
Single-page Application Frameworks in
Enterprise Software Development

Juha Kokkonen

Master’s thesis
May 2015

Master's Degree Programme in Information Technology
School of Technology, Communication and Transport

Description

Author(s)
Kokkonen, Juha

Type of publication
Master’s thesis

Date
15.05.2015
Language of publication:
English

Number of pages
44

Permission for web
publication: x

Title of publication
Single-page Application Frameworks in Enterprise Software Development

Degree programme
Master's Degree Programme in Information Technology

Tutor(s)
Huotari, Jouni
Rintamäki, Marko
Assigned by
Fifth Element Oy

Abstract

The primary goal of this thesis was to assess the feasibility of JavaScript single-page
application frameworks in the scope of enterprise application development. Two popular
single-page application frameworks were studied in this thesis: Backbone.js and AngularJS.

The secondary goal of this thesis was to build documentation for developers who are
moving from one framework to another and are seeking to learn how to map the common
concepts among the selected frameworks.

The results of this study indicate that it is often feasible for single-page application
frameworks to be integrated into enterprise applications. However, while the single-page
architecture moves many responsibilities of an application from the server to the the client,
it is crucial that the data access to enterprise services is organized in web client friendly-
manner. Other technologies are required to convert and proxy the enterprise services that
utilize protocols and data formats that are beyond the capabilities of a web browser.

Application requirements should be carefully considered when choosing the framework.
Backbone.js provides a development framework with a minimalistic approach. AngularJS
takes a more holistic approach to what features a single-page framework should provide. If
the broader feature set of AngularJS can be fully utilized in the application development, it
probably offers better productivity. On the other hand, if the application requires
noticeably different behavior, it is easier to modify Backbone.js to suit these requirements.

Keywords/tags (subjects)
JavaScript single-page application frameworks, Enterprise application development,
AngularJS, Backbone.js

Miscellaneous

http://www.nelliportaali.fi/V/?institute=JAMK&portal=JAMK&new_lng=eng&force_login=Y&func=find-db-1-category&mode=category&restricted=all&sequence=000013943

Kuvailulehti

Tekijä(t)
Kokkonen, Juha

Julkaisun laji
Opinnäytetyö

Päivämäärä
15.05.2015

Sivumäärä
44

Julkaisun kieli
Englanti
Verkkojulkaisulupa
myönnetty: x

Työn nimi
Single-page Application Frameworks in Enterprise Software Development

Koulutusohjelma
Master's Degree Programme in Information Technology

Työn ohjaaja(t)
Jouni Huotari
Marko Rintamäki
Toimeksiantaja(t)
Fifth Element Oy

Tiivistelmä

Opinnäytetyön ensisijainen tavoite oli tutkia JavaScript single-page application-
sovelluskehysten soveltuvuutta yritysohjelmistojen kehittämiseen. Opinnäytetyössä
vertailtiin kahta suosittua sovelluskehystä: Backbone.js ja AngularJS.

Toissijainen tavoite oli luoda dokumentaatio sovelluskehittäjille, jotka työssään siirtyvät
sovelluskehyksestä toiseen ja haluavat yleiskuvan, kuinka vastaavat kokonaisuudet on
toteutettu vertailluissa sovelluskehyksissä.

Tutkimuksen tuloksena havaittiin, että single page application -sovelluskehykset ovat
useissa tilanteissa käyttökelpoisia yritysohjelmistojen kehityksessä. Vaikka single-page-
arkkitehtuuri siirtää monia sovelluksen toiminnallisuuksia palvelimelta selaimeen, on
tärkeää, että sovelluksen tarvitsemat palvelut ja tietovarastot ovat saatavilla web-selaimen
tukemien protokollien ja tietomuotojen rajoissa. Sellaiset palvelut, joita single-page-
sovellus ei pysty suoraan hyödyntämään, täytyy muuntaa selainsovellukselle
yhteensopivaan muotoon muiden teknologioiden avulla.

Sovelluskehystä valittaessa tulee kiinnittää huomiota toteutettavan sovelluksen
vaatimuksiin. Backbone.js tarjoaa minimalistisen lähtökohdan single-page -sovellusten
rakentamiseen. AngularJS pyrkii tarjoamaan kokonaisvaltaisemman näkemyksen siitä, mitä
ominaisuuksia sovelluskehyksen tulisi tarjota sovelluskehityksen tueksi. Mikäli AngularJS:n
monipuolisempaa ominaisuuskirjoa pystytään hyödyntämään laajasti, on se
todennäköisesti tuottavampi valinta. Jos taas sovellus poikkeaa huomattavasti
tavanomaisesta, on Backbone.js helpompi sovittaa näihin vaatimuksiin.

Avainsanat (asiasanat)
JavaScript single-page application sovelluskehykset, yritysohjelmistojen kehitys, AngularJS,
Backbone.js

Muut tiedot

http://vesa.lib.helsinki.fi/

4

Contents

 1 Introduction..8

 1.1 Thesis Objectives...8

 1.2 Scope...8

 2 Motivation for JavaScript SPA in enterprise application development......................9

 2.1 Traditional web applications...9

 2.2 Single-page web applications..10

 2.3 Building blocks of single-page web applications...11

 2.4 Choice of platforms...12

 3 Accessing enterprise back-end systems..13

 3.1 XML..13

 3.2 SOAP..14

 3.3 JSON..15

 3.4 REST...15

 3.5 Databases and legacy systems..16

 4 Modularity and dependency management..16

 5 Build process and application deployment...17

 6 Data binding and validation..18

 6.1 Templates..18

 6.2 Binding data to views..19

 6.3 Validating user input...19

 7 Testing...20

 7.1 Unit testing..20

 7.2 Integration testing...21

 7.3 Continuous integration..21

 7.4 Testing considerations in single-page applications...22

 8 Framework study: Backbone.js...23

 8.1 Views...24

 8.2 Models...25

 8.3 Validation...25

5

 8.4 Events..26

 8.5 Collections...27

 8.6 Persistence..28

 8.7 Routing and History...28

 8.8 Module system..29

 9 Framework study: AngularJS...29

 9.1 Application..30

 9.2 Controller..31

 9.3 Views and Templates...31

 9.4 Scopes and Models...33

 9.5 Validation...34

 9.6 Services..35

 9.7 Dependency Injection...35

 9.8 Routing and History...36

 9.9 Module system..37

 9.10 Testing...37

 10 Conclusions...38

References...41

Appendices...43

6

Terms and Acronyms

Ajax Asynchronous JavaScript and XML, client-
side technologies used to create
asynchronous web applications

API Application Programming Interface

CI Continuous Integration

CRUD Create - Read - Update – Delete, basic
persistence operations in data driven
software application

