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ABSTRACT 
 

Computational Fluid Dynamics (CFD) is the branch of Fluid Mechanics and 
Computational Physics that plays a decent role in modern Mechanical 
Engineering Design process due to such advantages as relatively low cost 
of simulation comparing with conduction of real experiment, an 
opportunity to easily correct the design of a prototype prior to 
manufacturing of the final product and a wide range of application: 
mixing, acoustics, cooling and aerodynamics. This makes CFD particularly 
and Computational Physics in general the tools, desirable to know for 
every Mechanical Engineering product developer. 
 
This project is aimed to provide the Mechanical Engineering department 
of HAMK with sufficient study material for a potential course in the 
future that will introduce HAMK Mechanical Engineering students to 
Computational Fluid Dynamics. The study material contains parts of 
theory, describing the ideas behind derivation of governing equations of 
Fluid Dynamics, their discretization methods, fundamental algorithms of 
CFD, part of boundary layer theory essential for CFD and turbulence 
RANS models, which is the required minimum to study prior to the main 
practical part, consisting of a link to open-source CFD tutorials for ANSYS 
FLUENT and a simple example done in Mathcad 15, illustrating the work 
of algorithms and mathematics, covered in theory. There is also an 
introduction to the Pi-theorem and its applications in the separate 
chapter, which provides students with a toolbox for a proper analysis of 
results, gained from several simulations. 
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1 INTRODUCTION 

Due to permanently falling cost of computational machinery and its 
increasing productivity numerical methods for mathematical modelling of 
complex physics processes are turning to be more economically feasible 
and commercially attractive techniques in mechanical engineering design 
work. Therefore, skills of appropriate modelling of physics processes 
become more and more crucial for employers, when they recruit new 
workers for mechanical engineering design jobs. 
 
The aim of this thesis is to prepare the study material that can be used 
for teaching and self-study purposes, when HAMK’s Mechanical 
Engineering department will organize the course/module introducing the 
students to field of computational physics. Computational Fluid Dynamics 
were chosen to be the main branch of this work due to several reasons. 
First, CFD is apparently the only available tool for students and engineers 
to study complex behaviour of fluids that cannot be described by 
conventional analytical methods using only pen and paper. Second, CFD 
is a branch of computational physics that has the same popularity as 
Finite Element Analysis due to wide variety of areas of usage and their 
importance: aerodynamics, mixing, cooling, acoustics, combustion, etc. 
 
This work consists of two parts. The first part is theory, covering such 
topics as governing equations of Fluid Dynamics, discretization methods 
of governing equations and algorithms of their solving, tips of proper 
modelling of boundary layer, RANS turbulence models and brief 
description of principles of Large Eddy Simulation (LES). This theory is a 
necessary minimum to read prior to start of second part - practicing, 
containing link to tutorials, done in ANSYS FLUENT, and example, done in 
Mathcad 15, aimed to show the work of mathematics covered in 
theoretical part of this thesis and reference to open-source CFD tutorials. 
Finally, this work contains the key information about Pi-theorem, which is 
a useful tool for proper analysis of results of multiple experiments and 
simulations especially in Fluid Mechanics and creating mathematical 
models based on gathered data with necessary level of accuracy. 
  



2 
 

 
 

2 THEORY 

2.1 Lagrangian versus Eularian approach 

In theoretical physics there exist two general approaches describing the 
motion of fluid flow: Lagrangian and Eularian. 
The Lagrangian approach or control mass approach is based on tracking 
of properties for all mass particles of system as illustrated in Figure 1. 
 

 

Figure 1. Tracking the path of a single fluid particle, done with Lagrange 
approach 

A good example of an application of the Lagrangian description is the 
motion of a plane flying from point A to point B. In this case the centre of 
the mass of the plane is considered to be one single particle with six 
degrees of freedom traveling on distances several orders higher than size 
of vehicle. The system has only one mass particle what makes the 
mathematical model of system to be relatively easy to work with. 
According to observations of experimental physics, this approach is 
potentially the closest to reality and mathematically the most accurate in 
utmost scenarios: when the continuous fluid is equally split to mass 
particles with size and mass of fluid molecules, appropriate particle 
collision model and boundary conditions are adjusted. However, this 
approach is extremely difficult to solve. For instance, in one cubic 
centimetre of water with 300K temperature there are approximately 
3.33 × 1022 water molecules, and every single molecule has to be 
described by its own Lagrangian function. Finally, it means the need to 
solve system of 3.33 × 1022 × 4 differential equations: one equation per 
each component of molecule’s momentum plus one equation for energy 
of molecule. Even after applying the numerical approximations and using 
computational power of modern supercomputers this problem will 
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remain overcomplicated and computationally expensive. Therefore, the 
Lagrangian approach usage is currently limited. 
 
The Eularian approach or Control Volume approach on the other hand 
describes the properties of flow (e.g. velocity, pressure, temperature) as 
functions of time and space. Instead of modelling the particles of fluid 
flow, the fluid is assumed to be a continuous medium. In other words, 
this means that Eularian description requires selecting of the volume field 
(e.g. space inside the pipe, volume around the plane or car), inside which 
one wants to determine the properties of flow as shown in Figure 2: the 
“squeeze” of each spatial cell to infinitely small size will result to 
analytical solution of fluid transport. And after appropriate setting of 
boundary conditions and solving governing equations one can obtain flow 
properties as field functions inside bounded volume. Due to 
independence of characteristic size from properties of fluid, Eularian 
description appeared to be the most commonly used method for solving 
problems of CFD. (www.quora.com 2015). 
 

 

Figure 2. Visualization of flow as function of time and space done in 
Eularian approach. The “squeeze” of each spatial cell to 
infinitely small size will result to analytical solution of fluid 
transport. 

Therefore, theory and computational methods, based on Lagrangian 
description will be skipped in this thesis project. 
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2.2 Governing equations. 

In order to derive the first governing equation, which is continuity 
equation, one has to consider the infinitesimally small fluid element as 
shown in Figure 3. 
 

 
 

Figure 3. Infinitesimally small volume (control-volume) element in 
Cartesian coordinate system. (Versteeg & Malalasekera 2007, 
10). 

The continuity equation states that the change of mass of a single fluid 
element equals to the difference between flows entering and leaving the 
flu-id element. The rate of change of mass of fluid element can be 
expressed as time derivative of density and constant volume of element. 
Hence change of mass is: 
 

𝜕

𝜕𝑡
(𝜌𝛿𝑥𝛿𝑦𝛿𝑧) =

𝜕𝜌

𝜕𝑡
𝛿𝑥𝛿𝑦𝛿𝑧 

 
To determine the flows entering and leaving the specified control 
volume, one has to consider three components of mass flow contributing 
to three different fluid velocity components in three orthogonal 
directions: 
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Table 1. Mass flow components due to different fluid velocity 
components. 

Direction 
Velocity 
component 

Mass flow component in exact centre of 
volume element 

𝑥 𝑢 𝜌𝑢𝛿𝑦𝛿𝑧 

𝑦 𝑣 𝜌𝑣𝛿𝑥𝛿𝑧 

𝑧 𝑤 𝜌𝑤𝛿𝑥𝛿𝑦 

 

Since the volume element has infinitesimally small size, the linear 
interpolation of flow components with respect to directions of 
contributing velocity components mathematically will be sufficiently 
accurate to estimate the flows on volume element faces as illustrated in 
Figure 4: 
 

Table 2. Mass flow components at centre and faces of volume 
element. 

Mass flow 
component at 
the centre of 
volume 
element 

Mass flow component 
entering the volume 

element 

Mass flow component 
leaving the volume 

element 

𝜌𝑢𝛿𝑦𝛿𝑧 
(𝜌𝑢 −

𝜕(𝜌𝑢)

𝜕𝑥

1

2
𝛿𝑥) 𝛿𝑦𝛿𝑧 (𝜌𝑢 +

𝜕(𝜌𝑢)

𝜕𝑥

1

2
𝛿𝑥) 𝛿𝑦𝛿𝑧 

𝜌𝑣𝛿𝑥𝛿𝑧 
(𝜌𝑣 −

𝜕(𝜌𝑣)

𝜕𝑦

1

2
𝛿𝑦) 𝛿𝑥𝛿𝑧 (𝜌𝑣 +

𝜕(𝜌𝑣)

𝜕𝑦

1

2
𝛿𝑦) 𝛿𝑥𝛿𝑧 

𝜌𝑤𝛿𝑥𝛿𝑦 
(𝜌𝑤 −

𝜕(𝜌𝑤)

𝜕𝑧

1

2
𝛿𝑧) 𝛿𝑥𝛿𝑦 (𝜌𝑤 +

𝜕(𝜌𝑤)

𝜕𝑧

1

2
𝛿𝑧) 𝛿𝑥𝛿𝑦 

 

 

Figure 4. Mass flows at faces of volume element (Versteeg & 
Malalasekera 2007, 11). 
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To obtain a flow difference at inlet and outlet faces one has to subtract 
the summed components at outlet faces from summed components at 
inlet faces, resulting in: 
 

(𝜌𝑢 −
𝜕(𝜌𝑢)

𝜕𝑥

1

2
𝛿𝑥) 𝛿𝑦𝛿𝑧 + (𝜌𝑣 −

𝜕(𝜌𝑣)

𝜕𝑦

1

2
𝛿𝑦) 𝛿𝑥𝛿𝑧

+ (𝜌𝑤 −
𝜕(𝜌𝑤)

𝜕𝑧

1

2
𝛿𝑧) 𝛿𝑥𝛿𝑦 − (𝜌𝑢 +

𝜕(𝜌𝑢)

𝜕𝑥

1

2
𝛿𝑥) 𝛿𝑦𝛿𝑧

− (𝜌𝑣 +
𝜕(𝜌𝑣)

𝜕𝑦

1

2
𝛿𝑦) 𝛿𝑥𝛿𝑧 − (𝜌𝑤 +

𝜕(𝜌𝑤)

𝜕𝑧

1

2
𝛿𝑧)𝛿𝑥𝛿𝑦

= −(
𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
)𝛿𝑥𝛿𝑦𝛿𝑧 

 
Finally, after the setting of equality sign between the rate of change of 
mass and mass flow difference will result in: 
 

𝜕𝜌

𝜕𝑡
𝛿𝑥𝛿𝑦𝛿𝑧 = −(

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
)𝛿𝑥𝛿𝑦𝛿𝑧 

 
That after several trivial rearrangements can be simplified to final form of 
mass continuity equation (Versteeg & Malalasekera 2007, 9 - 11): 
 

0 =
𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝐮)  

                                                                                                                      (2.2.1) 
Where: 
 

𝑑𝑖𝑣(ρ𝐮) ≡
𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
 

                                                                                                                      (2.2.2) 
 
𝜌 – Is fluid density as a field function of (𝑥;  𝑦;  𝑧;  𝑡). 
𝑢 – Is component of velocity vector u towards x-direction as a field 
function of (𝑥;  𝑦;  𝑧;  𝑡). 
𝑣 – Is component of velocity vector u towards y-direction as a field 
function of (𝑥;  𝑦;  𝑧;  𝑡). 
𝑤 – Is component of velocity vector u towards z-direction as a field 
function of (𝑥;  𝑦;  𝑧;  𝑡). 
𝑡 – Is time. 
 
Or: 
 

𝐮 = [
𝑢
𝑣
𝑤

]

(𝑥)
(𝑦)
(𝑧)

 

                                                                                                                       (2.2.3) 
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“𝑑𝑖𝑣(𝐚)” is called a divergence of vector “𝐚” (alternative notation: ∇ ∙ 𝐚). 
As an example, for vector a in Cartesian coordinate system: 
 

𝐚 = [

𝑎𝑥

𝑎𝑦

𝑎𝑧

] 

 

𝑑𝑖𝑣(𝐚) ≡ ∇ ∙ 𝐚 =
𝜕𝑎𝑥

𝜕𝑥
+

𝜕𝑎𝑦

𝜕𝑦
+

𝜕𝑎𝑧

𝜕𝑧
 

 
Equation 2.2.1 is valid for unsteady compressible three-dimensional flow. 
Further assumption of incompressible, steady flow will lead to next form 
of continuity differential equation: 
 

0 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
 

                                                                                                                   (2.2.4) 
 
for three-dimensional incompressible flow, and: 
 

0 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
 

                                                                                                                         (2.2.5) 
 
for two-dimensional incompressible flow. 
One can also show that term, equal to zero in eq. 2.2.1 is just one 
possible form of more generalized term: 
 

𝜕(𝜌𝜑)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝜑𝐮)  

                                                                                                                   (2.2.6) 
 
Where: 
φ – is arbitrary conservative intensive property (e.g. mass, momentum, or 
energy per unit mass). (Versteeg & Malalasekera 2007, 12 - 14). 
 
That combined with eq.2.2.1 can be further simplified to: 
 

𝜕(𝜌𝜑)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝜑𝐮) = 𝜌

𝐷𝜑

𝐷𝑡
 

                                                                                                                         (2.2.7) 
 
Where: 
𝐷

𝐷𝑡
 – is material derivative operator. Other names of material derivative 

are advective, convective, hydrodynamic, Lagrangian, particle, 
substantial, substantive, Stokes or total derivative. 
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Applying 2.2.7 to the rest conservative properties of flow (momentum 

and energy), the term 𝜌
𝐷𝜑

𝐷𝑡
 will turn to 𝜌

𝐷𝑢

𝐷𝑡
, 𝜌

𝐷𝑣

𝐷𝑡
, 𝜌

𝐷𝑤

𝐷𝑡
 for x-momentum, 

y-momentum and z-momentum respectively, and 𝜌
𝐷𝐸

𝐷𝑡
 for energy. Note 

that as rest of φ-properties E is also an intensive property, meaning that 
in SI units E will have dimensions of [m2/s2] instead of [kg*m2/s2]. Unlike 

for continuity, terms 𝜌
𝐷𝑢

𝐷𝑡
, 𝜌

𝐷𝑣

𝐷𝑡
, 𝜌

𝐷𝑤

𝐷𝑡
, 𝜌

𝐷𝐸

𝐷𝑡
 are not always equal to 0. 

Using the same concept of infinitely small fluid element, it’s possible to 
show that: 
 

𝜌
𝐷𝑢

𝐷𝑡
=

𝑑(−𝑝 + 𝜏𝑥𝑥)

𝑑𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
+ 𝑆𝑀𝑥  

                                                                                                                 (2.2.8) 
 

𝜌
𝐷𝑣

𝐷𝑡
=

𝑑𝜏𝑥𝑦

𝑑𝑥
+

𝜕(−𝑝 + 𝜏𝑦𝑦)

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝑆𝑀𝑦  

                                                                                                               (2.2.9) 
 

𝜌
𝐷𝑤

𝐷𝑡
=

𝑑𝜏𝑥𝑧

𝑑𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕(−𝑝 + 𝜏𝑦𝑧)

𝜕𝑧
+ 𝑆𝑀𝑧  

                                                                                                              (2.2.10) 
 
Where: 
𝑝 – is pressure as a field function of (𝑥;  𝑦;  𝑧;  𝑡). 
τ𝑥𝑥, τ𝑦𝑦, τ𝑧𝑧, τ𝑥𝑦, τ𝑦𝑥, τ𝑥𝑧, τ𝑧𝑥, τ𝑦𝑧, τ𝑧𝑦 – are components of Cauchy 

viscous stress tensor (see 2.2.11). 
𝑆𝑀𝑥, 𝑆𝑀𝑦, 𝑆𝑀𝑧 – are source terms, responsible for effects of other 

physical phenomena, e.g. if there is a need to consider effects of gravity 
force, then 𝑆𝑀𝑥 = 0; 𝑆𝑀𝑦 = 0; 𝑆𝑀𝑧 = −𝜌𝑔. 

 

𝜏𝑖𝑗 = [

𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

]  – Cauchy viscous stress tensor, representing 

effect of viscosity on fluid motion. 
                                                                                                                (2.2.11) 
 
Assuming that fluid is isotropic (all gases in fact are isotropic, only few 
liquids that contain significant amount of long polymer molecules show 
anisotropic behaviour) and Newtonian, meaning that 𝜏𝑖𝑗 is linearly 

proportional to local deformations 𝑠𝑖𝑗 (see 2.2.12), will give us next 

relations: 
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𝑠𝑖𝑗 =

[
 
 
 
 
 
 

𝜕𝑢

𝜕𝑥

1

2
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

1

2
(
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)

1

2
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

𝜕𝑣

𝜕𝑦

1

2
(
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)

1

2
(
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)

1

2
(
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)

𝜕𝑤

𝜕𝑧 ]
 
 
 
 
 
 

 

                                                                                                               (2.2.12) 
 

𝜏𝑖𝑗 = 2𝜇𝑠𝑖𝑗  

                                                                                                             (2.2.13) 
 
Where: 
𝜇 – is dynamic viscosity. 
 
