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This is a commission thesis done for Comptel Oyj’s Necterday UI Platform, Team Terra.  
The commissioning party wanted to have automated memory profiling for browser so it 
would be easier for the developers to see the quality of their code and fix the possible 
memory leaks.  
 
Memory leak happens when the memory that is allocated to perform some operation is not 
freed after that given operation is completed, resulting in that the program will eventually 
use up all the memory that it needs to work normally.  
 
We can do memory profiling manually by using browser’s developer tools to record the 
performance. During the recording user should interact with the application and repeat the 
same actions for multiple times to get better feedback. Developer tool is able to draw a 
graph where user can see how much memory has been allocated. Usually it is recom-
mended to suspect memory leak when the graph resembles a sawtooth curve.  
 
Automation has many advantages, but most importantly it saves developers or testers 
time. Especially tests that need a lot of precise inputs are better handled automatically than 
manually. To be even thinking about automation, one should have the manual testing side 
in “flawless” state. Automation initial cost is high and it is not cheap to change or alter the 
test cases.  
 
As there has been no previous attempts to do this memory profiling automation, at least in 
Team Terra, we have to pretty much start from the zero and do the basic research and 
planning. In this work, we use Team Terra’s current tools for testing and development, but 
also introduce some new tools to get the log of memory profiling visualized.  
 
In the implementation, we use Google Chrome’s command line flags to start the memory 
profiling from command console. First, we run this command along with automated unit 
tests using Karma, then we do the same for automated functional tests that are handled by 
Nightwatch.js. These commands will give us profiling log file that is in raw JSON-format.  
 
The file has to be translated into valid JSON, it includes irrelevant information also, so we 
have to parse the data and create new file. We chose ElasticSearch and Kibana, to be our 
database and user interface tool for showing infographic based on the data, respectively. 
In our parsing-script we also send the new data to the database where the UI tool, Kibana, 
gets that data and draws charts according to it. 
 
In the end, we use Jenkins CI to do the final automation so it runs this whole process with 
given bash commands on certain time intervals.  
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Tämä opinnäytetyö on toimeksianto Comptel Oyj:n, Nexterday UI Platform, Terra-tiimille. 
Toimeksiantaja halusi automatisoidun muistin profiloinnin selaimelle, jotta tiimin sovellus-
kehittäjillä olisi helpompi tarkistaa koodin laatu ja havaita mahdolliset muistivuodot. 
 
Muistivuoto tapahtuu, kun muistia, jota on varattu suorittamaan jotain operaatiota, ei va-
pauteta suoritetun operaation jälkeen. Näin ohjelmisto käyttää lopulta senkin muistin, jonka 
se tarvitsee toimiakseen normaalisti. 
 
Muistin profilointia voidaan suorittaa manuaalisesti käyttämällä selaimen kehittäjätyökaluja 
nauhoittamaan selaimen suorituskykyä. Nauhoituksen aikana käyttäjän on tarkoitus tehdä 
jotakin toimintoa toistuvasti moneen kertaan kyseisellä sovelluksella, jotta saataisiin laadu-
kasta palautetta suorituskyvystä. Kehittäjätyökalu piirtää kuvaajan, mistä käyttäjä näkee, 
kuinka paljon muistia on varattu eri vaiheissa. Tavallisesti on hyvä epäillä muistivuotoa, jos 
kyseinen kuvaaja muistuttaa sahalaitaa. 
 
Automaatiolla on monia etuuksia, muun muassa se, että kehittäjät ja testaajat säästävät 
paljon aikaa. On hyvä automatisoida erityisesti sellaiset testit, jotka tarvitsevat paljon täs-
mällisiä syötteitä. Ennen automatisoinnin harkitsemista pitäisi manuaaliset testit olla ”täy-
dellisiä”. Automaation alkukustannukset ovat korkeita, mutta testien muuttaminen automa-
tisoinnin jälkeen saattaa myöskin tulla kalliiksi.  
 
Koska tätä aihetta ei olla varsinaisesti aiemmin tutkittu, ainakaan Terra-tiimissä, on aloitet-
tava perustutkimuksesta ja suunnittelusta. Tässä työssä käytetään Terra-tiimin nykyisiä 
työkaluja testaamiseen ja kehitykseen ja otetaan myös käyttöön pari uutta työkalua. 
  
Tässä implementaatiossa käytetään Google Chromen komentorivikytkimiä, jotta muistin 
profilointi saataisiin käynnistettyä komentoriviltä. Ensiksi käynnistämme komentorivin auto-
matisoitujen yksikkötestien kanssa Karma-työkalun avulla. Tämän jälkeen sama tehdään 
Nightwatch.js työkalulla, joka hoitaa funktionaalisien testien automatisoinnin. Komennot 
antavat syötteenä takaisin profiloinnin lokitiedoston, joka on raakaa JSON-formaattia.  
 
Kyseisen tiedoston data pitää kääntää validiksi JSON:iksi, joten tiedostoa pitää parsia. 
Näin, saadaan myös muistin profilointia ajatellen turha tieto pois. Parsimisen päätteeksi 
luodaan uusi tiedosto. ElasticSearch valittiin tietokannaksi parsitulle datalle ja Kibana-työ-
kalulla saadaan piirrettyä ja näytettyä infografiikkaa kyseisen ptofilointidatan pohjalta. Lop-
puautomaatio tapahtuu Jenkins CI:n avulla, jolle annetaan tarvittavat komentorivikomen-
not. 
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1 Introduction 

This thesis is done as a commission for Comptel Oyj. Projects objective is to develop au-

tomated memory profiling for Google Chrome browser. During the first half of the thesis, 

the commission party is introduced, we will go through the basic theory of memory man-

agement and test automation. The early chapters will teach us about memory leaks, what 

they are and how to recognize and possibly fix them presented with some case examples. 

This will lead us to performance topic, where the memory profiling as part of testing is in-

troduced.  

 

Automation means that we are making something that would normally need manual work 

to work on its own. This means that before we automate anything, we need to first know 

how to do something manually. We will go through basics of using Google Chrome’s Dev-

Tool’s to do performance and memory profiling manually. After this we go through the rea-

soning of why we would want to automate this, and we will learn not only benefits but also 

defects of automation. 

 

The other half of this thesis consists the detailed introduction to the project, the back-

ground, objectives and risks of it. We will also go through the relevant existing tools that 

the commission party is using which leads us to the implementation plan and finally to the 

progress of implementation. 

 

Implementation progress chapter includes not only the successes but also problems and 

defects that were found or transpired during the process. This might be good for future 

backlog, and also to define the requirements of the setup.  
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2 Terms and definitions 

 

API Application Programming Interface. “A set of functions and pro-

cedures that allow the creation of applications which access 

the features or data of an operating system, application, or 

other service.” (Google Dictionary in Firefox browser, 2017a) 

 

BDD Behaviour-Driven Development. Software development meth-

odology in which an application is specified and designed by 

describing how its behavior should appear to an outside ob-

server. (Rouse, 2014) 

 

CI/CD Continuous Integration/Continuous Development. Development 

practice that has certain workflow pipeline. Works tightly with 

version control system. 

 

DB Database 

 

DevTools  Developer Tools, set of tools that are built in browsers for 

  developers.   

 

DOM  Document Object Model. Cross-platform and language-inde-

pendent application programming interface that treats an 

HTML, XHTML, or XML document as a tree structure wherein 

each node is an object representing a part of the document. 

(Wikipedia, 2017a) 

 

ElasticSearch RESTful search engine. In this thesis referred often as data-

base 

 

GC  Garbage Collection in system’s memory management 

 

GraphicsMagick Image Processing System (GraphicsMagick, 2017) 

 

IE11/IE  Internet Explorer 11/ Internet Explorer 
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JSON Javascript Object Notation, format for data storing and ex-

changing. Data has to be text when it is exchanged between 

browser and a server, which is why JSON is used because it is 

text (W3Schools, 2017a) 

 

Kibana Platform to visualize the data. Connected with ElasticSearch 

 

Nightwatch.js An automated testing framework 

 

Node “A point in a network or diagram at which lines or pathways 

intersect or branch” (Google Dictionary in Firefox browser, 

2017b) 

 

Node.js  A JavaScript runtime built on Chrome's V8 JavaScript engine. 

 

npm   Node Package Manager. Package manager for Node.js. 

 
OSS/BSS Operation Support System/Business Support System. “Oper-

ated together by telecommunications service providers, are 

used to support a range of telecommunication services.” (Wik-

ipedia, 2016) 

 

TDD Test Driven Development. Software development methodology 

where tests are written first and then just enough of production 

code to fulfill that test and refactoring. (Ambler, 2017a) 

 

 

Unit test Test of a certain part (unit) of the source code 
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3 Introduction of the commissioning party 

 

Comptel Oyj is Finnish software development company that was founded 1986; the com-

pany celebrated its 30th anniversary in 2016. The company has many offices around the 

world, and employee-wise Finland’s office is the biggest one. Comptel is specialized in tel-

ecommunication software development and has currently over 300 customers in more 

than 90 countries, the estimation of the quantity of served end-users is more than 1.2bil-

lion. The three biggest teleoperators in Finland, Elisa, Saunalahti, and Telia are all 

Comptel’s clients. (Comptel.com, 2017) 

 

Comptel Oyj develops, sells and delivers products and services that support telecom op-

erators’ Operation and Business Support System (OSS/BSS). The popular products are 

fulfillment and analytics softwares. Fulfillment software is meant to automate the telecom 

operator’s operation process. “Fulfilment is one of the key processes for any operator. 

This process is responsible for providing customers with their requested products and ser-

vices in a timely and correct manner” (Comptel intra).   

 

In 2015, Comptel introduced Operation Nexterday. Operation Nexterday is acting as a 

movement, but it started as a book. Nexterday’s mission is to advice operators on how 

they “can radically update their sales, marketing, and service strategies in response to 

customers’ increasing digital service demands,” (Vänttinen 2016). It guides operators on 

how they can become a better digital company with better customer experience. 

