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1 Introduction 

The turn of the millennium saw ever more rapid changes in the information technol-

ogy landscape, with adoption of Software-as-a-Service (SaaS) systems increasing over 

five-fold since 2011 (Burger 2014). While cloud-based solutions have further gained 

popularity in 2010s, the old and established on-premise enterprise solutions are by 

no means going away, with organizations increasingly often maintaining a combina-

tion of on-premise and cloud applications.  

Integration of applications has long been a staple for larger enterprises looking to 

simplify and improve data administration, with multiple solution providers to cater 

for companies’ integration needs for on-premise systems. With the adoption of 

cloud-based services, the demand for integrations has also shifted to target applica-

tions on the cloud. Cloud applications may consist of individual functionalities such as 

message queues, machine learning modules or data storage, for which data connec-

tions and integrations need to be separately configured. In a more traditional on-

premise scenario, the integrated system has been a complete solution with existing 

interfaces. With no precedent or ready-made implementations on integrating a cloud 

platform with more traditional integration solutions, a proof-of-concept methodol-

ogy is required to effectively integrate cloud services with existing integration solu-

tions. 

While traditional methods of integration are well-established and in widespread use, 

the challenge lies in designing and implementing a solution which extends the tradi-

tional integration architecture to function for a cloud-based environment. Simultane-

ously, the solution should utilize the unique features of the cloud to support the tra-

ditional methods of implementation. This research focuses on creating an integration 

to connect an Amazon Web Services environment with an on-premise IBM Enterprise 

Service Bus implementation to allow for message transfer from cloud-based applica-

tions to on-premise applications in a scalable and extendable manner.  
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2 Research design 

2.1 Purpose of the research 

The goal of the research is to introduce an integration to connect endpoints in mod-

ern cloud environments to systems running within an on-premise environment, al-

lowing for data transfer between the endpoints. With adoption of cloud-based sys-

tems experiencing double-digit percentual growth rates (Gartner, 2018; Synergy, 

2018; Forbes, 2018), the proposed integration solution would also have to scale in 

both data volume and number of endpoints in order to provide a viable long-term so-

lution to integrating the cloud with the on-premises environment.  

As the integration solution is intended to be implemented within an enterprise envi-

ronment with production- and business-critical data, special attention must be paid 

to the quality and reliability of the data to be transferred through the integration. En-

terprise advisor Gartner estimated the annual cost of poor-quality data to an enter-

prise to be an average of 15 million USD, with increasing challenges to maintain qual-

ity data as the complexity of information technology environments increases (Moore, 

2018). In a similar trend, IBM estimated the annual cost of poor-quality data to the 

US economy to be in the trillions (Extracting business value from the 4 V’s of big 

data, N.d.). For the purpose of this research, the quality and integrity of data within 

the scope of the integration will be accounted for by implementing quality-of-service 

targets. The targets chosen for this research are outlined by Allen Brown (2001) in his 

paper on reliable messaging, consisting of the following aspects: sender and recipient 

authentication, traceability of messages, only-once receipt of messages, preservation 

of message order and delivery failure notifications to both the sender and recipient 

of the message.  

For the purpose of this research, the scope of the integration is strictly limited to the 

minimal functional implementation that fulfills the scalability and reliability require-

ments imposed in previous chapters. The direction of data flow will be limited to 

cloud services as the system of origin, and on-premise services as the destination 
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endpoint. Cloud infrastructure and service provider Amazon Web Services, and more 

specifically their message queue service Simple Queue Service, will be used as the 

starting point for the data. The middleware used to connect Amazon Web Services to 

the on-premise services is limited to IBM’s App Connect Enterprise and MQ Web-

Sphere systems. On-premise application interfaces are mimicked by implementing a 

File Transfer Protocol (FTP) server and a Hyper Text Transfer Protocol (HTTP) echo 

server. The combination of FTP and HTTP servers provide a method to verify a suc-

cessful distribution of messages to separate destinations, in addition to verifying the 

functionality for two common interfaces.   

While important in an enterprise or production environment, the target solution will 

not implement thorough logging, high availability or security features, other than the 

minimum required to satisfy the aspects of reliable messaging. A genuine production 

environment would likely benefit from implementation of features such as data 

warehousing, redundancy or clustering of each part of the integration, proxies, moni-

tored access layers and gateways, backups, as well as alerts in case of errors or unex-

pected situations.  

2.2 Research method 

The chosen research methodology is design-based research, as this method allows 

for a flexible way of generating new understanding of how to solve practical issues by 

iterating and building on existing theory and research. Hoadley (2004) places design-

based research on the opposite end of the spectrum from scientifically rigorous and 

structured experimental research, as design-based research is often highly depend-

ent on the exact context in which it was performed. 

Contrary to more traditional research methods which thrive in controlled laboratory 

settings, design-based research is by nature rooted in real-world settings with a mul-

titude of variables affecting the research outcome. The research process itself is flexi-

ble and may be adjusted during research to better fit the required objectives, pro-

vided that the adjustments and the reasoning behind the adjustment is documented 
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through the process. Hoadley (2004) points out, that design-based research ap-

proach requires a sufficient amount of self-reflection and introspection from the re-

searcher during the research process but is capable of producing powerful results 

when the design context is taken into consideration. Wang and Hannafin (2005) also 

point out, that results obtained through design-based research are considered to fit 

real-world scenarios better than results obtained in tightly controlled environments. 

(Hoadley, 2004; Wang, & Hannafin, 2005, 8.)  

Additionally, design-based research stresses the importance of flexibility and itera-

tive process, where the researcher and practitioner work in tandem to develop ap-

proaches to solve practical problems. In practice, the line between a researcher and 

a practitioner is often blurred in design-based research, where both sides influence 

each other to reach the best possible outcome for the challenge studied. The itera-

tive nature of the research method signifies that the cycle of design, implementation, 

analysis and redesign may be completed multiple times before reaching the optimal 

solution. (Wang, & Hannafin, 2005, 8.) 

Even though design-based research is flexible and dynamic by its nature, the initial 

designs and theories are still steadily grounded in existing theory and research. Exist-

ing literature regarding the subject matter forms a solid base for the research, with 

focus of the research targeting either problems identified by existing knowledge, or 

gaps of information. (Wang, & Hannafin, 2005, 8-9.) 

Literature on design-based research indicates that the methodology has been heavily 

utilized in the context of researching education methods, where highly structured 

scientific experiments cannot account for the possible variables arising from the con-

text of a classroom. In a similar manner, information technology systems and their 

different implementations in various corporate environments provide such a wide 

scale of variables, that design-based research is likely to provide a more practical an-

swer to the research problem than a rigorous scientific experiment. Each information 

technology environment is different, and by accounting for the specific context in 

which the research has been conducted, the solution may be applied to different 
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types of environments by evaluating and adapting the context-specific actions taken 

in this research.  

For this research, existing literature and documentation is used as a base for imple-

mentation of the solution. Data integration is by no means a new field within infor-

mation technology, with multitude of recommendations and implementations on ef-

fective integration methods, discussed further in Chapter 4. However, as the emer-

gence of cloud environments is a relatively recent phenomenon, the interplay of 

cloud and on-premise system integrations is a fresh field with little or no studies on 

the matter. Design-based research method is used to attempt to fill the gap in 

knowledge in the specific scope of this research by building upon existing theories 

and knowledge, and by adapting the knowledge to fit modern landscapes.  

As the research concerns new knowledge, building the solution will be an iterative 

process, where challenges and issues encountered during the research will also 

shape the design to account for the specific context of the environment. Design 

choices and strategies are identified during the research in order to provide a prag-

matic solution to the research problem, which can be applied to similar real-world 

situations.  

The research mainly consists of qualitative research, where information is reviewed 

and generated to produce new knowledge – in this case, a functional generic integra-

tion to unite endpoints in cloud and on-premise environments. The result of the re-

search will be assessed in a qualitative manner to review how well the implementa-

tion fits the available theoretical basis.  

2.3 Research credibility 

In order to ensure credibility and reliability of the research, current knowledge base 

upon which the new knowledge is built is sourced from peer-reviewed documents 

where possible. However, as specific information technology systems are rarely the 

target of scientific publications, documentation, knowledge base articles and best 
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practice recommendations by leading organizations within their field are considered 

as credible source of information.   

Even though most recent articles are likely to accurately portray the current state of 

the field, finding recent publications on specific information technology topics can be 

a challenge. Some topics (such as protocols, data structures and fundamentals of 

data integration) have changed little in the past decades, and publications from early 

2000s or even 1990s still provide valid information for modern implementations, as 

the principles governing these topics have remained unchanged. While modern pub-

lications by reliable sources are preferred, information has also been drawn from 

older publications where the underlying principles still hold true.  

2.4 Research environment 

The research environment consists of the bare minimum of services required to im-

plement a generic integration from Amazon Web Services (AWS) to on-premise ser-

vices. The information technology system for this research includes one AWS account 

used for cloud-based services, an internal network environment with internet con-

nectivity and the capability to route traffic from its public IP address to internal net-

work, as well as a server infrastructure environment within the internal network to 

host integration and target application services.  

AWS cloud service contains the components responsible for creation of data, as well 

as the functionality to send data to the on-premise environment. The on-premise en-

vironment contains a network device capable of routing the incoming traffic to a 

dedicated integration server, as well as target servers to which the data from AWS 

needs to be transferred. A professional corporate network would also need to ac-

count for other components and practices not present in this proof-of-concept envi-

ronment, such as firewalls, network segmentation and active directory components. 

The introduction of these components would likely result in minor configuration 

changes unique to the specific target environment, but the principles presented in 

this research remain the same.  



11 
 

 

3 Integration and messaging concepts 

3.1 Enterprise Application Integration 

Enterprise Application Integration (EAI) allows for different applications to exchange 

information between each other through message-based data transfer (What is inte-

gration? N.d.). Lee, Siau and Hong (2003) further extend the term EAI to concern in-

tegrating existing applications in an enterprise environment with new applications, 

allowing for reuse of existing resources in tandem with new features or data brought 

in by new applications. Lee et al. (2003) also describe EAI as having a middleware 

serving as a common interface to which all integrated applications can connect to, in-

stead of applications connecting directly to each other in a point-to-point manner, 

reducing the need for integration programming. 

The value of EAI market at a global scale was estimated to be just over 10 billion USD 

in 2017, with expectations of significant growth in the following years. Drivers for EAI 

market growth include, for example, growth in implementations of cloud-based ERP 

systems, increasing adoption of e-business and ever more common automation of 

business processes. IBM Corporation is among the most important EAI stakeholders, 

alongside organizations such as Microsoft Corporation, major enterprise resource 

planning software provider SAP SE and technology company Oracle Corporation. 

(More 2020.) 

3.2 Message 

In integration terms, a message is some form of a data structure containing header 

information and a message body. The data structure is not limited to any specific for-

mats, but rather must be understood by the integration middleware. Message 

header information contains metadata used by the middleware to process the mes-

sage, while the message body contains the actual information to be passed between 

the integrated systems. (Messaging Patterns N.d.) 
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3.3 Reliable Messaging 

Reliable Messaging requires that no messages are lost during integration, even if the 

messages are not sent in a transactional manner – an especially important concept 

for high-reliability applications. In practice, this may consist of returning an error re-

sponse to the source system in the case of a socket-based connection, or retaining 

the data contained within the message in the case of a failed transfer in order to al-

low for reprocessing of the message. (Reliability Patterns N.d.)  

