
Degree Thesis, Åland University of Applied Sciences, Degree Programme in
Information Technology

A Comparative Analysis of Spring
MVC and Spring WebFlux in Modern

Web Development
Alexandru-Valentin Catrina

2023:35

Date of approval: 24.11.2023
Academic Supervisor: Joakim Isaksson



EXAMENSARBETE
Högskolan på Åland

Utbildningsprogram: Informationsteknik

Författare: Alexandru-Valentin Catrina

Arbetets namn:
En jämförande analys av Spring MVC och Spring WebFlux i modern

webbutveckling

Handledare: Joakim Isaksson

Uppdragsgivare: Crosskey Banking Solutions

Abstrakt
Detta examensarbete utför en jämförande analys av två populära Spring-baserade ramverk,
Spring Boot MVC och Spring WebFlux, med fokus på deras prestanda och
resursanvändning.
Den centrala forskningsfrågan som utforskas i denna avhandling är: “Hur förhåller sig
Spring WebFlux till traditionell synkron webbutveckling när det gäller prestanda och
skalbarhet?“
För att etablera en ram för utvärdering bygger studien på teorier relaterade till
webbutveckling, asynkron programmering och prestandaanalys.
Undersökningen utgår från en systematisk jämförande ansats, som innefattar skapandet av
representativa webbapplikationer både i Spring Boot MVC och Spring WebFlux.
Prestandamått, resursanvändning och svarstider mäts under varierande arbetsbelastningar för
att bedöma ramverkens kapacitet.
Resultatet visar att Spring WebFlux har lägre resursanvändning jämfört med Spring Boot
MVC, samtidigt som de uppvisar nästan samma svarstider.

Nyckelord (sökord)
WebFlux, Reactive, SpringBoot

Högskolans
serienummer:

ISSN: Språk: Sidantal:

2023:35 1458-1531 Engelska 47 sidor

Inlämningsdatum: Presentationsdatum: Datum för godkännande:
15.09.2023 29.09.2023 24.11.2023

2



DEGREE THESIS
Åland University of Applied Sciences

Degree Programme: Information Technology
Author: Alexandru-Valentin Catrina
Title: A Comparative Analysis of Spring MVC and Spring WebFlux in

Modern Web Development
Academic Supervisor: Joakim Isaksson
Commissioned by: Crosskey Banking Solutions

Abstract

This thesis conducts a comparative analysis of two widely used Spring-based frameworks,
Spring Boot MVC and Spring WebFlux, with a focus on their performance and resource
utilization.
The central research question explored in this thesis is : “How does Spring WebFlux
compare to traditional synchronous web development in terms of performance and
scalability?”
The study leverages theories related to web application development, asynchronous
programming, and performance analysis to establish a framework for the evaluation.
The research employs a systematic benchmarking approach, involving the creation of
representative web applications in both Spring Boot MVC and Spring WebFlux.
Performance metrics, resource usage, and response times are measured under varying
workloads to assess the frameworks’ capabilities.
The results reveal that Spring WebFlux exhibits less resource utilization compared to Spring
Boot MVC, while maintaining nearly the same response times.
In conclusion, the study highlights the strengths and weaknesses in Spring Boot MVC and
Spring WebFlux.

Keywords
WebFlux, Reactive, SpringBoot

Serial number: ISSN: Language: Number of pages:
2023:35 1458-1531 English 47 pages

Handed in: Date of presentation: Approved:
15.09.2023 29.09.2023 24.11.2023

3



TABLE OF CONTENTS

1 INTRODUCTION 5
1.1 Purpose 5
1.2 Methodology 5
1.3 Limitations 6

2 BACKGROUND 7
2.1 REST APIs 7
2.2 MVC (Model View Controller) 7
2.3 Traditional Synchronous Web Development 8
2.4 Reactive Programming and Asynchronous Web Development 9
2.5 Spring Framework 10

3 THEORETICAL FOUNDATIONS 12
3.1 Spring WebFlux and its components 12
3.2 Reactive Streams Specification 12
3.3 Project Reactor 13
3.4 Spring WebFlux Architecture 14
3.5 Java Persistence API (JPA) and Reactive Data Access 16

4 DESIGN AND IMPLEMENTATIONS 17
4.1 Application requirements 17
4.2 System Architecture 17
4.3 Implementation of Spring WebFlux REST API 19
4.4 Integration with R2DBC 21
4.5 Implementation of Spring MVC REST API 23

5 PERFORMANCE COMPARISON 26
5.1 Benchmarking methodology 27
5.2 Performance results and testing scenarios 28
5.3 Analysis of results 30

5.3.1 /add endpoint performance in the Spring WebFlux application 31
5.3.2 /add endpoint performance in the Spring MVC application 34
5.3.3 /hello endpoint performance in the Spring WebFlux application 37
5.3.4 /hello endpoint performance in the Spring MVC application 40
5.3.5 Summary of the result 43
5.4 Analysis of the result 43

6 CONCLUSION 45
REFERENCES 47

4



1 INTRODUCTION

1.1 Purpose

The rapid growth of internet users and connected devices has increased the demand for highly

responsive and scalable web applications. Synchronous web development struggles to handle

the high concurrency and throughput, leading to the exploration of new non-blocking and

asynchronous techniques.

In the context of my developer role at Crosskey , where we utilize Spring WebFlux, this1

thesis will seek to answer the following research questions:

● How does Spring WebFlux compare to traditional synchronous web development in

terms of performance and scalability?

● What are the key considerations for successfully implementing Spring WebFlux?

1.2 Methodology

To provide a good understanding of Spring WebFlux and its role in creating non-blocking

REST APIs, the research will be carried out as following:

● A detailed review of the fundamentals of reactive programming, including its

advantages and challenges, as well as a comparison with traditional synchronous

programming.

● An in-depth exploration of the Spring WebFlux framework, including its architecture,

core components, and the essential features that facilitate non-blocking REST API

development.

● Design and implementation of non-blocking REST API using Spring WebFlux,

showcasing its capabilities in creating highly concurrent and scalable applications.

