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Abstract:  

 

The idea of this thesis is to design a pipe system and run a flow simulation for the obser-

vation of the flow of fluids in pipes and compare it with the results obtained in the labora-

tory. 

First, a pipe system was modelled in SolidWorks software. Separate parts were designed, 

and then brought together into the final assembly. 

Secondly, an experimental analysis was performed in Heat Transfer laboratory. Volumetric 

flow rate was obtained using flow meter. This value was used in a velocity calculation. 

Finally, fluid flow simulations were performed using FloXpress and Flow Simulation add-

ins. Different velocity and pressure magnitudes were observed along the pipeline. 

The average velocity in experimental analysis was found to be 0.531 m/s while the average 

velocity from Flow Simulation depending on the boundary conditions were 0.532 m/s and 

1.375 m/s respectively. Head loss was also calculated for experimental and Flow Simula-

tion values. Head loss from laboratory experiment was calculated to be 2.446 m. Head loss 

calculated from Flow Simulation values depending on boundary conditions were 0.409 m 

and 2.428 m respectively. 
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1 INTRODUCTION 

The purpose of this study is to simulate flow in pipes utilizing SolidWorks software. Fluid 

flow may be very hard to predict and differential equations that are used in fluid mechan-

ics are difficult to solve. SolidWorks add-ins enable you to simulate flow of liquids and 

gases and efficiently analyse the effects of fluid flow.  

1.1 Background 

The motion of a fluid is usually very complex.  The observed fluid flow behaviour be-

comes much more understandable after defining the flow into laminar or turbulent re-

gimes. The momentum equation provides one of the most recurring tools to be used in 

understanding fluid flows. Another fundamental tool for fluid flow analysis is continuity 

equation, both in its volumetric and its more widely applicable mass flow form. 

Along with the energy equation, the aforementioned equations, momentum and continu-

ity, are also known as Navier – Stokes equations. Newtonian fluid flow is incompressible 

when the density is constant. In such case Navier - Stokes equations can be simplified. 

1.2 Objectives 

The objectives of this thesis are as follows: 

1. Model a pipe system using SolidWorks. 

2. Simulate and analyse the fluid flow in pipes using the SolidWorks Flow Simula-

tion add-in and FloXpress. 

3. Compare experimental and simulated results obtained from SolidWorks and 

COMSOL. 
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2 LITERATURE REVIEW 

2.1 Bernoulli’s Equation  

The application of the principle of conservation of energy leads to a relation between 

pressure, elevation and flow velocity in a fluid. This relation is called Bernoulli’s equa-

tion. [1] It is one of the best-known and widely-used equations in fluid mechanics. 

 

Bernoulli's equation can be viewed as a conservation of energy law for a flowing fluid.  

𝑊𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 = 𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 + 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 

∆𝑊 = ∆(𝐾𝐸 + 𝑃𝐸)        (1) 

Work done equals force multiplied by distance: 

𝑊 = 𝐹𝑑        (2) 

We can plug in the formula that relates pressure and force, which gives us: 

𝑊 = 𝑝𝐴𝑑        (3)  

Where A represents area. 

Volume is derived by multiplying area and height (distance), thus: 

𝑊 = 𝑝𝑉        (4) 

Work done is equal to: 

∆𝑊 = 𝑝1𝑉1 − 𝑝2𝑉2       (5) 

Kinetic energy is the energy of mass in motion: 

𝐾𝐸 =
𝑚𝑣2

2
=

𝜌𝑉𝑣2

2
       (6) 

Where V represents volume. 

Potential energy is dependent on height: 

𝑃𝐸 = 𝑚𝑔𝑦 = 𝜌𝑉𝑔𝑦        (7) 

Where y represents height. 
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Substituting gives: 

p1V − p2V =
ρVv2

2

2
+ ρVgy2 −

ρVv1
2

2
− ρVgy1 

Divide by V: 

p1 − p2 =
ρv2

2

2
+ ρgy2 −

ρv1
2

2
− ρgy1 

Rearranging the formula to put the terms that refer to the same point on the same side of 

the equation: 

𝑝1 +
1

2
𝜌𝑣1

2 + 𝜌𝑔𝑦1 = 𝑝2 +
1

2
𝜌𝑣2

2 + 𝜌𝑔𝑦2        (8) 

Bernoulli’s equation has some restrictions: 

• Steady flow 

• Incompressible flow (which also means density is constant) 

• Frictionless flow 

• Flow along a streamline [2] 

In practical situations, problems may be analysed using extended Bernoulli’s equation: 

𝑝1 +
1

2
𝜌𝑣1

2 + 𝜌𝑔𝑦1 = 𝑝2 +
1

2
𝜌𝑣2

2 + 𝜌𝑔𝑦2 + 𝐻𝐿        (9) 

Where, 

HL – head losses due to friction or viscosity. 

y1 and y2 – heights of inlet and outlet 

2.2 Types of flow 

There are three flow regimes. When a flow moves on in a tranquil fashion it is said to be 

streamline or laminar flow, because the various axial layers in the fluid remain intact as 

the flow proceeds. The so-called turbulent flow is chaotic, because layers in the flow 

conduit do not remain intact but are constantly being mixed due to turbulence, that is, 
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chaotic motions in the flow. [3] Transitional flow is a mixture of laminar and turbulent 

flows. 

