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Abstract 

The purpose of this thesis was to analyze and improve anomaly detection for ventilation processes 

in building automation. The final goal of the thesis was to develop an anomaly detection method 

that was more accurate than the one previously used for the same purpose.  

 

The anomaly detection method was developed at Fidelix. Fidelix is a company that provides building 

automation solutions. Fidelix has a service called Flow_how and data collected from the Fidelix 

Flow_how service was used to develop the anomaly detection method. 

 

The theory part describes how the ventilation process is structured and how it is implemented in a 

building automation system. Furthermore, different types of anomaly detection methods and 

different machine learning methods are discussed. The anomaly detection methods that have been 

used and analyzed are LSTM (Long Short Term Memory), Kmeans, Isolation forest and a Python 

machine learning library called Pycaret. 

 

The result of the thesis was an anomaly detection method that was more accurate than the one 

previously used. The new method is faster than the one previously used. At the time of writing, the 

previous version is still used. The method developed in this thesis is available for future use. 
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Abstrakt 

Syftet med detta examensarbete var att analysera och förbättra avvikelse detektering för 

ventilations processer inom fastighetsautomatik. Avsikten var att få fram en 

avvikelsedetekteringsmetod som var mera exakt än den tidigare använda för samma ändamål.  

 

Avvikelsedetekteringsmetoden utvecklades vid Fidelix. Fidelix är ett företag som tillhandahåller 

fastighetsautomatiklösningar. Insamlad data från Fidelix Flow_how tjänst användes för att utveckla 

avvikelsedetekteringsmetoden. 

 

I teoridelen beskrivs det hur ventilations processen är strukturerad och hur denna implementeras i 

ett fastighetsautomationsystem. Vidare behandlas olika typer av avvikelse detekterings metoder 

och olika maskininlärningsmetoder. Avvikelsedetekteringsmetoderna som har använts och 

analyserats är LSTM (Long Short Term Memory), Kmeans, Isolation forest och Python 

maskininlärningsbibiliotek kallat Pycaret. 

 

Resultatet blev en avvikelsedetekteringsmetod som är mera exakt än den som tidigare användes. 

Den nya metoden är också snabbare än den som tidigare användes. För tillfället används 

fortfarande den tidigare versionen. Det nya programmet finns till förfogande för framtida behov. 

Språk: Engelska  
Nyckelord: Anomali detektering, fastighetsautomatik, maskininlärning, Python, oövervakad 
inlärning  
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Tiivistelmä 

Tämän opinnäytetyön tarkoituksena oli analysoida ja parantaa ilmanvaihtoprosessien poikkeamien 

havaitsemista rakennusautomaatiossa. Opinnäytetyön lopullisena tavoitteena oli kehittää 

poikkeamien havaitsemismenetelmä, joka on tarkempi kuin aiemmin samaan tarkoitukseen 

käytetty menetelmä.  

 

Anomalian havaitsemismenetelmä kehitettiin Fidelixissä. Fidelix on yritys, joka tarjoaa 

kiinteistöautomaatioratkaisuja. Fidelixillä on Flow_how-niminen palvelu, Fidelixin Flow_how-

palvelusta kerättyjä tietoja analysoitiin poikkeamien havaitsemismenetelmän kehittämiseksi. 

 

Teoriaosuudessa kuvataan, miten ilmanvaihtoprosessi rakentuu ja miten se toteutetaan 

rakennusautomaatiojärjestelmässä. Lisäksi käsitellään erityyppisiä poikkeamien 

havaitsemismenetelmiä ja erilaisia koneoppimismenetelmiä. Käytetyt ja analysoidut poikkeamien 

havaitsemismenetelmä ovat LSTM (Long Short Term Memory), Kmeans, Isolation forest ja Python-
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edelleen edellistä versiota. Tässä opinnäytetyössä käytetty ohjelma on käytettävissä myöhempää 

käyttöä varten. 
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1 Introduction 

What if a building could talk and tell you how to best optimize the climate and temperature 

inside? Or tell you if something that controls these processes breaks down? The building 

can not tell you that the heat exchanger on the fifth floor has a malfunctioning sensor. This 

could be done by having a machine learning system monitor the processes and react to any 

abnormal events. 

Over the years buildings have become more and more complex, with different types of 

systems that control different house technologies. Different systems can control the lights, 

heating and ventilation. It is becoming increasingly more common in smart homes that 

these systems are connected so that the user can have a clear and easy overview of all their 

“gadgets”. In larger properties, it is a challenge to keep these smart systems connected to 

only one overhead system.  From a user perspective, it would be appreciated if one could 

control all the different properties systems from a single overhead system. 

Within building automation, it is becoming more common to monitor other systems and 

even control other systems. One example of this is a lightning system that is activated by 

presence. This presence control can also set the air ventilation at a specific speed in a 

specific room. If the overhead system could learn from itself when the lights need to come 

on and could identify individual temperature needs for different people, it could save a lot 

of energy. If we go one step further and analyze and compare the data of multiple buildings, 

there could be a possibility to detect anomalies. 

  

1.1 Background 

A basic automation system can be built using some relays and sensors. These sensors 

control the relays which then can, for example, start and stop an air handling unit. Another 

type of automation system can be light control, using presence sensors, lux sensors and 

control relays. 

A modern automation system consists of I/O modules. There are four commonly used I/O 

modules: Analog Input (AI), Analog Output (AO), Digital Input (DI) and Digital Output (DO). 
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The data from and to these I/O modules are controlled by a CPU. The CPU runs a program 

that has been made specifically for a process or processes.  

Depending on which type of CPU is used there are possibilities to access different types of 

communication protocols. A gateway is often used to access these protocols. An example 

of communication protocols are Modbus, M-bus, BACnet and KNX. 

There are different ways to access and control the data gathered by the CPU. One 

commonly used approach is that there is a screen connected to the CPU. From the screen, 

all the data is readable and controllable by the user. Another commonly used approach is 

to access the CPU over the internet or through a VPN.  

If a property has more than one CPU, a common approach is to have some sort of control 

system to gather the data from all the CPUs in one place. These systems are often cloud-

based. From the cloud service, it is possible to share data between CPUs and to control I/O 

modules from one CPU to another.  

There is a lot of data accumulated when gathering data from many properties with many 

CPUs. Using this data it is possible to compare properties to one another. Another 

possibility with all the gathered data is to analyze it to check for errors in the processes. 

This can be done by machine learning and anomaly detection. 

 

1.2 The purpose of the study 

The purpose of this study is to collect and use data gathered from different sensors in 

buildings and compare several anomaly detection methods. The main goal is to create an 

anomaly detector prototype that would be more sensitive and more accurate than the one 

previously used. The anomaly detection system is meant to be used by energy experts. The 

anomaly detection system can also be used to create reports for service personal.  

Another aspect of this study is to compare the new system with the older one, which uses 

a method called Long Short Term Memory or LSTM to detect anomalies. To make the 

anomalies detection more precise and sensitive it will be compared with other algorithms 

and how they detect anomalies.  
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2 Theoretical part 

This chapter includes the theory behind the thesis. The chapter starts with a short 

description of building automation systems, how air handling units work and some 

information about the company that the anomaly detection system is created for. At the 

end of this chapter machine learning theory is presented. 

 

2.1 Building automation systems 

Building automation is often abbreviated HVAC (Heating, Ventilation and Air Conditioning). 

An automation system is all about controlling, regulating and monitoring the heating, 

ventilation and air condition processes. Often multiple systems can be controlled by one 

system, like systems for lightning, fire alarms, doors, etc. (Mossberg Sonnek & Lindgren, 

2015)  

These building automation systems have progressed a lot through the years. Earlier on, one 

system could be used to control a process and another one to supervise. Nowadays 

everything is integrated into one system. (Mossberg Sonnek & Lindgren, 2015) 

An automation system can be divided into three different levels. The first level or the 

highest level includes the software that gathers all the data from one or many buildings. 

From this level, it is possible to analyze and manually set values in the systems. This level is 

called the information level. The second level controls and maneuvers the equipment 

automatically by given values in the system. The equipment is often installed in cabinets in 

a technical space or in smaller buildings combined with the distribution board. This level is 

called the automation level. The third level includes the sensors for detection and 

measurement and the maneuvering of actuators. This level is called the field level. 

(Mossberg Sonnek & Lindgren, 2015) 

An important aspect to consider in operating a building is the cost required for ventilation, 

heating/cooling and illumination. With the possibility to control and program a start/stop -

function, speed settings, heating duty cycling, on/off controlling and more, it’s possible to 

reduce the cost of operating a building. (Wang, 2010) 
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2.1.1 AHU Processes 

The basic process of an Air Handling Unit is to extract fresh air from the outside, pass it 

through a machine and deposit it inside. The Air Handling Unit extracts the inside air from 

the room or the building and passes it through the air handling unit to the outside. (Venus, 

2020) 

The key components of an Air Handling Unit (AHU) are: 

 Inlet and outlet dampers: these open when the AHU is running and close when it’s 

not.  

 Filters: both on the fresh air side and on the extract air side.  

 Cooling and heating coils: Depending on the type of AHU, there can be a 

combination of both or only heating coils.  

 Fans: Fans are controlled through a modern process by an EC-engine or can be 

controlled by a frequency converter.  

 Heat recovery: There are a few types of heat recovery systems for AHU processes. 

