47.198 28.103

Air kg/s 0.11 0.09 0.13 0.15 0.11 0.07

Air f low kg/h 399.98 321.69 468.89 554.53 412.37 246.37

Fuel f low g/s 5.23 3.31 4.54 3.55 1.94 1.32

Fuel f low L/s 0.0 0.0 0.0 0.0 0.0 0.0

Fuel f low L/h 23.3 14.7 20.2 15.8 8.6 5.9

Efficiency % 39.6 39.7 38.5 32.6 30.5 33.7

HC, C1 w et ppm 38.75 21.61 28.84 40.61 43.85 42.27

NO ppm 1167.83 1053.67 767.92 397.57 265.05 414.75

NOX ppm 1206.83 1102.50 812.67 436.85 296.82 448.53

CO, dry ppm 45.54 18.86 33.07 48.83 40.82 25.96

CO2, dry % 9.99 7.73 7.22 4.75 3.33 3.78

O2, dry % 6.92 9.98 10.68 14.14 16.19 15.53

Smoke FSN 0.05 0.01 0.01 0.02 0.02 0.02

NOX sensor 1 ppm 1139.92 1046.00 784.60 436.47 288.05 424.67

O2 sensor 1 % 6.06 9.06 9.67 12.99 14.96 14.29

NOX sensor 2 ppm 1122.89 1022.70 777.31 434.67 290.06 422.03

O2 sensor 2 % 5.94 8.90 9.62 13.06 15.12 14.44
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Appendix 5 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-05-14 2014-05-14 2014-05-14 2014-05-14 2014-05-14 2014-05-14

Atmospheric pressure kPa 101.17 101.20 101.20 101.20 101.20 101.30

Relative humidity % 13.00 12.23 12.00 12.00 12.00 13.00

Room temperature oC 25.88 27.55 28.01 28.22 27.19 25.82

Engine speed 1/min 1497.73 1300.43 1797.50 2199.01 1797.53 1300.23

Engine torque Nm 571.09 416.58 401.79 217.04 135.03 140.10

Engine pow er kW 90 57 76 50 25 19

BMEP bar 16.3 11.9 11.5 6.2 3.9 4.0

SFC g/kWh 205 205 211 249 271 245

Lambda 1.46 1.85 1.96 2.97 3.99 3.52

NOx left g/kWh 7.94 8.90 7.33 7.29 7.08 8.61

HC left g/kWh 0.09 0.06 0.08 0.19 0.26 0.19

CO left g/kWh 0.15 0.08 0.16 0.39 0.47 0.23

NOx sensor 1 g/kWh 8.36 9.27 7.78 7.79 7.26 8.63

NOx sensor 2 g/kWh 8.28 9.10 7.72 7.74 7.32 8.59

Smoke FSN 0.025 0.004 0.010 0.011 0.012 0.009

Rail pressure Mpa 130.63 134.96 148.43 160.04 132.80 118.93

Injection timing M1 o crankshaft 6.30 1.70 5.30 4.90 2.90 1.90

Injection timing P1 µs 350.00 350.00 350.00 350.00 350.00 350.00

Injection timing P0 µs -2000.00 0.00 -1718.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 92.52 70.42 64.65 37.46 20.47 23.40

Injection quantity P1 mg 2.00 2.00 2.00 2.00 2.00 2.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1353.93 1072.80 962.53 681.52 574.68 570.70

Injection duration P1 µs 288.33 283.57 275.52 269.38 286.75 297.28

Injection duration P0 µs 358.75 0.00 334.03 320.18 349.20 366.82

T Before compressor oC 23.50 24.43 23.92 23.70 23.09 23.18

T After compressor oC 126.53 109.10 118.69 112.02 90.31 60.33

T Intake manifold oC 49.24 41.67 49.39 51.21 40.18 28.54

T Before turbine oC 600.53 468.41 497.63 399.33 287.06 261.09

T After turbine oC 485.56 370.44 397.60 303.82 209.25 211.96

T Fuel oC 34.44 34.90 35.30 35.77 35.65 34.73

T Oil oC 110.21 105.01 108.58 108.33 101.65 96.35

T Engine coolant oC 85.09 82.18 83.00 81.23 79.70 78.85

P Before compressor bar,abs 0.99 0.99 0.99 0.98 0.99 1.00

P After compressor bar,abs 2.23 1.95 2.17 2.06 1.78 1.39

P Intake manifold bar,abs 2.18 1.90 2.11 1.97 1.73 1.36

P Before turbine bar,abs 2.55 2.21 2.76 2.99 2.40 1.66

P After turbine bar,abs 1.16 1.10 1.19 1.22 1.11 1.05

Oil pressure bar,rel 3.23 3.12 3.83 4.24 4.22 3.64

Intake air depressure mbar,rel 21 18 26 30 22 15

Exhaust backpressure mbar,rel 147 84 182 209 103 34

Cooler backpressure mbar, rel 49.717 48.749 59.232 89.486 50.355 28.893

Air kg/s 0.11 0.09 0.13 0.15 0.11 0.07

Air f low kg/h 400.22 321.03 468.57 554.23 411.90 246.60

Fuel f low g/s 5.10 3.23 4.43 3.46 1.92 1.30

Fuel f low L/s 0.0065 0.0041 0.0057 0.0044 0.0025 0.0017

Fuel f low L/h 23.54 14.90 20.48 15.99 8.84 6.00

Efficiency % 40.1 40.1 38.9 32.9 30.3 33.5

HC, C1 w et ppm 39.19 19.73 25.39 34.15 33.15 30.21

NO ppm 1305.67 1136.50 849.02 450.67 293.08 459.52

NOX ppm 1347.50 1188.17 893.52 491.43 323.97 491.90

CO, dry ppm 36.61 16.06 27.33 37.78 30.85 18.97

CO2, dry % 9.56 7.47 6.99 4.59 3.24 3.67

O2, dry % 7.34 10.22 10.91 14.29 16.26 15.63

Smoke FSN 0.03 0.00 0.01 0.01 0.01 0.01

NOX sensor 1 ppm 1297.12 1151.15 886.02 501.23 320.88 474.95

O2 sensor 1 % 6.43 9.35 9.94 13.19 15.09 14.46

NOX sensor 2 ppm 1284.59 1130.60 879.44 498.29 323.64 472.82

O2 sensor 2 % 6.36 9.19 9.89 13.27 15.30 14.61
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Appendix 6 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-05-22 2014-05-22 2014-05-22 2014-05-22 2014-05-22 2014-05-22

Atmospheric pressure kPa 101.63 101.60 101.60 101.62 101.60 101.70

Relative humidity % 27.73 25.00 24.00 22.00 22.00 23.00

Room temperature oC 28.99 30.89 31.76 32.70 32.36 31.30

Engine speed 1/min 1497.92 1301.43 1798.06 2199.49 1798.23 1301.69

Engine torque Nm 572.07 417.55 402.68 218.04 136.10 141.16

Engine pow er kW 90 57 76 50 26 19

BMEP bar 16.3 11.9 11.5 6.2 3.9 4.0

SFC g/kWh 207 207 214 252 272 244

Lambda 1.46 1.84 1.93 2.97 3.98 3.53

NOx left g/kWh 7.66 8.67 7.00 6.90 6.88 8.46

HC left g/kWh 0.09 0.06 0.09 0.21 0.32 0.24

CO left g/kWh 0.17 0.09 0.19 0.45 0.52 0.26

NOx sensor 1 g/kWh 8.28 9.20 7.57 7.48 7.13 8.59

NOx sensor 2 g/kWh 8.15 8.99 7.51 7.43 7.16 8.54

Smoke FSN 0.043 0.007 0.012 0.020 0.018 0.014

Rail pressure Mpa 128.45 134.73 148.76 160.12 133.34 119.07

Injection timing M1 o crankshaft 6.30 1.70 5.30 4.90 2.90 1.90

Injection timing P1 µs 350.00 350.00 350.00 350.00 350.00 350.00

Injection timing P0 µs -2000.00 0.00 -1730.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 93.23 70.84 65.18 38.27 20.91 23.34

Injection quantity P1 mg 2.00 2.00 2.00 2.00 2.00 2.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1355.08 1079.97 971.05 690.07 580.00 571.77

Injection duration P1 µs 287.90 284.45 275.65 269.52 286.27 297.65

Injection duration P0 µs 358.25 0.00 334.30 320.38 348.42 367.57

T Before compressor oC 27.71 28.23 28.65 29.03 29.35 29.42

T After compressor oC 130.81 113.62 124.01 117.76 96.63 66.52

T Intake manifold oC 47.76 43.19 50.03 50.62 41.01 30.98

T Before turbine oC 604.52 471.62 501.87 401.06 288.51 262.42

T After turbine oC 488.78 372.82 400.76 304.94 210.38 213.51

T Fuel oC 35.53 35.81 36.12 37.39 36.84 35.78

T Oil oC 109.81 105.51 108.75 108.73 102.58 97.63

T Engine coolant oC 85.48 82.78 83.57 81.90 80.27 79.40

P Before compressor bar,abs 1.00 1.00 0.99 0.99 1.00 1.00

P After compressor bar,abs 2.23 1.96 2.17 2.05 1.77 1.39

P Intake manifold bar,abs 2.18 1.91 2.11 1.96 1.72 1.35

P Before turbine bar,abs 2.56 2.22 2.77 3.00 2.40 1.66

P After turbine bar,abs 1.16 1.10 1.20 1.23 1.12 1.05

Oil pressure bar,rel 3.22 3.11 3.82 4.22 4.19 3.57

Intake air depressure mbar,rel 20 16 25 29 21 14

Exhaust backpressure mbar,rel 148 86 182 209 105 35

Cooler backpressure mbar, rel 50.84 53.587 63.179 92.021 52.045 34.927

Air kg/s 0.11 0.09 0.13 0.15 0.11 0.07

Air f low kg/h 402.11 321.14 466.40 556.85 411.55 246.04

Fuel f low g/s 5.16 3.27 4.51 3.51 1.94 1.30

Fuel f low L/s 0.0064 0.0040 0.0056 0.0043 0.0024 0.0016

Fuel f low L/h 22.99 14.57 20.09 15.62 8.62 5.80

Efficiency % 40.0 40.0 38.7 32.9 30.5 34.0

HC, C1 w et ppm 39.41 20.28 29.20 38.35 41.19 39.22

NO ppm 1199.33 1063.00 778.98 411.72 277.68 442.23

NOX ppm 1235.00 1108.50 821.07 447.63 306.27 472.67

CO, dry ppm 42.03 16.42 33.86 43.14 34.45 21.41

CO2, dry % 9.76 7.61 7.12 4.67 3.30 3.74

O2, dry % 7.11 10.05 10.72 14.17 16.17 15.53

Smoke FSN 0.04 0.01 0.01 0.02 0.02 0.01

NOX sensor 1 ppm 1211.15 1086.00 823.02 460.05 304.68 459.00

O2 sensor 1 % 6.23 9.19 9.73 13.02 14.97 14.30

NOX sensor 2 ppm 1192.72 1061.60 816.41 456.90 306.29 456.37

O2 sensor 2 % 6.17 9.04 9.70 13.13 15.14 14.46
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Appendix 7 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-05-14 2014-05-14 2014-05-14 2014-05-14 2014-05-14 2014-05-14