DOM Document Object Model, a standardized
programming model for querying and
modifying HTML document in a browser

ECMAScript Standardised ISO/IEC 16262 language
specification, published by European
Computer Manufacturers Association

ERP Enterprise Resource Planning

HTML Hyper Text Markup Language, a markup
language for building web pages and
applications

JS The JavaScript programming language

7

JSON JavaScript Object Notation, a light-weight
data interchange format

MVC Model-View-Controller, a design pattern
that defines components and their
responsibilities in presenting a user
interface

REST Representational State Transfer, software
architecture style for building web services

Singleton object Object that is restricted to maximum of
one instance at a time in a system

SOA Service-oriented architecture, a design
pattern to provide application
components as network services using
open standard interfaces

SOAP A protocol specification for exchanging
XML structured information by web
services

SPA Web application that utilizes Single-page
Application programming model

URL Uniform resource location, a reference to
resource in a computer network

8

 1 Introduction

 1.1 Thesis Objectives

The first objective of this thesis is to present the case of utilizing JavaScript single-

page application frameworks in the scope of enterprise application development. To

accomplish this, two popular SPA frameworks were selected for the study:

Backbone.js and AngularJS. The comparison of features, strengths and weaknesses of

the frameworks are studied in this thesis.

The second objective is to provide a transition guide for developers who are

switching from one framework to another. While both single-page application

frameworks selected for study could provide similar end results, they take a very

different approach at the software architecture level. This thesis attempts to map the

common concepts to help developers move between these frameworks with minimal

learning time investment.

 1.2 Scope

Both frameworks studied in this thesis have a large number of extensions available.

Development projects often supplement the standard framework with extensions

that are most suited to the project under development. This study aims to assess the

capabilities of each standard framework, leaving any third party extensions to the

frameworks beyond the scope of this thesis.

It is also feasible for single-page applications to be packaged and deployed as hybrid

desktop or mobile applications. While general issues regarding hybrid applications

are included in the discussion, details on how to interface with specific vendor

platforms are left out of the scope of the thesis.

9

 2 Motivation for JavaScript SPA in enterprise

application development

Single-page web applications aim to provide desktop application user experience in a

standard web browser. This architecture has become popular in the recent years in

many web-enabled applications. While the web browser interface has been standard

in enterprise applications for years, single-page applications are not yet very

common.

 2.1 Traditional web applications

Traditional browser applications process user input, then send changes back to the

server as HTTP request. The server then processes the request and sends the next

page to user's browser. This architecture poses two problems for software usability

standpoint. First, the user interface must be re-rendered entirely when user requests

another page. Secondly, the user cannot interact with application in any way while a

page request is in progress.

With traditional web applications, JavaScript is typically used for decorative functions

and basic data validation (Ullman 2012, 7). The web server is responsible the

application logic and user interface HTML generation. Figure 1 illustrates the

architecture of a traditional web application.

Figure 1. Architecture of a traditional web application.

Static HTML
 Decorative functionality

Basic validation

Core business logic
UI state tracking
HTML generation

Access control
Validation

Data storage
and retrieval

Optional business
logic

Client Application server Data store

10

 2.2 Single-page web applications

Single-page applications improve the traditional web application architecture by

loading the initial page just once, and transferring only application data afterwards.

With properly engineered application, the user interface can stay responsive while

new data is transferred from the server. Another advantage is that client side can

keep track of application state without assistance of the web server. Figure 2

illustrates the single-page web application architecture.

Figure 2. Architecture of a single-page web application.

Single-page Applications do not inherently depend on URLs for different views within

an application. After single-page application is started, it no longer relies on the web

server for changing the views or application state. Because of the independent

nature of a single-page application it is also easier to support offline functionality,

where relevant data is stored is in the browser local storage and then synchronized

with the server when connection is again available.

As single-page application model does not follow the original browser application

architecture, it also leads to some challenges that require different solutions than in

traditional web applications. While traditional application errors could be inspected

in server-side logs, the single-page applications do not have such option. A script

error can halt the whole application, and it is then unable to connect to the server to

report the error. This issue can be mitigated by testing the application in wide variety

of platforms and browsers, and also by writing code to recover from error conditions

where possible.

Application server

Data conversion
(e.g. XML JSON)→

Optional business logic
Access control

Validation

HTML generation
and rendering

UI state tracking
Core business logic

Validation

Data storage
and retrieval

Optional business
logic

Client Data store

11

Another important issue in single-page applications is memory management.

Because traditional browser applications use page transitions that clear the

JavaScript context before loading each new page, memory leaks are often a non-issue

because the context exist relatively little time. In single-page applications the

JavaScript context is persistent over the whole application run-time life-cycle.

Although JavaScript provides automatic memory allocation and garbage collection, it

is important that the developer understands the allocation concepts used by the

underlying framework and makes the effort to clear the references to objects that are

no longer in use yet still cannot be automatically deallocated by the garbage collector.

While single-page applications move the vast majority of application logic from the

server to the browser, there are still areas where data processing should be

performed on the server to avoid data security issues. For example, a password

hashing function could be implemented within a single-page application, but it would

be bad practice from the security standpoint because the functionality could be

easily reverse-engineered by inspecting the client source code.

 2.3 Building blocks of single-page web applications

The JavaScript programming language is a key technology in single-page web

applications. It is the only programming language that is supported on all standards-

compliant web browsers. While JavaScript was originally conceived as a scripting

language, it has developed to become a robust general-purpose programming

language (Flanagan 2010, 1).

JavaScript is object-oriented, weakly typed interpreted language (Ullman 2012, 4). It

borrows its basic syntax from Java, but it is not a member of the object oriented C

family languages. JavaScript, unlike the majority of other object oriented languages,

features a prototype-based inheritance mechanism. This means that instead of

inheriting from a class, JavaScript objects inherit directly from other objects

(Crockford 2008, 46). Another distinctive feature of JavaScript is that functions are

first-class objects. This means that functions can be passed as parameters to other

12

functions, returned from a function, and can contain their own properties and

methods (Stefanov 2010, 57).

Document Object Model or DOM defines how web applications interact with the

HTML of the rendered pages (Odell 2009, 58). It can be considered as the glue

between JavaScript code and the HTML user interface. It an is important technology

for single-page applications, because they have to be able to dynamically build the

user interface instead of relying on readily constructed HTML pages from a web

server.

Single-page programming model is based around concept of separating the

application data from browser DOM. This is realized by combining together DOM

manipulation to dynamically build the user interface and asynchronous data requests

to fetch the application data while keeping the UI responsive.