The two commonly used are thermal wheels Figure 1 and plate heat exchangers 

Figure 2. (Evans, Air Handling Units Explained, 2018) 

 

Figure 1 Thermal wheel heat recovery. (Evans, Air Handling Units Explained, 2018) 
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Figure 2 Plate heat exchanger. (Evans, Air Handling Units Explained, 2018) 

 

Air handling units are then filled with sensors and controlled by the building automation 

system. The inlet and outlet dampers are controlled by the building automation system so 

that the dampers are open when the fan starts. The filters have pressure sensors that 

measure the pressure and give an alarm if it surpasses a given value. The heating and 

cooling coils are controlled by measuring the temperature that leaves the AHU. The 

temperature is given a set value and if the actual value is below the set value, the heating 

coil will produce more heat into the air. The energy recovery is also controlled by the set 

value for the temperature. The speed of the fans is controlled by pressure or flow in the 

duct. There can also be humidifiers in the AHU process. The humidifiers are controlled by 

steam or water mist or by the cooling coil to dehumidify. (Evans, Air Handling Units 

Explained, 2018). 

 

2.1.2 Fidelix 

This anomaly detection system was created for a company called Fidelix. Fidelix is one of 

the leading companies in Finland that deals with building automation. Fidelix was founded 

in 2002 and has its headquarters in Vantaa, Finland. (Fidelix, 2022) 
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The company develops and test their own products.  Their product range includes their 

own PLC, I/O modules, sensors and more. Apart from this they also offer different kinds of 

web services. (Fidelix, 2022) 

 

2.2 Machine learning 

In the modern world, everything and everyone generates and consumes data. This data can 

be as simple as what type of ice cream a person eats to a program checking for spam emails. 

These are types of data that a computer algorithm can analyze. 

A computer algorithm can be useful for many different purposes, from analyzing and 

sorting data about people’s ice-cream preferences to sorting numbers according to specific 

requirements. For certain tasks, it can be hard to find an already known algorithm, when 

there are only a known input and a known output.  For example, the input can be a text 

document sent by email and the output is spam or not spam. In this scenario, the computer 

can be given a lot of different emails sorted as spam and not spam and then the computer 

can learn from this data and be able to sort out new incoming emails accordingly. (Alpaydin, 

2014) 

 

2.2.1 Supervised learning 

In supervised learning, a training set is used to instruct supervised learning models to 

produce desired results. The algorithm learns by itself by comparing the predicted output 

to the known output and measuring the error rate through a loss function. The algorithm 

adjusts itself until the error is sufficiently reduced.  (IBM, n.d.).  

A supervised learning method uses labeled data, this is called training data. In Figure 3, the 

training data consists of pictures of cats and dogs, these are labeled “Cats” and “Dogs”. This 

machine learning method then predicts a new prediction and compares the new prediction 

to the training data. In the picture, the unpredicted model is a picture of a cat. The machine 

learning method compares the unpredicted model against the training data and by this, it 

can predict the label of the unpredicted model. (Serrano, 2021). 
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Figure 3 Supervised learning 

 

2.2.2 Unsupervised learning 

Compared to supervised learning where the goal is to learn what the output should look 

like given the input with the help of a supervisor (label), in unsupervised learning there is 

only an input and no supervisor. The goal of unsupervised learning is for the model to find 

consistencies or inconsistencies in the input. One method in unsupervised learning is 

clustering. This is a type of density estimation. Using density estimation in statistics the 

unsupervised model recognizes patterns in the input data, where some patterns occur 

more often than others. (Alpaydin, 2014). See Figure 4 for a graphic explanation of the 

unsupervised learning model. 
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Another task of unsupervised learning is outlier detection. In outlier mining detection the 

model tries to find a smaller group of objects that are significantly different from the rest 

of the data.  (Bhattacharyya & Kalita, 2014) 

 

Figure 4. Unsupervised learning. 

 

2.2.3 Semi-supervised learning 

Semi-supervised learning is a combination of supervised learning and unsupervised 

learning. In semi-supervised learning, a small portion of the data is labeled and a big portion 

of the data is unlabeled. The small portion of labeled data is used as training data for the 

larger dataset. (Potrimba, 2022) 

 

2.2.4 Scaling 

Scaling is a method to make data more suitable for processing or modeling. Scaling is 

needed when the gathered data includes data with different ranges and units. There are a 

few different types of scaling methods. One of these methods is normalization. With 

normalization, the values of the data will be set between 0 and 1. The minimum value of 

the gathered data will equal 0 and the maximum value will be equal to 1. (Bhandari, 2023). 

The formula for normalization is this: 

𝑋 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
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Another type of scaling is standardization. In scaling the gathered data is centered around 

the mean value and divided by a standard deviation. In the formula for standardization, as 

seen below, the 𝜇 is the mean value of input data and σ is the standard deviation. 

(Bhandari, 2023) 

𝑋 =
𝑋 − 𝜇

σ
 

 

2.2.5 PCA 

PCA stands for  Principal Component Analysis. PCA can be used as a dimensionality 

reduction method, which means it transforms a large dataset into a smaller dataset without 

losing accuracy.  PCA captures the variance of the data with a straight line as seen in Figure 

5. The goal of PCA is to transform the original dataset into new datasets, these are called 

components. The PCA components will get a magnitude and direction. The first component 

includes the most variation in the original data and the second component the second most 

variation and so on. (Biswal, 2023) 

 

Figure 5. Principal Component Analysis. (Biswal, 2023) 
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3 Software 

This chapter discusses the software used in the thesis work. The three main software that 

have been used are the Microsoft Azures web applications, Visplore and Python with 

different Python libraries. 

 

3.1 Microsoft Azure 

Microsoft Azure was first announced as a Community Technical Preview back in 2008, at 

this time it was called Windows Azure. In 2010 it was commercially available for use 

(Webber-Cross, 2014).  

IaaS (Infrastructure as a Service) and PaaS (Platform as a Service) are two services provided 

by Microsoft cloud computing services, Microsoft Azure. There is also a third cloud service 

called SaaS (Software as a Service). The lowest tier service is IaaS which offers storage, 

server and networking infrastructure. The next tier is PaaS and in this tier, users can build 

their applications. The highest tier of SaaS includes software products (Webber-Cross, 

2014). 

Public, private, hybrid and community clouds are the four primary cloud deployment 

options. Microsoft Azure is classed as public. It is possible to install Azure products as a 

private cloud model if it is installed on a private data center. A public cloud service is 

available for the public to use and hosted by a vendor. A private cloud service is only 

available within a company’s domain. When a private cloud is shared between several users 

it is called a community cloud. A mixture of all these three services is called a hybrid cloud. 

(Webber-Cross, 2014) 

The main reason for selecting any type of cloud service is if a company lacks its own 

infrastructure to run solutions on or if the infrastructure they have does not have sufficient 

capacity. It can be expensive to have your own infrastructure and it can also be challenging 

to migrate from an older infrastructure to a newer one. Choosing a cloud service can also 

be more cost-efficient than hosting your own infrastructure. (Webber-Cross, 2014) 
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3.2 Python libraries 

A few Python libraries have been used in this thesis. Some of them where needed for 

analyzing the data, others to calculate results and to show graphs of the results. The library 

for analyzing was Tensorflow, Pandas was used for the different data frames, matplotlib 

for graphs, scikit-learn for result calculations and machine learning models and Pycaret for 

anomaly detection methods. 

 

3.2.1 Tensorflow 

TensorFlow was originally developed by Google for internal use only. In 2015 it was 

released as open source. Google still uses Tensorflow for research and product 

development and it is also used for the development of machine learning and deep neural 

network models. (Fandango, 2018) 

Tensorflow can be split into three different elements called models: Data model, 

Programming model and Execution model.  

 The data model includes the basic elements of computation, in Tensorflow this is 

called a tensor. This can be an n-dimensional collection of data.  

 The programming model includes graphs. Creating a program in Tensorflow 

involves some sort of computational graphs.  

 The execution model includes the computation of graph nodes in a series of 

dependent orders. (Fandango, 2018) 

 

3.2.2 Pandas 

Pandas is an open-source library available in Python. Pandas was initially created and 

designed for financial data analysis. Pandas was developed in 2008 by Wes McKinney, in 

2009 it was open-sourced. The main goal with Pandas is to discover information easily and 

quickly in data. Pandas has gained wide adoption in many areas because of its extensive 

feature set and smooth interaction with Python and other tools. (Heydt, 2017) 
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Some features of Pandas are:  

 Manipulation of data series and data frame objects. 

 Data alignment with indexes and labels. 

 Missing data correction. 

 Tidying messy data. 

 Possibility to read and store data in various file formats such as CSV, HDF5 and JSON. 

 

3.2.3 Matplotlib 

Matplotlib is a data visualization library for Python. Matplotlib is easy to use for a variety 

of different plots, such as line, scatter, box, bar and radial plots. For easy plotting, 

Matplotlib provides a straightforward oriented interface called Pyplot module. (Yim, 

Chung, & Yu, 2018) 

 

3.2.4 Scikit-learn 

Scikit-learn is an open-source software that is used to solve unsupervised and supervised 

problems in machine learning. The possibility to implement some of the most popular 

machine learning methods combined with Scikit-learn being easy to use makes Scikit-learn 

a popular library for Python. Scikit-learn is built completely in Python and also includes 

Python libraries such as Numpy and SciPy (Jolly, 2018). 

 

3.2.5 Pycaret 

One of many machine learning libraries that can be found for Python is Pycaret. Pycaret is 

inspired by the Caret machine learning package that can be found in the R coding language. 

