° VAASAN AMMATTIKORKEAKOULU
."‘. VASA YRKESHOGSKOLA
‘ UNIVERSITY OF APPLIED SCIENCES

Xufei Ning

XBEE APl MODE PROGRAMMING AND
A SOUND DETECTION APPLICATION

Technology and Communication

2015

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Xufei Ning

Title Xbee API Mode Programming and a Sound Detection
Application

Year 2015

Language English

Pages 47

Name of Supervisor Chao Gao

This project is about using Xbee APl mode to transmit sound detection data in a
wireless sensor network. In such a sound detection wireless sensor network, we
use Raspberry Pi as a sink node, and a group of Arduino Mega 2560 as sensor
nodes. The wireless communication was achieved by Xbee RF modules working
in APl mode.

This system has a basic function run as a sound level meter. The sensor node can
measure sound level in RMS (Root Mean Square) value and turn on a LED if the
RMS value is over a threshold. Then the sensor nodes will send these RMS values
to a sink node. The sink node display RMS value with its sensor 1D, frame ID and
timestamp. All these data will be recorded to log files for further use.

Keywords Sound detection, Arduino, Raspberry Pi, Xbee API mode

CONTENTS
ABSTRACT e 1
CONTENTS ettt b e be e sae e beeaneas 2
LIST OF ABBREVIATIONS ... 4
LIST OF FIGURES.ottt 5
LIST OF TABLES ... oo 6
1 INTRODUCTION ..ottt 7
1.1 PUrpose Of PrOJECL.......ccoueiiiiiiic it 7
1.2 Structure OF THESISooveiiiiiireec e 8
2 BACKGROUNDoooiiiiiee e 9
2.1 SYSIEM STTUCTUIE ..ot 9
2.2 TREOIY .ottt e 11
2.2.1 Analog to Digital CONVErSION.........cccceviriiieieienesie e 11
2.2.2 ROOLMEAN SQUATEceeiiiieiiiieiiiiie st e ssieeesiee e sbee s 12
2.2.3 Protocol, IEEE 802.15.4.......ccooveiiieie et 13
2.3 HAIOWATE. ..o 14
2.3.1 MAX4466 Microphone AMplfier.........cccovviiiiiinncicieen 14
2.3.2 Arduino Mega 2560..........cccoueiieiiiieiiece e 15
2.3.3 RASPDEITY Pl e 16
2.3.4 XDbee RF MOUIES........cccoiiiiiiiiiiiieee e 18
2.3.5 XDEE AUAPLEN ...t 22
2.3.6 Design of Hardware............cocooveieiiieiiese e 24
2.4 SOTEWAIE ...c.eiiiieiieeee e 25
2.4.1 Arduing SOFIWATEcceiiiiiiiiicicieee e 25
2.4.2 X-CTU ittt e 26
3 IMPLEMENTATIONo 27
3.1 Raspberry Pi Configurationccooeveiiienenineiieee e 27

3.2 Measure Arduino Sample Rateccceeveeiiiiiie i 28

3.3 Converting Analog Sound Signal to Digital Values..........c...cccccu.... 29
3.4 Calculating RMS ValUEccooiiiiiiieiiceceeee s 30
3.5 Sound Control 0N LEDcccoiiiiiiiiiiiniecese e 30
3.6 Frame ID ..o 30
3.7 Data Packet and Transmit.........cccceoeierenereinenieeseseseeese e 30
3.8 Data Receiver and Unpackingccccooeieieninineiieiecec e 31
3.9 Unpacking IEEE 754 FOrmMat.........ccccvvveiiiiieieiie e 33
3. 10 PACKEL LOSS ...ttt 33
3.11 Packet TIMe STamMP ...cccovveieiieie e 34
3.12 Displaying Datacccoueiverieriiiiiiiiieieee s 34
3.13 Record to LOgfile.....ccoveiieiceee e 35
4 CONCLUSION ...ttt 36
REFERENGES........co e 37
APPENDIX 1. SENDER ...ttt 39

APPENDIX 2. RECEIVERooiiiii e 41

LIST OF ABBREVIATIONS

ADC Analog-Digital Converter

API Application Programming Interface

AT Transparent Mode

DI Digital Input

DO Digital Output

FTDI Future Technology Devices International
GND Ground

GPIO General Purpose Input/Output

1/0 Input/Output

LED Light Emitting Diode

PAN Personal Area Network

PWM Pulse Width Modulation

RF Radio Frequency

RMS Root Mean Square

RSSI Received Signal Strength Indication
SSH Secure Shell

UART Universal asynchronous receiver/transmitter

USB Universal Serial Bus

LIST OF FIGURES

Figure 1. SYStEM STIUCTUIEoiveiieecieie e 10
FIQUIEe 2. SOUNT WAVE.......cccuiiiiiiieeieee ettt 12
Figure 3. Xbee network tOpology........cccoouerereririiiiisieeee e 13
FIQUIE 4. MAXAABE ..ottt 14
Figure 5. Arduind Mega 2560ccceiieiiiieiieiieie e 15
Figure 6. Raspberry Pi 1 Model B+ ..o 16
Figure 7. Xbee MOdUIE ... 18
Figure 8. Data Frame StrUCIUIEc.coveiiieie e 20
Figure 9. Data Frame Structure (with escape control characters) 20
Figure 10. APLIAENtIFIEr ..ccveiieieee e 21
Figure 11. API type: RX (Receive) Packet: 16-bit Address..........c.ccocvvvnnene 22
Figure 12. Xbee to USB adaptercoevviiieiiiii e 23
Figure 13. Xbee to FTDI cable adapter..........ccocoiiiiiiininiiiiesc s 23
Figure 14. Xbee to Arduino shieldc.ccccooviiiiiiiicie e 23
Figure 15. SENSOr NOGEcc.oiiiiiieieeee e 24
Figure 16. SINK NOGEccoveiiiiiee e 24
Figure 17. Arduing SOTIWATE.........cooiviiiiiieiese e 25
Figure 18. Raspberry Pi IP addressccccoveiieiiiie e 28
Figure 19. Analog signal to digital signalcccooiiiiiiiiiiis 29
Figure 20. PACKEL 10SS........ccuiiiiiieeiicec ettt 34
Figure 21. Display datacocooiiiiiiiiiecese e 35
Figure 22, Logfile......ooiiieece e 35
Figure 23. ReCOrd file........cooiiiiiiic e 35