 

This thesis is done for one of the Comptel’s front-end development team, Team Terra, 

which produces user interface components, also known as the Nexterday UI Platform, to 

other development teams. Team Terra uses various of methods, frameworks and front-

end tools. Comptel mainly follows Agile and SAFe (Scaled Agile Framework) development 

guidelines, there are also some other frameworks that individual development teams 

might apply to their work process. Some frameworks that Team Terra has applied to their 

work process are a mix of Kanban, Scrum, and Extreme Programming.   
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4 Memory management in JavaScript 

While memory profiling collects various of data, usually the interesting part is the data and 

events from JavaScript, since all the code is happening there. JavaScript is garbage col-

lected language, if garbage collection (GC for short) fails or doesn’t work properly it 

means there’s a possible memory leak in the system. 

 

4.1 Memory graph 

To make it easier to comprehend how browsers handle JavaScript performance, we shall 

think memory as a graph. All the primitive types, Boolean, string, number, and objects, 

can be visualized in memory graph as number of interconnected points.  

 

 

Figure 4.1 The start of the graph is the root node. Root could be a browser window or 

Global object of a Node module. Root node’s garbage collection is not controlled by 

developers (Osmani, 2014) 
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Figure 4.2 A value’s retaining path(s) (Osmani, 2014) 

 

Figure 4.2 shows the retaining tree of the purple node. The arrows show the path(s) in the 

graph that is keeping the object from being classified as memory. In this graph, the root 

node is retaining tree for the purple node (1). There are two different paths from the root 

node to the purple node. One path is straight from root to the purple node, we shall name 

it as path A; another path B goes through another yellow node (2). Garbage collection will 

take the purple node if both of its paths to the root node are terminated and it is entirely 

detached from that root (Osmani, 2014). 

 

 

Figure 4.3 Removing a value from the graph (Osmani, 2014) 
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If we want to remove a node from the graph, we can cut the edges. If we want to remove 

a red node (3) in figure 4.3, we can cut from any edge with “X”. By cutting the edge clos-

est to the red node, we remove that particular node (3) only. Cutting one from the other 

two edges will also remove one or both purple nodes (1, 2). (Osmani, 2014) 

 

4.2 What is garbage and garbage collection? 

Any node that doesn’t have a retaining path in the system is garbage. In other words, Gar-

bage Collector will attempt to collect all values that cannot reach the root node. GC first 

goes through all the live values in the system. When it detects dead values, it will return 

the memory used by them to the system. Garbage Collection can be thought as a big re-

cycling system. (Osmani, 2014) 

 

 

Figure 4.4 Nodes that don’t have a path from root becomes garbage, which is properly 

collected by Garbage Collector. Here we can see garbage collection of the nodes 1 and 2 

(Osmani, 2014) 

 

A shallow size of a memory means the memory that object can hold by itself. Memory can 

also be held by references to other objects; this prevents those objects from being auto-

matically disposed by GC. Retained size is the memory that is freed when object itself and 

its depended objects along are deleted (Kearney, 2017) 
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Figure 4.5 Yellow node's retained size is itself plus the purple nodes’ sizes (Osmani, 

2014) 

 

 

Figure 4.6 Blue root’s retained size is all the memory being used by the JavaScript (Os-

mani, 2014) 

 

4.3 What is memory leak? 

If you type “memory leak” in the Google search in Firefox browser (2017c), it will give you 

following definition: “a failure in program to release discarded memory, causing impaired 

performance or failure”. Memory leak happens when the memory that is allocated to per-

form some operation is not freed after that given operation is completed, resulting in that 

the program will eventually use up all the memory that it needs to work normally. If we 
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think about previous memory graph, a memory leak is when node(s)/data that we re-

moved are still reachable from the root node, meaning that there’s still a retaining path to 

some other value. It is suggested to suspect memory leak when the user realizes that the 

program has started to work gradually slower for no any obvious reason. 

 

One common cause of memory leak is detached DOM (Document Object Model) nodes. 

According to Basques (2017) from Google, “A DOM node can only be garbage collected 

when there are no references to it from either the page’s DOM tree or JavaScript code.” 

Detached node means that it is removed from DOM tree, but there's still other code that 

references it. Figure 5.7 is a good practical example of DOM leak from Auth0 blog by Se-

bastian Peyrott (2016).  

 

Figure 4.7 Example code that will create memory leak (Peyrott, 2016) 

 

As an example of solving a memory leak, there is a good sample from IBM devel-

operWorks website by Bhattacharya and Sundar that shows a memory leak situation 

caused by circular reference: 
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Figure 4.8 Event handling memory leak pattern (Bhattacharya & Sundar, 2007) 

 

In Figure 4.8 you see a closure in which a JavaScript object (obj) contains a 

reference to a DOM object (referenced by the id "element"). The DOM element, in 

turn, has a reference to the JavaScript obj. The resulting circular reference 

between the JavaScript object and the DOM object causes a memory leak. 

One solution to the memory leak in Figure 4.8 is to make the JavaScript object obj 

null, thus explicitly breaking the circular reference, as shown in Figure 4.9. 

(Bhattacharya & Sundar, 2007) 

 

 
Figure 4.9  Break the circular reference (Bhattacharya & Sundar, 2007) 

 

Good rules for how to avoid coding memory leaks accidentally: 

• Avoid circular object references 
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• Avoid using long lasting references to DOM elements that you do not need any-
more.  

• Use the right variables. One common type of memory leak is caused by acci-
dentally using global variables. 

• Free unused event listeners 

• Keep an eye on local cache and what you store there.  
(Osmani, 2014) 

4.3.1 Memory leak patterns - The Sawtooth Curve 

If the memory usage chart after profiling is saw-tooth shaped, it means that a lot of shortly 

lived objects have been allocating. When the line drops back to the baseline, it means a 

GC has occurred. If the done actions are not expected to have any retained memory as 

an outcome, and the DOM node count does not drop back to the baseline where it began, 

it is highly possible that there is a memory leak.  

 

Usually, browser’s garbage collection should bring the memory back to where it was 

during the starting point. The memory usage goes up until garbage collection then it goes 

back down to the starting point and then starts to go up again. This process is repeated 

multiple times. This kind of curve, with proper garbage collection, indicates that there’s no 

leakage. 

 

 

Figure 4.10 Normal memory usage curve without leak (Kerr, 2015) 

 

Figure 4.11 shows the not wanted saw-tooth curve. We can see from the figure that there 

is garbage collection happening, but the graph never goes down to the starting point. 

Instead, it is only growing. On this case, it most likely means there is a leak, and further 

investigation is recommended. 
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Figure 4.11 Graph never goes down to starting point. Red box indicates the rising points 

(Kerr, 2015) 

  

Sometimes the memory leak in the graph might not be saw-tooth shaped but resemble the 

shape of stairs instead. If the stairs never go down even with garbage collection, it might 

also indicate a possible memory leak. However, the application might be intentionally 

made so that it uses gradually more memory. So, it depends on what the app is doing and 

whether it is supposed to do so. “It’s not a bug, it is a feature,” said by a developer and in 

this case, it is actually true. We can think about infinite scroll in websites and apps as an 

example. Twitter uses an infinite scroll with “lazy load” effect, which means more tweets 

(posts/items) will be loaded automatically to the feed when you reach the bottom of the 

screen. The previously loaded tweets are still there, they are still in the DOM, which is why 

the memory used by them cannot be released. Once you close the Twitter, the reserved 

memory is not needed anymore. Thus, creating a healthy stair-shaped curve. Eventually, 

you might have some problems with your memory resources if you scroll too much. “How-

ever, this is not a memory leak - it's just increasing memory usage.” (Kerr, 2015.) 
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5 Performance & Browser’s Memory Profiling  

This chapter will explain what memory profiling is, what part of testing it is and why it is im-

portant to profile memory during software development process.  

 

5.1 Performance nowadays 

In today’s world, most of the devices refresh their screens 60 times a second and the us-

ers expect a responsive performance of the webpages that they visit. The pages should 

be interactive and operate smoothly, giving users an enjoyable browsing experience. The 

tolerance for slow loading and “janky” performance is only getting lower. Refreshing 

something on 60 times a second means that each of the individual frames has a little bit 

over 16ms to work and sort everything (1 second / 60 = 16.66ms). In this 1 second, the 

browser has to handle the input whereafter JavaScript start typically executing jobs that 

affect the visual parts of the page. The states of the page get updated, and this often trig-

gers a layout change, where the browser re-layout all the elements inside the page and 

then also paint all the elements. Painting in here means filling in the pixels, e.g. drawing 

text, colors, images and borders. Finally, all the work is composited on the user’s screen. 

This everything is supposed to happen 60 times in a short span of 1 second (Lewis, 

2017.) 

 

 

Figure 5.1 Browsers pixel-to-frame pipeline. Not every part of the pipeline is being 

activated on every frame e.g. if the layout is not changed the pipeline will jump straight to 

painting 

 

5.2 Performance testing 

As defined by Graham & al. (2008, 48), “The process of testing to determine the perfor-

mance of software product.” The primary goal of performance testing is to develop effec-

tive enhancement strategies for maintaining acceptable system performance. Perfor-

mance testing is a process of gathering information and analyzing it. The data from this 

process is collected and used to predict when load levels will use too much system re-

sources. The results of non-functional tests give developers insight into system perfor-

mance and response time under real-world conditions. Response time is the amount of 

Input handling JavaScript Layout Paint Composite
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time a user must wait for a Web system to react to a request, e.g. a search (Nguyen 2001, 

43). Profiling during the construction phase helps to minimize the cost of defects.  

 

5.3 Memory Profiling is Non-functional black-box testing 

Memory profiling is counted as non-functional black-box testing, where the interests are in 

how well or how fast something is done. It is testing something that is needed to measure 

on a scale of measurement, for example, time to respond. Non-functional testing includes, 

for example, performance, load, stress and usability testing. (Graham, Veenendaal, Evans 

& Black 2008, 47.) 

 

Memory profiling is “a process of investigating and analyzing a program’s behavior to de-

termine how to optimize the program’s memory usage” (Telerik 2017). Memory profiling 

helps the developers to test the written program’s performance quality; developers use it 

to detect possible memory leaks. Memory profilers are tools for performance analysis.  

 

5.4 Cost of defects/change 

Why we would want to practice memory profiling at regular times can be explained with 

software development’s cost of defects (aka. Cost of change) chart. Memory profiling is 

helping to keep the cost of change curve flatter. 