● Performance evaluation of the implemented API, including benchmark against a

comparable synchronous API, to demonstrate the differences in the adoption of a

non-blocking and reactive approach.

1https://www.crosskey.fi/

5

https://www.crosskey.fi/


1.3 Limitations

One of the limitations of this study is its primary focus on performance metrics related to

time, such as response time and resource utilization. While this approach provides valuable

insights into the efficiency and scalability of Spring Boot MVC and Spring WebFlux, it

should be noted that the analysis does not encompass a comprehensive comparison between

these frameworks in the context of real-world enterprise applications.

Another limitation worth mentioning is the relatively limited number of test scenarios

employed in this study. The number of scenarios, while chosen to represent a range of

common usage patterns, does not cover the full spectrum of real-world application behaviors

and workloads. Enterprise applications often exhibit diverse usage patterns, and their

performance characteristics can vary significantly under different conditions. As such, the

findings presented in this study reflect the outcome observant within the scope of the selected

test scenarios.

These limitations underscore the need for caution when generalizing the result to all possible

enterprise application scenarios. Future research endeavors could expand the scope of

analysis to include a more extensive set of test scenarios, thereby providing a more

comprehensive understanding of the frameworks’ performance under diverse conditions and

usage patterns in the context of enterprise-scale software development.

6



2 BACKGROUND

2.1 REST APIs
A REST (Representational State Transfer) API is an architecture for designing network

applications. REST APIs leverage the simplicity of the standard HTTP protocol to enable

communication between various software components over the internet.

In a REST API, resources are the key components that the clients interact with. These

resources can be any data object, and each resource is identified by a unique resource

identifier (URI), which serves as an address for locating and accessing it.

Standard HTTP methods like GET, POST, PUT and DELETE are used to define the actions

that can be performed on the resources.

The REST API offers several advantages, including:

1. Scalability: The stateless nature of REST APIs and their use of caching mechanisms

allow them to handle a large number of requests and scale easily.

2. Flexibility: RESTful web services support total client-server separation where each

part can evolve independently.

3. Independence: REST APIs are independent of the technology used.

(What Is A RESTful API?, n.d.)

2.2 MVC (Model View Controller)

The Model-View-Controller (MVC) is an architectural pattern that separates the application

into three main components:

1. The Model is responsible for managing the application’s data and business logic. Data

storage, retrieval and manipulation are done here as well.

2. The View is responsible for displaying the data to the user. It serves as the

application’s user interface and is in charge of presenting the data in a user-friendly

manner. The data that the View is presenting is received from the Model.

3. The Controller acts as an intermediary between the Model and the View. It processes

user input, such as requests or actions, and communicates with the Model to retrieve

7

https://paperpile.com/c/0CbnJ2/zeZv


or update data. The Controller then updates the View to reflect any changes in the

date. This component is responsible for managing the overall flow of the application

and coordinating the Model and View. (MVC Framework - Introduction, n.d.)

Figure 1. Model-View-Controller architecture (MVC Framework - Introduction, n.d.)

2.3 Traditional Synchronous Web Development
In synchronous web development, the client sends a request to the server and waits for the

server to respond. During this time, the client remains idle and cannot process other requests

or perform other tasks. This leads to a blocking behavior, where the user waits for the

response before interacting with the website further.

Synchronous programming offers several advantages. It ensures predictable results as

programs run in a linear fashion, simplifying debugging since there is typically only one code

flow path to follow. Additionally, synchronous programs tend to consume less memory

because they execute one task at a time, reducing the need to store the state of numerous

concurrent tasks. This approach also fosters ease of comprehension, as tasks must be

completed in a specific order, making the code more straightforward to follow. Moreover,

when handling a limited number of tasks sequentially, synchronous programming can be

more efficient, as it reduces the likelihood of encountering unexpected issues or errors.

Lastly, synchronous programs have lower overhead as they do not involve the management of

multiple tasks concurrently (Muscad, 2022).

Conversely, synchronous programming does come with its drawbacks. One notable limitation

is slower execution, as tasks must wait for one another to finish before proceeding. This can

8

https://paperpile.com/c/0CbnJ2/M0aJ
https://paperpile.com/c/0CbnJ2/M0aJ
https://paperpile.com/c/0CbnJ2/hOqK


lead to suboptimal performance in scenarios where parallelism would be more beneficial.

Additionally, the inherent need to complete tasks in a successive order can make it

challenging to scale the program, particularly when new tasks need to be added. This limits

the program's ability to efficiently leverage multi-core processors and parallel processing.

Hence, synchronous programming may not be the best choice when dealing with

computationally intensive or highly concurrent tasks (Muscad, 2022).

2.4 Reactive Programming and Asynchronous Web Development
Reactive Programming and Asynchronous Web Development are modern approaches to

building efficient, responsive, and scalable web applications. These techniques focus on the

limitations of traditional synchronous web development by allowing a simultaneous

processing of multiple tasks and delivering a seamless user experience.

Reactive programming can be employed in asynchronous web development to enhance the

responsiveness and interactivity of web applications. By reacting to data changes and events,

web applications can update their interface without the need for constant server

communication or page refreshes. This leads to a more efficient user experience, particularly

for complex web applications that handle real-time data, such as chat applications, data

visualization tools or financial platforms.

Reactive programming and synchronous web development offer several significant

advantages. Firstly, they contribute to improved performance by enabling simultaneous

processing of tasks. This capability is valuable when handling complex, data-intensive

operations. Additionally, these approaches enhance scalability, allowing applications to

efficiently manage large volumes of data and user interactions. This scalability not only

ensures smoother performance but also accommodates growing user demands. Furthermore,

reactive programming and asynchronous development empower applications to be highly

responsive, adapting fast to changes or user inputs in real-time. This real-time responsiveness

contributes to a more interactive and engaging user experience. Lastly, these methodologies

promote maintainability through their declarative nature, creating a separation of concerns

within the codebase. This separation simplifies the process of maintaining and updating the

code, reducing the likelihood of errors (Nolle, 2021).