LIST OF TABLES
Table 1. Description of hardware.cccooeieiieiieiineseee e 9
Table 2. Parameters of Arduino Mega 2560cccccveveviieieenesiie e 15
Table 3. Parameters of Raspberry Pi 1 Model B+c.ccooeiiiiiiiiiie 17
Table 4. Datasheet of Xbee module...........cccooviiiiiiiiiiicc s 18
Table 5. ESCape CharaCtersS........cccoviierieieiiesieeie et 21
Table 6. API type: RX (Receive) Packet: 16-bit Address..........cccccevvevveennene. 22
Table 7. Xbee cONfiQUIationcccooieiriiiiiiee e 26

Table 8. Unpack Packetcccveieiiiiiecccse e 32

1 INTRODUCTION

This chapter includes the purpose of this project and the structure of this thesis.

1.1 Purpose of Project

Sound is an important part of our lives, it allows human beings and animals to

hear and communicate, and it provides us information about the world around us.

The use of a sound detection system offers a monitor of specific environment, so
it may also provide a solution of surveillance and security. Furthermore, sound
detection system can be used to analyse noise sources or be used in portable

devices to inform person.

This project contains two parts: sound detection system and using Xbee APl mode

to transmit data.

A sound sensor node will detect the sound level in RMS value every 125ms, the
same as a sound level meter works at Fast mode /1/. The sensor node will turn on
a LED for three seconds if the RMS value is greater than a threshold. During the
time LED is turned on, any detection over the threshold will extend LED for

another three seconds.

A packet will send from the sensor node to the sink node every 1 second, which

contains eight pieces of RMS value and a frame ID.

The sink node will unpack the packet, analysis of the source address, frame 1D,
RMS values, and display these data with a timestamp. Then the sink node records
the original packet into a .csv log file, and records the source address, frame ID,

timestamp and RMS values into another .csv file for further use.

1.2 Structure of Thesis

Chapter 1 introduces the purpose and function of this project. Then Chapter 2
illustrates the background of theoretical support, including methodologies, system
structure, hardware and software. After that Chapter 3 lists all the implementation
steps of sound detection system and Xbee module APl mode data transmitting.

Finally, Chapter 4 gives the conclusion.

2 BACKGROUND

This chapter illustrates the background of theoretical support, including

methodologies, system structure, hardware and software.

2.1 System Structure

The system is divided into two parts according to its hardware design: Sensor
Node and Sink Node. One Sink may support multiple sensor nodes. Each Sensor

Node has its own sensor ID. The hardware is described in Table 1.

Table 1. Description of hardware.

Sensor Node: Sink Node:
Microphone Raspberry Pi
Amplifier XBee module
Arduino Adapter
XBee module

LED

The system stats with analog sound signal input, ends with display data and record

data to the log file. The whole system structure is shown in Figure 1.

10

Sound wave >

Analog Sound
Signal
MAX 4466
Microphone
Amplifier

Analog-Digital
Converter

Sensor RMS Value
Node Arduino Mega 2560
Serial Input
Xbee module
IEEE 802.15.4
Protocol
Serial Input
Xbee module
Sink
Node

Log File

Display Timestamp
Raspberry Pi

Figure 1. System Structure

11

2.2 Theory
2.2.1 Analog to Digital Conversion

Analog-to-digital conversion is an electronic process in which a continuously
variable (analog) signal is changed, without altering its essential content, into a
multi-level (digital) signal. The device that converts a continuous physical

quantity to a digital number is called analog-to-digital converter.

An important factor influencing the output of an ADC is resolution. The resolution
of the converter is the digital value range of the analog signal conversion. The

formula of ADC converter is:

Resolutionof ADC __ ADC reading (1)
System Voltage - Analog Voltage Measured

For example, a 10 bit (0-1023) ADC works on a 5V system, if the analog voltage

given is 3V, the ADC conversion result x will be:

1023 «x
5V 3V
X = 614

In this project, ADC is used to convert analog sound signals to digital sound

signals. Figure 2 shows the parameter of the sound signal.

12

&

WAVELENGTH
Increasing pressure / - -
increasing amplitude
COMPRESSION CYCLE end
AMPLITUDE boin 1‘5,..\
Mormal air pressure [} TIME
silence RAREFACTION
CYCLE start
paoint
Cecreasing pressure |
increasing amplitude

v

Figure 2. Sound wave

A sound wave includes increasing pressure (+) and decreasing pressure (-). A 10
bit ADC is used in this project to convert the sound signal, the range of ADC
output is 0 to 1023. In order to represent the sound signal, ADC have to subtract

the raw value by 512, the range is changed to -512 to +511.

2.2.2 Root Mean Square

The root mean square (RMS), also known as the quadratic mean in statistics, is a
statistical measure defined as the square root of the mean of the squares of

samples. /2/

The formula of RMS calculation is:

1
Xrms = \/; (x12 +x22+"'+xn2) (2)
Where:
x = sample — 512

n = 1096

13

The value of nis calculated according to the sample rate of Arduino Mega 2560.
Arduino Mega 2560 has a sample rate of 8776Hz, the RMS value is calculated 8
times per second (125ms), which means each RMS calculation contains

8776/8 = 1096 samples.

2.2.3 Protocol, IEEE 802.15.4

IEEE 802.15.4 produces a standard that enables very low-cost, low-power
communications. A system conforming to this standard consists of several
components. The most basic is the device. Two or more devices communicating

on the same physical channel constitute a WPAN. /3/

Several XBee modules that meet IEEE 802.15.4 standard are used in this project,
one as a receiver used by the sink node, rest as transmitters used by the sensor

node, The Xbee network topology is shown in Figure 3.

