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Computational Fluid Dynamics (CFD) is the branch of Fluid Mechanics and
Computational Physics that plays a decent role in modern Mechanical
Engineering Design process due to such advantages as relatively low cost
of simulation comparing with conduction of real experiment, an
opportunity to easily correct the design of a prototype prior to
manufacturing of the final product and a wide range of application:
mixing, acoustics, cooling and aerodynamics. This makes CFD particularly
and Computational Physics in general the tools, desirable to know for
every Mechanical Engineering product developer.

This project is aimed to provide the Mechanical Engineering department
of HAMK with sufficient study material for a potential course in the
future that will introduce HAMK Mechanical Engineering students to
Computational Fluid Dynamics. The study material contains parts of
theory, describing the ideas behind derivation of governing equations of
Fluid Dynamics, their discretization methods, fundamental algorithms of
CFD, part of boundary layer theory essential for CFD and turbulence
RANS models, which is the required minimum to study prior to the main
practical part, consisting of a link to open-source CFD tutorials for ANSYS
FLUENT and a simple example done in Mathcad 15, illustrating the work
of algorithms and mathematics, covered in theory. There is also an
introduction to the Pi-theorem and its applications in the separate
chapter, which provides students with a toolbox for a proper analysis of
results, gained from several simulations.

Computational Fluid Dynamics, CFD, study material, instruction, manual.
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1

INTRODUCTION

Due to permanently falling cost of computational machinery and its
increasing productivity numerical methods for mathematical modelling of
complex physics processes are turning to be more economically feasible
and commercially attractive techniques in mechanical engineering design
work. Therefore, skills of appropriate modelling of physics processes
become more and more crucial for employers, when they recruit new
workers for mechanical engineering design jobs.

The aim of this thesis is to prepare the study material that can be used
for teaching and self-study purposes, when HAMK’s Mechanical
Engineering department will organize the course/module introducing the
students to field of computational physics. Computational Fluid Dynamics
were chosen to be the main branch of this work due to several reasons.
First, CFD is apparently the only available tool for students and engineers
to study complex behaviour of fluids that cannot be described by
conventional analytical methods using only pen and paper. Second, CFD
is a branch of computational physics that has the same popularity as
Finite Element Analysis due to wide variety of areas of usage and their
importance: aerodynamics, mixing, cooling, acoustics, combustion, etc.

This work consists of two parts. The first part is theory, covering such
topics as governing equations of Fluid Dynamics, discretization methods
of governing equations and algorithms of their solving, tips of proper
modelling of boundary layer, RANS turbulence models and brief
description of principles of Large Eddy Simulation (LES). This theory is a
necessary minimum to read prior to start of second part - practicing,
containing link to tutorials, done in ANSYS FLUENT, and example, done in
Mathcad 15, aimed to show the work of mathematics covered in
theoretical part of this thesis and reference to open-source CFD tutorials.
Finally, this work contains the key information about Pi-theorem, which is
a useful tool for proper analysis of results of multiple experiments and
simulations especially in Fluid Mechanics and creating mathematical
models based on gathered data with necessary level of accuracy.



2 THEORY

2.1

Lagrangian versus Eularian approach

In theoretical physics there exist two general approaches describing the
motion of fluid flow: Lagrangian and Eularian.

The Lagrangian approach or control mass approach is based on tracking
of properties for all mass particles of system as illustrated in Figure 1.

Figure 1. Tracking the path of a single fluid particle, done with Lagrange
approach

A good example of an application of the Lagrangian description is the
motion of a plane flying from point A to point B. In this case the centre of
the mass of the plane is considered to be one single particle with six
degrees of freedom traveling on distances several orders higher than size
of vehicle. The system has only one mass particle what makes the
mathematical model of system to be relatively easy to work with.
According to observations of experimental physics, this approach is
potentially the closest to reality and mathematically the most accurate in
utmost scenarios: when the continuous fluid is equally split to mass
particles with size and mass of fluid molecules, appropriate particle
collision model and boundary conditions are adjusted. However, this
approach is extremely difficult to solve. For instance, in one cubic
centimetre of water with 300K temperature there are approximately
3.33 X 10?2 water molecules, and every single molecule has to be
described by its own Lagrangian function. Finally, it means the need to
solve system of 3.33 X 1022 x 4 differential equations: one equation per
each component of molecule’s momentum plus one equation for energy
of molecule. Even after applying the numerical approximations and using
computational power of modern supercomputers this problem will



remain overcomplicated and computationally expensive. Therefore, the
Lagrangian approach usage is currently limited.

The Eularian approach or Control Volume approach on the other hand
describes the properties of flow (e.g. velocity, pressure, temperature) as
functions of time and space. Instead of modelling the particles of fluid
flow, the fluid is assumed to be a continuous medium. In other words,
this means that Eularian description requires selecting of the volume field
(e.g. space inside the pipe, volume around the plane or car), inside which
one wants to determine the properties of flow as shown in Figure 2: the
“squeeze” of each spatial cell to infinitely small size will result to
analytical solution of fluid transport. And after appropriate setting of
boundary conditions and solving governing equations one can obtain flow
properties as field functions inside bounded volume. Due to
independence of characteristic size from properties of fluid, Eularian
description appeared to be the most commonly used method for solving
problems of CFD. (www.quora.com 2015).

Intensity

Figure 2. Visualization of flow as function of time and space done in
Eularian approach. The “squeeze” of each spatial cell to
infinitely small size will result to analytical solution of fluid
transport.

Therefore, theory and computational methods, based on Lagrangian
description will be skipped in this thesis project.



2.2 Governing equations.

In order to derive the first governing equation, which is continuity
equation, one has to consider the infinitesimally small fluid element as
shown in Figure 3.

L N

Figure 3. Infinitesimally small volume (control-volume) element in
Cartesian coordinate system. (Versteeg & Malalasekera 2007,
10).

The continuity equation states that the change of mass of a single fluid
element equals to the difference between flows entering and leaving the
flu-id element. The rate of change of mass of fluid element can be
expressed as time derivative of density and constant volume of element.
Hence change of mass is:

9 (o6x6y82) = P sxsys
gt (POXOYOZ) = 5 0X0y0Z

To determine the flows entering and leaving the specified control
volume, one has to consider three components of mass flow contributing
to three different fluid velocity components in three orthogonal
directions:



Table 1. Mass flow components due to different fluid velocity

components.
Velocity Mass flow component in exact centre of
Direction | component | volume element
X u pudydz
y 4 pvéxéz
Z w pwdxdy

Since the volume element has infinitesimally small size, the linear
interpolation of flow components with
contributing velocity components mathematically will be sufficiently
accurate to estimate the flows on volume element faces as illustrated in

Figure 4:

respect to directions of

Table 2. Mass flow components at centre and faces of volume

element.
Mass flow Mass flow component Mass flow component
component at entering the volume leaving the volume
the centre of element element
volume
element
pudyéz d(pu) d(pu) 1
———=06x|8yd ——=06x | 8yd
<pu (’)xzx yéz pu + axzx yéz
véx6z d(pv)1 d(pv)1
p <pv— ((,)py)zéy> 6x6z <pv+ (apy)zé‘y) 6x6z
pwoxsy d(pw) 1 d(pw) 1
———=06z | 6x8 ——=06z | 6x8
<pw (’)ZZZ X0y pw + BZZZ X0y
dpw) 1
W=z 2%
v+a(aLivv)-%6y T
N[ [
N\*\ % pu +<9(apxu) . %6)(
— P e—
d(pu) 1 x5 2!
=t 2§, |
ox 2 @ Kc-——1---- =L,
\ \\
~ dApv 1s,
z | (9)’ 2
S | dpw) 1
y ; pw == 552
Figure4. Mass flows at faces of volume element (Versteeg &

Malalasekera 2007, 11).




To obtain a flow difference at inlet and outlet faces one has to subtract
the summed components at outlet faces from summed components at
inlet faces, resulting in:

d 1 d 1
<pu - (o) 5 6x> 6yéz + <pv - (pv) 5 6y> 6xd8z

d0x dy
d 1 d 1
+ (pw — (EiLZW)E 6z> 6xdy — <pu + () 5 8x> 6yéz

a(pv) 1 d(pw) 1
— (pv + 3y ESy) 6x8z — <pw + 57 562 6xdy
0 0 0
__ (90w  9pv)  0(pw)
0x dy 0z

> 6x6ydz

Finally, after the setting of equality sign between the rate of change of
mass and mass flow difference will result in:

dp <a(pu) N a(pv) N d(pw)

¢ 0x0¥0z = = 0x dy 0z

3 ) 6x6ydz

That after several trivial rearrangements can be simplified to final form of
mass continuity equation (Versteeg & Malalasekera 2007, 9 - 11):

0
0= o + div(pu)

dat
(2.2.1)
Where:
div(pu) = a(apxu) + 6(6;;17) + 6(5;/\/)
(2.2.2)

p — Is fluid density as a field function of (x; y; z; t).

u — Is component of velocity vector u towards x-direction as a field
function of (x; y; z; t).

v — Is component of velocity vector u towards y-direction as a field
function of (x; y; z; t).

w — Is component of velocity vector u towards z-direction as a field
function of (x; y; z; t).

t —Is time.
Or:
uq (%)
u= lv )
)

(2.2.3)



“div(a)” is called a divergence of vector “a” (alternative notation: V - a).
As an example, for vector a in Cartesian coordinate system:

Ay
aZ
da, Oda, OJda,

div(@ =V-a= o + 3y + 57

Equation 2.2.1 is valid for unsteady compressible three-dimensional flow.
Further assumption of incompressible, steady flow will lead to next form
of continuity differential equation:

0 du N dav N adw
~0x 9y 0z
(2.2.4)
for three-dimensional incompressible flow, and:
0 du N dav
~ox Ay
(2.2.5)

for two-dimensional incompressible flow.
One can also show that term, equal to zero in eq. 2.2.1 is just one
possible form of more generalized term:

(pp)
ot

+ div(pepu)

(2.2.6)
Where:
¢ —is arbitrary conservative intensive property (e.g. mass, momentum, or

energy per unit mass). (Versteeg & Malalasekera 2007, 12 - 14).

That combined with eq.2.2.1 can be further simplified to:

dpp) Dy
o T dwlpew) =p -

(2.2.7)

Where:

D . . — . .
oS material derivative operator. Other names of material derivative

are advective, convective, hydrodynamic, Lagrangian, particle,
substantial, substantive, Stokes or total derivative.



Applying 2.2.7 to the rest conservative properties of flow (momentum

Dv

9 i Du Dy Dw .
and energy), the term p Y will turn to p o0 P oe P oo for x-momentum,

. DE
y-momentum and z-momentum respectively, and P> for energy. Note
that as rest of ¢-properties E is also an intensive property, meaning that

in SI units E will have dimensions of [m?/s°] instead of [kg*m?/s’]. Unlike

. . Du Dv Dw DE
for continuity, terms pPoo Poo P P are not always equal to 0.

Using the same concept of infinitely small fluid element, it’s possible to
show that:

Du  d(—p+ Tx) N 0Tyy N 0T,y

PDe ™7 3y Ty tomx
(2.2.8)
Dv dty,, 6(—p + Tyy) 0T,y
POt~ ax T dy Tz * Suy
(2.2.9)
bw dt,, 01, d(-p+7y,)
7 S
Pot = dx "oy T oz Mz
(2.2.10)

Where:

p —is pressure as a field function of (x; y; z; t).

Txxs Tyyr Tzz0 Txys Tyxr Tazr Tzxs Tyz Tzy — are components of Cauchy
viscous stress tensor (see 2.2.11).

Sux, Smy, Smz — are source terms, responsible for effects of other
physical phenomena, e.g. if there is a need to consider effects of gravity
force, then Sy = 0; Syy = 0; Sy = —pg.

