

Implementing Amazon Web Services

integration connector with IBM App

Connect Enterprise

Noora Backlund

Bachelor’s thesis
September 2020
Technology
Bachelor of Engineering in Information Technology, Software Develop-
ment

Description

Author(s)

Backlund, Noora
Type of publication

Bachelor’s thesis
Date

September 2020

Language of publication:
English

Number of pages

73
Permission for web publi-

cation: x

Title of publication

Implementing Amazon Web Services integration connector with IBM App Connect Ente-
prise

Degree programme

Bachelor of Engineering in Information Technology, Software Development

Supervisor(s)

Salmikangas, Esa

Assigned by

Teemu Tasanto, ATR Soft Oy

Abstract

The emergence and growth of cloud environments has created new avenues for enterprise
application integration and brought about new challenges on how to go about integrating
the new with the old. A generic integration connector was created to allow for transfer of
messages from Amazon Web Services -based applications to third party services by using
IBM’s App Connect Enterprise Enterprise Service Bus platform.

The integration was implemented through design-based research methods, where the re-
searcher acts as both the implementor and the designer, creating new knowledge based
on theoretical basis through iterative cycles until an ideal solution is reached.

The integration was designed according to Service Oriented Architecture principles and re-
liable messaging considerations. The resulting integration consisted of Simple Queue Ser-
vice message queues and a message consumer Lambda function on the Amazon Web Ser-
vices environment, and a connector application, intermediate message queues and recipi-
ent-specific connector applications on the Enterprise Service Bus platform. Components on
both environments were built to be easily scalable and extendable to a dynamic category
of services.

The resulting integration implementation fulfilled basic Service Oriented Architecture prin-
ciples and provided methods to account for reliable messaging requirements. The proof of
concept integration provided a basic functionality for message transfer, with expansion
and adjustment possibilities for different environments.

Development of the integration with design-based research methods provided valuable in-
sights into possible implementations and direction of future research.

Keywords/tags (subjects)

Integration, AWS, ESB, IBM, ACE, Amazon Web Services, SOA, Reliable Messaging

Miscellaneous

http://finto.fi/en/

1

Contents

1 Introduction ... 5

2 Research design .. 6

2.1 Purpose of the research .. 6

2.2 Research method .. 7

2.3 Research credibility ... 9

2.4 Research environment .. 10

3 Integration and messaging concepts ... 11

3.1 Enterprise Application Integration .. 11

3.2 Message ... 11

3.3 Reliable Messaging .. 12

3.4 Scalability ... 12

3.5 Service-Oriented Architecture .. 13

3.6 Enterprise Service Bus ... 13

3.7 Amazon Web Services ... 14

3.8 Message Queue ... 14

3.9 AWS Lambda ... 15

3.10 CloudWatch ... 15

3.11 Protocols .. 15

3.11.1 HTTP and HTTPS.. 15

3.11.2 FTP and SFTP ... 16

3.12 Data structures .. 16

3.12.1 XML ... 16

3.12.2 SOAP ... 17

3.12.3 JSON .. 17

3.13 Programming languages .. 17

3.13.1 Node.js .. 17

3.13.2 ESQL .. 18

2

4 Theoretical framework ... 18

4.1 Integration design ... 18

4.2 Reliable messaging .. 21

4.2.1 Using reliable messaging to guide implementation 21

4.2.2 Sender and recipient authentication .. 22

4.2.3 Message traceability ... 23

4.2.4 Exactly once receipt of messages ... 25

4.2.5 Maintained message delivery order ... 26

4.2.6 Delivery failure notification to all parties 26

5 Implementation .. 27

5.1 Implementation overview ... 27

5.2 Amazon Web Services service implementation .. 29

5.2.1 Message queues as message sources .. 29

5.2.2 Lambda function as the message consumer 32

5.2.3 Logging with CloudWatch ... 35

5.2.4 Test data population with helper Lambda 37

5.2.5 Final AWS architecture ... 37

5.3 Notes on transit across the public internet... 38

5.4 Enterprise Service Bus implementation .. 39

5.4.1 ESB implementation overview ... 39

5.4.2 AWS_Connector application ... 39

5.4.3 APP1_FTP_Uploader implementation .. 46

5.4.4 APP2_HTTP_POST implementation .. 48

5.4.5 Final ESB architecture ... 50

5.5 Mock recipient applications .. 51

5.5.1 Overview of recipient applications ... 51

5.5.2 FTP server ... 52

5.5.3 HTTP echo server .. 52

3

6 Results ... 52

7 Conclusions .. 56

References ... 58

Appendices .. 63

Appendix 1. Lambda source code: ACEConnector.js .. 63

Appendix 2. Lambda source code: SQSMessageGenerator 64

Appendix 3. HTTP_Input message parse and split code 65

Appendix 4. HTTP_Inbound message sending code ... 66

Appendix 5. AWS_Connector trace node configurations 67

Appendix 6. FTP_Upload Set Logging Variables source code 68

Appendix 7. APP1_FTP_Uploader trace node .. 69

Appendix 8. HTTP_POST Set Logging and Destination source code 70

Appendix 9. APP2_HTTP_POST trace node configurations 71

Figures

Figure 1: Point-to-point integration architecture .. 19

Figure 2: Hub-and-spoke integration design .. 19

Figure 3: Simplistic ESB overview ... 21

Figure 4: Implementation architecture .. 28

Figure 5: SQS sent messages graph on CloudWatch dashboard 36

Figure 6: Text-based logs on CloudWatch .. 36

Figure 7: AWS environment integration architecture ... 38

Figure 8: HTTP_Inbound flow order and success/failure paths 40

Figure 9: Incoming message structure in ACE debugger ... 44

Figure 10: FTP Uploader message flow .. 47

Figure 11: HTTP_POST message flow implementation .. 49

Figure 12: ESB architecture diagram .. 51

Figure 13: Implementation architecture .. 53

4

Tables

Table 1: SQS queue configurations .. 31

Table 2: Implemented SQS queues .. 32

Table 3: Lambda function configuration values ... 33

Table 4: SQS access policy for ACEConnector .. 34

Table 5: Lambda trigger configurations ... 34

Table 6: HTTP Input configurations .. 41

Table 7: Security policy configuration .. 41

Table 8: Read Destination Configuration properties ... 43

Table 9: MQEndpointPolicy configuration ... 45

Table 10: Send to Queue node configurations .. 46

Table 11: FTP Upload node configurations .. 47

Table 12: HTTP Request configurations ... 50

5

1 Introduction

The turn of the millennium saw ever more rapid changes in the information technol-

ogy landscape, with adoption of Software-as-a-Service (SaaS) systems increasing over

five-fold since 2011 (Burger 2014). While cloud-based solutions have further gained

popularity in 2010s, the old and established on-premise enterprise solutions are by

no means going away, with organizations increasingly often maintaining a combina-

tion of on-premise and cloud applications.

Integration of applications has long been a staple for larger enterprises looking to

simplify and improve data administration, with multiple solution providers to cater

for companies’ integration needs for on-premise systems. With the adoption of

cloud-based services, the demand for integrations has also shifted to target applica-

tions on the cloud. Cloud applications may consist of individual functionalities such as

message queues, machine learning modules or data storage, for which data connec-

tions and integrations need to be separately configured. In a more traditional on-

premise scenario, the integrated system has been a complete solution with existing

interfaces. With no precedent or ready-made implementations on integrating a cloud

platform with more traditional integration solutions, a proof-of-concept methodol-

ogy is required to effectively integrate cloud services with existing integration solu-

tions.

While traditional methods of integration are well-established and in widespread use,

the challenge lies in designing and implementing a solution which extends the tradi-

tional integration architecture to function for a cloud-based environment. Simultane-

ously, the solution should utilize the unique features of the cloud to support the tra-

ditional methods of implementation. This research focuses on creating an integration

to connect an Amazon Web Services environment with an on-premise IBM Enterprise

Service Bus implementation to allow for message transfer from cloud-based applica-

tions to on-premise applications in a scalable and extendable manner.

6

2 Research design

2.1 Purpose of the research

The goal of the research is to introduce an integration to connect endpoints in mod-

ern cloud environments to systems running within an on-premise environment, al-

lowing for data transfer between the endpoints. With adoption of cloud-based sys-

tems experiencing double-digit percentual growth rates (Gartner, 2018; Synergy,

2018; Forbes, 2018), the proposed integration solution would also have to scale in

both data volume and number of endpoints in order to provide a viable long-term so-

lution to integrating the cloud with the on-premises environment.

As the integration solution is intended to be implemented within an enterprise envi-

ronment with production- and business-critical data, special attention must be paid

to the quality and reliability of the data to be transferred through the integration. En-

terprise advisor Gartner estimated the annual cost of poor-quality data to an enter-

prise to be an average of 15 million USD, with increasing challenges to maintain qual-

ity data as the complexity of information technology environments increases (Moore,

2018). In a similar trend, IBM estimated the annual cost of poor-quality data to the

US economy to be in the trillions (Extracting business value from the 4 V’s of big

data, N.d.). For the purpose of this research, the quality and integrity of data within

the scope of the integration will be accounted for by implementing quality-of-service

targets. The targets chosen for this research are outlined by Allen Brown (2001) in his

paper on reliable messaging, consisting of the following aspects: sender and recipient

authentication, traceability of messages, only-once receipt of messages, preservation

of message order and delivery failure notifications to both the sender and recipient

of the message.

For the purpose of this research, the scope of the integration is strictly limited to the

minimal functional implementation that fulfills the scalability and reliability require-

ments imposed in previous chapters. The direction of data flow will be limited to

cloud services as the system of origin, and on-premise services as the destination

7

endpoint. Cloud infrastructure and service provider Amazon Web Services, and more

specifically their message queue service Simple Queue Service, will be used as the

starting point for the data. The middleware used to connect Amazon Web Services to

the on-premise services is limited to IBM’s App Connect Enterprise and MQ Web-

Sphere systems. On-premise application interfaces are mimicked by implementing a

File Transfer Protocol (FTP) server and a Hyper Text Transfer Protocol (HTTP) echo

server. The combination of FTP and HTTP servers provide a method to verify a suc-

cessful distribution of messages to separate destinations, in addition to verifying the

functionality for two common interfaces.

While important in an enterprise or production environment, the target solution will

not implement thorough logging, high availability or security features, other than the

minimum required to satisfy the aspects of reliable messaging. A genuine production

environment would likely benefit from implementation of features such as data

warehousing, redundancy or clustering of each part of the integration, proxies, moni-

tored access layers and gateways, backups, as well as alerts in case of errors or unex-

pected situations.

2.2 Research method

The chosen research methodology is design-based research, as this method allows

for a flexible way of generating new understanding of how to solve practical issues by

iterating and building on existing theory and research. Hoadley (2004) places design-

based research on the opposite end of the spectrum from scientifically rigorous and

structured experimental research, as design-based research is often highly depend-

ent on the exact context in which it was performed.

Contrary to more traditional research methods which thrive in controlled laboratory

settings, design-based research is by nature rooted in real-world settings with a mul-

titude of variables affecting the research outcome. The research process itself is flexi-

ble and may be adjusted during research to better fit the required objectives, pro-

vided that the adjustments and the reasoning behind the adjustment is documented

8

through the process. Hoadley (2004) points out, that design-based research ap-

proach requires a sufficient amount of self-reflection and introspection from the re-

searcher during the research process but is capable of producing powerful results

when the design context is taken into consideration. Wang and Hannafin (2005) also

point out, that results obtained through design-based research are considered to fit

real-world scenarios better than results obtained in tightly controlled environments.

(Hoadley, 2004; Wang, & Hannafin, 2005, 8.)

Additionally, design-based research stresses the importance of flexibility and itera-

tive process, where the researcher and practitioner work in tandem to develop ap-

proaches to solve practical problems. In practice, the line between a researcher and

a practitioner is often blurred in design-based research, where both sides influence

each other to reach the best possible outcome for the challenge studied. The itera-

tive nature of the research method signifies that the cycle of design, implementation,

analysis and redesign may be completed multiple times before reaching the optimal

solution. (Wang, & Hannafin, 2005, 8.)

Even though design-based research is flexible and dynamic by its nature, the initial

designs and theories are still steadily grounded in existing theory and research. Exist-

ing literature regarding the subject matter forms a solid base for the research, with

focus of the research targeting either problems identified by existing knowledge, or

gaps of information. (Wang, & Hannafin, 2005, 8-9.)

Literature on design-based research indicates that the methodology has been heavily

utilized in the context of researching education methods, where highly structured

scientific experiments cannot account for the possible variables arising from the con-

text of a classroom. In a similar manner, information technology systems and their

different implementations in various corporate environments provide such a wide

scale of variables, that design-based research is likely to provide a more practical an-

swer to the research problem than a rigorous scientific experiment. Each information

technology environment is different, and by accounting for the specific context in

which the research has been conducted, the solution may be applied to different

9

types of environments by evaluating and adapting the context-specific actions taken

in this research.

For this research, existing literature and documentation is used as a base for imple-

mentation of the solution. Data integration is by no means a new field within infor-

mation technology, with multitude of recommendations and implementations on ef-

fective integration methods, discussed further in Chapter 4. However, as the emer-

gence of cloud environments is a relatively recent phenomenon, the interplay of

cloud and on-premise system integrations is a fresh field with little or no studies on

the matter. Design-based research method is used to attempt to fill the gap in

knowledge in the specific scope of this research by building upon existing theories

and knowledge, and by adapting the knowledge to fit modern landscapes.

As the research concerns new knowledge, building the solution will be an iterative

process, where challenges and issues encountered during the research will also

shape the design to account for the specific context of the environment. Design

choices and strategies are identified during the research in order to provide a prag-

matic solution to the research problem, which can be applied to similar real-world

situations.