The library includes many functions for different machine learning techniques such as 
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classification, comparing models, and evaluating models and predictions. (Brownlee, A 

Gentle Introduction to PyCaret for Machine Learning, 2020) 

 

3.3 Visplore 

Visplore is a software for analyzing time series data. The main features of this software are 

analytics, visualization, workflow and integration. These features include outlier detection, 

time series plot, data exploration, Python integration, etc. Visplore is a free software with 

some limitations of the professional or discovery versions. (Visplore, n.d.) 

 

4 Anomaly detection 

 Anomalies are outliers, exceptions, surprises, or aberrations from a known pattern within 

a large set of data. Anomalies can occur due to malfunctioning devices/sensors, overload 

in the data reading, or any other type of error readings from a process. (Bhattacharyya & 

Kalita, 2014) 

There are a few different types of anomalies. Point anomalies are singular data points that 

differ from the rest of the data points as seen in Figure 6. Point anomalies are used to detect 

sensor faults. (Rizwana, 2022) 
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Figure 6. Point anomalies  

 

Contextual anomalies are single data points that differ from the rest of the data points in a 

closed context. Contextual anomalies can be seen in time series data. Contextual anomaly 

only works if there is a specific context. For example, money spent on food is normal on 

weekdays and weekends but abnormal during holidays.  (Rizwana, 2022). See a visual 

representation of the contextual anomalies in Figure 7. 

 

Figure 7. Contextual anomalies 

 

Point anomaly 

Contextual anomaly 
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Collective anomalies are a group of coinciding data points that when compared to the rest 

of the data points are anomalous. Collective anomaly detection can be used to detect for 

example data copying from a server to a local computer unexpectedly. This works by 

putting together instances of data. (Rizwana, 2022) 

There are several challenges to anomaly detection. For example, it can be difficult to define 

a known interval when a sensor reading is correct but outside of the known pattern. If 

different systems or sensors, or even the same sensors in different systems, are used it can 

create another known pattern, which could cause issues. The availability of trained data 

and labeled data can cause issues if there isn’t enough of either data available. If there is 

not enough data available it’s naturally also difficult to recognize anomalies.  

Because of these challenges, there is not one general system that works for everything. 

Depending on the scenario, type of data and data availability there are anomaly detection 

models that will work better or worse. Different scenarios that can influence what anomaly 

detection is best suited are for example machine learning, spectral theory, statistics, data 

mining, or information technology. (Chandola, Banerjee, & Kumar, 2007) 

 

4.1 Supervised anomaly detection 

Supervised anomaly detection needs to have training data with two labels. One label for 

normal data and the other for anomaly data. The more training data available the better 

the model will become. Data that is fed into the anomaly detection software will be 

compared with the previously labeled data. (Bhattacharyya & Kalita, 2014) 

 

4.2 Unsupervised anomaly detection 

Unsupervised anomaly detection does not require any training data, but it is difficult to 

attain the results at hand. If the data has a lot of anomalies, the detection method will give 

a lot of false alarms. That is because unsupervised anomaly detection requires that the 

normal data occur more often than the anomaly data. (Bhattacharyya & Kalita, 2014) 
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4.3 Different types of data 

Real-world objects have a few different attributes to describe them. According to Han, 

Micheline & Pei (2000), these are the commonly used attributes: 

 Nominal Variables: This variable doesn’t have a numeric value, such as employee ID 

or gender. 

 Ordinal Variables: This variable is similar to categorical with the difference that 

these are sorted in a fixed sequence. 

 Categorical Variables: This variable can have more than two states, but as the name 

mentions they are categorical. Example colors and sensor type. 

 Binary Variables: This type of variable can only have two states, true/false or 0/1. 

 Interval-Scaled Variables: This variable describes the differences or intervals 

between values. 

 Ratio-Scaled Variables. This variable describes a positive measurement on a 

nonlinear scale. 

 Mixed-type Variables. This variable can be a mix of the variables listed above. 

 

4.4 Machine learning methods for anomaly detection 

The general structure of an anomaly detection system consists of some basic stages, 

parametrization, training and anomaly detection. First, the raw data is collected and 

prepared for the anomaly detection system. This stage is called preprocessing. The second 

stage is where the model gets trained according to training data. The training data can be 

manually selected or selected by some automatic method. The last stage is the detection 

stage. In the detection stage, the data in the preprocessing stage is compared to the data 

in the training stage. A threshold criterion is configurable to detect anomalous data. (Omar, 

Ngadi, & Jebur, 2013) 
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4.4.1 KNN 

KNN is an abbreviation of K-Nearest Neighbor. It is a simple machine-learning method for 

classifying a new data point. (Yehoshua, n.d.) New data points in KNN get classified by 

calculating the Euclidian distance between the new data point and the previously labeled 

data points. A value is set for KNN for how many “neighbors” the new data point has. The 

data point will be classified into the same class as the majority of neighbors. (Ahmed) 

In Figure 7 the new data point is classified as an anomaly, here the number of neighbors 

has been set to five. The new data point is in orange and the closest “neighbors” are in 

gray. 

 

Figure 8. KNN 

 

4.4.2 Clustering 

One method in machine learning and more specifically in unsupervised learning is 

clustering. The task of clustering is to find similar characteristics in the data by dividing the 

data set into numbers of clusters. The data points gathered in the same clusters should 

have similar features, values, or characteristics. Clustering can be seen as grouping data 

points so that the data between data points is held at a minimum, as in Figure 9. (Rohit, 

2022). 
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There are two main ways of clustering. The first is hard clustering, where a single data point 

belongs to a single cluster. In the second category, soft clustering, a data point can belong 

to a certain number of clusters. (Rohit, 2022) 

 

Figure 9 Clustering 

 

4.4.3 K-means 

K-means is a type of clustering method. The first step with K-means is to set the number of 

clusters the data should be split into. The next step in K-means is to initialize the center 

point, called centroids, of the cluster. This is often set at random value because it is 

unknown. In figure 10 the number of clusters is set to three and the centroids are marked 

with an x. The next step in K-means is to calculate distances from data points to centroid 

points, where the shortest distance between data point and centroid makes a cluster, as 

seen in Figure 11. After this, a new value for the centroid point is calculated from the mean 

value of data points in the cluster. These steps are then repeated until the value of the 

centroid point doesn’t change, as seen in Figure 12. (Sharma, 2023) 
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Figure 10. K-means centroids. 

 

 

Figure 11. K-means centroid cluster. 
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Figure 12. K-means centroid value. 

 

4.4.4 Isolation forest 

Normally in anomaly detection, some known data is set as the normal data, this data can 

be set by the user. All data that is not considered normal data is then flagged as anomalous. 

Isolation forest does not work with a normal/anomalous data setup, instead, it works by 

isolating anomalous points in the dataset (Dhiraj, 2020). By isolating all data points in a 

dataset, anomalies are easier to isolate than normal data. As seen in Figure 13, data point 

X requires less partition from the rest of the data compared to data point Y. (Liu & Ting, 

2009) 
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Figure 13. Isolation Forest 

 

4.4.5 LSTM 

At the beginning of this thesis work, LSTM (Long Short-Term Memory) was the model used 

at Fidelix. LSTM is used at Fidelix because it should learn time-series relations. 

LSTM is an enhanced recurrent neural network (RNN). RNN has a gradient vanishing 

problem, but this is not a problem with LSTM. RNNs have the drawback of being unable to 

recall long-term dependencies. These issues are specifically avoided by using LSTM. 

(Saxena, 2021) 
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Figure 14. LSTM Gates. 
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An LSTM cell is divided into three gates and a memory cell. The three cells are a forget gate, 

an input gate and an output gate, as seen in Figure 14. The forget gate takes care of deciding 

what information is important and what information to forget. A sigmoid function is used 

to decide how important the information is. This sigmoid function has a value between 0 

and 1. A value closer to 0 means that it isn’t important and a value closer to 1 means that 

it is important. (Saxena, 2021) 

The input gate adds information to a neuron cell. The input gate uses an activation function, 

typically a Tanh function. This function generates a value between -1 and 1. A filter is used 

to control what information that will be stored in the cell. The filter uses a sigmoid function. 

By combining the output from the input and the forget gate the memory cell is updated. 

(Saxena, 2021) 

The output gate uses the Tanh function to create a vector of values. A sigmoid function is 

used to filter out output values from previous output and current input. (Choubey, 2020). 

See figure 15 for a graphic explanation of the LSTM model. 

 

Figure 15. LSTM (Saxena, 2021) 
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5 Data analysis 

The data in this thesis is gathered using Microsoft Azure Databricks. Using Databricks the 

data is first read and then filtered according to buildings, processes and timestamps. With 

the assistance of the supervisor at Fidelix, it was decided, that for the dataset to be used 

for the analysis I would need to take data from three different buildings, with about 50 

different processes and about two-year-old data. All the data from different processes are 

stored in Microsoft Azure Datalake through a Datafactory. The data can then be accessed 

and processed with Azure Databricks. In Figure 16 it is described how the system works. 

 

Figure 16. Data access. 

 

5.1 Data gathering using Databricks 

A fixed dataset is needed for this thesis work because the data changes periodically so it 

would be difficult to compare different methods if the data changes every time the code 

runs. The prepared dataset consists of data from three different buildings. Each building 
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consists of a variety of different air handling unit processes. In total, there were data from 

50 different processes.  

The data used in this thesis work is taken from air handling unit processes (AHU processes). 

There are a few other processes, like cooling- and heating processes, but these processes 

were filtered out in the fixed dataset. The timespan for the fixed dataset was about two 

years. 