Figure 3. Xbee network topology

14

Devices following IEE 802.15.4 have several parameters for configuration:

PAN ID: With multiple devices using IEEE 802.15.4 standard in the same area,

the PAN ID is used to distinguish which devices are in the same PAN domain.

16-bit address: Each device has a unique 64-bit identifier, and some devices may
use short 16-bit identifiers within a restricted environment (eg. the same PAN

domain).
2.3 Hardware
2.3.1 MAX4466 Microphone Amplifier

MAX4466 is micro power op amps optimized for use as microphone
preamplifiers. The gain can set from 25X to 125X. Figure 4 shows the front view

and back view of MAX4466.

UCC: 2.4-5.5U
Adjustable gain

OUT GND ucCC
~® k() \@

Figure 4. MAX4466

2.3.2 Arduino Mega 2560

15

Arduino is an open-source physical computing platform based on a simple

microcontroller board, and a development environment for writing software for

the board. /4/

The Arduino board used in this project is the Arduino Mega 2560. Figure 5 shows

the Arduino Mega 2560, the parameters of Arduino Mega 2560 are shown in Table

2. 15/

A "~
3 e
@

-
-

Sow ROUTmN

Figure 5. Arduino Mega 2560

Table 2. Parameters of Arduino Mega 2560

Microcontroller ATmega2560
Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital 1/0 Pins

54 (of which 15 provide PWM output)

Analog Input Pins

16 (of which provide 10 bits of

resolution)
DC Current per /O Pin 40 mA
DC Current for 3.3V Pin 50 mA

Flash Memory

256 KB of which 8 KB used by
bootloader

SRAM 8 KB
EEPROM 4 KB
Clock Speed 16 MHz

16

2.3.3 Raspberry Pi

The Raspberry Pi is a series of credit card-sized single-board computers
developed in the UK by the Raspberry Pi Foundation with the intention of

promoting the teaching of basic computer science in schools. /6/

The Raspberry Pi board used in this project is Raspberry Pi 1 Model B+. Figure 6
shows the Raspberry Pi 1 Model B+, the parameters of Raspberry Pi 1 Model B+
are shown in the Table 3. /7/

Raspberry Pi Model B+ V1.2
5 (©Raspberry Pi 2014

Figure 6. Raspberry Pi 1 Model B+

17

Table 3. Parameters of Raspberry Pi 1 Model B+

Chip

Broadcom BCM2835 SoC

Core architecture

ARM11

CPU

700 MHz Low Power ARM1176JZFS
Applications Processor

GPU Dual Core VideoCore IV® Multimedia
Co-Processor
Provides Open GL ES 20,
hardware-accelerated OpenVG, and
1080p30 H.264 high-profile decode
Capable of 1Gpixel/s, 1.5Gtexel/s or
24GFLOPs with texture filtering and
DMA infrastructure

Memory 512MB SDRAM

Operating System

Boots from Micro SD card, running a
version of the Linux operating system

Dimensions 85 Xx 56 x 17mm

Power Micro USB socket 5V, 2A
Ethernet 10/100 BaseT Ethernet socket
Video Output HDMI (rev 1.3 & 1.4)

Composite RCA (PAL and NTSC)

Audio Output

3.5mm jack, HDMI

USB

4 x USB 2.0 Connector

GPI10O Connector

40-pin 2.54 mm (100 mil) expansion
header: 2x20 strip

Providing 27 GPIO pins as well as +3.3
V, +5 V and GND supply lines

Camera Connector

15-pin MIPI Camera Serial Interface
(CSI-2)

JTAG

Not populated

Display Connector

Display Serial Interface (DSI) 15 way
flat flex cable connector
with two data lanes and a clock lane

Memory Card Slot

SDIO

2.3.4 Xbee RF Modules

18

The Xbee and Xbee-PRO RF Modules were engineered to meet IEEE 802.15.4

standards and support the unique needs of low-cost, low-power wireless sensor

networks. The modules require minimal power and provide reliable delivery of

data between devices. /8/

The Xbee RF modules are shown in Figure 7, the datasheet of Xbee RF module is

shown in Table 4. /9/

Figure 7. Xbee module

Table 4. Datasheet of Xbee module

Indoor/Urban Range

Up to 100 ft (30 m)

Outdoor RF line-of-sight Range Up to 300 ft (90 m)
Transmit Power Output 1mW (0 dBm)
(software selectable)

RF Data Rate 250,000 bps

Serial Interface Data Rate
(software selectable)

1200 bps - 250 kbps
(non-standard ~ baud rates also
supported)

Receiver Sensitivity

-92 dBm (1% packet error rate)

Supported Network Topologies

Point-to-point, Point-to-multipoint &
Peer-to-peer

Number of Channels
(software selectable)

16 Direct Sequence Channels

Addressing Options

PAN ID, Channel and Addresses

19

Xbee and Xbee-PRO RF modules operate in two different modes: AT mode

(Transparent Mode) and API mode (Application Programming Interface)

2.3.4.1 AT Mode

When operating in the AT mode, the Xbee RF module act as the serial port
replacement. All received RF data is sent to the DO pin, as well as the DI pin is

receiving data for RF transmission.

