

Analyzing Java EE
application security with
SonarQube

Author(s) Paananen Timo

Master’s thesis
April 2016
Cyber Security
Degree Programme in Information Technology

Description

Author(s)
Paananen, Timo

Type of publication
Master’s thesis

Date
4.4.2016

Number of pages
90

Language of
publication: English

Permission for web
publication: x

Title of publication
Analyzing Java EE application security with SonarQube

Degree programme
Information Technology Cyber security

Supervisor(s)
Häkkinen, Antti; Rantonen Mika

Assigned by
Kela, Social Insurance Institute of Finland

Abstract

The master's thesis studied SonarQube's capabilities to find security weaknesses in
a Java EE application.

Firstly, the master's thesis aims to recognize possible points where a developer
could cause security weakness to application, by misusing the technologies used by
the assigner. Secondly the master's thesis presents a static application analysis and
SonarQube. In the last part , the master's thesis creates a knowledge base of
different security weaknesses and vulnerability scoring system.

The test application was developed for the master's thesis implementation phase
and it contained recognized weaknesses. The test application was analyzed with
SonarQube using two different rule sets. The first rule set was collected from the
SonarQube vanilla installation, and the second set consisted of enriched rules
added from the plugins installed separately.

The SonarQube was able to find security related issues with both of these rule sets.
The latter one was able to find 40% more issues. Neither of the rule set produced
any false positive issues. Also, the way how the SonarQube presents issues
supports the developers learning by showing non-compliant and compliant code for
each rule.

Keywords/tags (subjects)
Java EE, SAST, static application security testing, SonarQube, security

Miscellaneous

Kuvailulehti

Tekijä(t)
Paananen, Timo

Julkaisun laji
Opinnäytetyö, YAMK

Päivämäärä
4.4.2016

Sivumäärä
90

Julkaisun kieli
Englanti

Verkkojulkaisulupa
myönnetty: x

Työn nimi
Analyzing Java EE application security with SonarQube

Tutkinto-ohjelma
Information Technology Cyber security

Työn ohjaaja(t)
Häkkinen, Antti; Rantonen Mika

Toimeksiantaja(t)
Kela

Tiivistelmä

Opinnäytetyössä tutkittiin staattisen lähdekoodianalysointityökalun SonarQube
kykyä tunnistaa Java EE -sovelluksista tietoturvaheikkouksia.

Aluksi tunnistettiin toimeksiantajan käyttämistä Java EE teknologioista kohdat, joissa
sovelluskehittäjät voisivat mahdollisesti aiheuttaa sovellukseen
tietoturvaheikkouksia. Opinnäytetyössä esitellään erilaiset tietoturvaheikkouksien ja
-haavoittuvuuksien pisteytysjärjestelmät.

Opinnäytetyön toteutusosaa varten toteutettiin testisovellus, joka sisälsi tunnistettuja
tietoturvaheikkouksia. Tätä sovellusta analysointiin SonarQubella käyttämällä kahta
eri sääntökokoelmaa, joista toinen oli kasattu SonarQuben perusasennuksesta ja
toiseen oli lisätty sääntöjä jälkikäteen asennetuista laajennoksista.

SonarQube kykeni löytämään molemmilla sääntökokoelmilla tietoturvaheikkouksia
Java EE -sovelluksista. Laajempi sääntökokoelma löysi kuitenkin 40% enemmän
heikkouksia. Kumpikaan sääntökokoelmista ei tuottanut virheellisiä havaintoja.
SonarQuben tapa esittää löydetyt virheet tukee sovelluskehittäjien oppimista,
esittämällä sekä virheellisen tavan että oikeaoppisen tavan toteuttaa säännön
tarkastelema kohta.