 

5.1.1 Data filtrering using Databricks 

The data stored in a Datalake is accessed from Microsoft Databricks. To be able to access 

the data stored in a storage account a secret key is needed. This key was provided by Fidelix 

at the beginning of the thesis work. 

A file named processTagMeasurment contains all the data needed for data filtering. The 

execution of the command to read this file was slow because the file includes a lot of 

buildings, processes and data. The file processTagMeasurment includes entries according 

to Code example 1. 

Code example 1. ProcessTagMeasurment entries. 

{ 
 "id": "78a0152c-0b8d-eb11-b566-000d3a229b96", 
 "tag":{"id": 11923, "name": "TK303 D-osa 2013 QE27_FH_LOI"}, 
 "timestamp": "2021-03-25T03:40:00.0000000Z", 
 "value": 0.0, 
 "unit": "", 
 "process": {"id": "204_QE27", "name":"QE27"}, 
 "building":{"id": 204, "name": "RakennusA"} 
} 
 

“id”: This is the id used in FlowHow. 

“tag”: This tells what sensor/point from the process, in this example: “TK303 D-osa 2013 
QE27_FH_LOI"}. This is an alarm point when the air quality is too low. QE for air quality, FH 
for alarm point and LO for low. “TK303 D-osa 2013” tells from which process and where it 
is. 

“timestamp”: This is when the data is saved. 

“value”: What value does the sensor/point have at the given timestamp. 
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“unit”: Tells what unit the data is saved in. In the example when this is an alarm point there 
are no units. 

“process”: Tells what process it is from. 

“building”: From what building the process is taken from. 

The data that is collected is called “processTagMeasurment_nested and contains the 

following attributes: ID, Tag, Timestamp, Value, Unit, Process, and Building. 

The entries used in this thesis to filter the data are: 

 Timestamp: To filter the data accordingly to the desired period 

 Process: To filter out other than AHU processes. 

 Building: Filter the data to get the desired buildings. 

The timestamp filtering was done by checking manually on the Web-service (Flow_how). 

On this service, the energy experts can create a report when something doesn’t work as it 

should. These reports where used to check for known anomalies on a known timestamp. 

As seen in Figure 17, an energy expert has made a report that something is wrong. In the 

figure, we can see the timestamp from when the report was submitted, 06.03.2022. The 

observation is that the temperature sensor TE05 shows a bad value. 

 

 

Figure 17. Flow How report 
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The data in processTagMeasurments included different types of processes, such as air 

handling unit processes, cooling processes and heating processes. In this thesis work the 

main goal was to analyze processes from air handling units. To be able to filter out other 

processes I had to search for names of air-handling unit processes which was successfully 

completed.  

It was agreed upon to use processes from bigger buildings, like bigger malls and 

supermarkets. In these buildings, there are often quite many AHU-processes and when 

they are in the same building they are probably from the same manufacturer and include 

the same type of sensors. 

When the data was filtered according to the desired timestamp, process and building the 

datasets were downloaded so it was possible to look at the data graphically. The datasets 

were saved separately for each process and stored in CSV-format. In total about 50 

processes were downloaded locally. What the data from one process looks like can be seen 

in Table 1. 

Table 1. Data in CSV-format 

timestamp value tagName tagId processId 
01-01-2021 

02:10 0.0 TK01_POISTOSUODATIN_PAINE-ERO_FHP 12588 200_TK01 
01-01-2021 

02:10 0.0 TK01_TULOSUODATIN_PAINE-ERO_FHP 12585 200_TK01 
01-01-2021 

02:10 23.0 BUILDING_AK01.2197_TK01_TE45_M 12589 200_TK01 
01-01-2021 

02:10 0.0 BUILDING_AK01.2197_TK01_PF01_EC_FI 12579 200_TK01 
01-01-2021 

02:10 97.5 TK01_TULOPAINE_SP_FHP 12560 200_TK01 
01-01-2021 

02:10 10.599 TK01_LTO_SP_FHP 12566 200_TK01 
01-01-2021 

02:10 0.0 BUILDING_AK01.2197_TK01_PE30_M 12562 200_TK01 
01-01-2021 

02:10 0.0 BUILDING_AK01.2197_TK01_PE10_M 12559 200_TK01 
01-01-2021 

02:10 0.0 BUILDING_AK01.2197_TK01_FI 12577 200_TK01 
01-01-2021 

02:10 125.0 BUILDING_AK01.2197_TK01_PE30_C 12561 200_TK01 
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This is just the ten first rows of one data process. This process has 2 944 659 rows of data. 

The data from this process is filtered according to “200_TK01” and a timestamp from “01-

01-2021” to “31-08-2022”. Graphically this process can be seen in Figure 18. It is difficult 

to distinguish specific sensor values in Figure 18. In Figure 19 the data has been zoomed in 

to show only data for one week. Here it is possible to see that there are many data values 

per timestamp. 

 

Figure 18. Data graphically 

 

 

Figure 19. Data graphically zoomed in at one week. 

 

5.2 Labeling 

To be able to have some sort of feedback from the anomaly detection methods, the data 

had to be manually labeled. The data was labeled “Rest” and “Process malfunction”. The 

labeling was done by a software called Visplore. With Visplore it was possible to import the 

CSV-process files. In Visplore the data was marked as process malfunction where it was 

possible to see anomalous data as seen in Figure 20. The data from Visplore was exported 

with a new column called Label, as seen in Table 2. 
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Table 2. New column "Label". 

timestamp value Label tagId processId 
10-05-2021 

03:50 1 Rest 12583 200_TK01 
10-05-2021 

03:50 0 Rest 12586 200_TK01 
10-05-2021 

03:50 0,962 Rest 12566 200_TK01 
10-05-2021 

03:50 0 Rest 12573 200_TK01 
10-05-2021 

03:50 45 Rest 12558 200_TK01 
10-05-2021 

03:50 0 Rest 12559 200_TK01 
10-05-2021 

03:50 0 Rest 12574 200_TK01 
10-05-2021 

04:00 93,985001 Process malfunction 12569 200_TK01 
10-05-2021 

04:00 100 Process malfunction 12563 200_TK01 
10-05-2021 

04:00 20,799999 Process malfunction 12565 200_TK01 
10-05-2021 

04:00 0 Process malfunction 12585 200_TK01 

 

 

 

Figure 20. Labeling in Visplore 
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5.3 Preprocessing 

The data from Visplore needed to be preprocessed to fit in the anomaly detection program. 

The timestamp data had to be set to date/time. The data points were also decreased by 

taking the mean values over time. The data from the CSV-files was updated every ten 

minutes. The processed data was down-sampled to a point where no anomalies were lost 

and so it could analyze at a good speed. The preprocessing was done in a function in Python. 

The function can be seen in Code example 2. 

Code example 2. Function to preprocess data. 

def preprocess_data(df): 
    ''' Function to preprocess the data''' 
    # Preprocess the data 
    df.value =pd.to_numeric(df.value) 
    df['timestamp'] =pd.to_datetime(df['timestamp']) 
    df = df.groupby([pd.Grouper(freq='60min', 
key='timestamp'),'tagId','Label']).mean() 
    df = df.reset_index() 
    return df 

 

5.4 Pivot dataframe 

After the data had been preprocessed, the data frame was pivoted so it would fit different 

types of anomaly detection methods. To pivot the data frame, the preprocessed data was 

read into another function. This function reconstructs the dataframes with different 

measurements from one process in each column and sorted according to the timestamp. 

The tags become columns and timestamps are used as index. The function can be seen in 

Code example 3. The differences between the dataframes after preprocessing and pivoting 

can be seen in Table 3 and Table 4. 

Code example 3. Function to Pivot data. 

def pivotGroupDataframe(df): 
    subframe = df[['value', 'timestamp', 'tagId',]] 
    # Pivot 
    subframe = pd.pivot_table(subframe, index='timestamp', columns='tagId', 
values='value', aggfunc=np.mean) 
    return subframe 

Table 3. Data preprocessed. 
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Table 4. Data pivoted. 

 

 

For example, in Tables 3 and 4: tagId 12559 from the process is the measured value from 

the supply air duct pressure sensor.  

With the tagIds sorted column vise and sorted according to timestamp, I had to check for 

infinity and NaN values. These were replaced with 0, as seen in Code example 4.  

Code example 4. NaN values replaced. 

        # Replace infinite and nan values with 0 
        df.replace([np.inf, -np.inf],np.nan, inplace=True) 
        df.fillna(0,inplace=True) 
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5.5 Different types of anomaly detection methods 

For every process and anomaly detection method, the same preprocessing and pivoting 

were used.  

 

5.5.1 LSTM 

This was the first method I used. This method had been used previously for anomaly 

detection at Fidelix. I had to change the code a bit so it would fit my type of data. The 

anomaly detection model previously made was analyzing all processes and not just one 

process at a time.  

For the LSTM method, the Keras library is used. In Keras, there are a few different types of 

autoencoder models. For timeseries data, the LSTM autoencoder model should work quite 

well. 

The LSTM autoencoder code was already made when I started this thesis work. The type of 

activation function, number of layers and layer settings have been chosen since before. 

 

5.5.2 K-means 

This was the first other method I tried to use on the dataset. Here the same preprocessing 

and pivoting were used as in the LSTM method. With the K-means method the 

StandardScaler from sklearn.preprocessing was used. The formula for this is: 

𝑧 = (𝑥 − 𝑢)/𝑠 

The value of the sample x is calculated from this formula with u is the mean value of the 

dataset and s is the standard deviation. PCA is also applied on the scaled dataset, as seen 

in Code example 5.  
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Code example 5. Standardize/scaling of data. 