Compressibility of fluid can be encountered by introducing the second 
viscosity “𝜆”, that gives linear relation of stresses to volumetric 
deformation, equal to 𝑑𝑖𝑣(𝐮) (see 2.2.14). (Versteeg & Malalasekera 
2007, 14 - 16). 
 

𝑑𝑖𝑣(𝐮) ≡
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
 

                                                                                                                     (2.2.14) 
 
Combining of 2.2.12, 2.2.13 and adding effect of compressibility will 
result in next formulas for Cauchy viscous stress tensor components: 
 

𝜏𝑥𝑥 = 2𝜇
𝜕𝑢

𝜕𝑥
+ 𝜆 𝑑𝑖𝑣(𝐮)  

 

𝜏𝑦𝑦 = 2𝜇
𝜕𝑣

𝜕𝑦
+ 𝜆 𝑑𝑖𝑣(𝐮)  

 

𝜏𝑧𝑧 = 2𝜇
𝜕𝑤

𝜕𝑧
+ 𝜆 𝑑𝑖𝑣(𝐮)  

 

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)  

 

𝜏𝑥𝑧 = 𝜏𝑧𝑥 = 𝜇 (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)  

 

𝜏𝑦𝑧 = 𝜏𝑧𝑦 = 𝜇 (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)  

                                                                                                               (2.2.15) 
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Substituting values of 𝜏𝑖𝑗 from 2.2.15 to 2.2.8, 2.3.9 and 2.2.10 will give: 

 

𝜌
𝐷𝑢

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑥
[2𝜇

𝜕𝑢

𝜕𝑥
+ 𝜆 𝑑𝑖𝑣(𝐮)] +

𝜕

𝜕𝑦
[𝜇 (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)] +

𝜕

𝜕𝑧
[𝜇 (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)] + 𝑆𝑀𝑥  

                                                                                                                      (2.2.16) 
 

𝜌
𝐷𝑣

𝐷𝑡
= −

𝜕𝑝

𝜕𝑦
+

𝜕

𝜕𝑥
[𝜇 (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)] +

𝜕

𝜕𝑦
[2𝜇

𝜕𝑣

𝜕𝑦
+ 𝜆 𝑑𝑖𝑣(𝐮)] +

𝜕

𝜕𝑧
[𝜇 (

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)] + 𝑆𝑀𝑦  

                                                                                                                    (2.2.17) 
 

𝜌
𝐷𝑤

𝐷𝑡
= −

𝜕𝑝

𝜕𝑧
+

𝜕

𝜕𝑥
[𝜇 (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)] +

𝜕

𝜕𝑦
[𝜇 (

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)] +

𝜕

𝜕𝑧
[2𝜇

𝜕𝑤

𝜕𝑧
+ 𝜆 𝑑𝑖𝑣(𝐮)] + 𝑆𝑀𝑧  

                                                                                                              (2.2.18) 
 
There isn’t much known about behaviour of “𝜆” as function of various 
flow and fluid properties. However, there is a suitable approximation for 
gases exists: 
 

𝜆 = −
2

3
𝜇  

                                                                                                                     (2.2.19) 
 
Combining 2.2.19 with 2.2.16; 2.2.17, 2.2.18 and applying several 
mathematical rearrangements will result into famous Navier-Stokes 
equations (Versteeg & Malalasekera 2007, 21 - 24): 
 

𝜌
𝐷𝑢

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥
+ 𝑑𝑖𝑣(𝜇 𝑔𝑟𝑎𝑑(𝑢)) + 𝑆𝑀𝑥  

                                                                                                                      (2.2.20) 
 

𝜌
𝐷𝑣

𝐷𝑡
= −

𝜕𝑝

𝜕𝑦
+ 𝑑𝑖𝑣(𝜇 𝑔𝑟𝑎𝑑(𝑣)) + 𝑆𝑀𝑦  

                                                                                                                      (2.2.21) 
 

𝜌
𝐷𝑤

𝐷𝑡
= −

𝜕𝑝

𝜕𝑧
+ 𝑑𝑖𝑣(𝜇 𝑔𝑟𝑎𝑑(𝑤)) + 𝑆𝑀𝑧  

                                                                                                                    (2.2.22) 
 
Where 𝑔𝑟𝑎𝑑(𝜑) denotes the gradient of scalar property “𝜑”: 
 

𝑔𝑟𝑎𝑑(𝜑) =

[
 
 
 
 
 
 
𝜕𝜑

𝜕𝑥
𝜕𝜑

𝜕𝑦
𝜕𝜑

𝜕𝑧]
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If operators of total derivative, divergence and gradient are expanded to 
form of partial derivatives, Navier-Stokes equations for compressible flow 
will get next form: 
 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) − 𝜇

𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + 𝑆𝑀𝑥  

                                                                                                                      (2.2.23) 
 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
) − 𝜇

𝜕

𝜕𝑦
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + 𝑆𝑀𝑦  

                                                                                                                     (2.2.24) 
 

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+ 𝜇 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
) − 𝜇

𝜕

𝜕𝑧
(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + 𝑆𝑀𝑧  

                                                                                                               (2.2.25) 
 
For incompressible two-dimensional flow system of equations 2.2.23, 
2.2.24, 2.2.25 is simplified to: 
 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) + 𝑆𝑀𝑥  

                                                                                                                     (2.2.26) 
 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) + 𝑆𝑀𝑦  

                                                                                                                     (2.2.27) 
 
From 2.2.23, 2.2.24, 2.2.25 it’s clearly seen that Navier-Stokes equations 
is a system of second-order partial differential equations that are known 
to have no universal solution methods. Hence, these equations currently 
re-main unsolved. However, importance of these equations in science 
and engineering applications is so huge, that Navier-Stokes equations 
became the reason to exist for Computational Fluid Dynamics as they are 
known today and Clay Mathematics Institute offers USD 1000000 reward 
to one who proves either existence and smoothness, or breakdown of 
Navier-Stokes equations’ solutions. 
 
For last conservative property, that is energy, one can show that 
governing equation for compressible flow will have a form: 
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𝜌
𝐷𝐸

𝐷𝑡
= −𝑑𝑖𝑣(𝑝𝐮) + 𝑑𝑖𝑣(𝑘 𝑔𝑟𝑎𝑑(𝑇))

+ [
𝜕(𝑢𝜏𝑥𝑥)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑥)

𝜕𝑦
+

𝜕(𝑤𝜏𝑧𝑥)

𝜕𝑧
+

𝜕(𝑢𝜏𝑥𝑦)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑦)

𝜕𝑦
+

𝜕(𝑤𝜏𝑧𝑦)

𝜕𝑧

+
𝜕(𝑢𝜏𝑥𝑧)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑧)

𝜕𝑦
+

𝜕(𝑤𝜏𝑧𝑧)

𝜕𝑧
] + 𝑆𝐸 

                                                                                                             (2.2.28) 
 
Where: 
 

𝐸 = 𝑖 +
1

2
(𝑢2 + 𝑣2 + 𝑤2) – sum of kinetic and internal energy. 

𝑖 = 𝐶𝑉𝑇 

𝑘 – is thermal conductivity of fluid. 
𝑇 – is temperature. 
𝐶𝑉– is molar heat capacity of gas under constant volume. 
 
Sometimes it might be useful to rearrange 2.2.28, using such properties 
as internal energy (2.2.29), temperature (2.2.30) or total enthalpy 
(2.2.31): 
 

𝜌
𝐷𝑖

𝐷𝑡
= −𝑝 𝑑𝑖𝑣(𝐮) + 𝑑𝑖𝑣(𝑘 𝑔𝑟𝑎𝑑(𝑇))

+ [
𝜕(𝑢𝜏𝑥𝑥)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑥)

𝜕𝑦
+

𝜕(𝑤𝜏𝑧𝑥)

𝜕𝑧
+

𝜕(𝑢𝜏𝑥𝑦)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑦)

𝜕𝑦
+

𝜕(𝑤𝜏𝑧𝑦)

𝜕𝑧

+
𝜕(𝑢𝜏𝑥𝑧)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑧)

𝜕𝑦
+

𝜕(𝑤𝜏𝑧𝑧)

𝜕𝑧
] + 𝑆𝑖 

                                                                                                                    (2.2.29) 
 

𝜌𝐶𝑉

𝐷𝑇

𝐷𝑡
= −𝑝 𝑑𝑖𝑣(𝐮) + 𝑑𝑖𝑣(𝑘 𝑔𝑟𝑎𝑑(𝑇))

+ [
𝜕(𝑢𝜏𝑥𝑥)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑥)

𝜕𝑦
+

𝜕(𝑤𝜏𝑧𝑥)

𝜕𝑧
+

𝜕(𝑢𝜏𝑥𝑦)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑦)

𝜕𝑦
+

𝜕(𝑤𝜏𝑧𝑦)

𝜕𝑧

+
𝜕(𝑢𝜏𝑥𝑧)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑧)

𝜕𝑦
+

𝜕(𝑤𝜏𝑧𝑧)

𝜕𝑧
] + 𝑆𝑖 

                                                                                                                      (2.2.30) 
 

𝜌
𝐷ℎ0

𝐷𝑡
=

𝜕𝑝

𝜕𝑡
+ 𝑑𝑖𝑣(𝑘 𝑔𝑟𝑎𝑑(𝑇))

+ [
𝜕(𝑢𝜏𝑥𝑥)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑥)

𝜕𝑦
+

𝜕(𝑤𝜏𝑧𝑥)

𝜕𝑧
+

𝜕(𝑢𝜏𝑥𝑦)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑦)

𝜕𝑦
+

𝜕(𝑤𝜏𝑧𝑦)

𝜕𝑧

+
𝜕(𝑢𝜏𝑥𝑧)

𝜕𝑥
+

𝜕(𝑣𝜏𝑦𝑧)

𝜕𝑦
+

𝜕(𝑤𝜏𝑧𝑧)

𝜕𝑧
] + 𝑆ℎ 

                                                                                                                   (2.2.31) 
 
Where: 

ℎ = 𝑖 +
𝑝

𝜌
 – is enthalpy of gas. 
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ℎ0 = ℎ +
1

2
(𝑢2 + 𝑣2 + 𝑤2) – is total enthalpy. 

 
Application of Newtonian viscosity model to eq.2.2.29 will yield to: 
 

𝜌𝐶𝑉

𝐷𝑇

𝐷𝑡
= −𝑝 𝑑𝑖𝑣(𝐮) + 𝑑𝑖𝑣(𝑘 𝑔𝑟𝑎𝑑(𝑇)) + 𝛷 + 𝑆𝑖  

                                                                                                                      (2.2.32) 
 
Where: 
 

𝛷 = 𝜇 {2 [(
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

] + (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)
2

} + 𝜆(𝑑𝑖𝑣(𝐮))2  

                                                                                                                   (2.2.33) 
 
Together equations 2.2.1, 2.2.20, 2.2.21, 2.2.22, 2.2.29 and such 
equations of state as ideal gas equation (𝑝𝑉 = 𝑛𝑅𝑇) and internal energy 
equation  (𝑖 = 𝐶𝑉𝑇) are forming the system of seven equations with 
seven unknowns, meaning that system is mathematically closed (it can be 
solved, providing that initial and boundary conditions are stated). 
(Versteeg & Malalasekera 2007, 18 - 21). 
 
2.2.1, 2.2.20, 2.2.21, 2.2.22, 2.2.29 can be generalized, using arbitrary 
property 𝜑: 
 

𝜕(𝜌𝜑)

𝜕𝑡
+ div(𝜌𝜑𝐮) = 𝑑𝑖𝑣(𝛤 𝑔𝑟𝑎𝑑(𝜑)) + 𝑆𝜑  

                                                                                                                      (2.2.34) 
 
Where 𝛤 – is diffusion coefficient such as viscosity 𝜇, or conductivity 𝑘. 
 
The eq.2.2.34 is called transport equation of property 𝜑, which can be 
changed back to equations 2.2.1, 2.2.20, 2.2.21, 2.2.22, 2.2.29 by setting 
the property 𝜑 to be equal to 1, 𝑢, 𝑣, 𝑤 or 𝑖 respectively and 
appropriately setting of source terms and values of 𝛤. In order to get 
form of eq.2.2.34, more convenient for finite volume method, the 
integration over Control volume must be applied to eq.2.2.34: 
 

∫
𝜕(𝜌𝜑)

𝜕𝑡
𝑑𝑉

 

𝐶𝑉

+ ∫𝑑𝑖𝑣(𝜌𝜑𝐮)𝑑𝑉

 

𝐶𝑉

= ∫𝑑𝑖𝑣(𝛤 𝑔𝑟𝑎𝑑(𝜑))𝑑𝑉

 

𝐶𝑉

+ ∫𝑆𝜑𝑑𝑉

 

𝐶𝑉

 

                                                                                                                   (2.2.35) 
 
Where: 
𝑉 – is volume. 
CV – is reference to control volume. 
CS – is reference to control surface (boundary of control volume). 
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For further transforming of 2.2.35, there is a need to introduce Gauss’s 
divergence theorem, stating, that for vector “𝐚”: 
 

∫𝑑𝑖𝑣(𝐚)𝑑𝑉 = ∫𝐧. 𝐚𝑑𝐴

 

CS

 

CV

 

                                                                                                                     (2.2.36) 
 
Where: 
𝐴 – is area. 
𝐧. 𝐚 – is component of vector “𝐚” in the direction of unit vector “𝐧”, 
normal to surface element 𝑑𝐴. 
 
Applying Gauss’s divergence theorem (2.2.36) and changing the order of 
integration and differentiation in first term in left-hand side of eq.2.2.35 
will yield to: 
 

𝜕

𝜕𝑡
( ∫(𝜌𝜑)𝑑𝑉

 

𝐶𝑉

) + ∫𝐧. (𝜌𝜑𝐮)𝑑𝐴

 

𝐶𝑆

= ∫ 𝐧. (𝛤 𝑔𝑟𝑎𝑑(𝜑))𝑑𝐴

 

𝐶𝑆

+ ∫𝑆𝜑𝑑𝑉

 

𝐶𝑉

 

                                                                                                                    (2.2.37) 
 
To derive the most general integrated form of transport equation, the 
integration over time interval from t to 𝑡 + 𝛥𝑡 must be applied in order to 
cover time-dependant problems. (Versteeg & Malalasekera 2007, 24 - 
26): 
 

∫
𝜕

𝜕𝑡
( ∫(𝜌𝜑)𝑑𝑉

 

𝐶𝑉

)𝑑𝑡

 

𝛥𝑡

+ ∫ ∫𝐧. (𝜌𝜑𝐮)𝑑𝐴𝑑𝑡

 

𝐶𝑆

 

𝛥𝑡

= ∫ ∫𝐧. (𝛤 𝑔𝑟𝑎𝑑(𝜑))𝑑𝐴𝑑𝑡

 

𝐶𝑆

 

𝛥𝑡

+ ∫ ∫𝑆𝜑𝑑𝑉𝑑𝑡

 

𝐶𝑉

 

𝛥𝑡

 

                                                                                                                     (2.2.38) 
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2.3 Turbulence 

In spite the fact that all conservative properties were encountered in sub-
chapter 2.2 the current mathematical model is sufficient only for laminar 
flows. Various experiments such as ink flow in pipe, illustrated in Figure 5, 
or a flow past a sphere, shown in Figure 6 and 7, clearly show that at 
some critical value of fluid velocity in inlet of flow domain the fluid flow 
starts to generate rotational structures, called eddies, of various scale, 
causing it to behave in a very unstable and chaotic manner. These chaotic 
fluctuations of fluid flow parameters, responsible for high energy losses 
due to conversion of kinetic energy of eddies to internal energy and its 
further dissipation are called turbulence: from Latin word turbulentus - 
chaotic. A corresponding flow is called a turbulent flow. Particularly in 
Figure 5 one can see that increasing of inlet velocity yields to increased 
ink velocity fluctuations along the path of flow (from left to right) and, 
finally, to mixing with water. Therefore, high turbulence is a compulsory 
constraint for problems of mixing in engineering: higher turbulence 
means better mixing. Oppositely, the flow, where such eddies are absent, 
is called a laminar flow. 
 

 
 

Figure 5. Experiment with ink in a water flow. 
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Figure 6. Laminar flow past sphere. 

 

Figure 7. Turbulent flow past sphere. 

The turbulence of a flow is characterised by a non-dimensional 
parameter, called “Reynolds number”: 
 

𝑅𝑒 =
𝜌𝑈𝑟𝑒𝑓𝐿𝑐

𝜇
 

                                                                                                                    (2.3.1) 
 
Where: 
𝑅𝑒 – is Reynolds number. 
𝜌 – is fluid density. 
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𝐿𝑐 – is characteristic length of problem such as diameter or length of pipe 
or any other linear geometric parameter, the control volume is 
characterised by. 
𝜇 – is dynamic viscosity of fluid in flow inlet. 
𝑈𝑟𝑒𝑓 – is the reference mean flow velocity. 