Avainsanat (asiasanat)

Java EE, SAST, static application security testing, SonarQube, security

Muut tiedot

1

Contents

1 Introduction...5

1.1 Reasearch methods..5

1.2 Research limitations..6

1.3 Assigner...6

2 Research background...8

2.1 Java EE...8

2.1.1 Java EE containers..9

2.1.2 Technologies and their security perspectives...............12

2.1.2.1 JSR-224 Java API for XML-Based Web Services (JAX-WS) 2.2.....12
2.1.2.2 JSR-236 Concurrency Utilities for Java EE 1.0...........................14
2.1.2.3 JSR-250 Common Annotations for the Java Platform 1.2............15
2.1.2.4 JSR-318 Interceptors 1.2..17
2.1.2.5 JSR- 338 Java Persistence API 2.1..18
2.1.2.6 JSR-339 Java API for ReSTful Web Services (JAX-RS) 2.0...........19
2.1.2.7 JSR-340 Java Servlet 3.1...21
2.1.2.8 JSR-341 Expression Language 3.0..23
2.1.2.9 JSR-343 Java Message Service API 2.0....................................23
2.1.2.10 JSR-344 JavaServer Faces 2.2..24
2.1.2.11 JSR-345 Enterprise JavaBean 3.2..26
2.1.2.12 JSR-346 Context and Dependency Injection for Java 1.1..........27
2.1.2.13 JSR-349 Bean Validation 1.1..28
2.1.2.14 JSR-352 Batch Application for the Java Platform.....................29
2.1.2.15 JSR-907 Java Transaction API (JTA) 1.2.................................30
2.1.3 Security layers..31

2.2 Static Application Testing..32

2.2.1 SonarQube...33

2.3 Application vulnerabilities and how to measure them....35

2.3.1 Common Weaknesses Scoring System.......................36

2.3.2 Common Vulnerability Scoring System.......................37

2.4 Theoretical framework...38

3 Methodology...40

3.1 Data collection...40

3.2 Static Application Testing environment..........................40

2

3.2.1 SonarQube setup..41

3.2.2 Target of analysis..42

4 Results...43

4.1 Creating quality profiles...43

4.2 Results of the vanilla installations.................................44

4.3 Security tuned installations results................................47

4.4 Analysis of results..50

5 Conlusions..53

Appendices...59
Appendix A: CWSS submetrics..59
Appendix B: CVSS metric vectors...61
Appendix C: CVSS score formulas..62
Appendix D: Identified weaknesses in Java EE technologies and their
implementation references..63
Appendix E: Java plugins security rules profile.................................68
Appendix F: Security rules profile from multiple plugins....................74
Appendix G: Security issues with Java plugin...................................85
Appendix H: Security issues with multiple plugins............................88

Tables

Table 1: Mandatory binding provider context properties........................13
Table 2: Common annotations...16
Table 3: Test environment component versions...................................41
Table 4: Java EE security rules in Java Plugin......................................45
Table 5: Java EE related issues found with Java Plugin's security rules....47
Table 6: Java EE related security rules in second quality profile.............49
Table 7: Java EE related issues found with security rules from multiple
plugins..50
Table 8: Issues mapped to identified weaknesses................................52

Figures

 Figure 1: Java EE Containers (Jendrock; Cervera-navarro; Evans; Haase;
Markito N.D. 1-12)..10
 Figure 2: Java EE APIs in Application Client Container (Jendrock, Cervera-
navarro, Evans, Haase & Markito N.D,1-15)..10
 Figure 3: Java EE APIs in Web Container (Jendrock; Cervera-navarro;
Evans; Haase; Markito N.D,. 1-13)..11
 Figure 4: Java EE APIs in EJB Container (Jendrock; Cervera-navarro;
Evans; Haase; Markito N.D, 1-14)...12
 Figure 5: JSF execute and render lifecycle (see org. Burns 2013, 55)....25

3

 Figure 6: Batch Applications components (See org. Vignola 2013, 5).....29
 Figure 7: SonarSource architecture (See org. Gigleux 2015)................34
Figure 8: The three tenets of information system security (See org. Kim;
Solomon. 10)...35
Figure 9: CWSS Score Formulas (Coley; Martin. 2014).........................37
 Figure 10: CVSS information example...38
 Figure 11: Test applications structure..42
 Figure 12: Create new quality profile dialog.......................................43
 Figure 13: Analyze time with Java plugin security rules profile..............47
 Figure 14: Analyze time with extended security rules profile................50
 Figure 15: Issue explanation..52