        # Standardize/scale the dataset and apply PCA 
        pca = PCA(n_components=2) 
        names = df.columns 
        x = df[names] 
        pipeline = make_pipeline(StandardScaler(), pca) 
        pipeline.fit(x) 
 
        # Calculate PCA with 2 components 
        principalComponents = pca.fit_transform(x) 
        principalDf = pd.DataFrame(data = principalComponents, columns = 
['pc1', 'pc2']) 
        df['pc1']=pd.Series(principalDf['pc1'].values, index=df.index) 
        df['pc2']=pd.Series(principalDf['pc2'].values, index=df.index) 
        df.head() 
 

The Kmeans method that is used is found in the tslearn clustering library and is called 

TimeSeriesKMeans. In Code example 6 it is assumed that 20% of the entire dataset are 

outliers. The program then calculates the distances from the Kmeans centroid to the values 

of principalDf. Then the program calculates the number of outliers from the assumed 

percentage of outliers. With these variables, a minimum value is calculated and all the 

distanced are then compared against this variable. In the example below this variable is 

called threshold. If any of the distances are above or equal to the threshold they are marked 

as an anomaly. In this example, the threshold had a value of 514. 

Code example 6. Kmeans clustering. 

        # K-means clustering 
        kmeans = TimeSeriesKMeans(n_clusters=3, 
                         max_iter=50, random_state=42) 
        kmeans.fit(principalDf.values) 
        # Assume that 15% of the entire data set are anomalies  
        outliers_fraction = 0.15 
        # get the distance between each point and its nearest centroid. The 
biggest distances are considered as anomaly 
        distance = getDistanceByPoint(principalDf, kmeans) 
        # number of observations that equate to 15% of the entire data set 
        number_of_outliers = int(outliers_fraction*len(distance)) 
        # Take the minimum of the largest 15% of the distances as the 
threshold 
        threshold = distance.nlargest(number_of_outliers).min() 
        print(threshold) 
        # anomaly1 contains the anomaly result of the above method Cluster 
(0:normal, 1:anomaly)  
        principalDf['anomaly1'] = (distance >= threshold).astype(int) 
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5.5.3 Isolation forest 

The Isolation Forest method was also used from the tslearn library. It used the same scaler 

and PCA as in the Kmeans method. In the Isolation Forest method, it is also assumed the 

percentage of the data that contained anomalies as seen in Code example 7. The Isolation 

Forest method then predicts if a data point is an anomaly or not. 

Code example 7. Isolation forest. 

        # Isolation forest 
        # Assume that 5% of the entire data set are anomalies  
        outliers_fraction = 0.05 
        model =  IsolationForest(contamination=outliers_fraction) 
        model.fit(principalDf.values)  
        principalDf['anomaly2'] = 
pd.Series(model.predict(principalDf.values)) 
 

5.5.4 Pycaret 

The Pycaret library was used to try different types of methods easily and with simplicity. 

Different types of anomaly detection methods were tried with Pycaret for example: 

clustering, isolation forest, knn and SVM. With Pycaret it is also possible to use different 

types of data normalizing. 

With the Pycaret method, the same preprocessing and pivoting of the data were used as in 

the other methods. Instead of using a separate scaling library the ones built-in in Pycaret 

were used. In Code example 8, “K nearest neighbor” has been used in the Pycaret setup 

with z-score as the normalizing method and knn set with a fraction of 0,025. Normalize 

method z-score is the same as the standard scaler. 

Code example 8. Pycaret setup. 

        setup(df, normalize = True, normalize_method = 'zscore') 
 
        # train model 
        knn = create_model('knn', fraction = 0.025) 
        knn_results = assign_model(knn) 
        knn_results.head() 
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5.5.5 Supervised learning 

A Supervised Learning method was also used on the dataset. This was a bit different from 

the previous methods. The processed dataset was used instead of the pivoted dataset as 

in the other methods. This meant that the data used in the supervised learning looked like 

the data in Table 5. 

Table 5. Data supervised learning. 

 

 

The train_test_split method was used from, this method can be found in the sklearn library 

for Python. The train_test_split method uses features and labels as inputs. Timestamp 

features were extracted and saved under different columns, as seen in Code example 9. 

This was done because the supervised learning method that was used couldn’t handle the 

datetime format. The label columns were also converted from Rest and Process 

malfunction to 0 and 1. With the data then sorted correctly for the supervised learning 

method, the data were split into training and test data. In this case, 20% of the data were 

set as test and 80% as trained, as seen in Code example 10. 

 

 

 

 

 

 



 

 

35 

 Code example 9. Preprocess data for supervised learning. 

        # Preprocess the data 
        df['timestamp'] = pd.to_datetime(df['timestamp']) 
        label_encoder = LabelEncoder() 
        df['label_encoded'] = label_encoder.fit_transform(df['Label']) 
 
        # Extract timestamp features 
        df['year'] = df['timestamp'].dt.year 
        df['month'] = df['timestamp'].dt.month 
        df['day'] = df['timestamp'].dt.day 
        df['hour'] = df['timestamp'].dt.hour 
        df['minute'] = df['timestamp'].dt.minute 
 
 
        # Define features (X) and target (y) 
        X = df[['year', 'month', 'day', 'hour', 'minute', 'value']] 
        y = df['label_encoded'] 
 

Code example 10. Train_test_split function. 

        # Split the data into training and test sets 
        X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.2) 
 

Then the data is run through a RandomForestClassifier, where it predicts the outcome of 

the test data, the code for RandomForestClassifier can be seen in Code example 11. The 

data is then sorted so it is possible to compare the classifier predicted with the manually 

labeled data. 

Code example 11. Random forest classifier. 

# Train a Random Forest classifier 
        clf = RandomForestClassifier(n_estimators=10) 
        clf.fit(X_train, y_train) 
 
        # Make predictions on the test data 
        y_pred = clf.predict(X_test) 
 
        # Create a DataFrame for test data with 'Label' and 'y_pred' columns 
        test_df = df.iloc[X_test.index].copy() 
        test_df['y_pred'] = y_pred 
 
        # Sort the DataFrame by 'timestamp' 
        test_df.sort_values(by='timestamp', inplace=True) 
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5.6 Comparing methods and method settings 

The same type of comparing was used in all of the methods above. The 

predicted/calculated anomalies were added to the original dataframe and then compared 

column-wise to see if they were equal. For example, as seen in  Figure 36, a column that 

states true or false depends if the column “Label” is “Rest” or “Process malfunction” was 

made. The same was done with the column “y_pred” but here if the value is “0” or “1” it 

equals true or false, as seen in Code example 12. Then these two columns are compared 

and if they are equal it will give a result true, as seen in Table 6. 

Code example 12. Check for anomalies. 

        # Add another column that checks if the Label value is Process 
malfunction 
        test_df['result'] = test_df['Label'].apply(lambda x: True if x == 
'Process malfunction' else False) 
        # Add another column that checks if anomaly1 value is 1 = Anomaly 
        test_df['Anomalie1'] = test_df['y_pred'].apply(lambda x: True if x 
== 0 else False) 
        test_df['checked'] = 
np.where((test_df['Anomalie1']==test_df['result']),True,False) 

 

Table 6. Checked for anomalies. 

 

 

 

Accuracy, recall and precision were used to compare the results. Graphs were printed to 

compare the original labeled anomaly data with the calculated/predicted anomalies. 

Accuracy is calculated by comparing the length of how many values equal True in the 

“Checked” column with the length of column “result”. Recall and precision are calculated 

with sklearn.recall_score and sklearn.precision_score. The code for results can be found in 

Code example 13. The formulas for recall and precision: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

Code example 13. Result calculations. 

        correct = test_df.loc[test_df['checked']==True] 
        Accuracy = 100*(len(correct)/len(test_df['result'])) 
        recall = 100.0 * 
sklearn.metrics.recall_score(test_df['Anomalie1'].to_numpy(), 
test_df['result'].to_numpy()) 
        precision = 100.0 * 
sklearn.metrics.precision_score(test_df['Anomalie1'].to_numpy(), 
test_df['result'].to_numpy()) 
        
  # Plot the data 
        Fig.axs = plt.subplots(2) 
        fig.suptitle('Anomaly Detection') 
        axs[0].plot(Rest['timestamp'],Rest['value']) 
        axs[0].plot(Malfunction['timestamp'],Malfunction['value']) 
        axs[1].plot(test_df['timestamp'],test_df['Anomalie1']) 
        pyplot.show() 
 

5.7 Running the code on Databricks 

All of the methods described above have only predicted one process at a time, depending 

on the process selected to read as csv. All of these methods were copied to run on 

Databricks as well. The labeled data was uploaded to Azure explorer and from here it was 

accessible from Datalake. The code on Databricks was made to run the same method 

through all processes on the same execution. The results from each process were saved to 

a CSV-file and a graph comparing labeled and predicted/calculated data was saved from 

each process. The header from the CSV-file can be seen in Table 7. 

Table 7. Results from Databricks header. 

Column1 Process Accuracy Recall Precision 
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6 Results 

In this chapter results from the different methods are presented. It will also compare 

different settings for a few different methods. For the three first chapters when comparing 

point grouping, preprocessing and threshold, LSTM and Pycarets KNN methods are 

compared to show how the results differ. In the fourth chapter, all methods are compared. 

At the end of the result chapter, a conclusion on how the methods compared to each other 

when analyzing all 36 processes at the same execution and also how long each method 

took. 