The research mainly consists of qualitative research, where information is reviewed

and generated to produce new knowledge – in this case, a functional generic integra-

tion to unite endpoints in cloud and on-premise environments. The result of the re-

search will be assessed in a qualitative manner to review how well the implementa-

tion fits the available theoretical basis.

2.3 Research credibility

In order to ensure credibility and reliability of the research, current knowledge base

upon which the new knowledge is built is sourced from peer-reviewed documents

where possible. However, as specific information technology systems are rarely the

target of scientific publications, documentation, knowledge base articles and best

10

practice recommendations by leading organizations within their field are considered

as credible source of information.

Even though most recent articles are likely to accurately portray the current state of

the field, finding recent publications on specific information technology topics can be

a challenge. Some topics (such as protocols, data structures and fundamentals of

data integration) have changed little in the past decades, and publications from early

2000s or even 1990s still provide valid information for modern implementations, as

the principles governing these topics have remained unchanged. While modern pub-

lications by reliable sources are preferred, information has also been drawn from

older publications where the underlying principles still hold true.

2.4 Research environment

The research environment consists of the bare minimum of services required to im-

plement a generic integration from Amazon Web Services (AWS) to on-premise ser-

vices. The information technology system for this research includes one AWS account

used for cloud-based services, an internal network environment with internet con-

nectivity and the capability to route traffic from its public IP address to internal net-

work, as well as a server infrastructure environment within the internal network to

host integration and target application services.

AWS cloud service contains the components responsible for creation of data, as well

as the functionality to send data to the on-premise environment. The on-premise en-

vironment contains a network device capable of routing the incoming traffic to a

dedicated integration server, as well as target servers to which the data from AWS

needs to be transferred. A professional corporate network would also need to ac-

count for other components and practices not present in this proof-of-concept envi-

ronment, such as firewalls, network segmentation and active directory components.

The introduction of these components would likely result in minor configuration

changes unique to the specific target environment, but the principles presented in

this research remain the same.

11

3 Integration and messaging concepts

3.1 Enterprise Application Integration

Enterprise Application Integration (EAI) allows for different applications to exchange

information between each other through message-based data transfer (What is inte-

gration? N.d.). Lee, Siau and Hong (2003) further extend the term EAI to concern in-

tegrating existing applications in an enterprise environment with new applications,

allowing for reuse of existing resources in tandem with new features or data brought

in by new applications. Lee et al. (2003) also describe EAI as having a middleware

serving as a common interface to which all integrated applications can connect to, in-

stead of applications connecting directly to each other in a point-to-point manner,

reducing the need for integration programming.

The value of EAI market at a global scale was estimated to be just over 10 billion USD

in 2017, with expectations of significant growth in the following years. Drivers for EAI

market growth include, for example, growth in implementations of cloud-based ERP

systems, increasing adoption of e-business and ever more common automation of

business processes. IBM Corporation is among the most important EAI stakeholders,

alongside organizations such as Microsoft Corporation, major enterprise resource

planning software provider SAP SE and technology company Oracle Corporation.

(More 2020.)

3.2 Message

In integration terms, a message is some form of a data structure containing header

information and a message body. The data structure is not limited to any specific for-

mats, but rather must be understood by the integration middleware. Message

header information contains metadata used by the middleware to process the mes-

sage, while the message body contains the actual information to be passed between

the integrated systems. (Messaging Patterns N.d.)

12

3.3 Reliable Messaging

Reliable Messaging requires that no messages are lost during integration, even if the

messages are not sent in a transactional manner – an especially important concept

for high-reliability applications. In practice, this may consist of returning an error re-

sponse to the source system in the case of a socket-based connection, or retaining

the data contained within the message in the case of a failed transfer in order to al-

low for reprocessing of the message. (Reliability Patterns N.d.)

Brown (2001) further specifies quality-of-service objectives for implementing Relia-

ble Messaging to include the following five principles, of which the first four are con-

sidered uncontroversial:

- Authentication of both sender and recipient of messages

- Traceability of messages through the integration

- Message delivered exactly once

- Order of messages should be maintained

- Both the sender and the recipient should be notified of a delivery failure

As the last principle imposes additional requirements on how to receive reports of

failure upon the recipient system, delivery failure notification is here considered to

be a principle that should be implemented at a best-effort level. Failure notifications

will only be sent to systems capable of receiving them, while ensuring that every de-

livery failure will be reported to some extent.

3.4 Scalability

In the scope of this research, scalability concerns the ability to add new applications

to the integration solution with minimal effort or required code changes. An easily

scalable solution removes the need to go through the process of regression testing to

verify the continued functionality of the integration. Likewise, when a deployment of

13

new codebase is not required, the time and costs required to introduce new applica-

tions to the integration are reduced significantly.

3.5 Service-Oriented Architecture

Service-Oriented Architecture (SOA) denotes a concept, where applications provide

functionality in the form of services reusable across the application (Menge 2007).

Services adhering to SOA principles may be coupled together into larger constructs to

execute more complex actions, and each service may be reused at will in different

constructs. As the users of the service are not aware of the underlying implementa-

tion, the services can be changed or updated at will without changes to the service

user’s implementation. (Tyson 2020.)

3.6 Enterprise Service Bus

Enterprise Service Bus (ESB) is a message-based integration infrastructure that medi-

ates between multiple distinct applications in a flexible manner (Schmidt, Hutchison,

Lambros & Phippen 2005; Menge 2007).

ESB is as an enabler of SOA by acting as the flexible connector of services. ESB is not

restricted to any specific protocols or standards, thus allowing for creation of con-

nections between systems that would otherwise be incompatible. The implementa-

tion of protocols and connections is conducted within the ESB, and as a result the

sending and receiving systems do not need to be aware of the internal workings of

ESB for the connectivity to take place. (Schmidt et al. 2005; Menge 2007.)

Additionally, ESB may operate on the messages transferred from one application to

another in order to satisfy the requirements imposed by the recipient system. This

may include actions such as data transformation and mapping between the systems,

routing choices, encryption actions or message format changes. ESB may also hold

the role of a mediator or a validator, tracking and monitoring the flow of the

14

messages from one system to another to provide insight into integration reliability

and troubleshooting scenarios. (Schmidt et al. 2005; Menge 2007.)

3.7 Amazon Web Services

Amazon Web Services (AWS) is a cloud computing platform providing a variety of ser-

vices to individuals and enterprises at a global level. These services include, for exam-

ple, storage space, machine learning capabilities and databases optimized for specific

applications. As a cloud computing platform, the underlying infrastructure is man-

aged by Amazon, while the customer manages the service itself. (Cloud computing

with AWS N.d.)

3.8 Message Queue

Message Queue (MQ) is a temporary storage location to hold messages in a buffer

between a sending and a receiving application, allowing for an asynchronous manner

of communication between the two (Sharma 2019; Message Queues N.d.; Johansson

2019).

In addition to asynchronous communication, message queues provide a way to de-

couple applications from one another, allowing for communication between the two

systems without the applications being aware of each other. This provides benefits in

easier maintenance of the applications, ability to control communication between

the systems in a more specific manner and allows for independent development of

each application without interdependencies. (Johansson 2019.)

The specific message queue providers to be used in the scope of this research are

IBM Corporation’s WebSphere MQ and AWS’s Simple Queue Services (SQS). IBM

WebSphere MQ service is used alongside ESB functionality, while SQS queues are uti-

lized as data sources on AWS platform.

15

3.9 AWS Lambda

AWS’s Lambda is a service which allows for execution of custom code, which may be

triggered from other AWS services, HTTP endpoints or other activity (AWS Lambda

N.d.). For the scope of this research, the use cases for Lambda functions consist of

manipulating data in SQS queues, namely by populating SQS queues with test data

and delivering data from queues to ESB.

3.10 CloudWatch

Amazon CloudWatch is a monitoring and logging service, which provides logs and

statistics on health and execution of applications within AWS environment (Amazon

CloudWatch N.d.). For the scope of this research, CloudWatch is used to monitor the

health and actions of Lambda functions used to populate test data and deliver data

to ESB.

3.11 Protocols

3.11.1 HTTP and HTTPS

Hypertext Transfer Protocol (HTTP) is a client-server protocol used to exchange data

over the internet. A typical HTTP data exchange starts by the client sending a request

to a web server and ends by the server responding with a HTTP response message,

containing metadata regarding the request as well as information returned from the

server. (An Overview of HTTP N.d.)

HTTP allows for authentication within the request made by the client. A common

form of authentication, “Basic”, can be implemented by adding the Authorization -

header to the HTTP request. An Authorization-header should contain the text “Basic”

followed by a space, to which base64-encoded colon-joined username and password

are appended. This form of authentication is not secure unless performed over a

HTTPS connection. (HTTP Authentication N.d.)

16

Hypertext Transfer Protocol Secure (HTTPS) uses Transport Layer Security (TLS) pro-

tocol to encrypt the underlying HTTP protocol, allowing for transmission of sensitive

data over the HTTP protocol securely. TLS utilizes a public-private-key encryption

method to encrypt the data and relies on domain-specific certificates signed by ex-

ternal parties to deliver the public key required for data encryption, and simultane-

ously act as server authentication. (What is HTTPS? N.d.)

3.11.2 FTP and SFTP

File Transfer Protocol (FTP) can be used to efficiently transfer files across the internet

in a client-server-based manner. FTP adds reliability to file transfers to and from a re-

mote computer and circumvents potential file system incompatibilities between the

source and destination machines. FTP connection is initialized by creating a control

connection from the client to the server, in which commands and responses between

the client and the server are transferred. Executing a command to transfer a file re-

sults in opening of a data connection, responsible for the process of transferring the

file data, after which the data connection is closed. (FTP N.d.)

SSH File Transfer Protocol (SFTP) implements the traditional FTP functionality over

Secure Socket Shell (SSH) protocol, which has a more robust set of security and au-

thentication features. Essentially, SFTP is a secure version of FTP. (SFTP – SSH Secure

File Transfer Protocol N.d.)

3.12 Data structures

3.12.1 XML

eXtensible Markup Language (XML) is a structure for data storage and transporta-

tion. An XML document consists of tags in a tree-like format, where only one tag may

be at the highest (root) level of the document, and all remaining tags must be under

another tag. A tag consists of tag name, attributes and a value – for example, <date

type=”creation”>2020-08-20</date> would have a name of “date”, an attribute

named “type” with a value of “creation”, and the value of “date” tag would be

17

“2020-08-20”. Definition of tag names and XML structure is left to the author of the

document. (Introduction to XML N.d.)

As XML provides a structured syntax to store data, an XML document can be manipu-

lated programmatically. As a result, XML is a popular choice for message format in in-

tegrations, as XML can be easily parsed and manipulated by integrations.

3.12.2 SOAP

Simple Object Access Protocol (SOAP) is an application communication protocol

based on XML, used in sending and receiving messages with a more strictly defined

structure than in XML. While structured like a regular XML message, SOAP has a

stricter requirement on required elements and structure. A SOAP message is re-

quired to use SOAP Envelope namespace within the XML message and must contain

the Envelope -element at the root of the message. A SOAP message must also con-

tain a Body -element under the Envelope-element and may optionally contain

Header and Fault elements under the Envelope-element. (XML Soap N.d.)

3.12.3 JSON

JavaScript Object Notation (JSON) is, like XML, a syntax for storing and transferring

data. JSON syntax is based on JavaScript and operates on key-value pairs of infor-

mation in a tree-like structure. (JSON Introduction N.d.)

Like XML, JSON datasets can be manipulated and transformed programmatically, and

are often used to transform information in web-based applications.

3.13 Programming languages

3.13.1 Node.js

Node.js is a JavaScript runtime designed for building network applications, allowing

for asynchronous and concurrent execution of code (About Node.js N.d.). Node.js is

18

used to run JavaScript code, and is among the runtime environment choices for AWS

Lambda functions (Building Lambda functions with Node.js, N.d.).

3.13.2 ESQL

Extended Structured Query Language (ESQL) is a programming language specific to

IBM’s Integration Bus ESB. ESQL is based on the traditional Structured Query Lan-

guage (SQL), but also includes additional features and properties useful in accessing

and manipulating IBM’s product-specific structures within messages in message

flows. (ESQL Overview, N.d.)

4 Theoretical framework

4.1 Integration design

Integrating data and applications is by no means a new business. 1960s saw the first

emergence of transaction processing systems, with database management systems

following in 1970s and various decision support systems to support business pro-

cesses emerging in 1980s. 1990s saw an ever increasing adoption of the Internet and

globalization, driving the need to integrate multiple distinct systems. Enterprise Ap-

plication Integration (EAI) as a widespread concept emerged in late 1990s to reduce

programming complexity and costs of integration between systems and has been the

target of extensive research and studies since its birth. (Lee et. al. 2003.)

The early years of EAI brought about two main design paradigms for integrations:

point-to-point integration and hub-and-spoke integration. True to the name, point-

to-point integrations consisted of applications communicating directly with each

other, either synchronously or asynchronously through Message-Oriented Middle-

ware (MOM) such as message queue brokers. An example architecture of point-to-

point integrations is displayed below in Figure 1. (Gulledge 2006, 9-10; What is inte-

gration? N.d.)

19

Figure 1: Point-to-point integration architecture

While point-to-point integration is maintainable in smaller environments, increas-

ingly large number of applications would quickly overwhelm the number of required

integrations. Any updates to infrastructure of member applications would also cause

significant maintenance efforts. Hub-and-spoke design solves the complexity prob-

lem by introducing a central broker (the “hub”), which creates separate connections

(“spokes”) to each application. A simple hub-and-spoke integration design is por-

trayed in Figure 2. (Gulledge 2006, 14; What is integration? N.d.)