 

The cost of finding and fixing defects rises exponentially as software development pro-

gresses through its life cycle stages. The figure below presents the traditional cost defects 

curve when looking at the whole lifecycle of software development in the waterfall model.  
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Figure 5.2. The cost of change in normal waterfall model software development (ISTQB 

Exam Certification) 

 

Comptel currently practices agile software development, which flattens the curve of the 

cost of defects. As Team Terra development practices also have part of extreme program-

ming, we also have the Kent Beck’s (creator of extreme programming) cost of change 

curve which is flat since the feedback loop is much shorter in extreme programming (Am-

bler, 2017c) 

 

Short feedback loops are an important aspect not only of testing but also of the 

complete agile software delivery cycle. Transparency in decision making is needed 

for long-term success in providing high-quality software. (Gregory & Crispin 2014, 

15) 

 

In Agile software development, there’s various of feedback loops, some of them are for 

example unit tests, code reviews, continuous integration, daily scrum and sprints. Memory 

profiling is part of testing which supports feedback (Puckett, 2011.)  
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Figure 5.3 Kent Beck's cost of change curve (Ambler, 2017c) 

 

Scott W. Ambler, software engineer and author of various books and papers related to the 

agile framework (Ambler, 2017b), thinks that the true cost of change curve is not as flat as 

Kent Beck presents it, but instead rises gently over time (Figure 5.4). The cause might be 

because the code base most likely grows over the time, which means that there’s increas-

ingly bigger chance that any occurring change might affect multiple things. Ambler’s view 

of the cost of change in agile software development is not as dramatic as presented in the 

waterfall model, to keep it like this, we have to follow the guidelines of agile working and 

keep the source code quality good and feedback loops short. (Ambler, 2017c)  

 

 

 

Figure 5.4 Scott Ambler's view of true cost of change curve (Ambler 2017c) 
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5.5 Manual memory profiling 

Browser’s memory profiling is manually done by using that given browsers’ developer 

tools (DevTools). Usually, there should be some built-in profiling tools. There used to be 

separate software or plugins like Firebug for Firefox for profiling in web development, but 

as the browsers started to have DevTools with profilers integrated into themselves, it 

became easier to just use the browser's developer tools instead of third party 

software/plugin. In the example of Firebug, it is not being developed or maintained any 

longer as a separate software but was merged with the Firefox developer tools in 2016 

(Odvarko, Walker, 8.2.2016). Every developer tool is a little bit different, but they usually 

have a tab called “Performance” and “Memory,” these are the features we are interested 

in memory profiling.  

 

How the memory profiling works is that in the browser we open DevTools, navigate to the 

right tab of the tool and then start recording (profiling). When the recording starts, the user 

interacts with the chosen web page. These interactions are, for example, clicking buttons 

or fields, typing some input, basically “activating” something on the webpage and they will 

create events that the profiler records. Usually, during the profiling, the same operation is 

done multiple times, this is called repetitive testing which helps the developers to find pos-

sible memory leaks. After the wanted operations have been done, developer ends the re-

cording session after which DevTool presents different graphs of the system’s perfor-

mance and operations that happened. 
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In Figure 5.5, a finished performance profiling can be seen. It can be quite overwhelming 

output when seeing it the first time, but it is actually divided into clear sections. The infor-

mation can be read as individual sections, but also together since it is supposed to resem-

ble a timeline. Inside the red box are some labels (FPS, CPU, NET and HEAP) that de-

scribe the “function” of that line. So, for example, FPS, which stand for Frames Per Sec-

ond, shows the frame output. If we see a sudden drop in frame rates, we might want to 

know the cause of it, thus we can just use the timeline presentation layout in our ad-

vantage and search the information around the same vertical line. The heap line graph is 

presented twice; the first one is to see the overall graph, to see the bigger picture of it. 

The second heap graph is bigger and can be filtered, in the figure 5.5 only JS heap filter is 

selected. Above the first heap graph, there are screenshots that show the actual change 

that happened in the user interface. In the middle of the two heap graphs, there is a flame 

chart of the functions. This same graph without markings can be found bigger in the ap-

pendix 2. 

 

Usually, during the first time of memory profiling, it is more common to record only with the 

“Performance” -tool which gives more general data. If something dubious is spotted, the 

next step would be using the “Memory” -tab, depending on the browser it lets you take 

heap snapshots and record allocation timelines/profiles, which helps the developer to 

pinpoint the reason for possible memory problems. Screenshots from Google Chrome, 

Figure 5.5 Chrome DevTools Performance tab after recording something 



 

 

19 

Firefox and Internet Explorer 11/Edge DevTool’s Performance and Memory tab are in 

appendices; Appendix 1 has a browser DevTool comparison table that was created during 

this browser DevTool research. The table does not cover every single thing in the Dev-

Tools, the comparison was done little bit perfunctorily focusing mainly on memory profil-

ing.  

 

 

Figure 5.6 Google Chrome DevTool Memory Tab 

 

Let’s have an example of recording allocation timeline in Chrome. Like the Performance -

tool, this works similarly, the recording start by clicking start button. This mode records 

heap allocations and shows allocated memory as pillars. The pillars are blue when the 

Chrome is using the memory, when the memory is freed the pillars will turn grey. If there 

are pillars or part of them staying blue, it might indicate that there is some memory leak-

ing. (Kerr, 2015). 

 

 

Figure 5.7 View of allocation timeline (Kerr, 2015)  
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This (Figure 5.7) is old version of DevTools, but the basics are the same so we shall use 

this situation as an example. This example is by Dave Kerr, he used a simple photo album 

application for this recording. The starting point is the app’s homepage, and the first allo-

cations happen when he navigates to one of the albums. On point 2, he navigates back to 

the homepage and some of the memory that was just allocated is freed. Some memory is 

still in use for the homepage itself, and probably for the transition that is happening. Look-

ing at how much memory was freed, Kerr suspects that there might be a leak. He selects 

the 1st three pillars to inspect what was left in the memory (also potential memory leaks) in 

the view below.  

 

 

Figure 5.8 Information gotten by selecting the first three pillars (point 1) (Kerr, 2015) 
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So, in the Figure 5.8 we see points 1-4 that Kerr has marked. Point 1 being the memory 

left from the allocation. Point 2 shows the different types data in memory, point 3 is the in-

stance of the data, JavaScript object instance in this case. Finally, point 4 shows the re-

taining path of that object. By investigating the data Kerr finds out that AngularJS template 

cache is using some data, which mean that the problem most likely not a leak, since An-

gularJS caches the template that is used to render the album when it is first visited.  This 

means that technically, more memory should be freed during next time when visiting the 

album and returning back to home page. The cache is already there so the new allocated 

memory is just for the page itself. (Kerr, 2015). 

 

Performance and allocation timeline recordings are just couple ways from many to track a 

memory leak manually. Profiling is not hard to do like this, but will definitely be time con-

suming and tedious if we have a lot of data to go through, which is why automation is con-

sidered.  
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6 Test Automation 

In software development, project managers and developers face the challenge of building 

the application within a tight schedule and with minimal resources. Automation will eventu-

ally become a necessity in bigger projects in order to manage the technical debt and 

make time for other testing activities. Automated regression tests can inform the team 

quickly if they have broken the source code. Automated tests also act as good living docu-

mentation for the application. (Gregory & Crispin 2014, 209). Automation’s purpose is to 

enhance the production performance by making the phases faster and to adapt better to 

changing requirements. Automated software testing ensures the accuracy and stability of 

the software through each build. Test automation cannot and will not fully replace manual 

testing.  

 

6.1 Why automated testing? 

Manual software testing is done by a someone going through the system and interacting 

with it by variation of input, clicking and other usage combinations. The results are 

compared to the expected output and behavior. Manual tests are repeated often because 

of the changes in the source code during the development, basically tests should be re-

peated every time a source code is modified. Multiple and different operating environ-

ments, operating systems and hardware configuration are also reasons for running man-

ual tests many times. Manual testing is heavy for labor and likely to have errors, it does 

not support the same kind of quality checks that are possible with automated testing tool 

(SmartBear, 2017) 

 

Repeating tests manually takes a lot of time, and it also costs a lot. Once created, 

automated tests can be run repeatedly, easily and they are much faster than manual 

tests. Automated software testing can drastically reduce the time in repetitive testing, thus 

also reducing the costs. Automation helps to run long-lasting tests unattended with the 

possibility to run same tests on different hardware configurations, using different operating 

systems or databases. Test coverage is better after automation; every test run can exe-

cute thousands of different complex test cases, this could be quite hard with manual test-

ing. Automation also gives upper hand when we want to simulate mass of users interact-

ing with the system; it is quite impossible to perform a controlled web-application test 

manually with thousands of users (SmartBear, 2017) 

 

As mentioned before, manual testing is prone to errors. It is humane to make errors; even 

very careful testers will probably make mistakes during repetitive manual testing. Even if 
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the mistake is very small, in the end, it will still affect the result and increase the used time 

on testing. One benefit of automated test is that it can replicate the same steps precisely 

on each test run execution. The actions performed by the automation are always the 

same and executed at configured time interval, they have a precise schedule. Automated 

tests can run every time source code changes. Testers and developers freed from repeti-

tive manual tests have more time and energy to deal with other things, so automation in-

creases team’s work motivation too. This also improves the team’s velocity. 

 

Automating a test affects only how economic or evolvable it is. After automation is 

implemented, an automated test is generally more economic. However automated tests 

cost more to create and maintain. When the initial automation of a test is done well, it will 

be cheaper to implement in the long term; it is more expensive to automate one test than 

to run it once manually.  

 

The next figure (6.1) is a Keviat diagram, which shows the four quality attributes of a test 

case. The solid lines represent a test case that is done manually and the dashed lines 

represent an automated test. When a manual test is automated for the first time we use 

more work effort in the automation, which is why it will be less evolvable and economic. 

After some time, when that automated test has been run multiple times, it will become 

much more economic compared to the manual test (Fewster & Graham 1999, 5.). 

 

 

Figure 6.1 “The "goodness" of a test case can be illustrated by considering the four 

attrib-utes in this Keviat diagram. The greater the measure of each attribute the 
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greater the area enclosed by the joining lines and the better the test case.” (Fewster 

& Graham 1999, 5.) 

 

“Automated testing requires a higher initial investment but can yield a higher return 

of investment. Skills and training are required to be a successful with any automated 

testing tool. Every company doing automated testing still does some amount of 

manual testing”, (Fernandes & Fonzo 2013, 3.) 