As seen in all of the tables below, recall will have a much better result than precision. This 

is because the predicted results have more false positives than false negatives compared 

to the manually labeled data. As the number of false positives increases, precision gets 

worse and as the false negatives decrease the recall result gets better. 

 

6.1 Process point grouping 

The original data had a sample time of 10 minutes. A few different sample times were used 

to compare the results, these were: 10 minutes as the original data, 30 min, 60 min and 

120 min. As seen in Table 8, accuracy is almost the same, recall gets worse with LSTM when 

putting a longer sample time. With Pycaret the results are much more stable. The shorter 

the sample time the slower the method becomes.  

Table 8. Comparing sample time. 

Method Sample time Accuracy Recall Precision 
LSTM 10 min 78,96 % 49,51 % 2,35 % 
Pycaret KNN 10 min 81,15 % 93,56 % 11,13 % 
LSTM 30 min 78,69 % 40,29 % 1,92 % 
Pycaret KNN 30 min 81,05 % 93,06 % 11,06 % 
LSTM 60 min 79,40 % 79,86 % 3,78 % 
Pycaret KNN 60 min 80,97 % 93,10 % 11,04 % 
LSTM 120 min 78,30 % 30,00 % 14,10 % 
Pycaret KNN 120 min 80,73 % 90,29 % 10,67 % 
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6.2 Preprocessing/data scaling 

For LSTM, MinMaxScaler and StandarScaler were compared, both from sklearn. With the 

Pycaret KNN, z-score, minmax and robust were compared. With LSTM, the scaling method 

didn’t seem to affect the results. Pycarets KNN works best without any scaling method 

when predicting this specific model, as seen in Table 9. The method also becomes slower 

when a scaling method is applied.  

Table 9. Comparing scaling methods. 

Method Scaling method Accuracy Recall Precision 
LSTM MinMaxScaler 79,40 % 79,86 % 3,78 % 
LSTM StandarScaler 79,45 % 82,14 % 3,92 % 
Pycaret KNN z-score 80,02 % 83,67 % 7,15 % 
Pycaret KNN minmax 78,99 % 55,35 % 4,73 % 
Pycaret KNN robust 80,22 % 88,69 % 7,69 % 
Pycaret KNN without 80,97 % 93,10 % 11,04 % 

 

6.3 Method settings 

With LSTM the settings that could be changed were the number of epochs and batch size. 

Batch size doesn’t affect the results, it is more a setting for computer processing. With 

Pycaret KNN the setting that could be changed was the fraction. For LSTM the results don’t 

change that much with the number of epochs, as seen in the result in Table 10. When 

analyzing this process the LSTM doesn’t run more than 56 epochs, this is because the LSTM 

function stops looping when the loss from the function goes under a specific set value.  

Table 10. Comparing LSTM settings. 

Method Number epochs Batch size Accuracy Recall Precision 
LSTM 25 10 78,91 % 55,40 % 2,62 % 
LSTM 50 10 78,94 % 57,14 % 2,72 % 
LSTM 100 10 79,40 % 79,86 % 3,78 % 
LSTM 150 10 79,40 % 79,86 % 3,78 % 

 

Table 11. Comparing Pycaret settings. 

Method Fraction Accuracy Recall Precision 
Pycaret KNN 0,025 80,97 % 93,10 % 11,04 % 
Pycaret KNN 0,05 82,74 % 89,22 % 21,15 % 
Pycaret KNN 0,1 86,30 % 87,39 % 41,31 % 
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When changing the setting for pycaret as seen in Table 11, It looks like the results are 

getting better the higher the fraction is but when looking at the graph, one can see the 

results get more sensitive. The first graph has with fraction size of 0.1 and the second with 

0.025. In Figure 21 the graphs show the result with a fraction size of 0.1 and in Figure 22 

with a fraction size of 0.025. In both figures, the manually labeled results are presented in 

the graph above and the predicted results are presented in the graph below. In the graph 

above, the data in blue are the data that has been labeled manually as “Rest” and the data 

in green is “Process malfunction”. 

 

Figure 21. Pycaret KNN with fraction size 0.1 
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Figure 22. Pycaret KNN with fraction size 0.025 

 

6.4 Comparing machine learning models 

The supervised method gave the best result on the specific process that was used in all the 

previously mentioned examples. A supervised method could be used in these sorts of 

anomaly detection methods, but somebody has to manually give the model train and test 

data. 

When comparing different unsupervised methods, Pycaret gave very good results. On the 

specific process shown in Table 12, the SVM- and cluster method gave the best results. The 

graphic results for every process can be found under attachment 1. 
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Table 12. Comparing machine learning models. 

Method   Accuracy Recall Precision 
LSTM   79,40 % 79,86 % 3,78 % 
Pycaret KNN  80,97 % 93,10 % 11,04 % 
Pycaret Iforest   80,85 % 91,04 % 10,73 % 
Pycaret cluster  81,29 % 99,71 % 11,78 % 
Pycaret SVM   81,03 % 94,27 % 11,21 % 
Kmeans  78,99 % 59,42 % 2,79 % 
Iforest   79,05 % 62,69 % 2,86 % 
Randomforest Supervised 99,79 % 99,50 % 99,53 % 

 

6.5 Summary of results 

When analyzing all manually labeled processes, Pycarets KNN worked the best. It was also 

the fastest method. Comparing the time it took to run through all processes, Pycaret took 

three minutes, LSTM 34 minutes and supervised learning one and a half hours. With 

different fraction sizes and different scaling methods, it was concluded that fraction size 

0,025 and no scaling provided the desired result. As seen in the results presented in Table 

12, the precision is quite low while the accuracy and recall are higher. It was possible to get 

better precision but this affected recall. The accuracy is done first by checking if the labeled 

data equals the predicted data, this is done on every timestamp. Another column is called 

“checked”. The “checked” column has the values true and false, true when the predicted 

result and labeled data are equal and false when they are not equal. The program then 

calculates how many rows that are “True” and this value is divided by the number of data 

points in the dataset, the column headers can be seen in Table 13. Table 14 shows the mean 

value from all processes with different prediction methods and settings. 

Table 13. Column headers accuracy calculation 
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Table 14. Comparing mean values from machine learning models. 

Method   Accuracy Recall Precision 
Pycaret KNN (F=0,025, no scaling)   84,68 % 69,98 % 11,06 % 
Pycaret KNN (F=0,1, Robust)  83,87 % 50,94 % 29,48 % 
Pycaret KNN (F=0,15, no scaling)   83,84 % 50,53 % 44,49 % 
K-Means (F=0,0082, PCA)  83,44 % 1,63 % 35,36 % 
LSTM (n_epochs = 100)   83,73 % 3,20 % 45,00 % 
Supervised learning   100,00 % 97,29 % 97,29 % 

 

Graphic results for a few of these processes can be found under attachment 1 and results 

for each process can be found under attachment 2. 

 

7 Conclusion 

The goal of this thesis was to analyze the anomaly detection model that is used in Fidelix 

Flow_how and to see how it affects results depending on the models settings. The model 

currently used is LSTM. Another goal of this thesis was to compare the LSTM model to other 

anomaly detection methods and to see if other methods will perform better on this type 

of data.  

As concluded in the results chapter, changing the scaling method or the settings of the 

LSTM method does not improve the results. It is possible to make the LSTM method faster 

by reducing the sampling time while still maintaining a good result. 

When comparing the LSTM method to other anomaly detection methods, it can be 

concluded that other methods give better results than the LSTM method. Other methods 

seem to be more accurate and precise in finding anomalies in the data.  

Some other methods researched in this thesis, for example, Pycaret, are also faster than 

the LSTM method. Currently, there is no need to make the LSTM model faster, so having a 

slow but accurate LSTM method is not a problem that needs solving. In the LSTM model, 

the data is gathered once a week and the model runs at nighttime. If the model would have 

to run once or even twice a day, another faster anomaly detection model would be 

preferred. 
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Comparing recall and precision results with Pycarets' different fraction sizes. With a higher 

fraction, the recall gets lower but precision is higher and with a lower fraction the other 

way around. This can be explained by the fact that with a higher fraction size, there are 

fewer false positives because the model gets more sensitive and will predict more data 

points to be anomalies. This in turn leads to a better precision result, but with more data 

points predicted to be anomalies, the more false negatives as well which leads to a worse 

recall result. 

When considering this thesis’s results, it is important to note that the manual labeling of 

the data was necessary for being able to compare the different anomaly detection methods 

researched. Human error may have occurred when manually labeling the data and that 

should be noticed when considering the results. There are about two million values on the 

X-axis of the data and to manually and accurately label such vast quantities of data is 

impossible. 

One possibility to get a more accurate result could have been done by having a shorter 

dataset when manually labeling the data. For example, to have a time period of a month 

where there were known anomalies. This would have led to more precise labeling but also 

a loss in data points. 

The LSTM model will continue to run on the Flow_how service. However, at some point in 

the future, the Flow_how service will be updated. When this happens, it is a possibility that 

one of the other anomaly detection methods researched in this thesis will be applied 

instead. Anomaly detection is only a small part of the Flow_how services and for the time 

being, other updates are prioritized. Because the anomaly detection method was not 

updated in the Flow_how service, it is not possible to know how the different methods 

works on live data.  

 

 

 

 

 



 

 

45 

8 References 

Ahmed, R. (Producer). (n.d.). K Nearest Neighbors (KNN) in 10 Minutes (Beginner Friendly) 
[Motion Picture]. 

Alpaydin, E. (2014). Introduction to machine learning (Third edition.). Massachusetts: The 
MIT Press. 