Figure 2: Hub-and-spoke integration design

20

On the other hand, introducing a central hub through which all connections are

formed creates a single point of failure; should the hub be unavailable, none of the

connections between applications would function. While the maintenance efforts are

smaller in hub-and-spoke designs, the hub point still acts as a potential point of fail-

ure and a potential bottleneck in terms of resources and scalability. (What is integra-

tion? N.d.)

While ESB resembles EAI’s hub-and-spoke design, SOA principles are utilized to cre-

ate standardized services reusable for multiple integrations, further decreasing the

complexity of hub-and-spoke based integration designs (What is integration? N.d.).

Where each application in a hub-and-spoke design may contact the central broker in

a unique format, ESB enforces specific standards to be used for connections, regard-

less of the connecting application. Enforcing specific standards allows ESB to use a

limited number of services to connect with a larger number of applications, while uti-

lizing additional containers for other functionalities, such as message routing or

transformation. (Menge 2007.)

Menge (2007) illustrated a simple ESB overview with an unspecified number of con-

tainers, shown in Figure 3. Each ESB service container may contain multiple function-

alities, though only a limited set are shown in the overview. Functionalities within the

containers are modular, and therefore reusable by multiple applications; for exam-

ple, two different applications connecting to the application in Menge’s ESB overview

could likely both utilize the same Application Adapter, even if both connecting appli-

cations had undergone different logic through ESB. In a similar manner, a common

application could be used to transform messages between multiple different sys-

tems, if the logic for message transformation is common between all messages.

21

Figure 3: Simplistic ESB overview

The focus of this research is to provide SOA based approach to integrate systems in

AWS environment to third party applications. While the theoretical basis for ESB im-

plementation architectures is broad, AWS is such a new environment that best prac-

tice implementations and theories have not yet been crafted for integration pur-

poses. In this research, lessons from ESB architecture and design in traditional envi-

ronments are transferred to the implementation within AWS environment where

possible.

4.2 Reliable messaging

4.2.1 Using reliable messaging to guide implementation

The concept of reliable messaging was introduced in Chapter 3.4, defined by Brown

(2001) to include requirements of authentication of sender and receiver, traceability

of messages, exactly once transfer of messages, maintained message order and fail-

ure notification when unable to deliver a message. The specific method of fulfilling

each requirement is left to the implementer and will likely vary across different

22

environments. Theoretical basis for implementation of each requirement is exam-

ined based on requirements set for this research and may require significant re-ex-

amination when applied to a different setting.

4.2.2 Sender and recipient authentication

Authentication entails verification of identity to ensure that the user or service being

authenticated is who they claim to be (Authentication and Authorization N.d.). In or-

der to fulfill the authentication requirement of reliable messaging principles, both

the client and the server should authenticate each other in order to ensure that mes-

sages are transferred between the intended parties. Available authentication meth-

ods vary across different services, but in general, clients are often authenticated us-

ing credential checks such as password challenges or security tokens, while servers

are usually authenticated through certificates.

Authentication and authorization are implied to be synonymous in the requirement

of sender and recipient authentication. Authentication concerns the identity of the

service, while authorization focuses on the permissions which the authenticated ser-

vice has access after a successful authentication (Authentication and Authorization

N.d.). In order to keep the scope of this thesis limited, authenticated services are also

assumed to be authorized, and no separate permission schemes are implemented. In

practice, especially on production environments, authorization schemes should be

implemented to ensure system security. Preferably, principles of Least Privilege

should be followed in order to provide as little access as required to perform the re-

quired tasks, in order to limit potential damage from accidents, errors and abuse

(Saltzer & Schroeder 1975, 1282).

Web interfaces support a multitude of authentication methods, including username-

password combinations, cookie-based authentication, tokens and signatures. Of

these, the simplest method to implement is HTTP Basic Authentication. Basic Au-

thentication involves providing a base64-encoded username and a password within

the HTTP request headers, and is used for the purpose of this research where appli-

cable. HTTP Basic Authentication itself does not provide any encryption, but instead

23

relies on sufficiently well encrypted connections to keep the credentials secure.

(Nemeth 2015.)

As the focus of the research is the overall architecture of the implemented integra-

tion solution, the authentication methods utilized in this research have been chosen

based on ease of implementation, rather than security. If HTTP Basic Authentication

is used in production environments, the surrounding environment should be

properly configured to use HTTPS connections, or another authentication method

should be considered instead. Some environments may also benefit from using Light-

weight Directory Access Protocol (LDAP) queries for centralized authentication and

authorization checks.

Recipient authentication can be implemented by creating SSL certificates for the re-

cipient services and using HTTPS connections to securely connect to the target recipi-

ents. SSL certificate contains the recipient’s domain name, validity time, issuer infor-

mation and public key to allow for connection encryption between the recipient and

the sender. The sending party can verify the authenticity of the recipient’s SSL certifi-

cate with the certificate issuer, and if the check fails or cannot be performed, the re-

cipient can be deemed untrusted. (What is an SSL Certificate? N.d.)

Recipient authentication has not been implemented for this research due to the ad-

ditional complexity of setup, requiring introduction of signed certificates for server

authentication. In production settings, recipient authentication should be performed

with SSL certificates or other possible authentication schemes in order to ensure se-

cure transfer of data between correct endpoints.

4.2.3 Message traceability

Message traceability implies that the movements and actions of each message re-

ceived by the ESB can be followed through the integration, from the moment of arri-

val to the integration to the moment of delivery to a target application. Tracing, as a

process, is usually used for debug and performance analysis purposes, and usually

24

entails the recording and storage of runtime events for later analysis (Kraft, Wall &

Kienle 2010).

The frameworks and methodologies for implementing traces vary across applications

and need to be implemented on a case-by-case basis. As this research focuses on us-

ing AWS and IBM’s App Connect Enterprise, message tracing is implemented for

methodologies available within AWS and IBM’s platforms. The central ideas for trac-

ing follow some of Kraft and colleagues’ (2010) lessons from their documented im-

plementation, regardless of the framework used.

The main concepts to be traced by Kraft and colleagues (2010) included the identity

of the process being traced, timestamp for the trace as well as the reason for the

trace. The main considerations revolved around overhead, system resources and effi-

cient tracing, likely due to the highly resource-restricted environment in which the

experiments were performed. Despite resource overhead concerns, permanent trac-

ing was recommended. Integrated tracing within software would be a permanent

and tested fixture of the program, more likely to be maintained even after updates

to the software. Permanent tracing would also produce on-demand diagnostics and

logs, allowing for developers to rely on these logs as a source of diagnostic data. Ad-

ditionally, tracing overhead costs were minimal when compared to benefits reaped

from traces. Storage of traces was recommended to be on fixed-size ring-buffer on a

pre-initialized data structure. Traces should also be simple and devoid of logic where

possible. (Kraft, Wall & Kienle 2010.)

In contrast to Kraft and colleagues’ environment, the infrastructure used for this re-

search is not particularly resource-limited, even though higher efficiency and less

overhead can be argued to be preferable. As resources are not considered limited,

implementation of tracing will focus on the functional lessons from Kraft and col-

leagues and overlook the resource-optimization side of implementation. Trace logs

will include the “what”, “when” and “why” of the integration: integration and mes-

sage identity, timestamp and status (or error) information. An ideal implementation

of trace logs would follow Kraft and colleagues’ suggestion of fixed-size log files but

tap into the larger amount of resources available and implement a set of rotating log

25

files. New log files would be created after a set time period, or when the old log files

reach a certain size, providing a longer history of diagnostic data. Logs are by default

split into multiple files on AWS platform with CloudWatch logs, while file-level logs

for IBM’s ESB would require additional configuration. Configuration of split logs for

ESB has been left out of scope for this research. An ideal solution would also unify all

log files to be centrally available from a single source, with unified or highly similar

structure to allow for easier diagnosis. Utilizing logging solutions such as Splunk or

ELK to collectively store traces from multiple locations would provide a single plat-

form from which tracing information could be examined for debugging or analysis

purposes. For the purpose of this research, the availability of logs in two separate lo-

cations (AWS and ESB) is deemed adequate for the purpose.

4.2.4 Exactly once receipt of messages

The concept of exactly once receipt of messages strongly relates to integrity of data

in the receiving system, as any missing messages or duplicate messages may lead to a

different set of data present in the recipient system compared to the sender system.

The exact consequences of duplicates or missing messages vary based on the recipi-

ent system type. Some systems, such as applications hosting financial transactions or

orders, require exactly once delivery by their nature in order to avoid compromising

data integrity. More informative systems, such as applications handling the most re-

cent stock price values, would not be completely compromised by an undelivered

message. (Messaging Concepts N.d.)

Additional safeguards for exactly once receipt of messages include durability of mes-

sages and transactions. Durability of messages implies that the messages will persist

in a permanent storage through system shutdown, even if the shutdown occurred

during message processing (ibid.). In practice, durability requires messages to be

stored within persistent data structures such as message queues, in contrast to non-

durable Remote Procedure Calls (RPCs), where the message is processed synchro-

nously without intermediate storage of the message contents.

26

Transactional processing means that the processing cannot be partially successful; if

a single part of the processing fails, the successfully processed parts within the trans-

action will be rolled back as well, with changes to all systems committed only if all ac-

tions were successful (Transaction Processing 2017). In order to ensure exactly once

receipt of messages, the integration solution must be implemented by accounting for

the principles of transactional processing.

4.2.5 Maintained message delivery order

Maintained message delivery order means that the messages sent directly between a

specific sender and recipient will always be received in the same order in which they

were sent (Message Delivery Reliability N.d.). This is especially critical for systems re-

lying on the correct order of events, as a wrong order of events may result in a com-

pletely different outcome compared to the correct order of events. A practical way

for maintaining message delivery order is to process messages in a First-In-First-Out

(FIFO) basis, where the first messages to arrive on the message queue are the first

ones to be processed (Priority N.d.; Amazon SQS FIFO (First-In-First-Out) queues

N.d.). Both AWS and IBM provide message queues with FIFO-capability and are used

for the purpose of this research to ensure maintained order of messages.

4.2.6 Delivery failure notification to all parties

Delivery failure notification, especially to the sending party, is important in maintain-

ing the exactly once delivery principle in the event of a processing failure of the mes-

sage. Without a success or failure acknowledgment, the sending party has no way of

knowing whether the message has been processed successfully. Failure notification is

crucial for determining if the message needs to be resent due to temporary or per-

manent delivery failures. Temporary delivery failures include issues which resolve

without changes to the message, such as network connection issues. Permanent de-

livery failures refer to problems within the message, which make the message unde-

liverable, such as syntax errors. The sending party needs to be informed of a tempo-

rary failure in order to retry sending the message or transfer the message to a Dead

Letter Queue in the case of a permanent failure. (Mitchell 2017.)

27

The purpose for a delivery notification failure for the recipient is debatable, as the re-

ceiving system is usually either technically unable to receive failure notifications, or

unable to act based on the notifications. As an example, an FTP server would not

have a method to receive information that the processing of a message targeted to-

wards the FTP server failed, nor could the FTP server affect the processing of the

message in any manner. Similarly, should the delivery failure occur due to inability to

contact the FTP server, notifying the server of the failure would also likely end up in a

failure. Therefore, for the purpose of this research, failure notifications for the recipi-

ent are left out of scope. Some scenarios may include valid reasons for additional no-

tifications to the recipient in the event of processing failures, in which case the meth-

odology for handling delivery notifications should be planned based on the exact cir-

cumstances within the environment.

5 Implementation

5.1 Implementation overview

While design-based research allows for iteration throughout the research process,

the overall architecture of the implementation remained nearly unchanged through-

out the implementation phase. The original high-level architectural design proved

suitable for the solution implementation, and the main changes and tweaks to the

implementation occurred within individual components. The final architecture con-

sists of two main environments: AWS and the internal network of the research tar-

get, separated by public internet. Figure 4 displays the high level architecture of the

implemented solution.

28

Figure 4: Implementation architecture

The AWS environment contains two SQS queues to serve as data pickup points. In a

real-world scenario, applications would deliver messages to these SQS queues. The

number of SQS queues to be used as source points can be extended at will with no

changes to code. The SQS queues are set as triggers for a single Lambda function,

ACEConnector. ACEConnector is responsible for reading the messages from the

source queues, transmitting the messages across the internet to ESB and deleting the

messages from the source queues if the transfer was successful.

The internal network of the research target contains an ESB implementation consist-

ing of IBM’s WebSphere MQ message queuing platform and IBM’s App Connect En-

terprise integration broker, as well as target applications simulating receiving appli-

cations. AWS_Connector is an application within the ESB, responsible for receiving

data from AWS. AWS_Connector exposes a HTTP interface to the public internet, ca-

pable of receiving HTTP POST requests. AWS_Connector application receives and dis-

tributes the messages sent by AWS’s Lambda internally to other ESB applications by

determining the correct route from AWS source queue names. After distribution,

each intermediate ESB application handles the messages based on internal logic of

29

the application, before transmitting the messages to receiving systems. For the pur-

pose of this research, receiving services were simulated with one fully functional FTP-

server and a HTTP echo server, but could in production scenarios include specialized

systems such as ERPs, data warehouses or Customer Relationship Management

(CRM) systems.