2.2.1 Laminar flow  

Laminar flow is characterized by smooth streamlines and highly ordered motion. If the 

pipe is sufficiently long (relative to the entry length) then the entrance effects are negli-

gible and therefore the flow is fully developed. Laminar flow occurs when the fluid flows 

in parallel layers without mixing. The velocity of the fluid is constant at any given mo-

ment. Since the flow is steady, there is no acceleration. The flow is laminar for cylindrical 

pipes when Reynolds number is less than 2300. [4] 

 

Figure 1 Laminar flow [5] 

 

2.2.2 Turbulent flow  

Turbulent flow is characterized by velocity fluctuations and highly disordered motion. 

Most flows encountered in practice are turbulent. Turbulent flow occurs when streamlines 

of the liquid are irregular and change over time. The paths of the fluid flow are also ir-

regular and form tiny whirlpool regions. [1] The flow is turbulent when Reynolds number 

is greater than 4000. In practice, most flows in engineering are turbulent. However, the 

theory of turbulent flow remains underdeveloped since this flow is a very complex mech-

anism dominated by fluctuations. Therefore, turbulent flow is analysed by applying ex-

perimental measures. [4] 
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Figure 2 Turbulent flow [5] 

 

2.2.3 Transitional flow 

The transition from laminar to turbulent flow is not sudden. It occurs over some region in 

which turbulent flow in the centre of the pipe and laminar flow is near the edges of the 

pipe. The flow fluctuates between laminar and turbulent flows before it becomes fully 

turbulent. The flow is considered transitional when Reynolds number is in between 2300 

and 4000. [4] 

 

2.2.4 Reynolds number  

Reynolds number can reveal whether flow is laminar or turbulent. The transition from 

laminar to turbulent flow depends on the surface roughness, flow velocity, geometry, sur-

face temperature, and type of fluid, among others. Flow regime mainly depends on the 

ratio of inertial forces to viscous forces in the fluid. This ratio is called Reynolds number 

and is expressed as 

𝑅𝑒𝐷 =
𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
=

𝑉𝑎𝑣𝑔𝐷

𝑣
=

𝜌𝑉𝑎𝑣𝑔𝐷

𝜇
        (10) 

Where, 

ReD = Reynolds number for cylindrical pipe. Reynolds number is a dimensionless number 

Vavg = average flow velocity (m/s) 

D = diameter (m) 

v = kinematic viscosity of the fluid (m2/s) 

µ = dynamic viscosity (Pa·s) 
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Critical Reynolds number Recr is the number at which the flow becomes turbulent. The 

value of this number is different for different geometries and flow conditions. The gener-

ally accepted value of the critical Reynolds number for internal flow in a circular pipe is 

Recr = 2300. 

Under most practical conditions, the flow in a circular pipe is: 

• Laminar when Re ≤ 2300 

• Transitional when 2300 ≤ Re ≤ 4000 

• Turbulent when Re ≥ 4000 [4] 

2.3 Entrance Region 

Entrance region is a region where the fluid enters a pipe at uniform velocity. The fluid 

particles that are in contact with the surface of a pipe comes to a complete stop because 

of the no-slip condition. Because of friction, fluid particles in the adjacent layers gradu-

ally slow down. To make up for this velocity reduction, the velocity of the fluid at the 

midsection of the pipe increases to keep the mass flow rate through the pipe constant. The 

area of the flow in which the effects of the viscous shearing forces due to viscosity are 

felt is known as the velocity boundary layer. The hypothetical boundary layers can be 

divided into: 

• The boundary layer region, where viscous effects and the velocity are considera-

ble. 

• Irrotational flow region, where frictional effects are negligible and velocity is con-

stant in radial direction. 

The region of boundary layer increases in the flow direction until it merges with the layer 

from the opposite side at the centreline. The region starting from the pipe inlet to the 

meeting point of the two boundary layers is known as hydrodynamics entrance region and 

the length of this region is called hydrodynamic entry length. Flow in the entrance region 

is called hydrodynamically developing flow. The region at the merging point of boundary 

layers is called hydrodynamically fully developed region. The flow is considered to be 

fully developed until change in temperature in the fluid occurs. [4] 
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Figure 3 The development of the velocity boundary layer in a pipe [6] 

2.4 Entry length 

The length of hydrodynamics entrance region is called entry length. It may also be taken 

as the distance from the fluid entrance to 2% of the fully developed wall shear stress 

value. In laminar flow the hydrodynamic entry length is given as: 

𝐿ℎ−𝑙𝑎𝑚𝑖𝑛𝑎𝑟 ≅ 0.05𝑅𝑒𝐷        (11) 

In turbulent: 

𝐿ℎ−𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 ≅ 10𝐷        (12) 
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Figure 4 The variation of wall shear stress in the flow direction for flow in a pipe from the entrance region into the 

fully developed region [7] 

 

2.5 Head Loss in piping systems 

When fluid flows inside a pipe, friction occurs between the moving fluid and the station-

ary pipe wall. Some of the fluid’s hydraulic energy is converted to thermal energy due to 

this friction. This process is irreversible therefore the fluid experiences a drop in pressure. 

This conversion and loss of energy is known as head loss. [8] 

Total head loss can be expressed as: 

𝐻𝐿 =  ∑ 𝐻𝑚𝑎𝑗𝑜𝑟 𝑙𝑜𝑠𝑠𝑒𝑠 + ∑ 𝐻𝑚𝑖𝑛𝑜𝑟 𝑙𝑜𝑠𝑠𝑒𝑠      [9]        (13) 
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2.5.1 Laminar flow 

The following equation is called Hagen-Poiseuille’s equation and is used for head loss 

calculation of steady laminar flow of incompressible fluid. 

