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FOREWORD
With respect to this thesis, it has been shown that when sampling techniques are en-

sembled at the data level, they can significantly improve the classification results of the

positive class. Though the negative class may remain high but not changed positively and

in most cases drops a little.

This is because, judging from the results obtained in this work where classification ac-

curacies of the minority classes were consistently elevated by as much as 4% for two

different severely imbalanced datasets. One could then draw an inference that the tweak-

ing of the sampling-strategy parameter of ensembled random over-sampling and random

under-sampling algorithms, with a basic model like XGBoost could fetch encouraging

results than their standalone or the variant SMOTE, when python pipeline library is in

use.
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1 INTRODUCTION

1.1 Research Background
In many real-world classification domains, most examples are from one of the classes.

In binary classification, it is typically the minority (positive) class that the practitioner

is interested in. Imbalance in the class distribution often causes machine learning algo-

rithms to perform poorly on the minority class. In addition, the cost of misclassifying the

minority class is usually much higher than the cost of other misclassifications. Therefore,

a natural question in machine learning research is how to improve upon the performance

of classifiers when one class is relatively rare.

This kind of scenario cannot be avoided as we now leave in a data driven world; where it

must be mined, pre-process and modeled. This informs why we are looking for a better

way to handle these imbalances before they are passed through models.

A common solution is to sample the data, either randomly or intelligently, to obtain an

altered class distribution. Numerous techniques have been used by experts, but we are set

out in this thesis not to see which one is best but how to handle the datasets (harnessing the

power of both early known techniques) especially as we handle life threatening datasets

which may have very little or no tolerance for error.

Some researchers have experimentally evaluated the use of sampling in data-sampling

arena as they attempt to handle imbalance in datasets or learn from it Barandela et al.

(2004), Barandela et al. (2003). And the techniques they used will always be categorize

into the two broad groups names:

a) Over-sampling (replicates examples in) the minority-class

b) Under-sampling (eliminates examples in) the majority class

Though some have tried to add a third which is "Internally biasing the discrimination-

based process so as to compensate for the class imbalance", but basically it will still lean

towards one of the groups listed above.
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As such to tackle class imbalance, long-established methods such as random under-sampling,

SMOTE (Vuttipittayamongkol & Elyan (2020)), were still used in many recent studies.

Although improvements in results were reported, they have been constantly outperformed

by newer methods. Which is observed by how Vuttipittayamongkol et al. [cited by: Vut-

tipittayamongkol & Elyan (2020)] designed a scoring function that assigned ranking to

differentiate between minority class and majority class instances. One of the latest tech-

niques, Generative Adversarial Net (GAN), was employed to synthesize minority class

instances.

1.2 Problem Statement
And as upheld empirically by Barandela et al. (2004); Results indicate that, when the

imbalance is not very severe, techniques for appropriately under-sampling the majority

class is the best option. Only when the majority/minority ratio is very high it is required to

over-sampling the minority class. Notwithstanding all these efforts, whether the sampling

technique employs up-sampling or down-sampling; the drawbacks of each is infused into

the data.

Critical datasets for example history of various patients’ heart disease pre-symptoms

which is needed to build models to effectively predict if future patients having certain

symptoms will eventually have heart disease, needs to be very accurate. But majority of

the times these samples come with lots of class imbalances and needs to be treated. Now,

the popular way of handing this according to sampling technique listed by Van Hulse et al.

(2007); is data analysts randomly using one of those techniques even if they do not have

domain expertise.

The challenge is that if they happen to use the over-sampling techniques, dummy val-

ues will be randomly added (which were not originally in the controlled data collection

phase), hence adding noise to the sample which may mislead the model. And if under-

sampling is employed important sample may be thrown away, either ways havoc causing

is inevitable.
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1.3 Research Questions
This work will seek to answer the questions:

i. Will models perform better when each sampling techniques (Over and Under Sampling)

are placed in a pipeline to handle the imbalance together before passing the result onto

a model? ii. Is it possible to further tweak this process for better model efficiencies?

iii. Could there be a way to infuse some domain specific parameter tweaking as some

compensating factor during this re-sampling?

We will hope that this will be better than the current way of handling imbalance at the data

level using standalone (one of the techniques), as it is done by most people today.

1.4 Objective of Research
There has been python libraries and codes that allow the piping of these sampling tech-

niques individually as they are passed through models.

Seeing that imbalance is a problem that affect generally machine learning algorithms in

every field (Mena & Gonzalez 2006); Analysts have been known to use either of the

techniques to handle imbalances in production, but the result is somewhat biased by the

single technique used for obvious reasons. This study is geared towards showing how

to effectively resolve this issue using an approach that is unbiased. In this light, the

objective of this study is to harness the power of every technique of handling imbalances

collectively as it concerns very important datasets (bearing in mind the impact errors in

models can cause to lives), so models can predict better

1.5 Significance of Work
If question one and any other in our Research Questions section is successfully answered,

this work would have greatly and positively impacted: i. Critical datasets industries such

as the medicals, financial, auto, etc., which have minute or zero error tolerance because

of human lives. ii. Domain critical datasets; needing domain expertise, which many data

analytics may lack.
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1.6 Scope of Research
This thesis without any other contribution would have exclusively leaned towards the use

of majority class intelligently and randomly under-sampled (by removing redundant and

noisy datasets, from the sample), bringing the majority class at par with the minority

(original sample) without adding any extraneous data).