2.3.4.2 API Mode

The API mode is a frame-based method for sending and receiving data to and
from a radio’s serial UART. When in the APl mode, all data entering and leaving
the module is formatted as frames that define operations or events within the

module. The API allows the programmer to: /10/

+ Change parameters without entering command mode (Xbee only)
* View RSSI and source address on a packet by packet basis

* Receive packet delivery confirmation on every transmitted packet

By setting the AP parameter values, the Xbee module may operate in the

following modes:

« AP = 0 (default): API modes are disabled.
* AP = 1: API Operation

» AP = 2: API Operation (with escaped characters)

When the Xbee module works at the APl mode (AP = 1), its data frame structure

is defined as shown in Figure 8:

20

Start Delimiter Length Frame Data Checksum
(Byte 1) (Bytes 2-3) (Bytes 4-n) (Byten + 1)
0xXTE MSB LSB APl-specific Structure 1 Byte

M5B = Most Significant Byte, LSB = Least Significant Byte

Figure 8. Data Frame Structure

When the Xbee module works in the APl mode (AP = 2), its data frame structure

is defined as shown in Figure 9:

Start Delimiter Length Frame Data Checksum
[{Byte 1) (Bytes 2-3) {Bytes 4-n) (Byten + 1)
Ox7E MSB LsB APl-specific Structure 1 Byte

Characters Escaped If Needed

Figure 9. Data Frame Structure (with escape control characters)

Escape characters /11/: When sending or receiving a UART data frame, specific

data values must be escaped (flagged) so they do not interfere with the UART or

UART data frame operation. To escape an interfering data byte, insert 0x7D is

inserted and followed with the byte to be escaped XOR’d with 0x20.

Escape characters needed by the data are listed in Table 5.

21

Table 5. Escape Characters

Ox7E Frame Delimiter
0x7D Escape

0x11 XON

0x13 XOFF

The API mode used in this project is APl mode 1. So that all packets from sensor
node are in the same format and same length, the receiver will unpack packets

easier.

The API packet can be defined to several specific structures to support different
kinds of data frame. The cmdID frame (API-identifier) defines the API types,

shown in Figure 10.

start Delimiter ~ Length Frame Data Checksum
(Byte 1) (Bytes 2-3) (Bytes 4-n) (Byten+ 1)
0x7TE MSB LSE APl-specific Structure 1 Byte
ﬁntifier Identitier-specﬁim
cmdIlD cmdData

Figure 10. API identifier

The API type used in this project is RX (Receive) Packet: 16-bit Address, which
has API identifier value 0x81, its structure is shown in Figure 11. The parameters

of the packet are listed in Table 6.

22

Start Delimitar Lengh Frame Data Chacksum
0xTE M5B | LSB APl-specific Structure 1 Byte
P! Idsniner Identier-&pacinc Data
OxB1 cmdData
Source Address [Bytes 3-8) R551{Byte T) Options (Byte 8) RF Data {Byte(s) 9-n)
Received Signal Strength Indicator - bit 0 [reserved]
MSB (mest significant byte) first, Hexadecimal equivalent of (-dBm) value. bit 1= Address broadeast
LSB (lsast sigpficant) last (For exampl: ff RX signal strength = 40 | | bit 2= PAN broadeast Hp to 100 Bytes per packet
dBm, ‘028" (40 decimal) is refumed) bits 37 [reserver]
Figure 11. API type: RX (Receive) Packet: 16-bit Address
Table 6. API type: RX (Receive) Packet: 16-bit Address

Start Delimiter 7E (data before start delimiter 7e is
discarded)

Length length of frame data

APl identifier 0x81 (RX (Receive) Packet: 16-bit
Address)

Source Address 16bit source address

RSSI Received Signal Strength Indicator

Options 0

RF data sent data up to 100 bytes

Checksum packet is discarded if the checksum
unqualified

2.3.5 Xbee Adapter

The Xbee RF module needs adapters to connect with other devices. There were

three different kinds of adapters used in this project:

The Raspberry Pi Sink Node uses Xbee to the USB adapter because it is easier
than using GPIO pins. Arduino Sensor Nodes use Xbee to the FTDI cable adapter

or Xbee to the Arduino shield for the RS232 serial communication.

Figures 12 — 14 show the three kinds of Xbee adapters:

DTR - Flow control into XBee —»
RST - XBee Reset ————»
Common Ground 4—"—/'

CTS - Flow control from XBee
5V - power to regulator ”;.
RX - Serial data into XBee «—
TX - Serial data from XBee »
RTS- Flow control into XBee'

3V from regulator (or input)

Figure 13. Xbee to FTDI cable adapter

Figure 14. Xbee to Arduino shield

23

24

2.3.6 Design of Hardware

This system can support multiple Sensor Nodes. In this project, two Sensor Nodes

were used. Figure 15 and Figure 16 show the Sensor Node and the Sink Node.

Microphone

Amplifier

Figure 16. Sink Node

25

2.4 Software

2.4.1 Arduino Software

Arduino software is an open-source integrated development environment (IDE)
for writing code and uploading to Arduino board. The programming language for

Arduino board is C and C++.

Figure 17 shows the window of Arduino Software, in the toolbar, board, processor

and port can be selected.

& “ketch_mayl2a | Arduino 16 = N

File Edit Sketch Help

Auto Format

Archive Sketch

sketch_may1 2

Fix Encoding & Reload
vord setup O {1 gerial Monitor Ctrl+Shift+M
[/ put your si
ArduBlock
1
Board 4
void loop () { Processor 4
/{ put your mf Port 4
1 Programmer 4

Burn Bootloader

Arduino Mega arh

Figure 17. Arduino Software

26

242 X-CTU

X-CTU is a free multi-platform application designed to enable developers to

interact with XBee RF Modules through a simple-to-use graphical interface.

In this project, X-CTU was used to configure the Xbee modules, the parameter
includes: PAN ID, 16bit source address, baud rate, APl mode. Three Xbee
modules were used here, two as sensor node, and one as sink node. Their

parameters are listed in Table 7.

Table 7. Xbee configuration

Sensor Node 1 Sensor Node 2 Sink Node
PAN ID 1234 1234 1234
16bit address 2222 3333 1111
Baud rate 57600 57600 57600
APl enable 1 1 1

27

3 IMPLEMENTATION

This chapter lists all implementation step of this project.

3.1 Raspberry Pi Configuration

The power supply was plugged in and Raspberry Pi was connected to the router as
the control computer. PUTTY was run, the IP address of Raspberry Pi was filled

and then logged in.