Another key technology for enabling single-page programming model is Ajax. The

concept is to send and receive data between a browser and a web server

asynchronously without actually navigating to another page. Ajax functionality is

utilized though the XML HTTP Request object (Ullman 2012, 426). Asynchronous

operation ensures that the user interface stays responsive while an operation is in

progress. When asynchronous operation completes it can update the user interface

partially instead of loading a whole new page.

 2.4 Choice of platforms

The primary platform for single-page page web application is the standard web

browser in the desktop/laptop computers. Mobile-friendly user experience can often

be built in the same application using display components and style sheets that scale

to smaller screens of these devices.

Hybrid applications are native applications that run inside a web browser. Therefore

the web browser must be either embedded in the executable, or provided by the

13

operating system. Hybrid applications emerge from the need to reduce costs when

building applications for multiple platforms. The advantage that hybrid application

offers is native-like application user experience that is accomplished with web

application developer skill set. The mobile operating system vendors typically offer

access to native services of the device using specific JavaScript library to interface

with this functionality.

The third option is to build a desktop hybrid application. Similarly to mobile hybrid,

the main motivation is to provide native-like user experience. Applications where

desktop hybrid is feasible could include software with large offline storage

requirements or use of a platform service that is otherwise unavailable in web

application.

 3 Accessing enterprise back-end systems

Enterprise applications are by definition not self-contained. They depend on a

number of different back-end systems that provide the data that is required for the

application. Enterprise back-end services could consist of databases, web services,

ERPs or legacy systems.

 3.1 XML

Extensible Markup Language is a popular open standard for information interchange.

It is designed to be both human-readable and machine-readable. XML supports

unicode encoding, making it useful for transmitting documents in different languages

(Moseley 2007, 168). A document consists of a hierarchy of tags that describe the

names of the elements. Content is placed between start-tag and end-tag. Tags may

have optional attributes to define additional metadata about the element.

XML may be utilized without any strict rules about the message structure or it may

conform to a schema, a set of rules that has been defined about the structure of the

included data. Both methods have their advantages. When schema is not utilized,

14

message format can change rapidly. With schema in use, the validity of the document

structure can be determined programmatically. Validating an XML document with a

schema is significantly more complex operation than just parsing the content of the

document, and is not available in all frameworks and libraries that process XML.

While early JavaScript-enabled web applications commonly used XML format for

transferring application data between client and the server, it is rarely used in single-

page web applications. As Flanagan (2011, 493) notes, the Ajax techniques work with

XML , however the use of XML is purely optional and has actually become rare.

The weakness of the format is that the tag data around the actual payload values

often comprise a significant amount of the final message size. This may become an

issue especially when using application over mobile network. There are also

performance considerations with the use of XML formatted data. Odell (2009, 170)

argues that XML parsing through JavaScript is a slow operation, and should be

avoided when possible.

 3.2 SOAP

SOAP is a commonly used message framework in enterprise web services. It defines a

standard for exchanging XML messages over a network (Moseley 2007, 212). SOAP

defines standard message format called envelope, which consists of header, body and

optional fault sections (Bean 2010, 46).

Web Service Definition Language or WSDL is typically utilized to describe the web

service. It is an XML document containing the service name and location, supported

operations and their input and output data types. XML Schema metadata is utilized

to describe the data types available.

As SOAP utilizes HTTP as a transport medium, it is accessible from a browser context.

However, because it uses XML message format, the same performance

considerations apply to it as with plain XML messages.

15

 3.3 JSON

JavaScript Object Notation is a lightweight data interchange format for storing

unordered name/value pairs (Crockford 2008, 136). It is a text format, allowing both

human and machine readability. Although the format is a subset of JavaScript

language, tools for processing it have been implemented in many popular

programming languages. JSON has become a de facto standard data format in web

applications (Freeman 2014, 116).

As JSON is technically a piece of JavaScript code, it can be parsed from the text

representation to a JavaScript object with eval() function. Using eval() is not

recommended however, because no verification of correctness is applied to parsing.

The recommended parsing method is utilizing the JSON.parse() method provided by

modern JavaScript environments to guard against malformed or maliciously built

JSON data (Crockford 2008, 139).

While JSON data format solves many problems as an efficient data interchange

format, it is not without its faults. JSON lacks a native definition for storing dates. By

default the JavaScript date objects are encoded in JSON as strings. This means there

is a risk of decoding errors when data is utilized across different programming

languages and back-end systems which may expect different kind of encoding.

 3.4 REST

Representational State Transfer or REST is a software architecture style to build web

services. The requested URL identifies the data that is being operated on and the

HTTP method identifies the operation to be performed (Freeman 2014, 551). REST

includes no metadata to describe the service or message data content. The

architecture utilizes existing HTTP command verbs to map common persistent

storage activities as presented in Table 1.

16

Table 1. Mapping HTTP commands to CRUD activities

HTTP Command CRUD Activity

POST Create

GET Read

PUT Update

DELETE Delete

Restful services are inherently stateless. This goes hand-in-hand with single-page

application architecture by reducing the overall complexity of a system because it is

no longer necessary to coordinate application state in the server (Richardson et al.

2007, 323).

Stateless architecture presents a challenge in transaction management when such

functionality is required. There is no concept of grouping a set of REST service calls to

form a transactional unit of work. Often the best way to overcome this limitation is to

move parts of the business logic to server side, and executing it via web services.

 3.5 Databases and legacy systems

Relational databases and legacy systems often utilize a proprietary binary protocol to

access their services. At the lowest level, web browsers can only support HTTP

protocol. Therefore direct access to services that require a specific protocol built on

TCP/IP is beyond capabilities of a web browser. To overcome this problem, an

application server or an integration platform could be utilized to convert the data to a

preferred format on-the-fly.

 4 Modularity and dependency management

In the JavaScript context, a module is a function or object that has a public interface

but keeps its state and implementation private (Crockford 2008, 40). In addition to

17

promoting loose coupling, re-usability and maintainability, particularly important

function of modules in JavaScript is to prevent conflicts with the global variables.

Unlike many other programming languages, the JavaScript provides no language

constructs for modularizing the source code of an application (Flanagan 2011, 246).

This has led to various developments to combine other language features to provide

module systems in JavaScript applications.

Asynchronous Module Definition or AMD specifies a JavaScript API to define modules

and to load them asynchronously (De 2014, 145). It is a popular solution for solving

the problem of the lack of native module definition and loading features in JavaScript

and is widely supported in libraries and frameworks.

 5 Build process and application deployment

At first it may seem unnecessary to have a build process for an interpreted language,

since there is no compilation or linking process required to produce a runnable

application. However, there are many areas where project data needs transforming in

order to become production ready.

Minification is a process of removing information from source code that is

unnecessary from the point of code execution at run-time (Stefanov 2010, 36). This

means removing white space and comments while renaming variables and functions

to have as short as possible names. Minification process significantly reduces

application size and improves run-time performance when loading pages.