𝐻𝐿 =
∆𝑝

𝜌𝑔
        (14) 

Where, 

HL = head loss (m) 

p = pressure (Pa) 

ρ = density (kg/m3) 

g = acceleration due to gravity (g = 9.81 m/s2) [4] 

2.5.2 Turbulent flow 

In turbulent flow, whirlpools and wakes make the flow unpredictable. The formula below 

is called Darcy’s equation and is used for the calculation in fully developed flow: 

𝐻𝐿 = 𝑓
𝐿

𝐷

𝑉𝑎𝑣𝑔
2

2𝑔
        (15) 

Where, 

f = friction factor related to the roughness inside the pipe 

L = length of the pipe (m) 

D = internal diameter of the pipe (m) 

Vavg = average liquid velocity (m/s) 

g = acceleration due to gravity (g = 9.81 m/s2) [4] 

2.5.3 Major Head Loss 

Major losses are associated with energy loss per length of pipe. It is caused by friction in 

pipes and ducts. 

𝐻𝐿−𝑚𝑎𝑗𝑜𝑟 = 𝑓
𝐿

𝐷

𝑉𝑎𝑣𝑔
2

2𝑔
        (16) 
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Where, 

f = friction factor 

L = pipe length (m) 

Vavg = average velocity (m/s) 

D = internal diameter (m) 

g = acceleration due to gravity (g = 9.81 m/s2) [10] 

2.5.4 Minor Head Loss 

Minor losses are associated with technological equipment. It is caused by components 

such as valves, bends, tees, etc. Minor losses can easily exceed major losses in relatively 

short pipe systems with a relatively large amount of bends and fittings. [10] 

𝐻𝐿−𝑚𝑖𝑛𝑜𝑟  = 𝑘
𝑉𝑎𝑣𝑔

2

2𝑔
        (17) 

Where, 

k = minor head loss coefficient [11] 

2.5.5 Factors that affect head loss 

1. Flow Rate.  

The velocity of the liquid increases at the same rate as the flow rate. Due to viscosity, 

the resistance to flow also increases. The head loss is proportional to the square of the 

velocity therefore the increase in loss is very rapid. 

2. Inside diameter of the pipe. 

The velocity of the liquid is reduced when the flow area increases, which happens 

when the inside diameter is larger. Head loss due to friction is reduced when velocity 

decreases. However, the flow area decreases if the inside diameter of the pipe is re-

duced, in such case the velocity of the liquid increases and the head loss due to friction 

increases. 
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3. Roughness of the pipe wall. 

The roughness of the inside pipe wall increases with the thickness of non-moving 

boundary layer increase. The resulting reduction in flow area causes the rise of the 

velocity of the liquid which in turn increases the head loss due to friction. 

4. Corrosion and Scale Deposits.  

Scale deposits and corrosion both increase the roughness of the inside pipe wall and 

thus increases head loss. 

5. Viscosity of the liquid.  

More energy is needed to move high viscosity liquid. The higher the viscosity of the 

liquid is, the more friction occurs.  

6. Length of the pipe.  

Head loss due to friction occurs all along a pipe. Therefore, head loss would be con-

stant along the pipe at a given flow rate.  

7. Fittings. 

Fittings disrupt the smooth flow of the liquid. When the disruption occurs, head loss 

due to friction occurs. However, elbows, tees, valves, and other fittings are necessary 

to a piping system. 

8. Straightness of the pipe.  

Due to momentum, liquid travels in a straight line. Curved or crooked pipe disturbs 

straight flow and thus increases the head loss due to friction. [12] 

2.6 Navier-Stokes equations 

Navier-Stokes equations are the basis for nearly all CFD (Computational Fluid Dynam-

ics) flow modelling. Solving these equations predicts the fluid velocity and its pressure 

in a given geometry. The Navier-Stokes equations are always solved together with the 

continuity equation. The Navier-Stokes equations serves as the conservation of momen-
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tum, while the continuity equation represents the conservation of mass. [13] These equa-

tions apply to any point in the flow and thus all details of the flow can be solved every-

where in the flow domain. However, most differential equations in fluid mechanics are 

very difficult to solve and therefore often require help from a computer. These equations 

in certain cases may need to be combined with additional equations, such as energy equa-

tion. [4] 

 

Continuity equation: 

𝜕𝜌

𝜕𝑡
+𝛻(𝜌𝑣) = 0        (18) 

 

Navier-Stokes: 

𝜌
𝛿𝑣

𝛿𝑡
= −𝛻𝑝 + 𝜌𝑔 + 𝜇𝛻2𝑣        (19) 

Where, 

ρ = fluid density 

v = fluid flow velocity 

p = fluid pressure 

µ = fluid dynamic viscosity 

∇ = del operator [4] 

2.7 Friction factor 

The friction factor is a dimensionless factor that depends primarily on the fluid velocity, 

pipe diameter, fluid density, and viscosity. It can also be a function of wall roughness 

which depends on the size e. Thus, the general formula can be written as:  

𝑓 ∝ 𝑅𝑒,
𝑒

𝐷
 

Where e/D = relative roughness, which is the ratio of the mean height of roughness of the 

pipe to the pipe diameter. [14] 
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Figure 5 Relative roughness for various pipes [15] 
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2.7.1 The laminar friction  

The laminar friction factor is a function of Reynolds number alone and is independent of 

any other factor. 