9

https://paperpile.com/c/0CbnJ2/hOqK
https://paperpile.com/c/0CbnJ2/d73S


However, alongside these benefits, there exist notable challenges. Integrating reactive

systems into existing software can be a complex task, potentially requiring significant

modifications or, in some cases, proving impossible. Additionally, embracing this approach

often necessitates a paradigm shift for developers accustomed to traditional programming

paradigms. Learning and adapting to the principles of reactive and asynchronous

programming may demand time and effort. Finally, there is the risk of accumulating delays

in reactive systems when an excessive number of processes are linked in the stream.

Managing and optimizing this complexity is essential to ensure the continued efficiency and

responsiveness of the application. Therefore, while these methodologies offer substantial

advantages, they also require careful consideration and adaptation to address these challenges

effectively (Nolle, 2021).

2.5 Spring Framework
The Spring Framework is a widely-used open source Java-based framework for developing

enterprise applications and simplifying Java development. It was introduced in 2003 by Rod

Johnson and it aims to address the complexity of traditional Java development by providing a

lightweight, modular and extensible solution (Introduction to Spring Framework, n.d.).

The Spring Framework is built on several core principles including Dependency Injection

(DI), Aspect-Oriented Programming (AOP), and Convention over Configuration. These

principles promote the creation of flexible, maintainable and testable applications by

decoupling components, simplifying configurations and reducing boilerplate code.

The framework is organized in about 20 modules. These modules are then grouped into Test,

Core Container, AOP, Aspects, Instrumentation, Web and Data Access/Integration as shown

in Figure 2.

10

https://paperpile.com/c/0CbnJ2/d73S
https://paperpile.com/c/0CbnJ2/s4OO


Figure 2. Overview of Spring Framework (Introduction to Spring Framework, n.d.)

The Core Container provides the fundamental parts of the framework. Here we have the

“Bean Factory” that removes the need for programmatic singletons and allows for decoupling

the configuration and dependencies from the actual program logic.

Data Access/Integration provides the support to interact with the database.

The Web module provides basic web-oriented integration features.

AOP and Instrumentation work together to provide a way to modularize cross-cutting

concerns and manage application resources.

The Test module supports testing of Spring components, provides consistent loading of

Spring ApplicationContext and provides the ability to mock objects.

(Introduction to Spring Framework, n.d.)

11

https://paperpile.com/c/0CbnJ2/s4OO
https://paperpile.com/c/0CbnJ2/s4OO


3 THEORETICAL FOUNDATIONS

3.1 Spring WebFlux and its components
Spring Web Flux is a part of the Spring Framework designed for building reactive and

non-blocking web applications. It was introduced as an alternative to the traditional Spring

MVC where Spring WebFlux leverages reactive programming principles and supports a fully

asynchronous, event-driven programming model in order to create highly scalable and

responsive applications.

Spring WebFlux is built on the Reactive Streams Specifications and utilizes the Project

Reactor library. It is presented as a solution for creating web applications that efficiently

handle a large number of concurrent connections, making it suitable for high-performance

and real-time applications (Spring Framework Documentation, n.d.).

3.2 Reactive Streams Specification
The Reactive Stream Specification (Reactive Streams, n.d.) was created to provide a

standardized approach for building asynchronous, non-blocking systems that can efficiently

handle large data streams while maintaining backpressure (flowcontrol) to prevent resource

exhaustion.

Reactive Streams is an initiative to provide a standard for asynchronous stream processing

with non-blocking back pressure. This encompasses efforts aimed at runtime environments

(JVM and JavaScript) as well as network protocols. (Reactive Streams, n.d.)

In the Reactive Stream Specification, four main components are defined that work together to

enable asynchronous stream processing:

● Publisher: The publisher is responsible for producing data and emitting it to one or

more subscribers.

● Subscriber: The subscriber consumes the data produced by the publisher.

● Subscription: The subscription represents the link between the publisher and the

subscriber.

● Processor: The processor acts as both a publisher and a subscriber. It can be used to

implement various data processing patterns, such as filtering and mapping.

12

https://paperpile.com/c/0CbnJ2/U7BA
https://paperpile.com/c/0CbnJ2/NnHA
https://paperpile.com/c/0CbnJ2/NnHA


The subscriber has the ability to request a specific amount of data from the publisher and the

publisher must respect the backpressure signals from its subscribers. This enables dynamic

backpressure management.

This initiative is closely related to the Reactive Stream Manifesto, that is a set of guiding

principles and characteristics for building reactive systems (Bonér et al., 2014). It presents the

four main traits of reactive systems:

● Responsive: Reactive systems should respond in a timely manner and maintain

consistent performance under various loads.

● Resilient: systems should be designed to be able to handle failures and continue to

function despite errors or other failures.

● Elastic: Reactive systems should be able to scale horizontally, efficiently managing

resources.

● Message Driven: Reactive systems should rely on asynchronous message-passing to

establish boundaries between components, enabling coupling, isolation, and location

transparency.

The Reactive Streams Specification promotes interoperability between different libraries and

frameworks, enabling seamless integration of various reactive libraries, such as Project

Reactor.

3.3 Project Reactor
Developed by Pivotal Software, Project Reactor is built on top of the Reactive Streams

Specification and is a pivotal reactive programming library for building non-blocking and

asynchronous applications. As described by Maldini and Baslé (2023), it is a foundational

component of the Spring WebFlux framework and provides a powerful and flexible toolset

for building responsive, resilient and scalable systems.

Project Reactor introduces two primary reactive types: Flux and Mono. These types represent

asynchronous sequences of data and serve as building blocks for creating reactive data

streams.

13

https://paperpile.com/c/0CbnJ2/U6De
https://paperpile.com/c/0CbnJ2/p5El


● Flux is a reactive type that can emit zero or many items. It represents a potentially

infinite stream of data and supports various operations such as filtering, mapping and

merging.

● Mono is a reactive type that can emit zero or one item. It represents a single value or

the absence of it and can be used for asynchronous computation or signaling the

completion of a task.