Brown (2001) further specifies quality-of-service objectives for implementing Relia-

ble Messaging to include the following five principles, of which the first four are con-

sidered uncontroversial:  

- Authentication of both sender and recipient of messages 

- Traceability of messages through the integration 

- Message delivered exactly once 

- Order of messages should be maintained 

- Both the sender and the recipient should be notified of a delivery failure 
 

As the last principle imposes additional requirements on how to receive reports of 

failure upon the recipient system, delivery failure notification is here considered to 

be a principle that should be implemented at a best-effort level. Failure notifications 

will only be sent to systems capable of receiving them, while ensuring that every de-

livery failure will be reported to some extent.   

3.4 Scalability 

In the scope of this research, scalability concerns the ability to add new applications 

to the integration solution with minimal effort or required code changes. An easily 

scalable solution removes the need to go through the process of regression testing to 

verify the continued functionality of the integration. Likewise, when a deployment of 
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new codebase is not required, the time and costs required to introduce new applica-

tions to the integration are reduced significantly.   

3.5 Service-Oriented Architecture 

Service-Oriented Architecture (SOA) denotes a concept, where applications provide 

functionality in the form of services reusable across the application (Menge 2007).  

Services adhering to SOA principles may be coupled together into larger constructs to 

execute more complex actions, and each service may be reused at will in different 

constructs. As the users of the service are not aware of the underlying implementa-

tion, the services can be changed or updated at will without changes to the service 

user’s implementation. (Tyson 2020.)  

3.6 Enterprise Service Bus 

Enterprise Service Bus (ESB) is a message-based integration infrastructure that medi-

ates between multiple distinct applications in a flexible manner (Schmidt, Hutchison, 

Lambros & Phippen 2005; Menge 2007).  

ESB is as an enabler of SOA by acting as the flexible connector of services. ESB is not 

restricted to any specific protocols or standards, thus allowing for creation of con-

nections between systems that would otherwise be incompatible. The implementa-

tion of protocols and connections is conducted within the ESB, and as a result the 

sending and receiving systems do not need to be aware of the internal workings of 

ESB for the connectivity to take place. (Schmidt et al. 2005; Menge 2007.)  

Additionally, ESB may operate on the messages transferred from one application to 

another in order to satisfy the requirements imposed by the recipient system. This 

may include actions such as data transformation and mapping between the systems, 

routing choices, encryption actions or message format changes. ESB may also hold 

the role of a mediator or a validator, tracking and monitoring the flow of the 
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messages from one system to another to provide insight into integration reliability 

and troubleshooting scenarios. (Schmidt et al. 2005; Menge 2007.) 

3.7 Amazon Web Services 

Amazon Web Services (AWS) is a cloud computing platform providing a variety of ser-

vices to individuals and enterprises at a global level. These services include, for exam-

ple, storage space, machine learning capabilities and databases optimized for specific 

applications. As a cloud computing platform, the underlying infrastructure is man-

aged by Amazon, while the customer manages the service itself. (Cloud computing 

with AWS N.d.) 

3.8 Message Queue 

Message Queue (MQ) is a temporary storage location to hold messages in a buffer 

between a sending and a receiving application, allowing for an asynchronous manner 

of communication between the two (Sharma 2019; Message Queues N.d.; Johansson 

2019). 

In addition to asynchronous communication, message queues provide a way to de-

couple applications from one another, allowing for communication between the two 

systems without the applications being aware of each other. This provides benefits in 

easier maintenance of the applications, ability to control communication between 

the systems in a more specific manner and allows for independent development of 

each application without interdependencies. (Johansson 2019.) 

The specific message queue providers to be used in the scope of this research are 

IBM Corporation’s WebSphere MQ and AWS’s Simple Queue Services (SQS). IBM 

WebSphere MQ service is used alongside ESB functionality, while SQS queues are uti-

lized as data sources on AWS platform.   



15 
 

 

3.9 AWS Lambda 

AWS’s Lambda is a service which allows for execution of custom code, which may be 

triggered from other AWS services, HTTP endpoints or other activity (AWS Lambda 

N.d.). For the scope of this research, the use cases for Lambda functions consist of 

manipulating data in SQS queues, namely by populating SQS queues with test data 

and delivering data from queues to ESB.  

3.10 CloudWatch 

Amazon CloudWatch is a monitoring and logging service, which provides logs and 

statistics on health and execution of applications within AWS environment (Amazon 

CloudWatch N.d.). For the scope of this research, CloudWatch is used to monitor the 

health and actions of Lambda functions used to populate test data and deliver data 

to ESB.  

3.11 Protocols 

3.11.1 HTTP and HTTPS 

Hypertext Transfer Protocol (HTTP) is a client-server protocol used to exchange data 

over the internet. A typical HTTP data exchange starts by the client sending a request 

to a web server and ends by the server responding with a HTTP response message, 

containing metadata regarding the request as well as information returned from the 

server.  (An Overview of HTTP N.d.) 

HTTP allows for authentication within the request made by the client. A common 

form of authentication, “Basic”, can be implemented by adding the Authorization -

header to the HTTP request. An Authorization-header should contain the text “Basic” 

followed by a space, to which base64-encoded colon-joined username and password 

are appended.  This form of authentication is not secure unless performed over a 

HTTPS connection. (HTTP Authentication N.d.) 
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Hypertext Transfer Protocol Secure (HTTPS) uses Transport Layer Security (TLS) pro-

tocol to encrypt the underlying HTTP protocol, allowing for transmission of sensitive 

data over the HTTP protocol securely. TLS utilizes a public-private-key encryption 

method to encrypt the data and relies on domain-specific certificates signed by ex-

ternal parties to deliver the public key required for data encryption, and simultane-

ously act as server authentication. (What is HTTPS? N.d.)  

3.11.2 FTP and SFTP 

File Transfer Protocol (FTP) can be used to efficiently transfer files across the internet 

in a client-server-based manner. FTP adds reliability to file transfers to and from a re-

mote computer and circumvents potential file system incompatibilities between the 

source and destination machines. FTP connection is initialized by creating a control 

connection from the client to the server, in which commands and responses between 

the client and the server are transferred. Executing a command to transfer a file re-

sults in opening of a data connection, responsible for the process of transferring the 

file data, after which the data connection is closed. (FTP N.d.) 

SSH File Transfer Protocol (SFTP) implements the traditional FTP functionality over 

Secure Socket Shell (SSH) protocol, which has a more robust set of security and au-

thentication features. Essentially, SFTP is a secure version of FTP. (SFTP – SSH Secure 

File Transfer Protocol N.d.) 

3.12 Data structures 

3.12.1 XML 

eXtensible Markup Language (XML) is a structure for data storage and transporta-

tion. An XML document consists of tags in a tree-like format, where only one tag may 

be at the highest (root) level of the document, and all remaining tags must be under 

another tag. A tag consists of tag name, attributes and a value – for example, <date 

type=”creation”>2020-08-20</date> would have a name of “date”, an attribute 

named “type” with a value of “creation”, and the value of “date” tag would be 
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“2020-08-20”. Definition of tag names and XML structure is left to the author of the 

document. (Introduction to XML N.d.) 

As XML provides a structured syntax to store data, an XML document can be manipu-

lated programmatically. As a result, XML is a popular choice for message format in in-

tegrations, as XML can be easily parsed and manipulated by integrations.  

3.12.2 SOAP 

Simple Object Access Protocol (SOAP) is an application communication protocol 

based on XML, used in sending and receiving messages with a more strictly defined 

structure than in XML.  While structured like a regular XML message, SOAP has a 

stricter requirement on required elements and structure. A SOAP message is re-

quired to use SOAP Envelope namespace within the XML message and must contain 

the Envelope -element at the root of the message. A SOAP message must also con-

tain a Body -element under the Envelope-element and may optionally contain 

Header and Fault elements under the Envelope-element. (XML Soap N.d.) 

3.12.3 JSON 

JavaScript Object Notation (JSON) is, like XML, a syntax for storing and transferring 

data. JSON syntax is based on JavaScript and operates on key-value pairs of infor-

mation in a tree-like structure. (JSON Introduction N.d.) 

Like XML, JSON datasets can be manipulated and transformed programmatically, and 

are often used to transform information in web-based applications.  

3.13 Programming languages 

3.13.1 Node.js 

Node.js is a JavaScript runtime designed for building network applications, allowing 

for asynchronous and concurrent execution of code (About Node.js N.d.). Node.js is 
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used to run JavaScript code, and is among the runtime environment choices for AWS 

Lambda functions (Building Lambda functions with Node.js, N.d.).  

3.13.2 ESQL 

Extended Structured Query Language (ESQL) is a programming language specific to 

IBM’s Integration Bus ESB. ESQL is based on the traditional Structured Query Lan-

guage (SQL), but also includes additional features and properties useful in accessing 

and manipulating IBM’s product-specific structures within messages in message 

flows. (ESQL Overview, N.d.) 

4 Theoretical framework 

4.1 Integration design 

Integrating data and applications is by no means a new business. 1960s saw the first 

emergence of transaction processing systems, with database management systems 

following in 1970s and various decision support systems to support business pro-

cesses emerging in 1980s. 1990s saw an ever increasing adoption of the Internet and 

globalization, driving the need to integrate multiple distinct systems. Enterprise Ap-

plication Integration (EAI) as a widespread concept emerged in late 1990s to reduce 

programming complexity and costs of integration between systems and has been the 

target of extensive research and studies since its birth. (Lee et. al. 2003.) 

The early years of EAI brought about two main design paradigms for integrations: 

point-to-point integration and hub-and-spoke integration. True to the name, point-

to-point integrations consisted of applications communicating directly with each 

other, either synchronously or asynchronously through Message-Oriented Middle-

ware (MOM) such as message queue brokers. An example architecture of point-to-

point integrations is displayed below in Figure 1. (Gulledge 2006, 9-10; What is inte-

gration? N.d.) 
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Figure 1: Point-to-point integration architecture 

 

While point-to-point integration is maintainable in smaller environments, increas-

ingly large number of applications would quickly overwhelm the number of required 

integrations. Any updates to infrastructure of member applications would also cause 

significant maintenance efforts. Hub-and-spoke design solves the complexity prob-

lem by introducing a central broker (the “hub”), which creates separate connections 

(“spokes”) to each application. A simple hub-and-spoke integration design is por-

trayed in Figure 2. (Gulledge 2006, 14; What is integration? N.d.) 

 

 

Figure 2: Hub-and-spoke integration design 
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On the other hand, introducing a central hub through which all connections are 

formed creates a single point of failure; should the hub be unavailable, none of the 

connections between applications would function. While the maintenance efforts are 

smaller in hub-and-spoke designs, the hub point still acts as a potential point of fail-

ure and a potential bottleneck in terms of resources and scalability. (What is integra-

tion? N.d.) 

While ESB resembles EAI’s hub-and-spoke design, SOA principles are utilized to cre-

ate standardized services reusable for multiple integrations, further decreasing the 

complexity of hub-and-spoke based integration designs (What is integration? N.d.). 