Here an easy method was provided to get the IP address of Raspberry Pi:

Raspberry Pi sent its IP address to a specific email once it booted.

A necessary program was used to send IP address of Raspberry Pi to a specific

email:

. import MIME

ib.SHMIP ("smtp.gmail.com"', S87)

T

WL o T

|

28

This file was named as ip.py. The rc.local file was edited to set ip.py run
automatically when Raspberry Pi was connecting to the network, the command

line to edit re.local was:

hostname -1

we TRE™

Once the Raspberry Pi booted and connected to the network, it sent its IP address

to the specific email, shown in Figure 18.

IP For RaspberryPi on May 11 2015 inbox

pi.ip.address@gmail.com

to me |«

Your ip is 192.168.69.88

Figure 18. Raspberry Pi IP address

3.2 Measure Arduino Sample Rate

An easy way to measure Arduino sample is to use oscilloscope. Arduino was
allowed to sample 1000 times, then an 1/0 pin was flipped, using the oscilloscope

to measure the duty cycle of the 1/0O pin.

In real situation, the sample rate depends on how fast ADC makes one conversion

and how many other codes are in the loop. Any extra code such as floating point

29

calculation and serial output will affect the sample rate.

In this project, the sample rate of Arduino Mega 2560 was measured as 8776.

3.3 Converting Analog Sound Signal to Digital Values

The first part of this project was to measure the sound level in RMS values every
125ms. Arduino Mega 2560 has sample rate of 8776 and 10bits of analog input

resolution. /12/

This means that the analog value can be presented in digital value from 0 to 1023,

and each RMS values is calculated according to 1096 samples.

An example is shown in Figure 19. A 125ms analog sound wave can be converted

to digital value with 1096 samples.

1096samples

Figure 19. Analog signal to digital signal

30

3.4 Calculating RMS Value

In this project, a RMS value presents the change value of the sound wave with

125ms by formula (2).

3.5 Sound Control on LED

The sensor node will turn on a LED for three second if the RMS value is greater
than a threshold. During the time LED is turned on, any detection over the

threshold will extend LED for another three seconds.

The LED control pin used here is PIN 13. The timer function used is millis():
Returns the number of milliseconds since the Arduino board began running the

current program.

When connecting a LED to PIN 13 and GND on the board, it is necessary to use a

resistor, otherwise the board could have damaged.

3.6 Frame ID

When the Sensor Node sends RMS values to the Sink Node, it mark packet with a

frame ID. The frame ID is using unsigned long integer type.

3.7 Data Packet and Transmit

The Arduino board needs a library Xbee.h to communicate with Xbees in API
mode. This library includes support for the majority of packet types, including:

TX/RX, AT Command, Remote AT, I/0 Samples and Modem Status. /13/

The function to transmit data with Xbee in APl mode used in this project was

TxlBRequest{uintlé_t addrle, uintd_t *payload, uintd_t payloadlLength);

This function has three parameters: 16 bit destination address, data frame, and

31

length of data frame.

When sending the packet, frame ID is of the integer type, eight pieces of RMS
values are of the float type, and the frame needs an ‘enter’ (‘\n”) at the end to

inform the sink node that the frame ends. So a struct type was necessary:

In C language, structure provides a way to combine data items of different kinds
under one name in a block of memory. Using structure in C language
programming makes it a more modular program. In this project, struct type stores
unsigned long integer type, float type and uint8_t (a type of unsigned integer of
length 8 bits) type under the name Frame, then a single pointer is used to access

these variables.

Here is an example of how the struct type was used in this project:

struct Frame{
unz1gned long id = 0;
flaat data[8];
uinté_t ending[1] = {'n'};

} frame;

The Xbee module should be disconnected when the code is upload to the Arduino,

otherwise the serial will conflict.

The Xbee module was connected with the Arduino board, then the Arduino board
detected the sound level in RMS value and sent the RMS value in a packet

through the Xbee module in the API mode.

3.8 Data Receiver and Unpacking

The data receiver was done in the Raspberry Pi Sink Node. The method readline()
reads one entire line from input. The following code gives an example of readline()

method:

32

The receiver data may like:

Te00 281 33332000470a00004nT a4 02322541 96111 64115926041 4297 2141 £ 032341 ek 2241 1 o3pd 1 DadZ

See Figure 11. API type: RX (Receive) Packet: 16-bit Address to analyse the
packet. The RMS value is presented in IEEE 754 format. The results are shown in

Table 8.

Table 8. Unpack packet

Start: 7E RMS1: 4d75aa41 (21.307)
Length: 00 2a (42) RMS2: 0a922841 (10.535)
API type: 81 RMS3: 9611641 (9.433)
Source address: 3333 RMS4: 19926041 (14.035)
RSSI: 2b RMS5: 92972141 (10.099)
Option: 00 RMS6: fd532941 (10.583)
ID: 470d0000 (3399) RMS7: dc612241 (10.148)
RMS X 8 RMSS: 1bf53b41 (11.747)
Enter: Oa

Checksum: 42

33

3.9 Unpacking IEEE 754 Format

In the Python language, the IEEE 754 binary was converted to the float type that

needs the library binascii and struct.

3.10 Packet Loss

According to the frame 1D, the packet loss can be calculated easily.

The idea to calculate the packet loss is to mark the ID of the first frame as Start

ID.

Once a packet is in, its frame ID should be analysed and the next ID is predicted,
if the new coming frame ID is not the same as the predicted one, the difference

between of the predicted ID and the real ID is the packet loss.

An experiment was made to measure the packet loss rate: the system ran around

2.5 hours and showed its packet loss. The result is shown in Figure 20.

34

Figure 20. Packet loss

Sensor 2222 received 9251 packets and lost 39 packets, the packet loss rate is
0.42%.

Sensor 3333 received 9232 packets and lost 32 packets, the packet loss rate is
0.34%.

3.11 Packet Time Stamp

The sink node will display the frame with its timestamp. The time is in 1ISO 8061

format.