The set of operators offered in Project Reactor enables us to perform various operations on

reactive date streams, such as data transformation, filtering, error handling, and combining

multiple streams. These operators empower developers to build complex data processing

pipelines with ease.

Schedulers in Project Reactor are responsible for managing the execution of reactive

operations. They give the capability to control the concurrency of their applications by

offloading work to different threads or specifying the parallelism level. By efficiently

managing concurrency, it ensures responsive and performant applications, even under heavy

loads.

Backpressure is a crucial feature in reactive systems, allowing subscribers to control the rate

at which they consume data from publishers. Project Reactor supports backpressure, ensuring

that slower subscribers do not get overwhelmed by faster publishers. This contributes to the

stability and scalability of reactive applications.

3.4 Spring WebFlux Architecture
Spring WebFlux was introduced in Spring 5 as an alternative to the traditional Spring MVC.

Its architecture is built around the Reactive Streams Specification. Figure 3 shows a

comparison of Spring MVC and WebFlux.

14



Figure 3. Spring MVC and WebFlux Spring WebFlux Overview (2023)

Spring WebFlux offers support for two programming models. Annotated Controllers are

similar to Spring MVC but use reactive types for data processing like Flux and Mono.

Functional Endpoints is a lightweight functional programming model in which functions are

used to route and handle requests and contracts are designed for immutability (Spring

WebFlux Overview, 2023).

Figure 4. Spring WebFlux architecture (Chandrakant, 2020)

Figure 4 shows the Spring WebFlux architecture. We can see that Spring WebFlux sits

parallel to the traditional Spring MVC framework and does not necessarily replace it.

15

https://paperpile.com/c/0CbnJ2/96id
https://paperpile.com/c/0CbnJ2/96id
https://paperpile.com/c/0CbnJ2/96id
https://paperpile.com/c/0CbnJ2/r071


WebFlux supports a wide variety of runtimes, Netty being the standard one. It also includes

WebClient, which is a reactive non-blocking client for HTTP requests. (Chandrakant, 2020)

3.5 Java Persistence API (JPA) and Reactive Data Access

When it comes to data persistence in Java applications, JPA and Reactive Data Access

represent two different approaches. JPA focuses on traditional data access for relational

databases, while Reactive Data Access focuses on asynchronous data access in reactive

applications.

Many JPA implementations often use JDBC under the hood, which is a lower-level API used

to interact with relational databases. A widely used Reactive Data Access is R2DB, which

stands for Reactive Relational Database Connectivity. Figure 5 shows the Spring Data JDBC

and the potential reactive replacement (Dokuka & Lozynskyi, 2018).

Figure 5. JDBC and R2DBC (Dokuka & Lozynskyi, 2018)

16

https://paperpile.com/c/0CbnJ2/r071
https://paperpile.com/c/0CbnJ2/y6zm
https://paperpile.com/c/0CbnJ2/y6zm


4 DESIGN AND IMPLEMENTATIONS

4.1 Application requirements
The focus of the application for this thesis is to develop a reactive REST API for items stored

in a database. The application is expected to support the operation of adding records. To

accomplish this, the following requirements have been established:

● A fully reactive REST API constructed using Spring WebFlux framework. This will

ensure efficient, non-blocking communication and allow the system to handle a high

volume of concurrent requests effectively.

● Utilization of Netty as the underlying web server to enhance the performance of the

application. Netty will be configured as the default web server for the Spring

WebFlux application.

● Adoption of reactive data access techniques utilizing the R2DBC driver, facilitating

non-blocking database interactions. The application will be connected to an

in-memory H2 database, streamlining development and testing processes.

In addition to the reactive REST API, this thesis will also examine the performance

difference between the traditional Spring Boot application and the reactive web application.

The traditional Spring Boot application will implement the corresponding functionality using

a blocking and synchronous approach.

The comparison will involve measuring various performance metrics, such as response times,

throughput, and resource utilization, under varying workloads and concurrency levels.

4.2 System Architecture
The application’s architecture, incorporating Netty as the underlying web server is shown in

figure 6.

17



Figure 6. Application’s architecture

1. Client Layer:

The client will send HTTP requests to the API and receive responses in a standardized

format. It can be seen as other services that interact with the REST API.

2. REST API Layer:

The REST API layer will expose endpoints for creating item records.

3. Controller Layer:

The controller layer consists of the class responsible for mapping incoming HTTP

requests to appropriate methods in the service layer. It will define the REST API

endpoints, validate the incoming request data and handle any API-specific exceptions.

4. Service Layer (Business Logic):

This layer will consist of services responsible for processing and validating incoming

requests from the controller layer. These services will perform necessary business

logic operations and coordinate the data access layer to interact with the database.

5. Data Access Layer (R2DBC):

The data access layer will provide an abstraction for interacting with the in-memory

H2 database in a non-blocking manner. It will be responsible for executing CRUD

operations on persons records and their information, as well as handling any

database-related transactions.

6. Database (H2):

The application will utilize an H2 database for storing persons records and their

information. The database will offer a lightweight and flexible solution for

development and testing purposes.

18



4.3 Implementation of Spring WebFlux REST API
To set up the project, the Spring Initializr has been used. Using the default setting, as shown2

in Figure 7, with Spring framework 3.0.6 and Java 17, we need to add the following

dependencies for R2DBC, WebFlux, Lombok, and H2 Database:

Figure 7. Spring Initializr (Spring Initializr, n.d.)

As illustrated in Figure 8, the Gradle dependencies displayed were generated via the Spring

Initializr platform.

Figure 8. Gradle dependencies

Lombok is a Java library (lombok:1.18.28) that provides annotations to reduce boilerplate

code in Java applications, such as setter and constructor generation.

spring-boot-starter-data-r2dbc is a starter pack for using Spring Data with R2DBC (Reactive

2 https://start.spring.io/

19

https://paperpile.com/c/0CbnJ2/QYZg
https://start.spring.io/


Relational Database Connectivity). R2DBC is an initiative to provide a reactive programming

API for relational databases.

r2dbc-h2 is a reactive driver for the H2 (in memory) database, which allows for the use of H2

in a non-blocking, reactive manner.

spring-boot-starter-webflux provides the tools to build asynchronous and non-blocking web

applications.