 
The exceed of some critical value of Reynolds number will result to 
transformation of flow from laminar to turbulent. This critical value isn’t 
common for all problems and has a wide variation range. For instance for 
flow in pipe the critical value of Reynolds number is about 2300, while for 
problem of flow past circular object (e.g. cylinder, sphere) the critical 
Reynolds number value will be about 47.5. 
 
One of the most practically useful but not the only method to describe 
turbulent flows is usage of Reynolds decomposition, that is a basis for all 
RANS (Reynolds-Averaged-Navier-Stokes) turbulence models. 
Reynolds decomposition method states, that any property of turbulent 
fluid flow, say velocity 𝑢(𝑡),  can be decomposed to steady mean value U 
and fluctuating 𝑢’(𝑡) components as illustrated in Figure 8, or: 
 

𝑢(𝑡) = 𝑈 + 𝑢′(𝑡)  

                                                                                                                         (2.3.2) 
 

 

Figure 8. Time-averaged velocity “u” as a part of RANS modelling 
approach (Versteeg & Malalasekera 2007, 41). 

This approach allows to describe the turbulent flow in terms of time-
averaged properties (like U) and statistical values of their fluctuating 
parts such as u’(t). More generally: 
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𝜑(𝑡) = Φ + 𝜑′(𝑡)  

                                                                                                                        (2.3.3) 
 
Where: 
 

Φ =
1

∆𝑡
∫ 𝜑(𝑡)𝑑𝑡

∆𝑡

0

 

                                                                                                                        (2.3.4) 
 
And: 
 

1

∆𝑡
∫ 𝜑′(𝑡)𝑑𝑡

∆𝑡

0

= 0  

                                                                                                                         (2.3.5) 
 
To describe the spread of fluctuations 𝜑′(𝑡) about the mean value Φ, one 
can use statistical parameters like a variance (2.3.6), root mean square 
(r.m.s.) (2.3.7), or even higher order moments like a skewness 
(asymmetry) (2.3.8) and a kurtosis (peakedness) (2.3.9). (Versteeg & 
Malalasekera 2007, 49 - 52). 
 

(𝜑′)2̅̅ ̅̅ ̅̅ ̅ =
1

∆𝑡
∫(𝜑′)2𝑑𝑡

∆𝑡

0

 

                                                                                                                      (2.3.6) 
 

𝜑𝑟𝑚𝑠 = √(𝜑′)2̅̅ ̅̅ ̅̅ ̅ = [
1

∆𝑡
∫ (𝜑′)2𝑑𝑡

∆𝑡

0

]

1
2

 

                                                                                                                    (2.3.7) 
 

(𝜑′)3̅̅ ̅̅ ̅̅ ̅ =
1

∆𝑡
∫(𝜑′)3𝑑𝑡

∆𝑡

0

 

                                                                                                                      (2.3.8) 
 

(𝜑′)4̅̅ ̅̅ ̅̅ ̅ =
1

∆𝑡
∫(𝜑′)4𝑑𝑡

∆𝑡

0

 

                                                                                                                        (2.3.9) 
 
One can show that there exists infinite amount of statistical parameters 
by taking the 𝜑′ to any power "𝑛" and further averaging of (𝜑′)𝑛, 
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however, except variance and root mean square, all these parameters 
are rarely used in today turbulence modelling problems. On the other 
hand, variance has a straight connection to total kinetic energy of 
turbulence "𝑘" per unit mass at certain point: 
 

𝑘 =
1

2
[ (𝑢′)2̅̅ ̅̅ ̅̅ ̅ + (𝑣′)2̅̅ ̅̅ ̅̅ ̅ + (𝑤′)2̅̅ ̅̅ ̅̅ ̅ ]  

                                                                                                                    (2.3.10) 
 
The turbulence intensity 𝑇𝑖, which is another important parameter for 
RANS turbulence models often used for boundary condition specification 
in CFD codes, is also related with velocity variance by linkage with "𝑘": 
 

𝑇𝑖 =
(
2
3𝑘)

1
2

𝑈𝑟𝑒𝑓
 

                                                                                                                      (2.3.11) 
 

Where term (
2

3
𝑘)

1

2
 is indeed an average r.m.s. velocity of fluid. 

The variance is also called the second moment of the fluctuations 
(similarly third and fourth moments of fluctuations for skewness and 
kurtosis respectively). Important information about a fluid flow is also 
contained in moments, constructed from two different variables. As an 
example one can consider two arbitrary properties 𝜑 and 𝜓. Applying 
2.3.3, one defines the second moment of 𝜑′ and 𝜓′ as follows: 
 

𝜑′𝜓′̅̅ ̅̅ ̅̅ =
1

∆𝑡
∫ 𝜑′𝜓′𝑑𝑡

∆𝑡

0

 

                                                                                                                     (2.3.12) 
 
Such second moments are especially crucial in RANS turbulence due to 
their usage in description of an additional shear stress experienced by 
fluid in turbulent flow. Another application of second moments are 
autocorrelation functions, used to study relations between fluctuations 
at different time instants and space points. Autocorrelation functions are 
defined as follows: 
 

𝑅𝜑′𝜑′(𝜏) = 𝜑′(𝑡)𝜑(𝑡 + 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

∆𝑡
∫ 𝜑′(𝑡)𝜑′(𝑡 + 𝜏)𝑑𝑡

∆𝑡

0

 

                       (2.3.13) (autocorrelation function for different time instants) 
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𝑅𝜑′𝜑′(𝜉) = 𝜑′(𝒙; 𝑡)𝜑′(𝐱 + 𝜉; 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
1

∆𝑡
∫ 𝜑′(𝐱; 𝑡′)𝜑′(𝐱 + 𝜉; 𝑡′

𝑡+∆𝑡

𝑡

)𝑑𝑡′  

(2.3.14) (autocorrelation function for two points displaced by vector ±ξ 
from each other) 
 
Where: 
𝜏  ̶  is a time shift constant. 
𝐱 = 𝐱(𝑥; 𝑦; 𝑧)  ̶  is a shorter notation for position vector, dependent on 𝑥, 
𝑦 and 𝑧. 
 
It can be easily checked if either τ in 2.3.13 or |𝜉| in 2.3.14 are equal to 
zero, the correlation function will turn variance, that is told to be 
perfectly correlated, and will have the largest possible value as function 
of 𝜏 or 𝜉. Therefore, as τ or |𝜉| approach infinity, the correlation function 
will decrease to zero. This makes autocorrelation functions to be a useful 
tool for description of eddy size and lifetime. The integral time and scale, 
which represent concrete values of average period or size of a turbulent 
eddy, can be computed from integrals of functions 𝑅𝜑′𝜑′(𝜏) with respect 

to 𝜏 and 𝑅𝜑′𝜑′(𝜉) with respect to distance in the direction of one of 

components of displacement vector ξ. By analogy, it is also possible to 
define cross-correlation functions 𝑅𝜑′𝜑′(𝜏) with respect to τ or 𝑅𝜑′𝜑′(𝜉) 

between pairs of different fluctuations by replacing second 𝜑′ by 𝜓′ in 
equations 2.3.13 and 2.3.14 respectively. (Versteeg & Malalasekera 2007, 
49 - 52). 
 

2.3.1 The law of the wall 

 
As one previously stated, general solution for governing equations of 
fluid mechanics remain unfound, limiting engineers and scientists with 
analytic solutions of several simple laminar flow problems. Therefore, 
due to higher mathematical complexity there exist even less models 
suitable for turbulent flows. One of such models is called “Law of the 
wall” which is practically useful for accurate estimation of first mesh cell 
height from the solid wall. This law plays important role in CFD modelling, 
originating from no-slip conditions (fluid velocity at wall surface equals 
zero), which result in high velocity gradients at near-wall region and 
formation of boundary layer. This means that the grid (mesh) at near-wall 
regions must be much finer comparing the rest of flow domain, in order 
to simulate boundary layer profile and other coupled properties (e.g. 
pressure, temperature etc.) And the law of the wall so far remains to be 
the best tool to encounter these crucial aspects. 
 
In order to formulate the law of the wall one needs to introduce two 
other non-dimensional parameters: 
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𝑢+ =
𝑢

𝑢𝜏
 – called dimensionless velocity, and 

                                                                                                                  (2.3.15) 
 

𝑦+ =
𝜌𝑦𝑢𝜏

𝜇
 – is dimensionless wall coordinate 

                                                                                                                    (2.3.16) 
 
Where: 
𝑢 – is a fluid velocity, parallel to the wall, 

𝑢𝜏 = √
𝜏𝑤

𝜌
 – is a friction velocity, 

                                                                                                                      (2.3.17) 
 
𝜏𝑤 – is a viscous shear stress, 
𝑦 – is a distance coordinate, normal to wall surface, 
𝜌 – is a fluid density, 
𝜇 – is dynamic viscosity. 
 
The law of the wall itself states the relation between two parameters 𝑢+ 
and 𝑦+, forming 𝑢+ as function of  𝑦+ (𝑢+=f(𝑦+)) for high Reynolds 
numbers in a next form: 
 

1. For any 𝑦+<5 the fluid flow is in region of viscous sublayer of flow 
boundary layer, characterised by laminar behaviour of flow due to 
0 fluid velocity at the level of wall, which is a consequence of fluid 
property to stick to the wall of solid and almost constant value of 
𝜏𝑤. In viscous sublayer the next relation between 𝑢+ and 𝑦+ 
holds: 
 

𝑢+ = 𝑦+  

                                                                                                    (2.3.18) 
 

2. For 5<𝑦+<30 the flow is part of buffer layer which can be 
described with certain error by both laws from previous section 
and from next one. 
 

3. For 30<𝑦+<500 the next expression is valid: 
 

𝑢+ =
1

𝜅
ln(𝑦+) + 𝐶+  

                                                                                                               (2.3.19) 
 
Where: 𝜅 = 0.4187, 𝐶+ = 5.1 are constants. Note that they are valid 
only for smooth walls, the most common case in CFD. For more details 
see Schlichting, H. (1979) Boundary-layer Theory. 
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The part that has the most useful information is contained in first section 
of stated law. The expression 𝑢+=𝑦+  for any 𝑦+<5 implies that the 
velocity profile inside viscous sublayer shows the linear behaviour with 
respect to distance from the wall. This means that in CFD modelling 
problems, where linear approximations are key for solving fluid dynamics 
problems, it is sufficient to use just 1 volume element for complete 
description of flow inside the viscous sublayer. Therefore, the law of the 
wall serves as the answer for the problem of first mesh cell height 
calculation, allowing CFD programme users to find the height of near-wall 
volume elements that will be enough for accurate modelling of the 
boundary layer on solid walls. 
 
Finally the first mesh cell height can be expressed as function of Reynolds 
number (or it’s individual parameters: free-stream velocity, fluid density, 
dynamic viscosity and reference length) and 𝑦+. 
 
Links to first cell height on-line calculators: 
 
https://www.computationalfluiddynamics.com.au/tips-tricks-cfd-
estimate-first-cell-height/ 
https://geolab.larc.nasa.gov/APPS/YPlus/ 
http://www.pointwise.com/yplus/ 
https://www.cfd-online.com/Tools/yplus.php 
 
Note, that all calculations are based on one particular fluid dynamics 
problem of flat-plate boundary layer (or pipe-channel flow), where there 
is an only one option for value of reference length that is the length of 
plate. The vast majorities of fluid dynamics problems, showing poor 
similarity to flat-plate boundary layer problem, involve geometries that 
are dependent on multiple linear parameters (e.g. length, width, height, 
rounding radius etc.), and all of them can be treated as reference lengths. 
This means that usage of different reference lengths in grid-spacing 
calculators will yield to different values of mesh cell height, which is not 
acceptable. Therefore, in order to ensure that cell height is sufficiently 
small but still relevant to particular problem, one should use desired “𝑦+” 
value to be less or equal to 1, enhanced wall treatment must be enabled 
and there is sufficient amount of cells to resolve the whole boundary 
layer. 
 
Because mentioned instruction does not always guarantee success in 
proper modelling of viscous sublayer one might need to find suitable 
near-wall cell height empirically, by gradual refinement of near-wall mesh 
after each simulation. This approach, however, is suggested to be used 
only as last step after previous methods failed in viscous sublayer 
modelling. 
 
Alternatively, in order to save computational time one can use so-called 
wall-functions. Similarly to first cell height calculation, background of wall 
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functions is the same law of the wall. However, instead of computing the 
wall adjacent height for viscous sublayer, one has to compute the first 
cell height for the whole boundary layer. Particularly scalable wall 
function requires the corresponding value of 𝑦+ = 11.225, and in case of 
wrong estimation, the programme will shift the height of first cell to this 
value automatically. Therefore, the usage of wall functions allows to use 
much coarser grids, what makes them extremely popular in industrial 
applications. On the other hand, comparing with first approach, wall 
functions have two drawbacks: 
 

 Simulation results with enabled wall functions and coarse mesh 
are less accurate than results with fine mesh and disabled wall 
functions. 

 Wall functions are not applicable for cases with flow separation as 
shown in Figure 9. 

 

 

Figure 9. Wall functions are not applicable to problems involving a flow 
separation. 

More information regarding the “𝑦+” and first cell height estimation can 
be found via following link:  
https://www.computationalfluiddynamics.com.au/tag/wall-functions/ 

2.3.2 Introduction to RANS models 

 
Recalling formulas 2.3.3, 2.3.4, 2.3.5, 2.3.6, 2.3.7 and 2.3.12 one can 
show that next expressions for derivatives and integrals for arbitrary 
scalar properties 𝜑 and 𝜓 hold: 
 

𝜑′̅ = 𝜓′̅̅̅ = 0  

 

Φ̅ = Φ  

 

𝜕𝜑

𝜕𝑠

̅̅ ̅̅
=

𝜕Φ

𝜕𝑠
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∫𝜑𝑑𝑠
̅̅ ̅̅ ̅̅ ̅̅

= ∫Φds  

 

𝜑 + 𝜓̅̅ ̅̅ ̅̅ ̅̅ = Φ + Ψ  

 

𝜑𝜓̅̅ ̅̅ = 𝛹𝛷 + 𝜑′𝜓′̅̅ ̅̅ ̅̅  

 

𝜑Ψ̅̅̅̅̅ = ΦΨ  

 

𝜑′Ψ̅̅ ̅̅ ̅ = 0  

                                                                                                                     (2.3.20) 
 
Since gradient and divergence are both differentiation operators, next 
expressions for arbitrary vector quantity 𝐚 = 𝐀 + 𝐚′ and arbitrary scalar 
quantity 𝜑 = Φ + 𝜑′ can also be proven to be valid: 
 

𝑑𝑖𝑣(𝐚)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑑𝑖𝑣(𝐀)  

 

𝑑𝑖𝑣(𝜑𝐚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑑𝑖𝑣(𝜑𝐚) = 𝑑𝑖𝑣(Φ𝐀) + 𝑑𝑖𝑣(𝜑′𝐚′̅̅ ̅̅ ̅̅ )  

 

𝑑𝑖𝑣(𝑔𝑟𝑎𝑑(𝜑))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑑𝑖𝑣(𝑔𝑟𝑎𝑑(Φ))  

                                                                                                                    (2.3.21) 
 
Substitution of formulas 2.3.3, 2.3.20, 2.3.21 to governing equations 
2.2.1, 2.2.20, 2.2.21, 2.2.22 and 2.2.34, combined with Favre averaging 
(2.3.22) will yield to averaged turbulent flow equations also called as 
RANS equations model (where RANS stands for Reynolds-averaged 
Navier-Stokes) (2.3.23). (Versteeg & Malalasekera 2007, 62). 
 