Another performance optimization is combining different source code files together

in one file. This process is referenced as concatenation (Foster et al. 2014, 100).

Concatenation allows to reduce the amount of HTTP calls to fetch the necessary

JavaScript files and thus optimize the application start-up time.

18

A common build process task is to perform a static source code analysis that finds

code that is syntactically valid but potentially a cause of program errors. This process

is referred as linting. The lint tool has its roots in early C language compilers, where it

was used to supplement the compiler warnings. A popular tool for performing this

analysis for JavaScript code is JSLint. It defines a stricter subset of the JavaScript that

is better suited to professional development (Crockford 2008, 115).

 6 Data binding and validation

 6.1 Templates

Template systems convert data into display elements (Mikowski et al. 2014, 209).

They are used to separate the application logic from the presentation. A template

provides a skeleton HTML fragment with placeholders for dynamic data. When the

page is rendered, the framework applies the dynamic data to the templates.

There are two styles of templating systems: embedded and toolkit. Toolkit style

template systems have no standardized syntax, thus each templating engine defines

its own ways of building the user interface using a domain-specific language.

Embedded style templating systems utilize the host programming language to build

the template representation. Mikowski et al. (2014, 209) recommend against using an

embedded style templating systems, because they make too easy to intermingle

business logic with display logic.

There are multiple options on where the template data can be defined. The only

restriction is that the framework's templating engine must be able to access them at

application run-time. Popular options are embedding templates in the application

view code, embedding inside HTML script tags or using separate files for template

data.

19

 6.2 Binding data to views

Application frameworks based on the Model-View-Controller design pattern hold the

application data entities in model objects (Pressman 2005, 580). When the

application displays data to user and when user makes changes to that data, the

application must have a way to synchronize changes between the model and the user

interface. Data binding refers to the process of linking data from the model with what

is displayed in a web page (Dayley 2014, 400).

One-way binding means that a value is taken from a model and inserted into a HTML

element (Freeman 2014, 237). It is suitable for data that is not modified by the user.

Two-way binding means that changes are tracked in both directions (Freeman 2014,

240). This allows both changes in the model to be reflected in the user interface, and

changes made by the user to be reflected in the data model.

Some application frameworks provide automatic two-way data binding. This allows

developers to build views without needing to manually write synchronization code to

keep track of data model and user interface changes. As enterprise applications

often consist of many form based views with a significant amount of user input, this

is an important consideration when choosing a framework. With manual data

binding, a lot of developer work could go into extracting user input from the different

views and moving the data between the DOM and the model.

 6.3 Validating user input

Validation is the process of ensuring technical correctness of the data entered by the

user. For example, a phone number typed in by the user might be required to

conform to a specific set of rules in order to be considered valid. Validation was one

of the first feasible uses for JavaScript in early web applications (Ullman 2012, 10).

There are multiple ways to implement validation. The first option is to program the

validation rules using string manipulation and other language constructs of the

JavaScript programming language. However, JavaScript also supports standard regular

20

expressions. Regular expressions can be used to write compact, rule-based templates

(Moseley 2007, 144). Template patterns are tested against user input to determine

the validity of the data. Using regular expressions allows more compact

representation of validation rules, so it is preferred over programmatic checking of

the input data.

The natural advantage of a single-page application is that the data validation can be

much more extensive, because application model data resides fully in the client. This

way the validation process can use full model information to implement the

validation rules that can have complex dependencies instead of basing the rules on

data only shown on the current application view.

 7 Testing

Testing is an important part of software quality assurance. Automated testing can

support both the application building process and the validation process. Software

defects can be categorized in two classes. A new defect is an error that appears after

introducing a new feature in the software. A regression defect is an error that

reappears in previously working part of the software. Saleh (2003, 9) argues that the

number of new defects and the regression defects becomes unmanageable when the

code base becomes complicated and unit testing is not available.

 7.1 Unit testing

Unit testing focuses verification effort on a software component or module

(Pressman 2005, 394). Passing conditions of a unit test is defined by assertions. The

assertion function validates that a condition is valid, and if not, it throws an error. If a

unit test throws an error, the test is considered to have failed. A test method can

include one or more assertions. All assertions have to pass in order for the test

method to pass (Saleh 2003, 74).

21

Pressman (2005, 395) argues that selective testing of execution paths is essential task

during the unit test. Test case design should take into account possible errors in

computation, incorrect comparisons and improper flow control.

Mock objects implement the API of the required components but generate

predictable pre-generated results. The behavior of the mock objects is altered to

create different scenarios in which to test code (Freeman 2014, 632). This allows

testing the component in contained environment without actually needing to

reconfigure the application environment.

 7.2 Integration testing

Pressman (2005, 397) defines integration testing as a systematic technique for

constructing the software architecture while at the same time conducting tests to

uncover errors associated with interfacing. Already unit tested components are

connected together incrementally to ensure that they work correctly together and

that their interfacing is not producing unintended side-effects.

Compared to unit testing, largely the same testing tools can be utilized to design and

run integration tests. However, because different components and their interfaces

have to be set up independently, the effort required to build an integration test could

be significantly larger than building a simple unit test.

 7.3 Continuous integration

When development team members develop software independently, integrating

changes to common code base may result in unforeseen consequences. Continuous

integration is a process that helps to mitigate this problem. Roemer (2013, 138)

defines the role of continuous integration to aggregate and test application code to

detect integration errors early and automatically.

22

Continuous integration is typically implemented in a dedicated server that constantly

monitors changes in the code base. When a change is detected, application source

code is checked out from the revision control system. Then the server proceeds to

build the application and run its test suite. Finally, any build errors or test failures are

reported to the development team.

 7.4 Testing considerations in single-page applications

JavaScript, being a dynamic language offers some advantages in automated testing

compared to traditional statically typed languages. Mock objects of the business data

structures are easily dynamically constructed at run-time, and they can be stored in

JSON format without any external library dependencies.

Application code should be written and structured with a mindset that allows

isolation of different components of the software. This in turn allows easier

implementation of unit tests. According to De (2014, 136) writing tests consistently

will make code more structured, flexible and easier to use by other team members.

Because single-page applications construct their views by dynamically altering the

DOM, it is guaranteed that at least some parts of the application depend on having

the DOM objects available in the test environment. This can be accomplished by

running tests in a browser simulator. A browser simulator library provides a

JavaScript API for manipulating the DOM objects similarly to a real web browser

(Roemer 2013, 140). The advantage of a browser simulator is that the test suite can

be run in command-line scope without any dependencies to web browsers installed

in the system.