This technique may not be without its downsides, as the minority dataset may not be

enough to make the model generalize effectively; but nonetheless, the benefits of under-

sampling instead of over-sampling is that we know and trust our dataset and can depend

on the models trained by this dataset. The result will be a reasonable prediction upon an

original dataset that was carefully collected and preserved.

In the most basic form according to Van Hulse et al. (2007); in one of the earliest attempts

to improve upon the performance of random re-sampling, Kubat and Matwin Kubat et al.

(1997), proposed a technique called one-sided selection (OSS). One-sided selection at-

tempts to intelligently under-sample the majority class by removing majority class ex-

amples that are considered either redundant or ‘noisy.’ In the light of the foregoing, you

will agree with me that the scope of this research is already portrayed as binary classifi-

cation.
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2 RELATED WORK
Past works on imbalance dataset classification has been around data level and algorithm

level (Lin et al. 2020). Data level seeks to balance the class distribution by modifying

the training samples using the already mention up or down techniques and their variants.

While the algorithm level methods highlight the importance of minority class by mak-

ing better the existing algorithms, using techniques like cost-sensitive learning, ensemble

learning, and decision threshold adjustment.

2.1 Conceptual Framework
Having been in the field of data science for about four years now, I have come to the real-

ization that data acquisition seems to be the most challenging of all parts of data analytic.

The reason being that real world data in most cases does not come complete in its class

distribution according to Zhang et al. (2018), that is, there exists imbalances a lot of the

times. That is why this project has been embarked upon to fine a proper way to handle

this better than the existing conventional ways. And despite high interests in classification

of critical life changing data, the common issue of imbalanced class distributions is not

often addressed. This is evidenced by a review paper discussing existing methods used

for dataset classification, which shows that Only 1 out of 71 proposed solutions consid-

ered the class imbalanced issue, (Vuttipittayamongkol & Elyan 2020). But there are two

basic methods for re-sampling according to Makki et al. (2019) which cause the class dis-

tribution to become more balanced. Nevertheless, both strategies have shown important

drawbacks, (Barandela et al. 2003).

By way of explanation, Imbalanced training sample means that one class is represented

by a large number of examples while the other is represented by only a few. It has been

observed that this situation, which arises in several practical domains, may produce an

important deterioration of the classification accuracy, with patterns belonging to the less

represented classes (Barandela et al. 2004).

Zhang et al. (2018) in trying to look for a better imbalance handling techniques using a

cost-sensitive deep belief network recognizes SMOTE as one of the data level re-sampling

techniques as divides the re-sampling into two broad types namely: data level and algo-
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rithm level re-sampling.

2.2 Empirical Reviews
In their work, Gu et al. (2020) identified the three ways imbalance in dataset could be

handled as 1) data sampling, 2) cost-sensitive learning and 3) algorithmic modification.

Their paper stated that data sampling approaches are the dominant solutions to address the

class imbalance problem because they are more generic and can be employed by standard

classification methods; as such a variant of SMOTE, named SASYNO (Self-Adaptive

Synthetic Over-Sampling), was used to obtain a better metric result.

The financial domain known for how delicate it is, Song & Peng (2019) proposed the

usage of multi-criteria decision making (MCDM)-based approach to evaluate imbalanced

classifiers in credit and bankruptcy risk prediction by considering multiple performance

metrics simultaneously. In doing this SMOTE was used in conjunction with other tech-

niques.

Quite a number of research recommended over-sampling though they emphasized on the

variant of which are: Yan et al. (2019) and Rahman & Davis (2013), in fact Akbani et al.

(2004) Used SMOTE to make the positive instances more densely distributed in order to

make the boundary more well defined.

But there are others who took the under-sampling way, as noted when using “One-Sided

Selection” (OSS) which is a combination of Tomek Link (TL) followed by the applica-

tion of the Condensed Nearest Neighbour (CNN) rule. This TL method is used to remove

noise, and borderline majority class samples and then CNN is used to discard samples

from the majority class that is redundant and far away from the decision border, Ma-

heshwari et al. (2018). Even Tang et al. (2009) compared under-sampling with various

state-of-the-art approaches on a variety of datasets.

Monotonic class imbalance problem refers to a severe loss of classification accuracy of

certain classes due to their under- representation in the training dataset. That is, some

classes have a lot less instances than others, which affects their identification by standard

classifiers. These under-represented classes are known as minority or positives, whilst
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the rest are referred to as majority or negative classes. In many real-life applications, the

most important classes are usually the most imbalanced. Therefore, the misclassification

of these classes entails greater costs. This was put forth by González et al. (2019); and he

used under-sampling in his work of solving this problem.

Empirical studies have shown that there are arising issues with these two basic approaches

of re-sampling imbalances in data sampling; Under-sampling the majority class and also

internally biasing the discrimination process according to Barandela et al. (2004) (result-

ing to overall number of records in the training set being greatly reduced), even though

Sun et al. (2019) and Basso et al. (2021), argued that after different oversampling method-

ologies are analyzed to balance the training data, it was found that the Deep Convolutional

Generative Adversarial Networks technique with random under-sampling presented bet-

ter results. This means that during classification, training time is also greatly reduced.

Since we may at times be dealing with very high dimensional datasets, there is a signifi-

cant savings in memory as well. However, because we are eliminating members from the

majority class, it is possible that we will lose a lot of valuable information if we eliminate

documents that could be useful to our classifier in building an accurate model.