𝑓 =
64

𝑅𝑒
           [3]        (20) 

2.7.2 The turbulent friction  

The turbulent friction factor is influenced by both Reynolds factor and wall roughness. 

To determine friction factor, Colebrook equation and Moody chart are used. 

2.5.2.1 The Colebrook equation  

In 1939, Cyril F. Colebrook combined the available data for transition and turbulent flow 

in smooth and rough pipes into the following formula known as the Colebrook equation: 

1

√𝑓
=  −2 𝑙𝑜𝑔10 (

𝑒/𝐷

3.7
+

2.51

𝑅𝑒√𝑓
)       [4]        (21) 

 

2.5.2.2 Moody chart  

Moody chart is one of the most accepted and used charts in engineering. It relates the 

Darcy friction factor, Reynolds number and relative roughness. Moody friction factor can 

be used in Darcy-Weisbach major loss equation. [4] 
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Figure 6 Moody Chart [14] 

2.8 SolidWorks 

SolidWorks is a computer-aided design (CAD) software, which is used to create 2D or 

3D models. This simple and yet very powerful computer program enables designers to 

create highly detailed parts and assemblies as well as production-level drawings. Solid-

Works is an excellent tool to cover a lot of stages of product development. Not only this 

software provides with tools needed to generate complex surfaces, structural welded as-

semblies, and others, it also allows you to test your design before manufacture using broad 

range of tools: fluid dynamics, static and dynamic response, heat transfer to name a few. 

[16] 

2.8.1 Simulation add-ins 

SolidWorks has tools that enable you to simulate liquid and gas flow in real world condi-

tions, run “what if” scenarios, and efficiently analyse the effects of fluid flow, heat trans-

fer, and related forces on immersed or surrounding components. [17] 

FloXpress is a basic fluid flow analysis tool. It calculates how water or air flows through 

part or assembly models. It comes with all SolidWorks 3D CAD software packages. [18] 
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More advanced, SolidWorks Flow simulation uses CFD (computational fluid dynamics) 

analysis, which simulates fluid passing through or around an object. The analysis may 

contain unsteady and compressible flows, heat transfer, etc. in one calculation only. Such 

complicated analysis may be very costly and time consuming without some form of sim-

ulation tool. [19]  

2.8.2 Standard parts 

SolidWorks provides with library toolbox of standard parts which helps the user to speed 

up the design process, increase productivity, and save both time and development costs. 

The components can be customized to meet your needs or can be used “as is”. Items can 

be easily dragged and dropped into the assembly for further design processes. SolidWorks 

toolbox includes machine components and hardware – bolts, screws, nuts, bearings, 

washers, structural members, and others. [20] 
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3 METHOD 

This segment is divided into the following sections: 

1. The design of the pipe system 

2. FloXpress Analysis 

3. Flow Simulation 

4. Laboratory experiment 

3.1 The design of the pipe system 

A typical pipe system consists of control systems, pipes, pipe connections, fittings (el-

bows, branches, diffusors, reducers, valves, etc.), support elements, expansion joints, pipe 

clamps, pumps, and compressors. Piping can be high-scale and extremely complex. The 

pipe system analysed in this thesis is rather simple and consists of pipes, valves, and el-

bows.  

3.1.1 Weldments 

Weldments are structural sections held together by the welding process. They are made 

using 2D or 3D sketches and then creating structural members that in turn contain groups 

of sketch segments. [21] 

3.1.2 Custom parts 

3.1.2.1 Pipes 

The pipes were designed using DN 20 mm standard (Nominal Bore ¾ inch), with an 

outside diameter of 26.67 mm.  

 

Figure 7 Pipe 
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3.1.2.2 Valves 

The standard used in the design of valves is MSS SP-72 for Ball valves with flanged or 

butt - welding ends for general service. A ball valve controls flow using a hollow, perfo-

rated, and pivoting ball.  

 

Figure 8 On the left: opened valve. On the right: closed valve 

The valve was made by designing all parts separately and then combining them into as-

sembly. The parts are as follows:  

Body is the outer casing of the valve containing internal parts.  

Handle is used to control the flow within the valve. Ball valves usually have handles with 

quarter-turn motion.  

Hex nut and Clevis Pin Washer were derived from Toolbox provided by SolidWorks 

software. These fasteners secure the valve’s handle. The parts are classified per ISO 8675 

and ISO 8738 standards respectively. 

Ball has some freedom to move along with the axis of the pipeline. Quarter-turn motion 

moves the ball to fully open or fully close the valve. 

Steam (sometimes referred to as screw) is a part of the valve that transmits the motion 

from the handle to the ball (within the body).  
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Gland nut is an independent bearing that provides a bearing surface for rotary applica-

tions. [22] 

Valve Seat (sometimes called O-Ring) is integral part of a valve. It has a slot which pro-

vides to relieve the pressure and prevents the upstream seat from being forced against the 

ball. It also reduces wear and helps to achieve lower torque. [23] 

Ports are passages for fluid to flow. In ball valves, ports are obstructed by ball to control 

the flow. Most ball valves have 2-3 ports. 

 

Figure 9 Exploded view of the valve 

 

3.1.2.3 Elbows 

The elbows of the piping system have nominal size of 20 mm (¾ inch) and 90º angle. 