Atmospheric pressure kPa 101.30 101.30 101.40 101.40 101.40 101.40

Relative humidity % 12.00 10.82 11.00 11.00 12.00 12.00

Room temperature oC 27.69 27.84 29.50 29.79 28.91 27.68

Engine speed 1/min 1497.70 1300.87 1797.73 2199.15 1797.74 1300.73

Engine torque Nm 571.84 417.20 402.39 217.62 135.57 140.58

Engine pow er kW 90 57 76 50 26 19

BMEP bar 16.3 11.9 11.5 6.2 3.9 4.0

SFC g/kWh 205 205 212 250 269 238

Lambda 1.46 1.85 1.94 2.94 4.00 3.62

NOx left g/kWh 7.74 8.83 7.28 6.86 6.91 8.40

HC left g/kWh 0.08 0.06 0.08 0.18 0.27 0.18

CO left g/kWh 0.14 0.07 0.15 0.44 0.52 0.25

NOx sensor 1 g/kWh 8.21 9.21 7.75 7.29 7.06 8.41

NOx sensor 2 g/kWh 8.13 9.05 7.70 7.24 7.11 8.34

Smoke FSN 0.023 0.005 0.006 0.012 0.011 0.010

Rail pressure Mpa 141.82 143.92 160.16 160.03 141.73 125.31

Injection timing M1 o crankshaft 5.30 0.70 4.30 3.90 1.90 0.90

Injection timing P1 µs 350.00 350.00 350.00 350.00 350.00 350.00

Injection timing P0 µs -2000.00 0.00 -1700.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 97.87 72.05 64.43 37.66 21.09 18.11

Injection quantity P1 mg 2.00 2.00 2.00 2.00 2.00 2.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1297.80 1046.70 935.33 684.52 561.53 559.30

Injection duration P1 µs 279.87 277.48 268.43 269.42 279.70 292.58

Injection duration P0 µs 345.62 0.00 322.40 320.28 338.42 358.15

T Before compressor oC 24.59 25.15 24.91 24.76 24.52 24.62

T After compressor oC 127.98 110.58 120.10 113.49 92.07 62.24

T Intake manifold oC 48.60 42.00 51.91 54.55 42.56 30.42

T Before turbine oC 602.54 470.37 502.21 404.98 289.84 262.61

T After turbine oC 486.79 371.58 401.20 309.17 211.81 213.07

T Fuel oC 34.96 35.10 35.65 36.42 35.80 34.81

T Oil oC 110.86 105.33 109.34 108.59 102.39 96.87

T Engine coolant oC 85.21 82.28 83.28 81.41 79.80 79.39

P Before compressor bar,abs 0.99 1.00 0.99 0.98 0.99 1.00

P After compressor bar,abs 2.23 1.96 2.17 2.06 1.78 1.39

P Intake manifold bar,abs 2.18 1.92 2.11 1.97 1.73 1.36

P Before turbine bar,abs 2.56 2.22 2.76 2.98 2.40 1.67

P After turbine bar,abs 1.16 1.10 1.19 1.22 1.12 1.05

Oil pressure bar,rel 3.20 3.12 3.80 4.23 4.20 3.62

Intake air depressure mbar,rel 21 17 26 30 22 15

Exhaust backpressure mbar,rel 147 85 179 207 103 34

Cooler backpressure mbar, rel 47.659 45.474 59.995 88.595 49.778 29.247

Air kg/s 0.11 0.09 0.13 0.15 0.11 0.07

Air f low kg/h 401.49 322.12 466.51 551.44 410.79 246.39

Fuel f low g/s 5.12 3.24 4.45 3.48 1.91 1.26

Fuel f low L/s 0.0066 0.0042 0.0057 0.0045 0.0024 0.0016

Fuel f low L/h 23.62 14.96 20.56 16.07 8.80 5.84

Efficiency % 40.0 40.0 38.8 32.8 30.5 34.5

HC, C1 w et ppm 36.83 20.38 27.16 33.54 34.33 28.88

NO ppm 1278.17 1130.50 853.10 428.33 287.77 452.87

NOX ppm 1321.00 1183.00 898.48 468.97 319.47 485.90

CO, dry ppm 33.45 13.69 26.51 42.22 34.15 20.18

CO2, dry % 9.66 7.52 7.09 4.67 3.28 3.69

O2, dry % 7.33 10.23 10.86 14.24 16.25 15.64

Smoke FSN 0.02 0.01 0.01 0.01 0.01 0.01

NOX sensor 1 ppm 1278.85 1148.42 892.78 475.63 315.08 467.85

O2 sensor 1 % 6.36 9.33 9.86 13.23 15.09 14.45

NOX sensor 2 ppm 1266.12 1128.96 887.37 472.52 317.41 464.28

O2 sensor 2 % 6.29 9.16 9.79 13.20 15.25 14.60
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Appendix 8 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-05-22 2014-05-22 2014-05-22 2014-05-22 2014-05-22 2014-05-22

Atmospheric pressure kPa 101.70 101.70 101.74 101.80 101.80 101.80

Relative humidity % 15.00 14.00 15.00 15.00 16.00 17.00

Room temperature oC 33.90 34.50 34.80 34.80 34.11 32.50

Engine speed 1/min 1498.07 1301.75 1798.02 2199.46 1798.15 1301.77

Engine torque Nm 572.95 418.19 403.19 218.38 136.39 141.58

Engine pow er kW 90 57 76 50 26 19

BMEP bar 16.4 12.0 11.5 6.2 3.9 4.0

SFC g/kWh 208 207 214 255 271 242

Lambda 1.44 1.84 1.93 2.92 3.99 3.56

NOx left g/kWh 7.46 8.71 6.95 6.39 6.65 8.25

HC left g/kWh 0.09 0.06 0.09 0.21 0.34 0.26

CO left g/kWh 0.15 0.08 0.16 0.48 0.57 0.27

NOx sensor 1 g/kWh 8.00 9.10 7.41 6.87 6.86 8.38

NOx sensor 2 g/kWh 7.88 9.01 7.36 6.84 6.89 8.31

Smoke FSN 0.033 0.007 0.010 0.020 0.016 0.011

Rail pressure Mpa 138.39 145.11 159.34 159.91 142.98 128.96

Injection timing M1 o crankshaft 5.30 0.72 4.30 3.90 1.92 0.90

Injection timing P1 µs 350.00 350.00 350.00 350.00 350.00 350.00

Injection timing P0 µs -2000.00 0.00 -1730.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 97.38 71.66 64.56 37.86 21.46 17.96

Injection quantity P1 mg 2.00 2.00 2.00 2.00 2.00 2.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1299.23 1038.30 938.40 684.02 563.25 552.20

Injection duration P1 µs 280.68 277.18 268.65 269.42 278.90 289.57

Injection duration P0 µs 346.82 0.00 323.08 320.80 336.78 353.57

T Before compressor oC 30.94 30.61 30.48 30.32 29.87 29.53

T After compressor oC 134.40 116.30 126.03 119.27 97.39 66.74

T Intake manifold oC 48.26 41.98 48.92 50.74 40.93 30.38

T Before turbine oC 605.23 467.86 500.15 402.92 287.05 259.07

T After turbine oC 489.65 368.50 399.01 306.59 208.42 210.09

T Fuel oC 36.00 36.09 36.95 37.59 37.05 36.16

T Oil oC 110.97 105.23 108.86 108.71 102.59 97.64

T Engine coolant oC 86.16 82.91 83.80 81.75 80.33 79.60

P Before compressor bar,abs 1.00 1.00 0.99 0.99 1.00 1.00

P After compressor bar,abs 2.21 1.95 2.16 2.05 1.77 1.38

P Intake manifold bar,abs 2.17 1.91 2.10 1.96 1.73 1.36

P Before turbine bar,abs 2.55 2.23 2.77 3.00 2.41 1.66

P After turbine bar,abs 1.16 1.10 1.20 1.23 1.12 1.05

Oil pressure bar,rel 3.19 3.12 3.81 4.22 4.19 3.56

Intake air depressure mbar,rel 19 16 24 29 22 15

Exhaust backpressure mbar,rel 148 85 181 208 103 34

Cooler backpressure mbar, rel 45.261 43.498 55.653 83.839 47.318 25.645

Air kg/s 0.11 0.09 0.13 0.15 0.11 0.07

Air f low kg/h 399.16 322.23 467.22 555.92 412.45 246.43

Fuel f low g/s 5.20 3.28 4.52 3.56 1.93 1.30

Fuel f low L/s 0.0064 0.0041 0.0056 0.0044 0.0024 0.0016

Fuel f low L/h 23.13 14.59 20.12 15.84 8.61 5.77

Efficiency % 39.8 40.0 38.7 32.5 30.6 34.3

HC, C1 w et ppm 38.36 21.96 28.64 39.06 42.90 41.43

NO ppm 1238.00 1113.33 806.13 392.92 273.95 441.15

NOX ppm 1275.17 1164.00 847.43 429.37 304.08 473.33

CO, dry ppm 36.11 15.70 27.33 46.62 37.45 22.50

CO2, dry % 9.85 7.64 7.15 4.72 3.31 3.74

O2, dry % 7.10 10.14 10.80 14.20 16.22 15.60

Smoke FSN 0.03 0.01 0.01 0.02 0.02 0.01

NOX sensor 1 ppm 1242.68 1127.00 839.47 438.40 301.77 461.00

O2 sensor 1 % 6.17 9.29 9.84 13.16 14.97 14.33

NOX sensor 2 ppm 1224.84 1116.10 834.83 436.57 303.23 457.05

O2 sensor 2 % 6.10 9.07 9.72 13.11 15.17 14.51
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Appendix 9 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-05-15 2014-05-15 2014-05-15 2014-05-15 2014-05-15 2014-05-15