Toxx Txy Txz

Tij = [Tyx Tyy Tyz] — Cauchy viscous stress tensor, representing
TZX sz TZZ

effect of viscosity on fluid motion.

(2.2.11)

Assuming that fluid is isotropic (all gases in fact are isotropic, only few
liquids that contain significant amount of long polymer molecules show
anisotropic behaviour) and Newtonian, meaning that 7;; is linearly
proportional to local deformations s;; (see 2.2.12), will give us next
relations:



Ju 1/0u Jdvy 1/0u oJow
ox ﬂ@*ﬂ)i%ﬁﬁﬁ
1/0u oJv dv 1/0v ow
Sij = 5(@*&) ay z(a*a)
1/0u ow\ 1/0v Jw ow
63 165 %
[2\dz 0x/ 2\oz Ody 0z |
(2.2.12)
Tij = 2USj;
(2.2.13)

Where:
W —is dynamic viscosity.

Compressibility of fluid can be encountered by introducing the second
viscosity “A”, that gives linear relation of stresses to volumetric
deformation, equal to div(u) (see 2.2.14). (Versteeg & Malalasekera
2007, 14 - 16).

v N ow
dy 0z

Ju
div(u) = ™ +

(2.2.14)

Combining of 2.2.12, 2.2.13 and adding effect of compressibility will
result in next formulas for Cauchy viscous stress tensor components:

du ]
Tyy = 2,11& + A div(u)

av ]
Tyy = 2,11@ + Adiv(u)

adw ]
Ty, = Zua + Adiv(u)

du Jv
o =t = (55 33)

du Jw
Txz = Tzx :#(E'i'a)

dv ow
Tyz =sz 2/1(&"'@)

(2.2.15)
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Substituting values of 7;; from 2.2.15 to0 2.2.8, 2.3.9 and 2.2.10 will give:

Du ap+a [2 Ju +1di ()]+ [ (au )] [ <6u 6w>]+5
PDt = "ax TaxlHax Tt 5 MGy T ax)] T az 1 M
(2.2.16)
L i R N R
Poe = "oy Taxl*\ay Tax/l Tyt win H ay )l oMy
(2.2.17)
bw ap [ <6u 6w>]+ 6[ (6v+6w>]+6[2 6w+/1d_ ( )]+S
Dt~ oz oxl¥ ax )1 T ay 1M \az Ty )l T oz [*H g T AW T oM

(2.2.18)

There isn’t much known about behaviour of “A” as function of various
flow and fluid properties. However, there is a suitable approximation for

gases exists:

1= 2
= 3‘u

(2.2.19)

Combining 2.2.19 with 2.2.16; 2.2.17, 2.2.18 and applying several
mathematical rearrangements will result into famous Navier-Stokes
equations (Versteeg & Malalasekera 2007, 21 - 24):

Du_ di d s

Poe= "3t iv(u grad(w)) + Sy
Dv .

,DE = —@ + dlv(,u grad(v)) + Smy
Dw .

Por="3, " div(u grad(w)) + Sy

Where grad(¢@) denotes the gradient of scalar property

grad(p) =

oy
Ax
g
ay
g
1392

" ”,

(2

(2.2.20)

(2.2.21)

(2.2.22)
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If operators of total derivative, divergence and gradient are expanded to
form of partial derivatives, Navier-Stokes equations for compressible flow
will get next form:

(au ou  du 6u>_ 6p+ 62u+82u+62u 0<6u+6v+aw>+s
p ~Tox  M\axz Tay2 T 922) " Hox\ox "oy " az) T omx

(2.2.23)

(61} ov  0v 617) _0p 0%v N 0%v N 0%v 0 <6u N ov N ow
P Yozl = M\ox2 T ay2 T a22) " Hay\ox T ay " 8z
(2.2.24)

)+ Suy

ow ow  Ow ow op ’w  9*w 0*w d (Ou 0v Ow
4 )=+ (

E'FU&'FU@'FW& 6x2+6y2+622 —HE a+$+£>+SMZ

(2.2.25)

For incompressible two-dimensional flow system of equations 2.2.23,
2.2.24, 2.2.25 is simplified to:

2

(6u+ 6u+ au)_ 6p+ 62u+6u s
P\ac T%ax " Vay) T T ax TH\Ggxz T gy ) T omx

<6v+ 6v+ av)_ 6p+ 62v+62v s
P ae T4 ax T Vy) T Ty TH\axz T ayz) T oMy

(2.2.27)

From 2.2.23, 2.2.24, 2.2.25 it’s clearly seen that Navier-Stokes equations
is a system of second-order partial differential equations that are known
to have no universal solution methods. Hence, these equations currently
re-main unsolved. However, importance of these equations in science
and engineering applications is so huge, that Navier-Stokes equations
became the reason to exist for Computational Fluid Dynamics as they are
known today and Clay Mathematics Institute offers USD 1000000 reward
to one who proves either existence and smoothness, or breakdown of
Navier-Stokes equations’ solutions.

For last conservative property, that is energy, one can show that
governing equation for compressible flow will have a form:
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DE
p— = —div(pu) + div(k grad(T))
Dt
0(UTyy) N a(vryx) N 0(WTyy) N a(urxy) N a(vryy) N a(wrzy)
0x dy 0z 0x dy 0z
0(Ut,,) a(vryz) o(wt,y,)
Y Tyt e +Sg
(2.2.28)
Where:

E=i+ % (u? + v? + w?) — sum of kinetic and internal energy.
i=CyT

k —is thermal conductivity of fluid.

T —is temperature.

Cy—is molar heat capacity of gas under constant volume.

Sometimes it might be useful to rearrange 2.2.28, using such properties

as internal energy (2.2.29), temperature (2.2.30) or total enthalpy
(2.2.31):

Di
= —p div(u) + div(k grad(T))

p —
Dt
O(UTyy) N 9(vtyy) N A(Wt,y) N 0(utyy) N d(vtyy) N d(wtyy)
0x dy 0z 0x dy 0z
0(ut,,) a(vryz) d(wty,,)
+ax+ay+az +S;
(2.2.29)

DT
’DCVE = —p div(u) + div(k grad(T))
0(UTyy) N a(vryx) N O(Wt,y) N a(urxy) N 6(vtyy) N 6(W1’Zy)

0x ady dz 0x dy 0z
0(ut,,) O(UTyZ) d(wty,,)
T Tox ey T |7
(2.2.30)
Dhy 0dp .
Pt =3 + dw(k grad(T))
0(UTyy) N a(UTyx) N 0(WTy,,) N a(urxy) N a(vryy) N a(wrzy)
0x dy 0z 0x dy 0z
0(ut,,) a(vaz) d(wty,,)
+ax+ay+az + S,
(2.2.31)
Where:

h=i+ %— is enthalpy of gas.
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— 1.2 2 2y _j
ho—h+5(u + v* + w*) —is total enthalpy.

Application of Newtonian viscosity model to eq.2.2.29 will yield to:

DT

pCy Dt

= —p div(u) + div(k grad(T)) + ® + S;

(2.2.32)

8u)2 N (av)z N (GW)Z N (au N 617)2 N <6u N 6w>2 N (617 N 6w>2 i )
0x dy 0z dy 0x dz 0x dz 0dy (div(w)

(2.2.33)

Together equations 2.2.1, 2.2.20, 2.2.21, 2.2.22, 2.2.29 and such
equations of state as ideal gas equation (pV = nRT) and internal energy
equation (i = CyT) are forming the system of seven equations with
seven unknowns, meaning that system is mathematically closed (it can be
solved, providing that initial and boundary conditions are stated).
(Versteeg & Malalasekera 2007, 18 - 21).

2.2.1, 2.2.20, 2.2.21, 2.2.22, 2.2.29 can be generalized, using arbitrary
property @:

a(pp)
at

+ div(pgpu) = div(T grad(p)) + S,

(2.2.34)
Where I' —is diffusion coefficient such as viscosity u, or conductivity k.

The eq.2.2.34 is called transport equation of property ¢, which can be
changed back to equations 2.2.1, 2.2.20, 2.2.21, 2.2.22, 2.2.29 by setting
the property ¢ to be equal to 1, u, v, w or i respectively and
appropriately setting of source terms and values of I'. In order to get
form of eq.2.2.34, more convenient for finite volume method, the
integration over Control volume must be applied to eq.2.2.34:

0
j%dV+ fdiv(pgou)dV = fdiv(l" grad(p))dV + jS‘PdV
cv cv cv

cvV
(2.2.35)

Where:

V —is volume.

CV —is reference to control volume.

CS —is reference to control surface (boundary of control volume).
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For further transforming of 2.2.35, there is a need to introduce Gauss’s
divergence theorem, stating, that for vector “a”:

fdw(a)dV = fn adA

CS

(2.2.36)

Where:

A —is area.

n.a — is component of vector
normal to surface element dA.

" II ll n

in the direction of unit vector

Applying Gauss’s divergence theorem (2.2.36) and changing the order of
integration and differentiation in first term in left-hand side of eq.2.2.35
will yield to:

](pgo)dV + jn. (ppu)dA = fn. (I grad(e))dA + JS(pdV
v

CS CcS cv
(2.2.37)

To derive the most general integrated form of transport equation, the
integration over time interval from t to t + At must be applied in order to
cover time-dependant problems. (Versteeg & Malalasekera 2007, 24 -
26):

j o j eo)av Jac+ [ [ nGoowdade= [ [n.(r gradt))aade+ [ [ s avat

At CS At CS At CV

(2.2.38)
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2.3  Turbulence

In spite the fact that all conservative properties were encountered in sub-
chapter 2.2 the current mathematical model is sufficient only for laminar
flows. Various experiments such as ink flow in pipe, illustrated in Figure 5,
or a flow past a sphere, shown in Figure 6 and 7, clearly show that at
some critical value of fluid velocity in inlet of flow domain the fluid flow
starts to generate rotational structures, called eddies, of various scale,
causing it to behave in a very unstable and chaotic manner. These chaotic
fluctuations of fluid flow parameters, responsible for high energy losses
due to conversion of kinetic energy of eddies to internal energy and its
further dissipation are called turbulence: from Latin word turbulentus -
chaotic. A corresponding flow is called a turbulent flow. Particularly in
Figure 5 one can see that increasing of inlet velocity yields to increased
ink velocity fluctuations along the path of flow (from left to right) and,
finally, to mixing with water. Therefore, high turbulence is a compulsory
constraint for problems of mixing in engineering: higher turbulence
means better mixing. Oppositely, the flow, where such eddies are absent,
is called a laminar flow.

[ RN RS ]
_—nmm
i —————————————————————SS
= ]

Figure 5. Experiment with ink in a water flow.
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Figure 6. Laminar flow past sphere.

Figure 7. Turbulent flow past sphere.

The turbulence of a flow is characterised by a non-dimensional
parameter, called “Reynolds number”:

_ pUrech
u

Re

(2.3.1)

Where:
Re —is Reynolds number.
p —is fluid density.
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L. —is characteristic length of problem such as diameter or length of pipe
or any other linear geometric parameter, the control volume is
characterised by.

u —is dynamic viscosity of fluid in flow inlet.

Urer — is the reference mean flow velocity.

The exceed of some critical value of Reynolds number will result to
transformation of flow from laminar to turbulent. This critical value isn’t
common for all problems and has a wide variation range. For instance for
flow in pipe the critical value of Reynolds number is about 2300, while for
problem of flow past circular object (e.g. cylinder, sphere) the critical
Reynolds number value will be about 47.5.

One of the most practically useful but not the only method to describe
turbulent flows is usage of Reynolds decomposition, that is a basis for all
RANS (Reynolds-Averaged-Navier-Stokes) turbulence models.
Reynolds decomposition method states, that any property of turbulent
fluid flow, say velocity u(t), can be decomposed to steady mean value U
and fluctuating u'(t) components as illustrated in Figure 8, or:

lu(t) = U +u'(t)]

(2.3.2)

o, .n

Figure 8. Time-averaged velocity “u” as a part of RANS modelling
approach (Versteeg & Malalasekera 2007, 41).