2.3 Theoretical Framework
Theoretically, one of the problems with random under-sampling is that one cannot control

what information about the majority class is thrown away. In particular, very important

information about the decision boundary between the minority and majority class may be

eliminated. Despite this controversy, random under-sampling has empirically been shown

to be one of the most effective re-sampling methods. In particular, only a few of the

more sophisticated under-sampling methods have outperformed random under-sampling

in empirical studies Liu (2004). The challenges also with over-sampling is that we greatly

increase the size of the training set. Thus, we also increase training time and the amount

of memory required to hold the training set. Since we are dealing with very high di-

mensional datasets, we need to be careful how we proceed to keep time complexity and

memory complexity under reasonable constraints (Liu 2004). Furthermore, since over-

sampling typically replicates examples in the minority class, over-fitting is more likely to

occur.
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However, a suggestion was put forward by Barandela et al. (2003) which is combin-

ing under-sampling and over-sampling methods and instead of over-sampling by merely

replicating positive prototypes, they form new minority instances by interpolating be-

tween several positive examples that lie close together. This sounds like a brilliant idea

worthy of further pursuit.

As such this study has a design and approach intent or resolution to truly following both

basic techniques. That is apply both basic techniques on every dataset that is intended for

this analytic. But thereafter, build a generator or pipeline, that will combine both results

before modeling. Whereby harnessing the potentials of each method of re-sampling and

one will compensate for the other in the final model result.

2.4 Study Gap
The throwing away of samples when datasets are under-sampled and the adding of noise

or useless and approximated samples to the data when datasets are over-sampled, is the

gap in imbalanced dataset classification which this work hopes to fill by proving that a

methodical, technical and an unusual ensemble of up and down sampling techniques Dou

et al. (2022) will produce a model that does better than standalone samplings.

When data experts treat imbalance in dataset they most times just use on of the said re-

sampling techniques perhaps because of the ease of usage or a good metric result achieved

by it. Not minding if the inherent bias of the techniques (the weakness) has been infused

in the process. But as better ways of harnessing the combined strengths of both meth-

ods are used, it is believed that the pros will out-weigh the weaknesses in the sampling

methods.

That is why the thesis intends to run several experiments using the standalone re-sampling

techniques alone, then combined them while looking out for the outcome on the minority

class. So that recommendation could be made to what process produced the best effect

on greatly imbalanced dataset. So, this thesis will test to see that ensembling traditional

data-level re-sampling techniques like RandomOverSampling, RandomUnderSampling

and SMOTE in a pipeline, will increase the accuracy metric of the negative class (or
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minority) better than when any one of them is used alone.
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3 RESEARCH METHODOLOGY
As the trail of thought in this work goes datasets with class imbalances are been dealt

with, meaning one of its binary class is a lot represented than the other (or what could be

described as being highly imbalanced) Turlapati & Prusty (2020). The focus then in this

research treats this imbalance at the data level and not the algorithm level.

First, there is need to develop a method to correctly measure model accuracy. Since the

target variable has a class imbalance, there is need for something a little bit more complex

than simple cross-validation. The following scheme will be used:

i. Randomly split data on train and test sets.

ii. Handle class imbalance in train set with one of three available methods: random under-

sampling, random over-sampling or over-sampling with SMOTE algorithm.

iii. Train and test the model, separately measuring the accuracy of determining a recession

and accuracy of determining the absence of a recession (and stroke/absence of stroke for

the second dataset)

iv. Repeat this multiple times and average the results.

XGBoost, RandomForest and Ridge will be used as models of choice.

Figure 1. Research Methodology Flowchart
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3.1 Research Design

3.1.1 Initial baseline

To make the design more objective and clearer two highly imbalanced datasets will be

used. The first will be used in the process of creating the sampling system and algorithm

metric evaluation, which in this case will be model accuracy since accuracy improvement

is the reason for re-sampling an imbalance dataset (Xia et al. 2021) and not to increase

or reduce the data size or improve efficiency. When the program flow is deemed ok

the second dataset will be passed through the same process (perhaps with a little more

preprocessing, because of it features structure) to ascertain the consistency of the results

obtained, as encouraged by Vanhoeyveld & Martens (2018) experiments with multiple

datasets.

What is looked for here as re-sampled dataset is passed through each of the three models is

to have a baseline accuracy belonging to r-esampling the dataset using only one technique

at a time.

As portrayed in figure 2 below, the data is to be separately passed through an up-sampling

technique (in this case, ROS and SMOTE) as shown by the red arrow from the data source.

The next red arrow is the output that is fed into the models and out comes the result shown

by the last red arrow and the red accuracy metric.

The same goes for the green arrow through the down-sampler which is a RUS, and the

green accuracy is obtained.

Figure 2. Single sampling technique
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This is done to get the baseline metric results of using the over-sampling and under-

sampling techniques separately.

3.1.2 Final baseline for comparison

To answer our research question one a pipeline is built also to ensemble these basic tech-

niques of up-sampling and down-sampling, and the results from them passed through each

of the three models to compare the new accuracies with the first baseline accuracies. For

clarity they are bulleted as:

i. A python pipeline to ensemble ROS and RUS techniques will be built ii. Anther to

ensemble SMOTE and RUS techniques will be built iii. Two more will be built reversing

the positions in point i. and ii. above (i.e. RUS and ROS, then RUS and SMOTE)

Each of the four built pipelines will be passed through the three selected models to also

see their accuracies, as depicted in Figure 3 below.