Atmospheric pressure kPa 102.90 102.90 102.80 102.80 102.80 102.80

Relative humidity % 11.00 11.00 10.00 10.00 10.00 11.00

Room temperature oC 25.35 27.50 28.12 28.30 27.50 26.20

Engine speed 1/min 1497.52 1300.24 1797.56 2198.76 1797.54 1300.39

Engine torque Nm 571.58 417.16 402.35 217.47 135.37 140.39

Engine pow er kW 90 57 76 50 25 19

BMEP bar 16.3 11.9 11.5 6.2 3.9 4.0

SFC g/kWh 205 205 212 250 270 241

Lambda 1.48 1.88 1.96 3.00 4.07 3.66

NOx left g/kWh 7.69 8.74 6.98 6.82 6.63 8.07

HC left g/kWh 0.08 0.05 0.08 0.20 0.30 0.20

CO left g/kWh 0.12 0.07 0.16 0.44 0.53 0.25

NOx sensor 1 g/kWh 8.19 9.17 7.42 7.29 6.81 8.10

NOx sensor 2 g/kWh 8.09 9.02 7.36 7.25 6.86 8.06

Smoke FSN 0.023 0.007 0.008 0.012 0.014 0.009

Rail pressure Mpa 129.22 134.93 148.93 159.94 133.03 118.72

Injection timing M1 o crankshaft 5.27 0.60 4.23 3.90 1.93 0.90

Injection timing P1 µs 500.00 500.00 500.00 500.00 500.00 500.00

Injection timing P0 µs -2000.00 0.00 -1720.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 91.62 69.11 64.42 37.19 20.84 23.13

Injection quantity P1 mg 2.00 2.00 2.00 2.00 2.00 2.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1338.35 1061.18 965.37 681.18 577.28 569.20

Injection duration P1 µs 288.38 284.22 275.62 269.27 287.03 297.57

Injection duration P0 µs 358.32 0.00 334.30 320.13 348.87 367.23

T Before compressor oC 23.03 24.12 23.95 23.43 23.08 23.12

T After compressor oC 125.06 108.77 118.13 110.87 90.65 61.62

T Intake manifold oC 48.22 41.46 49.37 50.61 40.36 29.16

T Before turbine oC 598.13 464.74 498.35 399.39 288.06 260.32

T After turbine oC 483.06 366.40 397.89 304.69 209.81 209.93

T Fuel oC 34.59 34.66 35.05 35.92 35.68 34.85

T Oil oC 109.22 104.09 108.40 108.20 102.11 96.66

T Engine coolant oC 84.99 82.23 83.01 81.01 79.65 79.03

P Before compressor bar,abs 1.01 1.01 1.00 1.00 1.01 1.01

P After compressor bar,abs 2.25 1.98 2.19 2.07 1.81 1.42

P Intake manifold bar,abs 2.20 1.94 2.13 1.98 1.76 1.39

P Before turbine bar,abs 2.58 2.25 2.79 3.01 2.45 1.71

P After turbine bar,abs 1.18 1.11 1.21 1.24 1.13 1.06

Oil pressure bar,rel 3.27 3.15 3.83 4.24 4.20 3.62

Intake air depressure mbar,rel 22 18 25 30 22 15

Exhaust backpressure mbar,rel 148 84 183 211 106 36

Cooler backpressure mbar, rel 46.785 46.668 59.156 87.975 50.438 28.618

Air kg/s 0.11 0.09 0.13 0.16 0.12 0.07

Air f low kg/h 406.74 327.39 470.96 560.94 418.97 252.88

Fuel f low g/s 5.10 3.23 4.46 3.48 1.91 1.28

Fuel f low L/s 0.0065 0.0041 0.0057 0.0045 0.0024 0.0016

Fuel f low L/h 23.53 14.92 20.60 16.05 8.82 5.92

Efficiency % 40.1 40.1 38.7 32.8 30.4 34.0

HC, C1 w et ppm 35.51 19.21 25.77 35.55 36.90 30.92

NO ppm 1258.33 1102.00 813.57 421.52 272.32 424.40

NOX ppm 1290.17 1149.50 852.85 458.00 301.03 453.65

CO, dry ppm 29.09 13.08 27.66 41.27 34.05 19.79

CO2, dry % 9.36 7.27 6.85 4.52 3.16 3.54

O2, dry % 7.55 10.45 11.02 14.35 16.32 15.75

Smoke FSN 0.02 0.01 0.01 0.01 0.01 0.01

NOX sensor 1 ppm 1260.13 1124.35 848.45 468.50 299.23 439.27

O2 sensor 1 % 6.64 9.54 10.02 13.25 15.16 14.57

NOX sensor 2 ppm 1243.68 1105.99 842.13 465.59 301.51 436.85

O2 sensor 2 % 6.58 9.42 10.00 13.36 15.38 14.77
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Appendix 10 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-05-23 2014-05-23 2014-05-23 2014-05-23 2014-05-23 2014-05-23

Atmospheric pressure kPa 101.70 101.70 101.70 101.70 101.70 101.70

Relative humidity % 29.00 25.00 24.00 23.00 24.78 25.00

Room temperature oC 30.07 32.77 33.27 33.75 32.22 31.83

Engine speed 1/min 1497.78 1300.85 1797.87 2199.33 1797.96 1301.13

Engine torque Nm 572.32 417.72 402.80 218.20 136.20 141.14

Engine pow er kW 90 57 76 50 26 19

BMEP bar 16.4 11.9 11.5 6.2 3.9 4.0

SFC g/kWh 209 208 216 255 275 247

Lambda 1.44 1.83 1.92 2.92 3.94 3.49

NOx left g/kWh 7.28 8.26 6.66 6.48 6.41 7.82

HC left g/kWh 24.25 30.35 33.11 58.66 84.79 67.63

CO left g/kWh 0.15 0.09 0.16 0.48 0.62 0.29

NOx sensor 1 g/kWh 7.76 8.61 7.04 6.90 6.56 7.87

NOx sensor 2 g/kWh 7.66 8.44 6.98 6.85 6.62 7.83

Smoke FSN 0.044 0.010 0.012 0.022 0.020 0.015

Rail pressure Mpa 130.00 134.65 146.39 159.94 133.06 118.74

Injection timing M1 o crankshaft 5.29 0.70 4.30 3.90 1.90 0.90

Injection timing P1 µs 500.00 500.00 500.00 500.00 500.00 500.00

Injection timing P0 µs -2000.00 0.00 -1700.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 92.54 69.61 64.53 37.32 20.69 23.06

Injection quantity P1 mg 2.00 2.00 2.00 2.00 2.00 2.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1353.08 1064.67 967.43 682.32 578.32 568.12

Injection duration P1 µs 288.62 284.32 275.67 269.63 286.52 297.35

Injection duration P0 µs 358.57 0.00 334.50 320.92 349.35 367.12

T Before compressor oC 29.65 30.83 31.00 30.96 30.16 30.29

T After compressor oC 133.11 116.91 126.66 120.03 97.81 67.67

T Intake manifold oC 48.58 43.51 49.82 51.17 40.83 30.98

T Before turbine oC 608.88 473.92 505.61 403.49 287.56 261.45

T After turbine oC 492.39 373.96 403.31 306.97 208.57 212.02

T Fuel oC 35.40 36.05 36.31 37.10 36.57 35.90

T Oil oC 109.09 105.61 108.93 108.60 102.36 97.52

T Engine coolant oC 85.82 83.01 83.86 81.84 80.40 79.72

P Before compressor bar,abs 1.00 1.00 0.99 0.99 1.00 1.00

P After compressor bar,abs 2.21 1.95 2.15 2.04 1.77 1.38

P Intake manifold bar,abs 2.17 1.91 2.10 1.96 1.72 1.35

P Before turbine bar,abs 2.55 2.23 2.76 2.99 2.41 1.66

P After turbine bar,abs 1.16 1.10 1.20 1.23 1.12 1.05

Oil pressure bar,rel 3.24 3.10 3.81 4.23 4.19 3.57

Intake air depressure mbar,rel 21 17 24 29 21 14

Exhaust backpressure mbar,rel 147 87 183 210 105 35

Cooler backpressure mbar, rel 42.087 43.556 54.298 83.885 46.564 29.276

Air kg/s 0.11 0.09 0.13 0.15 0.11 0.07

Air f low kg/h 401.27 321.44 468.17 556.14 412.64 246.26

Fuel f low g/s 5.22 3.29 4.55 3.56 1.96 1.32

Fuel f low L/s 0.0065 0.0041 0.0056 0.0044 0.0024 0.0016

Fuel f low L/h 23.23 14.67 20.27 15.85 8.72 5.88

Efficiency % 39.6 39.7 38.3 32.5 30.1 33.5

HC, C1 w et ppm 10816.79 10816.79 10816.79 10816.79 10816.79 10816.79

NO ppm 1143.67 1017.67 743.75 385.17 253.97 403.83

NOX ppm 1169.00 1051.33 776.07 418.70 281.63 432.10

CO, dry ppm 37.05 16.31 27.63 46.40 41.21 24.32

CO2, dry % 9.88 7.68 7.23 4.75 3.31 3.76

O2, dry % 7.10 10.13 10.79 14.25 16.32 15.66

Smoke FSN 0.04 0.01 0.01 0.02 0.02 0.02

NOX sensor 1 ppm 1128.00 1009.97 760.32 421.80 276.13 415.42

O2 sensor 1 % 6.15 9.08 9.65 12.98 14.96 14.27

NOX sensor 2 ppm 1112.20 990.23 753.71 419.17 278.63 413.46

O2 sensor 2 % 6.08 8.94 9.60 13.03 15.11 14.44
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Appendix 11 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-05-15 2014-05-15 2014-05-15 2014-05-15 2014-05-15 2014-05-15