This approach allows to describe the turbulent flow in terms of time-
averaged properties (like U) and statistical values of their fluctuating
parts such as u’(t). More generally:
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lp() =@+ ¢'()]

(2.3.3)
Where:
At
b = ! (t)dt
acl ?
0
(2.3.4)
And:
At
At @'(t)dt =0
(2.3.5)

To describe the spread of fluctuations ¢'(t) about the mean value ®, one
can use statistical parameters like a variance (2.3.6), root mean square
(r.m.s.) (2.3.7), or even higher order moments like a skewness
(asymmetry) (2.3.8) and a kurtosis (peakedness) (2.3.9). (Versteeg &
Malalasekera 2007, 49 - 52).

1 At
— = [ e
0
(2.3.6)
1
2
Orms = 1/(90 )? = lAtf(qo )2dt
(2.3.7)
1 At
— = [
0
(2.3.8)
@ )4=—j<<p Yede
(2.3.9)

One can show that there exists infinite amount of statistical parameters
by taking the ¢’ to any power "n" and further averaging of (¢')",
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however, except variance and root mean square, all these parameters
are rarely used in today turbulence modelling problems. On the other
hand, variance has a straight connection to total kinetic energy of
turbulence "k" per unit mass at certain point:

k= %[ w2+ wWH2+ (w)? ]

(2.3.10)

The turbulence intensity T;, which is another important parameter for
RANS turbulence models often used for boundary condition specification
in CFD codes, is also related with velocity variance by linkage with "k":

(2.3.11)

1

Where term G k)E is indeed an average r.m.s. velocity of fluid.

The variance is also called the second moment of the fluctuations
(similarly third and fourth moments of fluctuations for skewness and
kurtosis respectively). Important information about a fluid flow is also
contained in moments, constructed from two different variables. As an
example one can consider two arbitrary properties ¢ and . Applying
2.3.3, one defines the second moment of ¢’ and ' as follows:

At

! I=_ ! Idt
Y A7 Y
0

(2.3.12)

Such second moments are especially crucial in RANS turbulence due to
their usage in description of an additional shear stress experienced by
fluid in turbulent flow. Another application of second moments are
autocorrelation functions, used to study relations between fluctuations
at different time instants and space points. Autocorrelation functions are
defined as follows:

At

N |
Ryt @ = 0P T D) = 5 | /09" (c+ Dt
0
(2.3.13) (autocorrelation function for different time instants)
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t+At
1
Ry (§) = @' (x;D)p'(x+&t) = 7 f ' xtHe' (x+ & thdt'
t
(2.3.14) (autocorrelation function for two points displaced by vector +¢

from each other)

Where:

T —is a time shift constant.

x = X(x; y; z) —is a shorter notation for position vector, dependent on x,
y and z.

It can be easily checked if either tin 2.3.13 or || in 2.3.14 are equal to
zero, the correlation function will turn variance, that is told to be
perfectly correlated, and will have the largest possible value as function
of T or . Therefore, as T or |€| approach infinity, the correlation function
will decrease to zero. This makes autocorrelation functions to be a useful
tool for description of eddy size and lifetime. The integral time and scale,
which represent concrete values of average period or size of a turbulent
eddy, can be computed from integrals of functions R(pr(pr(r) with respect
to T and R, (§) with respect to distance in the direction of one of
components of displacement vector . By analogy, it is also possible to
define cross-correlation functions R, (7) with respect to T or R, ($)
between pairs of different fluctuations by replacing second ¢’ by ¥’ in
equations 2.3.13 and 2.3.14 respectively. (Versteeg & Malalasekera 2007,
49 - 52).

2.3.1 The law of the wall

As one previously stated, general solution for governing equations of
fluid mechanics remain unfound, limiting engineers and scientists with
analytic solutions of several simple laminar flow problems. Therefore,
due to higher mathematical complexity there exist even less models
suitable for turbulent flows. One of such models is called “Law of the
wall” which is practically useful for accurate estimation of first mesh cell
height from the solid wall. This law plays important role in CFD modelling,
originating from no-slip conditions (fluid velocity at wall surface equals
zero), which result in high velocity gradients at near-wall region and
formation of boundary layer. This means that the grid (mesh) at near-wall
regions must be much finer comparing the rest of flow domain, in order
to simulate boundary layer profile and other coupled properties (e.g.
pressure, temperature etc.) And the law of the wall so far remains to be
the best tool to encounter these crucial aspects.

In order to formulate the law of the wall one needs to introduce two
other non-dimensional parameters:
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ut = ul— called dimensionless velocity, and
(2.3.15)
yt = %— is dimensionless wall coordinate
(2.3.16)
Where:
u —is a fluid velocity, parallel to the wall,
Uy = /%W— is a friction velocity,
(2.3.17)

T,y — iS a viscous shear stress,

y —is a distance coordinate, normal to wall surface,
p —is a fluid density,

u — is dynamic viscosity.

The law of the wall itself states the relation between two parameters u*
and y*, forming ut as function of y* (ut=f(y*)) for high Reynolds
numbers in a next form:

1. For any y*<5 the fluid flow is in region of viscous sublayer of flow
boundary layer, characterised by laminar behaviour of flow due to
0 fluid velocity at the level of wall, which is a consequence of fluid
property to stick to the wall of solid and almost constant value of
T,,. In viscous sublayer the next relation between ut and y*
holds:

(2.3.18)
2. For 5<y*<30 the flow is part of buffer layer which can be
described with certain error by both laws from previous section

and from next one.

3. For 30<y*<500 the next expression is valid:

1
ut = Eln(y*) +C*

(2.3.19)

Where: k = 0.4187, C* = 5.1 are constants. Note that they are valid
only for smooth walls, the most common case in CFD. For more details
see Schlichting, H. (1979) Boundary-layer Theory.
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The part that has the most useful information is contained in first section
of stated law. The expression u*t=y* for any y*<5 implies that the
velocity profile inside viscous sublayer shows the linear behaviour with
respect to distance from the wall. This means that in CFD modelling
problems, where linear approximations are key for solving fluid dynamics
problems, it is sufficient to use just 1 volume element for complete
description of flow inside the viscous sublayer. Therefore, the law of the
wall serves as the answer for the problem of first mesh cell height
calculation, allowing CFD programme users to find the height of near-wall
volume elements that will be enough for accurate modelling of the
boundary layer on solid walls.

Finally the first mesh cell height can be expressed as function of Reynolds
number (or it’s individual parameters: free-stream velocity, fluid density,
dynamic viscosity and reference length) and y*.

Links to first cell height on-line calculators:

https://www.computationalfluiddynamics.com.au/tips-tricks-cfd-
estimate-first-cell-height/
https://geolab.larc.nasa.gov/APPS/YPlus/
http://www.pointwise.com/yplus/
https://www.cfd-online.com/Tools/yplus.php

Note, that all calculations are based on one particular fluid dynamics
problem of flat-plate boundary layer (or pipe-channel flow), where there
is an only one option for value of reference length that is the length of
plate. The vast majorities of fluid dynamics problems, showing poor
similarity to flat-plate boundary layer problem, involve geometries that
are dependent on multiple linear parameters (e.g. length, width, height,
rounding radius etc.), and all of them can be treated as reference lengths.
This means that usage of different reference lengths in grid-spacing
calculators will yield to different values of mesh cell height, which is not
acceptable. Therefore, in order to ensure that cell height is sufficiently
small but still relevant to particular problem, one should use desired “y*”
value to be less or equal to 1, enhanced wall treatment must be enabled
and there is sufficient amount of cells to resolve the whole boundary
layer.

Because mentioned instruction does not always guarantee success in
proper modelling of viscous sublayer one might need to find suitable
near-wall cell height empirically, by gradual refinement of near-wall mesh
after each simulation. This approach, however, is suggested to be used
only as last step after previous methods failed in viscous sublayer
modelling.

Alternatively, in order to save computational time one can use so-called
wall-functions. Similarly to first cell height calculation, background of wall
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functions is the same law of the wall. However, instead of computing the
wall adjacent height for viscous sublayer, one has to compute the first
cell height for the whole boundary layer. Particularly scalable wall
function requires the corresponding value of y* = 11.225, and in case of
wrong estimation, the programme will shift the height of first cell to this
value automatically. Therefore, the usage of wall functions allows to use
much coarser grids, what makes them extremely popular in industrial
applications. On the other hand, comparing with first approach, wall
functions have two drawbacks:

e Simulation results with enabled wall functions and coarse mesh
are less accurate than results with fine mesh and disabled wall
functions.

e Wall functions are not applicable for cases with flow separation as
shown in Figure 9.

:f—;g::/ﬁ " =
e s— W

e

Wall functions applicable Wall functions not applicable

Figure 9. Wall functions are not applicable to problems involving a flow
separation.

More information regarding the “y*” and first cell height estimation can

be found via following link:
https://www.computationalfluiddynamics.com.au/tag/wall-functions/

2.3.2 Introduction to RANS models

Recalling formulas 2.3.3, 2.3.4, 2.3.5, 2.3.6, 2.3.7 and 2.3.12 one can
show that next expressions for derivatives and integrals for arbitrary
scalar properties ¢ and Y hold:

¢ =

dp 0P
ds 0s
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(2.3.20)

Since gradient and divergence are both differentiation operators, next
expressions for arbitrary vector quantity a = A + a’ and arbitrary scalar
quantity ¢ = ® + ¢’ can also be proven to be valid:

div(a) = div(A)

div(pa) = div(pa) = div(PA) + div(p'a’)

div(grad(p)) = div(grad(®))

(2.3.21)

Substitution of formulas 2.3.3, 2.3.20, 2.3.21 to governing equations
2.2.1, 2.2.20, 2.2.21, 2.2.22 and 2.2.34, combined with Favre averaging
(2.3.22) will yield to averaged turbulent flow equations also called as
RANS equations model (where RANS stands for Reynolds-averaged
Navier-Stokes) (2.3.23). (Versteeg & Malalasekera 2007, 62).

14

p=d+¢

LuP®Ooe® po

(?IS = =
J P(® p

pp" =0

p® = pd = pp

(2.3.22)

RANS equations:

Continuity:
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0p . o
ETS + dw(pU) =0

Reynolds equations:

a(gtﬁ) + div(pU0) = - g—}; +div (u grad(ff)) + |- a(’;;—lz) - a(ﬁ;};v,) - a(ﬁgéwl)] + Six

a(gf) +div(pV0) = — Z—i +div (u grad(V)) +|- a(ﬁaux—’v’) - a@ — a@] + Sy

a(g?) + div(pW 1) = — Z—IZD + div (u grad(l/T/)) + |- a(ﬁg;wl) - a(ﬁ;}’lwl) — a@ + Suz
Scalar transport equation:

a(gf)) + div(p®U) = div (I grad(d)) + [— o :j') _%b ;}'l(p') _% (‘;Vzl‘p’)l + So

(2.3.23)

Where:

u=U+u =0+u";
u=U+u =0+u";
v=V+v =V+"
w=W+w =W+w'":
p=P+p’;

The terms in square brackets in Reynolds equations in 2.3.23 are extra
turbulence stresses, also called Reynolds stresses. They are always non-
zero and very large, comparing with the viscous stresses in a turbulent
flow. Therefore, neglecting of these terms can cause poor accuracy of
final solution, making the simulation results completely irrelevant to
experimental data. (Versteeg & Malalasekera 2007, 65).