3.12 Displaying Data

The sink node can display data to the screen, including: sensor ID, frame ID,

timestamp, RMS values and packet loss, as shown in Figure 21.

35

Figure 21. Display data

3.13 Record to Logfile
The received data will be recorded into two .csv file:

The first one is the log file, which records the packet in the hex value. The second
one is to record the unpacked and decoded data, including: sensor 1D, frame ID,

received time, and RMS values.

In Python, a library csv was imported to realize this function,

import

The results of log files are shown in Figure 22 and Figure 23.

7e002a8122222f0033240000ca92ad410a92284167900a41831323417e9¢444192972141F6def740af321F410abd
7e002a8133332b00470d00004d7533410a922841967116411992604192972141fd532941dc6122411bf53b410a42
7e002a8122223300342400000000b041F23c154110fc0141654c1a41dce2104183F323413db40841000030410a42
7e002a8133332b00480d00000a92a8412854414138e73941de7e7e4136cf2741934F34410a9228417c9933410a05
7e002a8122223400352400005357a441ccb93041dff7fb40ccb9304110das5741fd532941F2cbf540202b32410a2b
7e002a8133332800490d0000776da7416f452f41b5942b410000304114152a41ccb93041ec941d41ace232410a11

Figure 22. Logfile

3333,3402,2015-05-15 17:48:44,25.729,10,908,10.535,14.071,10.770,11.224,9. 380,11, 789
2222,9271,2015-05-15 17:48:44,19.467,9.643,8. 366,9.273,9,219,10.440,10. 488,9. 746
3333,3403,2015-05-15 17:48:44,20.445,12, 806,9. 899,14, 933,11. 313,12.124,10. 246,13, 038
2222,9272,2015-05-15 17:48:45,21.424,10.954,8. 306,10.677,12.489,10. 862,9. 848,09, 273
3333,3404,2015-05-15 17:48:45,21.047,12.922,9.055,14.662,10. 908,11.045,10.295,10. 295

Figure 23. Record file

36

4 CONCLUSION

In this project, a low-cost wireless sound detection system was build based on two

parts: Sound detection application and Xbee APl mode programming.

This project provides a prototype of sound based monitor system. This system can

be used to monitor a specific environment or call the recorded data for further

analysis.

We can draw the following conclusions:

1.

In this project, several fields were involved: acoustics, hardware design,

software programming, and wireless communication.

A component of devices may affect the whole system.

The remote sensor system can be widely developed for its low cost and easy

built.

This system can be improved in several ways:

1.

Filter function: According to the devices used in this project, the Arduino’s
sample rate is 8776Hz, which means the system only supports sound

frequency less than 4338Hz. So a low path filer can be used here.

Improve packet loss calculation: In this project, the packet loss was calculated
according to the frame ID generated by the Sensor Node, the frame ID may

overflow and reset to zero.

Data analysis interface: The log file was recorded in a .csv file in the Sink
Node. The non-admin user may not access the log file, so a web based

interface can be made to public the records.

37

REFERENCES

/1] Time Constants and Time Weightings, Acoustic glossary

http://www.acoustic-glossary.co.uk/time-weighting.htm

/2] A Dictionary of Physics (6 ed.). Oxford University Press. 2009. ISBN
9780199233991.
http://www.oxfordreference.com/view/10.1093/acref/9780199233991.001.0001/ac

ref-9780199233991-e-2676

13/ |EEE 802.15.4 standards, IEEE Standards Association
https://standards.ieee.org/getieee802/download/802.15.4-2011.pdf

/4] Overview, Arduino Mega 2560 introduction

http://arduino.cc/en/quide/introduction

/5! Summary, Arduino Mega 2560 introduction

http://arduino.cc/en/quide/introduction

/6/ Cellan-Jones, Rory (5 May 2011), BBC News.
http://www.bbc.co.uk/blogs/legacy/thereporters/rorycellanjones/2011/05/a 15 co

mputer to inspire youngd.html

/7] Raspberry Pi data sheet

https://www.adafruit.com/datasheets/pi-specs.pdf

/8/ Introduction, XBee/XBee-Pro RF modules data sheet, Page 4, Sparkfun

https://www.sparkfun.com/datasheets/Wireless/Zigbee/ XBee-Datasheet.pdf

19/ Specifications, XBee/XBee-Pro RF modules data sheet, Page 5, Sparkfun

https://www.sparkfun.com/datasheets/Wireless/Zigbee/ XBee-Datasheet.pdf

/10/ What is API, Knowledge Base, Digi

http://knowledge.digi.com/articles/Knowledge Base Article/What-is-API1-Applic

ation-Programming-Interface-Mode-and-how-does-it-work

/11/ API Operation, XBee/XBee-Pro RF modules data sheet, Page 57, Sparkfun
https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf

http://www.acoustic-glossary.co.uk/time-weighting.htm
http://www.oxfordreference.com/view/10.1093/acref/9780199233991.001.0001/acref-9780199233991-e-2676
http://www.oxfordreference.com/view/10.1093/acref/9780199233991.001.0001/acref-9780199233991-e-2676
https://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
http://arduino.cc/en/guide/introduction
http://arduino.cc/en/guide/introduction
http://www.bbc.co.uk/blogs/legacy/thereporters/rorycellanjones/2011/05/a_15_computer_to_inspire_young.html
http://www.bbc.co.uk/blogs/legacy/thereporters/rorycellanjones/2011/05/a_15_computer_to_inspire_young.html
https://www.adafruit.com/datasheets/pi-specs.pdf
https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf
https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf
http://knowledge.digi.com/articles/Knowledge_Base_Article/What-is-API-Application-Programming-Interface-Mode-and-how-does-it-work
http://knowledge.digi.com/articles/Knowledge_Base_Article/What-is-API-Application-Programming-Interface-Mode-and-how-does-it-work
https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf

/12/ Input and Ourput, Arduino Mega 2560 introduction
http://www.arduino.cc/en/Main/ArduinoBoardMega2560