4

Terminology

Term Explanation

API Application programming interface

Compiler Software that translates human readable code to lower
level language which computers can understand

HTTP HyperText Transport Protocol

Java Programming language introduced by Sun
Microsystems

Java EE Java Enterprise Edition

Java SE Java Standard Edition

JAXB Java Architecture for XML Binding

JNDI Java Naming and Directory Interface

JPQL Java Persistence Query Language

OWASP Open Web Application Security Project

POJO Plain Old Java Object

REST Representational State Transfer

RMI-IIOP Remote Method Invocation (RMI) interface over the
Internet Inter-Orb protocol (IIOP)

SAST Static Application Security Testing

SOAP Simple Object Access Protocol

SQL sequal query language used in databases

WS-I Web Service interoperability organization

WSDL Web Service Description Language which is used to
describe web service interfaces to clients

5

1 Introduction

This master's thesis researches how Java EE application security can be

improved by using static application security testing tools. For that it first

presents what security elements Java programming language has and what

extra security elements and techniques Java Enterprise edition offers.

After presenting what is considered as security elements in Java EE

applications master's thesis introduces what a Static Application Testing is and

how the static application testing tools work in the technical perspective. From

here the master's thesis moves towards to static application security testing

and tries to explain what static application security testing is. In the end of this

part is small preview to the common used static application analysis tools.

Last part of background information of this master's thesis defines how

applications security is measured. So it is possible to define if static

application security analysis help to build better software.

1.1 Reasearch methods

The master's thesis applies Static Application Security Testing to a Java EE

application and analyses the results. Analysis tries to resolve how well Java

EE security models and mechanisms are covered by the chosen tool set and if

they provide useful information for developers. In the master's thesis research

background chapter relevant Java EE technologies are studied and charted

for possible points that developers could misuse thus exposing the application

to security weaknesses. Empirical research is based on the following research

questions.

1. How does static application security testing improve Java EE

6

applications security?

2. Which elements forms Java EE applications security?

3. How does SonarQube work?

1.2 Research limitations

This master's thesis does not study application development processes which

uses static application security testing nor does it not contain how to apply

static application security testing results to application development. Java SE

security models and mechanisms are also left outside of this master's thesis

with possible weaknesses that are caused by misusing the Java language

itself. In the static application security part SonarSource's SonarQube product

is used to produce analysis data, this limitation is based on the assigner's

needs.

The master's thesis does not express any opinions to design patters that could

increase or decrease application security. Additionally, Java EE technologies

are limited to those technologies that master's thesis assigner uses and are

presented through chapters 2.1.1.1 to 2.1.1.15.

1.3 Assigner

The assigner of the master's thesis is Kela, the Social Insurance Institute of

Finland that operates directly under the supervision of Finnish parliament.

Kela's mission is to secure the income and promote the health of the entire

nation, and to support the capacity of individual citizens to care for

themselves. Kela is a reliable, efficient and socially responsible actor. It has an

active role in developing social security and its implementation. The social

security provided by Kela is clearly understandable, reasonable in amount and

7

delivered with a good standard of quality. Kela's service is the best in the

public sector. (Operations 2014.)

Kela has its own ICT department, that employees about 500 persons and it

develops all its own benefit systems used to make a benefit decision. About

100 persons from all of Kela ICT department staff are Java developers. There

is currently an on-going project called ARKKI, that aims to renew all the

benefit systems from the mainframe to Java EE.

8

2 Research background

This chapter presents all background knowledge for this master's thesis. The

first subchapter explains what Java EE and its security aspects are and how

Java EE technologies are used. After that static application testing is

introduced and SonarSource's SonarQube tool. The end of this chapter

explains how applications security can be measured and which are the factors

are affecting application's security in code level.