Atmospheric pressure kPa 102.80 102.80 102.80 102.80 102.80 102.80

Relative humidity % 9.00 9.00 9.00 9.00 10.00 11.00

Room temperature oC 29.35 29.83 29.90 29.90 28.39 26.40

Engine speed 1/min 1497.85 1300.63 1797.60 2199.07 1797.57 1300.51

Engine torque Nm 572.37 417.32 402.58 217.71 135.76 140.81

Engine pow er kW 90 57 76 50 26 19

BMEP bar 16.4 11.9 11.5 6.2 3.9 4.0

SFC g/kWh 205 205 211 249 266 240

Lambda 1.47 1.86 1.96 2.99 4.12 3.67

NOx left g/kWh 7.61 8.79 7.08 7.01 6.81 8.32

HC left g/kWh 0.08 0.06 0.08 0.19 0.28 0.21

CO left g/kWh 0.13 0.07 0.15 0.39 0.48 0.24

NOx sensor 1 g/kWh 8.02 9.15 7.50 7.47 6.98 8.38

NOx sensor 2 g/kWh 7.92 8.97 7.44 7.42 7.04 8.33

Smoke FSN 0.025 0.005 0.007 0.012 0.012 0.008

Rail pressure Mpa 130.54 134.62 148.16 159.76 132.89 119.19

Injection timing M1 o crankshaft 5.32 0.70 4.37 3.90 1.92 0.90

Injection timing P1 µs 350.00 350.00 350.00 350.00 350.00 350.00

Injection timing P0 µs -2000.00 0.00 -1700.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 92.00 69.64 64.02 36.80 19.60 22.46

Injection quantity P1 mg 3.00 3.00 3.00 3.00 3.00 3.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1353.70 1069.28 960.82 677.25 565.30 559.30

Injection duration P1 µs 311.32 305.82 294.73 286.53 308.97 322.35

Injection duration P0 µs 359.42 0.00 334.13 320.03 349.15 366.33

T Before compressor oC 25.26 25.35 25.02 24.62 23.82 23.38

T After compressor oC 127.30 110.23 119.29 112.34 91.01 61.39

T Intake manifold oC 48.87 43.48 50.45 52.69 39.87 28.32

T Before turbine oC 602.06 469.07 498.87 400.82 286.34 258.41

T After turbine oC 487.26 370.99 398.91 305.78 208.40 208.39

T Fuel oC 34.67 34.82 35.69 36.04 35.61 34.68

T Oil oC 111.77 106.05 109.18 108.37 101.75 96.03

T Engine coolant oC 85.34 82.27 83.19 81.20 79.87 78.79

P Before compressor bar,abs 1.01 1.01 1.00 1.00 1.01 1.01

P After compressor bar,abs 2.25 1.98 2.19 2.08 1.80 1.42

P Intake manifold bar,abs 2.20 1.93 2.13 1.99 1.75 1.39

P Before turbine bar,abs 2.57 2.25 2.78 3.01 2.44 1.70

P After turbine bar,abs 1.18 1.11 1.21 1.24 1.13 1.06

Oil pressure bar,rel 3.17 3.09 3.80 4.23 4.21 3.65

Intake air depressure mbar,rel 21 17 25 30 22 15

Exhaust backpressure mbar,rel 150 86 183 209 104 35

Cooler backpressure mbar, rel 50.844 48.222 61.631 89.083 48.691 28.702

Air kg/s 0.11 0.09 0.13 0.16 0.12 0.07

Air f low kg/h 404.67 324.41 469.06 558.57 418.59 252.80

Fuel f low g/s 5.11 3.24 4.45 3.47 1.89 1.28

Fuel f low L/s 0.0066 0.0042 0.0057 0.0045 0.0024 0.0016

Fuel f low L/h 23.59 14.94 20.52 16.04 8.71 5.90

Efficiency % 40.1 40.0 38.9 32.9 30.9 34.2

HC, C1 w et ppm 37.57 19.98 25.41 34.49 35.43 32.15

NO ppm 1271.33 1135.00 835.38 439.03 281.12 438.68

NOX ppm 1305.50 1181.50 875.05 476.53 311.12 469.45

CO, dry ppm 32.00 13.59 25.99 36.83 30.63 19.32

CO2, dry % 9.54 7.39 6.90 4.54 3.16 3.54

O2, dry % 7.39 10.33 10.99 14.33 16.33 15.78

Smoke FSN 0.03 0.01 0.01 0.01 0.01 0.01

NOX sensor 1 ppm 1259.62 1145.58 867.83 485.43 308.38 455.97

O2 sensor 1 % 6.48 9.46 10.01 13.26 15.22 14.61

NOX sensor 2 ppm 1243.31 1123.15 860.63 482.07 311.31 453.41

O2 sensor 2 % 6.38 9.28 9.95 13.33 15.40 14.78
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Appendix 12 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-05-23 2014-05-23 2014-05-23 2014-05-23 2014-05-23 2014-05-23

Atmospheric pressure kPa 101.70 101.70 101.70 101.70 101.70 101.70

Relative humidity % 22.00 20.00 20.00 20.00 21.00 24.00

Room temperature oC 33.76 34.96 35.11 35.10 34.30 32.93

Engine speed 1/min 1498.04 1301.76 1798.00 2199.44 1798.20 1301.77

Engine torque Nm 572.94 418.16 403.25 218.45 136.43 141.59

Engine pow er kW 90 57 76 50 26 19

BMEP bar 16.4 12.0 11.5 6.2 3.9 4.0

SFC g/kWh 209 210 217 254 274 246

Lambda 1.44 1.81 1.92 2.92 3.92 3.48

NOx left g/kWh 7.22 8.33 6.69 6.55 6.65 8.19

HC left g/kWh 24.11 30.27 33.07 58.47 84.15 67.23

CO left g/kWh 0.17 0.09 0.16 0.42 0.50 0.28

NOx sensor 1 g/kWh 7.62 8.63 7.05 6.96 6.79 8.19

NOx sensor 2 g/kWh 7.50 8.45 6.99 6.92 6.84 8.13

Smoke FSN 0.046 0.008 0.013 0.021 0.018 0.013

Rail pressure Mpa 129.79 135.20 146.87 160.20 131.69 118.71

Injection timing M1 o crankshaft 5.31 0.70 4.30 3.90 1.90 0.90

Injection timing P1 µs 350.00 350.00 350.00 350.00 350.00 350.00

Injection timing P0 µs -2000.00 0.00 -1720.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 92.25 69.76 63.89 36.85 19.62 22.17

Injection quantity P1 mg 3.00 3.00 3.00 3.00 3.00 3.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1349.27 1064.33 961.18 681.38 567.40 555.58

Injection duration P1 µs 310.80 305.63 294.80 286.53 308.48 323.45

Injection duration P0 µs 358.88 0.00 333.87 320.70 348.82 367.47

T Before compressor oC 32.28 32.58 32.20 31.76 31.52 31.32

T After compressor oC 136.06 118.53 127.92 120.71 98.73 68.20

T Intake manifold oC 48.23 42.34 49.66 50.70 41.16 30.85

T Before turbine oC 608.80 471.40 504.36 402.45 286.76 259.44

T After turbine oC 492.15 371.83 402.11 305.93 208.14 210.17

T Fuel oC 36.16 36.18 36.48 37.24 36.66 36.16

T Oil oC 110.87 106.18 109.08 108.77 102.54 97.21

T Engine coolant oC 86.24 83.20 84.06 82.05 80.57 79.80

P Before compressor bar,abs 1.00 1.00 0.99 0.99 1.00 1.00

P After compressor bar,abs 2.21 1.95 2.15 2.04 1.76 1.38

P Intake manifold bar,abs 2.16 1.90 2.10 1.95 1.71 1.35

P Before turbine bar,abs 2.55 2.23 2.76 3.00 2.40 1.65

P After turbine bar,abs 1.17 1.10 1.20 1.23 1.12 1.05

Oil pressure bar,rel 3.19 3.09 3.80 4.22 4.18 3.59

Intake air depressure mbar,rel 20 16 24 28 21 14

Exhaust backpressure mbar,rel 148 87 182 209 103 34

Cooler backpressure mbar, rel 45.87 46.226 54.947 91.369 47.509 29.506

Air kg/s 0.11 0.09 0.13 0.15 0.11 0.07

Air f low kg/h 399.55 321.05 468.12 555.03 410.20 245.69

Fuel f low g/s 5.21 3.32 4.57 3.55 1.96 1.32

Fuel f low L/s 0.0064 0.0041 0.0057 0.0044 0.0024 0.0016

Fuel f low L/h 23.18 14.78 20.35 15.82 8.72 5.88

Efficiency % 39.7 39.5 38.2 32.6 30.2 33.6

HC, C1 w et ppm 10816.79 10816.79 10816.79 10816.79 10816.79 10816.79

NO ppm 1164.50 1047.83 759.37 397.48 270.28 426.15

NOX ppm 1193.00 1084.33 793.33 430.05 298.27 456.18

CO, dry ppm 40.70 17.00 28.29 41.14 33.55 23.57

CO2, dry % 9.97 7.71 7.25 4.76 3.33 3.76

O2, dry % 7.11 10.17 10.79 14.26 16.31 15.67

Smoke FSN 0.05 0.01 0.01 0.02 0.02 0.01

NOX sensor 1 ppm 1139.02 1036.23 775.00 432.85 292.18 436.00

O2 sensor 1 % 6.06 9.09 9.63 12.99 14.99 14.24

NOX sensor 2 ppm 1121.89 1015.56 768.20 430.16 294.40 432.73

O2 sensor 2 % 5.96 8.93 9.59 13.03 15.10 14.44
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Appendix 13 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-05-16 2014-05-16 2014-05-16 2014-05-16 2014-05-16 2014-05-16