Figure 3. Re-sampling techniques ensembled

3.2 Datasets Acquisition and structure
The datasets were obtained from the public domain (Kaggle), at the following loca-

tions:

i. Africa recession dataset https://www.kaggle.com/chirin/african-country-recession-dataset-

2000-to-2017 and

ii. Cerebral Stroke dataset https://www.kaggle.com/shashwatwork/cerebral-stroke-predictionimbalaced-
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dataset.

And the datasets can be visualized as shown in the next section.

3.2.1 Datasets description

AFRICAN RECESSION: Thus, we can say that if you are from a government, investment

fund or an international company, it will be very important for you to know whether the

economy of the country you are interested in is in a state of recession.

————————-

Figure 4. African recession dataset

A few words about the success criteria of the model. When this analysis commenced,

building a model as accurate as possible was thought to be the task. However, as will be

seen shortly, imbalance in target variable classes and the small size of a dataset leads to

searching for a compromise between the accuracy of determining the recession and the

accuracy of determining the absence of a recession. The optimal relationship between

them will depend on the cost of the mistake in both cases, which is difficult to evaluate

due to poor knowledge of the domain. Reflecting on how this model can be used, a con-

servative strategy was settled for: the accuracy of determining the absence of a recession

should be quite high (at about 85%, since it has most of the records), and the accuracy of

determining a recession should be as high as possible.
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The African recession dataset contains 486 samples and 50 features including the target

column, which can be seen in figure 4 to be greatly biased.

CEREBRAL STROKE: A stroke, also known as a cerebrovascular accident or CVA is

when part of the brain loses its blood supply and the part of the body that the blood-

deprived brain cells control stops working. This loss of blood supply can be ischemic

because of lack of blood flow, or hemorrhagic because of bleeding into brain tissue. A

stroke is a medical emergency because strokes can lead to death or permanent disability.

There are opportunities to treat ischemic strokes, but that treatment needs to be started in

the first few hours after the signs of a stroke begin. That is why it is essential to correctly

predict a condition by handling the dataset in the right way.

The cerebral Stroke dataset consists of 43,400 samples and 12 features including the target

column which is also greatly imbalanced.

The same strategy of evaluation will be adopted as in the first dataset since their imbalance

ratio is almost the same.

————————-

Figure 5. Cerebral stroke dataset
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3.3 Method Justification
Data level as one of the ways of handling class imbalance was chosen over the algorithm

level, because according to Nnamoko & Korkontzelos (2020) :

i. It is classifier-independent and relatively easy to apply because it focuses on data pre-

processing techniques ii. It does not have relatively a high computational cost like the

algorithm level iii. It is generally the largest used method, even learners go there first so

that if it is improved upon will impact a lot of users iv. Data level modifies the training

set such that it is suitable for any standard learning algorithm

Since classification problems with imbalanced datasets widely exist in real world Zhu

et al. (2020), models will be chosen that can broadly generalize as one of the easily learn-

able and standard ones. And the choices of XGBoost, RandomForest and Ridge models

for our metric evaluation is that they are known to mitigate the influence of skewed classes

in training sets (that is, able to handle imbalance data).
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4 EXPERIMENTS
The experimental environment needs to be noted according to Feng et al. (2020), perhaps

for reproducible reasons, and it is:

i. Dell x64-based PC, Latitude E7250 with Intel core i7, 16GB RAM, CPU@2.60GH,

2601Mhz 2 Cores(s) 4 Logical processor(s)

ii. Windows 10 Pro Operative System, Version 10.0. 19043 Build 19043

iii. Jupyter Notebook installed via Anaconda 3 package

4.1 Exploratory data analysis
Important python 3 libraries were loaded in Jupyter Notebook including the re-sampler

libraries (RandomOverSampler, SMOTE and RandomUnderSampler). The three models

libraries were loaded too.

Figure 6. Python libraries

4.1.1 African Recession Dataset

Since the data had no null value and are all numeric (all float except for the target that

is integer), the structure was checked with a seaborn distribution plot and found the un-

recessed percentage to be 92.18, which means the recessed percentage is 7.82 .

4.1.2 Cerebral Stroke Dataset

The dataset was found to have 98.2 percent non-stroke data after visualization leaving a

meagre 1.8 percent to stroke data.
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4.2 Preprocessing
Much preprocessing was not done on the African recessed dataset except for correlation

visualization and the removal of features with correlation coefficient less than 0.86 (as

shown below), after which the data shape was (486, 34) .

Figure 7. African Recession dataset correlation heat map

But Cerebral stroke dataset had null values and samples containing them were dropped.

Five features had ordinal data and had to be treated by replacement with integers. Cor-

relation (as shown below) was used to eliminate features with coefficient less than 0.81,

leaving the shape as (29072, 11) .
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Figure 8. Cerebral Stroke dataset correlation heat map

4.3 Model building
Python functions for the modelling and printing process was written and data was passed

through the samplers and the models in this fashion.

Firstly, random under-sampling, random-over sampling and smote was done and passed

through xgboost classifier, secondly, randomforest classifier and lasted ridge classifier.

This gave the baseline for comparison that will be done much later after the ensembling

(or conbining) of sampling techniques phase; It was found that randomforest did best

using smote sampling technique for African recession dataset but xgboost using smote

was found to be well performing for Cerebral stroke data.