5.2 Amazon Web Services service implementation

5.2.1 Message queues as message sources

As message queues are available as a service in AWS platform, and are purpose-built

for transmitting messages, message queues in the form of SQS queues were chosen

as an integral part of the integration implementation. At the time of the implementa-

tion, AWS provided two alternatives for SQS queues: Standard Queues and FIFO

queues. Standard queues produce a higher throughput of messages but may deliver

messages out of order or more than once (Amazon SQS Standard queues N.d.). FIFO-

queues, on the other hand, ensure correct message delivery order and exactly once

delivery of messages (Amazon SQS FIFO (First-In-First-Out) queues N.d.). In cases

where throughput is more important than exact delivery order or redundancy in de-

liveries, standard queues are a reasonable choice, but do not provide the properties

required by reliable messaging principles. For this reason, FIFO queues were chosen

as the queue type for the implementation.

During the first iteration of the implementation, only one queue was created to host

data to be received from multiple applications in order to keep the design simple.

The initial solution to integrating AWS-based services would have relied on the send-

ing applications to provide identifying information, based on which the messages

would be distributed by ESB to different target applications. During further iterations

of the integration solution, the responsibility of message routing was transferred

from the sending application to the integration, with the target system determined

based on which message queue originally received the message. As a result, the

number of queues increased from one input queue common for all applications to

one input queue for each application. Splitting the data input to individual queues

30

also provided the additional benefit of being able to easily route data from individual

applications to a different handler for development or debug purposes.

When a message is read from SQS queue, the message is not deleted from the

queue, but is rather given a visibility timeout, during which the same message cannot

be read from the queue again. Visibility timeout prevents the message reader (also

known as the message consumer) from accidentally processing the message twice

and allows a message to be returned to the queue successfully in the case of a failure

during message processing. The message is removed from the queue only after being

specifically deleted by the consumer or after a successful processing confirmation.

(Amazon SQS visibility timeout N.d.)

The consumer of a message may also return an error, in which case configured queue

parameters can determine the course of action for the failed messages. Some mes-

sages may be undeliverable due to unresolvable issues, such as syntax errors, in

which case removal from the queue is justified. For SQS queues, a dead-letter queue

of the matching type can be configured, to which undelivered messages can be

pushed after an adjustable number of retries. (Amazon SQS dead-letter queues N.d.)

Dead-letter queues are utilized in the implementation to ensure persistency and pre-

vent loss of data in case of failures by storing permanently failing messages sepa-

rately from the actual input message queue. Messages in dead letter queues can be

later examined by developers to determine causes of failure or moved back to the

application queue to attempt resending of data. For each application queue in AWS,

a matching dead-letter queue was created, and the application queue was config-

ured to transfer the message to the dead-letter queue after ten failed processing at-

tempts. The specific retry numbers are configurable per application basis and can be

adjusted as necessary.

Configuration details utilized in the final version of the implementation are described

in Table 1. Queue names are unique for each application, named in a manner de-

scriptive of the sending application. Dead-letter queue names combined the applica-

tion queue name with a “_Fail” suffix. A sufficiently informative naming scenario

31

should be used in a production scenario. Visibility timeout should be set to a long

enough value to ensure a response has successfully been received from the message

consumer. If the message can be expected to traverse through multiple calls over the

network, the visibility timeout on the SQS queue may need to be set to multiple

minutes to ensure that the message consumer does not return a response message

after the visibility timeout of the original message has expired. Queue permissions

need to be set either during queue creation or message consumer configuration to

allow consumer to read messages from the queue. In this research, the configuration

was conducted during message consumer implementation, removing the need to

specify permissions with each queue creation. Dead-letter queue settings were con-

figured only for the main queues responsible for providing messages for transfer.

Dead-letter queues themselves were created in the same manner as main applica-

tion queues, but without any dead-letter queue configurations.

Table 1: SQS queue configurations

Property name Property value

Type FIFO

Name MockDataSource1.fifo

Visibility timeout 200 Seconds

Message retention period 4 Days

Delivery delay 0 Seconds

Maximum message size 256 KB

Receive message wait time 0 Seconds

Content-based deduplication Not selected

Access policy Basic

Define who can send messages to the
queue

Only the queue owner

Define who can receive messages from
the queue

Only the queue owner

Dead-letter queue options (only for ap-
plication queues):

Set this queue to receive undeliverable
messages

Enabled

Choose queue Choose a dead-letter queue

Queue ARN <redacted>:MockDataSource1_Fail.fifo

Maximum receives 10

32

A total of four SQS queues were created for the final version of the implementation:

two queues for each application, of which one was the main queue responsible for

holding messages to be transferred to ESB, and the other was a dead-letter queue for

storing messages that repeatedly failed to be processed. The complete set of SQS

queues for the implementation is listed below in Table 2.

Table 2: Implemented SQS queues

Queue name Description

MockDataSource1.fifo Main queue for Application 1

MockDataSource1_Fail.fifo Dead-letter queue for Application 1

MockDataSource2.fifo Main queue for Application 2

MockDataSource2_Fail.fifo Dead-letter queue for Application 2

5.2.2 Lambda function as the message consumer

While technically a large variety of services could be utilized to act as message con-

sumers to transfer the messages from SQS queues, the simplest method of consum-

ing messages was to utilize services offered within AWS environment. Being able to

consume and delete messages on SQS queues requires AWS credentials and the SQS

queues need to be configured to permit modification by the AWS identity used by

the consumer (Identity and access management in Amazon SQS N.d.). In practice, us-

ing a third-party component as a consumer of messages would require maintaining a

set of up-to-date AWS credentials on the consumer component, whereas relying on

AWS-native services to eliminates the need for identity management other than per-

mission delegations.

Out of the services available in AWS, Lambda provided the simplest and the most

flexible way to consume and handle SQS messages. Lambda functions allow for exe-

cution of custom code in a serverless environment, providing a lightweight mainte-

nance-free platform to create the required functionality to send messages from AWS

to ESB. Additionally, Lambda functions can use SQS queues as trigger sources, allow-

ing for the code within a Lambda function to be executed as soon as a message is

33

detected within the SQS queue. Lambda functions provide native support for Java,

Go, PowerShell, Node.js, C#, Python and Ruby, with additional support for other pro-

gramming languages through a Runtime API (AWS Lambda FAQs N.d.). Node.js was

chosen for the implementation due to performance reasons and native HTTP request

capabilities.

The final implementation of the integration contains one Lambda function: ACECon-

nector. ACEConnector utilizes the main SQS queues of applications, MockData-

Source1.fifo and MockDataSource2.fifo, as trigger sources for code execution. Table

3 contains the parameters used to initialize the Lambda function.

Table 3: Lambda function configuration values

Property name Property value

Choice of function base Author from scratch

Function name ACEConnector

Runtime Node.js 1.2.x

Creation of the Lambda function simultaneously created a new identity role within

AWS, to which a permission policy could be created to allow SQS access and modifi-

cation rights. SQS access permissions were configured by locating ACEConnector’s

execution role in AWS Identity and Access Management portal and attaching a new

policy to the role with configurations specified in Table 4. The configured policy al-

lows the Lambda function to read SQS metadata information, read messages from

SQS queues and delete messages from SQS queues, if the SQS queue is within the

same AWS account as the Lambda function. Lambda functions are also technically ca-

pable of accessing SQS queues on other AWS accounts within the same geographic

region. External account queue accesses would require the use of Simple Token Ser-

vice within Lambda code and additional permission configurations on the SQS queue.

In order to avoid complexity, only SQS queues in the same account were configured

to be used as data sources.

34

Table 4: SQS access policy for ACEConnector

Property name Property value

Service SQS

Actions Read: GetQueueAttributes

 Read: ReceiveMessage

 Write: DeleteMessage

Resources arn:aws:sqs:*:*:*

Name ACEConnectorSQSAccess

After permission configurations, SQS queues were added as triggers through the

Lambda interface for ACEConnector. As the queues had already been created and

permission policies attached to ACEConnector’s execution role, the required configu-

rations were minimal, shown in Table 5.

Table 5: Lambda trigger configurations

Property name Property value

Trigger source selection SQS

SQS queue <redacted>:MockDataSource1.fifo

Batch size 10

Enable trigger Selected

The source code for ACEConnector was the single portion of AWS side implementa-

tion which experienced the most iterations during the process of implementation,

both expanding and simplifying the functionalities of the code. The initial versions of

the code simply aimed at transferring the message to ESB through a HTTP POST re-

quest, interpreting the operation as successful if ESB confirmed that the messages

had been received, regardless of processing outcome. The simultaneous develop-

ment of the receiving application at ESB side also provided more conditions to ac-

count for within the Lambda code, such as specific HTTP response codes based on

the processing result within the connector at ESB side. The later versions of the code

implemented reliable messaging features to ensure delivery and failure notification,

35

allowing for processing retries and dead-letter queue handling procedures on AWS

side in case of permanent failures.

The final version of the implemented code in ACEConnector is available in Appendix

1 and is described in this paragraph briefly. The code implementation is based on the

work of Hamza Sabljakovic (2019), utilizing parts of his code while modifying and

adding on to others. ACEConnector takes in event data from SQS, containing

metadata on the SQS queue itself, as well as the messages retrieved from the source

SQS queue. The code in ACEConnector starts by defining the configurations required

to perform a HTTP call: target host IP address, port number, URL path, HTTP method

and Authorization header for authentication. A request object is created with the

previously set up configurations and a callback function to verify the HTTP status

code received from ESB once the call has been conducted. The event data retrieved

from the SQS queue is added as the HTTP request body, and the HTTP POST request

is performed. For the purpose of this implementation, the request is considered

failed in situations where the request outright returns an error, or the returned HTTP

status code is anything other than 200. If the messages were delivered successfully,

the status code is logged to console and execution finished, triggering the deletion of

the messages from the SQS queue. If errors were encountered during processing, an

exception is thrown from ACEConnector with the encountered error details. The ex-

ception provides the SQS queue with information that the messages were processed

unsuccessfully, either prompting the SQS queue to move the messages to dead-letter

queue if the maximum retry count was reached, or allowing the messages to remain

in the queue to be reprocessed once the visibility timeout has expired. Failure feed-

back to the originating SQS queue enforces reliable messaging principles, as the

source of the message will receive notification of delivery failure and no messages

are lost even in cases of delivery or processing failures.

5.2.3 Logging with CloudWatch

Fulfilling the traceability requirement of reliable messaging principles required the

implementation of logging features on AWS. Fortunately, most of the work was al-

ready completed by AWS under the hood of the services. AWS automatically creates

36

logs from available services, including SQS queues and Lambda functions. Cloud-

Watch logs include both visual dashboards and text-based logs for various indicators.

Figure 5 shows an example view from CloudWatch on SQS sent message statistics.

Figure 5: SQS sent messages graph on CloudWatch dashboard

Text-based logs of CloudWatch include the main aspects defined by Kraft and col-

leagues (2010) in their lessons on implementation of tracing and logs; log entries in-

clude the timestamp for the event, message identifier, information type and specify-

ing information, shown in Figure 6. Any information written to console during

Lambda execution is logged to CloudWatch logs, allowing for custom logging events

in code, such as the status code logs in Figure 6.

Figure 6: Text-based logs on CloudWatch

37

5.2.4 Test data population with helper Lambda

A separate Lambda function, SQSMessageGenerator, was used to populate data to

SQS queues and verify the functionality of the integration. A predetermined number

of messages were generated and filled to each queue for integration processing. Af-

ter the processing was complete, the receiving system logs and integration traces

were reviewed to verify that the messages were distributed correctly by the integra-

tion. In order to keep the scope of the research within reasonable limits, the specific

testing procedures and results are not reported in this research.

SQSMessageGenerator is a Lambda function based on Node.js runtime. SQSMes-

sageGenerator aims to emulate sender applications by creating a set of messages

and sending the messages to different SQS queues, from which the messages would

be picked up by ACEConnector. The specifics of the code can be tweaked to change

the total number of messages created, target queues and the relative distribution of

messages for each queue. As SQSMessageGenerator is not a direct part of the inte-

gration solution, but rather a utility used to test the implementation, the specific

functionality of the code is not discussed here. The source code for SQSMessageGen-

erator is provided in Appendix 2 and is adaptable to various testing scenarios with

minor tweaks to the code. The code is adapted from the example provided by AWS in

their developer guide (Sending and Receiving Messages in Amazon SQS N.d.).

5.2.5 Final AWS architecture

Even though a rough plan for AWS environment implementation existed prior to con-

figuring the first functionalities within AWS, the detailed architectural implementa-

tion took shape only after the entire integration implementation had reached the fi-

nal form. Figure 7 shows the architecture of AWS components in the final implemen-

tation, including the helper lambda function for test data population, which in pro-

duction use case would be replaced by separate sender applications.

38

Figure 7: AWS environment integration architecture

The solid arrows on Figure 7 show the flow of messages from the data source to ESB

and CloudWatch logs. The dotted arrows indicate the flow of response information

from ESB back to ACEConnector, and from ACEConnector to individual SQS queues

acting as data sources. On the event of multiple failures and maximum retry caps

reached, message data will be transported to dead-letter queues, at which point a

developer or a support personnel should begin investigations on the failure mecha-

nism and required remedying actions.

5.3 Notes on transit across the public internet

As the implemented integration is a proof-of-concept solution in a development en-

vironment and not intended to be transferred to production as is, the architectural

design on transit of messages across the internet was kept simple. ACEConnector

performs a HTTP POST request to a public IP address, owned by a router within the

target network. Port forward rules were configured in the router to transfer the re-

quest directly to the integration server’s port 8081, the HTTP listener for the AWS

connector. SSL certificates and HTTPS connectivity were not implemented for the

39

development environment but should be considered a bare minimum standard for

production environments. Proper access routing through demilitarized network

zones should also be considered for production use cases.