Where each application in a hub-and-spoke design may contact the central broker in 

a unique format, ESB enforces specific standards to be used for connections, regard-

less of the connecting application. Enforcing specific standards allows ESB to use a 

limited number of services to connect with a larger number of applications, while uti-

lizing additional containers for other functionalities, such as message routing or 

transformation. (Menge 2007.) 

Menge (2007) illustrated a simple ESB overview with an unspecified number of con-

tainers, shown in Figure 3. Each ESB service container may contain multiple function-

alities, though only a limited set are shown in the overview. Functionalities within the 

containers are modular, and therefore reusable by multiple applications; for exam-

ple, two different applications connecting to the application in Menge’s ESB overview 

could likely both utilize the same Application Adapter, even if both connecting appli-

cations had undergone different logic through ESB. In a similar manner, a common 

application could be used to transform messages between multiple different sys-

tems, if the logic for message transformation is common between all messages. 
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Figure 3: Simplistic ESB overview 

 

The focus of this research is to provide SOA based approach to integrate systems in 

AWS environment to third party applications. While the theoretical basis for ESB im-

plementation architectures is broad, AWS is such a new environment that best prac-

tice implementations and theories have not yet been crafted for integration pur-

poses. In this research, lessons from ESB architecture and design in traditional envi-

ronments are transferred to the implementation within AWS environment where 

possible.   

4.2 Reliable messaging 

4.2.1 Using reliable messaging to guide implementation 

The concept of reliable messaging was introduced in Chapter 3.4, defined by Brown 

(2001) to include requirements of authentication of sender and receiver, traceability 

of messages, exactly once transfer of messages, maintained message order and fail-

ure notification when unable to deliver a message. The specific method of fulfilling 

each requirement is left to the implementer and will likely vary across different 
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environments. Theoretical basis for implementation of each requirement is exam-

ined based on requirements set for this research and may require significant re-ex-

amination when applied to a different setting.  

4.2.2  Sender and recipient authentication 

Authentication entails verification of identity to ensure that the user or service being 

authenticated is who they claim to be (Authentication and Authorization N.d.). In or-

der to fulfill the authentication requirement of reliable messaging principles, both 

the client and the server should authenticate each other in order to ensure that mes-

sages are transferred between the intended parties. Available authentication meth-

ods vary across different services, but in general, clients are often authenticated us-

ing credential checks such as password challenges or security tokens, while servers 

are usually authenticated through certificates.  

Authentication and authorization are implied to be synonymous in the requirement 

of sender and recipient authentication. Authentication concerns the identity of the 

service, while authorization focuses on the permissions which the authenticated ser-

vice has access after a successful authentication (Authentication and Authorization 

N.d.). In order to keep the scope of this thesis limited, authenticated services are also 

assumed to be authorized, and no separate permission schemes are implemented. In 

practice, especially on production environments, authorization schemes should be 

implemented to ensure system security. Preferably, principles of Least Privilege 

should be followed in order to provide as little access as required to perform the re-

quired tasks, in order to limit potential damage from accidents, errors and abuse 

(Saltzer & Schroeder 1975, 1282).  

Web interfaces support a multitude of authentication methods, including username-

password combinations, cookie-based authentication, tokens and signatures. Of 

these, the simplest method to implement is HTTP Basic Authentication. Basic Au-

thentication involves providing a base64-encoded username and a password within 

the HTTP request headers, and is used for the purpose of this research where appli-

cable. HTTP Basic Authentication itself does not provide any encryption, but instead 
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relies on sufficiently well encrypted connections to keep the credentials secure. 

(Nemeth 2015.) 

As the focus of the research is the overall architecture of the implemented integra-

tion solution, the authentication methods utilized in this research have been chosen 

based on ease of implementation, rather than security. If HTTP Basic Authentication 

is used in production environments, the surrounding environment should be 

properly configured to use HTTPS connections, or another authentication method 

should be considered instead. Some environments may also benefit from using Light-

weight Directory Access Protocol (LDAP) queries for centralized authentication and 

authorization checks.  

Recipient authentication can be implemented by creating SSL certificates for the re-

cipient services and using HTTPS connections to securely connect to the target recipi-

ents. SSL certificate contains the recipient’s domain name, validity time, issuer infor-

mation and public key to allow for connection encryption between the recipient and 

the sender. The sending party can verify the authenticity of the recipient’s SSL certifi-

cate with the certificate issuer, and if the check fails or cannot be performed, the re-

cipient can be deemed untrusted. (What is an SSL Certificate? N.d.)  

Recipient authentication has not been implemented for this research due to the ad-

ditional complexity of setup, requiring introduction of signed certificates for server 

authentication. In production settings, recipient authentication should be performed 

with SSL certificates or other possible authentication schemes in order to ensure se-

cure transfer of data between correct endpoints.  

4.2.3 Message traceability 

Message traceability implies that the movements and actions of each message re-

ceived by the ESB can be followed through the integration, from the moment of arri-

val to the integration to the moment of delivery to a target application. Tracing, as a 

process, is usually used for debug and performance analysis purposes, and usually 
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entails the recording and storage of runtime events for later analysis (Kraft, Wall & 

Kienle 2010).  

The frameworks and methodologies for implementing traces vary across applications 

and need to be implemented on a case-by-case basis. As this research focuses on us-

ing AWS and IBM’s App Connect Enterprise, message tracing is implemented for 

methodologies available within AWS and IBM’s platforms. The central ideas for trac-

ing follow some of Kraft and colleagues’ (2010) lessons from their documented im-

plementation, regardless of the framework used.   

The main concepts to be traced by Kraft and colleagues (2010) included the identity 

of the process being traced, timestamp for the trace as well as the reason for the 

trace. The main considerations revolved around overhead, system resources and effi-

cient tracing, likely due to the highly resource-restricted environment in which the 

experiments were performed. Despite resource overhead concerns, permanent trac-

ing was recommended. Integrated tracing within software would be a permanent 

and tested fixture of the program, more likely to be maintained even after updates 

to the software. Permanent tracing would also produce on-demand diagnostics and 

logs, allowing for developers to rely on these logs as a source of diagnostic data. Ad-

ditionally, tracing overhead costs were minimal when compared to benefits reaped 

from traces. Storage of traces was recommended to be on fixed-size ring-buffer on a 

pre-initialized data structure. Traces should also be simple and devoid of logic where 

possible. (Kraft, Wall & Kienle 2010.) 

In contrast to Kraft and colleagues’ environment, the infrastructure used for this re-

search is not particularly resource-limited, even though higher efficiency and less 

overhead can be argued to be preferable. As resources are not considered limited, 

implementation of tracing will focus on the functional lessons from Kraft and col-

leagues and overlook the resource-optimization side of implementation. Trace logs 

will include the “what”, “when” and “why” of the integration: integration and mes-

sage identity, timestamp and status (or error) information. An ideal implementation 

of trace logs would follow Kraft and colleagues’ suggestion of fixed-size log files but 

tap into the larger amount of resources available and implement a set of rotating log 
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files. New log files would be created after a set time period, or when the old log files 

reach a certain size, providing a longer history of diagnostic data. Logs are by default 

split into multiple files on AWS platform with CloudWatch logs, while file-level logs 

for IBM’s ESB would require additional configuration. Configuration of split logs for 

ESB has been left out of scope for this research. An ideal solution would also unify all 

log files to be centrally available from a single source, with unified or highly similar 

structure to allow for easier diagnosis. Utilizing logging solutions such as Splunk or 

ELK to collectively store traces from multiple locations would provide a single plat-

form from which tracing information could be examined for debugging or analysis 

purposes. For the purpose of this research, the availability of logs in two separate lo-

cations (AWS and ESB) is deemed adequate for the purpose. 

4.2.4 Exactly once receipt of messages 

The concept of exactly once receipt of messages strongly relates to integrity of data 

in the receiving system, as any missing messages or duplicate messages may lead to a 

different set of data present in the recipient system compared to the sender system. 

The exact consequences of duplicates or missing messages vary based on the recipi-

ent system type. Some systems, such as applications hosting financial transactions or 

orders, require exactly once delivery by their nature in order to avoid compromising 

data integrity. More informative systems, such as applications handling the most re-

cent stock price values, would not be completely compromised by an undelivered 

message. (Messaging Concepts N.d.) 

Additional safeguards for exactly once receipt of messages include durability of mes-

sages and transactions. Durability of messages implies that the messages will persist 

in a permanent storage through system shutdown, even if the shutdown occurred 

during message processing (ibid.). In practice, durability requires messages to be 

stored within persistent data structures such as message queues, in contrast to non-

durable Remote Procedure Calls (RPCs), where the message is processed synchro-

nously without intermediate storage of the message contents.   
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Transactional processing means that the processing cannot be partially successful; if 

a single part of the processing fails, the successfully processed parts within the trans-

action will be rolled back as well, with changes to all systems committed only if all ac-

tions were successful (Transaction Processing 2017). In order to ensure exactly once 

receipt of messages, the integration solution must be implemented by accounting for 

the principles of transactional processing.  

4.2.5 Maintained message delivery order 

Maintained message delivery order means that the messages sent directly between a 

specific sender and recipient will always be received in the same order in which they 

were sent (Message Delivery Reliability N.d.). This is especially critical for systems re-

lying on the correct order of events, as a wrong order of events may result in a com-

pletely different outcome compared to the correct order of events. A practical way 

for maintaining message delivery order is to process messages in a First-In-First-Out 

(FIFO) basis, where the first messages to arrive on the message queue are the first 

ones to be processed (Priority N.d.; Amazon SQS FIFO (First-In-First-Out) queues 

N.d.). Both AWS and IBM provide message queues with FIFO-capability and are used 

for the purpose of this research to ensure maintained order of messages.  

4.2.6 Delivery failure notification to all parties 

Delivery failure notification, especially to the sending party, is important in maintain-

ing the exactly once delivery principle in the event of a processing failure of the mes-

sage. Without a success or failure acknowledgment, the sending party has no way of 

knowing whether the message has been processed successfully. Failure notification is 

crucial for determining if the message needs to be resent due to temporary or per-

manent delivery failures. Temporary delivery failures include issues which resolve 

without changes to the message, such as network connection issues. Permanent de-

livery failures refer to problems within the message, which make the message unde-

liverable, such as syntax errors. The sending party needs to be informed of a tempo-

rary failure in order to retry sending the message or transfer the message to a Dead 

Letter Queue in the case of a permanent failure. (Mitchell 2017.) 
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The purpose for a delivery notification failure for the recipient is debatable, as the re-

ceiving system is usually either technically unable to receive failure notifications, or 

unable to act based on the notifications. As an example, an FTP server would not 

have a method to receive information that the processing of a message targeted to-

wards the FTP server failed, nor could the FTP server affect the processing of the 

message in any manner. Similarly, should the delivery failure occur due to inability to 

contact the FTP server, notifying the server of the failure would also likely end up in a 

failure. Therefore, for the purpose of this research, failure notifications for the recipi-

ent are left out of scope. Some scenarios may include valid reasons for additional no-

tifications to the recipient in the event of processing failures, in which case the meth-

odology for handling delivery notifications should be planned based on the exact cir-

cumstances within the environment.  