Figure 9. Outstanding results
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Since the aim is to keep the majority class fairly stable but improve upon the minor-

ity according to Zhang & Chen (2019) the next step of ensembling of the three sampling

data level techniques that is under consideration, in the order: randomOver-sampling with

randomUnder-sampling, randomUnder-sampling with randomOver-sampling, smote-sampling

with randomUnder-sampling, randomUnder-sampling with smote-sampling (making four

orders of ensembles). Care was taken to make sure the ordering was always with an

up-sampler and a down-sampler. Again, RandomForest classifier was found to be best

performing (using smote-sampling with randomUnder-sampling) for African Recession

dataset after passing these ensembled techniques outputs into the models (but for Cerebral

stroke data, it was Ridge classifier with the same ensemble type).

It will be interesting to mention that the process of ensembling the techniques was done

using a python function. So, after realizing that RandomForest and Ridge were best

through this ensembling method for African Recessed data and Cerebral stroke data re-

spectively, to be more objective, they were adopted for used for the different datasets

in the next section of experiment. Which was passing the datasets through an ensem-

bling done with python pipeline library. Once again RandomForest got the better of the

three models with (smote-sampling with randomUnder-sampling) for African Recession

and Ridge did so for Cerebral stroke dataset (with the same ensemble type as that of

the African recessed dataset) so a twist was thought of, which is expounded upon in the

method adjustment section.

It was mentioned earlier that the evaluation metric will be accuracy, this is for better

judgement as two results (accuracy of minority class prediction and that of majority class)

were retrieved every time a model ran; as contrasted to the common way of measuring

imbalance via G-mean and AUC according to Cao et al. (2013).

4.4 Method adjustment
It was found that during the ensembling of the three used sampling techniques in data

level sampling used in this work, data flows linearly. This here means that, the output

sampled data coming out of the first sampler after it had been fed with the original dataset

is being fed into the second sampling techniques in an ensemble so it can in turn per-

26



form its sampling. Therefore, it was decided that to see what happens, an adjustment to

this experiment will be done by feeding the original dataset into two samplers separately

then the outputs are combined before passing it through the models. Codes to the three

approaches are displayed below.

Figure 10. Function mimicking pipeline

————————-

Figure 11. Python pipeline

————————-

Figure 12. Python concatenation

Three ensemble ways in this experiment

In doing this using RandomForest and Ridge classifiers (for African Recession and Cere-

bral Stroke datasets respectively) since they were adopted for doing well previously, it was

found that the combination of smote-sampling with randomUnder-sampling outputs did

best for both datasets and so, it is therefore imperative to note that all these were achieved

using the sampling techniques with their default parameters initialized. The models were

use with their default parameters since according to Shah (2020) RandomForest classifier

works well and best in this status.

But for the sake of being thorough, the process above was pursued in a further experi-

ment, according to Huang et al. (2016) stating that other researchers did some parameter
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adjustment in their algorithm level imbalance treatment. A leave was borrowed from this

as the sampling-strategy of the sampling techniques were adjusted.
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5 RESULTS

5.1 African Recession Dataset Results

5.1.1 Default parameters used

Data Class Imbalance [Recessed: 92.18%, Non-Recessed: 7.82%]

Data shape: 486, 50

Model Metric: Accuracy

Running the experiment as previously explained in the last section, a series of results

were obtained as portrayed by table 1. As seen the baseline after treating the dataset in

question with RUSAMP, ROSAMP and SMOTE and passing the output through the three

models, was Recession 49% and non-Recession 89% (with SMOTE and RF being the

best sampling technique and Model). This result is consistent with our dataset seeing the

gross imbalance that initially existed.

The next phase was to do an ensembled of these techniques and using them to treat the

imbalance, and again RandomForest was best (with SMRUSAMP ensemble done by writ-

ing a python function), with the results 49% and 88%. The result was not better than the

baseline (our yardstick of comparison like Zolanvari et al. (2018) also did) as expected by

the research question, so, the same set of ensembled techniques were done using a real

python pipeline but the best result was not different from the last one.

The last batch of results shows a little improvement in the recessed accuracy at 51%

supporting our hypothesis that ensembles of re-sampling techniques should do better than

standalone (perhaps because the ensembled re-sampling techniques each acted on the

original data before being concatenated, a process that logically should be better than

passing the output of one techniques as an import to the other (which was clearly what the

first function and the pipeline were doing). But it is noteworthy to say that the minority

sample (or the positive class) only benefited from the approach, while the other fell short

of expectation.

Do find the link to the jupyter notebook code in Appendix A
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Table 1. Used sampling techniques default parameter on African Recessed dataset imbalance treatment

Sampling Techniques XGBoost RandomForest Ridge

Recessed
Non-

Recessed
Recess.

Non-

Recess.
Recess.

Non-

Recess.