 

Automation itself is important part of continuous integration (CI) practice. CI practise has 

following steps: Working in version control. Code is modified in own branches and com-

mitted at least once a day. Changes are included in the new integration builds, this hap-

pens several times a day on separate machine. Automated tests check the changes from 

multiple angles to ensure that they work, 100% of the tests should pass for every build. 

Broken builds should be fixed right away. After these steps, the new built is deployed to 

production. This is also known as continuous integration pipeline.  

 

6.2 Disadvantages of automated testing 

Test automation might give too much confidence, expecting that automation will solve 

everything and many new bugs will be found after a test is automated. If nothing has really 

changed, a test is unlikely to find new defects; this applies vice versa also, it is more likely 

to find new defects when something has changed in the source code, software or environ-

ment itself. Of course, not finding actual defects does not mean that the software is per-

fect. The test might be incomplete, or perhaps they might contain defect themselves. “If 

the expected outcomes are incorrect, automated tests will simply preserve those defective 

results indefinitely” (Fewster & Graham 1999, 11). Sometimes the test tool itself may be 

buggy or dysfunctional. Third-party software products are also vulnerable to defects which 

raises the chance of technical problems.   

 

Automated test need a lot of maintenance. The effort to maintain tests discourages test 

automation plans and initiatives often even “killing” them. When the software changes, it is 

usually necessary to update some, if not all, of the tests so they can be run successfully 

against the updated product giving reliable and updated data of the current system. Auto-

mated tests need continual attention; unmaintained tests will take longer and longer to run 

over the time (Gregory & Crispin 2014, 248). Automated tests can and will most likely be 

abandoned if it seems like updating and maintaining those tests take more effort in com-

parison of running the tests manually. Not only the test themselves need maintenance but 
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also the servers where they are executed. Test automation initiative should not stop be-

cause of high maintenance costs. (Fewster & Graham 1999, 11) 

 

Automation uses a lot of resources, especially in big software companies with many tests 

that have a lot of test data going through them. Automated tests are in danger if the server 

is slow or even fully down. Sometimes the fault might not be in the server, but maybe the 

testers forget or don’t care about the capacity limit of the reserved servers. Running one 

or two builds in test tool is clearly easier than running a dozen of them. If there is “traffic” 

in a test tool, sometimes a test that could be run in 20minutes might take hours during the 

traffic. 

  

Automation is also not a good idea if the tests themselves are not good, e.g. bad 

coverage. Other factors like poor testing practise and unrealiable documentation also 

speak against automation. “It is far better to improve the effectiveness of testing first than 

to improve the efficiency of poor testing.” (Fewster & Graham 1999, 11). It is important to 

keep in mind that test automation itself is not testing, there is still needed for someone to 

write the tests that are automated.   

 

6.3 When to automate, when not to, how to decide what to automate? 

In chapter 7.2 there was listed already some disadvantages that may be the reasons of 

why a test should not be automated, but it is important to remember that automated test-

ing does not replace manual tests. There will always be some tests that is easier and 

more cost effective to do manually. Sometimes the automation of a test might be so diffi-

cult that it is more economic to keep the testing manual. 

 

It makes more sense to keep manual tests when: 

• Tests are run very rarely 

• If the functions change drastically, are entirely new or change fre-
quently, creating automated scripts may be waste of time and less 
cost effective.  

• Strategic application functions where we want to pay specific atten-
tion.  

• Manual testing is only option. Functions that must be validated by 
humans. These are for example: Usability, look-and-feel and tests.  

(Fernandes & Fonzo 2013, 9.) 

 

On contrast, automated testing is good idea especially when: 

• There’s a lot of regression testing 

• We need fast high-level evaluation on the quality of a build and mak-
ing yes/no decision on deeper testing, AKA. Smoke testing 
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• Tests are repetitive and don’t change often 

• Validation happens with a lot of different inputs and large data sets 
(i.e. login and search), also known as Data Driven Testing. 

• We are testing load and performance.  
(Fernandes & Fonzo 2013, 10.) 

 

 

 

Figure 6.2 Based on Mike Cohn's Test Automation Pyramid (Dijsktra, 26.6.2014) 

 

Test Automation Pyramid was introduced by Mike Cohn in “Succeeding with Agile”, and it 

shows how automation should be done. According to Gregory and Crispin in “More Agile 

Testing” (2014, 223) the benefit in Test Automation Pyramid is based on “how fast the 

feedback is received. The lowest level, the unit tests, get the fastest feedback by running 

with every commit of new code”. The higher we go on the pyramid, the slower the feed-

back is. Gregory and Crispin have modified the original pyramid by adding the little cloud 

on the top representing manual and exploratory tests that cannot be fully automated. Ap-

parently, many teams require some manual regression tests to supplement their auto-

mated checks. Over the years, developers have made their own adaption of the original 

Test Automation Pyramid. The original pyramid does not fit to all situations, and some as-

sumptions also have been changed due to advances in technology. 
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We now know more about the advantages and disadvantages of automation, we under-

stand the possible risks and requirements that lead to cost effective and “good” automa-

tion. 
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7 Introduction of the project 

Now that we have educated ourselves with the necessary background theory needed, we 

can focus more on the project itself. This chapter will introduce the background of the pro-

ject, the goal of it and the possible risks that might jeopardize it. The currently used tools 

will be introduced and also the previous way of working in regard of memory profiling.  

 

7.1 Background of the project 

Currently, the front-end developers have to do the memory profiling and test result 

comparison manually, and this takes a lot of time and effort. Memory profiling is done to 

discover possible memory leaks. Automated memory profiling would help the developer’s 

work by ensuring the quality of the code already during the coding process. Early preven-

tion of memory leaks will improve the end product's performance which is important to 

Comptel’s customers. Software installation life expectancy might be up to 10 years.  

 

Manual memory profiling was explained in chapter 6.4. As a brief reminder, it means man-

ually inputting the data or interacting with the components’ fields, buttons, and other con-

trols while using browser’s developer tools to record the memory usage. Profiling is cur-

rently not often practiced in the front-end team. The whole “Automated memory profiling” 

is a quite uncharted area, meaning that there’s no previous work or data in Comptel that 

this work is based on. This project is supposed to pioneer the automated memory profil-

ing, so other developers can develop it further, which is why there may be some unknown 

factors. The development and testing environment for this work is going to be Team 

Terra’s internal test application. It was also decided that the usage will be limited for only 

Team Terra developers and not released for external use, for now.  

 

7.2 Currently used tools 

If we were to list all the “official” tools that the current front-end developers use, the list 

would be too large, which is why we’ll will only list those that are closely related to this pro-

ject’s topic. These tools are all open source and can be divided into four different main 

categories: front-end libraries and frameworks, tools for building, tools for testing and fi-

nally, tools related to build/test environment.  
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7.2.1 Front-end libraries and framework 

- React: “A JavaScript library for building user interfaces” (npm, 2017a) 
 

- Redux: A framework that controls states in a JavaScript app (GitHub, 2017a) 
 
- Bluebird: JavaScript promise library, helps with handling asynchronous code that 

has a lot of callbacks (GitHub, 2017b) 
 

- Lodash: “A modern JavaScript utility library delivering modularity, performance & 
extras” (Lodash, 2017) 

 
- Moment.js: JavaScript library for handling dates and time, e.g. parsing and manip-

ulating (Moment.js, 2017) 
 

7.2.2 Tools for building 

- Babel: JavaScript compiler, “community-driven tool that helps you write the latest 
version of JavaScript” (GitHub, 2017c) 

 

- WebPack: JavaScript bundler. “Packs many modules into a few bundled assets. 
Code Splitting allows to load parts for the application on demand. Through 
‘loaders’, modules can be for example, CommonJS, CSS, Images, JSON, 
CoffeeScript and developer’s own customised content.” (Github, 2017d) 

 

- PostCSS: “A tool for transforming CSS with JavaScript” (PostCSS, 2017) 
 

7.2.3 Tools for testing 

- Karma: Test runner for JavaScript, “tool that allows you to execute JavaScript 
code in multiple real browsers” (Github, 2017e) 

 

- Enzyme: JavaScript testing utilities for React. Enzyme's API is meant to be 
intuitive and flexible by mimicking jQuery's API for DOM manipulation and traversal 
(npm, 2017b)” 

 

- Chai: “A BDD / TDD assertion library for node and the browser that can be 
delightfully paired with any JavaScript testing framework” (npm, 2017c) 

 

- Selenium: Automates browsers by using WebDriver API on the server side (Sele-
niumHQ, 2017) 

 

- Nightwatch.js: An automated testing framework based on Node.js that is run 
against Selenium/WebDriver server. Nightwatch.js is the client side implementa-
tion of the WebDriver API specification (GitHub, 2017f) 
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7.2.4 Build/Test Environment 

- Web browsers: Mozilla Firefox, Google Chrome, Microsoft Edge and Microsoft In-
ternet Explorer 11 
 

- Jenkins CI and GitLab CI: Continuous Integration Servers (CI servers). Used for 
automation. On every push to the repository, the CI servers will automatically run 
the tests (Figure 7.1). 
 
 
 

 
Figure 7.1 CI Servers' workflow 

 

7.3 Objective 

The ultimate goal is to have a working solution for automating the memory profiling. As 

mentioned, this is a little bit uncharted area in front-end development of Team Terra, so 

the job is to do the base work, find the right tools to execute the automation and fit the so-

lution(s) in Comptel’s product.  This project’s “product” is the toolset, JavaScript -file and 

documentation for other developers to guide them how to set up the automation.  

 

7.4 Risks of the project 

One of the risks is if the development/testing environment becomes unstable because of 

other development. This should not happen in an ideal case, but there’s always a chance 

that, for example, some broken or more likely buggy code, might end up in the source 
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code that this project is run against. This can be partly prevented by using an own, 

project-specific branch in revision control and keeping it on update.  

 

New technology for me can also be counted as a risk. There might be some tools, soft-

ware or other information that I am not familiar with or don’t know at all. Getting to know 

entirely new tools or other things slows down the project. Of course, one of the reasons 

and objects of this thesis is to also learn along the process; the learning process already 

starts from the theoretical part of this thesis.  

 

The overall time reserved for this project might not be enough. Especially the reserved 

time for the implementation might be doubled. This is because the topic is quite new for 

the company, there hasn’t been previous “groundwork” before this project. The tool library 

is also quite large, so there are quite many dependencies. In order to make the automa-

tion work, there are many things that have to be stable and working. 