𝜑 = Φ̃ + 𝜑′′  

 

Φ̃ =
∫ 𝜌(𝑡)𝜑(𝑡)

 

∆𝑡

∫ 𝜌(𝑡)
 

∆𝑡

=
𝜌𝜑̅̅ ̅̅

𝜌̅
 

 

𝜌𝜑′′̅̅ ̅̅ ̅ = 0  

 

𝜌Φ̃̅̅ ̅̅ = 𝜌̅Φ̃ = 𝜌𝜑̅̅ ̅̅  

                                                                                                                      (2.3.22) 
 
RANS equations: 
 
Continuity: 
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𝜕𝜌̅

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌̅𝐔̃) = 0  

 
Reynolds equations: 
 

𝜕(𝜌̅𝑈̃)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌̅𝑈̃𝐔̃) = −

𝜕𝑃

𝜕𝑥
+ 𝑑𝑖𝑣 (𝜇 𝑔𝑟𝑎𝑑(𝑈̃)) + [−

𝜕(𝜌̅𝑢′2)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑥
−

𝜕(𝜌̅𝑢′𝑣′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑦
−

𝜕(𝜌̅𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑧
] + 𝑆𝑀𝑥  

 

𝜕(𝜌̅𝑉̃)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌̅𝑉̃𝐔̃) = −

𝜕𝑃

𝜕𝑦
+ 𝑑𝑖𝑣 (𝜇 𝑔𝑟𝑎𝑑(𝑉̃)) + [−

𝜕(𝜌̅𝑢′𝑣′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥
−

𝜕(𝜌̅𝑣′2)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑦
−

𝜕(𝜌̅𝑣′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑧
] + 𝑆𝑀𝑦  

 

𝜕(𝜌̅𝑊̃)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌̅𝑊̃𝐔̃) = −

𝜕𝑃

𝜕𝑧
+ 𝑑𝑖𝑣 (𝜇 𝑔𝑟𝑎𝑑(𝑊̃)) + [−

𝜕(𝜌̅𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑦
−

𝜕(𝜌̅𝑣′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑦
−

𝜕(𝜌̅𝑤′2)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
] + 𝑆𝑀𝑧  

 
Scalar transport equation: 
 

𝜕(𝜌̅Φ̃)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌̅Φ̃𝐔̃) = 𝑑𝑖𝑣 (𝛤Φ 𝑔𝑟𝑎𝑑(Φ̃)) + [−

𝜕(𝜌̅𝑢′𝜑′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥
−

𝜕(𝜌̅𝑣′𝜑′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑦
−

𝜕(𝜌̅𝑤′𝜑′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
] + 𝑆Φ  

                                                                                                                    (2.3.23) 
 
Where: 
𝒖 = 𝐔 + 𝒖′ = 𝐔̃ + 𝒖′′; 
𝑢 = 𝑈 + 𝑢′ = 𝑈̃ + 𝑢′′; 
𝑣 = 𝑉 + 𝑣′ = 𝑉̃ + 𝑣′′; 
𝑤 = 𝑊 + 𝑤′ = 𝑊̃ + 𝑤′′; 
𝑝 = 𝑃 + 𝑝′; 
 
The terms in square brackets in Reynolds equations in 2.3.23 are extra 
turbulence stresses, also called Reynolds stresses. They are always non-
zero and very large, comparing with the viscous stresses in a turbulent 
flow. Therefore, neglecting of these terms can cause poor accuracy of 
final solution, making the simulation results completely irrelevant to 
experimental data. (Versteeg & Malalasekera 2007, 65). 
 
Equations 2.3.23 introduce 6 extra unknowns to the system of governing 

momentum equations (6 Reynolds stresses: 𝜌𝑢′2̅̅ ̅̅ ; 𝜌𝑣′2̅̅ ̅̅ ; 𝜌𝑤′2̅̅ ̅̅ ̅; 𝜌𝑢′𝑣′̅̅ ̅̅ ̅̅ ; 
𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ; 𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅ ) plus 3 additional unknowns per each scalar property 𝜑 
((𝑢′𝜑′̅̅ ̅̅ ̅̅ ; 𝑣′𝜑′̅̅ ̅̅ ̅̅ ; 𝑤′𝜑′̅̅ ̅̅ ̅̅ ̅). The new system of governing time-averaged 
equations can become solvable again by introduction of appropriate 
turbulence model that will state and add differential equations, 
necessary to fulfil criterions of solvable system of equations. There exist 6 
basic RANS turbulence models, varying in complexity and application 
areas: 1) Mixing length (+0eq), 2) Spalart-Allmaras (+1eq), 3) k-ε (+2eq), 
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4) k-ω (+2eq), 5) Algebraic stress (+2eq), 6) Reynolds stress (+7eq) 
(Versteeg & Malalasekera 2007, 66 - 98) 
 
In order to understand the background of every listed turbulence model, 
one has to recall the Newton’s law of viscosity (2.2.13) and introduce the 
Boussinesq approximation (2.3.25). 
 
Using the suffix notation, Newton’s law of viscosity can be rewritten in 
next form: 
 

𝜏𝑖𝑗 = 𝜇𝑠𝑖𝑗 = 𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)  

                                                                                                                (2.3.24) 
 
The convection of suffix notation is that indices 𝑖 or 𝑗 = 1 correspond to 
the x-direction, 𝑖 or 𝑗 = 2 the y-direction and 𝑖 or 𝑗 = 3 the z-direction. 
For example: 
 

𝜏12 = 𝜏𝑥𝑦 = 𝜇 (
𝜕𝑢1

𝜕𝑥2
+

𝜕𝑢2

𝜕𝑥1
) = 𝜇 (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)  

 
The experimental evidences show that turbulence decays unless there is 
shear in isothermal incompressible flows. Furthermore, turbulent 
stresses are found to increase as the mean rate of deformation increases. 
Those facts were used by Joseph Valentin Boussinesq, who proposed that 
Reynolds stresses are proportional to mean rates of deformation in next 
way: 
 

𝜏𝑖𝑗 = −𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅ = 𝜇𝑡 (
𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) −

2

3
𝜌𝑘𝛿𝑖𝑗  

                                                                                                                    (2.3.25) 
 
Where 𝑘 is the turbulent kinetic energy from formula 2.3.10, 𝛿𝑖𝑗 is 

Kronecker delta (𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗, and 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗) and 𝜇𝑡 is called 

turbulent or eddy viscosity. 
 
By analogy, turbulent transport of a scalar is taken to be proportional to 
the gradient of mean value of the transported quantity: 
 

−𝜌𝑢𝑖
′𝜑′̅̅ ̅̅ ̅̅ = 𝛤𝑡

𝜕Φ

𝜕𝑥𝑖
 

                                                                                                                  (2.3.26) 
 
Where 𝛤𝑡 is the turbulent or eddy diffusivity. 
The relation between eddy viscosity and eddy exists and expressed by 
usage of Prandtl/Schmidt number defined in next way: 
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𝜎𝑡 =
𝜇𝑡

𝛤𝑡
 

                                                                                                                      (2.3.27) 
 
Various flow experiments confirm that value 𝜎𝑡 is constant, and hence 
most of free and commercial CFD software set the value 𝜎𝑡 = 1. 
(Versteeg & Malalasekera 2007, 68). 

2.3.3 Mixing length model 

 
The concept of mixing length model is based on next assumptions: 

 Application is limited to 2D flows. Hence, the Reynolds stress 
𝜏𝑥𝑦 = 𝜏𝑦𝑥 is the only present turbulence shear stress component: 

𝜏𝑥𝑥 and 𝜏𝑦𝑦 are assumed to be negligibly small. 

 deduced from dimensional analysis: 
 

𝜇𝑡 = 𝐶𝜌𝜗𝑙  

                                                                                                          (2.3.28) 
 
Where: 
𝐶 – is a dimensionless constant of proportionality. 
𝜗 – is a turbulent velocity scale 
𝑙 – is turbulent length scale. 
 
Turbulent velocity scale ϑ can be further expanded into: 
 

𝜗 = 𝑐𝑙 |
𝜕𝑈

𝜕𝑦
|  

                                                                                                                      (2.2.29) 
 
Where 𝑐 is non-dimensional constant. 
Substitution of 2.3.29 to 2.3.28 and hiding of constants C and c into new 
length scale 𝑙𝑚 will yield into: 
 

𝜇𝑡 = 𝜌𝑙𝑚
2 |

𝜕𝑈

𝜕𝑦
|  

                                                                                                                      (2.3.30) 
 
The equation 2.3.30, combined with 2.3.25 and other previously stated 
assumption will result in so called Prandtl’s mixing length model: 
 

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = −𝜌𝑢′𝑣′̅̅ ̅̅ ̅̅ = 𝜌𝑙𝑚
2 |

𝜕𝑈

𝜕𝑦
|
𝜕𝑈

𝜕𝑦
 

                                                                                                                    (2.3.31) 
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The same approach, applied to turbulent transport of arbitrary scalar 
quantity will yield into: 
 

−𝜌𝑣′𝜑′̅̅ ̅̅ ̅̅ = 𝛤𝑡

𝜕Φ

𝜕𝑦
 

                                                                                                                    (2.3.32) 
 
The Mixing length model finally allows to define unknown Reynolds 
stresses for 2D flows with no additional equations (Therefore it’s also 
called 0-equation model). The only things that must be the object 
consideration are values of 𝑙𝑚 and 𝜎𝑡. The specification of these values 
can be found in book of H. K. Versteeg, W. Malalasekera “An Introduction 
to Computational Fluid Dynamics, The Finite Volume Method” second 
edition, pages 70. 
 
Advantages of the Mixing length model: 

 easy and inexpensive implementation 

 sufficiently accurate predictions for thin shear layers: jets, mixing 
layers, wakes and boundary layers 

 well established 
 
Disadvantages: 

 completely incapable of modelling flows with separation and re-
circulation 

 completely incapable of describing flows with separation and re-
circulation 

2.3.4 k-ε model 

 
The standard k-ε model provides an acceptable compromise between 
reliability, computational costs and accuracy, what makes k-ε model to be 
apparently the most popular turbulence model, used in industry. This is a 
semi-empirical 2-equation eddy-viscosity model, solving 2 additional 
equations for turbulent kinetic energy “𝑘” (2.3.10) and rate of energy 
dissipation per unit volume “𝜀”. 
 
To understand the concept of k-ε, one has to introduce the concept of 
the mean kinetic energy “𝐾” and the instantaneous kinetic energy 
“𝑘(𝑡)”, that are defined in next way: 
 

𝐾 =
1

2
(𝑈2 + 𝑉2 + 𝑊2)  

                                                                                                                  (2.3.33) 
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𝑘(𝑡) = 𝐾 + 𝑘  

                                                                                                                   (2.3.34) 
 
Another prerequisite for further model description is the decomposition 
of deformation rate tensor “𝑠𝑖𝑗” to average and fluctuating part. Recalling 

formula 2.2.12, one can show that decomposition of “𝑠𝑖𝑗” will hold as 

follows: 
 

𝑠𝑖𝑗 = 𝑆𝑖𝑗 + 𝑠′
𝑖𝑗 =

1

2
[
𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
] +

1

2
[
𝜕𝑢′

𝑖

𝜕𝑥𝑗
+

𝜕𝑢′
𝑗

𝜕𝑥𝑖
]  

                                                                                                               (2.3.35) 
 
The scalar product of two tensors “𝑎𝑖𝑗” and “𝑏𝑖𝑗” is defined as follows: 

 

𝑎𝑖𝑗  .  𝑏𝑖𝑗 = 𝑎11𝑏11 + 𝑎12𝑏12 + 𝑎13𝑏13 + 𝑎21𝑏21 + 𝑎22𝑏22 + 𝑎23𝑏23 + 𝑎31𝑏31 + 𝑎32𝑏32 + 𝑎33𝑏33  

 
It can be shown that governing equations for mean flow kinetic energy 
“𝐾” (2.3.36) and for turbulent kinetic energy “𝑘” (2.3.37) will take next 
form: 
 

𝜕(𝜌𝐾)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝐾𝐔) = 𝑑𝑖𝑣(−𝑃𝐔 + 2𝜇𝐔𝑆𝑖𝑗 − 𝜌𝐔𝑢′

𝑖𝑢′
𝑗

̅̅ ̅̅ ̅̅ ̅) − 2𝜇𝑆𝑖𝑗 .  𝑆𝑖𝑗 + 𝜌𝑢′
𝑖𝑢′

𝑗
̅̅ ̅̅ ̅̅ ̅ .  𝑆𝑖𝑗  

                                                                                                                      (2.3.36) 
 

𝜕(𝜌𝑘)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑘𝐔) = 𝑑𝑖𝑣 (−𝑝′𝐮′̅̅ ̅̅ ̅ + 2𝜇𝐮′𝑠′𝑖𝑗̅̅ ̅̅ ̅̅ ̅ − 𝜌

1

2
𝑢′𝑖 .  𝑢′

𝑖𝑢′
𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) − 2𝜇𝑠′
𝑖𝑗 .  𝑠′

𝑖𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜌𝑢′

𝑖𝑢′
𝑗

̅̅ ̅̅ ̅̅ ̅ .  𝑆𝑖𝑗  

                                                                                                                      (2.3.37) 
 
The second term on RHS of 2.3.37 is usually written as product of density 
“𝜌” and the rate of dissipation of turbulent kinetic energy per unit mass 
“𝜀”. Therefore “𝜀” is defined as follows: 
 

𝜀 = 2
𝜇

𝜌
𝑠′

𝑖𝑗 .  𝑠′
𝑖𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

                                                                                                                     (2.3.38) 
 
It is also possible to derive the exact differential governing equation for 
“𝜀”, but it contains many unknowns, and hence the standard k-ε model is 
based on next assumptions for velocity scale “𝜗” and length scale “𝑙”: 
 

𝜗 = 𝑘1/2  

                                                                                                                      (2.3.39) 
  



30 
 

 
 

𝑙 =
𝑘3/2

𝜀
 

                                                                                                                      (2.3.40) 
 
The substitution of 2.3.39 and 2.3.40 to formula of eddy viscosity will give 
next relation: 
 

𝜇𝑡 = 𝐶𝜌𝜗𝑙 = 𝜌𝐶𝜇

𝑘2

𝜀
 

                                                                                                                     (2.3.41) 
 
Where “𝐶𝜇” – is a dimensionless constant. 

The formula 2.3.41 itself is an assumption of isotropic eddy viscosity, 
allowing to state two transport equations of standard k-ε model: 
 

𝜕(𝜌𝑘)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑘𝐔) = 𝑑𝑖𝑣 [

𝜇𝑡

𝜎𝑘
 𝑔𝑟𝑎𝑑(𝑘)] + 2𝜇𝑡𝑆𝑖𝑗 .  𝑆𝑖𝑗 − 𝜌𝜀  

                                                                                                                (2.3.42) 
 

𝜕(𝜌𝜀)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝜀𝐔) = 𝑑𝑖𝑣 [

𝜇𝑡

𝜎𝜀
 𝑔𝑟𝑎𝑑(𝜀)] + 𝐶1𝜀

𝜀

𝑘
2𝜇𝑡𝑆𝑖𝑗 .  𝑆𝑖𝑗 − 𝐶2𝜀

𝜀2

𝑘
 

                                                                                                                      (2.3.43) 
 
Where 𝐶𝜇 = 0.09; 𝜎𝑘 = 1; 𝜎𝜀 = 1.3; 𝐶1𝜀 = 1.44; 𝐶2𝜀 = 1.92 – are 

empirically defined dimensionless constants, suitable for wide range of 
flows. 
The Reynolds stresses are found, using following Boussinesq 
approximation: 
 

−𝜌𝑢′
𝑖𝑢′

𝑗
̅̅ ̅̅ ̅̅ ̅ = 𝜇𝑡 (

𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) −

2

3
𝜌𝑘𝛿𝑖𝑗 = 2𝜇𝑡𝑆𝑖𝑗 −

2

3
𝜌𝑘𝛿𝑖𝑗  

 
In order to run k-ε model appropriately, some CFD codes in addition to 
turbulence intensity might also ask to specify the values of “𝑘” and ”𝜀” 
for system inlet. This can be done either by reviewing literature, covering 
particular cases of study, which is more preferable option, or using next 
formulas, connecting “𝑘” and ”ε” with turbulence intensity “𝑇𝑖” and 
length scale “𝑙”: 
 

𝑘 =
2

3
(𝑈𝑟𝑒𝑓𝑇𝑖)

2  

                                                                                                                      (2.3.44) 
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𝜀 = 𝐶𝜇
3/4 𝑘3/2

𝑙
 

                                                                                                                      (2.3.45) 
 

𝑙 = 0.07𝐿  

                                                                                                             (2.3.46) 
 
Where “𝐿” – is a characteristic length of equipment (equivalent pipe 
diameter). (Versteeg & Malalasekera 2007, 72 - 88). 
 
Equivalent pipe diameter on-line calculator with some explanation 
theory: 
 http://www.engineeringtoolbox.com/equivalent-diameter-d_205.html 
In cases, when equivalent pipe diameter is not obvious to define it’s 
sufficient either to use default settings in CFD code (if exist) or arbitrary 
finite and small values for “𝜀”. (Versteeg & Malalasekera 2007, 77). 
 
 
In addition to standard k-ε (SKE) most of free and commercial CFD codes 
provide users with two more advanced variants of k-ε model: k-ε RNG 
(Renormalization Groups) and k-ε RKE (Realizable). 
k-ε RNG model instead of using empirically defined constants 
𝐶𝜇;  𝜎𝑘;  𝜎𝜀;  𝐶1𝜀;  𝐶2𝜀 resolves them using statistical methods, making it 

more precise for wider range of more complex flows. 
k-ε RKE model is an improvement of standard k-ε model, varying in next 
points: 
 

 k-ε RKE contains a new formulation for the turbulent viscosity 
with varying parameter “𝐶𝜇” that was assumed to be constant for 

standard k-ε model. 