2.1 Java EE

Java EE means basically Java's Enterprise Edition (Java EE) which uses Java

Standard Edition (Java SE) specification as its base. Java EE contains two

sections, Java EE platform specification and a set of specifications for

technologies.

Java community (ldemichiel 2014) writes that the Java EE Platform

specification is an umbrella specification that does not directly define Java EE

APIs. The Java EE platform specification only references to other

specifications and defines how they work together. Java community continues

to tell that beside being an umbrella specification Java EE platform

specification defines other attributes of the platform such as security,

deployment, transactions and interoperability.

As earlier mentioned The Java EE platform specification only refers to the

Java APIs specification and Java EE contains totally 33 different specification,

including platform specification. From these 33 specifications 24 specify purely

technologies and APIs such as JAVA API for RESTful web services (JAX-RS)

2.0. The rest of the specifications does not directly define technologies but

defines how something should be implemented from architectural point of

view, how to use a specific pattern, or container behaviour. These nine

9

specifications are listed in the following list. The technology specifications are

presented in chapter 2.1.2.

• JSR 45: Debugging support for other languages

• JSR 52: Standard Tag Library for JavaServer Pages (JSTL) 1.2

• JSR 77: J2EE Management 1.1

• JSR 88: Java EE application deployment

• JSR 109: Implementing Enterprise Web Services 1.3

• JSR 115: Java Authorization Contract for Containers

• JSR 181: Web Service Metadata for the java Platform

• JSR 322: Java EE connector Architecture 1.7

• JSR 342: Java Platform, Enterprise Edition 7

All these different technologies run on top of Java SE and communicate to

each other through containers. As Völter, Schmid and Wolff (2002, 44.)

explains that containers are an execution environment that provides a

federated view to the underlying Java EE API's for the application

components. Figure 1 shows how Java EE containers communicate together.

2.1.1 Java EE containers

There are three different containers in Java EE: Application client container,

Web container and EJB container. All these containers have their own

purpose and supports a set of APIs as well as offer services like security,

database access, transaction handling, naming directory, resource injection to

components (Goncalves 2013, 3). The software does not need to utilize all

these containers only those which it really needs. For example pure back-end

that does not provide any graphical user interface needs only EJB container.

10

Application client container can be used to bring dependency injection,

security management and naming service to Java SE software. The

application client container uses RMI-IIOP to communicate with EJB container

and HTTP to communicate with Web container. (Goncalves 2013, 3). Figure 2

shows what APIs the application client container contains.

Figure 1: Java EE Containers (Jendrock; Cervera-navarro; Evans;
Haase; Markito N.D. 1-12)

Figure 2: Java EE APIs in Application Client
Container (Jendrock, Cervera-navarro, Evans,
Haase & Markito N.D,1-15)

11

Web container is used to produce web pages that are based on technologies

like servlets, JSPs, filters, listeners, JSF and web services. The web container

instantiates, initializes and invokes servlet and filters. It also supports HTTP

and HTTPS protocols that are used to communicate with web browsers.

(Goncalves 2013, 3). Figure 3 shows what APIs the Web Container contains.

EJB container is used in back-end components that contains Java EE

application's business logic. EJB container is responsible for managing the

execution of the Enterprise Java Bean (EJB). This container provide services

like transactions, security, concurrency, distribution, naming services, or

possibility to be invoked asynchronously. (Goncalves 2013, 3). Figure 4 shows

what APIs the EJB Container contains.

Figure 3: Java EE APIs in Web Container (Jendrock; Cervera-
navarro; Evans; Haase; Markito N.D,. 1-13)

12

2.1.2 Technologies and their security perspectives

This chapter introduces different Java EE technologies, theirs common use

cases and security mechanisms. The focus in introductions is on those

technologies that are designed for developers to use and those which involve

security heavily.