/13/ Overview, xbee-arduino, Google Code

https://code.qoogle.com/p/xbee-arduino/

38

http://www.arduino.cc/en/Main/ArduinoBoardMega2560
https://code.google.com/p/xbee-arduino/

APPENDIX 1. SENDER

/I seneor

int sample;

long int acc = 0;
double rms = 0;
inti;

/Il LED

int flag = 0;
int time0 = 0;
inttimel = 0;
int differ = 0;

/I XBee
#include <XBee.h>
XBee xbee = XBee();
intj=0;
struct Frame{
unsigned long id = 0;
float data[8];
uint8_t ending[1] = {"\n'};
} frame;

void setup() {
xbee.begin(57600);
pinMode(13, OUTPUT);

}

void loop() {
I/ sensor part
for(i=0;i<1096;i++){

sample = analogRead(A7) - 512;

acc = acc + sample * sample;
}
rms = sqrt(acc / 1096);
acc=0;

/I frame
frame.data[j] = rms;
j=i+ L

39

/[turn LED

if (rms > 30){
digitalWrite(13,HIGH);
flag =1,
time0 = millis();

}

timel = millis();

differ = timel - timeO;

if (differ > 3000 && flag == 1){
digitalWrite(13,LOW);
flag =0;

}

/I XBee
if(j==81
frame.id = frame.id + 1;
uint8_t *payload,;
payload = (uint8_t *)&frame;
Tx16Request packet = Tx16Request(0x1111, payload, sizeof(frame));
xbee.send(packet);
i=0;

APPENDIX 2. RECEIVER

#XBee
import serial
ser = serial.Serial(‘/dev/ttyUSB0',57600)

#IEEE754 to float
import binascii

import struct

#packet loss

#node2
idflag2 =0
startid2 =0
currentid2 =0
nextid2 =0
loss2 =0
#node3
idflag3=0
startid3=0
currentid3=0
nextid3 =0
loss3=0
#time

from time import strftime

#file

import csv

¢ = csv.writer(open('record.csv”, "a™))
I = csv.writer(open("logfile.csv”, "a™))

#first string
while True:
#receiver
receive = ser.readline()
hex = receive.encode(""hex")
#print hex

#track
start = '7e002a81"'
check = hex.find(start,1)

#print check

if check == 2:
stringl = hex[0:check]
string2 = hex[check:len(hex)]
buffer = string2
loss2=1
loss3=1
break

while True:
#receiver
receive = ser.readline()
hex = receive.encode("hex")
#print hex

#track

start = '7e002a81'

check = hex.find(start,1)
#print check

if check ==2:
stringl = hex[0:check]
string2 = hex[check:len(hex)]
buffer = buffer + stringl
#print 'Received: ' + buffer
sensor = puffer[8:12]
idstring = buffer[22:24] + buffer[20:22] + buffer[18:20] + buffer[16:18]
id = int(idstring,16)
RMS1 = struct.unpack('<f', binascii.unhexlify(buffer[24:32]))
RMS1value = str(RMS1)[1:len(str(RMS1))-2]
RMS2 = struct.unpack('<f', binascii.unhexlify(buffer[32:40]))
RMS2value = str(RMS2)[1:len(str(RMS2))-2]
RMS3 = struct.unpack('<f', binascii.unhexlify(buffer[40:48]))
RMS3value = str(RMS3)[1:len(str(RMS3))-2]
RMS4 = struct.unpack('<f', binascii.unhexlify(buffer[48:56]))
RMS4value = str(RMS4)[1:len(str(RMS4))-2]
RMSS5 = struct.unpack('<f', binascii.unhexlify(buffer[56:64]))
RMS5value = str(RMS5)[1:len(str(RMS5))-2]
RMS6 = struct.unpack('<f', binascii.unhexlify(buffer[64:72]))
RMS6value = str(RMS6)[1:len(str(RMS6))-2]
RMS7 = struct.unpack('<f', binascii.unhexlify(buffer[72:80]))
RMS7value = str(RMS7)[1:len(str(RMS7))-2]

RMS8 = struct.unpack('<f', binascii.unhexlify(buffer[80:88]))
RMS8value = str(RMS8)[1:len(str(RMS8))-2]
if RMS1value.find('.',1) == 2:
rmsl = RMS1value[0:6]
if RMS1value.find('.',1) == 1:
rmsl = RMS1value[0:5]
if RMS2value.find('.,1) == 2:
rms2 = RMS2value[0:6]
if RMS2value.find('.',1) == 1:
rms2 = RMS2value[0:5]
if RMS3value.find('.',1) == 2:
rms3 = RMS3value[0:6]
if RMS3value.find('.',1) == 1:
rms3 = RMS3value[0:5]
if RMS4value.find('.,1) == 2:
rms4 = RMS4value[0:6]
if RMS4value.find('.',1) == 1:
rms4 = RMS4value[0:5]
if RMSbvalue.find('.',1) == 2:
rms5 = RMS5value[0:6]
if RMSbvalue.find('.,1) == 1:
rms5 = RMS5value[0:5]
if RMS6value.find('.,1) == 2:
rms6 = RMS6value[0:6]
if RMS6value.find('.,1) == 1:
rms6 = RMS6value[0:5]
if RMS7value.find('.',1) == 2:
rms7 = RMS7value[0:6]
if RMS7value.find('.',1) == 1:
rms7 = RMS7value[0:5]
if RMS8value.find('.',1) == 2:
rms8 = RMS8value[0:6]
if RMS8value.find('.',1) == 1:
rms8 = RMS8value[0:5]

time = strftime("%Y-%m-%d %H:%M:%S")
print ‘Sensor ', sensor
print 'Frame ID: ', id
print time
print rms1, rms2, rms3, rms4, rms5, rms6, rms7, rms8
if len(buffer) == 92:
L.writerow([buffer])
if len(buffer) == 184:

l.writerow([buffer[0:92]])
l.writerow([buffer[92:184]])
c.writerow([sensor, id, time, rms1, rms2, rms3, rms4, rms5, rms6, rms7, rms8])

buffer = string2

#packet loss

#node2

if sensor == "2222" and idflag2 == 0:
startid2 = int(id)
currentid2 = int(id)
nextid2 = int(currentid2) + 1
idflag2 =1

if sensor == "2222" and idflag2 == 1.
#print 2 start id: ', startid2
currentid2 = int(id)
#print '2 current id: ', currentid2
if int(currentid2) = int(nextid2):

loss2 = loss2 + int(currentid2) - int(nextid2)

print 'Packet loss: ', loss2
nextid2 = int(currentid2) + 1
#print '2 next id: ', nextid2
print "