Assemblin kasvattaa rakennusautomaatio- ja BMS-osaamistaan saattamalla päätökseen 
Fidelix-yrityskaupan. (2021, September 24). 

Bhandari, A. (2023, October 27). Feature Engineering: Scaling, Normalization, and 
Standardization. 

Bhattacharyya, D., & Kalita, J. (2014). Network anomaly detection: a machine learning 
perspective. CRC Press. 

Biswal, A. (2023, November 7). What is Principal Component Analysis? 

Brownlee, J. (2020, November 15). A Gentle Introduction to PyCaret for Machine Learning. 
Python Machine Learning. 

Brownlee, J. (2020, August 20). A Gentle Introduction to the Rectified Linear Unit (ReLU). 
Deep Learning Performance. 

Chandola, V., Banerjee, A., & Kumar, V. (2007). Anomaly Detection: A Survey. Minnesota: 
University of Minnesota Digital Conservancy. 

Choubey, V. (2020). Understanding Recurrent Neural Network (RNN) and Long Short Term 
Memory(LSTM). Analytics Vidhya. 

Dhiraj, K. (2020). Anomaly Detection Using Isolation Forest in Python. Retrieved from 
PaperspaceBlog: www.blog.paperspace.com 

Evans, P. (2018, September 26). Air Handling Units Explained. Retrieved from 
https://theengineeringmindset.com/air-handling-units-explained/ 

Fandango, A. (2018). Mastering Tensorflow 1.x (1st edition). Packt Publishing. 

Fidelix. (2022). Retrieved from Fidelix: https://www.fidelix.fi/ 

Han, J., Micheline, K., & Pei, J. (2000). DATA MINING Concepts and Techniques. Morgan 
Kaufmann Publishers. 

Heydt, M. (2017). earning Pandas: High-performance Data Manipulation and Analysis in 
Python. Second edition. Birmingham: Packt. 

Hidden Markov Models, Theory and Applications. (u.d.). InTech. 

IBM. (n.d.). What Is Supervised Learning. Retrieved from IBM: www.ibm.com 

Jolly, K. (2018). Machine Learning with scikit-learn Quick Start Guide. Packt Publishing. 

Liu, F. T., & Ting, K. M. (2009, January). Isolation Forest. Victoria, Australia. 



 

 

46 

Mossberg Sonnek, K., & Lindgren, F. (2015). NCS3 - Industriella informations- och 
styrsystem inom fastighetsautomation. 

Omar, S., Ngadi, A., & Jebur, H. (2013). Machine learning techniques for anomaly detection: 
an overview. Internation Journal of Computer Applications 79.2. 

Potrimba, P. (2022, December 16). roboflow. Retrieved from What is Semi-Supervised 
Learning? A Guide for Beginners: https://blog.roboflow.com/ 

R. S. (2022, July 27). What is Clustering and Different Types of Clustering Methods. 

Rizwana, K. (2022). An End-to-end Guide on Anomaly Detection. Analytics Vidhya. 

Saxena, S. (2021). Introduction to Long Short Term Memory (LSTM). Analytics Vidhya. 

Sericola, B. (2013). Markov Chains: Theory, alorithms and applications. London: ISTE. 

Serrano, L. (2021). Grokking Machine Learning.  

Sharma, N. (2023, August 8). K-Means Clustering Explained. 

Venus, L. (2020). Heat Pumps for Sustainable Heating and Cooling. Air Handling Unit, 51-
64. 

Visplore. (n.d.). Retrieved Mars 28, 2023, from Visplore: www.visplore.com 

Wang, S. (2010). Intelligent Buildings and Building Automation. Abingdon: Spon Press. 

Webber-Cross, G. (2014). Learning microsoft azure : a comprehensive guide to cloud 
application development using microsoft azure. Packt Publishing. 

Yehoshua, R. (n.d.). K-Nearest Neighbors (KNN): A Comprehensive Guide. Retrieved from 
medium.com: https://medium.com/ai-made-simple/k-nearest-neighbors-knn-a-
comprehensive-guide-7add717806ad 

Yim, A., Chung, C., & Yu, A. (2018). Matplotlib for Python Developers (2nd Edition). Packt 
Publishing. 

 

 

 

 

 

 

 

 



 

 

47 

9 Appendix 

9.1 Appendix 1 (Graph results) 

Pycaret KNN Fraction 0,025. Process time 3,14 min. Above manually labeled, below 

predicted. 
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LSTM, number of epochs 100, batch size 10 and minmax scaler: 
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To the left: Pycaret KNN fraction 0.1. Scaling method Robust. To the right: Pycaret KNN 

fraction 0,15. No scaling. 
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To the left: K-Means, fraction 0,0082 Scaling method PCA. To the right: Supervised learning 
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9.2 Appendix 2 (Worksheet results) 

Pycaret KNN Fraction 0,025 Time: 3,14 min 
Column1 Process Accuracy Recall Precision 

0 200-TK01 71,85302139 88 7,35434575 
1 200-TK02 79,27603115 97,07602339 10,38798498 
2 200-TK03 80,67821068 90,8045977 10,66846725 
3 200-TK04 83,29483107 94,25287356 12,50953471 
4 226-K330 77,82851344 94,59459459 9,702009702 
5 226-K331 86,39476035 83,33333333 13,64522417 
6 226-K332 92,08761734 22,02380952 8,466819222 
7 226-K339 85,34908058 82,73809524 12,75229358 
8 226-K340 81,8426563 86,30952381 10,85329341 
9 226-K344 90,96079018 42,85714286 12,4137931 

10 226-K346 82,56249065 85,62874251 11,13707165 
11 226-K347 87,66282378 80,23952096 14,48648649 
12 226-T301 79,32223722 81,43712575 9,164420485 
13 226-T302 84,88529015 85,62874251 12,68855368 
14 226-T303 82,32118758 88,0239521 11,25574273 
15 226-T306 83,29584645 89,82035928 12,02886929 
16 226-T313 80,94167042 91,01796407 10,79545455 
17 226-T314 90,53831159 74,8502994 17,5070028 
18 226-T316 84,07557355 81,43712575 11,6538132 
19 226-T319 87,734293 86,22754491 15,33546326 
20 226-T320 86,20482831 77,84431138 12,83316881 
21 226-T321 85,63502774 88,0239521 13,5483871 
22 226-T322 83,41331734 85,62874251 11,67346939 
23 226-T323 81,19376125 85,02994012 10,35740336 
24 226-T324 85,46790642 79,04191617 12,38273921 
25 226-T330 81,10377924 95,20958084 11,26860383 
26 226-T338 82,73845231 95,20958084 12,21198157 
27 542-TC1055 78,91523499 60,22727273 6,969099277 
28 542-TC3044 82,06670312 2,173913043 0,352112676 
29 542-TC3045 90,28613085 52,17391304 13,3580705 
30 542-TC3046 90,19500638 41,30434783 11,08949416 
31 542-TK01 70,88535755 57,62711864 4,906204906 
32 542-TK02 97,48864926 0 0 
33 542-TK07 96,74992904 6,214689266 14,86486486 
34 542-TK10 80,38325053 92,65536723 10,69797782 
35 542-TK11 91,92334989 14,12429379 5,656108597 
36 542-TK14 95,59971611 30,50847458 22,406639 

Mean  84,67988209 69,98104825 11,06440457 
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Pycaret KNN Fraction 0,1 Normalize-method = Robust Time: 3 min 
Column1 Process Accuracy Recall Precision 

0 200-TK01 77,80967418 89,36781609 29,70391595 
1 200-TK02 85,5494664 92,93948127 40,36295369 
2 200-TK03 84,35786436 78,64357864 36,79945982 
3 200-TK04 88,18943113 85,56998557 45,23264683 
4 226-K330 82,15795704 82,77027027 33,95703396 
5 226-K331 86,39476035 58,33333333 38,20662768 
6 226-K332 85,63552377 10,73025335 16,47597254 
7 226-K339 89,9088055 81,01644245 49,72477064 
8 226-K340 79,28507329 46,33781764 23,20359281 
9 226-K344 87,77312182 32,28699552 37,24137931 

10 226-K346 85,70573267 74,66266867 38,78504673 
11 226-K347 89,1600539 65,06746627 46,91891892 
12 226-T301 81,03163893 66,4167916 29,85175202 
13 226-T302 82,39616134 46,47676162 27,50665484 
14 226-T303 83,19088319 63,86806597 32,618683 
15 226-T306 85,36512221 70,31484258 37,61026464 
16 226-T313 81,78137652 64,46776612 30,53977273 
17 226-T314 86,99955016 38,53073463 35,99439776 
18 226-T316 80,89668616 41,97901049 23,99314482 
19 226-T319 85,44009597 47,5975976 33,75931842 
20 226-T320 88,5739991 68,8155922 45,31095755 
21 226-T321 89,62363173 79,46026987 48,84792627 
22 226-T322 79,33413317 38,53073463 20,97959184 
23 226-T323 76,27474505 34,18290855 16,63019694 
24 226-T324 79,54409118 27,62762763 17,26078799 
25 226-T330 79,73905219 54,5045045 25,72643515 
26 226-T338 87,4775045 85,00749625 43,5483871 
27 542-TC1055 87,10776658 93,4751773 43,32675871 
28 542-TC3044 76,69035903 11,11111111 7,159624413 
29 542-TC3045 84,07144159 19,48998179 19,85157699 
30 542-TC3046 84,67286313 20,21857923 21,59533074 
31 542-TK01 67,87741203 36,87943262 12,50601251 
32 542-TK02 90,01135074 0 0 
33 542-TK07 89,21373829 1,278409091 12,16216216 
34 542-TK10 80,44002839 60,9929078 28,04957599 
35 542-TK11 84,74095103 5,106382979 8,14479638 
36 542-TK14 88,70120653 10,63829787 31,12033195 