Atmospheric pressure kPa 102.30 102.30 102.30 102.30 102.30 102.30

Relative humidity % 23.57 20.65 21.00 20.00 21.00 22.00

Room temperature oC 24.78 25.76 26.89 27.30 26.79 25.94

Engine speed 1/min 1497.56 1300.15 1797.38 2198.84 1797.35 1300.06

Engine torque Nm 571.38 416.81 402.01 217.19 135.19 140.27

Engine pow er kW 90 57 76 50 25 19

BMEP bar 16.3 11.9 11.5 6.2 3.9 4.0

SFC g/kWh 205 206 212 250 272 246

Lambda 1.47 1.87 1.96 2.99 4.06 3.54

NOx left g/kWh 7.75 8.63 7.09 6.68 6.13 7.62

HC left g/kWh 0.08 0.05 0.07 0.18 0.29 0.16

CO left g/kWh 0.12 0.08 0.14 0.53 0.90 0.37

NOx sensor 1 g/kWh 8.19 9.02 7.45 7.12 6.33 7.69

NOx sensor 2 g/kWh 8.10 8.85 7.40 7.07 6.41 7.65

Smoke FSN 0.019 0.008 0.009 0.010 0.011 0.010

Rail pressure Mpa 130.62 134.83 149.46 160.09 134.88 120.79

Injection timing M1 o crankshaft 5.46 0.80 4.30 3.90 1.91 0.90

Injection timing P1 µs 0.00 0.00 0.00 0.00 0.00 0.00

Injection timing P0 µs -2000.00 0.00 -1730.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 97.01 75.69 67.31 36.02 24.97 27.09

Injection quantity P1 mg 0.00 0.00 0.00 0.00 0.00 0.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1401.35 1124.67 992.05 668.27 622.45 630.05

Injection duration P1 µs 80.00 80.00 80.00 80.00 80.00 80.00

Injection duration P0 µs 357.58 0.00 333.93 320.15 345.37 363.75

T Before compressor oC 22.47 23.17 22.97 22.72 22.65 22.91

T After compressor oC 124.76 108.95 117.26 110.33 91.40 60.68

T Intake manifold oC 48.38 42.43 49.52 50.70 40.64 30.00

T Before turbine oC 600.86 469.47 500.85 401.56 291.90 265.07

T After turbine oC 486.75 371.11 400.94 307.13 212.93 215.98

T Fuel oC 34.06 34.33 34.79 35.57 35.36 34.72

T Oil oC 108.97 104.69 108.04 107.95 102.21 97.26

T Engine coolant oC 84.96 82.10 82.95 81.01 79.64 78.81

P Before compressor bar,abs 1.00 1.01 1.00 0.99 1.00 1.01

P After compressor bar,abs 2.24 1.99 2.18 2.07 1.82 1.41

P Intake manifold bar,abs 2.20 1.94 2.13 1.98 1.77 1.38

P Before turbine bar,abs 2.57 2.25 2.78 3.00 2.46 1.68

P After turbine bar,abs 1.17 1.11 1.21 1.23 1.13 1.06

Oil pressure bar,rel 3.26 3.13 3.84 4.23 4.19 3.60

Intake air depressure mbar,rel 21 18 26 30 23 15

Exhaust backpressure mbar,rel 147 86 182 211 108 36

Cooler backpressure mbar, rel 46.342 46.445 58.321 88.673 50.164 29.448

Air kg/s 0.11 0.09 0.13 0.16 0.12 0.07

Air f low kg/h 405.34 327.02 470.50 559.68 420.64 248.69

Fuel f low g/s 5.11 3.24 4.46 3.47 1.92 1.31

Fuel f low L/s 0.0066 0.0042 0.0057 0.0045 0.0025 0.0017

Fuel f low L/h 23.58 14.96 20.61 16.02 8.89 6.03

Efficiency % 40.0 39.9 38.7 32.9 30.2 33.3

HC, C1 w et ppm 37.29 17.49 23.08 33.36 36.52 25.93

NO ppm 1222.33 1055.50 798.42 395.12 237.50 387.10

NOX ppm 1259.00 1100.17 834.97 434.32 267.10 421.25

CO, dry ppm 27.76 14.50 24.59 49.88 57.55 30.24

CO2, dry % 9.49 7.35 6.94 4.56 3.20 3.66

O2, dry % 7.30 10.24 10.84 14.21 16.20 15.53

Smoke FSN 0.02 0.01 0.01 0.01 0.01 0.01

NOX sensor 1 ppm 1213.88 1069.25 818.00 441.00 266.03 407.78

O2 sensor 1 % 6.48 9.44 9.93 13.17 15.11 14.40

NOX sensor 2 ppm 1200.32 1048.75 813.00 438.00 269.30 406.00

O2 sensor 2 % 6.40 9.27 9.89 13.24 15.28 14.56
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Appendix 14 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-05-23 2014-05-23 2014-05-23 2014-05-23 2014-05-23 2014-05-23

Atmospheric pressure kPa 101.67 101.61 101.60 101.60 101.60 101.60

Relative humidity % 21.00 21.00 21.00 21.90 21.68 22.00

Room temperature oC 34.82 35.29 35.20 35.10 34.90 33.90

Engine speed 1/min 1498.37 1302.29 1798.22 2199.76 1798.36 1302.28

Engine torque Nm 573.21 418.76 403.82 218.86 136.88 141.85

Engine pow er kW 90 57 76 50 26 19

BMEP bar 16.4 12.0 11.5 6.3 3.9 4.1

SFC g/kWh 210 210 216 253 273 247

Lambda 1.42 1.82 1.92 2.94 3.95 3.47

NOx left g/kWh 7.07 8.24 6.79 6.38 5.91 7.54

HC left g/kWh 24.03 30.36 33.04 58.54 84.32 67.36

CO left g/kWh 0.15 0.09 0.16 0.57 1.15 0.46

NOx sensor 1 g/kWh 7.45 8.57 7.14 6.77 6.01 7.55

NOx sensor 2 g/kWh 7.34 8.40 7.08 6.73 6.10 7.51

Smoke FSN 0.035 0.007 0.009 0.016 0.014 0.010

Rail pressure Mpa 129.82 134.61 149.35 159.78 135.75 120.68

Injection timing M1 o crankshaft 5.28 0.80 4.39 3.90 1.90 0.90

Injection timing P1 µs 0.00 0.00 0.00 0.00 0.00 0.00

Injection timing P0 µs -2000.00 0.00 -1722.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 97.88 75.56 67.17 36.07 24.69 27.15

Injection quantity P1 mg 0.00 0.00 0.00 0.00 0.00 0.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1414.63 1129.88 994.17 666.82 616.75 632.12

Injection duration P1 µs 80.00 80.00 80.00 80.00 80.00 80.00

Injection duration P0 µs 357.62 0.00 334.33 319.90 346.22 364.23

T Before compressor oC 32.56 32.59 32.33 31.99 31.96 31.86

T After compressor oC 136.02 119.10 127.91 121.10 99.60 69.23

T Intake manifold oC 48.26 42.32 48.97 49.96 40.03 30.34

T Before turbine oC 611.75 471.93 501.68 398.65 286.56 258.85

T After turbine oC 495.67 372.42 399.89 302.03 207.90 209.14

T Fuel oC 36.02 36.20 36.35 37.14 36.81 36.07

T Oil oC 111.38 106.56 109.42 108.86 102.74 97.88

T Engine coolant oC 86.45 83.33 84.19 82.04 80.45 79.82

P Before compressor bar,abs 1.00 1.00 0.99 0.99 1.00 1.00

P After compressor bar,abs 2.21 1.95 2.15 2.04 1.76 1.38

P Intake manifold bar,abs 2.16 1.91 2.09 1.95 1.72 1.35

P Before turbine bar,abs 2.54 2.23 2.76 3.00 2.41 1.66

P After turbine bar,abs 1.17 1.10 1.20 1.22 1.12 1.05

Oil pressure bar,rel 3.17 3.08 3.79 4.22 4.18 3.56

Intake air depressure mbar,rel 19 15 23 28 20 13

Exhaust backpressure mbar,rel 149 88 181 208 104 35

Cooler backpressure mbar, rel 46.86 44.709 53.478 88.291 46.179 27.433

Air kg/s 0.11 0.09 0.13 0.15 0.11 0.07

Air f low kg/h 398.36 322.63 468.54 556.88 412.44 246.71

Fuel f low g/s 5.24 3.33 4.56 3.55 1.96 1.33

Fuel f low L/s 0.0065 0.0041 0.0056 0.0044 0.0024 0.0016

Fuel f low L/h 23.33 14.81 20.29 15.80 8.71 5.92

Efficiency % 39.5 39.5 38.4 32.7 30.3 33.5

HC, C1 w et ppm 10816.79 10816.79 10816.79 10816.79 10816.79 10816.79

NO ppm 1151.00 1025.33 766.90 379.03 231.28 391.25

NOX ppm 1177.33 1063.50 801.85 413.88 263.52 422.82

CO, dry ppm 36.74 17.03 28.75 55.55 76.27 38.16

CO2, dry % 10.09 7.74 7.25 4.76 3.34 3.80

O2, dry % 6.98 10.14 10.79 14.27 16.28 15.61

Smoke FSN 0.04 0.01 0.01 0.02 0.01 0.01

NOX sensor 1 ppm 1121.75 1019.40 780.73 415.52 256.85 403.80

O2 sensor 1 % 5.96 9.06 9.61 12.97 14.93 14.22

NOX sensor 2 ppm 1103.92 998.89 774.54 413.41 260.70 401.97

O2 sensor 2 % 5.83 8.89 9.55 13.02 15.06 14.37
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Appendix 15 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-08-27 2014-08-27 2014-08-27 2014-08-27 2014-08-27 2014-08-27