Testing with actual web browsers requires careful consideration. The application

requirements could demand compatibility with a broad range of different hardware

and software platforms that could make the effort to run test cases for all

combinations of configurations considerable. On the other hand, if the application

targets a hybrid platform, the browser is provided either by the platform or

23

embedded in the application package narrowing the range of testing targets

considerably. Mikowski et al. (2014, 143) argue that if browser interaction is required,

the value of automated testing is diminished greatly as the cost of implementation

rises.

 8 Framework study: Backbone.js

Backbone.js is a JavaScript application framework for building web applications. It

aims to provide a minimal set of tools to structure a web application (De 2014, 8).

The framework is open sourced and distributed under the MIT license. It can be

easily integrated with existing web applications because the different library

components can be utilized on case-by-case basis (Foster et al. 2014, 10). This allows

developers to upgrade existing applications gradually.

Backbone.js provides the basic building blocks for constructing applications: Model,

Collection, View, Router, Events and Sync. Application data entities are represented as

Models. Models of similar type are accessed as Collections. For user interface,

Backbone.js provides Views to display application data, and Router to connect the

Views to form a full application. Events are utilized to send messages between

objects. Finally, Sync connects Models and Collections to a web service back-end for

data persistence.

Because of the minimal design approach, different extensions extending specific

parts of Backbone.js have become popular. Many extensions are available and they

are useful for supplementing the core Backbone.js feature set based on development

project requirements. Minimal design approach also enables developers to quickly

study the source code and perform changes on fundamental framework to suit

project needs.

Backbone.js depends on jQuery and Underscore.js libraries. The jQuery library

provides Backbone.js a unified access to DOM, event handling and support for REST

API (Foster et al. 2014, 10). Underscore is a generic utility library with an emphasis on

24

functional style programming. It aims to supplement JavaScript's low number of built-

in utility methods and to enable writing of more intuitive and concise code (De 2014,

10).

 8.1 Views

View encapsulates any logical part of the user interface. It manages event handling,

model changes and business logic in a specific region within the application. Views

enable developers to build re-usable components and enhance the modularity of the

application (Foster et al. 2014, 41).

The concept of a view should be applied without any prejudice. A valid use for a

Backbone.js view could range from a single data item in a list all the way to a landing

page of an enterprise application. Different views serving different roles can have

varying life-cycle: a landing page of an application will persist for entire lifetime of an

application session, while data item in a list sub-view could be very short-lived.

If a view has references to external objects, they should be cleared when the view is

destroyed to allow JavaScript engine garbage collection to work. If a method

remove() is defined in view, the framework will automatically call it on removal of the

view. Failure to clear object references leads to memory leaks (Foster et al. 2014, 50).

Backbone.js provides basic templating support provided by the Underscore library.

Templates can consist of HTML snippets and JavaScript statements to build the UI

representation of the model data. Template data can be embedded in the DOM or

defined in the view as a JavaScript string.

Views can be extended to provide hierarchy of generic and specific views. When

building views that have similarities, common functionality can be moved to a base

class. This way the boilerplate code required to build each view can be reduced.

25

 8.2 Models

In Backbone.js, the Model object provides the basic data object. As enterprise

applications are often backed by relational database, the model objects typically

represents one row of data from a specific table in a database. At first it may seem

confusing why the framework provides a model type which could be represented

with standard JavaScript object, however after studying the model object it becomes

obvious that it provides much more features that a standard JavaScript object.

The first problem with standard JavaScript objects is that it is a non-trivial problem to

detect if the object state is changed (Foster et al. 2014, 56). Backbone.js models work

around this by providing get() and set() methods that keep track of attribute changes.

Models have built-in for support framework events that allow views to react to model

changes without additional functionality. This means that a view can listen to a

particular event of a model, and when the event is triggered, the view can update its

content automatically to reflect the change in the model.

Models have support for unique id property. When models are refreshed from the

back-end database, models with same ids are automatically merged. If a model has

urlRoot property, the framework can refresh its data from the back-end with the

fetch() method. The save() method allows to persist the model data to back-end. A

model data can be deleted from the back-end using destroy() method.

 8.3 Validation

In Backbone.js the validation is linked to the model objects. A model can perform

basic validation on its own data. This is accomplished by overriding the validate()

method. Validation is performed automatically when the model is saved on the back-

end. Validation can also be performed on model changes when validate parameter

supplied to set() method options.

26

A custom validate() method should return true if the model passes its validation

requirements. Any other return value is considered a validation failure (Foster et al.

2014, 62). The return value can be used to provide an object with key/value pairs

containing the fields that have failed the validation, and the error messages that

describe why the validation failed. This is useful for displaying validation errors in the

user interface.

 8.4 Events

Event handling in Backbone.js consists of two aspects. DOM event selectors and their

event handler functions are defined in the view's events property as key-value pairs.

These events are scoped to the part of the DOM that the view is responsible to

render.

Another part of the Backbone.js event handling is object events. A view can respond

to object events (e.g. a model or collection) and automatically re-render the view

when the underlying data model changes. The following Backbone.js objects provide

the events API built-in: Model, Collection, View, and Router along with the

Backbone.js main object (Foster et al. 2014, 31). In addition, events can be mixed in

with any object to provide for custom event handling needs.

Events are sent using a trigger() method with any Events API enabled object. The

trigger expects event name and optional arguments as parameters to be passed to

event listeners. The event names can be chosen freely, and there is no need to pre-

register events. The downside of this is that developer must take care when naming

the events to avoid name clashes between different components of the application.

Backbone.js main object can be used as a global event bus and utilized as a global

publisher/subscriber event service across a whole application. Because the Events

object can be mixed with any object, events can be utilized in more modular scope.

This is again one example where Backbone.js presents flexible programming model,

forcing neither global nor fine-grained object level events.

27

When the underlying view is destroyed, Backbone.js automatically removes event

listeners that are set up using listenTo() or listenToOnce() methods (Foster et al 2014,

50). However, developer must manually remove events that are initialized using on()

method and events that are bound to external objects to avoid memory leaks in the

application.

 8.5 Collections

Collection could be viewed as a result of a database query. It is a set of models that

share a similar type. Collections maintain their ordering and they can be sorted in any

way necessary by providing comparator function to reorder the data. Collection can

accept both models and standard JavaScript objects. Standard objects are

automatically converted to models before they are added in to a collection.

If a comparator function is specified, it is invoked whenever a new model is inserted

(Foster et al. 2014, 70). Collections automatically keep the set of included models

duplicate free. Models that already exist in the collection are merged with the

existing collection entries.

To integrate collections with persistence, similar interface is provided as with the

Backbone.js models. If an URL parameter is provided to a collection, its contents can

be loaded from the back-end with the fetch() method, and stored with the save()

method. To re-synchronize the collection data from the back-end server, collections

provide the update() method.