Figure 9. ItemController java class

In Figure 9, we observe the definition of a class named ItemController. This class is designed

as Spring’s RESTful web service controller, as indicated by the@RestController annotation.

Further, a base request mapping of /webflux is provided by the@RequestMapping annotation,

indicating that all encompassed endpoints will be prefixed with this path. The controller is

primarily responsible for managing operations related to an item and is dependent on

ItemRepository for data access. The constructor is utilized for dependency injection,

assigning the injected ItemRepository bean to this field.

Both endpoints, /add and /hello, are defined as HTTP GET methods by the@GetMapping

annotation.

20



/add - endpoint:

The method addItem invokes the save method of the ItemRepository, resulting in saving a

new item in the database.

The return value is a reactive stream Mono<ResponseEntity<String>> that returns a Mono

that wraps a response entity with an ok(200) status containing the name of the newly saved

item.

/hello - endpoint:

This endpoint produces a single asynchronous value of type Mono<String> bearing the string

“Hello”.

4.4 Integration with R2DBC
The decision to use R2DBC often goes hand in hand with the adoption of the Spring

WebFlux to create a fully reactive application.

The code in Figure 10 shows the integration with R2DBC by extending Spring Data’s

ReactiveCrudRepository. This interface is specially designed to work seamlessly with

R2DBC, thereby giving the ability to handle database operations reactively. By extending it

any CRUD (Create, Read, Update, Delete) operations performed through this repository will

be non-blocking, providing better scalability, especially under high loads.

Figure 10 Repository interface

The generic types <Item, Long> specify the type of object the repository will manage (Item)

and the type of the object’s unique identifier (Long).

By virtue of extending ReactiveCrudRepository, itemRepository inherits several methods for

data access without requiring explicit implementations such as save().

The@Repository annotation is a Spring-specific stereotype annotation that indicates that the

class defined is intended to be a Repository.

21



Figure 11 shows the WebfluxApplication class with the@EnableR2dbcrepositories

annotation that is pivotal in configuring the Spring Boot application to use R2DBC

repositories. By including this annotation, the application enables the scanning for interfaces

extending reactive repository interfaces like ReactiveCrudRepository, such as ItemRepository

detailed in Figure 10. Consequently, this setting facilitates the integration of the reactive

database operations defined in their repository interfaces.

Figure 11. The WebFluxApplication and its main method.

The@SpringBootApplication annotation is a convenience annotation that streamlines the

setup of Spring-based applications. When applied to the main application class, it

automatically performs tasks like component scanning, auto-configuration, and acts as the

entry point for the application. This simplifies development by reducing the need for explicit

configuration and boilerplate code, making it easier to build Spring applications.

And the main() method is the entry point for the Spring Boot application. It calls the

SpringApplication.run() method to bootstrap the application. The application context is

initialized, and all the enabled features like R2DBC repositories are set up.

As for the R2DBC configurations, they are set in a separate application.properties file.

Figure 12. Application property file

In Figure 12 above, the standard configurations for the R2DBC H2 - database such as url,

login credentials, and the driver (H2 in our case) are included.

22



Figure 13. The Item entity

Figure 13 presents the Item entity class, structured to model the underlying Item table within

a relational database. The Lombok annotations here generate a constructor, getters for both

fields and respective setters for both fields. The@Id annotation signifies that the field id

serves as the primary key for the Item table.

4.5 Implementation of Spring MVC REST API
The Spring MVC application has the same functionality as the WebFlux application but is

written in a non-reactive blocking manner.

Figure 14. SpringBoot Web MVC dependencies

In Figure 14 we see all the dependencies that are used for the Spring MVC application.

The main difference is that spring-boot-starter-web is used instead of

spring-boot-starter-webflux, together with spring-boot-starter-data-jpa.

spring-boot-starter-web serves as the foundation for building web-based applications using

the Spring Framework. Specifically, it facilitates the creation of RESTful web services by

leveraging Spring MVC. Unlike reactive frameworks such as Spring WebFlux, this package

is based on a blocking I/O model and utilizes a separate thread for each request-response

cycle.

23



spring-boot-starter-data-jpa provides an abstraction layer for object-relational mapping

through Java Persistence API (JPA) and Hibernate. It streamlines database interactions by

offering simplified CRUD operations and query execution and operates on a blocking model.

Figure 15. Spring MVC ItemController java class

Figure 15 shows the ItemController implementation for the Spring MVC controller which

includes the same functionality as the WebFlux controller. The main difference is that it

directly returns a ResponseEntity-type. The injected repository is now a JPA repository that

has a similar method save() but operates in a blocking manner.

Figure 16. JPA repository

Figure 16 encapsulates the data layer abstraction for Item entities in a Spring Boot MVC

application. It leverages the features of Spring Data JPA to minimize boilerplate code while

offering a robust and flexible API for database interactions.

24



Figure 17. Spring MVC Item

As can be seen in Figure 17, the only difference in the Item class is the@Entity annotations

which indicates that the class is a JPA entity.

25



5 PERFORMANCE COMPARISON
Evaluating the performance of web applications requires planning and appropriate tooling.

While there are various options available for performance testing, the suitability of each tool

can differ based on various factors like ease of use, ability to be configured, and specific

needs of the application being tested.

Initially, the performance evaluation was planned to be conducted using Bombardier3

(release-1.2)—a fast, cross-platform HTTP benchmarking tool. Bombardier's minimal setup

and straightforward interface made it an appealing choice for benchmarking our Spring

WebFlux application. However, the tool encountered several issues that inhibited a

comprehensive performance analysis. These issues ranged from compatibility challenges to

limitations in generating diverse traffic patterns necessary for a thorough evaluation.