5 Implementation 

5.1 Implementation overview 

While design-based research allows for iteration throughout the research process, 

the overall architecture of the implementation remained nearly unchanged through-

out the implementation phase. The original high-level architectural design proved 

suitable for the solution implementation, and the main changes and tweaks to the 

implementation occurred within individual components. The final architecture con-

sists of two main environments: AWS and the internal network of the research tar-

get, separated by public internet. Figure 4 displays the high level architecture of the 

implemented solution. 



28 
 

 

 

Figure 4: Implementation architecture 

 

The AWS environment contains two SQS queues to serve as data pickup points. In a 

real-world scenario, applications would deliver messages to these SQS queues. The 

number of SQS queues to be used as source points can be extended at will with no 

changes to code. The SQS queues are set as triggers for a single Lambda function, 

ACEConnector. ACEConnector is responsible for reading the messages from the 

source queues, transmitting the messages across the internet to ESB and deleting the 

messages from the source queues if the transfer was successful.  

The internal network of the research target contains an ESB implementation consist-

ing of IBM’s WebSphere MQ message queuing platform and IBM’s App Connect En-

terprise integration broker, as well as target applications simulating receiving appli-

cations. AWS_Connector is an application within the ESB, responsible for receiving 

data from AWS. AWS_Connector exposes a HTTP interface to the public internet, ca-

pable of receiving HTTP POST requests. AWS_Connector application receives and dis-

tributes the messages sent by AWS’s Lambda internally to other ESB applications by 

determining the correct route from AWS source queue names. After distribution, 

each intermediate ESB application handles the messages based on internal logic of 
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the application, before transmitting the messages to receiving systems. For the pur-

pose of this research, receiving services were simulated with one fully functional FTP-

server and a HTTP echo server, but could in production scenarios include specialized 

systems such as ERPs, data warehouses or Customer Relationship Management 

(CRM) systems. 

5.2 Amazon Web Services service implementation 

5.2.1 Message queues as message sources 

As message queues are available as a service in AWS platform, and are purpose-built 

for transmitting messages, message queues in the form of SQS queues were chosen 

as an integral part of the integration implementation. At the time of the implementa-

tion, AWS provided two alternatives for SQS queues: Standard Queues and FIFO 

queues. Standard queues produce a higher throughput of messages but may deliver 

messages out of order or more than once (Amazon SQS Standard queues N.d.). FIFO-

queues, on the other hand, ensure correct message delivery order and exactly once 

delivery of messages (Amazon SQS FIFO (First-In-First-Out) queues N.d.). In cases 

where throughput is more important than exact delivery order or redundancy in de-

liveries, standard queues are a reasonable choice, but do not provide the properties 

required by reliable messaging principles. For this reason, FIFO queues were chosen 

as the queue type for the implementation.  

During the first iteration of the implementation, only one queue was created to host 

data to be received from multiple applications in order to keep the design simple. 

The initial solution to integrating AWS-based services would have relied on the send-

ing applications to provide identifying information, based on which the messages 

would be distributed by ESB to different target applications. During further iterations 

of the integration solution, the responsibility of message routing was transferred 

from the sending application to the integration, with the target system determined 

based on which message queue originally received the message. As a result, the 

number of queues increased from one input queue common for all applications to 

one input queue for each application. Splitting the data input to individual queues 
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also provided the additional benefit of being able to easily route data from individual 

applications to a different handler for development or debug purposes. 

When a message is read from SQS queue, the message is not deleted from the 

queue, but is rather given a visibility timeout, during which the same message cannot 

be read from the queue again. Visibility timeout prevents the message reader (also 

known as the message consumer) from accidentally processing the message twice 

and allows a message to be returned to the queue successfully in the case of a failure 

during message processing. The message is removed from the queue only after being 

specifically deleted by the consumer or after a successful processing confirmation. 

(Amazon SQS visibility timeout N.d.) 

The consumer of a message may also return an error, in which case configured queue 

parameters can determine the course of action for the failed messages. Some mes-

sages may be undeliverable due to unresolvable issues, such as syntax errors, in 

which case removal from the queue is justified. For SQS queues, a dead-letter queue 

of the matching type can be configured, to which undelivered messages can be 

pushed after an adjustable number of retries. (Amazon SQS dead-letter queues N.d.) 

Dead-letter queues are utilized in the implementation to ensure persistency and pre-

vent loss of data in case of failures by storing permanently failing messages sepa-

rately from the actual input message queue. Messages in dead letter queues can be 

later examined by developers to determine causes of failure or moved back to the 

application queue to attempt resending of data. For each application queue in AWS, 

a matching dead-letter queue was created, and the application queue was config-

ured to transfer the message to the dead-letter queue after ten failed processing at-

tempts. The specific retry numbers are configurable per application basis and can be 

adjusted as necessary.  

Configuration details utilized in the final version of the implementation are described 

in Table 1. Queue names are unique for each application, named in a manner de-

scriptive of the sending application. Dead-letter queue names combined the applica-

tion queue name with a “_Fail” suffix. A sufficiently informative naming scenario 
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should be used in a production scenario. Visibility timeout should be set to a long 

enough value to ensure a response has successfully been received from the message 

consumer. If the message can be expected to traverse through multiple calls over the 

network, the visibility timeout on the SQS queue may need to be set to multiple 

minutes to ensure that the message consumer does not return a response message 

after the visibility timeout of the original message has expired. Queue permissions 

need to be set either during queue creation or message consumer configuration to 

allow consumer to read messages from the queue. In this research, the configuration 

was conducted during message consumer implementation, removing the need to 

specify permissions with each queue creation. Dead-letter queue settings were con-

figured only for the main queues responsible for providing messages for transfer. 

Dead-letter queues themselves were created in the same manner as main applica-

tion queues, but without any dead-letter queue configurations. 

Table 1: SQS queue configurations 

Property name Property value 

Type FIFO 

Name MockDataSource1.fifo 

Visibility timeout 200 Seconds 

Message retention period 4 Days 

Delivery delay 0 Seconds 

Maximum message size 256 KB 

Receive message wait time 0 Seconds 

Content-based deduplication Not selected 

Access policy Basic 

Define who can send messages to the 
queue 

Only the queue owner 

Define who can receive messages from 
the queue 

Only the queue owner 

Dead-letter queue options (only for ap-
plication queues): 

 

Set this queue to receive undeliverable 
messages 

Enabled 

Choose queue  Choose a dead-letter queue 

Queue ARN <redacted>:MockDataSource1_Fail.fifo 

Maximum receives 10 
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A total of four SQS queues were created for the final version of the implementation: 

two queues for each application, of which one was the main queue responsible for 

holding messages to be transferred to ESB, and the other was a dead-letter queue for 

storing messages that repeatedly failed to be processed. The complete set of SQS 

queues for the implementation is listed below in Table 2.   

Table 2: Implemented SQS queues 

Queue name Description 

MockDataSource1.fifo Main queue for Application 1 

MockDataSource1_Fail.fifo Dead-letter queue for Application 1 

MockDataSource2.fifo Main queue for Application 2 

MockDataSource2_Fail.fifo Dead-letter queue for Application 2 

 

5.2.2 Lambda function as the message consumer 

While technically a large variety of services could be utilized to act as message con-

sumers to transfer the messages from SQS queues, the simplest method of consum-

ing messages was to utilize services offered within AWS environment. Being able to 

consume and delete messages on SQS queues requires AWS credentials and the SQS 

queues need to be configured to permit modification by the AWS identity used by 

the consumer (Identity and access management in Amazon SQS N.d.). In practice, us-

ing a third-party component as a consumer of messages would require maintaining a 

set of up-to-date AWS credentials on the consumer component, whereas relying on 

AWS-native services to eliminates the need for identity management other than per-

mission delegations. 

Out of the services available in AWS, Lambda provided the simplest and the most 

flexible way to consume and handle SQS messages. Lambda functions allow for exe-

cution of custom code in a serverless environment, providing a lightweight mainte-

nance-free platform to create the required functionality to send messages from AWS 

to ESB. Additionally, Lambda functions can use SQS queues as trigger sources, allow-

ing for the code within a Lambda function to be executed as soon as a message is 
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detected within the SQS queue. Lambda functions provide native support for Java, 

Go, PowerShell, Node.js, C#, Python and Ruby, with additional support for other pro-

gramming languages through a Runtime API (AWS Lambda FAQs N.d.). Node.js was 

chosen for the implementation due to performance reasons and native HTTP request 

capabilities. 

The final implementation of the integration contains one Lambda function: ACECon-

nector. ACEConnector utilizes the main SQS queues of applications, MockData-

Source1.fifo and MockDataSource2.fifo, as trigger sources for code execution. Table 

3 contains the parameters used to initialize the Lambda function.  

 

Table 3: Lambda function configuration values 

Property name Property value 

Choice of function base Author from scratch 

Function name ACEConnector 

Runtime Node.js 1.2.x 

 

Creation of the Lambda function simultaneously created a new identity role within 

AWS, to which a permission policy could be created to allow SQS access and modifi-

cation rights. SQS access permissions were configured by locating ACEConnector’s 

execution role in AWS Identity and Access Management portal and attaching a new 

policy to the role with configurations specified in Table 4. The configured policy al-

lows the Lambda function to read SQS metadata information, read messages from 

SQS queues and delete messages from SQS queues, if the SQS queue is within the 

same AWS account as the Lambda function. Lambda functions are also technically ca-

pable of accessing SQS queues on other AWS accounts within the same geographic 

region. External account queue accesses would require the use of Simple Token Ser-

vice within Lambda code and additional permission configurations on the SQS queue. 

In order to avoid complexity, only SQS queues in the same account were configured 

to be used as data sources. 
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Table 4: SQS access policy for ACEConnector 

Property name Property value 

Service SQS 

Actions Read: GetQueueAttributes 

 Read: ReceiveMessage 

 Write: DeleteMessage 

Resources arn:aws:sqs:*:*:* 

Name ACEConnectorSQSAccess 

 

After permission configurations, SQS queues were added as triggers through the 

Lambda interface for ACEConnector. As the queues had already been created and 

permission policies attached to ACEConnector’s execution role, the required configu-

rations were minimal, shown in Table 5.  

Table 5: Lambda trigger configurations 

Property name Property value 

Trigger source selection SQS 

SQS queue <redacted>:MockDataSource1.fifo 

Batch size 10 

Enable trigger Selected 

 

The source code for ACEConnector was the single portion of AWS side implementa-

tion which experienced the most iterations during the process of implementation, 

both expanding and simplifying the functionalities of the code. The initial versions of 

the code simply aimed at transferring the message to ESB through a HTTP POST re-

quest, interpreting the operation as successful if ESB confirmed that the messages 

had been received, regardless of processing outcome. The simultaneous develop-

ment of the receiving application at ESB side also provided more conditions to ac-

count for within the Lambda code, such as specific HTTP response codes based on 

the processing result within the connector at ESB side. The later versions of the code 

implemented reliable messaging features to ensure delivery and failure notification, 
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allowing for processing retries and dead-letter queue handling procedures on AWS 

side in case of permanent failures.  