5.4 Enterprise Service Bus implementation

5.4.1 ESB implementation overview

The implementation of integration on ESB was conducted by delegating responsibili-

ties for individual functionalities to separate applications, in accordance with SOA

principles. The division of responsibilities resulted in one AWS Connector application

responsible for distributing incoming messages sent from AWS, and individual appli-

cations responsible for subsequently processing and delivering messages to target

systems. The system-specific modules could be further divided into transformation

and connector modules to better adhere to SOA principles, which would provide

more reusability especially in larger and more complex environments. For the pur-

pose of this research, the message-processing applications were left as a single mod-

ule to avoid complexity.

5.4.2 AWS_Connector application

Like with ACEConnector implementation, the final form of AWS_Connector is the

product of multiple stages of evolution. The development started with the most basic

required functionalities, consisting of successful receipt of a message, delivery to tar-

get queue and sending of a HTTP response to the caller. Later implementations saw

the addition of batch-processing of messages and conversion of routing information

from hardcoded lists within code to configuration files. Error-handling and logging

provided the necessary functionality to ensure message traceability and delivery fail-

ure notifications, as outlined by reliable messaging guidelines.

AWS_Connector application contains all functionality related to message transfers to

and from AWS environment. While an application may contain multiple message

flows, only HTTP_Inbound message flow has been implemented in this research. If

40

messages were to be transferred from ESB towards AWS, an additional

HTTP_Outbound message flow would be implemented within AWS_Connector appli-

cation.

HTTP_Inbound message flow is responsible for providing a public HTTP interface ca-

pable of receiving messages through HTTP POST requests, routing the message to the

correct application within ESB for further processing and sending a reply to the crea-

tor of the HTTP POST request. Figure 8 shows the message flow order and nodes for

HTTP_Inbound, with yellow paths representing actions for unsuccessful processing

attempts and the green path representing the actions in a successful processing case.

Each node along the paths in Figure 8 represent a functionality or an action within

the message flow, such as output of data to a trace file, addition of a HTTP-header to

a message or code execution.

Figure 8: HTTP_Inbound flow order and success/failure paths

HTTP Input node was used to create an interface capable of receiving HTTP POST re-

quests. HTTP Input is a standard App Connect Enterprise (ACE) HTTPInput node, con-

figured as outlined in Table 6. Path suffix for URL set to “/aws/in” specifies the exact

address at which the server should listen for the connections, such as

“http://server:7800/aws/in”. As the event data received by ACEConnector Lambda is

by default JSON and sent to the HTTP Input node without any modifications, message

domain was set to JSON to allow ACE to parse and process the incoming message.

41

Table 6: HTTP Input configurations

Property name Property value

Path suffix for URL /aws/in

Message domain JSON: For JavaScript Object Notation
messages

Maximum client wait time (sec) 180

Security profile Default Propagation

Identity token type Transport Default

The security profile and identity token type configurations relate to enabling authen-

tication capabilities for the HTTP Input node, fulfilling the sender authentication re-

quirement of reliable messaging principles. Enabling basic authentication functionali-

ties in ACE requires a policy to be created and deployed on the same integration

server as the application. For this purpose, HTTPInputSecurityPolicy was created

within a policy group, AWSConnectorPolicies, specific configurations in Table 7.

Table 7: Security policy configuration

Property name Property value

Name HTTPInputSecurityPolicy

Type Security Profiles

Templates Security Profiles

Authentication Local

Authentication configuration AWSConnectorInbound

The final addition to enable basic authentication on the HTTP input node involved

creating a vault entry for credential named “AWSConnectorInbound” with the inte-

gration broker’s command line interface. The broker’s key vault is a central place to

securely store a complete list of authentication parameters used by the integration

nodes, such as FTP or HTTP functionalities. Key vault and vault entry were created

through IBM App Connect Enterprise Console with the following commands:

mqsivault --work-dir D:\Users\ESB\IBM\ACET11\workspace\INTSRV01 --create --

vault-key <secret_key>

42

mqsicredentials --work-dir D:\Users\ESB\IBM\ACET11\workspace\INTSRV01 --

create --vault-key <secret_key> --credential-type local --credential-name

AWSConnectorInbound --username AWS --password <password>

The commands and configurations above tied the authentication of the HTTP inter-

face to AWSConnectorInbound credentials, accessible by providing the username

“AWS” and the password set during the credential creation. The same username and

password were used in ACEConnector Lambda to create the Authorization header for

the HTTP POST request. During an inbound message to the HTTP Input node, the Au-

thorization header is read from the HTTP POST request. The authorization method

and credentials are parsed and compared to the identity within the key vault, and if

the credentials match, the message is read into the flow. In case of wrong creden-

tials, a “401 Unauthorized” response code is sent back to the calling party, prompting

ACEConnector to throw an exception within the Lambda code, returning the mes-

sages back to the SQS queues.

HTTP Input node offers four distinct outcomes for processing: timeout, input failure,

successful receipt and a catch-terminal for handling exceptions during processing.

Terminals related to failure (timeout, input failure and exception) are connected to

Trace nodes responsible for updating log files with information on message handling

progress. After logging, a X-Original-HTTP-Status-Code header with relevant status

code is added to HTTPReply properties of the message by a HTTP Header node. Fi-

nally, the message is transferred to a HTTP Reply node in order to trigger a HTTP re-

sponse message for the sender of the HTTP request.

For successful message reads, additional actions related to message routing and

propagation are performed before the final HTTP Reply node. After the successful re-

ceipt of the message has been logged by a Trace Node, a configuration file containing

queue routing information is read and analyzed by using a File Read node. The spe-

cific configurations for File Read, named Read Destination Configuration on Figure 8,

are listed in Table 8.

43

Table 8: Read Destination Configuration properties

Property name Property value

Input directory D:\Users\ESB\IBM\ACET11\workspace\FlowConfig

File name or pattern AWS_Connector_destinations.json

Result data location

$ResultRoot

Output data location $Environment/Variables/filecontent

Copy local environment Selected

Record selection expres-
sion

$InputRoot/JSON/Data/Records/Item/eventSourceARN
= $Environment/Variables/filecon-
tent/JSON/Data/QueueList/Item/OriginQueue

Message domain JSON: For JavaScript Object Notation messages

The configuration file read process reads the contents of

AWS_Connector_destinations.json to memory, and attempts to match the value of

OriginQueue in AWS_Connector_destinations.json to eventSourceARN in the incom-

ing message structure. The implementation produced during the research contained

only two routing entries, indicating the origin queue and the destination message

queue within ESB to which the message should be routed:

{
 "QueueList": [
 {
 "OriginQueue" : "arn:aws:sqs:eu-north-
1:737528452624:MockDataSource1.fifo",
 "Destination" : "FTP.UPLOADER.IN"
 },
 {
 "OriginQueue" : "arn:aws:sqs:eu-north-
1:737528452624:MockDataSource2.fifo",
 "Destination" : "HTTP.UPLOADER.IN"
 }]
}

If no match for the eventSourceARN contained within the incoming message is

found, the message cannot be routed to an application within the ESB. In these sce-

narios, the routing failure is logged, a HTTP header is added to the message and a re-

ply of an unsuccessful processing event is sent back to caller.

44

A successful routing match is followed by extracting the actual messages from their

metadata-wrapper with an ESQL Compute node, source code available in Appendix 3.

As Figure 9 shows, the actual data to be transferred within the message is embedded

within the message body as a string in JSON format.

Figure 9: Incoming message structure in ACE debugger

Parse and Split Messages compute node creates a staging area in memory and pro-

cesses all Item tags in the incoming message separately. Each Item tag is a separate

message originating from the SQS queues, and for each Item, a destination queue

name is determined by matching the eventSourceARN to the OriginQueue in the con-

figuration file. After the destination queue name has been determined, the JSON-

string from the message body is cast as a binary string to a temporary storage varia-

ble, from where the string is parsed from JSON to XMLNSC to create a structured set

of data within the staging area in memory. After all messages have been handled, the

count of parsed messages and source queue information are stored for use by the

following Trace nodes and the message flow proceeds to send messages.

45

Send Messages node sets the correct target WebSphere MQ message queue name

for each message staged in the memory and sends the messages to the applications

responsible for further processing. The source code for Send Messages compute

node is available in Appendix 4. The code loops through all messages stored in the

staging area in memory. For each message, the code sets the destination queue to

the queue obtained from the configuration file. A unique message identifier is then

created for internal logging purposes. MQRFH2-headers are populated with mes-

sage-related metadata and the message is sent to the secondary terminal of the

flow, leading to a MQ Output node. MQ Output node then delivers the message to

the previously determined message queue. After all staged messages have been pro-

cessed, a final message is sent to the primary output terminal of the compute node

for logging, HTTP response code addition and a HTTP response creation for the caller.

The compute node compute mode property was set to “LocalEnvironment and Mes-

sage” to allow passing of the destination queue name to the MQ Output node.

The use of WebSphere MQ message queues required the configuration of a MQ End-

point policy. The policy was created within AWSConnectorPolicies policy group,

alongside previously covered HTTPInputSecurityPolicy. The specific configurations for

the policy are listed in Table 9. The values for queue manager name, host name port

number and channel name will vary based on implementation and setup of Web-

Sphere MQ server.

Table 9: MQEndpointPolicy configuration

Property name Property value

Name MQEndpointPolicy

Type MQEndpoint

Template MQEndpoint

Connection CLIENT

Queue manager name QM1

Queue manager host name 127.0.0.1

Listener port number 1414

Channel name qm1

Use SSL false

46

Send to Queue node requires a destination list configuration to allow dynamic selec-

tion of the target message queue. Specific configurations for the MQ Output node

are listed in Table 10 below. As the queue name is not specified and destination

mode is set to destination list, the queue name is read in from the memory instead

of a statically set value in the node configuration.

Table 10: Send to Queue node configurations

Property name Property value

Queue name Empty

Connection Local queue manager

Destination queue manager name QM1

Destination mode Destination List

Policy Empty

Trace nodes were configured to append updates to a trace file specific to the

HTTP_Inbound application on the integration broker. The configuration of the trace

file was simplified by promoting the destination and file path properties of each trace

node to the message flow level, allowing for configuration of all trace nodes at once.

The exact log message varied across trace files based on the action to be traced and

the information available. While Kraft and colleagues (2010) recommended avoiding

using dynamic logic in trace files, dynamic contents in logs were found to provide

more benefits than drawbacks during the implementation. Trace node message con-

figurations and sample logs are available in Appendix 5.

5.4.3 APP1_FTP_Uploader implementation

APP1_FTP_Uploader was implemented as an application responsible for transform-

ing the message received from AWS_Connector and delivering the transformed mes-

sage to the target FTP server. Only minimal functionality was implemented to keep

the scope limited. Figure 10 shows the ideal path of the message in green, with yel-

low paths indicating actions during processing or delivery failure.

47

Figure 10: FTP Uploader message flow

The application reads in messages from queue FTP.UPLOADER.IN on WebSphere MQ

queue manager QM1. On successful reads, Set Logging Variables, an ESQL Compute

node, retrieves metadata for logging from message headers and sets a wildcard vari-

able later used in file naming conventions during FTP upload. Source code for Set

Logging Variables node is available in Appendix 6. After message arrival has been

written to trace file, a SOAP envelope is added to the incoming message just to emu-

late a simple processing functionality for the incoming message. Once the SOAP en-

velope has been added, the message is stored on a remote FTP server using File Out-

put node. The File Output node is configured to utilize FTP for file transfer, alongside

with authentication with an identity stored in the integration broker’s key vault. Spe-

cific configurations for the File Output node are listed below in Table 11.

Table 11: FTP Upload node configurations

Property name Property value

File name or pattern *.xml

File action Write directly to the output file (append if
file exists)

Data location $Body

Remote Transfer Selected

Transfer protocol FTP

Server and port 192.168.1.96:21

Security identity ftpIdentity

Server directory /home/integration/integrations/in

Transfer mode ASCII

Action if remote file exists Replace Existing File (PUT)

48

The File Output node utilizes the wildcard variable created earlier to name the out-

going file, with message body to be used as file contents. The target folder was con-

figured as a folder accessible through FTP on a remote Linux-based FTP server. An

identity for ftpIdentity containing the remote server FTP username and password

combination was added to the broker’s key vault with IBM App Connect Enterprise

Console with the following command:

mqsisetdbparms -w D:\Users\ESB\IBM\ACET11\workspace\INTSRV01 -n

ftp::ftpIdentity -u integration -p <password>

Once the File Output node has processed the message, the results are logged to a

trace file. Traces are formed in the same manner as in AWS_Connector to an

FTP_Upload message flow specific trace file, specific Pattern configurations and ex-

ample traces are available in Appendix 7.

In case of FTP upload failure, the message flow throws an exception, triggering a re-

versal of the message flow direction to the MQ Input node FTP.UPLOADER.IN. Upon

reaching the MQ Input node, the message is re-sent through Catch-terminal, result-

ing in Trace: Processing Error node logging the failure, and transfer of the message to

the Backout Requeue Queue for FTP.UPLOADER.IN: FTP.UPLOADER.IN.FAIL. Throwing

an exception ensures that the broker treats the processing as failed and stores the

message in a dead-letter queue for further investigations and processing, ensuring

data persistence.

5.4.4 APP2_HTTP_POST implementation

The second message processing flow implemented on ESB was a message flow with

the responsibility of forwarding the incoming message to a HTTP server through a

HTTP POST request. The implementation was kept as simple as possible to limit the

scope of the work, and only the necessary functionality to create a HTTP POST re-

quest and enable message tracing was included. Figure 11 shows the final layout of

49

the message flow, as well as the ideal path in green, with processing failure paths in

yellow.

Figure 11: HTTP_POST message flow implementation

The message flow monitors a WebSphere MQ message queue, HTTP.UPLOADER.IN.