 A new transport equation for the dissipation rate “ɛ” is derived 
from exact transport equation of the mean-square vorticity 
fluctuation. 

 
Unlike k-ε SKE or k-ε RNG, k-ε RKE model satisfies several constraints of 
physics of turbulent flows, making RKE potentially the most accurate 
variation of k-ε model. Note that all k-ε models variation are preferred to 
use only for fully turbulent flows (high Reynolds numbers), due to fully 
turbulent flow assumption as a basement of the whole model. In addition 
to k-ε, there also exist other two-equation models such as Wilcox k-ω, 
Menter SST k-ω, algebraic stress equation model and non-linear k-ε. 
(Versteeg & Malalasekera 2007, 90 - 95). 
 
Unlike k-ε SKE, k-ε RNG or k-ε RKE, Wilcox k-ω shows the best 
performance for flows with low Reynolds numbers and very accurate 
results for flows in near-wall regions. It’s success in near-wall 
computations even yielded to creation of hybrid Menter SST k-ω model, 
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which solves the near-wall flow (boundary layer regions) using Wilcox k-
ω, and k-ε for the rest of the flow regions. This makes Menter SST k-ω 
model to be a perfect option for general cases of subsonic flows passing 
various geometric objects (obstacles). (Versteeg & Malalasekera 2007, 91 
- 93). 
 
So far, all covered turbulence models use the assumption of isotropic 
eddy viscosity, which isn’t truth for reality. In cases, when anisotropy of 
turbulence is important to encounter but computational powers limit the 
usage to only two-equation and simpler models, one can use the 
algebraic stress model. However, this modification of k-ε model suffers 
reliability and re-quires experimental validation before results of usage of 
this model influence the further design work. At last, algebraic stress 
model is currently being overshadowed by non-linear k-ε models, that 
able to show results close to more complicated and precise seven-
equation models but still using only two extra transport equations. 
(Versteeg & Malalasekera 2007, 93 - 95). 

2.3.5 Spalart-Allmaras turbulence model 

 
Spalart-Allmaras is one-equation turbulence model based on transport of 
kinematic eddy viscosity parameter “𝜈”, which is connected with dynamic 
eddy viscosity “𝜇𝑡” by next relation: 
 

𝜇𝑡 = 𝜌𝜈𝑓𝜈1  

                                                                                                                 (2.3.47) 
 

Where “𝑓𝜈1” is so-called wall-damping function 𝑓𝜈1 = 𝑓𝜈1(
𝜈̃

𝜈
); (𝜈 =

𝜇

𝜌
), 

which behaves in such way, that it tends to unity as Reynolds number 
increases and tends to zero at wall boundaries: 
 

𝑓𝜈1 =
(
𝜈
𝜈)3

(
𝜈
𝜈)3 − 𝐶𝜈1

3
 

                                                                                                                      (2.3.48) 
 
Where 𝐶𝜈1 = 7.1 
 

Substitution of 2.3.47 to 2.3.25 and neglecting of term “
2

3
𝜌𝑘𝛿𝑖𝑗” will give 

a formula for Reynolds stresses: 
 

𝜏𝑖𝑗 = −𝜌𝑢′
𝑖𝑢′

𝑗
̅̅ ̅̅ ̅̅ ̅ = 2𝜇𝑡𝑆𝑖𝑗 = 𝜌𝜈𝑓𝜈1 (

𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
)  

                                                                                                             (2.3.49) 
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The transport equation for “𝜈” holds as follows: 
 
𝜕(𝜌𝜈)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝜈𝐔)

=
1

𝜎𝜈
𝑑𝑖𝑣 [(𝜇 + 𝜌𝜈)𝑔𝑟𝑎𝑑(𝜈) + 𝐶𝑏2𝜌

𝜕𝜈

𝜕𝑥𝑘

𝜕𝜈

𝜕𝑥𝑘
] + 𝐶𝑏1𝜌𝜈Ω̃

− 𝐶𝑤1𝜌 (
𝜈

𝜅𝑦
)

2

𝑓𝑤 

                                                                                                                      (2.3.50) 
 
Where: 
 

Ω̃ = 𝛺 +
𝜈

(𝜅𝑦)2
𝑓𝜈2  

                                                                                                                      (2.3.51) 
 

Ω = √2Ω𝑖𝑗Ω𝑖𝑗  

                                                                                         (2.3.52) (mean vorticity) 
 

Ω𝑖𝑗 =
1

2
(
𝜕𝑈𝑖

𝜕𝑥𝑗
−

𝜕𝑈𝑗

𝜕𝑥𝑖
)  

                                                                                                                    (2.3.53) 
 

𝑓𝜈2 = 1 −

𝜈
𝜈

1 +
𝜈
𝜈 𝑓𝜈1

 

                                                                                                                  (2.3.54) 
 

𝑓𝑤 = 𝑔 [
1 + 𝐶𝑤3

6

𝑔6 + 𝐶𝑤3
6 ]

1
6

 

 

𝑔 = 𝑟 + 𝐶𝑤2(𝑟
6 − 𝑟)  

 

𝑟 = min [
𝜈

Ω̃𝜅2𝑦2
; 10]  

                                                                                                                      (2.3.55) 
 
And “𝑦” is the smallest distance to solid wall (same as “𝑦” in 2.3.16). 
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Table 3. Constants used in Spalart-Allmaras model. 

Constant Value 

𝜎𝜈 2/3 

𝜅 0.4187 

𝐶𝑏1 0.1355 

𝐶𝑏2 0.622 

𝐶𝑤1 
𝐶𝑏1 + 𝜅2

1 + 𝐶𝑏2

𝜎𝜈
 

𝐶𝑤2 0.3 

𝐶𝑤3 2 

 
By default, Spalart-Allmaras requires user to model the grid to be fine 
enough to capture the viscous sublayer, using the law of the wall. 
However, some commercial codes like ANSYS FLUENT provide users with 
Enhanced Wall Treatment (𝑦+ insensitive wall treatment), which allows 
the application of the model independent of the near-wall grid 
resolution. Finally, Spalart-Allmaras turbulence model is the model, 
specifically designed to model the problems of aerodynamics, what 
ensures the highest accuracy for external aerodynamic flows on the one 
hand, but suffers from inaccuracy in the rest Fluid Dynamics’ fields on the 
other hand (https://www.cfd-online.com/Wiki/Spalart-Allmaras_model). 
(Versteeg & Malalasekera 2007, 89 - 90). 

2.3.6 Reynolds stress equation models (RSM) 

 
Reynolds stress model (RSM) is the seven-equation model, giving extra 
transport equations to every unique from six components of stress tensor 
“𝜏𝑖𝑗” and one more equation for either “𝜀” or “𝜔”. 

 
The transport equations for Reynolds stresses however are described by 
variable called kinematic Reynolds stresses: 
 

𝑅𝑖𝑗 = −
𝜏𝑖𝑗

𝜌
= 𝑢′𝑖𝑢′𝑗̅̅ ̅̅ ̅̅ ̅  

                                                                                                                 (2.3.56) 
 
The exact transport equation for “𝑅𝑖𝑗” takes next form: 

 

𝜕(𝜌𝑅𝑖𝑗)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑅𝑖𝑗𝐔) = 𝑃𝑖𝑗 + 𝐷𝑖𝑗 − 𝜀𝑖𝑗 + Π𝑖𝑗 + Ω𝑖𝑗  

                                                                                                                 (2.3.57) 
 
Where: 
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𝑃𝑖𝑗 = −(𝑅𝑖𝑚

𝜕𝑈𝑗

𝜕𝑥𝑚
+ 𝑅𝑗𝑚

𝜕𝑈𝑖

𝜕𝑥𝑚
)  

                                                                                                                      (2.3.58) 
 

𝐷𝑖𝑗 = 𝑑𝑖𝑣 (
𝜈𝑡

𝜎𝑘
 𝑔𝑟𝑎𝑑(𝑅𝑖𝑗))  

 

𝜈𝑡 = 𝐶𝜇

𝑘2

𝜀
 

 

𝐶𝜇 = 0.09; 𝜎𝑘 = 1  

                                                                                                                      (2.3.59) 
 

𝜀𝑖𝑗 =
2

3
𝜀𝛿𝑖𝑗  

                                                                                                                     (2.3.60) 
 

Π𝑖𝑗 = −𝐶1

𝜀

𝑘
(𝑅𝑖𝑗 −

2

3
𝑘𝛿𝑖𝑗) − 𝐶2 (𝑃𝑖𝑗 −

2

3
𝑃𝛿𝑖𝑗)  

 

𝐶1 = 1.8; 𝐶2 = 0.6  

                                                                                                                     (2.3.61) 
 

Ω𝑖𝑗 = −2𝜔𝑘(𝑅𝑗𝑚𝑒𝑖𝑘𝑚 + 𝑅𝑖𝑚𝑒𝑗𝑘𝑚)  

                                                                                                                      (2.3.62) 
 
Where: 
𝜔𝑘 – is the rotation vector, 
𝑒𝑖𝑗𝑘 = 1 if 𝑖, 𝑗 and 𝑘 are different and in cyclic order, 𝑒𝑖𝑗𝑘 = −1 if 𝑖, 𝑗 and 

𝑘 are different and in anti-cyclic order; and 𝑒𝑖𝑗𝑘 = 0 if any two indices are 

same. 
 
The transport equation for scalar dissipation rate “𝜀” for sake of 
simplicity is same as for standard k-ε model (2.3.43). This is valid for most 
of commercial CFD codes, in spite the fact that more precisely defined 
equation exist. (Versteeg & Malalasekera 2007, 80 - 84). 
 
More detailed information about turbulence models can be found via 
following links: 
 

 https://turbmodels.larc.nasa.gov/index.html 

 https://www.cfd-online.com/Wiki/Turbulence_modeling 
 

https://turbmodels.larc.nasa.gov/index.html
https://www.cfd-online.com/Wiki/Turbulence_modeling
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2.3.7 Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) 

 
In Direct Numerical Simulation system of governing transient equations 
2.2.1, 2.2.20, 2.2.21 and 2.2.22 solved directly without implementation of 
any turbulence model and Reynolds averaging at all (not a RANS model). 
As a consequence, DNS demands extremely fine mesh an sufficiently 
small time steps in order of simulate the motion of eddies with smallest 
size and highest rotational frequencies. Therefore, DNS demands 
computational powers that can be only satisfied by modern 
supercomputers, making this method unsuitable for commercial usage. 
And even usage of supercomputers so far haven’t allowed to use this 
method on complex geometries with highly turbulent flows. Finally, at 
the moment DNS can be applied only to incompressible, simple-geometry 
and low-Reynolds-number flows. 
 
In spite such limitations, scientists came up with computational 
technique called Large Eddy Simulation (LES), that can be considered as 
simplification of DNS applicable for conventional computers, allowing to 
use coarser meshing (not a RANS model too). 
 
The ideas behind LES are two empirically proven facts: 
 

 Most of kinetic turbulent energy is contained in largest eddies in 
flow, meaning that smaller eddies play relatively negligible role in 
turbulence effects. 

 Anisotropy of eddies increases as the size of eddy increases. 
 
Both of these facts are used to exclude the modelling of small eddies 
from simulation running process (that are later resolved using so-called 
sub-grid-scale (SGS) model), significantly reducing computational costs. 
The exclusion of small eddies is done via spatial filtering operation: 
 

𝜑̅(𝐱, 𝑡) = ∫ ∫ ∫ 𝐺(𝐱, 𝐱′, ∆)𝜑(𝐱′, 𝑡)𝑑𝑥1𝑑𝑥2𝑑𝑥3

∞

−∞

∞

−∞

∞

−∞

 

                                                                                                              (2.3.63) 
 
Where: 
𝜑̅(𝐱, 𝑡) – is a filtered function (in this subsection overbar indicates 
filtering, not averaging); 
𝜑(𝐱, 𝑡) – is original (unfiltered) function; 
∆ - is a filter cutoff width; 
𝐺(𝐱, 𝐱′, ∆) – is a filter function. 
 
There exist 3 filtering functions that were successfully implemented to 
CFD: Top-hat (box) filter, Gaussian filter and Spectral cutoff. However, 
only Top-hat filter so far is widely used in commercial and free software, 
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while rest two can be found only in research literature. The box filter is 
defined as follows: 
 

𝐺(𝐱, 𝐱′, ∆) = {

1

∆3
;  |𝐱 − 𝐱′| ≤

∆

2

0; |𝐱 − 𝐱′| >
∆

2

 

                                                                                                                     (2.3.64) 
 
Cutoff width “∆” is defined in next way: 
 

∆= √∆𝑥∆𝑦∆𝑧3
 

                                                                                                                  (2.3.65) 
 
Where ∆𝑥∆𝑦∆𝑧 – is the volume of biggest (by volume) cell in grid. 
Even though it is possible to set the cutoff width to be even smaller, 
there is no point in doing that because the grid resolution simply will not 
be able to model them adequately. Besides, cutoff width reduction will 
also negatively affect sub-grid-scale (SGS) stresses – the stresses, 
resolved from rejected smaller eddies. Increasing of cutoff width, on the 
other hand, will result to lesser amount of modelled eddies, what yields 
to lower accuracy of simulation. Therefore, it is the best to keep formula 
2.3.65 as close as possible. 
 
Similarly to RANS models, LES requires appropriate boundary conditions, 
in order to obtain a well-posed problem. The boundary conditions are 
adjusted similarly to RANS models. However, some difference exists: 
 

 Adjustment of dimensionless constant “𝐶𝑆𝐺𝑆”. The value of this 
constant varies from one to other SGS model and usually lay in 
range from 0.1 to 0.24. The best way to determine the exact value 
of this constant is revising research literature with similar cases. 

 Cutoff width setup (see 2.3.65) 

 First wall mesh cell height must be computed strictly for 𝑦+ ≤ 1, 
independently on simplicity of geometry. Usage of wall functions 
is also possible. 

 Steady flow is solved using transient governing equation, what 
means that several time steps must get passed, before final state 
of flow is formed. The best way to determine time gap from initial 
to final state of flow is revision of research literature. 

 Inflow conditions are the most challenging part of setup .There 
exist several approaches to set correct conditions: 
1. Preparatory transient simulation of same problem but using 

RSM model. Obtained Reynolds stresses at the inlet are 
further transferred through corresponding autocorrelation 
and cross-correlation functions, that form random Gaussian 
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perturbations, to LES 
 

2. Extension of computational domain. Long upstream 
distances are required in order to ensure the generation of 
fully developed flow from turbulence-free reservoirs 
 

3. Direct specification of shear stresses and velocity profiles in 
inlet. (Versteeg & Malalasekera 2007, 98 - 114). 
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2.4 Finite volume method and solution schemes 

2.4.1 Finite volume method for diffusion problems 

 
Pure diffusion problems are one of the easiest problems that finite 
volume method can handle. In physics and engineering pure diffusion 
problems mostly involve problems of heat transfer in solids. In spite the 
fact that pure diffusion model is not sufficient for fluids due to 
involvement of convection, discretization procedure for solids and fluids 
is similar. There-fore in this section problems of pure steady-state 
diffusion will be covered first, and convection-diffusion problems with 
pressure-velocity coupling later. Pure diffusion equation for three-
dimensional problems is written as follows: 
 

𝑑𝑖𝑣(𝛤 𝑔𝑟𝑎𝑑(𝜑)) + 𝑆𝜑 = 0  

                                                                                                                      (2.4.1) 
 
Integration over control volume and application of Gauss’s divergence 
theorem will result to next form of 2.4.1: 
 

∫𝑑𝑖𝑣(𝛤 𝑔𝑟𝑎𝑑(𝜑))𝑑𝑉

 

𝐶𝑉

+ ∫𝑆𝜑𝑑𝑉

 

𝐶𝑉

= 

∫ 𝐧 . (𝛤 𝑔𝑟𝑎𝑑(𝜑))𝑑𝐴

 

𝐶𝑆

+ ∫𝑆𝜑𝑑𝑉

 

𝐶𝑉

= 0 

                                                                                                                      (2.4.2) 
 
Simplification of 2.4.2 to one-dimensional case will result to following 
equation: 
 

∫
𝑑

𝑑𝑥
(𝛤

𝑑𝜑

𝑑𝑥
) 𝑑𝑉

 

𝐶𝑉

+ ∫𝑆𝜑𝑑𝑉

 

𝐶𝑉

= 0  

                                                                                                                        (2.4.3) 
 
Similarly to other numerical methods, Finite volume method involves 
discretization. Uniquely for FVM, discretization is applied to control 
volume, resulting to its partition to finite amount of nodal points, 
surrounded by smaller control volumes (cells). Each nodal point 
corresponds to unique set of linearized governing equations specific to 
this smaller control volume and coupled with governing equations of 
surrounding cells at certain degree. (Versteeg & Malalasekera 2007, 115). 
 