Atmospheric pressure kPa 99.60 99.60 99.60 99.60 99.60 99.60

Relative humidity % 28.03 27.00 26.00 25.10 26.00 27.00

Room temperature oC 29.82 30.67 31.65 31.80 31.01 30.13

Engine speed 1/min 1497.88 1301.57 1797.88 2199.29 1798.04 1301.76

Engine torque Nm 572.12 417.58 402.74 217.99 136.07 141.06

Engine pow er kW 90 57 76 50 26 19

BMEP bar 16.3 11.9 11.5 6.2 3.9 4.0

SFC g/kWh 208 208 213 245 255 241

Lambda 1.38 1.71 1.83 2.53 2.77 2.36

NOx left g/kWh 5.71 6.61 5.16 3.87 2.96 3.68

HC left g/kWh 0.07 0.06 0.08 0.16 0.22 0.14

CO left g/kWh 0.29 0.10 0.18 0.44 0.55 0.32

NOx sensor 1 g/kWh 6.04 6.87 5.46 4.11 2.96 3.68

NOx sensor 2 g/kWh 6.00 6.78 5.44 4.12 3.04 3.69

Smoke FSN 0.124 0.011 0.019 0.033 0.035 0.031

Testo O2 % 20.71 20.92 20.13 19.96 19.28 19.63

EGR-valve position % 0 0 5 10 15 15

EGR % 2.0 0.8 8.1 13.6 25.2 17.5

Rail pressure Mpa 129.98 134.78 148.67 160.23 132.01 118.46

Injection timing M1 o crankshaft 5.42 0.71 4.51 3.90 1.91 2.42

Injection timing P1 µs 350.00 350.00 350.00 350.00 350.00 350.00

Injection timing P0 µs -2000.00 0.00 -1782.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 94.54 71.62 65.65 36.99 19.19 22.90

Injection quantity P1 mg 2.00 2.00 2.00 2.00 2.00 2.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1378.25 1086.08 976.93 678.22 563.98 566.67

Injection duration P1 µs 288.40 284.42 275.47 269.33 288.03 298.25

Injection duration P0 µs 358.78 0.00 334.53 320.15 350.57 368.28

T Before compressor oC 27.22 27.83 27.79 27.54 27.75 28.04

T After compressor oC 133.49 112.88 124.94 117.04 77.76 53.62

T Intake manifold oC 47.49 42.17 50.23 52.25 47.12 56.01

T Before turbine oC 629.30 493.86 521.82 412.19 318.99 294.53

T After turbine oC 509.60 394.55 417.71 314.80 255.69 255.51

T Fuel oC 35.95 36.05 36.30 37.10 36.91 36.24

T Oil oC 109.94 105.66 109.31 108.68 102.22 97.44

T Engine coolant oC 86.00 82.82 83.91 81.82 80.06 79.58

T After Charge Air Cooler oC 43.74 36.58 47.03 46.23 27.06 20.80

P Before compressor bar,abs 0.98 0.98 0.98 0.98 0.99 0.99

P After compressor bar,abs 2.20 1.89 2.14 2.03 1.51 1.22

P Intake manifold bar,abs 2.14 1.84 2.07 1.96 1.47 1.19

P Before turbine bar,abs 2.49 2.13 2.67 2.73 1.81 1.36

P After turbine bar,abs 1.14 1.08 1.17 1.16 1.05 1.01

Oil pressure bar,rel 3.22 3.10 3.78 4.21 4.24 3.62

Intake air depressure mbar,rel 14 11 18 20 10 7

Exhaust backpressure mbar,rel 142 81 173 167 52 16

Cooler backpressure mbar, rel 50.745 51.144 64.3 77.835 40.581 26.079

Air kg/s 0.11 0.08 0.12 0.13 0.08 0.05

Air f low kg/h 385.91 302.93 442.24 464.66 271.12 164.14

Fuel f low g/s 5.19 3.29 4.50 3.42 1.82 1.29

Fuel f low L/s 0.0067 0.0042 0.0058 0.0044 0.0023 0.0017

Fuel f low L/h 23.9 15.2 20.8 15.8 8.4 5.9

Efficiency % 39.5 39.4 38.5 33.5 32.2 34.0

HC, C1, w et ppm 32.53 21.37 26.11 35.65 42.41 33.58

NO ppm 933.33 859.35 605.42 266.45 168.73 277.75

NOX ppm 956.33 888.58 632.42 297.18 198.08 305.28

CO, dry ppm 73.45 19.62 33.18 51.07 55.30 39.55

CO2, dry % 10.31 8.13 7.57 5.34 4.74 5.47

O2, dry % 6.18 9.19 9.97 13.13 13.98 12.95

Smoke FSN 0.12 0.01 0.02 0.03 0.03 0.03

NOX sensor 1 ppm 913.28 848.80 617.75 296.92 187.13 286.63

O2 sensor 1 % 5.43 8.35 9.05 12.05 12.88 11.77

NOX sensor 2 ppm 907.45 837.18 615.30 297.93 192.55 287.23

O2 sensor 2 % 5.29 8.16 8.93 12.00 12.84 11.77
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Appendix 16 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-08-14 2014-08-14 2014-08-14 2014-08-14 2014-08-14 2014-08-14

Atmospheric pressure kPa 99.90 99.90 99.90 99.90 100.00 99.95

Relative humidity % 41.50 33.57 30.00 29.98 29.08 30.00

Room temperature oC 27.31 30.16 31.88 32.25 31.81 30.81

Engine speed 1/min 1497.88 1301.63 1797.97 2199.43 1798.04 1301.59

Engine torque Nm 572.14 417.51 402.62 218.24 136.13 141.00

Engine pow er kW 90 57 76 50 26 19

BMEP bar 16.4 11.9 11.5 6.2 3.9 4.0

SFC g/kWh 209 208 215 245 257 239

Lambda 1.41 1.73 1.84 2.55 2.80 2.43

NOx left g/kWh 6.34 7.08 5.42 4.05 3.15 3.90

HC left g/kWh 0.07 0.06 0.08 0.20 0.27 0.20

CO left g/kWh 0.24 0.09 0.15 0.47 0.57 0.34

NOx sensor 1 g/kWh 6.68 7.32 5.74 4.23 3.12 3.91

NOx sensor 2 g/kWh 6.62 7.18 5.70 4.27 3.23 3.93

Smoke FSN 0.108 0.013 0.022 0.055 0.056 0.044

Testo O2 % 20.83 20.93 20.26 19.98 19.32 19.68

EGR-valve position % 0 0 5 10 15 15

EGR % 1.3 0.7 6.9 13.6 25.2 17.3

Rail pressure Mpa 130.09 134.90 150.24 159.81 130.63 117.71

Injection timing M1 o crankshaft 5.36 0.70 4.56 3.90 1.91 2.32

Injection timing P1 µs 350.00 350.00 350.00 350.00 350.00 350.00

Injection timing P0 µs -2000.00 0.00 -1750.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 93.94 71.48 65.95 37.34 19.53 22.74

Injection quantity P1 mg 2.00 2.00 2.00 2.00 2.00 2.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1363.23 1085.28 979.55 679.22 566.05 564.15

Injection duration P1 µs 287.87 284.18 275.65 269.23 287.88 298.17

Injection duration P0 µs 358.05 0.00 334.27 320.58 350.43 368.20

T Before compressor oC 27.09 28.32 28.63 29.29 29.08 28.65

T After compressor oC 133.22 111.31 124.92 118.17 78.76 54.12

T Intake manifold oC 47.83 41.52 50.78 50.75 47.31 56.42

T Before turbine oC 630.65 499.96 527.59 410.50 318.65 293.16

T After turbine oC 509.64 401.20 423.20 312.57 255.61 253.52

T Fuel oC 34.80 36.30 37.03 38.13 37.42 36.56

T Oil oC 106.14 104.16 108.60 108.30 102.27 96.79

T Engine coolant oC 85.39 82.79 83.80 82.31 80.13 79.59

T After Charge Air Cooler oC 44.93 36.68 47.98 44.91 27.71 21.01

P Before compressor bar,abs 0.98 0.99 0.98 0.98 0.99 0.99

P After compressor bar,abs 2.20 1.88 2.13 2.02 1.50 1.22

P Intake manifold bar,abs 2.15 1.83 2.07 1.95 1.46 1.19

P Before turbine bar,abs 2.51 2.11 2.66 2.72 1.81 1.37

P After turbine bar,abs 1.14 1.08 1.17 1.16 1.05 1.02

Oil pressure bar,rel 3.36 3.15 3.81 4.23 4.25 3.65

Intake air depressure mbar,rel 15 12 19 20 12 8

Exhaust backpressure mbar,rel 140 79 172 162 51 17

Cooler backpressure mbar, rel 43.698 51.468 60.072 69.953 35.379 22.691

Air kg/s 0.11 0.08 0.12 0.13 0.08 0.05

Air f low kg/h 393.63 304.45 444.23 466.54 272.97 165.63

Fuel f low g/s 5.21 3.29 4.53 3.42 1.83 1.28

Fuel f low L/s 0.0064 0.0041 0.0056 0.0042 0.0023 0.0016

Fuel f low L/h 23.2 14.7 20.2 15.2 8.1 5.7

Efficiency % 39.6 39.8 38.5 33.8 32.3 34.7

HC, C1, w et ppm 33.66 22.40 27.35 43.05 51.66 46.02

NO ppm 975.67 893.17 624.35 272.45 176.88 287.53

NOX ppm 997.50 922.83 649.60 303.22 206.02 316.13

CO, dry ppm 61.35 19.11 27.04 54.35 56.99 41.94

CO2, dry % 10.31 8.25 7.70 5.37 4.80 5.50

O2, dry % 6.40 9.18 9.97 13.21 14.05 13.07

Smoke FSN 0.11 0.01 0.02 0.06 0.06 0.04

NOX sensor 1 ppm 945.67 873.93 632.80 297.20 193.00 296.98

O2 sensor 1 % 5.59 8.34 8.99 12.06 12.91 11.87

NOX sensor 2 ppm 936.93 857.62 628.83 299.83 199.40 298.72

O2 sensor 2 % 5.51 8.19 8.92 12.06 12.89 11.87
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Appendix 17 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-08-27 2014-08-27 2014-08-27 2014-08-27 2014-08-27 2014-08-27