Once a message is read from the queue, the read event is logged in a trace file and

the message is transferred to Set Logging and Destination, an ESQL Compute node,

for processing. The source code for Set Logging and Destination is available at Appen-

dix 8. The compute node extracts metadata from incoming message headers and sets

the target HTTP address. As the implementation mimics a web application interface

with a HTTP echo server, the target address was configured to contain the message

identifier to allow monitoring of received messages through the echo server’s output

information. A HTTP echo server does not store any of the received data and does

not provide any handling for the incoming HTTP requests, only sends a reply to the

caller indicating that the HTTP request was successful. Using the message identifier

as the HTTP address suffix resulted in the HTTP echo server displaying the identifier

of each message for which a HTTP POST request was received, allowing for easy veri-

fication that correct messages were received.

Once the necessary values to create a HTTP request have been set, the event is

logged to trace files and the message passed on to HTTP Request node for HTTP

POST request to the target server. The configurations used in HTTP Request node are

listed in Table 12.

50

Table 12: HTTP Request configurations

Property name Property value

Web service URL http://192.168.1.97:8080

Request timeout (sec) 120

HTTP method POST

Response Message Parsing MIME: For MIME wrapped data including
multipart

Replace input with error Selected

Use whole input message as re-
quest

Selected

Replace input message with web-
service response

Selected

Generate default HTTP headers
from input

Selected

With the configurations set as in Table 12, the HTTP Request node returns the suc-

cess or failure information from the HTTP POST request. The message flow logs the

result of the HTTP request in trace files. In the case of unsuccessful requests, the

message flows throws an exception with a Throw node to ensure that the message

gets backed out into the original MQ queue, and from there to a dead-letter queue

for later analysis.

Trace node configurations follow a similar pattern as for FTP Uploader, specifications

and example logs available in Appendix 9.

5.4.5 Final ESB architecture

The final implementation of modules on ESB consisted of the applications listed in

previous chapters working in tandem. Figure 12 displays the relationship between

the individual components within the ESB, including the flow of data between com-

ponents.

51

Figure 12: ESB architecture diagram

The implemented solution consisted of a connector application for communications

with AWS, a configuration file to store message routing information, message queues

to serve as persistent storage locations for messages awaiting processing and two re-

cipient-specific applications to process and transfer messages. The scope of the re-

search was limited to only providing a functional proof-of-concept solution for the in-

tegration, and as a result, security measures and other architectural considerations

were not implemented.

5.5 Mock recipient applications

5.5.1 Overview of recipient applications

As the only purpose for mock applications in the documented implementation was to

emulate the functionality of the application-specific connectors in the integration,

the mock applications are described here only briefly. In practice, the mock applica-

tions described in the next chapters are fully replaceable with any application inter-

faces or connectors serving as the recipient side of the integration. The specific

52

configurations of the connector application output nodes may need to be adjusted

based on the exact requirements set by the receiving applications.

5.5.2 FTP server

The FTP server utilized in the implementation was a default installation of vsftpd FTP

server on an Ubuntu server. The integration broker was provided access to the FTP

server with local server credentials, no additional configurations other than providing

a place to store files were implemented for the user. FTP server logs on the Ubuntu

server were utilized to verify and test the functionality of the integration.

5.5.3 HTTP echo server

A HTTP server interface was simulated by utilizing a containerized HTTP Echo Server

in an Ubuntu server to provide a response to any requests received by the Echo

Server. The Echo Server is a freely available HTTP service in a docker image, which

echoes back any requests sent to the server (Echo Server N.d.). Echo Server output

information was used to verify that correct messages were received by the Echo

Server.

6 Results

The goal of the research was to implement an integration capable of transferring

data from AWS to external environments via IBM ESB environment, while adhering

to SOA and reliable messaging principles. This was achieved by implementing each

component of the integration as an entity limited to performing a single functional-

ity. Simultaneously, each component of the integration was designed to be reusable

in the environment. Measures required by reliable messaging principles were imple-

mented throughout the integration where suitable. The final implementation archi-

tecture is shown in Figure 13.

53

Figure 13: Implementation architecture

Implementing the integration based on SOA principles was closely equivalent to tak-

ing the path of least resistance in AWS environment, as AWS itself provides services

in a SOA manner. The integration could be pieced together from various reusable

services, and implementation in a non-SOA manner would have been difficult. AWS

identity management features ensured authentication within the AWS environment,

while SQS FIFO queues provided the means to ensure exactly-once and in-order de-

livery. CloudWatch logs ensure the traceability of actions within AWS, and the

Lambda code provides delivery failure notification possibilities.

AWS side implementation still holds room for improvement and expansion. Currently

the receipt of messages is limited to components within the same AWS environment,

but the message consumption process could also be extended to other AWS environ-

ments within the same geographic region using Simple Token Service (STS) based ex-

ecution role assumption within the message consumer code. This would require sig-

nificant changes to the Lambda code, as SQS queues on external accounts cannot be

set as triggers for the Lambda function. Instead, CloudWatch alerts could be used to

54

send timed triggers to the Lambda to poll for new messages on the external SQS

queue.

Logging with CloudWatch required minimal effort due to the extensive work per-

formed by AWS behind the scenes. Even an unrefined version of logging capabilities

provided enough logs to support the traceability requirements of reliable messaging

principles. CloudWatch holds further functionalities regarding alerts and notifications

that should be explored in the case of a production environment deployment, but

which were left out of scope for this implementation. CloudWatch includes methods

to, for example, send alerts through SMS messages or email on the event of errors

above a configurable threshold, which could be an invaluable aid in production envi-

ronments looking to fully implement reliable messaging principles and actively moni-

tor integrations in production.

The ESB side implementation loosely followed SOA principles by implementing a ge-

neric connector between AWS and ESB but could have been further refined by split-

ting the FTP Uploader and HTTP POST message flows into separate components. The

first half would have provided transformation and mapping services for the specific

message type under processing, while the latter half would have functioned as a ge-

neric HTTP or FTP uploader, capable of processing any message types provided. The

current implementation also only supports incoming messages in JSON format, but

with some work, could be extended to support a dynamic set of data structures.

Reliable messaging principles were mostly fulfilled throughout the implementation,

with lack of implementation more often due to scope limitations or avoiding complex

solutions, rather than actual technical obstacles. Sender authentication functionali-

ties were implemented in the simplest available form, usually in the form of local cre-

dentials or basic authentication. A production environment might benefit from Light-

weight Directory Access Protocol (LDAP) or Certificate-based authentication forms.

Implementing more complex authentication formats would have required a more so-

phisticated environment and would likely have pushed the scope of the research too

far from a reasonable size. Likewise, recipient authentication was not implemented

in any form, as recipient authentication would most often be conducted through SSL

55

certificates and would have required domain registrations and a more complex envi-

ronment setup. A production environment would be well advised to utilize recipient

authentication for security reasons.

Traceability of messages was ensured through logging at each stage of the integra-

tion, with an identifier for a message traceable throughout the integration. The log

files provide basic information regarding the flow of the message but could be im-

proved upon by utilizing a data warehousing system to store further information,

such as contents of messages at different stages of the integration.

Exactly-once and in-order requirements are maintained throughout the integration

by the nature of the used platform. IBM’s App Connect Enterprise solution processes

messages in order, and when transit message queues are used to store messages be-

tween modules, the queues ensure First-In-First-Out delivery of messages. Error han-

dling built within the message flow processes ensure that undeliverable messages

are returned to dead-letter queues at both AWS and IBM platforms, so that no mes-

sages are lost during integration even in unexpected situations. An ideal solution

would ensure a single collection point for all dead-letter messages, but would have

required the implementation of a more sophisticated manner of delivery failure re-

ceipt towards AWS.

Failure notification features were built to some extent but were not extended to

reach all the way to the initial sender application. ESB will notify AWS about an un-

routeable message but will not pass on information of a message cannot be pro-

cessed by a subsequent application within ESB. For a proof-of-concept solution with

no real sender applications, the exact manner of implementing a delivery failure noti-

fication for the original sender application is unclear. In practice, a notification

method for responding to the sender application could be built as a separate applica-

tion within ESB, responsible for transferring success or failure notifications to the

sending application through either HTTP responses or asynchronous messages.

All in all, the integration implementation solved the original goal of implementing a

way to transfer information from AWS applications to services within an internal

56

network. While the implementation is functional and works as intended, many fea-

tures could still be added to provide more value, especially for enterprise stakehold-

ers.

7 Conclusions

The aim of the research was to create a proof-of-concept integration to transfer mes-

sages from Amazon Web Services to external services by utilizing IBM’s App Connect

Enterprise ESB. The goal was to design the integration to adhere to SOA principles

and fulfill requirements for reliable messaging.

While not all outlined features were implemented in each stage of the integration,

the development process demonstrated that the implementation would be possible

even for more complex situations. The integration successfully gathered messages

from multiple locations and transferred the messages to their target destinations,

while maintaining a modular architecture and providing reliability measures. The in-

tegration did not fully adhere to SOA principles but could be modified to further sep-

arate functionalities within each stage with some effort. Additionally, some of the re-

liable messaging principles, especially recipient authentication and delivery failure

messages to recipient, were difficult to implement in a reasonable manner in the de-

velopment environment.

The chosen research method focuses on building new information upon existing

knowledge through an ongoing process of implementation, examination and adjust-

ment. Design-based research method worked well for the implementation, allowing

for creation of practical knowledge to fit real-world use cases. Design-based research

works in a qualitative manner and the direct evaluation of success or failure is not

clear-cut, leaving much of the evaluation of success to individual readers. The result-

ing knowledge should therefore be critically examined and applied in real world sce-

narios where relevant, while adjusting practices to better fit the target environment.

57

The results of this research can be applied to implement integration connectors from

AWS to third party systems with IBM’s ESB platform, without having to create an ar-

chitectural design from the scratch. The implementation provides a rough base for a

basic connector setup with some example use case implementations, on which new

implementations can build additional functionality and features or adapt to better fit

the specific scenario at hand. The research included recommendations on modifica-

tions and decisions worth considering at each stage of the implementation.

This research provides a base to be used as a stage for further research. Future re-

searchers could examine an implementation for an integration in the reverse direc-

tion; sending data from third-party applications to AWS. Additionally, further re-

search could be directed towards performance- and stress-testing the integration im-

plementation, focused on measuring the scalability of the integration under heavy

loads. Further research could be conducted into creating a similar connector to col-

lect messages from SQS queues in external AWS accounts for processing within an

internal ESB. Additionally, further research is required into methods to reliably relay

failure notifications from applications within ESB to the originating applications in

AWS.

58

References

About Node.js. N.d. Article on Node.js website. Accessed 23 August 2020. Retrieved
from https://nodejs.org/en/about/.

Amazon CloudWatch. N.d. Article on AWS website. Accessed 23 August 2020. Re-
trieved from https://aws.amazon.com/cloudwatch/.

Amazon SQS dead-letter queues. Article on AWS website. Accessed 09 September
2020. Retrieved from https://docs.aws.amazon.com/AWSSimpleQueueService/lat-
est/SQSDeveloperGuide/sqs-dead-letter-queues.html.

Amazon SQS FIFO (First-In-First-Out) queues. Article on AWS website. Accessed 06
September 2020. Retrieved from https://docs.aws.amazon.com/AWSSimpleQueue-
Service/latest/SQSDeveloperGuide/FIFO-queues.html.

Amazon SQS Standard queues. Article on AWS website. Accessed 09 September
2020. Retrieved from https://docs.aws.amazon.com/AWSSimpleQueueService/lat-
est/SQSDeveloperGuide/standard-queues.html.

Amazon SQS visibility timeout. Article on AWS website. Accessed 09 September 2020.
Retrieved from https://docs.aws.amazon.com/AWSSimpleQueueService/lat-
est/SQSDeveloperGuide/sqs-visibility-timeout.html.

An Overview of HTTP. N.d. Article on MDN website. Accessed 23 August 2020. Re-
trieved from https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview.

Authentication and Authorization. N.d. Article on Auth0 website. Accessed 05 Sep-
tember 2020. Retrieved from https://auth0.com/docs/authorization/authentication-
and-authorization.

AWS Lambda. N.d. Article on AWS website. Accessed 23 August 2020. Retrieved from
https://aws.amazon.com/lambda/.

AWS Lambda FAQs. N.d. Article on AWS website. Accessed 10 September 2020. Re-
trieved from https://aws.amazon.com/lambda/faqs/.

Brown, A. 2001. Reliable Messaging. Article on World Wide Web Consortium (W3C)
website. Accessed 29 July 2020. Retrieved from
https://www.w3.org/2001/03/WSWS-popa/paper40.

Building Lambda functions with Node.js. N.d. Article on AWS website. Accessed 23
August 2020. Retrieved from https://docs.aws.amazon.com/lambda/lat-
est/dg/lambda-nodejs.html.

Burger, A. 2014. Report: SaaS Usage up 500% Since 2010; Second Cloud Front on Its
Way. Article on TeleCompetitor website. Accessed 14 September 2020. Retrieved

https://nodejs.org/en/about/
https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://auth0.com/docs/authorization/authentication-and-authorization
https://auth0.com/docs/authorization/authentication-and-authorization
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/faqs/
https://www.w3.org/2001/03/WSWS-popa/paper40
https://docs.aws.amazon.com/lambda/latest/dg/lambda-nodejs.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-nodejs.html

59

from https://www.telecompetitor.com/report-saas-usage-up-500-since-2010-se-
cond-cloud-front-on-its-way/.

Cloud computing with AWS. N.d. Article on AWS website. Accessed 23 August 2020.
Retrieved from https://aws.amazon.com/what-is-aws/?nc1=f_cc.