They are based on ASME B16 for Pipes and Fittings standard. 
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Figure 10 Elbow 

3.1.3 The assembly of the pipe system 

The figure below shows the assembled pipe system. It is a complete assembly that can be 

readily used for simulations and flow analysis.  

 

Figure 11 The complete pipe system 
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3.2 FloXpress Analysis 

Based on the calculated flow trajectories, you can find problem areas in your design and 

improve them before you manufacture your parts. FloXpress add-in measures how fluid 

flows through a model. It helps to identify problems areas in the design and improve them 

before manufacturing any parts. FloXpress specifically analyses fluid flow in a fully en-

closed volume. [18] 

FloXpress add-in uses at least one inlet and one outlet, which is precisely what was used 

in the simulation of this model. To run a simulation, the lids had to be created to close the 

pipes. They define the boundary conditions. Extruded base feature was used to make the 

lids, choosing mid plane as a direction, because most problems require surface contact 

rather than a line contact. The base was made with the thickness of 2 mm. The lids were 

not merged with the pipes, because we want separate bodies.  

 

Figure 12 Lid. Extruded Base feature 

FloXpress checks the geometry and if it is correct, it shows the fluid volume; then you 

can run the simulation. Water was chosen as the default fluid. The solid body-fluid contact 

surface was chosen as inlet and outlet. Two simulations with different boundary condi-

tions were carried out. 
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3.2.1 Simulation 1 

The inlet boundary condition was set to be volume flow, which was calculated using ve-

locity obtained from the laboratory. i.e. 0.0002 m3/s. The outlet boundary condition was 

pressure with the value of 224 kPa. The model is solved after the software performs mesh-

ing. 

3.2.2 Simulation 2 

The inlet pressure was chosen to be 248 kPa with ambient temperature of 293.20 K. The 

outlet pressure was chosen as 224 kPa. After setting boundary conditions, the software 

starts meshing and solving the model. 

 

Figure 13 Inlet and outlet boundary conditions 

3.3 Flow Simulation 

Flow Simulation add-in is based on computational fluid dynamics. CFD is a branch of 

fluid dynamics that analyses and visualizes fluid flow using numerical analysis and algo-

rithms. CFD simulates fluid passing through or around an object.  Flow Simulation per-

forms calculations based on Navier-Stokes equations to simulate the interaction of fluids 

with surfaces.  
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• Configuration 

To bring the model to the flow environment, the wizard option was chosen. A new con-

figuration was created. The chosen type of unit system to be used during the analysis was 

SI. The next step lets you choose the type of analysis: internal or external. The former 

was selected. The next step is selecting the default fluid type. Since the water flow in 

pipes is simulated, water was selected. To define the wall conditions, the wall was as-

sumed to be perfectly smooth. In the next step, the default initial conditions were kept. 

After the configuration is finished, the flow simulation analysis appears in property man-

ager. Flow simulation automatically selects computational domain, which, however, can 

be modified if needed. Computational domain is simply the boundaries, where the simu-

lation happens. Then the boundary conditions were chosen.  

• Boundary conditions 

Two simulations with different boundary conditions were performed.  

➢ Simulation 1. For the inlet, the boundary condition type was chosen to be ve-

locity. Inlet velocity was 0.531 m/s, as calculated in the laboratory experiment. 

Outlet boundary condition was chosen to be pressure, with the value of 224 kPa 

as in the laboratory. 

➢ Simulation 2. Both inlet and outlet boundary condition types were chosen to be 

pressure. As in the laboratory, inlet pressure was 248 kPa, outlet pressure was 

224kPa. 

• Goals 

Goals guide the software towards an accurate and desired answer. The most important 

goals in this simulation were pressure drop and velocity: their average, as well as maxi-

mum and minimum values. 

• Meshing 

The final step before the simulation is meshing. Meshing is a representation of a given 

model expressed as finite set of geometric shapes. There are two types of Mesh to choose 

from: Global Mesh and Local Mesh. The former is used for the entire model; the latter 

only within a selected region. In this flow analysis, meshing was automatically generated 
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Figure 14 Mesh 

3.3.1 Simulation 1 

Inlet velocity was 0.531 m/s, while outlet pressure was 224 kPa. In the post processing, 

simulation automatically loaded the results. Flow Trajectories were selected in the Results 

menu. The surface of the inlet was selected as a Starting Point; 20 points were plotted. In the 

Appearance tab Pipes were chosen to illustrate the flow. The contour was coloured by either 

Pressure or Velocity in separate result displays.  

➢ Pressure. Flow simulation calculated the pressure throughout the whole pipe system. 

As expected, pressure is continuously dropping along the system. Clearly, inlet pres-

sure was the highest, with the pressure at the outlet being the lowest in the system. 

The figure below illustrates the pressure contour. 
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Figure 15 Pressure contour 

➢ Velocity. The differences in colour in the figure below represent different velocity 

magnitudes. 

 

Figure 16 Velocity magnitude 
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Highest differences occur in the elbows and valves, as well as the ends of pipes at and 

next to the conjunctions. 

 

Figure 17 Flow trajectories 

 

3.3.2 Simulation 2 

The boundary condition values were as indicated in the laboratory experiment: inlet pressure 

248 kPa; outlet pressure 224 kPa. In the Results tab, Flow Trajectories were plotted and dis-

played. 

➢ Pressure. Flow simulation calculated the pressure throughout the whole pipe system. 