Mean  83,86819603 50,93775927 29,47856108 
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Pycaret KNN Fraction 0,15 Time: 2,87 min 
Column1 Process Accuracy Recall Precision 

0 200-TK01 79,1732453 80,76555024 40,30563515 
1 200-TK02 86,93394866 83,26923077 54,19274093 
2 200-TK03 88,2972583 82,21153846 57,73126266 
3 200-TK04 85,0996246 63,42637151 50,26697178 
4 226-K330 84,77929985 80,60879369 49,54954955 
5 226-K331 87,43673712 59,02777778 57,99220273 
6 226-K332 81,96990016 11,61866931 26,77345538 
7 226-K339 86,90387203 60,65737052 55,87155963 
8 226-K340 82,72509722 59,02293121 44,31137725 
9 226-K344 84,80993714 28,31505484 48,96551724 

10 226-K346 85,39140847 65,36926148 51,01246106 
11 226-K347 86,48001198 51,09780439 55,35135135 
12 226-T301 84,8702954 73,72627373 49,73045822 
13 226-T302 84,4654371 54,54545455 48,44720497 
14 226-T303 85,65002249 67,43256743 51,68453292 
15 226-T306 85,00524816 62,33766234 50,04009623 
16 226-T313 87,3294347 78,12187812 55,53977273 
17 226-T314 89,60863698 51,04895105 71,56862745 
18 226-T316 85,06522717 58,54145854 50,21422451 
19 226-T319 89,27875244 61,2 65,17571885 
20 226-T320 86,74463938 56,44355644 55,77492596 
21 226-T321 87,47938222 62,5 57,60368664 
22 226-T322 84,49310138 59,54045954 48,65306122 
23 226-T323 85,78284343 71,12887113 51,9328957 
24 226-T324 86,00779844 56,64335664 53,18949343 
25 226-T330 83,80323935 66,53346653 47,20056697 
26 226-T338 88,31733653 76,12387612 58,52534562 
27 542-TC1055 76,57248332 43,88625592 30,44049967 
28 542-TC3044 70,23874613 2,55164034 2,464788732 
29 542-TC3045 81,62930563 21,50668287 32,83858998 
30 542-TC3046 81,10078367 18,22600243 29,18287938 
31 542-TK01 67,83484677 41,11531191 20,92352092 
32 542-TK02 84,98864926 0 0 
33 542-TK07 84,62957707 2,270577105 32,43243243 
34 542-TK10 76,0397445 42,6679281 29,41943901 
35 542-TK11 80,28388928 5,203405866 12,44343891 
36 542-TK14 84,89709013 11,06906339 48,54771784 

Mean  83,84099599 50,53392039 44,49454062 
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K-Means outliers_fraction = 0,0082 Time: 5,17 min 
Column1 Process Accuracy Recall Precision 

0 200-TK01 70,76216449 2,722063037 100 
1 200-TK02 77,7329103 3,441802253 98,21428571 
2 200-TK03 79,43722944 3,781228899 100 
3 200-TK04 81,24458562 2,593440122 60,71428571 
4 226-K330 76,37409099 3,257103257 97,91666667 
5 226-K331 84,44477523 1,754385965 32,72727273 
6 226-K332 93,08597824 3,203661327 25,45454545 
7 226-K339 83,73448946 2,568807339 51,85185185 
8 226-K340 80,07777445 2,170658683 53,7037037 
9 226-K344 90,51182281 0 0 

10 226-K346 79,97305793 0 0 
11 226-K347 85,46189549 0,432432432 7,407407407 
12 226-T301 76,99805068 0,134770889 3,703703704 
13 226-T302 82,56110361 0,798580302 16,66666667 
14 226-T303 80,4468436 2,143950995 51,85185185 
15 226-T306 81,72139751 3,287890938 75,92592593 
16 226-T313 78,7974209 1,704545455 44,44444444 
17 226-T314 88,72394662 1,120448179 14,81481481 
18 226-T316 83,10091468 4,027420737 87,03703704 
19 226-T319 85,47008547 1,277955272 22,22222222 
20 226-T320 84,27050532 0,888450148 16,66666667 
21 226-T321 83,04093567 0,368663594 7,407407407 
22 226-T322 81,68866227 2,367346939 53,7037037 
23 226-T323 78,62927415 0 0 
24 226-T324 84,16316737 3,001876173 59,25925926 
25 226-T330 79,52909418 3,543586109 92,59259259 
26 226-T338 81,10377924 3,686635945 88,88888889 
27 542-TC1055 77,67996592 0,197238659 5,263157895 
28 542-TC3044 83,67049389 0 0 
29 542-TC3045 89,55713505 0,927643785 11,36363636 
30 542-TC3046 89,86695826 0,194552529 2,272727273 
31 542-TK01 69,69353008 0 0 
32 542-TK02 99,19125993 0 0 
33 542-TK07 98,1407891 0 0 
34 542-TK10 77,51596877 0,195694716 5,263157895 
35 542-TK11 92,97374024 0,452488688 3,50877193 
36 542-TK14 96,05393896 4,149377593 17,54385965 

Mean  83,44404692 1,632289215 35,36190582 
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Supervised learning Time: 1,57 hours 
Column1 Process Accuracy Recall Precision 

0 200-TK01 100 100 99,99708397 
1 200-TK02 100 100 100 
2 200-TK03 100 99,99838569 100 
3 200-TK04 100 100 99,99908479 
4 226-K330 100 100 100 
5 226-K331 100 100 99,9990367 
6 226-K332 100 99,99296072 100 
7 226-K339 100 100 99,99832567 
8 226-K340 100 100 99,99929596 
9 226-K344 100 99,99138392 100 

10 226-K346 100 100 99,99171874 
11 226-K347 100 99,99782209 99,99673316 
12 226-T301 100 99,99935404 99,99806214 
13 226-T302 100 100 99,99835253 
14 226-T303 100 100 99,99850387 
15 226-T306 100 100 99,99705349 
16 226-T313 100 100 99,99853617 
17 226-T314 100 100 100 
18 226-T316 100 99,99913427 99,99480587 
19 226-T319 100 100 99,99265107 
20 226-T320 100 100 99,99810959 
21 226-T321 100 100 99,99439645 
22 226-T322 100 100 99,99922869 
23 226-T323 100 100 99,99797393 
24 226-T324 100 100 99,99911011 
25 226-T330 100 100 100 
26 226-T338 100 100 99,9931416 
27 542-TC1055 100 100 100 
28 542-TC3044 100 99,96527606 99,96031746 
29 542-TC3045 100 99,89577905 99,96089167 
30 542-TC3046 100 99,88269433 99,96910338 
31 542-TK01 100 100 100 
32 542-TK02 100 0 0 
33 542-TK07 100 100 100 
34 542-TK10 100 100 100 
35 542-TK11 100 100 100 
36 542-TK14 100 100 100 

Mean  100 97,28980514 97,2927437 
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LSTM n_epochs = 100, batch_size = 10  
Column1 Process Accuracy Recall Precision 

0 200-TK01 70,34591646 2,340019102 70 
1 200-TK02 76,63686184 1,501877347 34,28571429 
2 200-TK03 78,83116883 2,835921675 60 
3 200-TK04 80,98469535 2,440884821 45,71428571 
4 226-K330 76,27261965 3,465003465 83,33333333 
5 226-K331 84,93599286 3,996101365 60,29411765 
6 226-K332 92,74325734 2,059496568 13,23529412 
7 226-K339 84,46703543 5,412844037 88,05970149 
8 226-K340 79,91325157 2,245508982 44,7761194 
9 226-K344 90,49685723 1,034482759 8,955223881 

10 226-K346 81,03577309 3,271028037 62,68656716 
11 226-K347 86,01587064 3,135135135 43,28358209 
12 226-T301 77,582846 1,886792453 41,79104478 
13 226-T302 82,45614035 1,064773736 17,91044776 
14 226-T303 80,34188034 2,373660031 46,26865672 
15 226-T306 80,92667566 1,6840417 31,34328358 
16 226-T313 79,23226871 3,196022727 67,1641791 
17 226-T314 89,45868946 5,462184874 58,20895522 
18 226-T316 82,54610886 2,999143102 52,23880597 
19 226-T319 85,96491228 3,727369542 52,23880597 
20 226-T320 84,25551057 1,480750247 22,3880597 
21 226-T321 83,83565752 3,410138249 55,2238806 
22 226-T322 80,95380924 0,897959184 16,41791045 
23 226-T323 79,48410318 2,552881109 52,23880597 
24 226-T324 83,96820636 3,001876173 47,76119403 
25 226-T330 78,49430114 1,559177888 32,8358209 
26 226-T338 80,69886023 3,149001536 61,19402985 
27 542-TC1055 78,90103649 3,484549638 74,64788732 
28 542-TC3044 83,98031711 1,643192488 25,45454545 
29 542-TC3045 90,1221068 4,823747681 47,27272727 
30 542-TC3046 90,17678148 2,918287938 27,27272727 
31 542-TK01 71,1123723 2,741702742 80,28169014 
32 542-TK02 98,99262202 0 0 
33 542-TK07 98,0272495 4,054054054 4,225352113 
34 542-TK10 78,8502484 3,718199609 80,28169014 

     

     
Mean  82,94405727 2,730508857 45,97955541 

 