Due to the shortcomings faced by Bombardier, the focus was shifted to Gatling , a4

high-performance open-source load testing framework. This framework facilitates the

simulation of intricate user behaviors, thereby aiming to provide an accurate reflection of

application performance. Additionally, Gatling presents a set of comprehensive reporting

tools, capturing metrics like mean response time, and response time distribution, providing

valuable insights into the application’s behavior during high load periods. For this study

Gatling 3.9.5 was used.

To monitor the resource utilization of the web applications VisualVM was used. VisualVM is5

a monitoring, troubleshooting, and profiling tool for Java applications. It can attach to locally

and remotely running Java processes, providing a broad perspective on resource utilization

such as CPU, memory, threads, and classes. This makes it a suitable candidate for

understanding the intricate details of the JVM during the load test.

During the monitoring VisualVM 2.1.6 was used.

5 https://visualvm.github.io/
4 https://gatling.io/
3 https://github.com/codesenberg/bombardier

26



5.1 Benchmarking methodology
To quantify the performance and scalability of the reactive web application developed using

Spring WebFlux and R2DBC (as detailed in Figures 7 to 13) the comparison will be made

against a similar Spring Boot MVC application that has the same functionality implemented

in a non-reactive manner.

Machine Specifications:

● Operating System: Windows 11 Pro 64-bit (10.0, Build 22621)

(22621.ni_release.220506-1250)

● Processor: Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz (20 CPUs), ~3.6GHz

● Memory: 32 GB RAM DDR4

● Network: localhost:8080 (0 latency)

● Benchmarking Tool: Gatling 3.9.5 and VisualVM 2.1.6

● Storage: 1TB SSD

Test Scenarios:

● Concurrent User Access towards /hello-endpoint : Multiple users accessing the

application simultaneously with varied think times.

● Concurrent User Access towards /add-endpoint : A call to the database is made each

time the endpoint is called.

Metrics Captured:

● Response Time: Average, median.

● Throughput: Number of requests processed per second.

● Error Rate: Percentage of failed requests over the total number of requests.

● Resource Utilization: CPU and Memory usage statistics gathered with VisualVM

Data Analysis

The data collected was statistically analyzed to draw conclusions on the application's

performance characteristics. Gatling’s in-built reporting tools were instrumental in this phase,

generating graphical reports that elucidated both the strengths and bottlenecks of the

application architecture.

27



5.2 Performance results and testing scenarios
For the testing scenarios with a focus on HTTP-based web applications, this chapter provides

an analytical perspective on how different components and configurations impact

performance metrics like response time and resource utilization. In Figure 18, a Gatling

Simulation Script is used to simulate and measure the performance of our web applications

running on a local server. This will serve as a cornerstone for understanding how

performance tests are designed, executed and analyzed.

Figure 18. MyGatlingSimulation class

Figure 18 shows a class named MyGatlingSimulation which extends the Simulation class

from Gatling.

HTTP Protocol Configuration:

● HttpProtocolBuilder httpProtocol defines the base URL of the server as

http://localhost:8080/webflux

● A basic and common configuration is used to accept various types of headers with

varying quality parameters and sets the user-agent as Mozilla/5.0.

Scenario Definition:

28



● ScenarioBuilder scn defines a scenario named BasicSimulation.

● Repeats 100 times.

● Makes an HTTP GET request to the specified, /add, endpoint.

● Checks if the status code is 200 (OK).

Test Setup:

● setUp specifies the test setup configuration.

● Utilizes the scenario scn.

● Injects 5000 virtual users into the system, with the number of users increasing

gradually over a period of 60 seconds.

● Associates the defined HTTP protocol settings with the scenario via

.protocols(httpProtocol).

The overarching objective of testing methodology is to provide an in-depth analysis of web

application performance. Specifically, we aim to draw a comparative performance analysis

between Spring WebFlux and Spring MVC architectures. This comparison will help us

understand how these two different frameworks respond under load, latency, and other stress

conditions.

Our baseline for these tests will be the setup described in Figure 18. This setup, initially

targeted at a WebFlux application running on http://localhost:8080/webflux, simulates 5000

virtual users ramping up over a period of 60 seconds, making 100 repeated GET requests to

the /add endpoint. We will observe key performance indicators such as response time and

throughput during this test.

Variations in the Tests:

1. WebFlux Baseline Test with /add endpoint: Our first test will follow the configuration

and settings from Figure 18, targeting a WebFlux application.

2. Spring MVC Baseline Test with /add endpoint: Using the same configurations as in

Figure 18, we will run a similar test on a Spring MVC application to compare the

baseline performances.

3. WebFlux High Load Test with /hello endpoint: In this test, we will significantly ramp

up the scale by simulating 1,000,000 requests to the /hello endpoint on the WebFlux

29



application. This will help us assess how the framework behaves under extreme stress

conditions.

4. Spring MVC High Load Test with /hello endpoint: Following a similar approach, we

will test the Spring MVC application with 1,000,000 requests to the /hello endpoint to

compare its performance under high load conditions.

The following scenario will be used in order to test the /hello endpoint of both our

applications:

Figure 19. The scenario used for testing the /hello endpoint

By running these tests, we aim to achieve a multi-dimensional view of our application's

performance. This will not only allow us to identify potential bottlenecks in different parts of

the system but also to evaluate the impact of different API endpoints on the overall

performance of WebFlux and Spring MVC applications.

5.3 Analysis of results
The primary focus of this chapter is to analyze the data collected from the comprehensive

performance tests detailed in the preceding chapters. This will involve evaluation of key

performance indicators such as response time, throughput and resource utilization under

different test conditions. The ultimate aim is to derive meaningful patterns and conclusions

that can help in making informed decisions about choosing between Spring WebFlux and

Spring MVC for specific use cases.

30



5.3.1 /add endpoint performance in the Spring WebFlux application

Response Time:

Figure 20. WebFlux /add - Response time

Figure 20 shows that the mean response time for the request made to the /add endpoint was 0

milliseconds, with a standard deviation of 1 millisecond. The max response time was 269

milliseconds and 95% of the requests were fulfilled within 1 millisecond.

Figure 21. WebFlux /add - CPU usage

From Figure 21 we notice that the max CPU usage when calling the /add endpoint was 4.6%

at the beginning of the test.