The final version of the implemented code in ACEConnector is available in Appendix 

1 and is described in this paragraph briefly. The code implementation is based on the 

work of Hamza Sabljakovic (2019), utilizing parts of his code while modifying and 

adding on to others. ACEConnector takes in event data from SQS, containing 

metadata on the SQS queue itself, as well as the messages retrieved from the source 

SQS queue. The code in ACEConnector starts by defining the configurations required 

to perform a HTTP call: target host IP address, port number, URL path, HTTP method 

and Authorization header for authentication. A request object is created with the 

previously set up configurations and a callback function to verify the HTTP status 

code received from ESB once the call has been conducted. The event data retrieved 

from the SQS queue is added as the HTTP request body, and the HTTP POST request 

is performed. For the purpose of this implementation, the request is considered 

failed in situations where the request outright returns an error, or the returned HTTP 

status code is anything other than 200. If the messages were delivered successfully, 

the status code is logged to console and execution finished, triggering the deletion of 

the messages from the SQS queue. If errors were encountered during processing, an 

exception is thrown from ACEConnector with the encountered error details. The ex-

ception provides the SQS queue with information that the messages were processed 

unsuccessfully, either prompting the SQS queue to move the messages to dead-letter 

queue if the maximum retry count was reached, or allowing the messages to remain 

in the queue to be reprocessed once the visibility timeout has expired. Failure feed-

back to the originating SQS queue enforces reliable messaging principles, as the 

source of the message will receive notification of delivery failure and no messages 

are lost even in cases of delivery or processing failures.   

5.2.3 Logging with CloudWatch 

Fulfilling the traceability requirement of reliable messaging principles required the 

implementation of logging features on AWS. Fortunately, most of the work was al-

ready completed by AWS under the hood of the services. AWS automatically creates 
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logs from available services, including SQS queues and Lambda functions. Cloud-

Watch logs include both visual dashboards and text-based logs for various indicators. 

Figure 5 shows an example view from CloudWatch on SQS sent message statistics. 

 

Figure 5: SQS sent messages graph on CloudWatch dashboard 

 

Text-based logs of CloudWatch include the main aspects defined by Kraft and col-

leagues (2010) in their lessons on implementation of tracing and logs; log entries in-

clude the timestamp for the event, message identifier, information type and specify-

ing information, shown in Figure 6. Any information written to console during 

Lambda execution is logged to CloudWatch logs, allowing for custom logging events 

in code, such as the status code logs in Figure 6.  

 

Figure 6: Text-based logs on CloudWatch 
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5.2.4 Test data population with helper Lambda 

A separate Lambda function, SQSMessageGenerator, was used to populate data to 

SQS queues and verify the functionality of the integration. A predetermined number 

of messages were generated and filled to each queue for integration processing. Af-

ter the processing was complete, the receiving system logs and integration traces 

were reviewed to verify that the messages were distributed correctly by the integra-

tion. In order to keep the scope of the research within reasonable limits, the specific 

testing procedures and results are not reported in this research.  

SQSMessageGenerator is a Lambda function based on Node.js runtime. SQSMes-

sageGenerator aims to emulate sender applications by creating a set of messages 

and sending the messages to different SQS queues, from which the messages would 

be picked up by ACEConnector. The specifics of the code can be tweaked to change 

the total number of messages created, target queues and the relative distribution of 

messages for each queue. As SQSMessageGenerator is not a direct part of the inte-

gration solution, but rather a utility used to test the implementation, the specific 

functionality of the code is not discussed here. The source code for SQSMessageGen-

erator is provided in Appendix 2 and is adaptable to various testing scenarios with 

minor tweaks to the code. The code is adapted from the example provided by AWS in 

their developer guide (Sending and Receiving Messages in Amazon SQS N.d.). 

5.2.5 Final AWS architecture 

Even though a rough plan for AWS environment implementation existed prior to con-

figuring the first functionalities within AWS, the detailed architectural implementa-

tion took shape only after the entire integration implementation had reached the fi-

nal form. Figure 7 shows the architecture of AWS components in the final implemen-

tation, including the helper lambda function for test data population, which in pro-

duction use case would be replaced by separate sender applications.  
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Figure 7: AWS environment integration architecture 

 

The solid arrows on Figure 7 show the flow of messages from the data source to ESB 

and CloudWatch logs. The dotted arrows indicate the flow of response information 

from ESB back to ACEConnector, and from ACEConnector to individual SQS queues 

acting as data sources. On the event of multiple failures and maximum retry caps 

reached, message data will be transported to dead-letter queues, at which point a 

developer or a support personnel should begin investigations on the failure mecha-

nism and required remedying actions.   

5.3 Notes on transit across the public internet 

As the implemented integration is a proof-of-concept solution in a development en-

vironment and not intended to be transferred to production as is, the architectural 

design on transit of messages across the internet was kept simple. ACEConnector 

performs a HTTP POST request to a public IP address, owned by a router within the 

target network. Port forward rules were configured in the router to transfer the re-

quest directly to the integration server’s port 8081, the HTTP listener for the AWS 

connector. SSL certificates and HTTPS connectivity were not implemented for the 
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development environment but should be considered a bare minimum standard for 

production environments. Proper access routing through demilitarized network 

zones should also be considered for production use cases.   

5.4 Enterprise Service Bus implementation 

5.4.1 ESB implementation overview 

The implementation of integration on ESB was conducted by delegating responsibili-

ties for individual functionalities to separate applications, in accordance with SOA 

principles. The division of responsibilities resulted in one AWS Connector application 

responsible for distributing incoming messages sent from AWS, and individual appli-

cations responsible for subsequently processing and delivering messages to target 

systems. The system-specific modules could be further divided into transformation 

and connector modules to better adhere to SOA principles, which would provide 

more reusability especially in larger and more complex environments. For the pur-

pose of this research, the message-processing applications were left as a single mod-

ule to avoid complexity.  

5.4.2 AWS_Connector application 

Like with ACEConnector implementation, the final form of AWS_Connector is the 

product of multiple stages of evolution. The development started with the most basic 

required functionalities, consisting of successful receipt of a message, delivery to tar-

get queue and sending of a HTTP response to the caller. Later implementations saw 

the addition of batch-processing of messages and conversion of routing information 

from hardcoded lists within code to configuration files. Error-handling and logging 

provided the necessary functionality to ensure message traceability and delivery fail-

ure notifications, as outlined by reliable messaging guidelines. 

AWS_Connector application contains all functionality related to message transfers to 

and from AWS environment. While an application may contain multiple message 

flows, only HTTP_Inbound message flow has been implemented in this research. If 
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messages were to be transferred from ESB towards AWS, an additional 

HTTP_Outbound message flow would be implemented within AWS_Connector appli-

cation.  

HTTP_Inbound message flow is responsible for providing a public HTTP interface ca-

pable of receiving messages through HTTP POST requests, routing the message to the 

correct application within ESB for further processing and sending a reply to the crea-

tor of the HTTP POST request. Figure 8 shows the message flow order and nodes for 

HTTP_Inbound, with yellow paths representing actions for unsuccessful processing 

attempts and the green path representing the actions in a successful processing case. 

Each node along the paths in Figure 8 represent a functionality or an action within 

the message flow, such as output of data to a trace file, addition of a HTTP-header to 

a message or code execution. 

 

Figure 8: HTTP_Inbound flow order and success/failure paths 

 

HTTP Input node was used to create an interface capable of receiving HTTP POST re-

quests. HTTP Input is a standard App Connect Enterprise (ACE) HTTPInput node, con-

figured as outlined in Table 6. Path suffix for URL set to “/aws/in” specifies the exact 

address at which the server should listen for the connections, such as 

“http://server:7800/aws/in”. As the event data received by ACEConnector Lambda is 

by default JSON and sent to the HTTP Input node without any modifications, message 

domain was set to JSON to allow ACE to parse and process the incoming message.  
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Table 6: HTTP Input configurations 

Property name Property value 

Path suffix for URL /aws/in 

Message domain JSON: For JavaScript Object Notation 
messages 

Maximum client wait time (sec) 180 

Security profile Default Propagation 

Identity token type Transport Default 

 

The security profile and identity token type configurations relate to enabling authen-

tication capabilities for the HTTP Input node, fulfilling the sender authentication re-

quirement of reliable messaging principles. Enabling basic authentication functionali-

ties in ACE requires a policy to be created and deployed on the same integration 

server as the application. For this purpose, HTTPInputSecurityPolicy was created 

within a policy group, AWSConnectorPolicies, specific configurations in Table 7.  

Table 7: Security policy configuration 

Property name Property value 

Name HTTPInputSecurityPolicy 

Type Security Profiles 

Templates Security Profiles 

Authentication Local 

Authentication configuration AWSConnectorInbound 

 

The final addition to enable basic authentication on the HTTP input node involved 

creating a vault entry for credential named “AWSConnectorInbound” with the inte-

gration broker’s command line interface. The broker’s key vault is a central place to 

securely store a complete list of authentication parameters used by the integration 

nodes, such as FTP or HTTP functionalities. Key vault and vault entry were created 

through IBM App Connect Enterprise Console with the following commands:  

mqsivault --work-dir D:\Users\ESB\IBM\ACET11\workspace\INTSRV01 --create --

vault-key <secret_key> 
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mqsicredentials --work-dir D:\Users\ESB\IBM\ACET11\workspace\INTSRV01 --

create --vault-key <secret_key> --credential-type local --credential-name 

AWSConnectorInbound --username AWS --password <password> 

The commands and configurations above tied the authentication of the HTTP inter-

face to AWSConnectorInbound credentials, accessible by providing the username 

“AWS” and the password set during the credential creation. The same username and 

password were used in ACEConnector Lambda to create the Authorization header for 

the HTTP POST request. During an inbound message to the HTTP Input node, the Au-

thorization header is read from the HTTP POST request. The authorization method 

and credentials are parsed and compared to the identity within the key vault, and if 

the credentials match, the message is read into the flow. In case of wrong creden-

tials, a “401 Unauthorized” response code is sent back to the calling party, prompting 

ACEConnector to throw an exception within the Lambda code, returning the mes-

sages back to the SQS queues. 

HTTP Input node offers four distinct outcomes for processing: timeout, input failure, 

successful receipt and a catch-terminal for handling exceptions during processing. 

Terminals related to failure (timeout, input failure and exception) are connected to 

Trace nodes responsible for updating log files with information on message handling 

progress. After logging, a X-Original-HTTP-Status-Code header with relevant status 

code is added to HTTPReply properties of the message by a HTTP Header node. Fi-

nally, the message is transferred to a HTTP Reply node in order to trigger a HTTP re-

sponse message for the sender of the HTTP request.  