Single Techniques

rusamp(Under Sampling) 66% 64% 68% 68% 66% 63%

rosamp(Over Sampling) 33% 90% 38% 92% 56% 76%

smote 31% 89% 49% 89% 58% 76%

Combined Techniques via function

roruSamp(Over+Under Sampling) 26% 97% 41% 92% 56% 76%

ruroSamp(Under+Over Sampling) 66% 64% 60% 69% 66% 63%

smruSamp(smote+Under Sampling) 30% 96% 49% 88% 54% 78%

rusmSamp(Under+smote Sampling) 66% 64% 60% 69% 66% 63%

Combined Techniques via pipeline

roruSamp(Over+Under Sampling) 41% 92%

ruroSamp(Under+Over Sampling) 60% 69%

smruSamp(smote+Under Sampling) 49% 88%

rusmSamp(Under+smote Sampling) 60% 69%

Combined Techniques via fn, but

manually concatenating results of

each technique on original dataset

roruSamp(Over+Under Sampling) 37% 92%

ruroSamp(Under+Over Sampling) 39% 92%

smruSamp(smote+Under Sampling) 51% 88%

rusmSamp(Under+smote Sampling) 47% 88%
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5.1.2 Adjusted parameters 1

To Answer the second research question the re-samplers sampling-strategy parameter was

adjusted in the form laid out in the two points below.

i. Over Sampling Stategy = 0.5 when in front of the ensemble and 0.6 when at the back

ii. Under Sampling Stategy = 0.5 when in front of the ensemble and 0.6 when at the back

This is so as to place the smaller percentage in front, so as not to spit-out errors as shown

in figure 12 and 13

Figure 13. Error when RO=0.6 and RU=0.5 (and RO is in front)

————————-

Figure 14. Error when RU=0.6 and RO=0.5 (and RU is in front)

Errors produced by these ratios

RUSAMP and Xgboost gave the best baseline (50% and 84%), RUROSAMP combined

techniques via function with Xgboost gave the next results 52% and 83% improving the

minority class prediction by 2% which is really our concern. Pipeline delivered the same

as via function but the last batch which is concatenation failed in our expectations. But

essentially, answering the second research question of tweaking our sampler with these

sets of parameters chosen arbitrarily only produced in the minority class prediction an

improvement of 1% over the un-tweaked ensembled samplers

Do find the link to the jupyter notebook code in Appendix A
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Table 2. Adjusted techniques sampling-strategy parameter to 0.5 or 0.6 in African Recessed dataset imbal-
ance treatment

Sampling Techniques XGBoost RandomForest Ridge

Recessed
Non-

Recessed
Recess.

Non-

Reccess.
Recess.

Non-

Recess.

Single Techniques

rusamp(Under Sampling) 50% 84% 43% 88% 45% 84%

rosamp(Over Sampling) 31% 93% 23% 98% 38% 89%

smote 39% 93% 28% 97% 34% 90%

Combined Techniques via function

roruSamp(Over+Under Sampling) 28% 96% 28% 97% 45% 86%

ruroSamp(Under+Over Sampling) 52% 83% 39% 90% 49% 80%

smruSamp(smote+Under Sampling) 35% 95% 33% 95% 43% 86%

rusmSamp(Under+smote Sampling) 54% 81% 38% 90% 47% 81%

Combined Techniques via pipeline

roruSamp(Over+Under Sampling) 28% 96%

ruroSamp(Under+Over Sampling) 52% 83%

smruSamp(smote+Under Sampling) 35% 95%

rusmSamp(Under+smote Sampling) 54% 81%

Combined Techniques via fn, but

manually concatenating results of

each technique on original dataset

roruSamp(Over+Under Sampling) 26% 97%

ruroSamp(Under+Over Sampling) 25% 98%

smruSamp(smote+Under Sampling) 31% 96%

rusmSamp(Under+smote Sampling) 32% 96%
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5.1.3 Adjusted parameters 2

In the last phase of tweaking the re-samplers parameters, the following measures were

chosen.

i. Over Sampling Stategy = 0.1

ii. Under Sampling Stategy = 0.5

It is a bit relaxed in the percentages of re-sampling but stricter because the strategy was

consistent over the processes and batched without adjusting the figures when any of the

techniques go in front or behind. The strategy figures could be explained as:

(a) Parameter adjusting for over sampler

The over sampled data should not be exactly equal, to avoid overfitting the aim is to

over sample the minority class to 10 percent of the majority class (hence the sampling-

strategy=0.1; in the oversampling code)

(b) Parameter adjusting for under sampler

The under sampled data should not be exactly equal, to avoid overfitting the aim is to

under sample the majority class to 50 percent more than the minority class (hence the

sampling-strategy=0.5; in the under-sampling code)

So, the baseline with RUSAMP and Xgboost was 50% and 84%, ensembled via function

and Pipeline were the same at 53% and 85% (an obvious improvements of 3% and 1%

over the baseline even though the last batch didn’t produce any). And as could be seen

RORUSAMP was the ensemble that earned this, while the other spat-out the said error (in

red, in table 3) mentioned in the previous section. As postulated, further tweaks yielded

a better improvement in the minority class prediction and a visible improvement in the

majority too. Do find the link to the jupyter notebook code in Appendix A
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Table 3. Adjusted techniques sampling-strategy parameter to 0.5 for under-sampling and 0.1 for over-
sampling in African Recessed dataset imbalance treatment

Sampling Techniques XGBoost RandomForest Ridge

Recessed
Non-

Recessed
Recess.

Non-

Recess.
Recess.

Non-

Recess.