Collections support the Backbone's event framework. This way views can listen for

specific changes when the user interface needs to change according to changes in the

collections instead of needing to manually poll application data for changes.

When working with web services provided by a third party, it is often necessary to

make some conversions at the incoming data. For example, the raw data from a web

28

service may contain headers or metadata in addition to what is expected to be

inserted into a collection. For these cases, Backbone.js collections provide parse()

method, which can be utilized to convert the data to a more desirable format.

 8.6 Persistence

Sync object provides the means to load and store persistent data to server back-end.

When models and collections are loaded and saved, the sync object does most of the

actual work even when the developer might never call it directly.

By default Backbone.js provides persistence implementation with REST support

utilizing JSON data format web services. Overriding the default implementation

could provide any kind of protocol customized for the back end. For example, a XML

based protocol could be implemented to access a custom enterprise back-end.

The sync object can be re-purposed to support multiple data sources. This way an

application could utilize normal enterprise back-end when the user is online, but

revert to browser local storage for data persistence when offline.

 8.7 Routing and History

In single-page applications, the browser does not load a URL from the server on

application state transitions. Instead the views are created and destroyed by the

application logic. The router object maps persistent URLs to different views of an

application and tracks the application state. Variables can be encoded in parameters

of the URL.

Relative URLs in the application and their respective routing actions are defined as

key-value pairs in the routes property. The routing action receives any parameters

supplied in the URL. It is the responsibility of the routing action to initialize a view

and signal it to display a specific application state.

29

Another related aspect related to routing is the history object that provides browser

navigation history support. This is necessary because technically single-page

application stays on one page for the whole life-cycle of the application. The history

object enables forward and backward buttons in the browser to work similarly to

traditional web applications.

 8.8 Module system

Backbone.js provides no module system by its own. However, it supports the

common Asynchronous Module Definition format for defining and loading modules.

If no module system is used, each JavaScript source file must be loaded in its own

HTML script tag (De 2014, 110). This approach has two problems. First, it will be

necessary to define the script tags in correct order to avoid errors related to a script

referencing another script that is not yet loaded. Secondly, the browser must load

each source file sequentially resulting poor application loading performance.

The Asynchronous Module Definition avoids these problems. Developer can specify

the dependencies in any order, and the module system automatically loads them in

correct order. Loading also happens asynchronously which enables parallel module

loading for better performance.

 9 Framework study: AngularJS

AngularJS is a web application framework that is sponsored and maintained by

Google (Freeman 2014, 3). It is distributed under open source MIT license. The

framework enforces a Model-View-Controller application structure. AngularJS brings

many familiar server-side concepts to single-page application context, like

dependency injection and concept of services.

AngularJS is self-contained in terms of library dependencies. If AngularJS detects that

jQuery is available at start-up, it will be used. If no jQuery is available, AngularJS uses

30

a light-weight internal implementation called jQlite. This implementation provides a

subset of jQuery library features that enables AngularJS to run (Freeman 2014, 400).

 9.1 Application

AngularJS application is implemented by placing special tags in the HTML view

template. These special HTML elements and attributes instruct the framework to

interact with AngularJS components that are used to build an application.

AngularJS components have different responsibilities, however, they share a number

of common qualities. Components that have dependencies on each other support

dependency injection (Freeman 2014, 212).

Application life-cycle consists of three phases: bootstrap, compilation, and runtime

data binding (Dayley 2014, 401). Bootstrap occurs when the initial application page is

loaded and the browser is instructed to load the AngularJS JavaScript library. In the

bootstrap phase the framework is initialized and the application root directive is

located.

The second step in the application life-cycle is the compilation phase. It occurs after

bootstrap is completed, and presents the initial view using static DOM. In the

background the framework traverses the static DOM and proceeds to collect and link

the directives with their respective scopes to provide the dynamic view.

The final step in the life-cycle is the runtime phase. The applications stays in runtime

phase until the page is reloaded, when the user navigates away from the page, or

when the browser is closed. In runtime phase the framework constantly updates the

view to reflect the changes in scope.

As AngularJS compiles the templates in the second application life-cycle phase, it

trades faster runtime performance of views for slower application start-up time. As

Freeman (2014, 45) notes, the AngularJS application start-up time is often negligible

31

with modern browsers in desktop computers, however, this might become an issue

with mobile browsers running on less powerful hardware.

 9.2 Controller

Controllers are objects that manage the data flow between models and views. A

typical AngularJS application consists of multiple controllers for each aspect of the

application. AngularJS conventions recommend controller names to be suffixed with

Ctrl (Freeman 2014, 212).

AngularJS uses $scope object to interface the data binding between controller and

view. When a new instance of a controller is created, a new child scope that is

specific to that controller is created as well (Dayley 2014, 420). The controller is

responsible for the business logic attached to that scope. A controller is applied to a

view using the ng-controller directive.

 9.3 Views and Templates

AngularJS utilises HTML templates that contain special directives to instruct the

framework to do the page rendering. The main page should be considered as layout

template, and sub-views should be used to modularize the implementation of

different aspects of the user interface.

A view that is used as a sub-view to another view is applied as a partial template.

When the framework encounters an ng-include directive, it automatically retrieves

the HTML fragment and adds it to the Document Object Model (Freeman 2014, 250).

No boilerplate HTML is required in the partial template as the main view provides the

base layout around the fragment.

AngularJS template contains standard HTML combined with AngularJS specific

elements and attributes to build the view that is presented to the user. HTML portion

32

provides the static parts of the user interface, while expressions, filters and directives

manipulate the DOM to present the dynamic data from the scope model.

Expressions

Expressions are code that is evaluated within a scope. They are commonly used to

produce a dynamic value to HTML component text or attribute. Expressions are

enclosed in double brackets.

Expressions behave in many ways like JavaScript code, however, there are important

differences in scope and flow control. Property names evaluate against scope model

instead of global JavaScript namespace. No flow control conditionals, loops or

throwing errors within expressions are allowed.

Filters

Filters are a key element in AngularJS when model data needs to be transformed

from original representation to more user-friendly format. AngularJS provides many

standard filters for manipulating models and collections. Example filters for models

include formatting strings, dates or numbers. For collections, standard filters include

a sorting or limiting number shown of entries in a list.

Multiple filters can be chained together, and it is also possible to create custom

filters. Custom filters are created using Module.filter() method by providing a factory

function to generate a worker function (Freeman 2014, 351). The role of the worker

function is to perform the actual data transformation or formatting.

Directives

Directives are special HTML elements or attributes that are specific to Angular. They

enhance and modify these elements to provide application functionality, such as

event handling or data validation. Like expressions, developer can utilize scope model

variables and use expression syntax when defining directives.