 

Then there are also hardware or total system failures. Very unlikely but still possible. Any 

code produced will be automatically saved in the version control if committed, which is 

why often committing is practiced.  
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8 Implementation plan 

This chapter will focus on the implementation planning. We will go through the chosen 

tools for the implementation and the reason they were chosen.  

 

8.1 Browser selection 

Because of the project size and deadline, the project will be developed only on Google 

Chrome. Currently, the Nexterday UI Platform officially supports only two latest versions of 

Chrome, Edge, and Firefox. IE11 is the only supported version from Internet Explorer. Per 

the statistics of the most popular browsers published by W3Schools, Chrome, Internet Ex-

plorer, Firefox and Safari are four of the most popular browsers currently. Google Chrome 

became most popular web browser in 2012 and has held the title ever since, which is the 

main reason this project will be done against Google Chrome.  

 

 

Figure 8.1 Web browser statistics from 2008 to 2017. Top 5 of the globally most popular 

browsers (W3Schools, 2017b) 

 

The selection was mainly based on the browser popularity and how good the manual 

memory profiling seemed to be. Some of profiling functions from Chrome were mentioned 

in earlier chapter 5.5 Manual memory profiling. Chrome browser seemed to be the best 

suited overall candidate to deploy this on because of its capabilities and how well the 

browser supports the current setup of the Terra team. 
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8.1.1 JavaScript Engine 

The computer itself does not understand the JavaScript language; JavaScript engine con-

verts JavaScript into something that the computer understands, machine code. Jen 

Looper from Telerik’s Developer Network (2015) defines that JavaScript engine’s job “is to 

take the JavaScript code that a developer writes and convert it to fast, optimized code that 

can be interpreted by a browser or even embedded into an application.” There are multi-

ple different engines because each one of them is designed for a different browser. 

(Looper, 2015).  

To cover the most popular browsers’ engines: 

 

• V8 JavaScript engine is open source and developed for the Google Chrome web 
browser; it is also used in Node.js, a cross-platform JavaScript runtime environ-
ment (Developers, 2017).  

 

• SpiderMonkey is developed for Firefox browser, and it is also used in some Adobe 
applications and GNOME desktop environment (Wikipedia, 2017b)  

 

• Trident and Chakra engines are used in Internet Explorer 11 and Edge browsers, 
respectively. Chakra was originally closed source but became open sourced in 
2016 (Wikipedia, 2017c) 

 

The commission party uses Node.js currently. Therefore, the V8 engine is also used. This 

adds to the reasons why this thesis is done for and against Google Chrome. 

 

8.2 Development environment 

All the tools are from the list that was previously mentioned in chapter 8.2. It is encour-

aged to use the existing tools (since there is already quite a lot) if needed new tools can 

be introduced. Development will use Windows 10 operative system for testing environ-

ment. 

 

8.3 Action steps 

To automate something, we need first to have something to automate. Because this has 

not been done earlier, we do not really know if it is even possible, which is why we have to 

start from the basics. We need to start from the manual actions, moving to semi-automa-

tion, and then make it fully automated. Semi-automation stands here, for example, to be 

able to run something with a command line perhaps. The first goal is to profile unit tests 
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with Karma, then larger functional tests with Nightwatch.js. After this, we want to some-

how visualize the data. At this point, we have pretty much all the manual steps needed 

from getting the data to the actual visualization, which leaves us to only automate it with 

Jenkins CI somehow.  
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9 Implementation progress 

This chapter and its subchapters will concentrate on the execution in practise. The flow of 

the work will be described, relevant parts of the written code among the shell commands 

will be shared. New tools will also be introduced and explained here. 

9.1 Chrome flags 

We tried to start and run browser developer tools (DevTools) by outer console/terminal 

command line. After some research, it was found that Google Chrome has a feature 

called flags that can be enabled or disabled. These flags are usually functions that have 

not been fully implemented or standardized or are just not necessary for normal Chrome 

user, e.g. debugging flags. By running following command: $ ./chrome.exe --js-

flags="--help" , all the currently possible and available Chrome flags will be listed. The 

list is very long, so it will not be attached to this work, but the same list can also be found 

online automatically updated by Peter Beverloo.  

 

At first we tried to start up Google Chrome with flags, we were not successful with Cmder 

terminal (one type of 3rd party console for windows) for some reason, so we run the same 

command in GitBash (another type of console) which gave some response.  

 

After researching a bit, a chosen combination of wanted flags was made. We navigated to 

the chrome.exe, in this case it was located in Program Files (x86), and ran the Chrome 

with flags:  

 

$ chrome.exe --trace-startup=disabled-by-default-memory-infra --enable-heap-pro-

filing=task-profiler --trace-startup-file=/tmp/foo1.json  --trace-startup-dura-

tion=30 

 

 

Table 1 Google Chrome flag descriptions (Beverloo 2017) 

Flag Description 

--trace-startup  No description 

--trace-startup-file If supplied, sets the file which startup 

tracing will be stored into, if omitted the 

default will be used "chrometrace.log" in 

the current directory. Has no effect unless 

--trace-startup is also supplied. Example: -

-trace-startup --trace-startup-
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file=/tmp/trace_event.log As a special 

case, can be set to 'none' - this disables 

automatically saving the result to a file and 

the first manually recorded trace will then 

receive all events since startup. 

 

 

--trace-startup-duration 

Sets the time in seconds until startup tracing 

ends. If omitted a default of 5 seconds is used. 

Has no effect without --trace-startup, or if --

startup-trace-file=none was supplied.  

 

 

 

 

 

Figure 9.1 Starting Google Chrome with flags as shell command 

 

Opening Chrome with these flags allows me to interact with the view while Chrome traces 

my actions for 10 seconds, after 10 seconds, it will create a raw JSON file in the given di-

rectory. The created JSON-file can be imported to Google Chrome DevTools. As the 

JSON is raw and not “true” JSON, meaning that it’s not following the accepted JSON for-

matting rules, we would need to parse it later in the development work. 
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9.2 Implementing to Karma 

 

Figure 9.2 karma.config.js configuration. This is a combination of multiple code snippets 

from the actual source code to just demonstrate the crucial parts to get the unit test profil-

ing up and running. This code will not work as like this 
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Next step was to put the commands in karma.config.js file (Figure 9.2), so it can semi-au-

tomatically (still have to use command line for it to start) run the unit test profiling in 

Chrome. Karma is one of the test automation tools. 

 

For the sake of better identification and transparency, date object function was added in 

the filename which currently is in the format of “YYYYMMDD-HHmmss-karma.json.” We 

also want the JSON-file to be created into the currently working repository. Moment.js was 

used to get the date and time, it is a JavaScript library meant for “parsing, manipulating, 

and formatting dates” (Moment.js, 2017). Typing npm test -- --chrome-profile in 

the console will run the script. 

 

9.3 Implementing to Nightwatch.js 

As shortly introduced in chapter 7.2.3. Nightwatch.js uses Selenium servers for running 

the functional tests. To configure the profiling to run through Nightwatch.js, we modified 

nightwatch.conf.js file. In the test settings, we created new browser setting called 

“chromeProfile” and added the earlier arguments (flags) for chrome in desired capabilities. 

Next figure will show the final result of the “chromeProfile” configuration. These com-

mands still won’t create the wanted JSON-file. Apparently, the Selenium must be run on 

localhost and with port 4444 (previous 5555). We had to install selenium-standalone, 

which is a standalone package that makes it trivial to have Selenium server up and run-

ning, since we did not have it previously.  
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Figure 9.3 Profiling in Nightwatch.js 

 

To start the Nightwatch.js profiling, We have to run the local server first: npm start, then 

run the standalone selenium: selenium-standalone start, and finally running the 

shell command for Nightwatch.js:  

 

npm run test-webdriver -- -e chromeProfile.  

 

Adding --tests <componentName> specifies individual component’s tests that we 

want to run, without this addition all the currently existent tests will be run. 

 

9.3.1 Additions  

At this point of implementation, couple more lines and specifications was added for the 

flags.  

'--trace-startup=disabled-by-default-memory-infra', 

'--enable-heap-profiling=task-profiler', 

'--profiling-flush', 

  

MemoryInfra, which is Chrome’s timeline-based profiling system is enabled. Also, enabled 

heap profiling and profiling flush, which flushes the profile data periodically. The data is 

flushed at the exit by default, "but sometimes there are bugs that prevent the at exit han-

dlers from getting run” (The Chromium Projects, 2017). 
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9.3.2 Problems 

After some test runs, it came to realization that there’s a big problem in using trace-startup 

with trace-startup-duration -flags. It was found that the given duration must be smaller 

than the actual execution time of Nightwatch.js going through the tests. This is because 

the data will disappear after the browser is shutdown, which is after the end of the test in 

the current scenario. So, if we would put duration as 20s, and the test is done in 19s, 

JSON file will not be created. We also discovered that the defined duration of the tracer 

has to be few seconds less than the component’s tests. So, for example, if normally the 

tests would run in 25s, we would have to put the tracer for maybe 20s. This is because the 

closing of browser takes some time. 

 

Since we have so many of tests and most likely the number of them will only increase, this 

is a big flaw and affects the automation. It would mean that the duration time has to be 

changed every time based on the test and its duration. Meaning that this flag must be 

specified by individual component’s duration.  

 

To bypass this problem for now, to just get initial “sample data”, we will do some record-

ings by manually defining the time on each component. Actual possible solution would be 

to script all the tests to run on empty for given time, this way the browser closes after the 

tracer has gone through the tests. 