The variation in the colour represents the pressure in the different region of pipe-

line. The figure below illustrates the decreasing pressure contour starting from inlet 

towards the outlet. 
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Figure 18 Pressure contour 

➢ Velocity. The velocity magnitude is shown in the figure below. Contrasting col-

ours represent the differences in the velocity magnitude. 

 

Figure 19 Velocity magnitude 
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As in the previous simulation, the highest differences occur in the elbows and valves, as 

well as the ends of pipes at and next to the conjunctions. Velocity magnitudes, however, 

differ. Flow trajectories in the elbow are shown in the figure below. 

 

Figure 20 Flow trajectories 

3.4 Laboratory experiment 

The laboratory experiment was performed at the Heat Transfer laboratory in Arcada Uni-

versity of Applied Sciences. A fluid flow experiment allows us to have a better under-

standing of the applications of engineering equations in real life situations where fluid 

flow is involved. The analysis was mostly conducted to find the velocity of fluid flow in 

a pipeline, and calculate the head loss. The fluid flow in the laboratory is a cyclic process. 

By using a pump, water from the reservoir flows in the stream channel. The water flows 

through the whole pipe network and until it reaches the reservoir.  
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Equipment: 

➢ Reservoir. It is a water storage, through which the process of incoming and out-

going flow continues. 

➢ Pump. It pumps the water in a pipe system. The pump reads 22 W. 

➢ Pressure Gauge. It is an instrument to measure and display pressure. It is con-

nected at the starting and ending point of the flow in the pipeline. Inlet pressure 

gauge reads 248 kPa; outlet pressure gauge reads 224 kPa.  

➢ Rotary Flow Meter. A device to measure flow. It has a dial of 10 units. The flow 

meter made 5 revolutions in 30 s. 

➢ Vernier Calliper. It is a scale device used to measure the diameter of the pipe. 
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4 RESULTS 

4.1 Laboratory experiment calculation 

In the laboratory experiment velocity, flow rate, and head loss were calculated. 

The values used for the calculation are: 

Table 1 Values for calculation 

Inlet Pressure 248 kPa 

Outlet Pressure 224 kPa 

Inside diameter of the pipe 20 mm = 0.02 m 

Outside diameter of the pipe 22mm = 0.022 m 

Power of the Pump 22W 

 

Calculation of the flow rate 

The flow meter made 5 revolutions in 30 s, and it has 10 divisions.  

Thus, 

1𝑟𝑒𝑣 = 0.0001 𝑚3 

𝑉̇ =
𝐹𝑙𝑜𝑤 𝑚𝑒𝑡𝑒𝑟 𝑢𝑛𝑖𝑡 ×𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑇𝑖𝑚𝑒
=

10−4×50

30
= 1.667× 10−4  𝑚3 𝑠⁄  

Calculation of velocity 

𝑉𝑎𝑣𝑔 =  
𝑉̇

𝐴
 

Where, 

A = cross-sectional area of a pipe 

𝐴 =
𝜋𝑑2

4
=  𝜋 ×

(0.02)2

4
 =  3.1416×10−4 𝑚2  

Then, 

𝑉𝑎𝑣𝑔 =  
1.667 × 10−4  𝑚3 𝑠⁄

3.1416×10−4 𝑚2
= 0.531 𝑚 𝑠⁄  
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Calculation of head loss 

➢ Using Bernoulli equation 

p1 +
1

2
ρv1

2 + ρgy1 = p2 +
1

2
ρv2

2 + ρgy2 + HL 

The inlet and outlet height is the same. i.e. 𝑦1 =  𝑦2. The flow is fully developed, therefore 

the velocity at the ends of a pipe is the same. i.e. 𝑣1 =  𝑣2. 

Therefore, 

𝐻𝐿 =  
(𝑝1 −  𝑝2)

𝜌𝑔
 

𝐻𝐿 =  
(248 ×103 −  224×103)

103×9.81 
= 2.446 𝑚 

 

➢ Calculation of Reynolds number 

𝑅𝑒𝐷 =
𝜌𝑉𝑎𝑣𝑔𝐷

𝜇
 

Where, 

𝜌 =  1000 𝑘𝑔/𝑚3 

𝑉𝑎𝑣𝑔 = 0.531 𝑚/𝑠 

𝐷 =  0.02 𝑚 

𝜇 = 1.002 × 10−3 𝑃𝑎. 𝑠; Dynamic viscosity of water at 20o C temperature [24] 

𝑅𝑒𝐷 =
𝜌𝑉𝑎𝑣𝑔𝐷

𝜇
=

1000×0.531×0.02

1.002×10−3
= 10598.8 

➢ Major head loss due friction  

The formula below is called Darcy’s equation and is used for the calculation in fully de-

veloped flow: 

 

𝐻𝐿−𝑚𝑎𝑗𝑜𝑟 = 𝑓
𝐿

𝐷

𝑉𝑎𝑣𝑔
2

2𝑔
 

Where, 

f = friction factor = 0.03; the value was taken from Moody Diagram  

L = pipe length (m) = 14.2 m  



38 

 

Vavg = average velocity (m/s) = 0.531m/s 

D = internal diameter (m) = 0.02 m 

g = acceleration due to gravity (g = 9.81 m/s2) 

𝐻𝐿−𝑚𝑎𝑗𝑜𝑟 = 0.03
14.2

0.02
×

(0.531)2

2×9.81
= 0.306 𝑚 

 