The example of one-dimensional discretization is illustrated in Figure 10. 
The continuous line AB is divided to five control volumes with nodal 
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points placed in centre of cell, and values of property φ at boundaries “A” 
and “B” are specified. 
 

 

Figure 10. Spatial discretization of one-dimensional space. (Versteeg & 
Malalasekera 2007, 116). 

In order to make the specification of parameters for every single cell of 
control volume to be convenient, the convention, illustrated in Figure 11, 
will be used further. 
 

 

Figure 11. Notation system, used for one-dimensional CFD applications. 
(Versteeg & Malalasekera 2007, 116). 

Where: 
P – is the index used to mark the properties of flow at target node; 
W – is the index used to mark the properties of flow at neighbour node, 
at west (on the left) from target node; 
E - is the index used to mark the properties of flow at neighbour cell, at 
east (on the right) from target node; 
w – is the index used to mark the properties of flow at west side control 
volume face of target node; 
e - is the index used to mark the properties of flow at east side control 
volume face ; 
 
Using the assumption of linear change from one nodal point to another, 
one can show that equation 2.4.3 for particular point “P” will transform 
to next form: 
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∫
𝑑

𝑑𝑥
(𝛤

𝑑𝜑

𝑑𝑥
)𝑑𝑉

 

𝐶𝑉

+ ∫ 𝑆𝜑𝑑𝑉

 

𝐶𝑉

= (𝛤𝐴
𝑑𝜑

𝑑𝑥
)

𝑒
− (𝛤𝐴

𝑑𝜑

𝑑𝑥
)
𝑤

+ 𝑆̅∆𝑉 = 0  

                                                                                                                  (2.4.4) 
 
Where: 
𝐴 – is a cross-sectional area of cell face; 
∆𝑉 – is a volume of target cell; 
𝑆̅  – is averaged value of S over control volume. 
 
In order to determine the diffusion coefficients “Γ” at west and east side 
faces of cell, one again can use linear interpolation with respect to 
diffusion coefficients at neighbouring nodal points: 
 

𝛤𝑤 =
𝛤𝑊 − 𝛤𝑃

2
 

 

𝛤𝑒 =
𝛤𝑃 − 𝛤𝐸

2
 

                                                                                                                       (2.4.5) 
 
Diffusion terms can be linearized as follows: 
 

(𝛤𝐴
𝑑𝜑

𝑑𝑥
)
𝑤

= 𝛤𝑤𝐴𝑤 (
𝜑𝑃 − 𝜑𝑊

𝛿𝑥𝑊𝑃
)  

 

(𝛤𝐴
𝑑𝜑

𝑑𝑥
)
𝑒

= 𝛤𝑒𝐴𝑒 (
𝜑𝐸 − 𝜑𝑃

𝛿𝑥𝑃𝐸
)  

                                                                                                                     (2.4.6) 
 
For source term 𝑆̅∆𝑉 linearization applied as follows: 
 

𝑆̅∆𝑉 = 𝑆𝑢 + 𝑆𝑃𝜑𝑃  

                                                                                                                      (2.4.7) 
 
Substitution of 2.4.6 and 2.4.7 to 2.4.4 will results to: 
 

𝛤𝑒𝐴𝑒 (
𝜑𝐸 − 𝜑𝑃

𝛿𝑥𝑃𝐸
) − 𝛤𝑤𝐴𝑤 (

𝜑𝑃 − 𝜑𝑊

𝛿𝑥𝑊𝑃
) + (𝑆𝑢 + 𝑆𝑃𝜑𝑃) = 0  

                                                                                                                        (2.4.8) 
 
Which can be further rearranged to: 
 

(
𝛤𝑒

𝛿𝑥𝑃𝐸
𝐴𝑒 +

𝛤𝑤

𝛿𝑥𝑊𝑃
𝐴𝑤 − 𝑆𝑃)𝜑𝑃 = (

𝛤𝑤

𝛿𝑥𝑊𝑃
𝐴𝑤)𝜑𝑊 + (

𝛤𝑒

𝛿𝑥𝑃𝐸
𝐴𝑒)𝜑𝐸 + 𝑆𝑢  

                                                                                                              (2.4.9) 
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The resulting equation 2.4.9 is a simple algebraic equation allowing to 
solve value “𝜑” for particular nodal point P. By refinement of the grid 
(adding the nodal points) one can solve “𝜑” with higher accuracy (“𝜑” ap-
pears to be more specifically determined in control volume). On the 
other hand, mesh refinement yields to increased amount of algebraic 
equations (1 algebraic equation per nodal point), what results to increase 
size of corresponding matrix of system of algebraic equations, finally 
leading to in-creased computational time. The outcome of 2.4.9 can be 
further generalized to next form: 
 

𝑎𝑃𝜑𝑃 = 𝑎𝑊𝜑𝑊 + 𝑎𝐸𝜑𝐸 + 𝑆𝑢  

                                                                                                                    (2.4.10) 
 
With corresponding table for coefficients “a”: 
 

Table 4. Coefficients “a” for 1D diffusion problems. 

𝑎𝑊 𝑎𝐸 𝑎𝑃 
𝛤𝑤𝐴𝑤

𝛿𝑥𝑊𝑃
 

𝛤𝑒𝐴𝑒

𝛿𝑥𝑃𝐸
 

𝑎𝑊 + 𝑎𝐸 + 𝑆𝑝 

 
2.4.9 or 2.4.10 together with Table 4 form the mathematical model, 
sufficient to solve one-dimensional problems. However 1D diffusion 
models are rarely used in real engineering work due to insufficient 
accuracy especially in complex geometries. Therefore one has to extend 
existing methods for one-dimensional cases to two- and three-
dimensional cases by adding extra terms to 2.4.10: 
 

𝑎𝑃𝜑𝑃 = 𝑎𝑊𝜑𝑊 + 𝑎𝐸𝜑𝐸 + 𝑎𝑆𝜑𝑆 + 𝑎𝑁𝜑𝑁 + 𝑆𝑢  

                                                                                                                      (2.4.11) 
 
Where indices “S” and “N” stand for southern and northern neighbouring 
nodal points according to Figure 12. 
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Figure 12. Notation used for two-dimensional CFD applications. 
(Versteeg & Malalasekera 2007, 129). 

Corresponding “a” coefficients are summarized in “Table 5”. 
 

Table 5. Coefficients “a” for 2D diffusion problems. 

𝑎𝑊 𝑎𝐸 𝑎𝑆 𝑎𝑁 𝑎𝑃 
𝛤𝑤𝐴𝑤

𝛿𝑥𝑊𝑃
 

𝛤𝑒𝐴𝑒

𝛿𝑥𝑃𝐸
 

𝛤𝑠𝐴𝑠

𝛿𝑦𝑆𝑃
 

𝛤𝑛𝐴𝑛

𝛿𝑦𝑃𝑁
 

𝑎𝑊 + 𝑎𝐸 + 𝑎𝑆 + 𝑎𝑁 + 𝑆𝑝 

 
Where: 
𝐴𝑤 = 𝐴𝑒 = ∆𝑦; And 𝐴𝑠 = 𝐴𝑛 = ∆𝑥. 
 
Applying same principles, one can show that equation 2.4.11, once 
expanded to three-dimensional problems, will transform to next form: 
 

𝑎𝑃𝜑𝑃 = 𝑎𝑊𝜑𝑊 + 𝑎𝐸𝜑𝐸 + 𝑎𝑆𝜑𝑆 + 𝑎𝑁𝜑𝑁 + 𝑎𝐵𝜑𝐵 + 𝑎𝑇𝜑𝑇 + 𝑆𝑢  

                                                                                                                  (2.4.12) 
 
Where indices “T” and “B” stand for “Top” and “Bottom” as illustrated in 
Figure 13. 
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Figure 13. Notation used for two-dimensional CFD applications. 
(Versteeg & Malalasekera 2007, 131). 

Corresponding “a” coefficients for three-dimensional cases are 
summarized in “Table 6”. 
 

Table 6. Coefficients “a” for 3D diffusion problems. 

𝑎𝑊 𝛤𝑤𝐴𝑤

𝛿𝑥𝑊𝑃
 

𝑎𝐸 𝛤𝑒𝐴𝑒

𝛿𝑥𝑃𝐸
 

𝑎𝑆 𝛤𝑠𝐴𝑠

𝛿𝑦𝑆𝑃
 

𝑎𝑁 𝛤𝑛𝐴𝑛

𝛿𝑦𝑃𝑁
 

𝑎𝐵 𝛤𝑏𝐴𝑏

𝛿𝑧𝐵𝑃
 

𝑎𝑇 𝛤𝑡𝐴𝑡

𝛿𝑧𝑃𝑇
 

𝑎𝑃 𝑎𝑊 + 𝑎𝐸 + 𝑎𝑆 + 𝑎𝑁 + 𝑎𝐵 + 𝑎𝑇 − 𝑆𝑃 

 
Observing the pattern in 2.4.10, 2.4.11 and 2.4.12, one can write 
generalized form of these equations in next way: 
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𝑎𝑃𝜑𝑃 = ∑ 𝑎𝑛𝑏𝜑𝑛𝑏 + 𝑆𝑢  

                                                                                                                      (2.4.13) 
 
And, 
 

𝑎𝑃 = ∑𝑎𝑛𝑏 − 𝑆𝑃  

                                                                                                                   (2.4.14) 
 
Where index “nb” corresponds to neighbouring nodes relatively to target 
node. (Versteeg & Malalasekera 2007, 115 - 133). 
 

2.4.2 Convection-diffusion problems 

 
General form of convection-equation is read as follows: 
 

∫𝐧 . (𝜌𝜑𝐮)𝑑𝐴

 

𝐴

= ∫𝐧 . (𝛤(𝑔𝑟𝑎𝑑(𝜑))𝑑𝐴

 

𝐴

+ ∫𝑆𝜑𝑑𝑉

 

𝐶𝑉

 

                                                                                                                      (2.4.15) 
 
Simplification of 2.4.15 to one-dimensional and neglecting of source term 
case will result to: 
 

𝑑(𝜌𝑢𝜑)

𝑑𝑥
=

𝑑

𝑑𝑥
(𝛤 (

𝑑𝜑

𝑑𝑥
))  

                                                                                                                    (2.4.16) 
 
In addition to 2.4.16, one also has to consider the continuity equation: 
 

𝑑(𝜌𝑢)

𝑑𝑥
= 0  

                                                                                                                    (2.4.17) 
 
To apply discretization to 2.4.16 and 2.4.17, the notation similar to 
diffusion problems, shown in Figure 14, is used with only difference of 
presence of velocity components “𝑢”, “𝑣” and “𝑤”. 
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Figure 14. Notation, used for one-dimensional convection-diffusion 
problems. (Versteeg & Malalasekera 2007, 135). 

With given convention, one can transform equations 2.4.16 and 2.4.17 in 
linearized form: 
 

(𝜌𝑢𝐴𝜑)𝑒 − (𝜌𝑢𝐴𝜑)𝑤 = (𝛤𝐴
𝑑𝜑

𝑑𝑥
)
𝑒
− (𝛤𝐴

𝑑𝜑

𝑑𝑥
)
𝑤

 

                                                                                                                     (2.4.18) 
 
For transport equation of “𝜑”, and for continuity equation: 
 

(𝜌𝑢𝐴)𝑒 − (𝜌𝑢𝐴)𝑤 = 0  

                                                                                                                   (2.4.19) 
 
For the sake of convenience, one can introduce next replacements for 
2.4.18 and 2.4.19: 
 

𝐹 = 𝜌𝑢  

                                                                                                                   (2.4.20) 
 
And, 
 

𝐷 =
𝛤

𝛿𝑥
 

                                                                                                                     (2.4.21) 
 
Particularly for 2.4.18 and 2.4.19, one can get next coefficients: 
 

𝐹𝑤 = (𝜌𝑢)𝑤  

 

𝐹𝑒 = (𝜌𝑢)𝑒  

 

𝐷𝑤 =
𝛤𝑤

𝛿𝑥𝑊𝑃
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𝐷𝑒 =
𝛤𝑒

𝛿𝑥𝑃𝐸
 

                                                                                                                      (2.4.22) 
 
Substitution of 2.4.22 to 2.4.18 and to 2.4.19 and assumption that 
𝐴𝑤 = 𝐴𝑒 = 𝐴 will give next equations: 
 

𝐹𝑒𝜑𝑒 − 𝐹𝑤𝜑𝑤 = 𝐷𝑒(𝜑𝐸 − 𝜑𝑃) − 𝐷𝑤(𝜑𝑃 − 𝜑𝑊)  

                                                                                                                     (2.4.23) 
 

𝐹𝑒 − 𝐹𝑤 = 0  

                                                                                                                     (2.4.24) 
 
There exists several schemes to reduce number of variables in 2.4.23 by 
representing values “𝜑” at faces (“𝜑” with lower-case letter indices) as 
sum of nodal terms (“𝜑” with capital letter indices). However, the 
simplest scheme is called “The central differencing scheme”, which 
represents “𝜑” at faces as follows: 
 

𝜑𝑒 =
𝜑𝑃 + 𝜑𝐸

2
 

 

𝜑𝑤 =
𝜑𝑊 + 𝜑𝑃

2
 

                                                                                                                    (2.4.25) 
 
Substitution of 2.4.25 to 2.4.23 will result to next equation: 
 

𝑎𝑃𝜑𝑃 = 𝑎𝑊𝜑𝑊 + 𝑎𝐸𝜑𝐸  

                                                                                                                  (2.4.26) 
 

Table 7. “a” coefficients for one-dimensional convection-diffusion 
problems applying central differencing scheme. 

𝑎𝑊 𝑎𝐸 𝑎𝑃 

𝐷𝑤 +
𝐹𝑤

2
 𝐷𝑒 −

𝐹𝑒

2
 

𝑎𝑊 + 𝑎𝐸 + (𝐹𝑒 − 𝐹𝑤) 

 
In addition to central differencing schemes, several other discretization 
schemes that might perform better than central differencing scheme, but 
might give unrealistic result. In order to avoid such problem, one must 
consider the next fundamental properties of any discretization scheme: 

 Conservativeness 

 Boundedness 

 Transportiveness 
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Conservativness is the property, telling how well properties “φ” obey 
conservativeness in overall bounded control volume. Discretization 
schemes, that satisfy conservatives are also called consistent. The 
examples of consistent schemes are Central Differencing Scheme and 
QUICK. The example of inconsistent scheme, using quadratic 
interpolation is shown in Figure 15 below. 
 

 

Figure 15. Inconsistent  scheme, using quadratic interpolation. (Versteeg 
& Malalasekera 2007, 142) 

In this example gradients of flux “φ” at west face of cell “2” and east face 
of cell “3” can be different, what yields to unsatisfied conservation 
condition. (Versteeg & Malalasekera 2007, 134 - 143). 
 
Boundedness is the property of scheme telling if the solution will con-
verge after several iterations, that are necessary in CFD to handle 
nonlinear (product of unknown functions) terms of governing equations. 
The sufficient condition for convergence of iterative method is described 
by Scar-borough criterion: 
 

∑|𝑎𝑛𝑏|

|𝑎𝑃
′ |

 {
≤ 1 𝑎𝑡 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠

< 1 𝑎𝑡 𝑜𝑛𝑒 𝑛𝑜𝑑𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡
 

                                                                                                                     (2.4.27) 
 
Where 𝑎𝑃

′   denotes the coefficient at target nodal point and 𝑎𝑛𝑏 denotes 
coefficients of all neighbouring nodes involved in linear algebraic 
equation of “𝜑𝑃”. This criterion can be satisfied by appropriate 
adjustment of source term coefficients “S”. (Versteeg & Malalasekera 
2007, 143). 
 
Transportiveness is the property characterized by Peclet number: 
 

𝑃𝑒 =
𝐹

𝐷
=

𝜌𝑢

𝛤/𝛿𝑥
 

                                                                                                                     (2.4.28) 
 
which shows the relative strength of convection and diffusion and must 
not exceed certain value, specific for each scheme. 
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The table with discretization schemes widely used in CFD with brief ex-
planation of their advantages and disadvantages is shown below in 
“Table 8”. (Versteeg & Malalasekera 2007, 143 - 178). 
 

Table 8. Discretization schemes, commonly used in CFD. 

Discretization 
scheme 

advantages disadvantages 

Central  
differencing 

The simplest formulation of  
coefficients “a”. 

Works only for 

𝑃𝑒 < 2. 

Upwind  
differencing 

No limitations on Peclet number. Only first order Taylor 
series truncation 
error. Problem of 
“false diffusion”. 

Hybrid Switches from upwind to central 
differencing scheme, when 

𝑃𝑒 < 2, hence more suitable for 
modelling of boundary layer. 

Same as for upwind 
differencing scheme 

when 𝑃𝑒 ≥ 2.  