 

Other problem occurred with autocomplete component. As we are using GraphicsMagick 

to take the screenshot in visual testing, it will throw error message when we try to run pro-

filing against autocomplete-component. The given error is “gm convert: geometry 

does not contain image (unable to crop image)”. This can also be bypassed 

if we comment out code regarding screenshots either in autocomplete’s tests, or disable it 

all together in “takeScreenshot.js”-file. In the latter file, we just comment out code regard-

ing GraphicsMagick:  

 

  // http://www.graphicsmagick.org/GraphicsMagick.html#details- 

//crop 

    const command = `gm convert "${info.screenshotPaths.temporary-

FullScreenImagePath}" -crop 

${sizes.w}x${sizes.h}+${sizes.x}+${sizes.y} "${info.screenshot-

Paths.currentImageDestination}"`; 

    execSync(command, { 

      encoding: 'utf8', 

      timeout: EXEC_TIMEOUT 

http://www.graphicsmagick.org/GraphicsMagick.html#details-
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    }); 

9.3.3 Average Nightwatch.js test run time 

To get an idea of how long is the average time in seconds on each test, couple chosen 

component tests were run for ten times, put them on table and calculated the average 

time. This was done both in the office and home's WIFI-network (Figure 9.4). What was 

surprising is that the tests ran faster with home connection, which is around 50mbps, com-

pared to office connection which should be more than five times faster. Connection 

speeds are of course just theoretical numbers and office renovation reduced the WIFI 

support point and hence, the more realistic WIFI speed per user varies from 25mbps to 

137mbps (at least in the laptop used for this development). Important factor in connection 

speed is also the number of users that are using the same connection. The speed can be 

faster during morning and late afternoon compared to noon and early afternoon, since 

there are less people in the office during early and late hours. At home, there are just cou-

ple of users sharing the same connection.  

 

The chosen components for the time estimation “test” are: Autocomplete, Datepicker, 

Lightbox, List and Sortable Group. The selection was based on how many functional tests 

they have, the one's that had more than others were selected. 

  

9.4  JSON-files into charts, ELK-stack 

Now that we have some profiling results, we want to find a tool that let us see the file in a 

visual format, charts, and graphs. Chrome DevTools and chrome://tracing gives this op-

tion to import and inspect the elements, but what the commissioning party wants is that 

Figure 9.4 Nightwatch.js tests' runtime in seconds. Average, median, minimum and maximum's 

are shown. 
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there could be a separate app, open-source one would be most ideal, that shows these 

data in different, customizable, formats. The main idea is that the app would fetch the file 

itself, to eliminate those manual processes in the middle, that way the whole system could 

be automated. 

 

At first, a tool named DataDog which is one type of monitoring service, was considered, 

but according to one of the company’s cloud technical consultant, DataDog is not very 

suitable in my case, because it’s a real-time monitor, e.g. monitoring the current CPU us-

age. What we want is to show historic events, the results of the tests that have been run 

already. The specialist recommended either of the following combination: 

 

- Grafana (metric tool) + influxdb (database) 

- ELK stack (Logstash + ElasticSearch + Kibana), refer to Figure 9.5 

 

 

Figure 9.5 Elastic stack's workflow 

 

Originally, Grafana was considered because this tool’s name had come up earlier also, 

but the cloud technical consultant personally recommended ELK or Elastic stack more be-

cause of the way it saves and shows data, especially since the JSON files that the tracing 

produces is rather large (can be more than 100mb). Hence, ELK stack is used for visuali-

zation.  
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The cloud technical consultant helped to get a host for proto and Kibana up and running. 

The documentation of the whole process of setting up ELK stack is documented internally 

by the commissioning party. The following three chapters will explain briefly the setup and 

configuration on ElasticSearch, Logstash and Kibana, respectively.  

 

9.4.1 ElasticSearch 

The first step is to install ElasticSearch, the database. After that we want to configure it to 

store the data in question. A test output “20170508-094847-nightwatch-list” from “List”-

component’s profiling was used here. The JSON-file in question is 137MB, quite big, but 

for now we are only interested to extract and store data that is related to memory alloca-

tion.  The following figure shows the data we are using. 
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Figure 9.6 Data that will be imported to ElasticSearch instance 

 

The events are named “periodic-interval”, and we are particularly interested in the malloc 

blocks. Malloc is memory allocation function used in C language.   

The documents that are created will have pid, tid, ph, cat, name and memory_allocated 

fields. The latter mentioned field is extracted from args.dumps.allocators.malloc.at-

trs.size.value. These events are defined by Chrome itself when it creates the tracing file. 

To import these values, we define an index and the mapping for that index to include 

these mentioned fields. (Comptel Wiki)  

 

• name: The name of the event, as displayed in Trace Viewer 

• cat: The event categories. This is a comma separated list of categories for the event. The 
categories can be used to hide events in the Trace Viewer UI. 
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• ph: The event type. This is a single character which changes depending on the type of 
event being output. The valid values are listed in the table below. We will discuss each 
phase type below. 

• pid: The process ID for the process that output this event. 

• tid: The thread ID for the thread that output this event. 
(nduca, dsinclair, 2016)   

 

 

Figure 9.7 ElasticSearch index creation 

 

Now there’s an empty index where documents can be imported to. 

 

9.4.2 Parsing JSON and sending to DB 

Originally the plan was to use Logstash, which is part of the Elastic set. But the reason 

why the idea was deserted, is because the parsing configuration file, which is also 

Logstash’s configuration file, would be in the host side and not in the actual Nexterday UI 

Platform’s repository. This means that it would be outside of version control, which is 

against the current working practise. Configuration file’s content is something that might 

change quite a lot and drastically after the initial creation, which is why it would be ideal if 

it’s in the version control. The other reason we would want to keep it in the same server as 

working repository, is so the threshold to edit it would be as low as possible. Getting in the 

host is not difficult, but it would be better to make it so that any additional steps can and 

will be avoided. The workflow as visualized in Figure 10.4 is thus changed a little, but 

main idea is still same (Figure 9.8). 
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Figure 9.8 New workflow from JSON-file to Kibana 

 

As said, new plan is to parse the JSON file before pushing it to ElasticSearch in host 

server. A new file called profiling-parser.js is created and the configuration of parsing is 

scripted there. We use JSONStream and Event-Stream npm package to help us to stream 

the JSON data, which is then parsed into right format and finally sent to the DB in host 

server using http POST request.  

 

 

Figure 9.9 Parsing and filtering data 
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We have to change the default port that ElasticSearch is listening to [“0.0.0.0”] in order for 

our POST requests to work, default port is [“127.0.0.1”]. This is done by modifying the 

ElasticSearch’s config file by adding network.host: [“0.0.0.0”] under Discovery. 

 

 

Figure 9.10 Changing Elastic's config, "elasticsearch.yml", to bind port 0.0.0.0 

 

We create one POST request per object, there will be error 400 if there’s only one big 

POST request for every object. The whole code for parsing, formatting and sending to 

host can be found in attachments.  
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Figure 9.11 Using POST request to send data to ElasticDB 

 

9.4.3 Kibana 

Kibana is one of the Elastic.co’s products. It is a tool made for visualizing various of log 

files. After installing it and made it to run as background process all we have to do is to 

edit the config file kibana.yml under etc/kibana/ to make it bind the right address. 
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Figure 9.12 Kibana’s config file. This figure only shows the edited parts of the whole file 

 

Now we can access Kibana. Like mentioned in chapter 9.4, this is not focusing on the 

whole installation and setting up of Elastic’s tools. Figure 9.13 shows the outcome in 

Kibana after data has been sent to database.  

 

Figure 9.13 Kibana’s view after data has been sent to database 

 

It is probably little hard to see from this screenshot (Figure 9.13), but there are currently 

two different components data visualized, “lightbox” and “list”. Point 1 shows the currently 

only data we have from list. Lightbox on the other hand already has data from couple dif-

ferent days (2, 3, 4). Point 4 shows the hovering feature in this tool. When we hover our 

mouse over some data point, it will show us more detailed information of that point. In cur-

rent case, it shows us “Memory allocated in bytes”, the component name and date when 

the data was created. Kibana connects separate dots which gives us a line diagram and 

of course also gives us the legend (5) that shows which component is which colored line. 

Point 6 is the configuration panel for the diagram, where we can change the axis orienta-

tion to suit our needs, give a title to whole diagram, and most importantly set the interval 

we want to see the data in. In this particular figure, the interval is set to “Daily”. Other pos-

sible interval settings are for example by hourly, weekly or monthly. It can even show as 
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detailed as by millisecond. In our case, millisecond is not defined in our timestamp crea-

tion, so it should be added there. 

 

9.4.4 Problems 

Apparently, the working environment has been using Chrome’s “dev channel” versions, 

which is unstable version. Dev channel is usually couple versions ahead from the stable 

version, it gives the user a chance to use and try unreleased new features and fixes right 

away, of course the catch is that those are unstable. The problem that occurred was that 

the parsing conditions didn’t seem to match anymore when using the new profiling files in 

the developer browser.  

 

Table 2 Chrome’s version history (Wikipedia, 2017d) 

Major version 

Release date 

(Linux, ma-

cOS, Win-

dows) 

Layout Engine 
V8-engine ver-

sion 
Info 

56.0.2924 2017-01-25 Blink 537.36 5.6.326  

57.0.2987 2017-03-09 Blink 537.36 5.7.492  

58.0.3029 2017-04-19 Blink 537.36 5.8.283  

59.0.3071 2017-06-05 Blink 537.36 5.9.211 

Current stable 

version (as 

checked 

20.6.2017) 

60.0.3112 2017-06-08 Blink 537.36 6.0 
Current Beta 

channel 

61.0 2017-06-09 Blink 537.36 6.1 
Current Dev 

channel 

61.0 

2017-04-15 

(macOS & 

Windows) 

Blink 537.36 6.1 
Current Ca-

nary channel 

 

Tracing files done in Dev Channel version, Chromium 61.0, did not have any memory-in-

fra categories nor “periodic_interval” as item names. After reverting to stable Chromium 

version 59.0.3071, items with previous conditions were found. Just by looking at the ver-

sion numbers (Table 2), we can see that V8-engine’s version has changed in the middle, 
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while it might be relevant but it still shouldn’t be causing the problem as the previous cate-

gory was not related to V8. Going through the changelog of version 61.0 showed that 

there were some changes to the memory-infra, one that might be interesting in our case is 

the one presented in the following figure 9.14.  

 

 

 

 

However, this should also not apply in our case as it regards only “light dumps”. Dumps 

that we are visualizing have been even over 600kb, so those should not be classified as 

light dumps.  

 

The exact solution for this problem remains open. It might be that it happens only when 

not using stable version of Chromium, which means that using a stable version should be 

one of the requirements. For now, using stable version seems as a good time saving solu-

tion for this project. We should wait and see if the problem comes again when the stable 

version gets major updates.  

 

9.5 Jenkins CI configuration - Final automation 

To summarize previous parts, we should now have two working shell commands.  