➢ Minor head loss due to bends 

𝐻𝐿−𝑚𝑖𝑛𝑜𝑟  = 𝑘
𝑉𝑎𝑣𝑔

2

2𝑔
 

Where, 

k = minor head loss coefficient = 0.3; for regular 90o flanged elbow. [25] 

𝐻𝐿−𝑚𝑖𝑛𝑜𝑟  = 0.3
(0.531)2

2×9.81
= 4.31 × 10−3 𝑚 

The total head loss: 

𝐻𝐿 =  ∑ 𝐻𝑚𝑎𝑗𝑜𝑟 𝑙𝑜𝑠𝑠𝑒𝑠 +  ∑ 𝐻𝑚𝑖𝑛𝑜𝑟 𝑙𝑜𝑠𝑠𝑒𝑠 = (0.306 + 4.31 ×10−3 𝑚) = 0.31 𝑚  

4.2 FloXpress Analysis 

Maximum velocity obtained from FloXpress Analysis was 0.837 m/s in Simulation 1. 

While Simulation 2 attained the maximum velocity with the value of 1.735 m/s.  
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Figure 21 Velocity magnitude 

Table 2 FloXpress simulation results 

FloXpress: Input data: Simulated results: 

Simulation 1 Inlet volumetric flow rate: 

0.0002 m3/s 

Outlet pressure:  

224 kPa 

Maximum velocity through-

out the pipeline: 

0.837 m/s 

Simulation 2 Inlet pressure: 

248 kPa 

Outlet pressure: 

224 kPa 

Maximum velocity through-

out the pipeline: 

1.735 m/s 

 

FloXpress visualizes flow and calculates maximum velocity. It does not calculate neither 

average velocity nor pressure. 

4.3 Flow Simulation 

The type of flow was found to be turbulent based on the calculation of Reynolds number 

with a value of 10598.8. The turbulent flow simulation was used in Flow Simulation to 
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find the magnitude of velocity. As seen in the figure below, minimum velocity occurs in 

the inside the elbow indicated by light blue colour. Maximum velocity occurs in the bot-

tom of a pipe right before a fluid enters the elbow. 

 

Figure 22 Cut plots. Velocity 

The outlet velocity was found to be 0.542 m/s respectively in the Simulation 1. While the 

values obtained in Simulation 2 for inlet and outlet were 1.275 m/s and 1.378 m/s respec-

tively. Simulation 1 calculated pressure for inlet 228029.65 Pa.  

Head loss calculation is done using those values obtained from Flow Simulation. Ber-

noulli’s equation can be used for this calculation: 

p1 +
1

2
ρv1

2 + ρgy1 = p2 +
1

2
ρv2

2 + ρgy2 + HL 

Head loss calculation using values from Simulation 1:  

HL =  
(p1 − p2)

ρ
+  

(v1
2 − v2

2)

2
=

(228.03 − 224.01)×103

103
+

(0.5312 − 0.5422)

2

=  4.02 +  0.141 − 0.147 = 4.014 m2 s2⁄  

Now, this value is divided by acceleration of gravity: 

𝐻𝐿 =  
4.014 𝑚2 𝑠2⁄

9.81 𝑚 𝑠2⁄
= 0.409 m 
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Head loss calculation using values from Simulation 2:  

𝐻𝐿 =  
(p1 − p2)

ρ
+ 

(v1
2 − v2

2)

2
=

(248.93 − 224.98)×103

103
+

(1.2752 − 1.3782)

2

= 23.95 + 0.813 − 0.949 = 23.814 m 

This value is divided by acceleration of gravity:  

𝐻𝐿 =  
23.814 𝑚2 𝑠2⁄

9.81 𝑚 𝑠2⁄
= 2.428 m 

Table 3 Flow Simulation results 

Flow Simulation: Input data: Simulated results: Calculated results: 

Simulation 1 Inlet velocity: 

0.531 m/s 

Outlet pressure: 

224.00 kPa 

Inlet pressure: 

228.03 kPa 

Outlet velocity: 

0.542 m/s 

Average velocity 

throughout the pipe: 

0.532 m/s 

 Head loss (HL): 

0.409 m 

Simulation 2 Inlet pressure: 

248.00 kPa 

Outlet pressure: 

224.00 kPa 

  

Inlet velocity: 

1.275 m/s 

Outlet velocity: 

1.378 m/s 

Average velocity 

throughout the pipe: 

1.375 m/s 

Head loss (HL): 

2.428 m 
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5 DISCUSSION 

The average velocity of fluid from the laboratory experiment was calculated to be 0.531 

m/s. To determine the flow type, Reynolds number was calculated. The value was found 

to be 10598.8, indicating that the flow is turbulent because the value is above 4000. The 

simulation was done using turbulent flow to find the velocity magnitude. The average 

velocity throughout the pipeline from Flow Simulation was found to be 0.532 m/s (Sim-

ulation 1) and 1.375 m/s (Simulation 2). The maximum velocity throughout the pipeline 

using FloXpress was found to be 0.837 m/s and 1.735 m/s (Simulation 2). FloXpress, 

however, does not calculate average velocity and pressure.  

The table below shows that the average velocity obtained by SolidWorks, where inlet and 

outlet boundaries were velocity and pressure respectively, is approximately the same as 

the average velocity calculated in laboratory experiment.  