Equations 2.3.23 introduce 6 extra unknowns to the system of governing

momentum equations (6 Reynolds stresses: pu’?; pv'%; pw'?; pu'v’;
pu'w’; pv'w’) plus 3 additional unknowns per each scalar property ¢
(u'e"; v'e'; w'e'). The new system of governing time-averaged
equations can become solvable again by introduction of appropriate
turbulence model that will state and add differential equations,
necessary to fulfil criterions of solvable system of equations. There exist 6
basic RANS turbulence models, varying in complexity and application
areas: 1) Mixing length (+0eq), 2) Spalart-Allmaras (+1eq), 3) k-€ (+2eq),




26

4) k-w (+2eq), 5) Algebraic stress (+2eq), 6) Reynolds stress (+7eq)
(Versteeg & Malalasekera 2007, 66 - 98)

In order to understand the background of every listed turbulence model,
one has to recall the Newton’s law of viscosity (2.2.13) and introduce the
Boussinesq approximation (2.3.25).

Using the suffix notation, Newton’s law of viscosity can be rewritten in
next form:

_ _ aui n au]
Tij B uSij —H axj axi

(2.3.24)

The convection of suffix notation is that indices i or j = 1 correspond to
the x-direction, i or j = 2 the y-direction and i or j = 3 the z-direction.
For example:

du, OJu, du OJv
) =155

o =ty =5+ 5

The experimental evidences show that turbulence decays unless there is
shear in isothermal incompressible flows. Furthermore, turbulent
stresses are found to increase as the mean rate of deformation increases.
Those facts were used by Joseph Valentin Boussinesq, who proposed that
Reynolds stresses are proportional to mean rates of deformation in next
way:

_ — an_l_an 2 L6
Tij = —PU U = U ax]- ax; 30 ij

(2.3.25)

Where k is the turbulent kinetic energy from formula 2.3.10, §;; is
Kronecker delta (§;; =1 if i =j, and &;; = 0 if { # j) and u, is called
turbulent or eddy viscosity.

By analogy, turbulent transport of a scalar is taken to be proportional to
the gradient of mean value of the transported quantity:

—_ 0
puip’ =Iig-

(2.3.26)

Where [ is the turbulent or eddy diffusivity.
The relation between eddy viscosity and eddy exists and expressed by
usage of Prandtl/Schmidt number defined in next way:
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(2.3.27)

Various flow experiments confirm that value o; is constant, and hence
most of free and commercial CFD software set the value g, = 1.
(Versteeg & Malalasekera 2007, 68).

2.3.3 Mixing length model

The concept of mixing length model is based on next assumptions:
e Application is limited to 2D flows. Hence, the Reynolds stress
Tyxy = Tyy is the only present turbulence shear stress component:
Txx and T, are assumed to be negligibly small.
e deduced from dimensional analysis:

(2.3.28)
Where:
C —is a dimensionless constant of proportionality.
Y —is a turbulent velocity scale
[ —is turbulent length scale.
Turbulent velocity scale § can be further expanded into:
9 l |8U
=cl |—
dy
(2.2.29)

Where c is non-dimensional constant.
Substitution of 2.3.29 to 2.3.28 and hiding of constants C and c into new
length scale [,,, will yield into:

ou

e = pli, @

(2.3.30)

The equation 2.3.30, combined with 2.3.25 and other previously stated
assumption will result in so called Prandtl’s mixing length model:

ou|oU

dy| dy

— — 13,0 — 2
Txy = Tyx = —puv = pln

(2.3.31)
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The same approach, applied to turbulent transport of arbitrary scalar
guantity will yield into:

—pv'e’ = Ft@

(2.3.32)

The Mixing length model finally allows to define unknown Reynolds
stresses for 2D flows with no additional equations (Therefore it’s also
called 0-equation model). The only things that must be the object
consideration are values of [, and a;. The specification of these values
can be found in book of H. K. Versteeg, W. Malalasekera “An Introduction
to Computational Fluid Dynamics, The Finite Volume Method” second
edition, pages 70.

Advantages of the Mixing length model:
e easy and inexpensive implementation
o sufficiently accurate predictions for thin shear layers: jets, mixing
layers, wakes and boundary layers
e well established

Disadvantages:
e completely incapable of modelling flows with separation and re-
circulation
e completely incapable of describing flows with separation and re-
circulation

2.3.4 k-g£ model

The standard k-¢ model provides an acceptable compromise between
reliability, computational costs and accuracy, what makes k- model to be
apparently the most popular turbulence model, used in industry. This is a
semi-empirical 2-equation eddy-viscosity model, solving 2 additional
equations for turbulent kinetic energy “k” (2.3.10) and rate of energy

ou.n

dissipation per unit volume “&”.

To understand the concept of k-g, one has to introduce the concept of
the mean kinetic energy “K” and the instantaneous kinetic energy
“k(t)”, that are defined in next way:

1
K=5U+V2+W?)

(2.3.33)



29

k() =K+k

(2.3.34)

Another prerequisite for further model description is the decomposition
of deformation rate tensor “s;;” to average and fluctuating part. Recalling
formula 2.2.12, one can show that decomposition of “s;;” will hold as
follows:

— ! —
Sij_Sij+Sij_

1 6U1+0U] 1 au'i_l_au'j
2 ax] axl- 2 ax] axl-

(2.3.35)

The scalar product of two tensors “a;;” and “b;;” is defined as follows:

a;j . bij = ay1b11 + a12b12 + Ay3by3 + Az1b21 + Az2D35 + Az3bys + az1bsy + aszabs; + asszbss

It can be shown that governing equations for mean flow kinetic energy
“K” (2.3.36) and for turbulent kinetic energy “k” (2.3.37) will take next

form:
a(pK) . . ﬁ ﬁ
P div(pKU) = div(—PU + 2uUS;; — pUU'u’)) — 2uS;; . Sij + pu' ', . Sij
(2.3.36)
d(pk) 1

3t + div(pkU) = div (—p’u’ +2uu's’,, — qull : u’Lu’]> —2us'y, . s'y, +pu . S

(2.3.37)

The second term on RHS of 2.3.37 is usually written as product of density

o _n

p” and the rate of dissipation of turbulent kinetic energy per unit mass
“e”. Therefore “&” is defined as follows:

uw—
E=2=s'",.5",
p

(2.3.38)

It is also possible to derive the exact differential governing equation for
“€”, but it contains many unknowns, and hence the standard k- model is
based on next assumptions for velocity scale “9” and length scale “1”:

(2.3.39)
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(2.3.40)

The substitution of 2.3.39 and 2.3.40 to formula of eddy viscosity will give
next relation:

2
pe = CpIl = pl—

(2.3.41)

Where “C,” —is a dimensionless constant.
The formula 2.3.41 itself is an assumption of isotropic eddy viscosity,
allowing to state two transport equations of standard k-€ model:

d(pk) , | He
+ div(pkU) = div |— grad(k) |+ 2u.S;j . Sij — pe
ot g%

(2.3.42)
d(pe) . . [He £ g2
TR + div(peU) = div [a_g grad(e)] + C15E2Ht5ij . Sij— ng?

(2.3.43)
Where (, =0.09; gy =1; 0, = 1.3; (3, = 1.44; G, =192 - are

empirically defined dimensionless constants, suitable for wide range of
flows.

The Reynolds stresses are found, using following Boussinesq
approximation:

— au; au)\ 2 2
—pu' U’y = e 6_xj+ ox, — 3Pk = 2peSij — 5 pkoy;

In order to run k-€ model appropriately, some CFD codes in addition to
turbulence intensity might also ask to specify the values of “k” and "&”
for system inlet. This can be done either by reviewing literature, covering
particular cases of study, which is more preferable option, or using next
formulas, connecting “k” and ”g” with turbulence intensity “T;” and
length scale “1”:

2 2
k = § (UrefTi)

(2.3.44)
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k3/2
_ 3/4
=4 T
(2.3.45)
[ =0.07L
(2.3.46)

Where “L” — is a characteristic length of equipment (equivalent pipe
diameter). (Versteeg & Malalasekera 2007, 72 - 88).

Equivalent pipe diameter on-line calculator with some explanation
theory:
http://www.engineeringtoolbox.com/equivalent-diameter-d_205.html
In cases, when equivalent pipe diameter is not obvious to define it’s
sufficient either to use default settings in CFD code (if exist) or arbitrary
finite and small values for “€”. (Versteeg & Malalasekera 2007, 77).

In addition to standard k-€ (SKE) most of free and commercial CFD codes
provide users with two more advanced variants of k-€ model: k-€ RNG
(Renormalization Groups) and k-€ RKE (Realizable).

k- RNG model instead of using empirically defined constants
Cy; 0; 0g; Cyg; Cye resolves them using statistical methods, making it
more precise for wider range of more complex flows.

k-€ RKE model is an improvement of standard k-€ model, varying in next
points:

e k-g RKE contains a new formulation for the turbulent viscosity
with varying parameter “C,” that was assumed to be constant for
standard k- model.

e A new transport equation for the dissipation rate “€” is derived
from exact transport equation of the mean-square vorticity
fluctuation.

Unlike k-g SKE or k-€ RNG, k-¢ RKE model satisfies several constraints of
physics of turbulent flows, making RKE potentially the most accurate
variation of k-€ model. Note that all k-€ models variation are preferred to
use only for fully turbulent flows (high Reynolds numbers), due to fully
turbulent flow assumption as a basement of the whole model. In addition
to k-g, there also exist other two-equation models such as Wilcox k-w,
Menter SST k-w, algebraic stress equation model and non-linear k-€.
(Versteeg & Malalasekera 2007, 90 - 95).

Unlike k-g£ SKE, k-& RNG or k-g RKE, Wilcox k-w shows the best
performance for flows with low Reynolds numbers and very accurate
results for flows in near-wall regions. It’s success in near-wall
computations even yielded to creation of hybrid Menter SST k-w model,
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which solves the near-wall flow (boundary layer regions) using Wilcox k-
w, and k-€ for the rest of the flow regions. This makes Menter SST k-w
model to be a perfect option for general cases of subsonic flows passing
various geometric objects (obstacles). (Versteeg & Malalasekera 2007, 91
-93).

So far, all covered turbulence models use the assumption of isotropic
eddy viscosity, which isn’t truth for reality. In cases, when anisotropy of
turbulence is important to encounter but computational powers limit the
usage to only two-equation and simpler models, one can use the
algebraic stress model. However, this modification of k-€ model suffers
reliability and re-quires experimental validation before results of usage of
this model influence the further design work. At last, algebraic stress
model is currently being overshadowed by non-linear k- models, that
able to show results close to more complicated and precise seven-
equation models but still using only two extra transport equations.
(Versteeg & Malalasekera 2007, 93 - 95).

2.3.5 Spalart-Allmaras turbulence model

Spalart-Allmaras is one-equation turbulence model based on transport of
kinematic eddy viscosity parameter “v”, which is connected with dynamic
eddy viscosity “u,;” by next relation:

(2.3.47)

Where “f,;” is so-called wall-damping function f,; =fv1(§); (v = %),

which behaves in such way, that it tends to unity as Reynolds number
increases and tends to zero at wall boundaries:

%

G)’

v
) -3

fun =

(2.3.48)

Where C,; = 7.1

Substitution of 2.3.47 to 2.3.25 and neglecting of term "%pk&-j” will give
a formula for Reynolds stresses:

Ty = —puw W, = 208 = pifyy <a_xj T o,

(2.3.49)



The transport equation for “V” holds as follows:

d(p¥)

ot

Where:

And lly”

+ dw(va)

v
= —dw [(u + pV)grad(V) + Cpop — o 8

Wlp( ) fw

= + (Ky)z fVZ
Q= (20,0
1/0U; oU;
'Qij == -
v
frz =1 —+
v
1
; Il + CSs r
=g | =
v g°+ Cv?13

g=1+Cu(r®—1)

r = min
Iﬂkzy

v
10]
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vV oV ~
+ Cp1pV8L

(2.3.50)

(2.3.51)

(2.3.52) (mean vorticity)

(2.3.53)

(2.3.54)

(2.3.55)

is the smallest distance to solid wall (same as “y” in 2.3.16).
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Table 3. Constants used in Spalart-Allmaras model.