For successful message reads, additional actions related to message routing and 

propagation are performed before the final HTTP Reply node. After the successful re-

ceipt of the message has been logged by a Trace Node, a configuration file containing 

queue routing information is read and analyzed by using a File Read node. The spe-

cific configurations for File Read, named Read Destination Configuration on Figure 8, 

are listed in Table 8.  
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Table 8: Read Destination Configuration properties 

Property name Property value 

Input directory D:\Users\ESB\IBM\ACET11\workspace\FlowConfig 

File name or pattern AWS_Connector_destinations.json 

Result data location
  

$ResultRoot 

Output data location $Environment/Variables/filecontent 

Copy local environment Selected 

Record selection expres-
sion 

$InputRoot/JSON/Data/Records/Item/eventSourceARN 
= $Environment/Variables/filecon-
tent/JSON/Data/QueueList/Item/OriginQueue 

Message domain JSON: For JavaScript Object Notation messages 

 

The configuration file read process reads the contents of 

AWS_Connector_destinations.json to memory, and attempts to match the value of 

OriginQueue in AWS_Connector_destinations.json to eventSourceARN in the incom-

ing message structure. The implementation produced during the research contained 

only two routing entries, indicating the origin queue and the destination message 

queue within ESB to which the message should be routed:  

{ 
 "QueueList": [ 
 { 
  "OriginQueue" : "arn:aws:sqs:eu-north-
1:737528452624:MockDataSource1.fifo", 
  "Destination" : "FTP.UPLOADER.IN" 
 }, 
 { 
  "OriginQueue" : "arn:aws:sqs:eu-north-
1:737528452624:MockDataSource2.fifo", 
  "Destination" : "HTTP.UPLOADER.IN" 
 }] 
} 

If no match for the eventSourceARN contained within the incoming message is 

found, the message cannot be routed to an application within the ESB. In these sce-

narios, the routing failure is logged, a HTTP header is added to the message and a re-

ply of an unsuccessful processing event is sent back to caller. 
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A successful routing match is followed by extracting the actual messages from their 

metadata-wrapper with an ESQL Compute node, source code available in Appendix 3. 

As Figure 9 shows, the actual data to be transferred within the message is embedded 

within the message body as a string in JSON format.  

 

Figure 9: Incoming message structure in ACE debugger 

 

Parse and Split Messages compute node creates a staging area in memory and pro-

cesses all Item tags in the incoming message separately. Each Item tag is a separate 

message originating from the SQS queues, and for each Item, a destination queue 

name is determined by matching the eventSourceARN to the OriginQueue in the con-

figuration file. After the destination queue name has been determined, the JSON-

string from the message body is cast as a binary string to a temporary storage varia-

ble, from where the string is parsed from JSON to XMLNSC to create a structured set 

of data within the staging area in memory. After all messages have been handled, the 

count of parsed messages and source queue information are stored for use by the 

following Trace nodes and the message flow proceeds to send messages. 
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Send Messages node sets the correct target WebSphere MQ message queue name 

for each message staged in the memory and sends the messages to the applications 

responsible for further processing. The source code for Send Messages compute 

node is available in Appendix 4. The code loops through all messages stored in the 

staging area in memory. For each message, the code sets the destination queue to 

the queue obtained from the configuration file. A unique message identifier is then 

created for internal logging purposes. MQRFH2-headers are populated with mes-

sage-related metadata and the message is sent to the secondary terminal of the 

flow, leading to a MQ Output node. MQ Output node then delivers the message to 

the previously determined message queue. After all staged messages have been pro-

cessed, a final message is sent to the primary output terminal of the compute node 

for logging, HTTP response code addition and a HTTP response creation for the caller. 

The compute node compute mode property was set to “LocalEnvironment and Mes-

sage” to allow passing of the destination queue name to the MQ Output node. 

The use of WebSphere MQ message queues required the configuration of a MQ End-

point policy. The policy was created within AWSConnectorPolicies policy group, 

alongside previously covered HTTPInputSecurityPolicy. The specific configurations for 

the policy are listed in Table 9. The values for queue manager name, host name port 

number and channel name will vary based on implementation and setup of Web-

Sphere MQ server.  

Table 9: MQEndpointPolicy configuration 

Property name Property value 

Name MQEndpointPolicy 

Type MQEndpoint 

Template MQEndpoint 

Connection CLIENT 

Queue manager name QM1 

Queue manager host name 127.0.0.1 

Listener port number 1414 

Channel name qm1 

Use SSL false 
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Send to Queue node requires a destination list configuration to allow dynamic selec-

tion of the target message queue. Specific configurations for the MQ Output node 

are listed in Table 10 below. As the queue name is not specified and destination 

mode is set to destination list, the queue name is read in from the memory instead 

of a statically set value in the node configuration. 

Table 10: Send to Queue node configurations 

Property name Property value 

Queue name Empty 

Connection Local queue manager 

Destination queue manager name QM1 

Destination mode Destination List 

Policy Empty 

 

Trace nodes were configured to append updates to a trace file specific to the 

HTTP_Inbound application on the integration broker. The configuration of the trace 

file was simplified by promoting the destination and file path properties of each trace 

node to the message flow level, allowing for configuration of all trace nodes at once. 

The exact log message varied across trace files based on the action to be traced and 

the information available. While Kraft and colleagues (2010) recommended avoiding 

using dynamic logic in trace files, dynamic contents in logs were found to provide 

more benefits than drawbacks during the implementation. Trace node message con-

figurations and sample logs are available in Appendix 5.  

5.4.3 APP1_FTP_Uploader implementation 

APP1_FTP_Uploader was implemented as an application responsible for transform-

ing the message received from AWS_Connector and delivering the transformed mes-

sage to the target FTP server. Only minimal functionality was implemented to keep 

the scope limited. Figure 10 shows the ideal path of the message in green, with yel-

low paths indicating actions during processing or delivery failure.  
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Figure 10: FTP Uploader message flow 

 

The application reads in messages from queue FTP.UPLOADER.IN on WebSphere MQ 

queue manager QM1. On successful reads, Set Logging Variables, an ESQL Compute 

node, retrieves metadata for logging from message headers and sets a wildcard vari-

able later used in file naming conventions during FTP upload. Source code for Set 

Logging Variables node is available in Appendix 6. After message arrival has been 

written to trace file, a SOAP envelope is added to the incoming message just to emu-

late a simple processing functionality for the incoming message. Once the SOAP en-

velope has been added, the message is stored on a remote FTP server using File Out-

put node. The File Output node is configured to utilize FTP for file transfer, alongside 

with authentication with an identity stored in the integration broker’s key vault. Spe-

cific configurations for the File Output node are listed below in Table 11.  

Table 11: FTP Upload node configurations 

Property name Property value 

File name or pattern *.xml 

File action Write directly to the output file (append if 
file exists) 

Data location $Body 

Remote Transfer Selected 

Transfer protocol FTP 

Server and port 192.168.1.96:21 

Security identity ftpIdentity 

Server directory /home/integration/integrations/in 

Transfer mode ASCII 

Action if remote file exists Replace Existing File (PUT) 
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The File Output node utilizes the wildcard variable created earlier to name the out-

going file, with message body to be used as file contents. The target folder was con-

figured as a folder accessible through FTP on a remote Linux-based FTP server. An 

identity for ftpIdentity containing the remote server FTP username and password 

combination was added to the broker’s key vault with IBM App Connect Enterprise 

Console with the following command:  

mqsisetdbparms -w D:\Users\ESB\IBM\ACET11\workspace\INTSRV01 -n 

ftp::ftpIdentity -u integration -p <password> 

Once the File Output node has processed the message, the results are logged to a 

trace file. Traces are formed in the same manner as in AWS_Connector to an 

FTP_Upload message flow specific trace file, specific Pattern configurations and ex-

ample traces are available in Appendix 7.  

In case of FTP upload failure, the message flow throws an exception, triggering a re-

versal of the message flow direction to the MQ Input node FTP.UPLOADER.IN. Upon 

reaching the MQ Input node, the message is re-sent through Catch-terminal, result-

ing in Trace: Processing Error node logging the failure, and transfer of the message to 

the Backout Requeue Queue for FTP.UPLOADER.IN: FTP.UPLOADER.IN.FAIL. Throwing 

an exception ensures that the broker treats the processing as failed and stores the 

message in a dead-letter queue for further investigations and processing, ensuring 

data persistence.   

5.4.4 APP2_HTTP_POST implementation 

The second message processing flow implemented on ESB was a message flow with 

the responsibility of forwarding the incoming message to a HTTP server through a 

HTTP POST request. The implementation was kept as simple as possible to limit the 

scope of the work, and only the necessary functionality to create a HTTP POST re-

quest and enable message tracing was included. Figure 11 shows the final layout of 



49 
 

 

the message flow, as well as the ideal path in green, with processing failure paths in 

yellow. 

 

Figure 11: HTTP_POST message flow implementation 

 

The message flow monitors a WebSphere MQ message queue, HTTP.UPLOADER.IN. 

Once a message is read from the queue, the read event is logged in a trace file and 

the message is transferred to Set Logging and Destination, an ESQL Compute node, 

for processing. The source code for Set Logging and Destination is available at Appen-

dix 8. The compute node extracts metadata from incoming message headers and sets 

the target HTTP address. As the implementation mimics a web application interface 

with a HTTP echo server, the target address was configured to contain the message 

identifier to allow monitoring of received messages through the echo server’s output 

information. A HTTP echo server does not store any of the received data and does 

not provide any handling for the incoming HTTP requests, only sends a reply to the 

caller indicating that the HTTP request was successful. Using the message identifier 

as the HTTP address suffix resulted in the HTTP echo server displaying the identifier 

of each message for which a HTTP POST request was received, allowing for easy veri-

fication that correct messages were received. 

Once the necessary values to create a HTTP request have been set, the event is 

logged to trace files and the message passed on to HTTP Request node for HTTP 

POST request to the target server. The configurations used in HTTP Request node are 

listed in Table 12. 
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Table 12: HTTP Request configurations 

Property name Property value 

Web service URL http://192.168.1.97:8080 

Request timeout (sec) 120 

HTTP method POST 

Response Message Parsing MIME: For MIME wrapped data including 
multipart 

Replace input with error Selected 

Use whole input message as re-
quest 

Selected 

Replace input message with web-
service response 

Selected 

Generate default HTTP headers 
from input 

Selected 

 

With the configurations set as in Table 12, the HTTP Request node returns the suc-

cess or failure information from the HTTP POST request. The message flow logs the 

result of the HTTP request in trace files. In the case of unsuccessful requests, the 

message flows throws an exception with a Throw node to ensure that the message 

gets backed out into the original MQ queue, and from there to a dead-letter queue 

for later analysis.  

Trace node configurations follow a similar pattern as for FTP Uploader, specifications 

and example logs available in Appendix 9.  

5.4.5 Final ESB architecture 

The final implementation of modules on ESB consisted of the applications listed in 

previous chapters working in tandem. Figure 12 displays the relationship between 

the individual components within the ESB, including the flow of data between com-

ponents.   



51 
 

 

 

Figure 12: ESB architecture diagram 

 

The implemented solution consisted of a connector application for communications 

with AWS, a configuration file to store message routing information, message queues 

to serve as persistent storage locations for messages awaiting processing and two re-

cipient-specific applications to process and transfer messages. The scope of the re-

search was limited to only providing a functional proof-of-concept solution for the in-

tegration, and as a result, security measures and other architectural considerations 

were not implemented.  

5.5 Mock recipient applications 

5.5.1 Overview of recipient applications 

As the only purpose for mock applications in the documented implementation was to 

emulate the functionality of the application-specific connectors in the integration, 

the mock applications are described here only briefly. In practice, the mock applica-

tions described in the next chapters are fully replaceable with any application inter-

faces or connectors serving as the recipient side of the integration. The specific 
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configurations of the connector application output nodes may need to be adjusted 

based on the exact requirements set by the receiving applications.  

5.5.2 FTP server 

The FTP server utilized in the implementation was a default installation of vsftpd FTP 

server on an Ubuntu server. The integration broker was provided access to the FTP 

server with local server credentials, no additional configurations other than providing 

a place to store files were implemented for the user. FTP server logs on the Ubuntu 

server were utilized to verify and test the functionality of the integration.  