Atmospheric pressure kPa 99.50 99.50 99.50 99.55 99.50 99.59

Relative humidity % 34.32 31.00 29.00 28.00 29.00 31.00

Room temperature oC 26.72 28.51 29.73 30.10 29.30 28.20

Engine speed 1/min 1497.67 1300.72 1797.60 2199.11 1797.82 1301.85

Engine torque Nm 571.07 416.41 401.63 216.93 135.20 141.49

Engine pow er kW 90 57 76 50 25 19

BMEP bar 16.3 11.9 11.5 6.2 3.9 4.0

SFC g/kWh 208 207 214 245 259 241

Lambda 1.39 1.71 1.69 2.30 2.45 2.10

NOx left g/kWh 5.79 6.52 3.65 2.95 2.26 2.21

HC left g/kWh 0.06 0.05 0.07 0.15 0.21 0.13

CO left g/kWh 0.28 0.10 0.19 0.45 0.58 0.38

NOx sensor 1 g/kWh 6.17 6.79 3.78 3.08 2.25 2.20

NOx sensor 2 g/kWh 6.16 6.71 3.79 3.13 2.36 2.25

Smoke FSN 0.108 0.014 0.049 0.062 0.053 0.060

Testo O2 % 20.75 20.88 19.22 19.38 18.9 18.77

EGR-valve position % 0 5 10 15 20 20

EGR % 1.8 1.1 15.2 19.2 27.2 24.8

Rail pressure Mpa 130.04 134.90 148.09 159.76 130.67 119.06

Injection timing M1 o crankshaft 5.37 0.70 4.51 3.90 1.96 0.90

Injection timing P1 µs 350.00 350.00 350.00 350.00 350.00 350.00

Injection timing P0 µs -2000.00 0.00 -1748.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 93.90 70.98 65.72 36.31 18.80 23.27

Injection quantity P1 mg 2.00 2.00 2.00 2.00 2.00 2.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1367.35 1080.62 978.20 672.77 560.43 570.97

Injection duration P1 µs 288.30 283.93 275.53 269.50 288.70 297.40

Injection duration P0 µs 358.28 0.00 334.42 320.65 351.48 366.73

T Before compressor oC 25.19 26.27 26.30 26.30 26.50 26.71

T After compressor oC 130.84 110.38 124.45 114.17 71.87 49.38

T Intake manifold oC 46.49 40.48 50.05 58.85 60.61 63.77

T Before turbine oC 629.68 493.19 535.97 420.84 332.52 312.42

T After turbine oC 510.57 395.05 428.54 324.72 273.09 272.91

T Fuel oC 34.93 35.76 36.18 37.46 36.80 35.91

T Oil oC 109.87 105.52 109.18 108.73 102.25 96.15

T Engine coolant oC 85.63 82.70 84.16 82.49 80.62 79.53

T After Charge Air Cooler oC 42.22 34.02 42.97 41.01 24.31 19.41

P Before compressor bar,abs 0.98 0.98 0.98 0.98 0.99 0.99

P After compressor bar,abs 2.19 1.88 2.13 2.01 1.45 1.19

P Intake manifold bar,abs 2.14 1.84 2.08 1.94 1.41 1.17

P Before turbine bar,abs 2.49 2.11 2.56 2.56 1.69 1.31

P After turbine bar,abs 1.14 1.08 1.15 1.14 1.04 1.01

Oil pressure bar,rel 3.22 3.10 3.78 4.21 4.24 3.68

Intake air depressure mbar,rel 14 11 16 17 9 7

Exhaust backpressure mbar,rel 145 81 152 139 43 12

Cooler backpressure mbar, rel 48.925 46.969 59.28 73.004 38.466 23.047

Air kg/s 0.11 0.08 0.11 0.12 0.07 0.04

Air f low kg/h 386.95 301.01 408.68 421.28 241.40 146.32

Fuel f low g/s 5.18 3.26 4.50 3.39 1.83 1.29

Fuel f low L/s 0.0066 0.0042 0.0058 0.0044 0.0023 0.0017

Fuel f low L/h 23.9 15.0 20.8 15.7 8.4 6.0

Efficiency % 39.5 39.7 38.3 33.6 31.7 34.0

HC, C1, w et ppm 28.62 20.09 26.88 35.77 44.13 34.33

NO ppm 930.83 843.18 459.02 218.92 139.97 179.68

NOX ppm 950.67 869.05 479.68 247.27 167.78 204.22

CO, dry ppm 70.64 19.57 38.48 57.60 65.43 53.81

CO2, dry % 10.25 8.13 8.24 5.87 5.35 6.25

O2, dry % 6.25 9.14 9.03 12.35 13.07 11.80

Smoke FSN 0.11 0.01 0.05 0.06 0.05 0.06

NOX sensor 1 ppm 914.45 832.00 456.00 242.00 157.00 189.95

O2 sensor 1 % 5.63 8.37 8.20 11.32 12.04 10.64

NOX sensor 2 ppm 912.27 821.80 458.30 245.40 164.30 194.72

O2 sensor 2 % 5.51 8.19 8.06 11.22 11.94 10.66
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Appendix 18 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-08-14 2014-08-14 2014-08-14 2014-08-14 2014-08-14 2014-08-14

Atmospheric pressure kPa 99.90 99.90 99.90 99.90 100.00 99.91

Relative humidity % 30.00 29.00 28.00 28.52 30.00 32.00

Room temperature oC 31.23 32.00 32.79 32.44 31.50 30.62

Engine speed 1/min 1497.94 1301.55 1797.78 2199.26 1797.80 1301.31

Engine torque Nm 572.62 417.86 402.86 218.05 136.07 141.00

Engine pow er kW 90 57 76 50 26 19

BMEP bar 16.4 11.9 11.5 6.2 3.9 4.0

SFC g/kWh 210 208 216 246 256 241

Lambda 1.40 1.71 1.68 2.30 2.47 2.12

NOx left g/kWh 6.09 6.73 3.73 3.04 2.36 2.32

HC left g/kWh 0.08 0.06 0.08 0.17 0.24 0.17

CO left g/kWh 0.27 0.10 0.20 0.47 0.60 0.40

NOx sensor 1 g/kWh 6.38 6.94 3.89 3.14 2.33 2.29

NOx sensor 2 g/kWh 6.33 6.83 3.90 3.18 2.42 2.35

Smoke FSN 0.124 0.014 0.063 0.110 0.084 0.088

Testo O2 % 20.83 20.92 19.25 19.42 18.86 18.74

EGR-valve position % 0 5 10 15 20 20

EGR % 1.3 0.8 15.0 18.9 28.0 25.5

Rail pressure Mpa 130.10 134.62 148.87 159.72 131.68 118.61

Injection timing M1 o crankshaft 5.36 0.70 4.39 3.90 1.91 0.90

Injection timing P1 µs 350.00 350.00 350.00 350.00 350.00 350.00

Injection timing P0 µs -2000.00 0.00 -1300.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 93.86 71.40 65.16 37.14 19.45 23.05

Injection quantity P1 mg 2.00 2.00 2.00 2.00 2.00 2.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1362.70 1086.37 973.98 680.12 565.08 566.72

Injection duration P1 µs 288.48 284.63 275.33 269.43 288.02 297.85

Injection duration P0 µs 358.82 0.00 334.47 320.83 350.62 367.82

T Before compressor oC 28.85 28.73 28.78 28.62 28.55 28.70

T After compressor oC 135.06 111.84 126.39 115.63 73.35 51.27

T Intake manifold oC 47.09 41.37 50.86 59.54 63.41 67.11

T Before turbine oC 626.81 496.01 537.56 424.40 334.89 312.68

T After turbine oC 502.96 396.03 427.64 327.73 274.83 272.52

T Fuel oC 36.21 36.34 37.12 38.16 37.44 36.65

T Oil oC 109.60 105.76 109.33 108.50 102.06 96.98

T Engine coolant oC 85.92 82.88 84.33 81.98 80.26 79.65

T After Charge Air Cooler oC 43.82 35.78 44.06 41.77 25.83 20.93

P Before compressor bar,abs 0.98 0.99 0.98 0.98 0.99 0.99

P After compressor bar,abs 2.19 1.86 2.12 1.99 1.44 1.18

P Intake manifold bar,abs 2.15 1.82 2.07 1.92 1.40 1.16

P Before turbine bar,abs 2.51 2.10 2.55 2.54 1.68 1.31

P After turbine bar,abs 1.14 1.08 1.15 1.14 1.04 1.01

Oil pressure bar,rel 3.23 3.10 3.79 4.23 4.26 3.65

Intake air depressure mbar,rel 15 11 17 17 10 7

Exhaust backpressure mbar,rel 144 81 150 137 41 13

Cooler backpressure mbar, rel 44.15 39.834 49.871 63.613 31.399 19.847

Air kg/s 0.11 0.08 0.11 0.12 0.07 0.04

Air f low kg/h 391.42 301.56 409.22 420.52 240.53 145.69

Fuel f low g/s 5.23 3.29 4.56 3.43 1.82 1.29

Fuel f low L/s 0.0065 0.0041 0.0056 0.0042 0.0023 0.0016

Fuel f low L/h 23.3 14.7 20.3 15.3 8.1 5.7

Efficiency % 39.5 39.8 38.3 33.7 32.4 34.4

HC, C1, w et ppm 36.90 23.82 31.39 40.74 52.89 45.78

NO ppm 989.33 884.53 479.55 231.53 149.12 188.48

NOX ppm 995.50 899.28 490.75 254.65 175.28 212.55

CO, dry ppm 66.78 21.43 41.21 60.97 68.20 56.38

CO2, dry % 10.34 8.33 8.43 6.03 5.49 6.39

O2, dry % 6.43 9.16 9.06 12.34 13.08 11.85

Smoke FSN 0.12 0.01 0.06 0.11 0.08 0.09

NOX sensor 1 ppm 939.37 848.83 467.02 245.23 162.15 195.73

O2 sensor 1 % 5.56 8.25 8.06 11.22 11.91 10.61

NOX sensor 2 ppm 931.53 835.85 468.21 248.46 168.61 200.13

O2 sensor 2 % 5.44 8.08 7.95 11.14 11.87 10.63
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Appendix 19 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-08-28 2014-08-28 2014-08-28 2014-08-28 2014-08-28 2014-08-28