Power-law Accuracy is higher than in Hybrid 
scheme. 

Only applicable to 
one-dimensional 

flows. 

QUICK 
(Quadratic 
upstream 

interpolation 
for 

 convective 
kinetics) 

Accuracy is higher than in Hybrid 
scheme. Resultant false diffusion 
is smaller than in hybrid scheme 

too. 

Minor under- and 
overshoots in 

solution, that can give 
physically unrealistic 
results (e.g. negative 

turbulent kinetic 
energy “k”). 

TVD 
(Total  

variation  
diminishing) 

Complete elimination of under- 
and overshoots. Same accuracy 
as in QUICK scheme, resulting in 
the most accurate and realistic 

results. 

Mathematical 
complexity 

 

2.4.3 Pressure-velocity coupling 

 
As it was mentioned before, momentum equations contain non-linear 
convective terms (e.g. unknown velocity component multiplied by its 
spatial derivative), what causes need to use iterative techniques (Like 
Newton-Raphson method) to obtain solution with sufficient accuracy. 
However, nonlinear terms are not the only reason to use iterative 
methods to solve governing equations. Unlike compressible flows, where 
pressure can be obtained from solving corresponding transport equation 
of energy (temperature) and certain gas law, incompressible flows don’t 
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have such relation with density and temperature, but application of 
correct pressure field function must yield to satisfied continuity. 
Therefore, one can find correct pressure function iteratively from initially 
guessed function, by performing certain amount of iterations, correcting 
the “guessed” pressure function, until continuity equations turns out to 
be sufficiently satisfied (converge). (Versteeg & Malalasekera 2007, 179 - 
196). 
 
In order to couple the pressure and velocity to convection-diffusion 
equation, one has to discretize the pressure, first. There exist several 
methods to accomplish this problem, however only one way, called 
staggered grid arrangement, allows to obtain sufficiently realistic results. 
The pressure gradients from 2.2.25 in staggered arrangement are defined 
as follows: 
 

𝜕𝑝

𝜕𝑥
=

𝑝𝑃 − 𝑝𝑊

𝛿𝑥𝑊𝑃
 

 

𝜕𝑝

𝜕𝑦
=

𝑝𝑃 − 𝑝𝑆

𝛿𝑦𝑆𝑃
 

 

𝜕𝑝

𝜕𝑧
=

𝑝𝑃 − 𝑝𝐵

𝛿𝑧𝐵𝑃
 

                                                                                                                   (2.4.29) 
 
Recalling the formula 2.4.13 that can also be applied to convection-
diffusion problems (coefficients “a” will vary depending on discretization 
scheme), applied to x-momentum equation with subtraction of 
corresponding pressure gradient will result to discretized equation of x-
momentum: 
 

𝑎𝑃𝑢𝑃 = ∑𝑎𝑛𝑏𝑢𝑛𝑏 −
𝑝𝑃 − 𝑝𝑊

𝛿𝑥𝑊𝑃
∆𝑉𝑃 + 𝑆̅∆𝑉𝑃  

                                                                                                                     (2.4.30) 
 
If one assumes uniform square grid (two-dimensional problem), index P 
corresponding to target node (cell centre) can be represented by double 
index “IJ”, where “I” corresponds to certain row of mesh and “J” – to 
column. In the same way, one also has to use lower case letters to refer 
to points at cell faces, where “i” corresponds to certain row, and “j” – to 
column (See the Figure 12). With this notation 2.4.31 will change to: 
 

𝑎𝑖𝐽𝑢𝑖𝐽 = ∑𝑎𝑛𝑏𝑢𝑛𝑏 −
𝑝𝐼𝐽 − 𝑝(𝐼−1)𝐽

𝛿𝑥𝑊𝑃
∆𝑉𝐼𝐽 + 𝑆̅∆𝑉𝐼𝐽  

 
And further to: 
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𝑎𝑖𝐽𝑢𝑖𝐽 = ∑𝑎𝑛𝑏𝑢𝑛𝑏 + (𝑝(𝐼−1)𝐽 − 𝑝𝐼𝐽)𝐴𝑖𝐽 + 𝑏𝑖𝐽  

                                                                                                                      (2.4.31) 
 
The physical meaning of such model is that all scalar quantities (density, 
pressure, temperature, etc.) are computed exactly at nodal points, while 
velocity components are evaluated at cell faces, what allows properly 
catch non-uniform behaviour of field functions if it is the case. (Versteeg 
& Malalasekera 2007, 180 - 186) 
As previously mentioned, in order to solve pressure and velocity 
functions, one has to specify initially guessed value, that will be later 
corrected to more realistic result using iterative methods, so the first step 
in solving flow equations is the specification of guessed value, which can 
be obtained from decomposition of correct values: 
 

𝑝 = 𝑝∗ + 𝑝′  

 

𝑢 = 𝑢∗ + 𝑢′  

 

𝑣 = 𝑣∗ + 𝑣′  

 

𝑤 = 𝑤∗ + 𝑤′  

                                                                                                                    (2.4.32) 
 
Where upper script “∗” denotes the initially stated (guessed) value, and ' 
denotes the value correction, necessary to satisfy governing equations. 
(Versteeg & Malalasekera 2007, 186 - 190). 
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Figure 16. “IJ” and “ij” notation of uniform two-dimensional grid with 
illustrated application of continuity equation (Versteeg & 
Malalasekera 2007, 188). 

There exist four algorithms widely used in CFD applications: 
 

 SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) 

 SIMPLER (SIMPLE Revised) 

 SIMPLEC (SIMPLE Consistent) 

 PISO (Pressure Implicit with Splitting of Operations) 
 
In addition to step sequence, they vary by equations used to determine 
the corrections “φ'”. The actual schemes of SIMPLE, SIMPLEC and PISO 
are shown in Figure 17, 18 and 19. 
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Figure 17. SIMPLE algorithm diagram (Versteeg & Malalasekera 2007, 
190). 
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Figure 18. SIMPLER algorithm diagram (Versteeg & Malalasekera 2007, 
192). 
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Figure 19. PISO algorithm diagram (Versteeg & Malalasekera 2007, 195). 
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Where upper script “∗∗” denotes corrected pressure, “''” denotes second 
correction and “∗∗∗” denotes twice-corrected pressure: 
 

𝑝∗∗∗ = 𝑝∗∗ + 𝑝′′ = 𝑝∗ + 𝑝′ + 𝑝′′  

                                                                                                                      (2.4.33) 
 
And for “𝑑” with corresponding indices: 
 

𝑑 =
𝐴

𝑎
 

                                                                                                                      (2.4.34) 
 
Every listed algorithm has own advantages and disadvantages. 
Particularly SIMPLE algorithm executes the least amount of computations 
per iteration, but requires more iterations to converge, while SIMPLER 
algorithm shows opposite behaviour due to better pressure correction 
scheme. On the other hand PISO shows better performance when there 
is no coupling of momentum equations with scalar variables 
(incompressible flows modelled using LES or DNS, laminar flows), while 
SIMPLER and SIMPLEC show better performance with highly coupled 
flows (compressible flows with RANS models). (Versteeg & Malalasekera 
2007, 196). 
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3 EXAMPLE SOLVED IN MATHCAD 15 

As one can notice, mathematical methods used in CFD are extremely 
lengthy to solve. The aim of examples this chapter is to show the 
application of theory, covered in Chapter 2 and demonstrate the need in 
such mathematical software packages as ANSYS or COMSOL: complexity 
of implementation of covered mathematical methods for extremely 
simple one-dimensional pressure-driven flow with coarse mesh. 
 

3.1 Problem specification 

As an example, one can consider steady, inviscid, incompressible 
pressure-driven flow in converging-diverging nozzle, shown in figure 20. 
 

 

Figure 20. Converging-diverging nozzle with marked nodal points for 
pressure field (Arabic numerals) and grid for velocity field 
(Roman numerals). 

Note that cross-sectional area is assumed to change linearly along 
symmetry axis until point 4, where it starts to stay constant. The applied 
solution scheme will be upwind-differencing scheme, and used algorithm 
– SIMPLE. 
 
Problem specifications: 
Area at inlet: 0.5 m2 
Area at outlet: 0.4 m2 
Area at point 3: 0.3 m2 
Outlet pressure: atmospheric pressure 𝑝𝑎 = 101325 (𝑃𝑎) 

Inlet pressure: 𝑝𝑖𝑛 = 2𝑝𝑎 

Overall length: 1.6 m 
Fluid density: 1000 kg/m3 
 
Since the flow is simplified to incompressible, steady, one-dimensional 
and inviscid, one can use a Bernoulli’s equation to find fluid velocity in 
the outlet and corresponding simplified continuity equation to find 
velocity and pressures at all nodal points: 
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𝑝 + 𝜌
𝑢2

2
= 𝑐𝑜𝑛𝑠𝑡  

                                                                                                                    (3.1.1) 
 

𝑢𝐴 = 𝑐𝑜𝑛𝑠𝑡  

                                                                                                                         (3.1.2) 
 
With the origin placed at the point 1, one can get the following results: 
 

Table 9. Exact solution, using Bernoulli’s equation. 

Corresponding 
nodal point 

x (m) A (m2) p (Pa) u (m/s) 

1 0 0.5 137802 11.388415 

I 0.2 0.45 122590.740741 12.653795 

2 0.4 0.4 101325 14.235519 

II 0.6 0.35 70307.142857 16.269165 

3 0.8 0.3 22516.666667 18.980692 

III 1 0.35 70307.142857 16.269165 

4 1.2 0.4 101325 14.235519 

IV 1.4 0.4 101325 14.235519 

5 1.6 0.4 101325 14.235519 

 
These results will be used later for comparison with numerical method. 
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3.2 Numerical solution 

1) According to SIMPLE algorithm one has firstly specify initial pressure 
and velocity fields. 

 
For pressure field nodal points one cane make the next guess: 

Table 10.  Initial guess for pressure field. 

1 2 3 4 5 

1.5𝑝𝑎 𝑝𝑎 0 𝑝𝑎 𝑝𝑎 

 
For velocity field one can make a guess of volumetric flow at point IV and 
use continuity equation to find the rest “guessed” values. Say let the 
velocity at point IV to be 14 (m/s), then one can obtain the following 
table: 

Table 11. Initial guess for velocity field. 

I II III IV 

12.444444 (m/s) 16 (m/s) 16 (m/s) 14 (m/s) 

 
2) With given simplifications governing equations (continuity and 

momentum conservation correspondingly) will transform to: 
 

𝑑

𝑑𝑥
(𝜌𝐴𝑢) = 0  

                                                                                                                         (3.2.1) 
 

𝜌𝑢𝐴
𝑑𝑢

𝑑𝑥
= −𝐴

𝑑𝑝

𝑑𝑥
 

                                                                                                                       (3.2.2) 
 
After discretization of second equation one obtains the next form of 
momentum equation: 
 

(𝜌𝑢𝐴)𝑒𝑢𝑒 − (𝜌𝑢𝐴)𝑤𝑢𝑤 =
𝑝𝑤 − 𝑝𝑒

∆𝑥
∆𝑉  

                                                                                                                      (3.2.3) 
 
For a single nodal point “P” the momentum equation will have a 
following form: 
 

𝑎𝑃𝑢𝑃
∗ = 𝑎𝑊𝑢𝑊

∗ + 𝑎𝐸𝑢𝐸
∗ + 𝑆𝑢  

                                                                                                                     (3.2.4) 
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The coefficients “a” are obtained from applied solution scheme, which is 
the upwind difference scheme in this case. For this solution scheme 
coefficients “a” are listed in tables below 
 

Table 12. Coefficients “a” for upwind differencing solution scheme. 

𝑎𝑃 𝑎𝑊 + 𝑎𝐸 + 𝑎𝑆 + 𝑎𝑁 + 𝑎𝐵 + 𝑎𝑇 + ∆𝐹 

𝑎𝑊 𝐷𝑤 + max(𝐹𝑤, 0) 

𝑎𝐸 𝐷𝑒 + max(−𝐹𝑒 , 0) 

𝑎𝑆 𝐷𝑠 + max(𝐹𝑠, 0) 

𝑎𝑁 𝐷𝑛 + max(−𝐹𝑛, 0) 

𝑎𝐵 𝐷𝑏 + max(𝐹𝑏 , 0) 

𝑎𝑇 𝐷𝑡 + max(−𝐹𝑡, 0) 

∆𝐹 𝐹𝑒−𝐹𝑤+𝐹𝑛−𝐹𝑠+𝐹𝑡−𝐹𝑏 

 

Table 13. Values of “F” and “D”. 

Face w e s n b t 

F (𝜌𝑢)𝑤𝐴𝑤 (𝜌𝑢)𝑒𝐴𝑒 (𝜌𝑣)𝑠𝐴𝑠 (𝜌𝑣)𝑛𝐴𝑛 (𝜌𝑤)𝑏𝐴𝑏 (𝜌𝑤)𝑡𝐴𝑡 

D 𝛤𝑤

𝛿𝑥𝑊𝑃
𝐴𝑤  

𝛤𝑒

𝛿𝑥𝑃𝐸
𝐴𝑒  

𝛤𝑠

𝛿𝑦𝑆𝑃
𝐴𝑠  

𝛤𝑛

𝛿𝑦𝑃𝑁
𝐴𝑛  

𝛤𝑏

𝛿𝑧𝐵𝑃
𝐴𝑏  

𝛤𝑡

𝛿𝑧𝑃𝑇
𝐴𝑡  

 
Since the flow was assumed to be one-dimensional all coefficients that 
contribute to south, north, top and bottom coefficients “a” will be equal 
to zero. Moreover, the flow was assumed to be inviscid (viscosity equals 
zero), therefore all values of diffusive terms “D” will be equal zero too. 
 
Source term 𝑆𝑢 in 3.2.4 hides the pressure gradient term of discretized 
momentum equation 3.2.3: 
 

𝑆𝑢 =
𝑝𝑤 − 𝑝𝑒

∆𝑥
∆𝑉 =

1

2
(𝑝𝑤 − 𝑝𝑒)(𝐴𝑤 + 𝐴𝑒) = (𝑝𝑤 − 𝑝𝑒)𝐴𝑃  

                                                                                                                    (3.2.5) 
 
Finally, after all simplifications the coefficients for 3.2.4 are: 
 

𝑎𝑃 = 𝑎𝑊 + 𝑎𝐸 + (𝐹𝑒−𝐹𝑤)  

 

𝐹𝑤 = 𝜌𝑢𝑤𝐴𝑤  

 

𝐹𝑒 = 𝜌𝑢𝑒𝐴𝑒  

 

𝑎𝑊 = 𝐹𝑤  

 

𝑎𝐸 = 0  
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𝑆𝑢 =
1

2
(𝑝𝑤 − 𝑝𝑒)(𝐴𝑤 + 𝐴𝑒) = (𝑝𝑤 − 𝑝𝑒)𝐴𝑃  

                                                                                                                        (3.2.6) 
 
The parameter “d” necessary for pressure correction equation is 
determined as follows: 
 

𝑑𝑃 =
𝐴𝑃

𝑎𝑃
 

                                                                                                                       (3.2.7) 
 
3) The discretized form of 3.2.1 will be: 
 

(𝜌𝑢𝐴)𝑒 − (𝜌𝑢𝐴)𝑤 = 0  

                                                                                                                      (3.2.8) 
 

𝑎𝑃𝑝𝑃
′ = 𝑎𝑊𝑝𝑊

′ + 𝑎𝐸𝑝𝐸
′ + 𝑏′  

                                                                                                                    (3.2.9) 
 
Where: 
 

𝑎𝑃 = 𝑎𝑊 + 𝑎𝐸  

 

𝑎𝑊 = (𝜌𝑑𝐴)𝑤  

 

𝑎𝐸 = (𝜌𝑑𝐴)𝑒  

 

𝑏′ = 𝐹𝑤
∗ − 𝐹𝑒

∗ = (𝜌𝑢∗𝐴)𝑤 − (𝜌𝑢∗𝐴)𝑒  

                                                                                                                 (3.2.10) 
 
The key approximation that is the core of SIPMPLE algorithm is the 
following formula for velocity correction that is obtained from pressure 
corrections: 
 

𝑢′ = 𝑑(𝑝𝐼
′ − 𝑝𝐼+1

′ )  

                                                                                                                   (3.2.11) 
 
Once pressure and velocity corrections are found one can find the 
solution of pressure and velocity fields, by simple summation of guessed 
values with corrections as shown in 2.4.32. 
 
4) The next step is to solve velocity field and correction parameters “d” 

using the guessed values. To accomplish this, one has to form the sys-
tem of linear equations, using 3.2.4, 3.2.6 and 3.2.7. 
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The solution in Mathcad 15 begins with specification of coefficients “a” 
and source terms of momentum equations for velocity nodes II and III as 
follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
The next step is specifying the same coefficients for momentum 
equations of nodes I and IV. They are placed on boundaries of control 
volume of problem and require the special treatment. 
 