Single Techniques

rusamp(Under Sampling) 50% 84% 43% 88% 45% 84%

rosamp(Over Sampling) 20% 97% 12% 99% 6% 100%

smote 21% 97% 14% 99% 0% 100%

Combined Techniques via function

roruSamp(Over+Under Sampling) 53% 85% 34% 94% 44% 84%

ruroSamp(Under+Over Sampling) err err err err err err

smruSamp(smote+Under Sampling) 50% 84% 38% 93% 44% 85%

rusmSamp(Under+smote Sampling) err err err err err err

Combined Techniques via pipeline

roruSamp(Over+Under Sampling) 53% 85%

ruroSamp(Under+Over Sampling) err err

smruSamp(smote+Under Sampling) 50% 84%

rusmSamp(Under+smote Sampling) err err

Combined Techniques via fn, but

manually concatenating results of

each technique on original dataset

roruSamp(Over+Under Sampling) 21% 98%

ruroSamp(Under+Over Sampling) 21% 98%

smruSamp(smote+Under Sampling) 22% 98%

rusmSamp(Under+smote Sampling) 22% 98%
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5.2 Cerebral Stroke Dataset Results

5.2.1 Default parameters used

Data Class Imbalance [Stroke: 98.2%, Non-Stroke: 1.8%]

Data shape: 43400, 12

Model Metric: Accuracy

This experimental result was to see if a different dataset and a more seriously imbalanced

one for that matter could replicate the little improvement noticed in the experiment con-

ducted using the African recession dataset.

Here the baseline results went to SMOTE and Xgboost at 53% and 81%. The Function

and Pipeline ensembles had 59% and 78% with SMRUSAMP again but this time using the

Ridge model and the last batch concatenate was even better at 60% and 78%, improving

the minority class prediction by 7% even though the majority prediction dropped a little

(as shown in table 4).

Do find the link to the jupyter notebook code in Appendix B
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Table 4. Used sampling techniques default parameter on Cerebral Stroke dataset imbalance treatment

Sampling Techniques XGBoost RF Ridge

Stroke
Non-

Stroke
Stroke

Non-

Stroke
Stroke

Non-

Stroke

Single Techniques

rusamp(Under Sampling) 74% 69% 79% 71% 81% 72%

rosamp(Over Sampling) 71% 75% 84% 68% 81% 72%

smote 53% 81% 70% 74% 59% 78%

Combined Techniques via function

roruSamp(Over+Under Sampling) 23% 93% 84% 68% 81% 72%

ruroSamp(Under+Over Sampling) 74% 69% 83% 69% 81% 72%

smruSamp(smote+Under Sampling) 8% 98% 70% 74% 59% 78%

rusmSamp(Under+smote Sampling) 74% 69% 83% 69% 81% 72%

Combined Techniques via pipeline

roruSamp(Over+Under Sampling) 81% 72%

ruroSamp(Under+Over Sampling) 81% 72%

smruSamp(smote+Under Sampling) 59% 78%

rusmSamp(Under+smote Sampling) 81% 72%

Combined Techniques via fn, but

manually concatenating results of

each technique on original dataset

roruSamp(Over+Under Sampling) 81% 72%

ruroSamp(Under+Over Sampling) 81% 72%

smruSamp(smote+Under Sampling) 60% 78%

rusmSamp(Under+smote Sampling) 60% 72%
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5.2.2 Adjusted parameters 1

i. Over Sampling Stategy = 0.5 when in front and 0.6 when at the back

ii. Under Sampling Stategy = 0.5 when in front and 0.6 when at the back

This first level of tougher tweak was done with baseline result 52% and 86% going to

ROSAMP and Xgboost. Via Function and Pipeline both went to Xgboost again (a pow-

erful python classifier, which can be extended and indeed has been done in Imbalance-

XGBoos package according to Wang et al. (2020)) using RUROSAMP at 57% and 81%

with a minority class prediction improvement of 5% where concatenation batch fell short.

There is need to be careful here not to assume excellence if accuracy is more than 90% for

majority class, because it could fail at some point for severely imbalance data as explained

by Brownlee (2020).

Do find the link to the jupyter notebook code in Appendix B
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Table 5. Adjusted techniques sampling-strategy parameter to 0.5 or 0.6 in Cerebral Stroke dataset imbal-
ance treatment

Sampling Techniques XGBoost RF Ridge

Stroke
Non-

Stroke
Stroke

Non-

Stroke
Stroke

Non-

Stroke

Single Techniques

rusamp(Under Sampling) 56% 81% 59% 83% 63% 85%

rosamp(Over Sampling) 52% 86% 48% 89% 63% 85%

smote 36% 89% 30% 91% 38% 88%

Combined Techniques via function

roruSamp(Over+Under Sampling) 17% 95% 63% 84% 70% 82%

ruroSamp(Under+Over Sampling) 57% 81% 65% 83% 70% 82%

smruSamp(smote+Under Sampling) 6% 98% 44% 87% 46% 85%

rusmSamp(Under+smote Sampling) 59% 80% 64% 83% 70% 81%

Combined Techniques via pipeline

roruSamp(Over+Under Sampling) 17% 95%

ruroSamp(Under+Over Sampling) 57% 81%

smruSamp(smote+Under Sampling) 6% 98%

rusmSamp(Under+smote Sampling) 59% 80%

Combined Techniques via fn, but

manually concatenating results of

each technique on original dataset

roruSamp(Over+Under Sampling) 15% 96%

ruroSamp(Under+Over Sampling) 16% 96%

smruSamp(smote+Under Sampling) 6% 99%

rusmSamp(Under+smote Sampling) 7% 98%
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5.2.3 Adjusted parameters 2

i. Over Sampling Stategy = 0.1

ii. Under Sampling Stategy = 0.5

A further tweaking of the sampler here did not produce improved results for this dataset

as the baseline was 59% and 83% and the next two ensemble batches produced 48% and

89%, while the last over fitted on the data (table 5). This could be because of the level

of high imbalance that is existing in this data causing a high bias creating a difficulty for

system consistency or human explanation Ruf & Detyniecki (2021).