5.5.3 HTTP echo server 

A HTTP server interface was simulated by utilizing a containerized HTTP Echo Server 

in an Ubuntu server to provide a response to any requests received by the Echo 

Server. The Echo Server is a freely available HTTP service in a docker image, which 

echoes back any requests sent to the server (Echo Server N.d.). Echo Server output 

information was used to verify that correct messages were received by the Echo 

Server. 

6 Results 

The goal of the research was to implement an integration capable of transferring 

data from AWS to external environments via IBM ESB environment, while adhering 

to SOA and reliable messaging principles. This was achieved by implementing each 

component of the integration as an entity limited to performing a single functional-

ity. Simultaneously, each component of the integration was designed to be reusable 

in the environment. Measures required by reliable messaging principles were imple-

mented throughout the integration where suitable. The final implementation archi-

tecture is shown in Figure 13.   
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Figure 13: Implementation architecture 

  

Implementing the integration based on SOA principles was closely equivalent to tak-

ing the path of least resistance in AWS environment, as AWS itself provides services 

in a SOA manner. The integration could be pieced together from various reusable 

services, and implementation in a non-SOA manner would have been difficult. AWS 

identity management features ensured authentication within the AWS environment, 

while SQS FIFO queues provided the means to ensure exactly-once and in-order de-

livery. CloudWatch logs ensure the traceability of actions within AWS, and the 

Lambda code provides delivery failure notification possibilities.  

AWS side implementation still holds room for improvement and expansion. Currently 

the receipt of messages is limited to components within the same AWS environment, 

but the message consumption process could also be extended to other AWS environ-

ments within the same geographic region using Simple Token Service (STS) based ex-

ecution role assumption within the message consumer code. This would require sig-

nificant changes to the Lambda code, as SQS queues on external accounts cannot be 

set as triggers for the Lambda function. Instead, CloudWatch alerts could be used to 
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send timed triggers to the Lambda to poll for new messages on the external SQS 

queue. 

Logging with CloudWatch required minimal effort due to the extensive work per-

formed by AWS behind the scenes. Even an unrefined version of logging capabilities 

provided enough logs to support the traceability requirements of reliable messaging 

principles. CloudWatch holds further functionalities regarding alerts and notifications 

that should be explored in the case of a production environment deployment, but 

which were left out of scope for this implementation. CloudWatch includes methods 

to, for example, send alerts through SMS messages or email on the event of errors 

above a configurable threshold, which could be an invaluable aid in production envi-

ronments looking to fully implement reliable messaging principles and actively moni-

tor integrations in production.   

The ESB side implementation loosely followed SOA principles by implementing a ge-

neric connector between AWS and ESB but could have been further refined by split-

ting the FTP Uploader and HTTP POST message flows into separate components. The 

first half would have provided transformation and mapping services for the specific 

message type under processing, while the latter half would have functioned as a ge-

neric HTTP or FTP uploader, capable of processing any message types provided. The 

current implementation also only supports incoming messages in JSON format, but 

with some work, could be extended to support a dynamic set of data structures.  

Reliable messaging principles were mostly fulfilled throughout the implementation, 

with lack of implementation more often due to scope limitations or avoiding complex 

solutions, rather than actual technical obstacles. Sender authentication functionali-

ties were implemented in the simplest available form, usually in the form of local cre-

dentials or basic authentication. A production environment might benefit from Light-

weight Directory Access Protocol (LDAP) or Certificate-based authentication forms. 

Implementing more complex authentication formats would have required a more so-

phisticated environment and would likely have pushed the scope of the research too 

far from a reasonable size. Likewise, recipient authentication was not implemented 

in any form, as recipient authentication would most often be conducted through SSL 
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certificates and would have required domain registrations and a more complex envi-

ronment setup. A production environment would be well advised to utilize recipient 

authentication for security reasons.  

Traceability of messages was ensured through logging at each stage of the integra-

tion, with an identifier for a message traceable throughout the integration. The log 

files provide basic information regarding the flow of the message but could be im-

proved upon by utilizing a data warehousing system to store further information, 

such as contents of messages at different stages of the integration.  

Exactly-once and in-order requirements are maintained throughout the integration 

by the nature of the used platform. IBM’s App Connect Enterprise solution processes 

messages in order, and when transit message queues are used to store messages be-

tween modules, the queues ensure First-In-First-Out delivery of messages. Error han-

dling built within the message flow processes ensure that undeliverable messages 

are returned to dead-letter queues at both AWS and IBM platforms, so that no mes-

sages are lost during integration even in unexpected situations. An ideal solution 

would ensure a single collection point for all dead-letter messages, but would have 

required the implementation of a more sophisticated manner of delivery failure re-

ceipt towards AWS. 

Failure notification features were built to some extent but were not extended to 

reach all the way to the initial sender application. ESB will notify AWS about an un-

routeable message but will not pass on information of a message cannot be pro-

cessed by a subsequent application within ESB. For a proof-of-concept solution with 

no real sender applications, the exact manner of implementing a delivery failure noti-

fication for the original sender application is unclear. In practice, a notification 

method for responding to the sender application could be built as a separate applica-

tion within ESB, responsible for transferring success or failure notifications to the 

sending application through either HTTP responses or asynchronous messages.  

All in all, the integration implementation solved the original goal of implementing a 

way to transfer information from AWS applications to services within an internal 
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network. While the implementation is functional and works as intended, many fea-

tures could still be added to provide more value, especially for enterprise stakehold-

ers. 

7 Conclusions 

The aim of the research was to create a proof-of-concept integration to transfer mes-

sages from Amazon Web Services to external services by utilizing IBM’s App Connect 

Enterprise ESB. The goal was to design the integration to adhere to SOA principles 

and fulfill requirements for reliable messaging.  

While not all outlined features were implemented in each stage of the integration, 

the development process demonstrated that the implementation would be possible 

even for more complex situations. The integration successfully gathered messages 

from multiple locations and transferred the messages to their target destinations, 

while maintaining a modular architecture and providing reliability measures. The in-

tegration did not fully adhere to SOA principles but could be modified to further sep-

arate functionalities within each stage with some effort. Additionally, some of the re-

liable messaging principles, especially recipient authentication and delivery failure 

messages to recipient, were difficult to implement in a reasonable manner in the de-

velopment environment. 

The chosen research method focuses on building new information upon existing 

knowledge through an ongoing process of implementation, examination and adjust-

ment. Design-based research method worked well for the implementation, allowing 

for creation of practical knowledge to fit real-world use cases. Design-based research 

works in a qualitative manner and the direct evaluation of success or failure is not 

clear-cut, leaving much of the evaluation of success to individual readers. The result-

ing knowledge should therefore be critically examined and applied in real world sce-

narios where relevant, while adjusting practices to better fit the target environment.  
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The results of this research can be applied to implement integration connectors from 

AWS to third party systems with IBM’s ESB platform, without having to create an ar-

chitectural design from the scratch. The implementation provides a rough base for a 

basic connector setup with some example use case implementations, on which new 

implementations can build additional functionality and features or adapt to better fit 

the specific scenario at hand. The research included recommendations on modifica-

tions and decisions worth considering at each stage of the implementation.  

This research provides a base to be used as a stage for further research. Future re-

searchers could examine an implementation for an integration in the reverse direc-

tion; sending data from third-party applications to AWS. Additionally, further re-

search could be directed towards performance- and stress-testing the integration im-

plementation, focused on measuring the scalability of the integration under heavy 

loads. Further research could be conducted into creating a similar connector to col-

lect messages from SQS queues in external AWS accounts for processing within an 

internal ESB. Additionally, further research is required into methods to reliably relay 

failure notifications from applications within ESB to the originating applications in 

AWS.  
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Appendices 

Appendix 1. Lambda source code: ACEConnector.js 

const http = require('http'); 
 
const sendData = (eventData) => { 
    return new Promise((resolve, reject) => { 
        var postOptions = { 
            host: process.env.HOST_IP, 
            port: process.env.HOST_PORT, 
            path: process.env.HOST_PATH, 
            method: 'POST', 
            headers: { Authorization: 'Basic ' + new 
Buffer.from(process.env.USERNAME + ':' + process.env.PASSWORD, 'utf-
8').toString('base64') } 
        }; 
         
        //Request object creation, return status code from integra-
tion server 
        const req = http.request(postOptions, (result) => { 
            var statusCode = JSON.stringify(result.statusCode); 
            //Reject if statusCode is not 200 (i.e. message NOT de-
livered) 
            statusCode != 200 ? reject(result.statusMessage) : re-
solve(statusCode); 
        }); 
         
        //Reject promise with received error 
        req.on('error', e => reject(e.message)); 
         
        //Send data to integration server and complete request 
        req.write(JSON.stringify(eventData)); 
        req.end(); 
    }); 
}; 
 
exports.handler = async (event) => { 
    //Send data to integration server 
    await sendData(event) 
        .then(result => console.log('Status code: ' + result)) 
        .catch(err => { 
            console.error('Encountered error: ' + err); 
            //Throw an exception to ensure message is returned to 
queue 
            throw new Error('Encountered error: ' + err); 

        }); 
}; 
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Appendix 2. Lambda source code: SQSMessageGenerator 

// Dependencies and queue object setup 
var AWS = require('aws-sdk'); 
var sqs = new AWS.SQS({region: 'eu-north-1'}); 
 
// Function for sending message to queue 
const sendData = (targetQueue, msgBody, counter) => { 
    return new Promise((resolve, reject) => { 
        // Queue attribute and message body setup 
        var params = { 
            MessageBody: msgBody, 
            MessageDeduplicationId: counter.toString(), 
            MessageGroupId: counter.toString(), 
            QueueUrl: targetQueue 
        }; 
         
        // Send to queue 
        sqs.sendMessage(params, function(err, data){ 
            if (err){ 
                console.log("Error: ", err); 
                reject(err); 
            } else { 
                resolve(data.MessageId); 
            } 
        }); 
    }); 
} 
     
exports.handler = async (event) => { 
    var queues = ["https://sqs.eu-north-1.amazo-
naws.com/737528452624/MockDataSource1.fifo", "https://sqs.eu-
north-1.amazonaws.com/737528452624/MockDataSource2.fifo"] 
     
    for (var i = 0; i < 10; i++) { 
        // Set up target queue and message body 
        var target = queues[i % 2]; 
        var body = "<message><targetQueue>" + target + "</tar-
getQueue><i>" + i + "</i></message>"; 
        //Send message to queue 
        await sendData(target, body, i) 
            .then(result => console.log("Message Id: " + re-
sult)) 
            .catch(err => console.log(err)); 
    } 
};  
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Appendix 3. HTTP_Input message parse and split code 

CREATE COMPUTE MODULE HTTP_Inbound_SetDestinationQueue 

CREATE FUNCTION Main() RETURNS BOOLEAN 

BEGIN   

-- Reference declarations 

DECLARE rMsgIn REFERENCE TO InputRoot.JSON.Data.Records; 

CREATE FIELD Environment.Variables.Staging; 

DECLARE rMsgOutStaging REFERENCE TO Environment.Variables.Staging; 

DECLARE rItem REFERENCE TO rItem; 