Atmospheric pressure kPa 100.20 100.20 100.20 100.20 100.20 100.20

Relative humidity % 35.05 32.00 30.00 29.00 30.88 32.00

Room temperature oC 26.59 27.97 29.19 29.70 28.80 27.90

Engine speed 1/min 1497.56 1300.57 1797.60 2199.05 1797.79 1299.28

Engine torque Nm 571.38 416.81 402.02 217.22 135.34 141.46

Engine pow er kW 90 57 76 50 25 19

BMEP bar 16.3 11.9 11.5 6.2 3.9 4.0

SFC g/kWh 207 207 210 240 249 238

Lambda 1.39 1.74 1.86 2.58 2.79 2.37

NOx left g/kWh 5.77 6.82 6.27 6.04 5.74 7.21

HC left g/kWh 0.06 0.06 0.08 0.15 0.19 0.12

CO left g/kWh 0.25 0.09 0.17 0.26 0.27 0.18

NOx sensor 1 g/kWh 6.17 7.04 6.63 6.40 5.84 7.27

NOx sensor 2 g/kWh 6.15 6.94 6.60 6.31 5.81 7.19

Smoke FSN 0.099 0.011 0.019 0.016 0.023 0.025

Testo O2 % 20.75 20.9 20.16 20.01 19.26 19.57

EGR-valve position % 0 0 5 10 15 15

EGR % 2.0 1.3 8.4 13.7 26.2 18.6

Rail pressure Mpa 131.62 134.79 148.30 160.23 129.80 118.11

Injection timing M1 o crankshaft 5.40 0.70 7.10 8.60 9.30 9.30

Injection timing P1 µs 350.00 350.00 350.00 550.00 500.00 550.00

Injection timing P0 µs -2000.00 0.00 -1707.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 94.25 71.00 64.23 35.17 17.81 22.68

Injection quantity P1 mg 2.00 2.00 2.00 2.00 2.00 2.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1364.97 1080.50 963.85 663.18 551.07 559.15

Injection duration P1 µs 287.98 284.35 275.80 269.82 289.90 298.10

Injection duration P0 µs 357.77 0.00 334.37 320.48 352.73 368.07

T Before compressor oC 24.62 25.54 25.61 25.99 25.87 26.16

T After compressor oC 129.70 110.07 120.96 112.48 71.70 49.71

T Intake manifold oC 47.64 40.99 48.50 49.88 44.01 53.50

T Before turbine oC 630.07 489.54 504.84 391.28 299.78 281.52

T After turbine oC 512.54 391.33 403.72 297.04 241.35 243.44

T Fuel oC 35.10 35.44 36.05 36.95 36.62 35.92

T Oil oC 110.04 105.12 108.85 108.59 102.44 96.81

T Engine coolant oC 85.67 82.50 83.41 81.46 79.88 79.24

T After Charge Air Cooler oC 43.43 35.59 45.30 44.02 25.46 19.57

P Before compressor bar,abs 0.99 0.99 0.98 0.98 0.99 1.00

P After compressor bar,abs 2.20 1.91 2.13 2.01 1.47 1.21

P Intake manifold bar,abs 2.15 1.86 2.07 1.93 1.43 1.19

P Before turbine bar,abs 2.49 2.14 2.67 2.70 1.76 1.35

P After turbine bar,abs 1.15 1.08 1.17 1.16 1.05 1.02

Oil pressure bar,rel 3.22 3.12 3.81 4.22 4.24 3.64

Intake air depressure mbar,rel 14 11 18 19 10 7

Exhaust backpressure mbar,rel 145 82 171 160 49 15

Cooler backpressure mbar, rel 48.066 50.405 62.532 75.095 38.203 24.838

Air kg/s 0.11 0.08 0.12 0.13 0.07 0.05

Air f low kg/h 387.39 305.50 443.38 462.79 265.00 162.48

Fuel f low g/s 5.16 3.26 4.42 3.33 1.77 1.27

Fuel f low L/s 0.0066 0.0042 0.0057 0.0043 0.0023 0.0016

Fuel f low L/h 23.8 15.1 20.4 15.4 8.2 5.9

Efficiency % 39.6 39.7 39.1 34.3 32.9 34.5

HC, C1, w et ppm 28.36 21.56 27.29 33.37 36.58 28.95

NO ppm 913.50 861.78 729.58 427.05 355.38 567.03

NOX ppm 946.33 895.20 757.18 458.22 384.40 595.57

CO, dry ppm 64.20 18.90 31.30 30.55 27.89 22.83

CO2, dry % 10.30 7.99 7.36 5.18 4.67 5.44

O2, dry % 6.19 9.34 10.21 13.26 14.01 12.90

Smoke FSN 0.10 0.01 0.02 0.02 0.02 0.03

NOX sensor 1 ppm 912.00 849.60 740.02 457.87 370.63 565.13

O2 sensor 1 % 5.58 8.55 9.31 12.21 12.93 11.76

NOX sensor 2 ppm 908.70 838.11 736.78 451.63 368.98 558.76

O2 sensor 2 % 5.39 8.34 9.16 12.20 12.90 11.76
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Appendix 20 
 

 

Load point 1 2 3 4 5 6

Date & time yyyy-mm-dd 2014-08-18 2014-08-18 2014-08-18 2014-08-18 2014-08-18 2014-08-18

Atmospheric pressure kPa 99.30 99.30 99.30 99.30 99.40 99.40

Relative humidity % 39.00 34.00 31.88 31.08 31.00 33.00

Room temperature oC 27.74 29.90 31.14 31.10 29.85 28.42

Engine speed 1/min 1497.92 1301.37 1797.74 2199.10 1797.78 1301.37

Engine torque Nm 571.93 417.49 402.62 217.89 135.83 140.85

Engine pow er kW 90 57 76 50 26 19

BMEP bar 16.3 11.9 11.5 6.2 3.9 4.0

SFC g/kWh 209 208 213 240 251 237

Lambda 1.39 1.72 1.84 2.57 2.77 2.39

NOx left g/kWh 6.11 7.09 6.47 6.09 5.84 7.26

HC left g/kWh 0.07 0.06 0.08 0.16 0.23 0.18

CO left g/kWh 0.27 0.10 0.16 0.28 0.32 0.21

NOx sensor 1 g/kWh 6.42 7.27 6.73 6.42 5.91 7.22

NOx sensor 2 g/kWh 6.35 7.16 6.69 6.33 5.89 7.16

Smoke FSN 0.118 0.015 0.027 0.030 0.029 0.037

Testo O2 % 20.87 20.97 20.26 19.99 19.26 19.65

EGR-valve position % 0 0 5 10 15 15

EGR % 1.2 0.6 7.2 13.7 25.8 17.5

Rail pressure Mpa 130.36 135.17 146.63 159.84 135.31 117.88

Injection timing M1 o crankshaft 5.35 0.70 6.90 8.40 8.90 8.90

Injection timing P1 µs 350.00 350.00 350.00 550.00 500.00 550.00

Injection timing P0 µs -2000.00 0.00 -1682.00 -1300.00 -1300.00 -1300.00

Injection quantity M1 mg 93.77 70.91 63.99 36.12 18.60 22.64

Injection quantity P1 mg 2.00 2.00 2.00 2.00 2.00 2.00

Injection quantity P0 mg 4.00 0.00 4.00 4.00 4.00 4.00

Injection duration M1 µs 1359.70 1079.13 960.47 670.83 549.77 562.80

Injection duration P1 µs 287.53 283.53 275.63 269.52 284.98 299.13

Injection duration P0 µs 357.55 0.00 333.53 320.08 345.97 368.70

T Before compressor oC 25.79 26.80 26.90 26.79 26.89 26.67

T After compressor oC 132.03 110.55 122.84 113.14 72.23 50.45

T Intake manifold oC 47.51 42.11 50.77 52.46 44.89 55.54

T Before turbine oC 637.37 503.96 518.04 402.57 307.18 289.23

T After turbine oC 514.43 403.89 413.77 307.08 247.89 250.92

T Fuel oC 35.35 36.20 36.64 37.82 36.91 36.10

T Oil oC 109.47 105.32 109.17 108.64 101.59 97.40

T Engine coolant oC 85.52 82.82 83.70 81.48 79.95 79.47

T After Charge Air Cooler oC 44.26 37.24 47.87 46.76 26.91 20.68

P Before compressor bar,abs 0.98 0.98 0.97 0.97 0.98 0.99

P After compressor bar,abs 2.19 1.87 2.11 1.98 1.45 1.20

P Intake manifold bar,abs 2.14 1.83 2.05 1.91 1.41 1.17

P Before turbine bar,abs 2.49 2.11 2.65 2.67 1.74 1.34

P After turbine bar,abs 1.14 1.07 1.16 1.15 1.04 1.01

Oil pressure bar,rel 3.24 3.12 3.80 4.23 4.27 3.62

Intake air depressure mbar,rel 15 11 19 19 11 8

Exhaust backpressure mbar,rel 144 81 170 157 46 15

Cooler backpressure mbar, rel 48.548 47.479 60.751 72.362 38.03 25.069

Air kg/s 0.11 0.08 0.12 0.13 0.07 0.04

Air f low kg/h 387.03 302.82 441.85 459.35 263.50 161.62

Fuel f low g/s 5.22 3.29 4.48 3.34 1.78 1.27

Fuel f low L/s 0.0065 0.0041 0.0055 0.0041 0.0022 0.0016

Fuel f low L/h 23.2 14.7 20.0 14.9 7.9 5.6

Efficiency % 39.6 39.8 38.9 34.6 33.0 34.9

HC, C1, w et ppm 30.85 24.16 26.25 35.80 45.96 42.22

NO ppm 962.33 899.33 740.33 426.10 358.33 559.97

NOX ppm 985.83 928.83 774.03 461.25 393.57 598.65

CO, dry ppm 68.89 20.94 29.92 33.24 33.24 26.99

CO2, dry % 10.49 8.36 7.67 5.40 4.86 5.61

O2, dry % 6.30 9.17 10.11 13.23 14.01 12.96

Smoke FSN 0.12 0.02 0.03 0.03 0.03 0.04

NOX sensor 1 ppm 930.30 871.22 740.82 456.78 376.40 558.78

O2 sensor 1 % 5.49 8.29 9.13 12.05 12.83 11.76

NOX sensor 2 ppm 919.57 857.70 736.75 450.02 375.09 554.27

O2 sensor 2 % 5.36 8.12 9.00 12.04 12.81 11.72
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