Columbus, L. 2018. 85% of Enterprise Workloads Will Be In The Cloud By 2020. Article
on Forbes’ website. Accessed 29 July 2020. Retrieved from
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-work-
loads-will-be-in-the-cloud-by-2020/#2e513c5b6261.

Doan, A., Halevy, A. & Ives, Z. 2012. Principles of Data Integration. San Fransisco:
Elsevier.

Echo Server. N.d. jmalloc Echo Server container download page on DockerHub web-
site. Accessed 11 September 2020. Retrieved from https://hub.docker.com/r/jmal-
loc/echo-server/.

ESQL Overview. N.d. Knowledge base article on IBM Knowledge Center website. Ac-
cessed 23 August 2020. Retrieved from https://www.ibm.com/support/knowledge-
center/en/SSMKHH_10.0.0/com.ibm.etools.mft.doc/ak00990_.htm.

Extracting business value from the 4 V’s of big data. N.d. Infographic on IBM’s Big
Data & Analytics Hub website. Accessed 29 July 2020. Retrieved from
https://www.ibmbigdatahub.com/infographic/extracting-business-value-4-vs-big-
data.

FTP. N.d. Article on JavaTPoint website. Accessed 23 August 2020. Retrieved from
https://www.javatpoint.com/computer-network-ftp.

Gartner Says 20 Percent of Spending in Key IT Segments Will Shift to the Cloud by
2022. 2018. Press release on Gartner’s website. Accessed 29 July 2020. Retrieved
from https://www.gartner.com/en/newsroom/press-releases/2018-09-18-gartner-
says-28-percent-of-spending-in-key-IT-segments-will-shift-to-the-cloud-by-2022.

Gulledge, T. 2006. What is integration? Industrial Management & Data Systems,
106(1), 5-20.

Hoadley, C. 2004. Methodological Alignment in Design-Based Research. Educational
Psychologist, 39, 203-212.

HTTP Authentication. N.d. Article on MDN website. Accessed 23 August 2020. Re-
trieved from https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication.

Identity and access management in Amazon SQS. N.d. Article on AWS website. Ac-
cessed 10 September 2020. Retrieved from https://docs.aws.amazon.com/AWSSim-
pleQueueService/latest/SQSDeveloperGuide/sqs-authentication-and-access-con-
trol.html.

https://www.telecompetitor.com/report-saas-usage-up-500-since-2010-second-cloud-front-on-its-way/
https://www.telecompetitor.com/report-saas-usage-up-500-since-2010-second-cloud-front-on-its-way/
https://aws.amazon.com/what-is-aws/?nc1=f_cc
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020/#2e513c5b6261
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020/#2e513c5b6261
https://hub.docker.com/r/jmalloc/echo-server/
https://hub.docker.com/r/jmalloc/echo-server/
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_10.0.0/com.ibm.etools.mft.doc/ak00990_.htm
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_10.0.0/com.ibm.etools.mft.doc/ak00990_.htm
https://www.ibmbigdatahub.com/infographic/extracting-business-value-4-vs-big-data
https://www.ibmbigdatahub.com/infographic/extracting-business-value-4-vs-big-data
https://www.javatpoint.com/computer-network-ftp
https://www.gartner.com/en/newsroom/press-releases/2018-09-18-gartner-says-28-percent-of-spending-in-key-IT-segments-will-shift-to-the-cloud-by-2022
https://www.gartner.com/en/newsroom/press-releases/2018-09-18-gartner-says-28-percent-of-spending-in-key-IT-segments-will-shift-to-the-cloud-by-2022
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-authentication-and-access-control.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-authentication-and-access-control.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-authentication-and-access-control.html

60

Introduction to XML. N.d. Article on W3Schools website. Accessed 23 August 2020.
Retrieved from https://www.w3schools.com/xml/xml_whatis.asp

Johansson, L. 2019. What is message queuing? Article on CloudAMQP Website. Ac-
cessed 23 August 2020. Retrieved from https://www.cloudamqp.com/blog/2014-12-
03-what-is-message-queuing.html.

JSON Introduction. N.d. Article on W3Schools website. Accessed 23 August 2020. Re-
trieved from https://www.w3schools.com/js/js_json_intro.asp.

Kraft, J., Wall, A., & Kienle, H. 2010. Trace recording for embedded systems: Lessons
leared from five industrial projects. International Conference on Runtime Verification,
315-329.

Lee, J., Siau, K. & Hong, S. 2003. Enterprise Integration with ERP and EAI. Communica-
tions of the ACM, 46.2, 54-60.

Lenzerini, M. 2002. Data integration: A theoretical perspective. Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems, 233-246.

Menge, F. 2007. Enterprise service bus. Free and open source software conference, 2,
1-6.

Message Delivery Reliability. N.d. Documentation on Akka website. Accessed 06 Sep-
tember 2020. Retrieved from https://doc.akka.io/docs/akka/current/general/mes-
sage-delivery-reliability.html.

Message Queues. N.d. Article on AWS website. Accessed 23 August 2020. Retrieved
from https://aws.amazon.com/message-queue/.

Messaging Concepts. N.d. Article on Apache website. Accessed 06 September 2020.
Retrieved from https://activemq.apache.org/components/artemis/documenta-
tion/1.1.0/messaging-concepts.html.

Messaging Patterns. N.d. Article on Enterprise Integration Patterns website. Ac-
cessed 23 August 2020. Retrieved from https://www.enterpriseintegrationpat-
terns.com/patterns/messaging/Introduction.html.

Mitchell, L. 2017. Handling Failure Successfully in RabbitMQ. Article on Medium web-
site. Accessed 06 September 2020. Retrieved from https://medium.com/codait/han-
dling-failure-successfully-in-rabbitmq-22ffa982b60f.

Moore, S. 2018. How to Create a Business Case for Data Quality Improvement. Publi-
cation on Gartner’s website. Accessed 29 July 2020. Retrieved from
https://www.gartner.com/smarterwithgartner/how-to-create-a-business-case-for-
data-quality-improvement/.

https://www.w3schools.com/xml/xml_whatis.asp
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.w3schools.com/js/js_json_intro.asp
https://doc.akka.io/docs/akka/current/general/message-delivery-reliability.html
https://doc.akka.io/docs/akka/current/general/message-delivery-reliability.html
https://aws.amazon.com/message-queue/
https://activemq.apache.org/components/artemis/documentation/1.1.0/messaging-concepts.html
https://activemq.apache.org/components/artemis/documentation/1.1.0/messaging-concepts.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/Introduction.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/Introduction.html
https://medium.com/codait/handling-failure-successfully-in-rabbitmq-22ffa982b60f
https://medium.com/codait/handling-failure-successfully-in-rabbitmq-22ffa982b60f
https://www.gartner.com/smarterwithgartner/how-to-create-a-business-case-for-data-quality-improvement/
https://www.gartner.com/smarterwithgartner/how-to-create-a-business-case-for-data-quality-improvement/

61

More, A. 2020. Enterprise Application Integration Market 2020 Industry Growth Anal-
ysis, Segmentation, Size, Share, Trend, Future Demand and Leading Players Updates
by Forecast By 360 Market Updates. Article on MarketWatch website. Accessed 23
August 2020. Retrieved from https://www.marketwatch.com/press-release/enter-
prise-application-integration-market-2020-industry-growth-analysis-segmentation-
size-share-trend-future-demand-and-leading-players-updates-by-forecast-by-360-
market-updates-2020-06-25.

Nemeth, G. 2015. Web Authentication Methods Explained. Blog post on RisingStack
website. Accessed 05 September 2020. Retrieved from https://blog.ris-
ingstack.com/web-authentication-methods-explained/.

Priority. N.d. Article on IBM website. Accessed 06 September 2020. Retrieved from
https://www.ibm.com/support/knowledge-
center/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q026260_.htm.

Quarterly SaaS Spending Reaches $20 billion as Microsoft Extends its Market Leader-
ship. 2018. Article on Synergy’s website. Accessed 29 July 2020. Retrieved from
https://www.srgresearch.com/articles/quarterly-saas-spending-reaches-20-billion-
microsoft-extends-its-market-leadership.

Reliability Patterns. N.d. Article on MuleSoft website. Accessed 23 August 2020. Re-
trieved from https://docs.mulesoft.com/mule-runtime/4.3/reliability-patterns.

Sabljakovic, H. 2019. Make a http post from aws lambda. Article on Medium website.
Accessed 11 September 2020. Retrieved from https://medium.com/@sabljako-
vich/http-post-request-from-node-js-in-aws-lambda-826d57f0680.

Saltzer, J. H., & Schroeder, M. D. 1975. The protection of information in computer
systems. Proceedings of the IEEE, 63(9), 1278-1308.

Schmidt, M. T., Hutchison, B., Lambros, P. & Phippen, R. 2005. The enterprise service
bus: making service-oriented architecture real. IBM Systems Journal, 44.4, 781-797.

Sending and Receiving Messages in Amazon SQS. N.d. Developer guide on AWS web-
site. Accessed 11 September 2020. Retrieved from https://docs.aws.ama-
zon.com/sdk-for-javascript/v2/developer-guide/sqs-examples-send-receive-mes-
sages.html.

SFTP – SSH Secure File Transfer Protocol. N.d. Article on SSH.com website. Accessed
23 August 2020. Retrieved from https://www.ssh.com/ssh/sftp/.

Sharma, M. 2019. What is Message Queue. Article on Medium website. Accessed 23
August 2020. Retrieved from https://medium.com/@Mohitdtumce/what-is-mes-
sage-queue-b5468ff6db50.

Sherman, R. 2015. Business Intelligence Guidebook: From Data Integration to Analyt-
ics. San Fransisco: Elsevier.

https://www.marketwatch.com/press-release/enterprise-application-integration-market-2020-industry-growth-analysis-segmentation-size-share-trend-future-demand-and-leading-players-updates-by-forecast-by-360-market-updates-2020-06-25
https://www.marketwatch.com/press-release/enterprise-application-integration-market-2020-industry-growth-analysis-segmentation-size-share-trend-future-demand-and-leading-players-updates-by-forecast-by-360-market-updates-2020-06-25
https://www.marketwatch.com/press-release/enterprise-application-integration-market-2020-industry-growth-analysis-segmentation-size-share-trend-future-demand-and-leading-players-updates-by-forecast-by-360-market-updates-2020-06-25
https://www.marketwatch.com/press-release/enterprise-application-integration-market-2020-industry-growth-analysis-segmentation-size-share-trend-future-demand-and-leading-players-updates-by-forecast-by-360-market-updates-2020-06-25
https://blog.risingstack.com/web-authentication-methods-explained/
https://blog.risingstack.com/web-authentication-methods-explained/
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q026260_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q026260_.htm
https://www.srgresearch.com/articles/quarterly-saas-spending-reaches-20-billion-microsoft-extends-its-market-leadership
https://www.srgresearch.com/articles/quarterly-saas-spending-reaches-20-billion-microsoft-extends-its-market-leadership
https://docs.mulesoft.com/mule-runtime/4.3/reliability-patterns
https://medium.com/@sabljakovich/http-post-request-from-node-js-in-aws-lambda-826d57f0680
https://medium.com/@sabljakovich/http-post-request-from-node-js-in-aws-lambda-826d57f0680
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sqs-examples-send-receive-messages.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sqs-examples-send-receive-messages.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sqs-examples-send-receive-messages.html
https://www.ssh.com/ssh/sftp/
https://medium.com/@Mohitdtumce/what-is-message-queue-b5468ff6db50
https://medium.com/@Mohitdtumce/what-is-message-queue-b5468ff6db50

62

Transaction Processing. 2017. Article on Technopedia website. Accessed 06 Septem-
ber 2020. Retrieved from https://www.techopedia.com/definition/464/transaction-
processing.

Tyson, M. 2020. What is service-oriented architecture? Article on InfoWorld website.
Accessed 02 September 2020. Retrieved from https://www.infoworld.com/arti-
cle/2071889/what-is-service-oriented-architecture.html.

Wang, F., & Hannafin, M. 2005. Design-Based Research and Technology-Enhanced
Learning Environments. Educational Technology Research and Development, 53, 5-
23.

What is an SSL Certificate? N.d. Article on CloudFlare website. Accessed 05 Septem-
ber 2020. Retrieved from https://www.cloudflare.com/learning/ssl/what-is-an-ssl-
certificate/.

What Is HTTPS? N.d. Article on CloudFlare website. Accessed 23 August 2020. Re-
trieved from https://www.cloudflare.com/learning/ssl/what-is-https/.

What is integration? N.d. Article on RedHat website. Accessed 23 August 2020. Re-
trieved from https://www.redhat.com/en/topics/integration/what-is-integration.