#node3

if sensor =='3333' and idflag3 == 0:
startid3 = int(id)
currentid3 = int(id)
nextid3 = int(currentid3) + 1
idflag3 =1

if sensor =='3333' and idflag3 == 1:
#print '3 start id: ', startid3
currentid3= int(id)
#print '3 current id: ', currentid3
if int(currentid3) = int(nextid3):

loss3 = loss3 + int(currentid3) - int(nextid3)

print 'Packet loss: ', l0ss3
nextid3 = int(currentid3) + 1
#print '3 next id: ', nextid3
print "

if check == -1:
string3 = hex
buffer = buffer + string3

44

if check !'= 2 and check 1= -1:
string4 = hex[0:check]
string5 = hex[check:len(hex)]
buffer = buffer + string4
#print 'Received: ' + buffer
sensor = puffer[8:12]
idstring = buffer[22:24] + buffer[20:22] + buffer[18:20] + buffer[16:18]
id = int(idstring,16)
RMS1 = struct.unpack('<f', binascii.unhexlify(buffer[24:32]))
RMS1value = str(RMS1)[1:len(str(RMS1))-2]
RMS2 = struct.unpack('<f', binascii.unhexlify(buffer[32:40]))
RMS2value = str(RMS2)[1:len(str(RMS2))-2]
RMS3 = struct.unpack('<f', binascii.unhexlify(buffer[40:48]))
RMS3value = str(RMS3)[1:len(str(RMS3))-2]
RMS4 = struct.unpack('<f', binascii.unhexlify(buffer[48:56]))
RMS4value = str(RMS4)[1:len(str(RMS4))-2]
RMS5 = struct.unpack('<f', binascii.unhexlify(buffer[56:64]))
RMS5value = str(RMS5)[1:len(str(RMS5))-2]
RMS6 = struct.unpack('<f', binascii.unhexlify(buffer[64:72]))
RMS6value = str(RMS6)[1:len(str(RMS6))-2]
RMS7 = struct.unpack('<f', binascii.unhexlify(buffer[72:80]))
RMS7value = str(RMS7)[1:len(str(RMS7))-2]
RMS8 = struct.unpack('<f', binascii.unhexlify(buffer[80:88]))
RMS8value = str(RMS8)[1:len(str(RMS8))-2]
if RMS1value.find('.',1) == 2:
rmsl = RMS1value[0:6]
if RMS1value.find('.',1) == 1:
rmsl = RMS1value[0:5]
if RMS2value.find('.',1) == 2:
rms2 = RMS2value[0:6]
if RMS2value.find('.',1) == 1:
rms2 = RMS2value[0:5]
if RMS3value.find('.',1) == 2:
rms3 = RMS3value[0:6]
if RMS3value.find('.',1) == 1:
rms3 = RMS3value[0:5]
if RMS4value.find('.',1) == 2:
rms4 = RMS4value[0:6]
if RMS4value.find('.',1) == 1:
rms4 = RMS4value[0:5]
if RMS5value.find('.',1) == 2:
rms5 = RMS5value[0:6]

if RMSbvalue.find('.',1) == 1:
rms5 = RMS5value[0:5]
if RMS6value.find('.',1) == 2:
rms6 = RMS6value[0:6]
if RMS6value.find('.',1) == 1:
rms6 = RMS6value[0:5]
if RMS7value.find('.',1) == 2:
rms7 = RMS7value[0:6]
if RMS7value.find('.',1) == 1:
rms7 = RMS7value[0:5]
if RMS8value.find('.',1) == 2:
rms8 = RMS8value[0:6]
if RMS8value.find('.',1) == 1:
rms8 = RMS8value[0:5]

time = strftime("%Y-%m-%d %H:%M:%S")
print ‘Sensor ', sensor
print 'Frame ID: ', id
print time
print rms1, rms2, rms3, rms4, rms5, rms6, rms7, rms8
if len(buffer) == 92:
l.writerow([buffer])
if len(buffer) == 184:
l.writerow([buffer[0:92]])
l.writerow([buffer[92:184]])
c.writerow([sensor, id, time, rms1, rms2, rms3, rms4, rms5, rms6, rms7, rms8])

buffer = string5

#packet loss

#node2

if sensor == '2222" and idflag2 == 0:
startid2 = int(id)
currentid2 = int(id)
nextid2 = int(currentid2) + 1
idflag2 =1

if sensor == '2222" and idflag2 == 1.
#print 2 start id: ', startid2
currentid2 = int(id)
#print '2 current id: ', currentid2
if int(currentid2) = int(nextid2):

loss2 = loss2 + int(currentid2) - int(nextid2)

print 'Packet loss: ', loss2

nextid2 = int(currentid2) + 1
#print '2 next id: ', nextid2
print "

#node3

if sensor =='3333" and idflag3 == 0:
startid3 = int(id)
currentid3 = int(id)
nextid3 = int(currentid3) + 1
idflag3 =1

if sensor =='3333' and idflag3 == 1:
#print '3 start id: ', startid3
currentid3= int(id)
#print '3 current id: ', currentid3
if int(currentid3) = int(nextid3):

loss3 = loss3 + int(currentid3) - int(nextid3)

print 'Packet loss: ', 0ss3
nextid3 = int(currentid3) + 1
#print '3 next id: ', nextid3
print "

47