Constant Value
g, 2/3
K 0.4187
Cpi 0.1355
Cyo 0.622
1+C
CWl Cbl + KZ b2
O-V
Cyo 0.3
Cw3 2

By default, Spalart-Allmaras requires user to model the grid to be fine
enough to capture the viscous sublayer, using the law of the wall.
However, some commercial codes like ANSYS FLUENT provide users with
Enhanced Wall Treatment (y™* insensitive wall treatment), which allows
the application of the model independent of the near-wall grid
resolution. Finally, Spalart-Allmaras turbulence model is the model,
specifically designed to model the problems of aerodynamics, what
ensures the highest accuracy for external aerodynamic flows on the one
hand, but suffers from inaccuracy in the rest Fluid Dynamics’ fields on the
other hand (https://www.cfd-online.com/Wiki/Spalart-Allmaras_model).
(Versteeg & Malalasekera 2007, 89 - 90).

2.3.6 Reynolds stress equation models (RSM)

Reynolds stress model (RSM) is the seven-equation model, giving extra
transport equations to every unique from six components of stress tensor

“u.n " ”n

“7;;” and one more equation for either “¢” or “w”.

The transport equations for Reynolds stresses however are described by
variable called kinematic Reynolds stresses:

_ N
Rij——_—ulu}

(2.3.56)

The exact transport equation for “R;;” takes next form:

d(pRy;)
at

(2.3.57)

Where:
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aU; U,
P =—Rm=—2+R

Mox, ™ox,

(2.3.58)
D;; = div M3 rad(R--)
ij Ox g ij
2
=C,—
Ve T
C, =0.09 g, =1
(2.3.59)
2
gj = 5851]
(2.3.60)
£ 2 2
(2.3.61)
Qij = —2wi(Rimeikm + Rim€km)
(2.3.62)
Where:
wy, —is the rotation vector,
e;jx = 1if i,j and k are different and in cyclic order, e;j; = —1if {,j and

k are different and in anti-cyclic order; and e;;; = 0 if any two indices are
same.

The transport equation for scalar dissipation rate “&” for sake of
simplicity is same as for standard k- model (2.3.43). This is valid for most
of commercial CFD codes, in spite the fact that more precisely defined
equation exist. (Versteeg & Malalasekera 2007, 80 - 84).

More detailed information about turbulence models can be found via
following links:

e https://turbmodels.larc.nasa.gov/index.html
e https://www.cfd-online.com/Wiki/Turbulence modeling



https://turbmodels.larc.nasa.gov/index.html
https://www.cfd-online.com/Wiki/Turbulence_modeling
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2.3.7 Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES)

In Direct Numerical Simulation system of governing transient equations
2.2.1,2.2.20, 2.2.21 and 2.2.22 solved directly without implementation of
any turbulence model and Reynolds averaging at all (not a RANS model).
As a consequence, DNS demands extremely fine mesh an sufficiently
small time steps in order of simulate the motion of eddies with smallest
size and highest rotational frequencies. Therefore, DNS demands
computational powers that can be only satisfied by modern
supercomputers, making this method unsuitable for commercial usage.
And even usage of supercomputers so far haven’t allowed to use this
method on complex geometries with highly turbulent flows. Finally, at
the moment DNS can be applied only to incompressible, simple-geometry
and low-Reynolds-number flows.

In spite such limitations, scientists came up with computational
technique called Large Eddy Simulation (LES), that can be considered as
simplification of DNS applicable for conventional computers, allowing to
use coarser meshing (not a RANS model too).

The ideas behind LES are two empirically proven facts:

e Most of kinetic turbulent energy is contained in largest eddies in
flow, meaning that smaller eddies play relatively negligible role in
turbulence effects.

e Anisotropy of eddies increases as the size of eddy increases.

Both of these facts are used to exclude the modelling of small eddies
from simulation running process (that are later resolved using so-called
sub-grid-scale (SGS) model), significantly reducing computational costs.
The exclusion of small eddies is done via spatial filtering operation:

gﬁ(x,t)=J j j Gx,x', M), t)dx,dx,dxs
(2.3.63)

Where:

@(x,t) — is a filtered function (in this subsection overbar indicates
filtering, not averaging);

@(x,t) —is original (unfiltered) function;

A - is a filter cutoff width;

G(x,x',A) —is a filter function.

There exist 3 filtering functions that were successfully implemented to
CFD: Top-hat (box) filter, Gaussian filter and Spectral cutoff. However,
only Top-hat filter so far is widely used in commercial and free software,
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while rest two can be found only in research literature. The box filter is
defined as follows:

1 | < A
- [x—=x'[ <=
G(x,x',A) = A AZ
0; [x—x'| >=
x—x'| > 2
(2.3.64)
Cutoff width “A” is defined in next way:
A= 3/AxAyAz
(2.3.65)

Where AxAyAz —is the volume of biggest (by volume) cell in grid.

Even though it is possible to set the cutoff width to be even smaller,
there is no point in doing that because the grid resolution simply will not
be able to model them adequately. Besides, cutoff width reduction will
also negatively affect sub-grid-scale (SGS) stresses — the stresses,
resolved from rejected smaller eddies. Increasing of cutoff width, on the
other hand, will result to lesser amount of modelled eddies, what yields
to lower accuracy of simulation. Therefore, it is the best to keep formula
2.3.65 as close as possible.

Similarly to RANS models, LES requires appropriate boundary conditions,
in order to obtain a well-posed problem. The boundary conditions are
adjusted similarly to RANS models. However, some difference exists:

e Adjustment of dimensionless constant “Cg;s”. The value of this
constant varies from one to other SGS model and usually lay in
range from 0.1 to 0.24. The best way to determine the exact value
of this constant is revising research literature with similar cases.

e Cutoff width setup (see 2.3.65)

e First wall mesh cell height must be computed strictly for y* <1,
independently on simplicity of geometry. Usage of wall functions
is also possible.

e Steady flow is solved using transient governing equation, what
means that several time steps must get passed, before final state
of flow is formed. The best way to determine time gap from initial
to final state of flow is revision of research literature.

e Inflow conditions are the most challenging part of setup .There
exist several approaches to set correct conditions:

1. Preparatory transient simulation of same problem but using
RSM model. Obtained Reynolds stresses at the inlet are
further transferred through corresponding autocorrelation
and cross-correlation functions, that form random Gaussian
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perturbations, to LES
Extension of computational domain. Long upstream
distances are required in order to ensure the generation of

fully developed flow from turbulence-free reservoirs

Direct specification of shear stresses and velocity profiles in
inlet. (Versteeg & Malalasekera 2007, 98 - 114).
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2.4 Finite volume method and solution schemes

2.4.1 Finite volume method for diffusion problems

Pure diffusion problems are one of the easiest problems that finite
volume method can handle. In physics and engineering pure diffusion
problems mostly involve problems of heat transfer in solids. In spite the
fact that pure diffusion model is not sufficient for fluids due to
involvement of convection, discretization procedure for solids and fluids
is similar. There-fore in this section problems of pure steady-state
diffusion will be covered first, and convection-diffusion problems with
pressure-velocity coupling later. Pure diffusion equation for three-
dimensional problems is written as follows:

div(T grad(e)) +S, =0

(2.4.1)

Integration over control volume and application of Gauss’s divergence
theorem will result to next form of 2.4.1:

fdiv(]“ grad(p))dV + jS(pdV =
cv

cv

fn (I grad(g))dA + fs(,,dv =0
CS cv
(2.4.2)

Simplification of 2.4.2 to one-dimensional case will result to following
equation:

fd(rd(p)dv+fs dv =0
dx \' dx L

cv cv

(2.4.3)

Similarly to other numerical methods, Finite volume method involves
discretization. Uniquely for FVM, discretization is applied to control
volume, resulting to its partition to finite amount of nodal points,
surrounded by smaller control volumes (cells). Each nodal point
corresponds to unique set of linearized governing equations specific to
this smaller control volume and coupled with governing equations of
surrounding cells at certain degree. (Versteeg & Malalasekera 2007, 115).

The example of one-dimensional discretization is illustrated in Figure 10.
The continuous line AB is divided to five control volumes with nodal
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points placed in centre of cell, and values of property ¢ at boundaries “A”
and “B” are specified.

Control volume boundaries

constant
constant

Pa=
Pg =

Control volume Nodal points

Figure 10. Spatial discretization of one-dimensional space. (Versteeg &
Malalasekera 2007, 116).

In order to make the specification of parameters for every single cell of
control volume to be convenient, the convention, illustrated in Figure 11,
will be used further.
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i
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|
|
m —@—

Figure 11. Notation system, used for one-dimensional CFD applications.
(Versteeg & Malalasekera 2007, 116).

Where:

P —is the index used to mark the properties of flow at target node;

W —is the index used to mark the properties of flow at neighbour node,
at west (on the left) from target node;

E - is the index used to mark the properties of flow at neighbour cell, at
east (on the right) from target node;

w — is the index used to mark the properties of flow at west side control
volume face of target node;

e - is the index used to mark the properties of flow at east side control
volume face ;

Using the assumption of linear change from one nodal point to another,

one can show that equation 2.4.3 for particular point “P” will transform
to next form:
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jd(Fd(p)dV+fS dV—(FAd(p) (FAd(p> +SAV =0
dx\' dx e dx/, dx/,, B
v v
(2.4.4)
Where:

A —is a cross-sectional area of cell face;
AV —is a volume of target cell;
S —is averaged value of S over control volume.

In order to determine the diffusion coefficients “I'” at west and east side
faces of cell, one again can use linear interpolation with respect to
diffusion coefficients at neighbouring nodal points:

FW - I—'P
I, = >
Ip — Iy
I, = >
(2.4.5)
Diffusion terms can be linearized as follows:
do ©p — Pw
ra%2) ~ pa, (222
( dx/, """\ Sxyp
do PE — Qp
Tr'A—) =LA, |—
( dx)e € e( 8xpg )
(2.4.6)
For source term SAV linearization applied as follows:
SAV =S, + Spp
(2.4.7)
Substitution of 2.4.6 and 2.4.7 to 2.4.4 will results to:
P — QDP) (‘PP - <PW)
rLA,(——)-TL,A,|— S S =0
e e( SxPE wilw 6xWP +( u+ P(pP)
(2.4.8)

Which can be further rearranged to:

(FeA+FWA S) —(FWA) +(F‘3A) +S
w p|Pp = SXWP w | Pw SxPE e | PE u

Sxpg ©  Sxwp
(2.4.9)
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The resulting equation 2.4.9 is a simple algebraic equation allowing to

“" n”n

solve value “@” for particular nodal point P. By refinement of the grid
(adding the nodal points) one can solve “@” with higher accuracy (“¢” ap-
pears to be more specifically determined in control volume). On the
other hand, mesh refinement vyields to increased amount of algebraic
equations (1 algebraic equation per nodal point), what results to increase
size of corresponding matrix of system of algebraic equations, finally
leading to in-creased computational time. The outcome of 2.4.9 can be

further generalized to next form:

|aP(PP =ayPw t+ ag@Pgp + Su|

(2.4.10)

With corresponding table for coefficients “a”:

Table 4. Coefficients “a” for 1D diffusion problems.

Ay ag ap
I,Ay I.A, aw +ag + S,
Sxwp 8xpg

2.4.9 or 2.4.10 together with Table 4 form the mathematical model,
sufficient to solve one-dimensional problems. However 1D diffusion
models are rarely used in real engineering work due to insufficient
accuracy especially in complex geometries. Therefore one has to extend
existing methods for one-dimensional cases to two- and three-
dimensional cases by adding extra terms to 2.4.10:

lappp = awPw + apPg + asps + ayey + Sy |

(2.4.11)

Where indices “S” and “N” stand for southern and northern neighbouring
nodal points according to Figure 12.
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Figure 12. Notation used for two-dimensional CFD applications.

(Versteeg & Malalasekera 2007, 129).