XML Soap. N.d. Article on W3Schools website. Accessed 23 August 2020. Retrieved
from https://www.w3schools.com/xml/xml_soap.asp.

https://www.techopedia.com/definition/464/transaction-processing
https://www.techopedia.com/definition/464/transaction-processing
https://www.infoworld.com/article/2071889/what-is-service-oriented-architecture.html
https://www.infoworld.com/article/2071889/what-is-service-oriented-architecture.html
https://www.cloudflare.com/learning/ssl/what-is-an-ssl-certificate/
https://www.cloudflare.com/learning/ssl/what-is-an-ssl-certificate/
https://www.cloudflare.com/learning/ssl/what-is-https/
https://www.redhat.com/en/topics/integration/what-is-integration
https://www.w3schools.com/xml/xml_soap.asp

63

Appendices

Appendix 1. Lambda source code: ACEConnector.js

const http = require('http');

const sendData = (eventData) => {
 return new Promise((resolve, reject) => {
 var postOptions = {
 host: process.env.HOST_IP,
 port: process.env.HOST_PORT,
 path: process.env.HOST_PATH,
 method: 'POST',
 headers: { Authorization: 'Basic ' + new
Buffer.from(process.env.USERNAME + ':' + process.env.PASSWORD, 'utf-
8').toString('base64') }
 };

 //Request object creation, return status code from integra-
tion server
 const req = http.request(postOptions, (result) => {
 var statusCode = JSON.stringify(result.statusCode);
 //Reject if statusCode is not 200 (i.e. message NOT de-
livered)
 statusCode != 200 ? reject(result.statusMessage) : re-
solve(statusCode);
 });

 //Reject promise with received error
 req.on('error', e => reject(e.message));

 //Send data to integration server and complete request
 req.write(JSON.stringify(eventData));
 req.end();
 });
};

exports.handler = async (event) => {
 //Send data to integration server
 await sendData(event)
 .then(result => console.log('Status code: ' + result))
 .catch(err => {
 console.error('Encountered error: ' + err);
 //Throw an exception to ensure message is returned to
queue
 throw new Error('Encountered error: ' + err);

 });
};

64

Appendix 2. Lambda source code: SQSMessageGenerator

// Dependencies and queue object setup
var AWS = require('aws-sdk');
var sqs = new AWS.SQS({region: 'eu-north-1'});

// Function for sending message to queue
const sendData = (targetQueue, msgBody, counter) => {
 return new Promise((resolve, reject) => {
 // Queue attribute and message body setup
 var params = {
 MessageBody: msgBody,
 MessageDeduplicationId: counter.toString(),
 MessageGroupId: counter.toString(),
 QueueUrl: targetQueue
 };

 // Send to queue
 sqs.sendMessage(params, function(err, data){
 if (err){
 console.log("Error: ", err);
 reject(err);
 } else {
 resolve(data.MessageId);
 }
 });
 });
}

exports.handler = async (event) => {
 var queues = ["https://sqs.eu-north-1.amazo-
naws.com/737528452624/MockDataSource1.fifo", "https://sqs.eu-
north-1.amazonaws.com/737528452624/MockDataSource2.fifo"]

 for (var i = 0; i < 10; i++) {
 // Set up target queue and message body
 var target = queues[i % 2];
 var body = "<message><targetQueue>" + target + "</tar-
getQueue><i>" + i + "</i></message>";
 //Send message to queue
 await sendData(target, body, i)
 .then(result => console.log("Message Id: " + re-
sult))
 .catch(err => console.log(err));
 }
};

65

Appendix 3. HTTP_Input message parse and split code

CREATE COMPUTE MODULE HTTP_Inbound_SetDestinationQueue

CREATE FUNCTION Main() RETURNS BOOLEAN

BEGIN

-- Reference declarations

DECLARE rMsgIn REFERENCE TO InputRoot.JSON.Data.Records;

CREATE FIELD Environment.Variables.Staging;

DECLARE rMsgOutStaging REFERENCE TO Environment.Variables.Staging;

DECLARE rItem REFERENCE TO rItem;

DECLARE rMsgOut REFERENCE TO rMsgOut;

DECLARE MsgParseCount INTEGER 0;

-- One incoming message batch may contain multiple messages,

-- messages parsed and forwarded to application flows separately

FOR rItem AS rMsgIn.Item[] DO

-- Create a copy of the extracted message to environment

 CREATE LASTCHILD OF rMsgOutStaging AS rMsgOut NAME 'Item';

 -- Extract destination queue name

 SET rMsgOut.DestinationQueue = THE(

 SELECT R.Destination

FROM Environment.Variables.filecon-

tent.JSON.Data.QueueList.Item[] AS R

 WHERE R.OriginQueue = rItem.eventSourceARN

);

 -- Extract message and parse as XMLNSC

 DECLARE Data BLOB;

 SET Data = CAST(rItem.body AS BLOB CCSID 1208);

 CREATE LASTCHILD OF rMsgOut DOMAIN('XMLNSC') PARSE(Data);

 -- Increase message counter

 SET MsgParseCount = MsgParseCount + 1;

END FOR;

-- Store message counter and source queue in environment for trace

nodes

SET Environment.Variables.MsgParseCount = MsgParseCount;

SET Environment.Variables.MsgSource = rMsgIn.Item.eventSourceARN;

-- All messages parsed to environment, continue flow

RETURN TRUE;

END;

END MODULE;

66

Appendix 4. HTTP_Inbound message sending code

CREATE COMPUTE MODULE HTTP_Inbound_SendMessages

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

-- Reference declarations

DECLARE rStagedMsgs REFERENCE TO Environment.Variables.Staging;

DECLARE rItem REFERENCE TO rItem;

DECLARE MsgSendCount INTEGER 0;

-- Send each message in staging area

FOR rItem AS rStagedMsgs.Item[] DO

-- Clear output queue destination list and populate it with

-- information obtained from configuration files

SET OutputLocalEnvironment.Destination.MQ.DestinationData

= NULL;

CREATE FIELD OutputLocalEnvironment.Destina-

tion.MQ.DestinationData.queueName VALUE rItem.Destination-

Queue.Destination;

-- Create a unique message ID and add to list of processed messages

 DECLARE MsgId CHARACTER uuidaschar;

SET Environment.Variables.MsgList = COALESCE((Environ-

ment.Variables.MsgList || ', ' || MsgId), MsgId);

-- Add metadata to RFH2 headers

 SET OutputRoot.MQRFH2.(MQRFH2.Field)Version = 2;

 SET OutputRoot.MQRFH2.(MQRFH2.Field)Format = 'MQSTR';

 SET OutputRoot.MQRFH2.(MQRFH2.Field)NameValueCCSID = 1208;

SET OutputRoot.MQRFH2.MsgInfo.OriginApplication =

'AWS_Connector';

 SET OutputRoot.MQRFH2.MsgInfo.OriginFlow = 'HTTP_Inbound';

 SET OutputRoot.MQRFH2.MsgInfo.MsgId = MsgId;

-- Move stored message to OutputRoot

 SET OutputRoot.XMLNSC = rItem.XMLNSC;

-- Send message

 PROPAGATE TO TERMINAL 'out1';

-- Increase sent message counter

 SET MsgSendCount = MsgSendCount + 1;

END FOR;

-- Store sent message counter for trace node

SET Environment.Variables.MsgSendCount = MsgSendCount;

-- All messages sent, send signal to logging and HTTPReply

RETURN TRUE;

END;

END MODULE;

67

Appendix 5. AWS_Connector trace node configurations

Trace node name Trace pattern

Trace: Timeout ${CURRENT_TIMESTAMP} Timeout occurred
when reading messages into integration.

Trace: Input Failure ${CURRENT_TIMESTAMP} Input was sent to inte-
gration, but could not be read into flow.

Trace: Exception in Flow ${CURRENT_TIMESTAMP} - Source:
${Root.JSON.Data.Records.Item.eventSourceARN}
- Message processing failed, an error was encoun-
tered

Trace: Message Arrived ${CURRENT_TIMESTAMP} - Source:
${Root.JSON.Data.Records.Item.eventSourceARN}
- Message batch arrived

Trace: No Queue Match ${CURRENT_TIMESTAMP} - Source:
${Root.JSON.Data.Records.Item.eventSourceARN}
- No destination queue match found for input
queue

Trace: Parse Success ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.MsgSource} - Messages parsed
successfully - ${Environment.Variables.MsgPar-
seCount} messages parsed.

Trace: Send Successful ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.MsgSource} - Message send pro-
cess successful - ${Environment.Variables.MsgS-
endCount} messages sent, identifiers: ${Environ-
ment.Variables.MsgList}

2020-07-28 12:16:49.899623 - Source: 'arn:aws:sqs:eu-north-1:737528452624:Mock-

DataSource2.fifo' - Message batch arrived

2020-07-28 12:16:49.991457 - Source: 'arn:aws:sqs:eu-north-1:737528452624:Mock-

DataSource2.fifo' - Messages parsed successfully - 10 messages parsed.

2020-07-28 12:16:50.322409 - Source: 'arn:aws:sqs:eu-north-1:737528452624:Mock-

DataSource2.fifo' - Message send process successful - 10 messages sent, identifiers:

'65efc648-e8c6-4a61-8d26-5d9c91aa0775, d9f194b1-3fbd-4eee-a05b-

974d94312131, f264b1ab-492e-4311-bc3e-220db11d0c00, 777ef3ce-3036-42e3-

969c-b7d35aaa9178, 24a6ad81-f7d0-4e8f-be6a-d640964b4aa0, aac89fef-913a-4256-

9d03-d826f1a8be57, 8ad4642e-bacf-41ce-b2b1-1d41500c7e30, 80c2a569-7014-

4d2d-a67a-186e5502b2e9, 169d73af-8f11-41fe-82b0-8385b5990454, 85258494-

b526-4af4-b9ce-b45f2ffb0a8b'

68

Appendix 6. FTP_Upload Set Logging Variables source code

CREATE COMPUTE MODULE FTP_Upload_Set_Logging_Variables

CREATE FUNCTION Main() RETURNS BOOLEAN

BEGIN

-- Copy entire message contents to be passed forward

CALL CopyEntireMessage();

-- Store information required by trace nodes and file output node

SET Environment.Variables.OriginApplication =

InputRoot.MQRFH2.MsgInfo.OriginApplication;

SET Environment.Variables.OriginFlow =

InputRoot.MQRFH2.MsgInfo.OriginFlow;

SET Environment.Variables.MsgId = InputRoot.MQRFH2.MsgInfo.MsgId;

SET OutputLocalEnvironment.Wildcard.WildcardMatch

= COALESCE(Environment.Variables.MsgId,

CAST(CURRENT_TIMESTAMP AS CHARACTER FORMAT

'yyyyMMddHHmmssSSSS'));

-- Send forward in flow

RETURN TRUE;

END;

--

CREATE PROCEDURE CopyEntireMessage() BEGIN

 SET OutputRoot = InputRoot;

END;

END MODULE;

69

Appendix 7. APP1_FTP_Uploader trace node

Trace node name Trace pattern

Trace: Processing Error ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Message processing en-
countered an error

Trace: Message Arrived ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Message arrived to flow

Trace: FTP Upload Failed ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Message upload to FTP
service failed.

Trace: FTP Upload Success ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Message uploaded to
FTP service.

2020-07-21 19:01:41.572168 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id:
'0b81f528-bf98-4597-a177-ed4102f5515c' - Message uploaded to FTP service.

2020-07-21 19:02:19.420471 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id:
'b45895fd-c143-46c8-845f-7c05f3437d56' - Message arrived to flow

2020-07-21 19:02:28.191047 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id:
'b45895fd-c143-46c8-845f-7c05f3437d56' - Message upload to FTP service failed.

2020-07-21 19:07:10.710610 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id:
'b4a7bc25-0c68-4334-b086-eace0937ae07' - Message arrived to flow

2020-07-21 19:07:13.117682 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id:
'b4a7bc25-0c68-4334-b086-eace0937ae07' - Message uploaded to FTP service.

70

Appendix 8. HTTP_POST Set Logging and Destination source code

CREATE COMPUTE MODULE HTTP_POST_Set_Logging_and_Destination

CREATE FUNCTION Main() RETURNS BOOLEAN

BEGIN

-- Copy message for sending

CALL CopyEntireMessage();

-- Set variables for logging and target url

SET Environment.Variables.OriginApplication =

InputRoot.MQRFH2.MsgInfo.OriginApplication;

SET Environment.Variables.OriginFlow =

InputRoot.MQRFH2.MsgInfo.OriginFlow;

SET Environment.Variables.MsgId = InputRoot.MQRFH2.MsgInfo.MsgId;

SET OutputLocalEnvironment.Destination.HTTP.RequestURL =

'http://192.168.1.97:8080/' ||

Environment.Variables.MsgId;

-- Send message forward in flow

RETURN TRUE;

END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN

DECLARE I INTEGER 1;

 DECLARE J INTEGER;

 SET J = CARDINALITY(InputRoot.*[]);

 WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I = I + 1;

 END WHILE;

END;

CREATE PROCEDURE CopyEntireMessage() BEGIN

 SET OutputRoot = InputRoot;

END;

END MODULE;

71

Appendix 9. APP2_HTTP_POST trace node configurations

Trace node name Trace pattern

Trace: Message Arrived ${CURRENT_TIMESTAMP} - Source:
${Root.MQRFH2.MsgInfo.OriginApplication}:
${Root.MQRFH2.MsgInfo.OriginFlow} - Id:
${Root.MQRFH2.MsgInfo.MsgId} - Message ar-
rived to flow

Trace: Exception in flow ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Exception encountered
when processing message

Trace: Message Transformed ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Message transformed

Trace: Message Send Failed ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Unable to send message

Trace: Send Successful ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Message sent success-
fully

Trace: Server Returned Error ${CURRENT_TIMESTAMP} - Source: ${Environ-
ment.Variables.OriginApplication}: ${Environ-
ment.Variables.OriginFlow} - Id: ${Environ-
ment.Variables.MsgId} - Sending unsuccessful,
server returned an error

2020-07-28 12:20:41.560537 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id:
'b10b601d-e1a0-4e50-989f-57a4f581ee77' - Message arrived to flow

2020-07-28 12:20:41.560700 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id:
'b10b601d-e1a0-4e50-989f-57a4f581ee77' - Message transformed

2020-07-28 12:20:41.561392 - Source: 'AWS_Connector': 'HTTP_Inbound' - Id:
'b10b601d-e1a0-4e50-989f-57a4f581ee77' - Message sent successfully