1. npm run test-webdriver -- --hub-host localhost -e chromePro-
file --tests <test/component> 
 

2. node profiling-parser.js <path/to/the/file.json> 
 
 

The 1st command works if you have localhost and selenium running, it starts up the tests 

with the tracer and the outcome is a raw JSON type file. The 2nd command will start the 

Figure 9.14 From changelog of Chromium (Dev Channel) version 61.0 
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parser script that includes the POST request to the host. We parse the raw JSON file with 

the custom conditions. The conditions for this project were introduced in chapter 10.4.1 

together with creating index for ElasticSearch.  

 

 After this, we’ll create a new job, “freestyle-project”, in Jenkins CI. We can set the Jenkins 

CI to build periodically e.g. every hour, night or day. A nightly build setting was a request 

from the commissioner. We shall name this new Jenkins CI job/project “nightwatch-

memory-profiling”. We define the source code’s repository and branch. In our case the 

testing should be done with master branch, but other individual branches are also possi-

ble.  

 

Figure 9.15 Defining repository and build schedule in Jenkins CI. 

 

Under Jenkins CI’s “Build Environment”, we check “Add timestamps to the Console Out-

put”. Then, under “Build” section, we input our commands under the “Execute Shell” and 

save the changes. Now it should run the memory profiling every night. We want the build 

to run nightly because during the daytime the test pipeline is busy with other functional 

tests and development. Nightly builds won’t affect the normal daytime developers by slow-

ing down connection or test pipelines. 

 

This is at least how it should work. Unfortunately, due to the fact that we cannot get Sele-

nium to the Jenkins CI build, at least not in very easy way, we cannot really finish the ac-
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tual automation yet. Jenkins CI builds happens in a total “clean-state”, the testing environ-

ment won’t have anything that you haven’t given to it. A solution was to get Docker, a con-

tainer platform, to have the Selenium and other dependencies.  

 

Docker has isolated containers that have everything that is needed to make a software 

run. It can include e.g. code, runtime, system tools and libraries, basically anything you 

can install on a server. Docker is not a VM though, it does not pack a whole operating sys-

tem. Docker “guarantees that software will always run the same, regardless of where it’s 

deployed” (Docker, 2017).   

 

As there were some issues with using Docker, because the CI environment itself was al-

ready a virtual host, the automation will have to wait till it is available, meaning that Docker 

will be put as requirement. After it is available, it should be quite easy to run the build on 

Jenkins, just need to add the new or updated set of shell commands in the job.  
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10 Conclusion  

We could say that the implementation was almost 100% success, as the only problem is 

to get the automation script running. As briefly mentioned before, there are still many 

things that can be improved and fixed, but the base of “Memory profiling” is now there, so 

future improvements won’t need as much of research, hopefully. Of course, it is important 

for Team Terra, and also Nexterday UI Platform to always have high quality which is why 

continuous improvement is also part of the continuous integration practice.  

 

We can’t yet say or see the “statistics” of how much this project has helped the develop-

ment process and code quality as in performance, but it is supposed to improve the feed-

back loop. In Comptel’s office, it is quite common to use these “radiator screens” to show 

Jenkins’ test builds where different colors indicate the status of the build, e.g. red means 

failure. Commissioning party was thinking if it would be possible to show Kibana view in 

the radiator screen. This way developers could see if there were some significant 

changes, for example developers can get a visual que from it if there’s a sudden drop, so 

they can make some further investigations on a possible memory leak. 

 

Automating memory profiling helps developers to get feedback faster, but at least with 

current parsing, it’s doesn’t show enough data to pinpoint the problem to specific part of a 

code. Of course, by running the script separately against individual components, we get to 

know in which component has the problem. As mentioned in the theory part of test auto-

mation, Chapter 6, manual tests are still need and they cannot be replaced fully.  

 

In this case, automation is still cost-effective solution, it does save time and it doesn’t 

seem to be very expensive to upkeep. The setting up is little bit more complex than ex-

pected, as it needs quite many tools (ElasticSearch, Kibana, Jenkins etc.) to show the 

data as infographic. The memory capacity for Kibana and ElasticSearch is also a possible 

future risk. There has not been a decision yet on the exact time span of profiling’s to be 

stored but eventually the old data is to be deleted entirely. 

 

Looking back to the implementation plan, I would say that it was overall quite good and 

well followed. We could’ve maybe added a phase for analyzing the gotten data as that 

took quite a lot of time. In the theory part, it was also brought up how tests should not be 

automated before the test cases are well thought through, in this case we didn’t have to 

think it that much as the tests are existing Nexterday UI Platform tests. Of course, we 

should look more into on what kind of data we are parsing, what info from the memory do 
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developers want and need, currently we only collect certain malloc data that matches the 

search condition, the feedback doesn’t tell us that much yet. The automation might not be 

as cost-effective as one would want just yet, but it definitely has the ingredients for further 

improvements and development. Previously in the chapter 6.3 we went through some 

basic practices and rules on when automation is good or bad idea, and it was mentioned 

that automation is good if it’s for performance testing. Even with current simple parsing, 

we are already getting some feedback on how much memory is being allocated, we only 

need to “enlarge the scope”. We want to have more memory related data. 

 

As it was revealed in chapter 9.5 that we can’t yet finalize the automation, we still have the 

feature ready and all that is needed is to have the Docker. The commissioning party esti-

mated that they could get everything done for this feature in one day approximately, but 

it’s more of a timing question.   
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11 General afterthoughts and self-evaluation 

During the development of this thesis there were not only office renovation but also huge 

architectural changes in the Nexterday UI Platform, as well as in development tools. For 

example moving from Mercurial to git and smaller repository sizes.  

 

Originally, I thought that I wouldn’t need to attend daily scrum, this was also recom-

mended by my commissioning party’s supervisor because I technically was not directly 

working on Nexterday UI Platform. But now after I think about it, not attending to daily 

scrums did backfire a little. This is because I was oblivious to big changes that affected 

my developing environment. Nothing lethal errors happened, thanks to version control I 

could always rollback to previous revisions, but I guess I could have saved some time if I 

were to know some things beforehand.   

 

Most frustrating thing, aside of inexperienced coding, was all those dependencies that af-

fected to the work. If I were to come up with a solution for one thing, it would later come to 

me that the fix can’t be implemented because of some other thing.  

 

Being my own project manager was little tough to me. I got often stuck on things that 

might’ve not been relevant at that point of development, this took a lot of time. I think that 

as a developer, you try to see the big picture, you might realize that most likely the current 

implementation does not work that well with other things and dependencies in the future 

and you want to avoid that. But of course, the main idea was to get out “a minimum viable 

product”, so that this memory profiling has the minimum necessities to run and work. 

 

As expected, learning new tools really takes a lot of time. Also, as a beginner in JavaS-

cript, coding also was very slow. However, as a lot of studying has happened, hopefully it 

also means that I have learned a lot. This project has given me a good insight to develop-

ment process and basics to many tools e.g. Karma and Nightwatch.js. I also got educated 

well on test automation.  

 

 

 



 

 

57 

References 

 
Ambler, S.W. 2017a. Introduction to Test Driven Development (TDD). URL: 

http://agiledata.org/essays/tdd.html. Accessed: 24.2.2017. 

 

Ambler, S.W. 2017b. Scott W. Ambler's Home Page. URL: http://www.ambysoft.com/scot-

tAmbler.html. Accessed: 23.2.2017. 

 
Ambler, S.W. 2017c. Examining the Agile Cost of Change Curve. URL: http://www.agile-

modeling.com/essays/costOfChange.html. Accessed: 24.2.2017. 

 

Basques, K. 2017. Fix Memory Problems. URL: https://develop-

ers.google.com/web/tools/chrome-devtools/memory-problems/. Accessed: 7.4.2017.  

 

Beverloo. P. 2017. List of Chromium Command Line Switches. URL: http://peter.sh/exper-

iments/chromium-command-line-switches/. Accessed: 15.4.2017. 

 

Bhattacharya, A. & Sundar, K.S. 2007. Memory leak patterns in JavaScript. URL: 

https://www.ibm.com/developerworks/library/wa-memleak/. Accessed: 3.4.2017.  

 
Comptel 2017. Life is Digital Moments. URL: http://www.comptel.com/. Accessed 

8.2.2017. 

 

Developers. 2017. Chrome V8. URL: https://developers.google.com/v8/. Accessed: 

13.3.2017. 

 

Dijsktra, B. 26.6.2014. The test automation pyramid. On test automation. URL: 

http://www.ontestautomation.com/. Accessed: 16.3.2017 

 

dsinclair@ & Nduca@ 2016. Trace Event Format. URL: https://docs.google.com/docu-

ment/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview. Accessed: 

21.3.2017. 

 

Docker, 2017. What is Docker? URL: https://www.docker.com/what-docker. Accessed: 

10.7.2017 

 



 

 

58 

Fernandes, J. & Fonzo, A.D. 2013. When to Automate Your Testing (and When Not To). 

URL: http://www.oracle.com/technetwork/topics/qa-testing/whatsnew/when-to-automate-

testing-1-130330.pdf. Accessed: 1.3.2017. 

 

Fewster, M. & Graham, D. 1999. Software Test Automation. ADDISON-WESLEY & ACM 

Press. New York. 

 

GitHub, 2017a. Redux. URL: https://github.com/reactjs/redux. Accessed: 9.6.2017. 

 

GitHub, 2017b. Bluebird. URL: https://github.com/petkaantonov/bluebird. Accessed: 

9.6.2017. 

 

Github, 2017c. Babel. URL: https://github.com/babel/babel. Accessed: 9.6.2017. 

 

Github, 2017d. Webpack. URL: https://github.com/webpack/webpack. Accessed: 

9.6.2017. 

 

Github, 2017e. Karma. URL: https://github.com/karma-runner/karma. Accessed: 9.6.2017. 

 

GitHub, 2017f. Nightwatch.js. URL: https://github.com/nightwatchjs/nightwatch. Accessed: 

9.6.2017. 

 

Google Dictionary, Firefox-browser. 2017a. URL: 

https://www.google.fi/search?q=API&ie=utf-8&oe=utf-8&client=firefox-

b&gfe_rd=cr&dcr=0&ei=OMm4WbTLNcmFZrKIqMAI. Accessed: 8.9.2017. 