DECLARE rMsgOut REFERENCE TO rMsgOut; 

DECLARE MsgParseCount INTEGER 0; 

   

-- One incoming message batch may contain multiple messages, 

-- messages parsed and forwarded to application flows separately 

FOR rItem AS rMsgIn.Item[] DO 

-- Create a copy of the extracted message to environment 

 CREATE LASTCHILD OF rMsgOutStaging AS rMsgOut NAME 'Item'; 

    

 -- Extract destination queue name  

 SET rMsgOut.DestinationQueue = THE( 

  SELECT R.Destination 

FROM Environment.Variables.filecon-

tent.JSON.Data.QueueList.Item[] AS R 

  WHERE R.OriginQueue = rItem.eventSourceARN 

 ); 

    

 -- Extract message and parse as XMLNSC 

 DECLARE Data BLOB; 

 SET Data = CAST(rItem.body AS BLOB CCSID 1208); 

 CREATE LASTCHILD OF rMsgOut DOMAIN('XMLNSC') PARSE(Data); 

    

 -- Increase message counter 

 SET MsgParseCount = MsgParseCount + 1; 

END FOR; 

   

-- Store message counter and source queue in environment for trace 

nodes 

SET Environment.Variables.MsgParseCount = MsgParseCount; 

SET Environment.Variables.MsgSource = rMsgIn.Item.eventSourceARN; 

 

-- All messages parsed to environment, continue flow 

RETURN TRUE; 

 

END; 

END MODULE; 
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Appendix 4. HTTP_Inbound message sending code 

CREATE COMPUTE MODULE HTTP_Inbound_SendMessages 

 CREATE FUNCTION Main() RETURNS BOOLEAN 

 BEGIN 

-- Reference declarations 

DECLARE rStagedMsgs REFERENCE TO Environment.Variables.Staging; 

DECLARE rItem REFERENCE TO rItem; 

DECLARE MsgSendCount INTEGER 0; 

   

-- Send each message in staging area 

FOR rItem AS rStagedMsgs.Item[] DO 

-- Clear output queue destination list and populate it with 

-- information obtained from configuration files 

SET OutputLocalEnvironment.Destination.MQ.DestinationData 

= NULL; 

CREATE FIELD OutputLocalEnvironment.Destina-

tion.MQ.DestinationData.queueName VALUE rItem.Destination-

Queue.Destination; 

    

-- Create a unique message ID and add to list of processed messages 

 DECLARE MsgId CHARACTER uuidaschar; 

SET Environment.Variables.MsgList = COALESCE( (Environ-

ment.Variables.MsgList || ', ' || MsgId), MsgId); 

    

-- Add metadata to RFH2 headers 

 SET OutputRoot.MQRFH2.(MQRFH2.Field)Version = 2; 

 SET OutputRoot.MQRFH2.(MQRFH2.Field)Format = 'MQSTR'; 

 SET OutputRoot.MQRFH2.(MQRFH2.Field)NameValueCCSID = 1208; 

SET OutputRoot.MQRFH2.MsgInfo.OriginApplication = 

'AWS_Connector'; 

 SET OutputRoot.MQRFH2.MsgInfo.OriginFlow = 'HTTP_Inbound'; 

 SET OutputRoot.MQRFH2.MsgInfo.MsgId = MsgId; 

    

-- Move stored message to OutputRoot 

 SET OutputRoot.XMLNSC = rItem.XMLNSC; 

       

-- Send message 

 PROPAGATE TO TERMINAL 'out1'; 

    

-- Increase sent message counter 

 SET MsgSendCount = MsgSendCount + 1; 

END FOR; 

   

-- Store sent message counter for trace node 

SET Environment.Variables.MsgSendCount = MsgSendCount; 

   

-- All messages sent, send signal to logging and HTTPReply 

RETURN TRUE; 

 

END; 

END MODULE; 
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Appendix 5. AWS_Connector trace node configurations  

Trace node name Trace pattern  

Trace: Timeout ${CURRENT_TIMESTAMP} Timeout occurred 
when reading messages into integration. 

Trace: Input Failure ${CURRENT_TIMESTAMP} Input was sent to inte-
gration, but could not be read into flow. 

Trace: Exception in Flow ${CURRENT_TIMESTAMP} - Source: 
${Root.JSON.Data.Records.Item.eventSourceARN} 
- Message processing failed, an error was encoun-
tered 

Trace: Message Arrived ${CURRENT_TIMESTAMP} - Source: 
${Root.JSON.Data.Records.Item.eventSourceARN} 
- Message batch arrived 

Trace: No Queue Match ${CURRENT_TIMESTAMP} - Source: 
${Root.JSON.Data.Records.Item.eventSourceARN} 
- No destination queue match found for input 
queue 

Trace: Parse Success ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.MsgSource} - Messages parsed 
successfully - ${Environment.Variables.MsgPar-
seCount} messages parsed. 

Trace: Send Successful ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.MsgSource} - Message send pro-
cess successful - ${Environment.Variables.MsgS-
endCount} messages sent, identifiers: ${Environ-
ment.Variables.MsgList} 

 
2020-07-28 12:16:49.899623 - Source: 'arn:aws:sqs:eu-north-1:737528452624:Mock-

DataSource2.fifo' - Message batch arrived 

2020-07-28 12:16:49.991457 - Source: 'arn:aws:sqs:eu-north-1:737528452624:Mock-

DataSource2.fifo' - Messages parsed successfully - 10 messages parsed. 

2020-07-28 12:16:50.322409 - Source: 'arn:aws:sqs:eu-north-1:737528452624:Mock-

DataSource2.fifo' - Message send process successful - 10 messages sent, identifiers: 

'65efc648-e8c6-4a61-8d26-5d9c91aa0775, d9f194b1-3fbd-4eee-a05b-

974d94312131, f264b1ab-492e-4311-bc3e-220db11d0c00, 777ef3ce-3036-42e3-

969c-b7d35aaa9178, 24a6ad81-f7d0-4e8f-be6a-d640964b4aa0, aac89fef-913a-4256-

9d03-d826f1a8be57, 8ad4642e-bacf-41ce-b2b1-1d41500c7e30, 80c2a569-7014-

4d2d-a67a-186e5502b2e9, 169d73af-8f11-41fe-82b0-8385b5990454, 85258494-

b526-4af4-b9ce-b45f2ffb0a8b'  
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Appendix 6. FTP_Upload Set Logging Variables source code 

CREATE COMPUTE MODULE FTP_Upload_Set_Logging_Variables 

 

CREATE FUNCTION Main() RETURNS BOOLEAN 

BEGIN 

 

-- Copy entire message contents to be passed forward 

CALL CopyEntireMessage(); 

   

-- Store information required by trace nodes and file output node 

SET Environment.Variables.OriginApplication = 

InputRoot.MQRFH2.MsgInfo.OriginApplication; 

SET Environment.Variables.OriginFlow =  

InputRoot.MQRFH2.MsgInfo.OriginFlow; 

SET Environment.Variables.MsgId = InputRoot.MQRFH2.MsgInfo.MsgId; 

SET OutputLocalEnvironment.Wildcard.WildcardMatch  

= COALESCE(Environment.Variables.MsgId, 

CAST(CURRENT_TIMESTAMP AS CHARACTER FORMAT 

'yyyyMMddHHmmssSSSS')); 

   

-- Send forward in flow 

RETURN TRUE; 

END; 

 

------------------------------------------------------------ 

 

CREATE PROCEDURE CopyEntireMessage() BEGIN 

 SET OutputRoot = InputRoot; 

END; 

 

END MODULE; 
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Appendix 7. APP1_FTP_Uploader trace node  

Trace node name Trace pattern  

Trace: Processing Error ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Message processing en-
countered an error 

Trace: Message Arrived ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Message arrived to flow 

Trace: FTP Upload Failed ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Message upload to FTP 
service failed. 

Trace: FTP Upload Success ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Message uploaded to 
FTP service. 

 
2020-07-21 19:01:41.572168 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id: 
'0b81f528-bf98-4597-a177-ed4102f5515c' - Message uploaded to FTP service. 
 
2020-07-21 19:02:19.420471 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id: 
'b45895fd-c143-46c8-845f-7c05f3437d56' - Message arrived to flow 
 
2020-07-21 19:02:28.191047 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id: 
'b45895fd-c143-46c8-845f-7c05f3437d56' - Message upload to FTP service failed. 
 
2020-07-21 19:07:10.710610 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id: 
'b4a7bc25-0c68-4334-b086-eace0937ae07' - Message arrived to flow 
 
2020-07-21 19:07:13.117682 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id: 
'b4a7bc25-0c68-4334-b086-eace0937ae07' - Message uploaded to FTP service. 
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Appendix 8. HTTP_POST Set Logging and Destination source code 

CREATE COMPUTE MODULE HTTP_POST_Set_Logging_and_Destination 

CREATE FUNCTION Main() RETURNS BOOLEAN 

BEGIN 

-- Copy message for sending 

CALL CopyEntireMessage(); 

   

-- Set variables for logging and target url 

SET Environment.Variables.OriginApplication =  

InputRoot.MQRFH2.MsgInfo.OriginApplication; 

SET Environment.Variables.OriginFlow =  

InputRoot.MQRFH2.MsgInfo.OriginFlow; 

SET Environment.Variables.MsgId = InputRoot.MQRFH2.MsgInfo.MsgId; 

SET OutputLocalEnvironment.Destination.HTTP.RequestURL = 

'http://192.168.1.97:8080/' ||  

Environment.Variables.MsgId; 

   

-- Send message forward in flow 

RETURN TRUE; 

END; 

 

CREATE PROCEDURE CopyMessageHeaders() BEGIN 

DECLARE I INTEGER 1; 

 DECLARE J INTEGER; 

 SET J = CARDINALITY(InputRoot.*[]); 

 WHILE I < J DO 

  SET OutputRoot.*[I] = InputRoot.*[I]; 

  SET I = I + 1; 

 END WHILE; 

END; 

 

CREATE PROCEDURE CopyEntireMessage() BEGIN 

 SET OutputRoot = InputRoot; 

END; 

 

END MODULE; 
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Appendix 9. APP2_HTTP_POST trace node configurations 

Trace node name Trace pattern  

Trace: Message Arrived ${CURRENT_TIMESTAMP} - Source: 
${Root.MQRFH2.MsgInfo.OriginApplication}: 
${Root.MQRFH2.MsgInfo.OriginFlow} - Id: 
${Root.MQRFH2.MsgInfo.MsgId} - Message ar-
rived to flow 

Trace: Exception in flow ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Exception encountered 
when processing message 

Trace: Message Transformed ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Message transformed 

Trace: Message Send Failed ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Unable to send message 

Trace: Send Successful ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Message sent success-
fully 

Trace: Server Returned Error ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Sending unsuccessful, 
server returned an error 

 
2020-07-28 12:20:41.560537 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id: 
'b10b601d-e1a0-4e50-989f-57a4f581ee77' - Message arrived to flow 
 
2020-07-28 12:20:41.560700 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id: 
'b10b601d-e1a0-4e50-989f-57a4f581ee77' - Message transformed 
 
2020-07-28 12:20:41.561392 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id: 
'b10b601d-e1a0-4e50-989f-57a4f581ee77' - Message sent successfully 