Corresponding “a” coefficients are summarized in “Table 5”.

Table 5. Coefficients “a” for 2D diffusion problems.

Ay ag ag ay ap
Iy,Ay I.A, IsAs I,Ay aw +ag t+as+ay+S5,
Sxwp 8xpE 8ysp Sypn
Where:

A, =A, =Ay;And A, = A,, = Ax.

Applying same principles, one can show that equation 2.4.11, once
expanded to three-dimensional problems, will transform to next form:

apPp = AwPw + agPr + as@s + aygy + apPp + arpr + S, |

(2.4.12)

Where indices “T” and “B” stand for “Top” and “Bottom” as illustrated in

Figure 13.
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Figure 13. Notation used for two-dimensional CFD applications.
(Versteeg & Malalasekera 2007, 131).

o_n

Corresponding “a” coefficients for three-dimensional cases are
summarized in “Table 6”.

Table 6. Coefficients “a” for 3D diffusion problems.

ay FWAW
Sxwp
ag I—:eAe
Oxpg
ag rsAs
0Ysp
ay FnAn
5Ypn
ag IyAp
8zpp
ar I A
0zpr
ap | ay +ag+as+ay+ag+ar—>Sp

Observing the pattern in 2.4.10, 2.4.11 and 2.4.12, one can write
generalized form of these equations in next way:
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ap@Pp = z AnpPnp + Sy

(2.4.13)

And,

aP:Zanb_SP

Where index “nb” corresponds to neighbouring nodes relatively to target
node. (Versteeg & Malalasekera 2007, 115 - 133).

(2.4.14)

2.4.2 Convection-diffusion problems

General form of convection-equation is read as follows:

fn.(p(pu)dA = fn.(F(grad(<p))dA+ qu,dV

A A cv

(2.4.15)

Simplification of 2.4.15 to one-dimensional and neglecting of source term
case will result to:

)

(2.4.16)

In addition to 2.4.16, one also has to consider the continuity equation:

d(pw) _

0
dx

(2.4.17)

To apply discretization to 2.4.16 and 2.4.17, the notation similar to
diffusion problems, shown in Figure 14, is used with only difference of
presence of velocity components “u”, “v” and “w”.
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Figure 14. Notation, used for one-dimensional convection-diffusion
problems. (Versteeg & Malalasekera 2007, 135).

With given convention, one can transform equations 2.4.16 and 2.4.17 in

linearized form:

(pudo), — (puAp) —(rAd‘p> (rAd‘p)
PUAP)e — (PUAPY)y = dx/, dx/,
(2.4.18)
For transport equation of “¢”, and for continuity equation:
[(pud). — (pud), = 0
(2.4.19)

For the sake of convenience, one can introduce next replacements for
2.4.18 and 2.4.19:

F =pu
(2.4.20)

And,

(2.4.21)

Particularly for 2.4.18 and 2.4.19, one can get next coefficients:

Y Sxwp

D
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Ie

© Sxpg

D

(2.4.22)

Substitution of 2.4.22 to 2.4.18 and to 2.4.19 and assumption that
A,, = A, = A will give next equations:

F.9e — Fupw = De(9r — p) — Dy (9p — )|

(2.4.23)

F,—E, =0
(2.4.24)

There exists several schemes to reduce number of variables in 2.4.23 by

representing values “@” at faces (“p” with lower-case letter indices) as
sum of nodal terms (“p” with capital letter indices). However, the
simplest scheme is called “The central differencing scheme”, which

" ”

represents “¢@” at faces as follows:

_Ppt 95
(pe 2

_Pwter
(pW 2

(2.4.25)
Substitution of 2.4.25 to 2.4.23 will result to next equation:
lappp = aw@w + ag |
(2.4.26)

Table 7. “a” coefficients for one-dimensional convection-diffusion
problems applying central differencing scheme.

aW aE ap

F ay +ag+ (Fz — F,)
D, —

D,, + ?e

Ry
2

In addition to central differencing schemes, several other discretization
schemes that might perform better than central differencing scheme, but
might give unrealistic result. In order to avoid such problem, one must
consider the next fundamental properties of any discretization scheme:

e Conservativeness

e Boundedness

e Transportiveness
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Conservativness is the property, telling how well properties “¢” obey
conservativeness in overall bounded control volume. Discretization
schemes, that satisfy conservatives are also called consistent. The
examples of consistent schemes are Central Differencing Scheme and
QUICK. The example of inconsistent scheme, using quadratic
interpolation is shown in Figure 15 below.

radient of 1
Gradient of 2 Gradient o

Quadratic function 1 Quadratic function 2
0
N : /
é—&?a
! 02 ' '
a0 1 E 2 : 3 i 4 Gs
: ' : l
‘ ox/2 X Sx Sx Ox/2 ‘
| |

Figure 15. Inconsistent scheme, using quadratic interpolation. (Versteeg
& Malalasekera 2007, 142)

In this example gradients of flux “¢” at west face of cell “2” and east face
of cell “3” can be different, what yields to unsatisfied conservation
condition. (Versteeg & Malalasekera 2007, 134 - 143).

Boundedness is the property of scheme telling if the solution will con-
verge after several iterations, that are necessary in CFD to handle
nonlinear (product of unknown functions) terms of governing equations.
The sufficient condition for convergence of iterative method is described
by Scar-borough criterion:

Ylanl { < 1 at all nodes
lap| < 1atonenode at least

(2.4.27)

Where ap denotes the coefficient at target nodal point and a,,;, denotes
coefficients of all neighbouring nodes involved in linear algebraic
equation of “@p”. This criterion can be satisfied by appropriate
adjustment of source term coefficients “S”. (Versteeg & Malalasekera
2007, 143).

Transportiveness is the property characterized by Peclet number:

__pu
- I'/6x

T
°=D

(2.4.28)

which shows the relative strength of convection and diffusion and must
not exceed certain value, specific for each scheme.
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The table with discretization schemes widely used in CFD with brief ex-
planation of their advantages and disadvantages is shown below in

“Table 8”. (Versteeg & Malalasekera 2007, 143 - 178).

Table 8. Discretization schemes, commonly used in CFD.

Discretization advantages disadvantages
scheme

Central The simplest formulation of Works only for

differencing coefficients “a”. Pe < 2.
Upwind No limitations on Peclet number. | Only first order Taylor
differencing series truncation
error. Problem of
“false diffusion”.
Hybrid Switches from upwind to central | Same as for upwind
differencing scheme, when differencing scheme
Pe < 2, hence more suitable for when Pe = 2.
modelling of boundary layer.
Power-law | Accuracy is higher than in Hybrid Only applicable to
scheme. one-dimensional
flows.

QUICK Accuracy is higher than in Hybrid Minor under- and
(Quadratic | scheme. Resultant false diffusion overshoots in
upstream is smaller than in hybrid scheme | solution, that can give

interpolation too. physically unrealistic
for results (e.g. negative
convective turbulent kinetic
kinetics) energy “k”).
TVD Complete elimination of under- Mathematical

(Total and overshoots. Same accuracy complexity
variation as in QUICK scheme, resulting in

diminishing) the most accurate and realistic
results.

2.4.3 Pressure-velocity coupling

As it was mentioned before, momentum equations contain non-linear
convective terms (e.g. unknown velocity component multiplied by its
spatial derivative), what causes need to use iterative techniques (Like
Newton-Raphson method) to obtain solution with sufficient accuracy.
However, nonlinear terms are not the only reason to use iterative
methods to solve governing equations. Unlike compressible flows, where
pressure can be obtained from solving corresponding transport equation
of energy (temperature) and certain gas law, incompressible flows don’t
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have such relation with density and temperature, but application of
correct pressure field function must vyield to satisfied continuity.
Therefore, one can find correct pressure function iteratively from initially
guessed function, by performing certain amount of iterations, correcting
the “guessed” pressure function, until continuity equations turns out to
be sufficiently satisfied (converge). (Versteeg & Malalasekera 2007, 179 -
196).

In order to couple the pressure and velocity to convection-diffusion
equation, one has to discretize the pressure, first. There exist several
methods to accomplish this problem, however only one way, called
staggered grid arrangement, allows to obtain sufficiently realistic results.
The pressure gradients from 2.2.25 in staggered arrangement are defined
as follows:

0_29 _ Pp — Pw
d0x SxXyp
0_29 _ Pp — Ps
dy  Sysp
a_P _ Pp — DB
dz 0Zgp

(2.4.29)

Recalling the formula 2.4.13 that can also be applied to convection-
diffusion problems (coefficients “a” will vary depending on discretization
scheme), applied to x-momentum equation with subtraction of
corresponding pressure gradient will result to discretized equation of x-
momentum:

apUp = Z AnpUnp — pl;\x_—pVVAVp + .§AVP
wPpP

(2.4.30)

If one assumes uniform square grid (two-dimensional problem), index P
corresponding to target node (cell centre) can be represented by double
index “IJ”, where corresponds to certain row of mesh and “J” — to
column. In the same way, one also has to use lower case letters to refer
to points at cell faces, where “i” corresponds to certain row, and “j” —to
column (See the Figure 12). With this notation 2.4.31 will change to:

IIIII

aoin
|

Py — Pu-1)J -
ai]ui] = Z AnpUnp — WAVU + SAVU

And further to:
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ajjUiy = z AnpUnp + (Pu-1y — P1 Ay + by

(2.4.31)

The physical meaning of such model is that all scalar quantities (density,
pressure, temperature, etc.) are computed exactly at nodal points, while
velocity components are evaluated at cell faces, what allows properly
catch non-uniform behaviour of field functions if it is the case. (Versteeg
& Malalasekera 2007, 180 - 186)

As previously mentioned, in order to solve pressure and velocity
functions, one has to specify initially guessed value, that will be later
corrected to more realistic result using iterative methods, so the first step
in solving flow equations is the specification of guessed value, which can
be obtained from decomposition of correct values:

:p*_l_pl
u=u"+u

v=v'+7

*

w=w +w

<

(2.4.32)
Where upper script “+” denotes the initially stated (guessed) value, and '
denotes the value correction, necessary to satisfy governing equations.
(Versteeg & Malalasekera 2007, 186 - 190).
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Figure 16. “lJ” and “ij” notation of uniform two-dimensional grid with
illustrated application of continuity equation (Versteeg &
Malalasekera 2007, 188).

There exist four algorithms widely used in CFD applications:

e SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)
e SIMPLER (SIMPLE Revised)

e SIMPLEC (SIMPLE Consistent)

e PISO (Pressure Implicit with Splitting of Operations)

In addition to step sequence, they vary by equations used to determine
the corrections “¢". The actual schemes of SIMPLE, SIMPLEC and PISO
are shown in Figure 17, 18 and 19.
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( START )

Initial guess p*, u*, v*, ¢o*

Y

Y

STEP 1: Solve discretised momentum equations

> * * *
a,y Uy =Zawln,+ (Pra,— Ply) A+ by

. * *
a,; V’f, =ZapVopt (Pa—=P)) A+ by

u*, v¥

Y

STEP 2: Solve pressure correction equation

’ ’
8, Ply= 81,y Ploay + @uay Plaay + 8-t Ploes + 8gas Pl + by

’

p

Y

STEP 3: Correct pressure and velocities

*
P =P+ Py

* ’
uy =uy+dy(play— P

Vij = ‘/l..:/ 2 2 dl.] (lfl.Jfl X mJ)

Set
p*=p u*=u
Vi=v,¢*=¢

A

p, u, v, ¢*

STEP 4: Solve all other discretised transport equations

a,01,= a0+ 8 Ou1s+ 801 O + 8isa Grer + Dy

No

Convergence?