 

Google Dictionary, Firefox-browser. 2017b. URL: 

https://www.google.fi/search?hl=en&q=Dictionary#dobs=node. Accessed: 8.9.2017. 

 

Google Dictionary, Firefox-browser. 2017c. URL: 

https://www.google.fi/search?hl=en&q=Dictionary#dobs=memory%20leak.  

 

Graham, D., Veenendaal, E.V., Evans, I. & Black, R. 2008. Foundations of Software Test-

ing. Cengage Learning EMEA. London. 

 

GraphicsMagick. 2017, URL: http://www.graphicsmagick.org/. Accessed: 25.8.2017. 

 

Gregory, J. & Crispin, L. 2014. More Agile Testing. Addison-Wesley. New York. 



 

 

59 

 

Kerr, D. 2015. Fixing Memory Leaks in AngularJS and other JavaScript Applications. URL: 

https://www.codeproject.com/Articles/882966/Fixing-Memory-Leaks-in-AngularJS-and-

other-JavaScr. Accessed: 2.3.2017. 

 

Kearney, M. 2017. Memory Terminology. URL: https://develop-

ers.google.com/web/tools/chrome-devtools/memory-problems/memory-101. Accessed: 

10.2.2017. 

 

Lewis, P. 2017. Rendering Performance. URL: https://developers.google.com/web/funda-

mentals/performance/rendering/. Accessed: 20.3.2017. 

 

Lewis, W.E. 2000. Software Testing and Continuous Quality Improvement. AUERBACH. 

Florida. 

 

Lodash, 2017. A modern JavaScript utility library delivering modularity, performance & ex-

tras. URL: https://lodash.com/. Accessed: 5.6.2017. 

 

Looper, J. 2015. A Guide to JavaScript Engines for Idiots. URL: http://developer.tele-

rik.com/featured/a-guide-to-javascript-engines-for-idiots/. Accessed: 23.5.2017. 

 

Moment.js. 2017. URL: https://momentjs.com/. Accessed: 25.8.2017. 

 

Nguyen, H.Q.  2001. Testing Applications on the Web. WILEY. New York.   

 

npm, 2017a. React. URL: https://www.npmjs.com/package/react. Accessed: 18.5.2017. 

 

npm, 2017b. Enzyme. URL: https://www.npmjs.com/package/enzyme. Accessed: 

18.5.2017. 

 

npm, 2017c. Chai. URL: https://www.npmjs.com/package/chai. Accessed: 18.5.2017. 

 

Odvarko, J.H & Walker, J. 8.2.2016. Merging Firebug into the built-in Firefox Developer 

Tools. Firebug web development evolved - development blog. URL: 

https://blog.getfirebug.com/2016/02/08/merging-firebug-into-the-built-in-firefox-developer-

tools/. Accessed: 13.2.2017. 

 



 

 

60 

Osmani, A. 2014. JavaScript Memory Management Masterclass. URL: https://speak-

erd.s3.amazonaws.com/presentations/5e0b4c70100801328edc52d4282366ee/Speaker-

Deck-_Memory_Management_Masterclass__DevTools___2_.pdf. Accessed: 9.2.2017. 

 

Peyrott, S. 26.1.2016. 4 Types of Memory Leaks in JavaScript and How to Get Rid Of 

Them. Auth0 blog. URL: https://auth0.com/blog/four-types-of-leaks-in-your-javascript-

code-and-how-to-get-rid-of-them/. Accessed: 27.3.2017. 

 

Puckett, D. 2011. The Importance of Agile Feedback Loops. URL: https://www.in-

foq.com/news/2011/03/agile-feedback-loops. Accessed: 25.4.2017. 

 

Rouse, M. 2014. Behaviour-Driven Development (BDD). URL: 

http://searchsoftwarequality.techtarget.com/definition/Behavior-driven-development-BDD. 

Accessed: 2.3.2017. 

 

SeleniumHQ. 2017. What is Selenium? URL: http://www.seleniumhq.org/. Accessed: 

10.3.2017. 

 

SmartBear. 2017. Why Automated Testing? URL: https://smartbear.com/learn/automated-

testing/. Accessed: 22.2.2017. 

 

Telerik 2017. URL: http://www.telerik.com/. Accessed: 1.2.2017. 

 

Vänttinen, A. 5.4.2016. Nexterday Acknowledged as a Campaign of the Year by Business 

Intelligence Group. Compelling Conversations - ComptelBlog. URL: 

http://comptelblog.com/2016/04/nexterday-award/. Accessed: 8.2.2017. 

 

W3Schools 2017a. JSON - Introduction. URL: https://www.w3schools.com/js/js_json_in-

tro.asp. Accessed: 16.3.2017. 

 

W3Schools 2017b. Browser Statistics. URL: https://www.w3schools.com/Browsers/de-

fault.asp. Accessed: 16.3.2017. 

 

Wikipedia, 2017a. Document Object Model. URL: https://en.wikipedia.org/wiki/Docu-

ment_Object_Model. Accessed: 14.4.2017. 

 

Wikipedia, 2017b. SpiderMonkey. URL: https://en.wikipedia.org/wiki/SpiderMonkey. Ac-

cessed: 13.3.2017. 



 

 

61 

 

Wikipedia, 2017c. Chakra (Jscript engine). URL: https://en.wikipe-

dia.org/wiki/Chakra_(JScript_engine). Accessed: 13.3.2017. 

 

Wikipedia, 2017d. Google Chrome Version History. URL: https://en.wikipe-

dia.org/wiki/Google_Chrome_version_history. Accessed: 20.6.2017. 

 

Wikipedia. 2016. OSS/BSS, URL: https://en.wikipedia.org/wiki/OSS/BSS. Accessed: 

5.2.2017. 

 



 

 

1 

Appendices 

Appendix 1. Browser Comparison Table 
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Appendix 2. Google Chrome DevTool Memory Profiling 
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Appendix 3. Google Chrome Heap snapshot 
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Appendix 4. Google Chrome Allocation Profiling 
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Appendix 5. Google Chrome Allocation Timeline 
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Appendix 6. Edge/IE11 Devtool Performance Tab 
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Appendix 7. Edge/IE11 Memory Tool 
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Appendix 8. Firefox Performance Tool 
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Appendix 9. Firefox Memory Tool 
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Appendix 10. profiling-parser.js 

 const http = require('http'); 

 const fs = require('fs'); 

 const JSONStream = require('JSONStream'); 

 const es = require('event-stream'); 

 const path = require('path'); 

 const program = require ('commander'); 

 const moment = require ('moment'); 

 

 program 

   .usage('Path to file') 

   .parse(process.argv); 

 

 

 

 if (program.args.length !== 1) { 

   console.error('ERROR! Not a valid argument.') 

   process.exit(); 

 } 

 

 function fsExists(path) { 

   try { 

     fs.accessSync(path); 

     return true; 

   } catch (error) { 

     console.log('Are you sure the given path is right? :', path 

); 

     return false; 

   } 

 } 

 

 

 if (fsExists(program.args[0])) { 

 

   const jsonData = program.args[0]; 

   const basename = path.basename(jsonData); 

 

   const split = basename.split('-'); 

   const date = moment(split[0], 'YYYYMMDD').format('YYYY-MM-DD 

'); 

   const time = moment(split[1], 'HHmmss').format('HH:mm:ss'); 

   const timestamp = `${date}${time}`; 
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   const componentName = split.pop().split('.').shift(); 

 

   const getStream = function () { 

     const stream = fs.createReadStream(jsonData, {encoding: 

'utf8'}); 

     const parser = JSONStream.parse('*'); 

     return stream.pipe(parser); 

 

   }; 

   getStream() 

     .pipe(es.mapSync(function (d) { 

      // let timestamp; 

       if (!(d instanceof Array)) { 

        //  timestamp = d['trace-capture-datetime']; //gives GMT+0 

and sometimes HH:M:s. Time is different than the one created "man-

ually" aka. file creation time. 

         //console.log(d); 

 

         return; 

       } 

 

       //Filtered data will be visualized 

       const list = d.filter(function (item) { 

         return item && item.name && item.name === 'periodic_in-

terval' && item.args; 

       }).map(function (item) { 

         // NOTE: if malloc.attrs.size.value is hexadecimal, you 

need to convert it into decimals!! 

         const mem = parseInt(item.args.dumps.allocators.mal-

loc.attrs.size.value); 

         if (!isNaN(mem)) { 

           return { 

             'pid': item.pid, 

             'tid': item.tid, 

             'ts': item.ts, 

             'cat': item.cat, 

             'name': item.name, 

             'memory_allocated': mem, 

             'run_time': timestamp, 

             'component': componentName, 

           }; 

         } 

         return null; 

       } 
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     ).filter((item) => { 

       return item !== null; 

 

     }); 

 

       console.log(d.length, list.length); 

 

       if (list.length === 0) { 

         console.log('Could not find data that match the require-

ments'); 

         return; 

       } 

 

       const outgoing = { 

         data: list 

 

       }; 

 

       const out = JSON.stringify(outgoing, null, '\t'); 

 

       //console.log(out); 

 

       //create a new JSON file to store parsed data 

       const filename = path.join(`parsed-${basename}`); 

       fs.writeFileSync(`${filename}`, out, 'utf8'); 

 

 

           //Using REST API to send data to host 

       const options = { 

         hostname: 'hrh7ds185.comptel.com', 

         port: 9200, 

         path: '/tracing/entry', 

         method: 'POST', 

         headers: { 

           'Content-Type': 'application/json', 

         } 

       }; 

 

       // one http.request() per list 

       const oneRequest = (outgoingData) => { 

         const req = http.request(options, (res) => { 

           console.log(`STATUS: ${res.statusCode}`); 

           console.log(`HEADERS: ${JSON.stringify(res.headers)}`); 

           res.setEncoding('utf8'); 
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           res.on('data', (chunk) => { 

             console.log(`BODY: ${chunk}`); 

           }); 

           res.on('end', () => { 

             console.log('No more data in response.'); 

           }); 

         }); 

 

         req.on('error', (error) => { 

           console.error(`problem with request: ${error.mes-

sage}`); 

         }); 

 

       // write data to request body 

         req.write(outgoingData); 

         req.end(); 

 

       }; //end of oneRequest 

 

       list.forEach(function (item) { 

         const showStatus = JSON.stringify(item); 

         oneRequest(showStatus); 

       }); 

 

     } 

)); 

 } 

 

 