2.1.2.1JSR-224 Java API for XML-Based Web Services (JAX-WS)
2.2

JAX-WS specification is a follow-up to JAX-RCP by extending it using JAXB

XML mapping rules instead of defining their own mapping rules, adding

support for SOAP 1.2, WSDL 2.0 and WS-I Basic Profile 1.1, adding better

metadata annotation support and aligning with, complementing the security

API defined by JSR-183 and describing techniques and mechanisms for

versioning services. Other updates that JAX-WS brings are improvements fo

document/message centric usage, which is listed as follow. (Kotamraju 2011,

1-2.)

Figure 4: Java EE APIs in EJB Container (Jendrock; Cervera-
navarro; Evans; Haase; Markito N.D, 1-14)

13

• Supports client side asynchronous operations

• Improve separating XML message format and transport mechanism

• Simplifies clients and services access to the message

• Supports message based session management

JAX-WS client is implemented by using javax.xml.ws.Service class and

javax.xml.ws.Dispatch and javax.xml.ws.BindingProvider interfaces. Service

class represents WSDL service. The actual service instance can be acquired

dynamically through Service.create method or statically by implementing its

own class that extends Service class. Both ways need service an endpoint

address and a Java type that represents the service. BindingProvider interface

provides protocol bindings to client and methods to manipulate binding

provider's context. Mandatory binding provider context properties that can be

manipulated are presented in Table 1. The Dispatch interface gives developer

access to XML message level. The XML message can be accessed in

message payload or message mode, where message payload gives access to

the data sent and in message mode to the protocol specific message

structure.(Katomraju 2011, 55 - 68)

Table 1: Mandatory binding provider context properties

Property Description

javax.xml.ws.endpoint.address Enpoints address

javax.xml.ws.security.auth.username User name for HTTP basic authentication

javax.xml.ws.security.auth.password Password for HTTP basic authentication

javax.xml.ws.session.maintain Indicates whether client is prepared to
participate in services session

To implement a service, the endpoint specification offers an API that contains

total of four interface and class in package javax.xml.ws. The endpoint service

low level implementation can be accomplished by implementing the class that

implements Provider interface. The provider interface is the counterpart for

clients Dispatch interface and can also operate in two modes Payload and

14

Message. When using Payload mode the provider must be typed to implement

Provider<Source> and in Message mode Provider<Message>. The mode is

defined by using type level annotation called @ServiceMode. Higher level

services are implemented as normal Java classes and interfaces where

implementing class is annotated with @WebService annotation that defines

port name, service name, target namespace and endpoint interface. The

interface can be annotated with @WebService annotation that defines the

service's namespace. The implemented service is published by Endpoint

class. Endpoint instance is first acquired with create method which takes

service implementation class's instance as parameter. After that service is

published with the endpoint's publish method. (Katomraju 2011, 71-81.)

The other two parts are WebServiceContext interface and

W3EndpointReferenceBuilder class. WebServiceContext interface is a shared

context for all objects that involves handling invocation of the web service. If

WebServiceContext methods are invoked out side of web service methods,

the invocation implementation should throw java.lang.IllegalStateException.

The WebServiceContext is thread safe and uses thread-locals to identify

correct information between different requests. W3EndpointReferenceBuilder

can be used to create Endpoint reference to another web service endpoint.

(Katomraju 2011, 81 - 84.)

JSR-224 simplifies developing web services to a developer. There is still two

possible points where mistakes can be made. The first one is in client side,

where it is possible to use BindingProvider to hard code basic authentication

username and password. The other one relates to XML namespaces which

should be defined to web services but @WebService annotation does not

require namespace. The missing namespace can cause conflict in service

calls if two or more services have the same name and same endpoint

address.

2.1.2.2JSR-236 Concurrency Utilities for Java EE 1.0

JSR-236 offers concurrency API to developer to use in his or her application. It

15

extends Java SE's concurrency API so that Java EE containers can manage

threads that are created in application. If Java SE's concurrency API is used in

Java EE environment it can cause weird race conditions because the

container is not aware of these threads and that they are accessing shared

resources like data source.(Concurrency Utilities for Java EE 2013, 2-1 - 2-2).