STOP

Figure 17. SIMPLE algorithm diagram (Versteeg & Malalasekera 2007,
190).
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< START ’

Initial guess p*, u*, v*, ¢*

Y

Y

STEP 1: Calculate pseudo-velocities

A Tapln + by
Uy = =
ai,

A Xavie+ by

Y

STEP 2: Solve pressure equation
+ 81 P+ @iy P+ by

8P = 8y Pra st @iy Prar

STEP 3: Solve discretised momentum equations

a, Ui =Eann + (PFas —PL) Au+ bis

Set
=p U*=uU a,vy= L8,V + (Plsa = PI) A, + by,
=v.¢*=0
u*, v¢

STEP 4: Solve pressure correction equation
Pl + 8y Pla + by

8, P = 811, Pras+ 8y Plast 8

I8

STEP 5: Correct velocities
u, = uf + A, (Prgy = Pl
vy = Vit di (Pl — Pl

pu, v, ¢o*
Y

STEP 6: Solve all other discretised transport equations

a0 ;= 8y Pra s+ 8 Pa s+ 8 @y + 80 O ser + Dy

lo

No

Convergence?

STOP

Figure 18. SIMPLER algorithm diagram (Versteeg & Malalasekera 2007,
192).
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‘ START )

- Initial guess p*, u*, v*, ¢*
Y

Perform STEPS 1-3 of SIMPLE algorithm
- Solve discretised momentum equations
— Solve pressure correction equation

— Correct pressure and velocities

Pt vhip!

STEP 4: Solve second pressure correction equation

'’ ’ " ’ '’ ’
8, P= 811, Plas+ 8ua, ) Plas+ 8 Plra+ @ Pl + b

Y

STEP 5: Correct pressure and velocities
P =P+ Pt Pl

* % K Zanb((f*n: A% U:a)
at. J

*
uyt= Ul 4 dy (Pl = Ph) +

+ d s (pllas = p’J,J)

ZaVao — Vi)

*kx _ 4 ’:
Vift =i+ dy (Pl - o)+ + dyy (P2 — P

a
. Set* Set
pT=p,u =u G 3 2
pP=p
vi=v, 0% =9 U= urkE
=k
p, u, v, o*
A STEP 6: Solve all other discretised transport equations

8,01 = 81,9110+ Q1P+ 8g Qs+ 8pa1 Gy per + Dy

¢

No

Convergence?

A

STOP

Figure 19. PISO algorithm diagram (Versteeg & Malalasekera 2007, 195).
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Where upper script “**” denotes corrected pressure, “'"” denotes second
correction and “**x” denotes twice-corrected pressure:

p*** — p** + pll — p* + pl + p”

(2.4.33)

And for “d” with corresponding indices:

A
d="=
a

(2.4.34)

Every listed algorithm has own advantages and disadvantages.
Particularly SIMPLE algorithm executes the least amount of computations
per iteration, but requires more iterations to converge, while SIMPLER
algorithm shows opposite behaviour due to better pressure correction
scheme. On the other hand PISO shows better performance when there
is no coupling of momentum equations with scalar variables
(incompressible flows modelled using LES or DNS, laminar flows), while
SIMPLER and SIMPLEC show better performance with highly coupled
flows (compressible flows with RANS models). (Versteeg & Malalasekera
2007, 196).
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3 EXAMPLE SOLVED IN MATHCAD 15

As one can notice, mathematical methods used in CFD are extremely
lengthy to solve. The aim of examples this chapter is to show the
application of theory, covered in Chapter 2 and demonstrate the need in
such mathematical software packages as ANSYS or COMSOL: complexity
of implementation of covered mathematical methods for extremely
simple one-dimensional pressure-driven flow with coarse mesh.

3.1 Problem specification

As an example, one can consider steady, inviscid, incompressible
pressure-driven flow in converging-diverging nozzle, shown in figure 20.

pressee e 'P"ff;{ff
atet e s s

g e

Figure 20. Converging-diverging nozzle with marked nodal points for
pressure field (Arabic numerals) and grid for velocity field
(Roman numerals).

Note that cross-sectional area is assumed to change linearly along
symmetry axis until point 4, where it starts to stay constant. The applied
solution scheme will be upwind-differencing scheme, and used algorithm
— SIMPLE.

Problem specifications:

Area at inlet: 0.5 m?

Area at outlet: 0.4 m?

Area at point 3: 0.3 m?

Outlet pressure: atmospheric pressure p, = 101325 (Pa)
Inlet pressure: p;,, = 2p,

Overall length: 1.6 m

Fluid density: 1000 kg/m>

Since the flow is simplified to incompressible, steady, one-dimensional
and inviscid, one can use a Bernoulli’s equation to find fluid velocity in
the outlet and corresponding simplified continuity equation to find
velocity and pressures at all nodal points:
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2

u
p+p > = const
(3.1.1)
(3.1.2)

With the origin placed at the point 1, one can get the following results:

Table 9. Exact solution, using Bernoulli’s equation.

Corresponding X (m) A (m?) p (Pa) u (m/s)
nodal point
1 0 0.5 137802 11.388415
| 0.2 0.45 122590.740741 12.653795
2 0.4 0.4 101325 14.235519
Il 0.6 0.35 70307.142857 16.269165
3 0.8 0.3 22516.666667 18.980692
[ 1 0.35 70307.142857 16.269165
4 1.2 0.4 101325 14.235519
v 1.4 0.4 101325 14.235519
5 1.6 0.4 101325 14.235519

These results will be used later for comparison with numerical method.
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3.2 Numerical solution

1) According to SIMPLE algorithm one has firstly specify initial pressure
and velocity fields.

For pressure field nodal points one cane make the next guess:

Table 10. Initial guess for pressure field.

1 2 3 4 5

1.5p, Pa 0 Pa Pa

For velocity field one can make a guess of volumetric flow at point IV and
use continuity equation to find the rest “guessed” values. Say let the
velocity at point IV to be 14 (m/s), then one can obtain the following
table:

Table 11. Initial guess for velocity field.

I Il Il 1%

12.444444 (m/s) 16 (m/s) 16 (m/s) 14 (m/s)

2) With given simplifications governing equations (continuity and
momentum conservation correspondingly) will transform to:

2 (o) =
dx pot) =
(3.2.1)
du dp
P G = e
(3.2.2)

After discretization of second equation one obtains the next form of
momentum equation:

Pw — D
(pud)eue — (pul)yuy, = %AV

(3.2.3)

For a single nodal point “P” the momentum equation will have a
following form:

apUp = ay Uy +agug + Sy,

(3.2.4)
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The coefficients “a” are obtained from applied solution scheme, which is
the upwind difference scheme in this case. For this solution scheme
coefficients “a” are listed in tables below

Table 12. Coefficients “a” for upwind differencing solution scheme.

ap ay +ag +as+ay +ag +ar+AF
ay D,, + max(F,, 0)

ag D, + max(—F,, 0)

ag D + max(F;, 0)

ay D,, + max(—F,, 0)

ag D, + max(F;, 0)

ar D; + max(—F;, 0)

AF F,—F, +F,—F,+F,—F,

Table 13. Values of “F” and “D”.

Face w e S n b t
F (pu)wAw (pu)eAe (pv)sAs (pv)nAn (pw)bAb (pW)tAt
D I, I, I I Iy P
A —A A A A A
Sxwe || 0xpe” | ||6¥se | ||6Yen || |OZ8p b 6zpr

Since the flow was assumed to be one-dimensional all coefficients that
contribute to south, north, top and bottom coefficients “a” will be equal
to zero. Moreover, the flow was assumed to be inviscid (viscosity equals
zero), therefore all values of diffusive terms “D” will be equal zero too.

Source term S, in 3.2.4 hides the pressure gradient term of discretized
momentum equation 3.2.3:

Sy =

Pw — DPe
Ax

1
AV = E (pw - pe)(Aw + Ae) = (pw - pe)AP

(3.2.5)

Finally, after all simplifications the coefficients for 3.2.4 are:

lap = ay + ag + (F.—F,)|
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1
Sy = E (pw - pe)(Aw + Ae) = (pw - pe)AP

(3.2.6)

The parameter “d” necessary for pressure correction equation is
determined as follows:

A
dp = _P
ap
(3.2.7)
3) The discretized form of 3.2.1 will be:
[(pud), — (pud),, = 0]
(3.2.8)
|aPP1’> = aypw + agpg + b’
(3.2.9)
Where:
|ap = aW + aE|
[aw = (pdA),,]
ag = (pdA).
b' = Fy — F = (pu”A),, — (pu’A).]
(3.2.10)

The key approximation that is the core of SIPMPLE algorithm is the
following formula for velocity correction that is obtained from pressure
corrections:

lu' = d(p] — pi+1)|

(3.2.11)

Once pressure and velocity corrections are found one can find the
solution of pressure and velocity fields, by simple summation of guessed
values with corrections as shown in 2.4.32.

4) The next step is to solve velocity field and correction parameters “d”
using the guessed values. To accomplish this, one has to form the sys-
tem of linear equations, using 3.2.4, 3.2.6 and 3.2.7.
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The solution in Mathcad 15 begins with specification of coefficients “a”
and source terms of momentum equations for velocity nodes Il and Il as
follows:

P, = 10132' uj:=1244444  up =16 up =16 upyi= 1

A1:=05 Ay,:=04 A3:=03 Ay:=04 Ag:=04

P :=15p; po =P, pg:=C Pg =P, P5 =Py
1 1
Fwil = P'Az'g'(uu +uy) Ferr == P'As'g'(uu +upy)
awi = Fwi ag =0
a) == awy + agy + (Feir = Fui)

Si=(p2 — P3)-Ay

Al
d” = —
ay
1 1
Fwiin = P'A3'5'(Uu| + Uu) Felni = P'A4‘§'(U|u + u|v)
awin = Fwii agyy =0

an=awn t agt (Felll - me)

Si = (p3 —Pa)-Apy

The next step is specifying the same coefficients for momentum
equations of nodes | and IV. They are placed on boundaries of control
volume of problem and require the special treatment.

Due to absence of the neighbouring node for the velocity node “I”, one
has to make the correlation with the pressure node “1” by specifying the
velocity at pressure node “1”, what can be done using the Bernoulli’s
(3.1) and continuity (3.2) equation as follows:

1 2
Pin = P1 +§pu1

(3.2.12)

uA; = uq g

(3.2.13)

The combination of these two equations will yield to:
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1 (AN
P1 = Pin =5 PU <A_1)

(3.2.14)

The discretized momentum equation for velocity node “I” is determined
as follows:

Fou; — Fyuy = (pg — PZ)A1|

(3.2.15)
Where E,, = pu 4, = pu;A;
The substitution of 3.15 and 3.16 to 3.17 will result to:
AN 1 AN
R () 435 (F) )u = Gu—pa
(3.2.16)

In order to avoid negative value for coefficient “a;” one has to rearrange
3.18 to next form:

1 /42 AN
F, + EFW (A_1) Uy = (Pin — P2)A; + Ey (A_1) Uy

(3.2.17)

HIII

Where u; denotes velocity at point

I

from previous iteration. Therefore
‘a;”, “S;” and “d;” are determined as follows:

1
Pin :=2Pa  Fwi=pApu Fy = p'AZ'E'(uI + uII)

2
ay=Fg +F Al
= el ™ Twl, Al

Al ? Al
Sy :=(Pin — P2)-Ar + P v dy:=—

For the velocity node “IV”:

u + U
(upr + upy)
Fwiv = P'[—z }'A4 Ferv = pUup/Ap,

awiv =Ry agpyi=0
= Ayt agyt (FeIV - lev)

Siv = (P4 — Ps)-Apy

dp/ = —
v
apy
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Once coefficients for all four momentum (velocity) nodes are
determined, one is ready to solve the system of four algebraic equations
with four unknowns, where unknowns are computed velocities at
momentum nodes denoted with capital “U”s:

Giver
a|-U|: Sl
Uy = ayyrYp + Sy
a-Y = awn Yy + Sy

CIVASTIVER:VYIIVASI TSIV

U
| 12.8246415868971350
Uy _ 22.5878562266069454
U | Find(Up. Uy Uy Uny) 12.1596599812855563
1 :
13.0282071228059532
Uv

These computed velocities will be used to compute the pressure
corrections.