33

Developer can also implement custom directives when built-in directives are not

applicable. Custom directives are built using Module.directive() method. A directive

can navigate and modify the HTML elements anywhere in the Document Object

Model using jQuery selectors. Freeman (2014, 401) recommends to only modify the

children and descendants of the element passed to the directive to ensure that other

directive operations are not interfered.

 9.4 Scopes and Models

AngularJS uses standard JavaScript objects to represent application data models.

Models are exposed to the view by appending them to the $scope object in a

controller (Dayley 2014, 399). Scope object manages the data used in views, business

logic and server back-end.

AngularJS provides two-way data binding. This means that the model state is

automatically synchronized between the controller and the view. Model properties

are dirty checked by the framework in order to ensure that changes stay in sync. In

cases where the model is changed outside of the AngularJS context, the developer

can manually instruct AngularJS to update the bindings using the $apply() method.

A hierarchy of scopes can be created by nesting the controller directives in the

template. Child scopes are able to access parent scopes from a controller, however,

not vice versa (Dayley 2014, 426). If an already existing property is added in a child

scope, the property in the parent scope is not overwritten, but a new property is

created in the child scope.

Scopes can send and receive application events. $emit() method in scope sends an

event through parent scope hierarchy. All scopes that are ancestors to that scope can

receive the event. Similarly, $broadcast() method in scope is used to send an event

thought the child scope hierarchy. Each event has a mandatory name and optional

extra arguments that the event receiver can use as needed.

34

Scopes receive application events by setting up an event listener using $on() method.

This method expects to receive an event name and handler function as arguments.

As event names are global, care should be taken to avoid name clashes among

different events across scope hierarchies.

In addition to view specific scopes, AngularJS provides application level root scope.

The $rootScope object can be injected to other components and utilized as a global

data store for the application.

 9.5 Validation

In AngularJS, the validation is performed by a combination of HTML element

attributes and AngularJS specific directives in the HTML template. The framework

honors the standard HTML element attribute keywords such as type and required

(Freeman 2014, 294). When the standard elements are not flexible enough to

validate the user input, the validation directives can be utilized.

The framework provides several built-in directives that are suitable for validation. The

ng-minlength and ng-maxlength directives allow to specify minimum or maximum

length of the user input. The ng-pattern uses a standard regular expression pattern

that must match the contents of the validated element for validation to succeed. The

ng-change directive evaluates an expression against the input element, and the

expression returning true indicates successful validation. If none of the provided

directives are suitable for the validation task at hand, a custom directive can be

written to handle these situations.

AngularJS makes use of HTML classes to report the validation results. Valid element

receives the ng-valid class, while on invalid element the ng-invalid class is inserted.

The classes can be combined with Cascading Style Sheets to report the validation

status in the user interface. The framework updates these elements after every

interaction allowing instant feedback on user actions (Freeman 2014, 300).

35

 9.6 Services

Services are singleton objects meant to handle business logic. To promote loose

coupling and re-usability, view-independent logic should be implemented in a service

instead of a controller.

Life-cycle of a service differs from a controller. Controller life-cycle is tied to a view,

and when user switches to another view, the controller is destroyed. Services on the

other hand are instantiated at application start-up, and they survive the lifetime of

the application.

There are both built-in and custom services. A common example of a built-in service

is $http, that is used to make AJAX request to a server. Custom services built by the

developer behave exactly as built-in services. They support all capabilities of

AngularJS components, such as dependency injection.

Custom services can be tied specifically to one application component and might

have no other uses. On the other hand, a service that addresses a broad scope of

requirements could be reused in multiple applications.

 9.7 Dependency Injection

Dependency injection or DI means resolving component dependencies and

instantiating them automatically at runtime (Freeman 2014, 212). It allows easier

integration between different modules in application and reduces initialization code.

While dependency injection is widely used in server-side programming languages, it

rarely implemented in JavaScript (Dayley 2014, 411).

Because JavaScript is a dynamic language, it presents additional challenges for

dependency injection. Static data type declarations do not exist in source code and

thus cannot be used as hints to determine what dependencies should be injected to a

36

variable. AngularJS works around this limitation by looking at the parameter names in

a function and then proceeds to inject dependencies with matching names available

at the injector service.

AngularJS provides dependency injection through providers and the $injector service.

Provider functionality is defined by developer in AngularJS components. The $injector

service can then provide dependency injection to automatically resolve these

dependencies at run-time (Freeman 2014, 616).

An important consideration with dependency injection is that it should be verified

that the possible code minification in the application build process is not breaking the

application functionality. This is most likely to happen if implicit annotation syntax is

utilized in Angular. In most cases, the inline annotation syntax is the most robust way

to implement dependency injection in Angular, and does not suffer any side effects

from the use of code minification tools.

 9.8 Routing and History

Routing in AngularJS is handled by the $route service. It is responsible for mapping

application URLs to partial templates. New routes are added by calling the when()

method and specifying route and template information in the method parameters.

Routes consist of static path components and route parameters. Parameters can

match one or more segments depending on their configuration. Two types of route

parameters are available: conservative and eager. The conservative parameter will

match only one segment, while the eager parameter tries to match as many

segments as possible (Freeman 2014, 590). Conservative parameters are returned to

the route handler as-is. Eager parameters are automatically grouped into an array.

They are particularly useful for handling optional values in the application routes.

37

 9.9 Module system

The framework provides integrated support for modularizing an application. Each

view has a single module assigned to it via the ng-app directive (Dayley 2014, 399).

Additional modules can be added to main module as dependencies.

An AngularJS module is built by defining the objects that it provides. Full application

is built by linking different modules through dependency injection. In large scale

applications it is important to divide the components into logical modules. Building

one directional dependencies between modules promotes loose coupling and leads

to more maintainable and reusable code base.

A module consists of a configuration phase and a run phase (Dayley 2014, 412). The

configuration phase executes when a module is defined. Any providers are then

registered with the injector service. Run phase executes after configuration phase,

and implements necessary operations to instantiate the module.

There are no technical limitations on how modules can be organized. Different

components of the same logical module can be arranged in different source files.

Popular strategies are organizing by feature, where all components are placed in a

module that implements one application feature, or organizing by type, where all

components of same type are put into a module.

 9.10 Testing

AngularJS provides an optional module called ngMock, which provides tools for unit

testing (Freeman 2014, 624). The module needs to be downloaded separately

because it is not intended to be included in production release of an application.

The ngMock module helps to isolate the different components in the software by

facilitating the creation of mock objects of the components that are required by the

component under test. It provides mock services of commonly used built-in services,

such as $http or $log. The angular.mock object provides methods that load modules

38

and allows dependencies to be resolved in the unit tests (Freeman 2014, 632).