31



Figure 22. WebFlux /add - Heap memory

In Figure 22 we see that the heap memory size and utilized converted to megabytes (MB)

was:

Max heap size: 310 MB

Max used heap: 200 MB

Figure 23. WebFlux /add - Number of threads

32



Figure 24. WebFlux /add - The reactor threads created

A total of 60 threads were running during the test as shown in Figure 23, and in Figure 24 we

can see the reactor-http-nio threads that were used during the test. Of the total 60 threads, 22

of them were worker threads mostly used for database calls. The remaining 18 threads are

distributed across JVM, Spring, and Netty.

33



5.3.2 /add endpoint performance in the Spring MVC application

Response Time:

Figure 25. SpringMVC /add - Response time

Figure 25 shows that the mean response time for the request made to the /add endpoint was 0

milliseconds, with a standard deviation of 2 milliseconds. The max response time was 231

milliseconds and 95% of the requests were fulfilled within 1 millisecond.

Figure 26. SpringMVC /add - CPU usage

From Figure 26 we notice that the max CPU usage when calling the /add endpoint was 12.8%

at the beginning of the test.

34



Figure 27. SpringMVC /add - Heap memory

In Figure 27 we see the heap memory size and utilized converted to megabytes (MB) was:

Max heap size: 310 MB

Max used heap: 250 MB

Figure 28. SpringMVC /add - Number of threads

35



Figure 29. SpringMVC /add - The http threads created

A total of 90 threads were running during the test as shown in Figure 28, and in Figure 29 we

can see a part of the 68 different http-nio-8080-exec threads that were used during the test.

The red part generally means that the thread was in a parked state. This means that these

threads are not executing any task at that moment.

The green color marks when the threads are in runnable state, meaning they are actively

executing tasks or are ready to execute tasks as soon as they get CPU time.

36



5.3.3 /hello endpoint performance in the Spring WebFlux application

Figure 30. WebFlux /hello - Test overview

In Figure 30 we can see that the duration for the entire test was 64 seconds.

Response Time:

Figure 31. WebFlux /hello - Response time

Figure 31 shows that the mean response time for the request made to the /hello endpoint was

466 milliseconds, with a standard deviation of 1294 milliseconds. The max response time

was 13503 milliseconds and 95% of the requests were fulfilled within 7857 milliseconds.

Figure 32. WebFlux /hello - CPU usage

From Figure 32 we notice that the max CPU usage when calling the /hello endpoint was

7.3%.

37



Figure 33. WebFlux /hello - Heap memory

In Figure 33 we see that the heap memory size and utilization converted to megabytes (MB)

was:

Max heap size: 444 MB

Max used heap: 297 MB

Figure 34. WebFlux /hello - Number of threads

38



Figure 35. WebFlux /hello - The reactor threads created

A total of 62 threads were running during the test as shown in Figure 34, and in Figure 35 we

can see the 20 reactor-http-nio threads that were used during the test. Likewise for /add there

were 22 threads used mainly for database calls and the remaining 20 threads are distributed

across JVM, Spring, and Netty.

39



5.3.4 /hello endpoint performance in the Spring MVC application

Figure 36. WebFlux /hello - Test overview

In Figure 36 we can see that the duration of the entire test was 62 seconds.

Response Time:

Figure 37. SpringMVC /hello - Response time

Figure 37 shows that the mean response time for the request made to the /hello endpoint was

540 milliseconds, with a standard deviation of 2192 milliseconds. The max response time

was 28829 milliseconds and 95% of the requests were fulfilled within 14477 milliseconds.

Figure 38. SpringMVC /hello - CPU usage

From Figure 38 we notice that the max CPU usage when calling the /hello endpoint was 10%

at the beginning of the test.

40



Figure 39. SpringMVC /add - Heap memory

In Figure 39 we see the heap memory size and utilized converted to megabytes (MB) was:

Max heap size: 817 MB

Max used heap: 635 MB

Figure 40. SpringMVC /hello - Number of threads

41



Figure 41. SpringMVC /hello - The http threads created

A total of 222 threads were running during the test as shown in Figure 40, and in Figure 41

we can see a part of the 200 different http-nio-8080-exec threads that were used during the

test.

42



5.3.5 Summary of the result

The results of the performance evaluations are summarized in Table 1

Table 1. Summary of the results.

5.4 Analysis of the result

In terms of duration, both Spring Boot MVC and Spring WebFlux endpoints were tested for

approximately the same amount of time.

Regarding mean response time, for the /add endpoint, Spring Boot MVC and Spring

WebFlux both achieved a low mean response time of under 1 millisecond rounded to 0

milliseconds. However, for the /hello endpoint, Spring Boot MVC exhibited a slightly higher

43

Duration
(seconds)

Mean
response
time

(millisec
onds)

OK % Threads
used

CPU usage
(%)

Heap
used
(MB)

Application
start time
(seconds)

Spring
Boot
MVC
(/add)

60 0 100 90 12.8 250 2.3

Spring
WebFlux
(/add)

60 0 100 60 4.6 200 1.5

Spring
Boot
MVC
(/hello)

62 540 98 222 10 635 2.3

Spring
WebFlux
(/hello)

64 466 98 62 7.3 297 1.5



mean response time of 540 milliseconds compared to Spring WebFlux's 466 milliseconds,

indicating that WebFlux was slightly faster in processing /hello requests.

In the case of the OK percentage, both frameworks achieved a high success rate for the /add

endpoint with 100% OK responses. For the /hello endpoint, both maintained an approximate

98% OK rate, suggesting effective request handling with only a minor margin of error or

failed requests.

In terms of threads used, Spring Boot MVC employed more threads than WebFlux.

Specifically, Spring Boot MVC used 90 threads for the /add endpoint and 222 threads for the

/hello endpoint, whereas WebFlux used 60 threads for /add and 62 threads for /hello. This

highlights WebFlux's efficiency in thread utilization due to its non-blocking and reactive

nature.