Due to absence of the neighbouring node for the velocity node “I”, one 
has to make the correlation with the pressure node “1” by specifying the 
velocity at pressure node “1”, what can be done using the Bernoulli’s 
(3.1) and continuity (3.2) equation as follows: 
 

𝑝𝑖𝑛 = 𝑝1 +
1

2
𝜌𝑢1

2  

                                                                                                                 (3.2.12) 
 

𝑢𝐼𝐴𝐼 = 𝑢1𝐴1  

                                                                                                                      (3.2.13) 
 
The combination of these two equations will yield to: 

     

     

     

     

  

  

 

 

 

  

  

 

 

 

pa 101325 uI 12.444444 uII 16 uIII 16 uIV 14

AI 0.45 AII 0.35 AIII 0.35 AIV 0.4  1000

A1 0.5 A2 0.4 A3 0.3 A4 0.4 A5 0.4

p1 1.5 pa p2 pa p3 0 p4 pa p5 pa

FwII  A2
1

2
 uII uI  FeII  A3

1

2
 uII uIII 

aWII FwII aEII 0

aII aWII aEII FeII FwII 

SII p2 p3  AII

dII

AII

aII



FwIII  A3
1

2
 uIII uII  FeIII  A4

1

2
 uIII uIV 

aWIII FwIII aEIII 0

aIII aWIII aEIII FeIII FwIII 

SIII p3 p4  AIII

dIII

AIII

aIII


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𝑝1 = 𝑝𝑖𝑛 −
1

2
𝜌𝑢𝐼

2 (
𝐴𝐼

𝐴1
)

2

 

                                                                                                                     (3.2.14) 
 
The discretized momentum equation for velocity node “I” is determined 
as follows: 
 

𝐹𝑒𝑢𝐼 − 𝐹𝑤𝑢1 = (𝑝1 − 𝑝2)𝐴𝐼  

                                                                                                                     (3.2.15) 
 
Where 𝐹𝑤 = 𝜌𝑢1𝐴1 = 𝜌𝑢𝐼𝐴𝐼  
 
The substitution of 3.15 and 3.16 to 3.17 will result to: 
 

(𝐹𝑒 − 𝐹𝑤 (
𝐴𝐼

𝐴1
) +

1

2
𝐹𝑤 (

𝐴𝐼

𝐴1
)

2

)𝑢1 = (𝑝𝑖𝑛 − 𝑝2)𝐴𝐼  

                                                                                                                  (3.2.16) 
 
In order to avoid negative value for coefficient “𝑎𝐼” one has to rearrange 
3.18 to next form: 
 

(𝐹𝑒 +
1

2
𝐹𝑤 (

𝐴𝐼

𝐴1
)

2

)𝑢1 = (𝑝𝑖𝑛 − 𝑝2)𝐴𝐼 + 𝐹𝑤 (
𝐴𝐼

𝐴1
) 𝑢𝐼

∗  

                                                                                                                      (3.2.17) 
 
Where 𝑢𝐼

∗ denotes velocity at point “I” from previous iteration. Therefore 
“𝑎𝐼”, “𝑆𝐼” and “𝑑𝐼” are determined as follows: 
 
 
 
 
 
 

 
 
 
 
For the velocity node “IV”: 

 
 
 
 
 

 
 
 

   

 

  

  

  

 

 

 

pin 2 pa FwI  AI uI FeI  A2
1

2
 uI uII 

aI FeI FwI
1

2


AI

A1









2



SI pin p2  AI FwI

AI

A1









2

 uI dI

AI

aI



FwIV 
uIII uIV 

2









 A4 FeIV  uIV AIV

aWIV FwIV aEIV 0

aIV aWIV aEIV FeIV FwIV 

SIV p4 p5  AIV

dIV

AIV

aIV


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Once coefficients for all four momentum (velocity) nodes are 
determined, one is ready to solve the system of four algebraic equations 
with four unknowns, where unknowns are computed velocities at 
momentum nodes denoted with capital “U”s: 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
These computed velocities will be used to compute the pressure 
corrections. 
 
5) For pressure nodes “2”, “3” and “4” pressure correction equations are 

determined directly from 3.11: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For nodes “1” and “5” the pressure corrections are set to 0. Therefore 
one gets the following system of equations for pressure corrections: 
 

  

 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

  

 

 

 

 

Given

aI UI SI

aII UII aWII UI SII

aIII UIII aWIII UII SIII

aIV UIV aWIV UIII SIV

UI

UII

UIII

UIV

















Find UI UII UIII UIV 

12.824641586897135038

22.587856226606945473

12.159659981285556379

13.028207122805953263

















a2W  dI AI a2E  dII AII

F2w  UI AI F2E  UII AII

a2 a2W a2E b'2 F2w F2E

a3W  dII AII a3E  dIII AIII

F3w  UII AII F3E  UIII AIII

a3 a3W a3E b'3 F3w F3E

a4W  dIII AIII a4E  dIV AIV

F4w  UIII AIII F4E  UIV AIV

a4 a4W a4E b'4 F4w F4E

p'1 0 p'5 0

Given

a2 p'2 a2W p'1 a2E p'3 b'2

a3 p'3 a3W p'2 a3E p'4 b'3

a4 p'4 a4W p'3 a4E p'5 b'4
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Finally, computed velocities and pressures are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The last step in SIMPLE algorithm is the usage of so-called relaxation, 
which is defined as: 
 

𝑢𝑛𝑒𝑤 = (1 − 𝛼)𝑢𝑜𝑙𝑑 + 𝛼𝑢𝑐𝑜𝑚𝑝  

 

𝑝𝑛𝑒𝑤 = (1 − 𝛼)𝑝𝑜𝑙𝑑 + 𝛼𝑝𝑐𝑜𝑚𝑝  

                                                                                                                    (3.2.18) 
 
Where “𝛼” is so-called relaxation coefficient defined by programme or 
user and always less than one. 
 
Particularly for 𝛼 = 0.75: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p'2

p'3

p'4













Find p'2 p'3 p'4 
2458.2651912151169592

88553.531558205677073

17403.536025720064175













uIcomp UI dI p'1 p'2  12.685614967936724

uIIcomp UII dII p'2 p'3  16.310076387347216

uIIIcomp UIII dIII p'3 p'4  16.310076387347216

uIVcomp UIV dIV p'4 p'5  14.271316838928815

p1comp p1 p'1 151987.5

p2comp p2 p'2 103783.26519121512

p3comp p3 p'3 88553.53155820568

p4comp p4 p'4 118728.53602572007

p5comp p5 p'5 101325

 0.75

uInew 1 ( ) uI  uIcomp 12.625322225952544

uIInew 1 ( ) uII  uIIcomp 16.232557290510414

uIIInew 1 ( ) uIII  uIIIcomp 16.232557290510414

uIVnew 1 ( ) uIV  uIVcomp 14.203487629196612

p1new 1 ( ) p1  p1comp 151987.5

p2new 1 ( ) p2  p2comp 103168.69889341135

p3new 1 ( ) p3  p3comp 66415.14866865426

p4new 1 ( ) p4  p4comp 114377.65201929005

p5new 1 ( ) p5  p5comp 101325



66 
 

 
 

The last set of values is the outcome of a single iteration in SIMPLE 
algorithm. In order to execute the second iteration one simply has to set 
the final result of first iteration as guess values for second iteration and 
repeat the procedure. Results (except pressures at nodes “1” (because in 
most CFD codes this value will be reserved for stagnation pressure at 
pressure inlet, which is double atmospheric pressure in this case must 
not change with any number of performed iterations) and “3”) show 
some agreement with the exact solution in Table 9 even though they not 
necessary should, since the grid consist only from five pressure a four 
momentum (velocity) nodes, that makes it to be a relatively coarse mesh. 
The accuracy can be improved by the grid refinement (increasing the 
amount of nodes). But one must remember that this will increase the 
complexity of mathematical model and require more iterations to 
converge (Versteeg & Malalasekera 2007, 209 -210). 
 
The disadvantage of poor accuracy in numerical methods is compensated 
by their ability to be expanded to more complex three-dimensional, 
compressible, viscous and even ionized flows, what together with the 
absence of alternatives ensured the popularity of CFD in industrial and 
scientific applications. 
 
Considered example explicitly shows how lengthy the computation of 
flow can be even with coarse mesh. Therefore, in order to handle more 
complex scenarios such as three-dimensional transient flow, it’s strongly 
suggested to use either commercial software like ANSYS or COMSOL or 
any free CFD software, that can be found here: 
https://www.cfd-online.com/Wiki/Codes. 

 
In order to learn how to use ANSYS FLUENT one can go to link below 
which contains tutorials in FLUENT covering all aspects, necessary to 
know for modelling of complex flows. 
Link to ANSYS FLUENT tutorials: 
https://confluence.cornell.edu/display/SIMULATION/FLUENT+Learning+
Modules 

 
Once tutorials are completed, one can continue the self-study by 
exploring the following book, which also gives the insight into 
programming aspects of CFD: Moukalled F., Mangani L., Darwish M. 
(2016) The Finite Volume Method in Computational Fluid Dynamics: An 
Advanced Introduction with OpenFOAM and Matlab. Stuttgart: Springer. 

  

https://www.cfd-online.com/Wiki/Codes
https://confluence.cornell.edu/display/SIMULATION/FLUENT+Learning+Modules
https://confluence.cornell.edu/display/SIMULATION/FLUENT+Learning+Modules
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4 PI-THEOREM HANDOUTS 

CFD provides Mechanical Engineering designers with an inexpensive 
alternative to actual experiments supported by a high flexibility in 
changing of prototype design. However, once the results from several 
simulations are obtained, one has to build up satisfactory mathematical 
models. The main difficulty at this stage is usually a wide range of 
variables involved in the simulated process including: velocity at inlet, the 
density and viscosity of the fluid, ambient temperature, thermal 
conductivity, drag force, geometry of control volume, frequency of 
vibration, enthalpy etc., making the question of which variables are 
dependent on each other to be difficult to handle. To answer this 
question completely, one can use the Bucking-ham Pi-Theorem (or simply 
Pi-Theorem). The Pi-Theorem states that any set of variables can be 
changed to the set of distinct non-dimensional groups, that are 
dependent on each other. The exact dependence is deter-mined from 
experimental data and curve-fitting techniques. In order to understand 
the process of non-dimensional Pi-groups’ formulation, one has to 
consider the dimension of every variable involved into experiment or 
simulation. The examples of dimensions are listed in Table.14. 
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Table 14. Dimensions of mechanical quantities 

 
(Yarin 2012, 5) 
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As an example, action has the dimension [𝑀𝐿2𝑇−1], what means mass 
times squared length times inverse time. Note that length, time, mass, 
temperature, amount of substance, electric current and luminous 
intensity form the set of fundamental physical quantities, that allow to 
express all other quantities as products of powers of fundamental 
quantities. 
 
To understand the application procedure of Pi-Theorem to results of 
simulations and experiments, one can consider next example: 
 
Thrust of propeller “𝐹” depends on diameter “𝑑”, velocity at inlet “𝑣”, 
fluid density “𝜌”, spindle speed “𝑓” and fluid viscosity “𝜇”. 
 
Involved quantities have next dimensions: 
 

𝐹 = [𝑀𝐿𝑇−2] 
𝑑 = [𝐿] 

𝑣 = [𝐿𝑇−1] 
𝜌 = [𝑀𝐿−3] 
𝑓 = [𝑇−1] 

𝜇 = [𝑀𝐿−1𝑇−1] 
 
To determine necessary Pi-groups, one has to check the amount of 
fundamental quantities, used in given problem (mass, length, time =3), 
and then select the same amount of so-called repeating dimensionally 
distinct variables (they will pop up in all Pi-groups) from given list of 
quantities (unselected variables are called non-repeating). 
There are 6 given physical quantities, knowing amount of repeating 
variables, one can also find the amount of Pi-groups necessary for 
complete description of system, using next simple formula: amount of Pi-
groups = amount of given physical quantities – amount of fundamental 
quantities involved (or Pi-groups=6-3=3 in current example). 
The Pi-group is formed by multiplication of one non-repeating variable by 
product of unknown powers of repeating variables. (In this example one 
is suggested to choose following quantities as repeating variables due to 
their simplicity: 𝑑, 𝑣, 𝜌.) Therefore, the first Pi-group, that will be taken 
for “F” will be: 
 

𝛱1 = 𝐹𝑑𝑎𝑣𝑏𝜌𝑐 

 
In order to satisfy the dimensionality of equation (dimension of LHS = 
dimension of RHS) and find unknown powers “a”, “b” and “c”, one has to 
replace physical quantities with their dimensions: 
 

𝑀0𝐿0𝑇0 = [𝑀𝐿𝑇−2][𝐿]𝑎[𝐿𝑇−1]𝑏[𝑀𝐿−3]𝑐 

 
Using the rule of power summation and multiplication, one will come up 
with system of 3 linear equations with 3 unknowns: 
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Mass [M]: 0 = 1 + 𝑐 
 
Length [L]: 0 = 1 + 𝑎 + 𝑏 − 3𝑐 
 
Time [T]: 0 = −2 − 𝑏 
  
The solution such system will be: a=-2; b=-2; c=-1. Therefore the first Pi-
group will be: 
 

𝛱1 =
𝐹

𝜌𝑣2𝑑2
 

 
For spindle speed “𝑓”: 
 

𝛱2 = 𝑓𝑑𝑎𝑣𝑏𝜌𝑐 
 

𝑀0𝐿0𝑇0 = [𝑇−1][𝐿]𝑎[𝐿𝑇−1]𝑏[𝑀𝐿−3]𝑐 

 
Mass [M]: 0=c 
 
Length [L]: 0=a+b-3c 
 
Time [T]: 0=-1-b 
 
Implying that c=0; b=-1; a=1; that results to: 
 

𝛱2 =
𝑓𝑑

𝑣
 

 
For dynamic viscosity “𝜇”: 
 

𝛱3 = 𝜇𝑑𝑎𝑣𝑏𝜌𝑐 
 

𝑀0𝐿0𝑇0 = [𝑀𝐿−1𝑇−1][𝐿]𝑎[𝐿𝑇−1]𝑏[𝑀𝐿−3]𝑐 

 
Mass [M]: 0=1+c 
 
Length [L]: 0=-1+a+b-3c 
 
Time [T]: 0=-1-b 
 
Implying that c=-1; b=-1; a=-1; that results to: 
 

𝛱3 =
𝜇

𝜌𝑣𝑑
 

 
The group “𝛱3” can be replaced by its inverse without any loss of 
information: 
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1

𝛱3
=

𝜌𝑣𝑑

𝜇
 

 

As one can recognize, the value “
1

𝛱3
” is a well-known, previously 

mentioned Reynolds number “𝑅𝑒”. 
 
Therefore, the final solution for this problem can be written as follows: 
 

𝐹

𝜌𝑣2𝑑2
= 𝜑 (

𝑓𝑑

𝑣
, 𝑅𝑒) 

 
Where “𝜑” unlike for chapter 2 denotes some function of two variables, 
that must be determined through experiments or computer simulations, 
and proper curve-fitting method. 
 
Another example can be a flow passing the sphere with given variables of 
diameter “𝑑”, velocity at inlet “𝑣”, fluid density “𝜌”, drag force “𝐹” and 
fluid viscosity “𝜇”, or: 
 

𝐹 = [𝑀𝐿𝑇−2] 
𝑑 = [𝐿] 

𝑣 = [𝐿𝑇−1] 
𝜌 = [𝑀𝐿−3] 

𝜇 = [𝑀𝐿−1𝑇−1] 
 
This case is similar to previous example except there is no spindle speed 
involved. Therefore there are only two Pi-groups necessary to derive, 

that will be “
𝐹

𝜌𝑣2𝑑2” and “Re”. Hence the final solution will be: 

 
𝐹

𝜌𝑣2𝑑2
= 𝜑(𝑅𝑒) 

 
The example with propeller shows all necessary steps to form all 
necessary Pi-groups necessary to describe the relation between all 
involved variables at a certain physical process, that is the main usage of 
Pi-theorem in engineering, allowing to analyse massive simulation and 
experimental data from all physics branches (Fluid and Solid Mechanics, 
Electrodynamics, etc.) in reliable way. 
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5 CONCLUSION. 

The material listed in this work is a sufficient minimum for students, who 
are just starting to explore the capabilities of computational Physics, 
necessary to understand, what will happen inside such solvers as FLUENT 
once the tutorial completing has begun and to properly justify the 
correct-ness of obtained results. Included FLUENT Tutorials from Cornell 
University on the other hand provide new students with necessary 
experience in application of CFD to real engineering problems. A 
literature for further reading after finishing of tutorials was also 
suggested. 
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