Table 4 Average velocities obtained from Experimental and SolidWorks simulation 

1 Average velocity obtained from laboratory experiment 0.531 m/s 

2 Average velocity obtained by SolidWorks. Simulation 1 0.532 m/s 

2 Average velocity obtained by SolidWorks. Simulation 2  1.375 m/s 

 

The velocity obtained in the second SolidWorks simulation, where inlet and outlet bound-

ary conditions where pressure, is more than twice higher than in the previous calculations. 

This is illustrated in the graph below.   

 

Figure 23 Chart graph of average velocities obtained from Experimental and SolidWorks simulation 
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The difference can be explained by head loss. Flow Simulation assumes that the wall is 

adiabatic, which means that there is no heat transfer. Software also assumes that the walls 

have zero roughness; neither of which is realistic. It also neglects minor head loss due to 

bends. All these factors cause pressure drop. 

The head loss was calculated using Bernoulli’s equation. The values used for the calcu-

lations were obtained from the laboratory experiment and simulations. Since FloXpress 

add-in calculates only maximum velocity, only values from Flow Simulation were used. 

Calculated head loss values are given in the table below. 

Table 5 Head loss 

 Head loss (HL) 

Laboratory experiment 2.446 m 

Flow Simulation. Simulation 1 0.409 m 

Flow Simulation. Simulation 2 2.428 m 

 

As seen in the table, the head loss was greater in the laboratory experiment compared to 

the simulations. This correlates with the aforementioned reasons explaining the differ-

ences in the obtained velocity values, since head loss is proportional to the square of the 

velocity. 

In Analysis and FEM Simulation of Flow of Fluids in Pipes by Saroj Acharya, COMSOL 

simulation was performed to obtain average velocity for the same pipe system design.  

Table 6 The velocities obtained from experimental and COMSOL simulation [26] 

1 Average Velocity obtained from laboratory experiment 0.532 m/s 

2 Average turbulent Velocity from the inlet and outlet obtained 

by COMSOL simulation for the same design  

0.529 m/s 

3 Average laminar Velocity from the inlet and outlet obtained by 

COMSOL simulation for the same design  

0.114 m/s 

As seen in the table above, the average velocity from the COMSOL simulation was found 

to be 0.529 m/s. The velocity found experimentally and from COMSOL simulation is 
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roughly the same. However, average laminar velocity was 0.114 m/s. The value for lam-

inar flow had a high difference compared to experimental value. Thus, the flow could not 

be laminar. The simulations were performed before the calculation of Reynolds number. 

Later, average velocity was used to calculate the Reynolds number, which determined 

that the flow was turbulent.  In experimental calculation of head loss, average velocity 

was used, however, the COMSOL simulation provided the different velocity and pressure 

at inlet and outlet. [26]  

Moreover, SolidWorks simulation also provided different velocity and pressure at inlet 

and outlet. It is clear, that the different value of velocity and pressure had a direct impact 

on the head loss result obtained by both softwares. It is the main reason behind the differ-

ences in the values obtained. 
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6 CONCLUSION 

The basic idea of this thesis is to design a pipe system and run a flow simulation for the 

observation of the flow of fluids in pipes and compare it with the results obtained in the 

laboratory.  

Navier-Stokes equations predict the fluid velocity and its pressure in a given geometry. 

The Navier-Stokes equations are momentum equation, energy equation, and continuity 

equation. These equations apply to any point in the flow and thus all details of the flow 

can be solved everywhere in the flow domain. Sometimes Navier-Stokes equations can 

be simplified, however, most problems in fluid mechanics are complicated in nature and 

are very difficult to solve. Thus, it often creates differing opinions in laboratory experi-

ments, and simulation evaluations. 

The laboratory experiment was performed in Heat Transfer laboratory. Using flow rate, 

the velocity was calculated; obtained value was 0.531 m/s. The average velocity from the 

SolidWorks simulation was found to be 0.532 m/s or 1.375 m/s depending on the bound-

ary conditions. 

The head loss was calculated using the values obtained from the laboratory experiment 

and simulations. Calculated head loss from the laboratory experiment was found to be 

2.446 m, which is greater head loss value than the result from the simulations i.e. 0.409 

m and 2.428 m respectively. 

An adiabatic wall is a theoretical concept; it is a wall that does not allow heat transfer 

from one side to another. However, in real life situations any thermal insulation allows 

some transfer of heat, which causes drop in pressure. Unless indicated otherwise, soft-

wares assume that the walls of pipes, or any other geometry, are adiabatic. Moreover, 

head loss is also caused by friction in pipes, fittings, corrosion, etc. These factors may 

distort the results that softwares simulate. 

Meshing is a crucial step in design analysis. Mesh allows user customization; however 

extensive knowledge is required for such a task to yield successful simulation. The auto-

matic mesh generates a mesh considering model’s geometry, volume, surface area, and 

other specifications. This is by far a superior option for new users. Meshing is difficult 
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for low/medium end workstations. If possible, a fast computer with many gigabytes RAM 

is highly recommended; this kind of simulation can require many hours or even days for 

large and complex models.  

SolidWorks is a powerful tool for new and advanced users. It allows the design and sim-

ulation within the same software. For the same type of fluid flow simulation, COMSOL 

is recommended as an alternative software. NASTRAN is another powerful FEA (Finite 

Element Analysis) program that can be used to analyse flow. 

Fluid flow, heat transfer and other problems almost always are initially performed using 

analytical tools. Often, the results obtained are much more detailed, sometimes even more 

accurate, than experimental analysis. Simulation is a less expensive and often a faster way 

to analyse and solve various problems.  
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