Do find the link to the jupyter notebook code in Appendix B
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Table 6. Adjusted techniques sampling-strategy parameter to 0.5 for under-sampling and 0.1 for over-
sampling in Cerebral Stroke dataset imbalance treatment

Sampling Techniques XGBoost RF Ridge

Stroke
Non-

Stroke
Stroke

Non-

Stroke
Stroke

Non-

Stroke

Single Techniques

rusamp(Under Sampling) 56% 81% 59% 83% 63% 85%

rosamp(Over Sampling) 3% 99% 0% 1% 0% 1%

smote 4% 99% 0% 1% 0% 1%

Combined Techniques via function

roruSamp(Over+Under Sampling) 27% 93% 48% 89% 63% 85%

ruroSamp(Under+Over Sampling) err err err err err err

smruSamp(smote+Under Sampling) 20% 94% 36% 90% 47% 86%

rusmSamp(Under+smote Sampling) err err err err err err

Combined Techniques via pipeline

roruSamp(Over+Under Sampling) 48% 89%

ruroSamp(Under+Over Sampling) err err

smruSamp(smote+Under Sampling) 36% 90%

rusmSamp(Under+smote Sampling) err err

Combined Techniques via fn, but

manually concatenating results of

each technique on original dataset

roruSamp(Over+Under Sampling) 0% 100%

ruroSamp(Under+Over Sampling) 0% 100%

smruSamp(smote+Under Sampling) 0% 100%

rusmSamp(Under+smote Sampling) 0% 100%
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Using the sampling techniques in it default parametric state saw SMOTE championing

either as the baseline standalone or during ensembling because as observed by Kim et al.

(2020), it is an up-sampling variant and does data augmentation also. As a result, the

main point of our research was answered which essentially is, will models perform better

when data sampling techniques are ensembled for data treatment?
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6 CONCLUSIONS
As could be seen in the experiment following the methodology, the design was intense

(just like Krawczyk (2016) also noted of other researchers) and process followed strictly

which led to the results answering the first research question that ensemble data level

sampling techniques which is widely used, could improve the positive class:

Baseline (African recessed data) = 49% and 89% Adjusted/ensembled parameters 2 (African

recessed data) = 53% and 85% [which is a better ratio] And was achieved by passing into

XGBoost model the output of the python pipeline ensembling random over-sampling and

random under-sampling.

Baseline (Cerebral stroke data) = 53% and 81% Adjusted/ensembled parameters 2 (Cere-

bral stroke data) = 57% and 81% [which is a better ratio also] This was achieved by

passing into XGBoost model the output of the python pipeline ensembling random under-

sampling and random over-sampling.

But care is to be taken because the negative class (or majority) could suffer a little. This

is because one of the problems that can arise in classification is the small sample size.

This issue is related to the “lack of density” or “lack of information”, where induction

algorithms do not have enough data to make generalizations about the distribution of

samples, a situation that becomes more difficult in the presence of high dimensional and

imbalanced data Ramyachitra & Manikandan (2014), which is the condition we have

experienced.

It should be said that the three different pipelines used (the written pipeline mimicking

function, python pipeline library and the concatenating function) produced great results

in different situations. And also noted is the realization that tweaking the re-samplers pro-

duced some improvements which if further studied and experimented upon in conjunction

with its other parameters (e.g., replacement) could lead to some groundbreaking results.

Though a lot of data scientist defaults to using SMOTE which as we have seen can pro-

duce stunning results, but there are other methods as well as ensembles that can do better

if explore further Luo et al. (2019).
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The limitation of this work just like Lu et al. (2019) also had, is that the third research

question was not explicitly answered, perhaps because the experimenter lacks some life

impacting domains (i.e. medicals, Auto, Financial, construction, etc.) expertise accord-

ing to Korhonen (2022). but it was shown that this stricter tweaking measures spoken

of, coupled with the allowed percentages of up and down samplings strategy (along with

other parameters) with domain knowledge could be a further study (as well as the gran-

ular minority points noted by Krawczyk (2016) in his concluding recommendations) to

get a better handling algorithm for treating highly imbalanced dataset at the data level

effectively.
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APPENDIX A
African Recessed Dataset:

1. For Default parameters jupyter-notebook code, copy and paste in your browser:

https://github.com/packetech/Arcada-BDA/blob/main/africaRecession.ipynb

or click

2. For Adjusted parameters 1 jupyter-notebook code, copy and paste in your browser:

https://github.com/packetech/Arcada-BDA/blob/main/africaRecessionAdjust56.ipynb

or click

3. For Adjusted parameters 2 jupyter-notebook code, copy and paste in your browser:

https://github.com/packetech/Arcada-BDA/blob/main/africaRecessionAdjust15.ipynb

or click

APPENDIX B
Cerebral Stroke Dataset:

1. For Default parameters jupyter-notebook code, copy and paste in your browser:

https://github.com/packetech/Arcada-BDA/blob/main/cerebralStroke.ipynb

or click

2. For Adjusted parameters 1 jupyter-notebook code, copy and paste in your browser:

https://github.com/packetech/Arcada-BDA/blob/main/cerebralStrokeAdjust56.ipynb

or click

3. For Adjusted parameters 2 jupyter-notebook code, copy and paste in your browser:

https://github.com/packetech/Arcada-BDA/blob/main/cerebralStrokeAdjust15.ipynb

or click
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