In CPU usage, Spring Boot MVC generally consumed more CPU resources, with 12.8% CPU

usage for the /add endpoint and 10% for the /hello endpoint. In contrast, WebFlux

demonstrated greater efficiency with CPU usage, reporting 4.6% for /add and 7.3% for /hello.

This efficiency can be attributed to WebFlux's event-driven, non-blocking model, which

reduces CPU-intensive context switches.

Heap memory usage showed that Spring Boot MVC consumed more memory, with 250 MB

for /add and 635 MB for /hello. In contrast, WebFlux proved to be more memory-efficient,

using only 200 MB for /add and 297 MB for /hello.

44



6 CONCLUSION
This thesis set out to explore two primary research questions:

1. How does Spring WebFlux compare to traditional synchronous web development in

terms of performance and scalability?

The comparative analysis conducted in this study highlights the potential advantages of

Spring WebFlux and its reactive programming model. The results indicate that Spring

WebFlux shows efficiency gains in terms of thread utilization, CPU usage, and memory

consumption, particularly when compared with the traditional Spring Boot MVC framework.

These advantages are most pronounced in scenarios characterized by high concurrency and

resource-intensive or complex tasks. The non-blocking nature of Spring WebFlux is a key

factor in these scenarios. However, it is crucial to note that the suitability of Spring WebFlux

over Spring Boot MVC depends on specific project requirements, available infrastructure,

and the nature of the application being developed. While the findings lean towards the

potential benefits of Spring WebFlux in certain circumstances, they do not universally

establish it as the superior choice for all types of web development.

2. What are the key considerations for successfully implementing Spring WebFlux?

The study underscores the importance of aligning the choice of the framework with the

specific demands of the project. Choosing between Spring WebFlux and Spring Boot MVC

should not be a blanket decision but one that is carefully tailored to the project’s unique

requirements. Further research is warranted, particularly involving the development of an

end-to-end application that encompasses CRUD operations, disk operations, security

considerations, and logging. This extended research would provide a more comprehensive

understanding of both the capabilities and limitations of Spring WebFlux, offering valuable

insights for modern web application development.

In summary, this thesis emphasizes the need for a nuanced approach to framework selection

in web development, taking into consideration the specificities of each project. The findings

from this study contribute to a more informed decision-making process in the realm of web

application development, particularly when choosing between Spring WebFlux and

traditional synchronous approaches.

45



REFERENCES

Chandrakant, K. (2020, August 18). Concurrency in Spring WebFlux. Baeldung.

https://www.baeldung.com/spring-webflux-concurrency

Dokuka, O., & Lozynskyi, I. (2018). Hands-On Reactive Programming in Spring 5. Packt Publishing.

Introduction to spring framework. (n.d.). Retrieved September 5, 2023, from

https://docs.spring.io/spring-framework/docs/3.0.x/spring-framework-reference/html/overview.ht

ml

Bonér, J., Farley, D., Kuhn, R., & Thompson, M. (2014, September 16). The Reactive Manifesto.

Reactivemanifesto. https://www.reactivemanifesto.org/

Maldini, S., & Baslé, S. (n.d.). Reactor 3 Reference Guide. Retrieved September 5, 2023, from

https://projectreactor.io/docs/core/release/reference/

Muscad, O. (2022, November 22). Synchronous vs. Asynchronous: A guide to choosing the ideal

programming model. DATAMYTE. https://www.datamyte.com/synchronous-vs-asynchronous/

MVC Framework - Introduction. (n.d.). Retrieved September 5, 2023, from

https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm

Nolle, T. (2021, March 24). Reactive programming. App Architecture; TechTarget.

https://www.techtarget.com/searchapparchitecture/definition/reactive-programming

Spring WebFlux Overview. (n.d.). Spring Docs. Retrieved September 8, 2023, from

https://docs.spring.io/spring-framework/reference/web/webflux/new-framework.html

Reactive Streams. (n.d.). Retrieved September 5, 2023, from https://www.reactive-streams.org/

Spring framework documentation. (n.d.). Retrieved September 5, 2023, from

https://docs.spring.io/spring-framework/reference/

Spring initializr. (n.d.). Spring Initializr. Retrieved September 8, 2023, from https://start.spring.io/

46

http://paperpile.com/b/0CbnJ2/r071
https://www.baeldung.com/spring-webflux-concurrency
http://paperpile.com/b/0CbnJ2/y6zm
http://paperpile.com/b/0CbnJ2/s4OO
https://docs.spring.io/spring-framework/docs/3.0.x/spring-framework-reference/html/overview.html
https://docs.spring.io/spring-framework/docs/3.0.x/spring-framework-reference/html/overview.html
http://paperpile.com/b/0CbnJ2/U6De
http://paperpile.com/b/0CbnJ2/U6De
https://www.reactivemanifesto.org/
http://paperpile.com/b/0CbnJ2/p5El
https://projectreactor.io/docs/core/release/reference/
http://paperpile.com/b/0CbnJ2/hOqK
http://paperpile.com/b/0CbnJ2/hOqK
https://www.datamyte.com/synchronous-vs-asynchronous/
http://paperpile.com/b/0CbnJ2/M0aJ
https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm
http://paperpile.com/b/0CbnJ2/d73S
https://www.techtarget.com/searchapparchitecture/definition/reactive-programming
http://paperpile.com/b/0CbnJ2/96id
https://docs.spring.io/spring-framework/reference/web/webflux/new-framework.html
http://paperpile.com/b/0CbnJ2/NnHA
https://www.reactive-streams.org/
http://paperpile.com/b/0CbnJ2/U7BA
https://docs.spring.io/spring-framework/reference/
http://paperpile.com/b/0CbnJ2/QYZg
https://start.spring.io/


What Is A RESTful API? (n.d.). Retrieved September 5, 2023, from

https://aws.amazon.com/what-is/restful-api/

47

http://paperpile.com/b/0CbnJ2/zeZv
http://paperpile.com/b/0CbnJ2/s4OO
http://paperpile.com/b/0CbnJ2/U7BA
https://aws.amazon.com/what-is/restful-api/