Combining these features together the ngMock module enables all aspects of

component inputs and outputs to be simulated and measured, allowing a broad

coverage of unit tests to be written.

 10 Conclusions

Single-page browser applications provide many technical advantages compared to

traditional web applications. Modern web technologies enable user interface

responsiveness and usability that closely matches desktop applications. Complex

logic can be applied to the data presented in the user interface without a round-trip

to the web server. Another technical advantage is that the application state is fully

managed on client. Traditional web applications have separate state tracking in client

and in server, which leads to duplication of responsibility and is a potential source of

application errors.

Another consideration is the development team skill set aspect. With single-page

application frameworks the majority of a web application can be constructed using

just one programming language. In traditional web applications there is always

JavaScript as client-side language, and some other programming language that is

used to implement the server-side functionality. While single-page applications in

enterprise context will usually still need an application server to provide the back-end

services, the majority of the application development work is moved to the client and

therefore there is less need for server-side expertise.

The challenges with single-page applications in enterprise context often lay in the

data integration. Enterprise software commonly relies on multiple back-end systems

using varying protocols to access them. Accessing these systems as-is from a single-

page web application could range from easy—such as a REST web service utilizing

JSON data format—to impossible—such as a relational database or legacy system

utilizing a binary protocol. As enterprise application development teams typically

have experience with server-side technologies, it is often the easiest route to use an

39

application server or integration platform to convert and proxy the various enterprise

services to the single-page application in an easily digestible format.

Backbone.js is a good match when the application in development has need for

highly flexible and customizable framework. Backbone.js also has an advantage when

applied to an existing application as retrofit, because the framework feature set can

be applied partially and the framework itself is very light-weight.

AngularJS is well suited for a typical form based applications that involve a lot of user

input processing. The automatic two-way data binding enables better productivity,

because developers have no need to write view and model synchronization code

manually. Built-in module system and dependency injection allow building a highly

decoupled and modular application structure to ensure a maintainable code base

when the project grows. Finally, the integrated testing facilities help isolating the

software components in a project allowing thorough unit testing.

Both frameworks are released under open source license that enables studying and

modifying the frameworks to better suit the project under development. However,

the minimal approach of Backbone.js makes it easier for a developer to understand

the inner workings of the framework and modify or extend its functionality as

necessary. Because AngularJS is larger both in scope and code base, it makes more

sense only to extend its functionality at documented extension points. At the same

time, when the application requirements are well aligned with the AngularJS feature

set, it would take a non-trivial amount of extensions and/or modifications to

Backbone.js in order to match the scope of AngularJS.

Final consideration is the learning curve. Developers with web background should

find Backbone.js easy to learn, because it brings a more structured approach to

otherwise already learned skill set. AngularJS takes a different route, providing a

design that is built on a number of features that are more common on the server-side

platforms. On the other hand, developers with enterprise application background are

often familiar with concepts like dependency injection from the similar

40

implementations in server-side languages and can quickly take advantage of these

features.

41

References

Bean, J. 2010. SOA and Web Services Interface Design.
Morgan Kaufmann.

Crockford, D. 2008. JavaScript: The Good Parts.
O'Reilly Media.

De, S., 2014. Backbone.js Patterns and Best Practices.
Packt Publishing.

Dayley, B. 2014. Node.js, MongoDB and AngularJS Web Development.
Addison-Wesley.

Flanagan, D. 2011. JavaScript: The Definitive Guide, Sixth Edition.
O'Reilly Media.

Foster, C., Feldman, A., Tonge, D, Freo, P., Branyen, T. 2014. Developing a Backbone.js
Edge. Bleeding Edge Press.

Freeman, A. 2014. Pro AngularJS.
Apress Media.

Gillham, B. 2010. Case Study Research Methods.
Continuum International Publishing.

Moseley, R. 2007. Developing Web Applications.
John Wiley & Sons.

Odell, D. 2009. Pro JavaScript RIA Techniques.
Apress Media.

Mikowski, M., Powell, J. 2014. Single Page Web Applications.
Manning.

Pressman, R. 2005. Software Engineering: A Practitioner's Approach. Sixth Edition.
McGraw-Hill.

Richardson, L., Ruby, S. 2007. RESTful Web Services.
O'Reilly Media.

Roemer, R. 2013, Backbone.js Testing.
Packt Publishing.

Saleh, H. 2013, JavaScript Unit Testing.
Packt Publishing.

42

Stefanov, S. 2010. JavaScript Patterns.
O'Reilly Media.

Ullman, L. 2012. Modern JavaScript: Develop and Design
Peachpit Press.

43

Appendices

Appendix 1: Common application concepts between Backbone.js and AngularJS

Concept Backbone.js AngularJS

Application event handling Events can be sent using
trigger() method and
handled using on() or
listenTo() methods.

A scope can send events
upward in hierarchy with
$emit() method and
downward with
$broadcast() method.
Events are handled using
$on() method.

Library dependencies Underscore.js and jQuery No external dependencies,
although jQuery will be
used if found

Modularizing view
independent business logic
and utility methods

AMD modules should be
used to separate logic from
view code.

Utility methods and
business logic are placed in
services.

Routing Backbone.Router object
defines routes hash where
route strings and handlers
are matched.

$routeProvider.when()
method is used to map
URL routes, templates and
controllers.

44

Appendix 2: Common MVC concepts between Backbone.js and AngularJS

Concept Backbone.js AngularJS

Collection data Backbone.Collection
represents a set of
Backbone.Models.

Collections are standard
JavaScript arrays.

Collection ordering A comparator function can
be specified for a
collection. A collection is
reordered according to
comparator when new
entries are added.

Standard JavaScript
constructs for ordering
arrays are used

Data binding Developer must write view
specific code to update the
model and the DOM as
needed.

Model and DOM changes
are automatically kept
synchronized.

Data persistence Models and collections are
loaded and stored to back-
end using fetch() and
save() methods.

Developer must write
controller specific code for
loading and storing
changes on the back-end.

DOM event handling Each view has events
object where source
selectors and target
handler functions are
defined.

Events are bound using
directives in templates.

Model data Each view object has
model property that is
used to assign model data
specific to the view.
Models are implemented
by extending
Backbone.Model.

Each view has $scope
object where model data is
appended. Models are
standard JavaScript
objects.

Validation Model.validate() method is
executed by the
framework before a model
is saved to the back-end.
Validation should return
either true or an object
with failed field names and
error descriptions as
key/value pairs.

Validation directives in the
input element attributes
are configured in the
template (e.g. ng-change,
ng-minlength, ng-
maxlength, ng-pattern, ng-
required)