5) For pressure nodes “2”, “3” and “4” pressure correction equations are
determined directly from 3.11:

= pdpA aE = pdipAy

Fow =P UrA Foe=pUrAy

ap =y + agg b :=Fow — F2E
agyy = p-dj Ay agg = p-dy Ay
Faw=pPUjrA F3e=pUnr-An
ag = agy + a3 b3 :=Fay — F3E
Qw =A== pdy Ay
Faw=pUnrAm  Fag=pUnAn

a4 =34w * A4g

b’y ==Fay — Fag

For nodes “1” and “5” the pressure corrections are set to 0. Therefore
one gets the following system of equations for pressure corrections:

Giver

ayP'p = agyP'y + apP’3 + b
ag-Pp'z3 = agyP2 + agpP’y + b3
agP'4 = agWP'3 T ayEP's + by



65

P 2458.26519121511695
P3| = Find(p'Z,p'S,p‘4) — | 88553.5315582056770
0y 17403.5360257200641

Finally, computed velocities and pressures are:

Uicomp = Uy + dy:(py — p'p) = 1268561496793672¢
Unicomp = Upp + dyp (P2 — P'3) = 16.31007638734721¢
Uniiconp = Yp + dype(P'3 - P'g) = 16.31007638734721¢
Unveonp = Uy + div(P'g - P'5) = 14.27131683892881¢

Piconp =P1+ p'q =151987.5

Pocomp = P2+ p'p = 103783.2651912151:
P3comp =P3 + p'3 = 88553.5315582056¢
P4comp = P4+ p'y = 118728.5360257200"
P5comp = P5 + p's = 101325

The last step in SIMPLE algorithm is the usage of so-called relaxation,
which is defined as:

Unew = (1- a)uold + AUcomp

Prew = (1 — @)pyia + APcomp

(3.2.18)

Where “a” is so-called relaxation coefficient defined by programme or
user and always less than one.

Particularly for &« = 0.75:

a:=0.7
Upnew = (1 = 0)-Uj + o-Ujgpy, = 12.62532222595254
Upinew = (1 = @)-up + a-Ujjeopy = 16.23255729051041¢

Ullinew 1= (L = @)Uy + a:Upjjgony = 16.23255729051041:
Upvhew = (1 —a)-up/+ o-Up/eonp = 14.20348762919661.
Pinew = (1 —0)-pq + %P1eomp = 151987.5

Popew = (1 —0)-py + Pocomp = 103168.6988934113!
P3new = (1 —a)-p3 + *P3comp = 66415.1486686542¢
Panew = (1 —0)-pyg + *P4comp = 114377.6520192900"

p5neW = (l — oc)p5 + apSCOITp =101325
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The last set of values is the outcome of a single iteration in SIMPLE
algorithm. In order to execute the second iteration one simply has to set
the final result of first iteration as guess values for second iteration and
repeat the procedure. Results (except pressures at nodes “1” (because in
most CFD codes this value will be reserved for stagnation pressure at
pressure inlet, which is double atmospheric pressure in this case must
not change with any number of performed iterations) and “3”) show
some agreement with the exact solution in Table 9 even though they not
necessary should, since the grid consist only from five pressure a four
momentum (velocity) nodes, that makes it to be a relatively coarse mesh.
The accuracy can be improved by the grid refinement (increasing the
amount of nodes). But one must remember that this will increase the
complexity of mathematical model and require more iterations to
converge (Versteeg & Malalasekera 2007, 209 -210).

The disadvantage of poor accuracy in numerical methods is compensated
by their ability to be expanded to more complex three-dimensional,
compressible, viscous and even ionized flows, what together with the
absence of alternatives ensured the popularity of CFD in industrial and
scientific applications.

Considered example explicitly shows how lengthy the computation of
flow can be even with coarse mesh. Therefore, in order to handle more
complex scenarios such as three-dimensional transient flow, it’s strongly
suggested to use either commercial software like ANSYS or COMSOL or
any free CFD software, that can be found here:
https://www.cfd-online.com/Wiki/Codes.

In order to learn how to use ANSYS FLUENT one can go to link below
which contains tutorials in FLUENT covering all aspects, necessary to
know for modelling of complex flows.

Link to ANSYS FLUENT tutorials:
https://confluence.cornell.edu/display/SIMULATION/FLUENT+Learning+
Modules

Once tutorials are completed, one can continue the self-study by
exploring the following book, which also gives the insight into
programming aspects of CFD: Moukalled F., Mangani L., Darwish M.
(2016) The Finite Volume Method in Computational Fluid Dynamics: An
Advanced Introduction with OpenFOAM and Matlab. Stuttgart: Springer.


https://www.cfd-online.com/Wiki/Codes
https://confluence.cornell.edu/display/SIMULATION/FLUENT+Learning+Modules
https://confluence.cornell.edu/display/SIMULATION/FLUENT+Learning+Modules
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4 PI-THEOREM HANDOUTS

CFD provides Mechanical Engineering designers with an inexpensive
alternative to actual experiments supported by a high flexibility in
changing of prototype design. However, once the results from several
simulations are obtained, one has to build up satisfactory mathematical
models. The main difficulty at this stage is usually a wide range of
variables involved in the simulated process including: velocity at inlet, the
density and viscosity of the fluid, ambient temperature, thermal
conductivity, drag force, geometry of control volume, frequency of
vibration, enthalpy etc.,, making the question of which variables are
dependent on each other to be difficult to handle. To answer this
guestion completely, one can use the Bucking-ham Pi-Theorem (or simply
Pi-Theorem). The Pi-Theorem states that any set of variables can be
changed to the set of distinct non-dimensional groups, that are
dependent on each other. The exact dependence is deter-mined from
experimental data and curve-fitting techniques. In order to understand
the process of non-dimensional Pi-groups’ formulation, one has to
consider the dimension of every variable involved into experiment or
simulation. The examples of dimensions are listed in Table.14.



Table 14. Dimensions of mechanical quantities
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Quantity Dimensions Derived units
A. (Mechanical quantities)

Acceleration ET=2 m.s2
Action ML2T! kg.m’s™!
Angle (plane) 1 rad.
Angle (solid) | sterad.
Angular acceleration T2 rad.s?
Angular momentum ML*T! kg.m’s™!
Area L? m?
Curvature L= m!
Surface tension MT? kg.s~2
Density ML kgom™3
Elastic modulus ML-T=2 kg.m='s2
Energy (work) ML2T? J

Force MLT > N
Frequency /1. s
Kinematic viscosity ol b m*s!
Mass M kg
Momentum MLT™! kg.m.s™!
Power ML*T3 W
Pressure ML-'T—2 N.m™
Time /4 S

Velocity LT~ m.s~!
Volume 3 m’

B. (Thermal quantities)

Enthalpy ML*T? &

Entropy ML>T?0~! J K

Gas constant L2T 97! Jkg 'K
Heat capacity per unit mass 127207 Ltk
Heat capacity per unit volume M- '7-20"'  Jm 3K™!
Internal energy ML>T? J

Latent heat of phase change EAr=2 Jkg!
Quantity of heat ML>T—? J
Temperature 0 K
Temperature gradient L0 Km™!
Thermal conductivity MT-3L07! Wm 'K
Thermal diffusivity 5 m*s™!
Heat transfer coefficient MT30! WK ™!

(Yarin 2012, 5)
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As an example, action has the dimension [MLZT‘l], what means mass
times squared length times inverse time. Note that length, time, mass,
temperature, amount of substance, electric current and luminous
intensity form the set of fundamental physical quantities, that allow to
express all other quantities as products of powers of fundamental
quantities.

To understand the application procedure of Pi-Theorem to results of
simulations and experiments, one can consider next example:

Thrust of propeller “F” depends on diameter “d”, velocity at inlet “v”,

o _n o 0N

fluid density “p”, spindle speed “f” and fluid viscosity “u”.
Involved quantities have next dimensions:

F = [MLT™?]
d = [L]

= [LT7]
= [ML?]
= [T7]
MLT™Y

< <

U

To determine necessary Pi-groups, one has to check the amount of
fundamental quantities, used in given problem (mass, length, time =3),
and then select the same amount of so-called repeating dimensionally
distinct variables (they will pop up in all Pi-groups) from given list of
guantities (unselected variables are called non-repeating).

There are 6 given physical quantities, knowing amount of repeating
variables, one can also find the amount of Pi-groups necessary for
complete description of system, using next simple formula: amount of Pi-
groups = amount of given physical quantities — amount of fundamental
guantities involved (or Pi-groups=6-3=3 in current example).

The Pi-group is formed by multiplication of one non-repeating variable by
product of unknown powers of repeating variables. (In this example one
is suggested to choose following quantities as repeating variables due to
their simplicity: d, v, p.) Therefore, the first Pi-group, that will be taken
for “F” will be:

11, = Fd*v®p°
In order to satisfy the dimensionality of equation (dimension of LHS =
dimension of RHS) and find unknown powers “a”, “b” and “c”, one has to
replace physical quantities with their dimensions:

MOLOT® = [MLT~2][L]*[LT*]°[ML3]°

Using the rule of power summation and multiplication, one will come up
with system of 3 linear equations with 3 unknowns:
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Mass [M]: 0 =1+¢
Length[L]:0=14+a+ b —3c
Time [T:0=-2—-b

The solution such system will be: a=-2; b=-2; c=-1. Therefore the first Pi-
group will be:

F
i = pv2d?
For spindle speed “f":
HZ — fda‘l]bpc

MPLOT® = [T-Y[L]*[LT~1]P[ML 3]
Mass [M]: 0=c

Length [L]: O=a+b-3c

Time [T]: 0=-1-b

Implying that c=0; b=-1; a=1; that results to:

_fd

11
2Ty

“w, ",

For dynamic viscosity “u”:
3 = pd*v®p°
MOLOT® = [ML YT~ Y[L]*[LT1)P[ML3]¢
Mass [M]: 0=1+c
Length [L]: 0=-1+a+b-3c
Time [T]: 0=-1-b
Implying that c=-1; b=-1; a=-1; that results to:

U
M, =—
7 pvd

The group “II3” can be replaced by its inverse without any loss of
information:
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. 1, . .
As one can recognize, the value ”n— is a well-known, previously
3

mentioned Reynolds number “Re”.

Therefore, the final solution for this problem can be written as follows:

Foo (de)
ovzgz P\ e

Where “@” unlike for chapter 2 denotes some function of two variables,
that must be determined through experiments or computer simulations,
and proper curve-fitting method.

Another example can be a flow passing the sphere with given variables of

o _n

diameter “d”, velocity at inlet “v”, fluid density “p”, drag force “F” and

o, .n

fluid viscosity “u”, or:

F = [MLT™?]
d=[L]
v=[LT1]
p=[ML3]
p=[MLT™]

This case is similar to previous example except there is no spindle speed
involved. Therefore there are only two Pi-groups necessary to derive,

that will be “

F . . .
pv2d2" and “Re”. Hence the final solution will be:

pv2dE @(Re)

The example with propeller shows all necessary steps to form all
necessary Pi-groups necessary to describe the relation between all
involved variables at a certain physical process, that is the main usage of
Pi-theorem in engineering, allowing to analyse massive simulation and
experimental data from all physics branches (Fluid and Solid Mechanics,
Electrodynamics, etc.) in reliable way.
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5 CONCLUSION.

The material listed in this work is a sufficient minimum for students, who
are just starting to explore the capabilities of computational Physics,
necessary to understand, what will happen inside such solvers as FLUENT
once the tutorial completing has begun and to properly justify the
correct-ness of obtained results. Included FLUENT Tutorials from Cornell
University on the other hand provide new students with necessary
experience in application of CFD to real engineering problems. A
literature for further reading after finishing of tutorials was also
suggested.
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