As Vidergar states in his white paper incorrectly coded concurrency handling

can cause race condition, deadlock or denial of service through poor

performance or scalability. He continues that concurrency mistakes are hard

to notice in testing phase and they might rise only in certain situations like

under heavy load. (Vidergar, Stender 2008, 2).

2.1.2.3JSR-250 Common Annotations for the Java Platform 1.2

The JSR-250 specification defines set of annotation that are used in other

specifications and how they are handled in case of inheritance. The

specification defines fourteen different annotations that are explained in Table

2.

16

Table 2: Common annotations

Annotations name Annotations description

javax.annotation.Generated Indicates that code is genered by defined generator.
Can also imply date of generation.

javax.annotation.Resource Declares resource reference. Resources name, type,
authentication type, jndi lookup name, shareable and
mapped name can be defined by this annotation.

javax.annotation.Resources Permit to define multiple javax.annotation.Resource
annotations to class, method or field.

javax.annotation.PostConstruct Defines method that can be used to initialize the
object after injections

javax.annotation.PreDestroy Defines method that will be invoked before container
removes the bean. Can be used, for example, to
clean resources properly before removing the bean.

javax.annotation.Priority Indicates order of the classes been used.

javax.annotation.security.RunAs Defines role that is used to run application. Role
must be mapped to user or group of security realm.

javax.annotation.security.
RolesAllowed

Defines roles that are permitted to invoke methods in
class. Can be used in class or method level.

javax.annotation.PermitAll Allows all security roles to invoke methods of class.
Can be used in class or method level.

javax.annotation.DenyAll Denies all security roles to invoke methods of class.
Can be used in class or method level.

javax.annotation.security.
DeclareRoles

Declares security roles that are used in the
application. Can be used only in class level.

javax.annotation.sql.
DataSourceDefinition

Defines containers datasource and to registering it
by JNDI. This annotation permits to define
datasource type (driver class), URL, username,
password, database name, port number, server
name, isolation level, connection transaction
capabilities, pool size properties, idle time, maximum
statement count, login timeout and vendor specific
properties.

javax.annotation.sql.
DataSourceDefinitions

Permit to define multiple
javax.annotation.sql.DataSourceDefinition
annotations to class.

javax.annotation.ManagedBean Defines object to be container managed. Can be
used only in class level.

This master's thesis is only interested in RunAs, RolesAllowed, PermitAll,

DenyAll, DeclaredRoles and DataSourceDefinition annotations. The most

interesting common annotation is DataSourceDefinition because it allows

17

definition of username and password. As the JSR-250 specification states

defining password is not recommended at least in production code (Mordani

2013, 2-26).

2.1.2.4JSR-318 Interceptors 1.2

The JSR-318 defines interceptor mechanism that can be used to interpose on

business method invocation or specific event. There for the interceptors can

be divided into two different categories: business method interceptors and

interceptors for life-cycle event callbacks. All business method interceptors

implements method with @AroundInvoke annotation that is able to execute

code before and after the actual method invocation. Life cycle event callback

interceptor implements a method or methods annotated with

@AroundContructor, @PostConstruct, @PreDestroy or @AroundTimeout

annotations. The following list presents what can be done with each of these

annotations. (Vatkina 2013a, 11.)

• @AroundContructor annotated methods can execute code before and

after invocation of constructor

• @PostConstuct annotated methods can execute code after bean's

injection is done

• @PreDestroy annotated methods can execute code on an event when

container is going to remove the bean

• @AroundTimeout annotated methods will be executed by Timer

service. Annotation can define calendar-based schedule, specific time,

specific amount of time elapsed or specific interval that fires

interceptors event.

JSR-381 does not specify anything security related, although interceptor

mechanisms can be used to improve application's security. For example there

could be an interceptor in a public web service interface that handles all

technical exceptions and throws user friendly exception to caller or one that

logs all incoming requests; however these are application specific custom

18

implementations, and therefore they are not within of this master's thesis.

2.1.2.5JSR- 338 Java Persistence API 2.1

JSR-338 defines API for managing persistence and mapping relation

database to Java objects (DeMichiel 2013, 21). As the specification defines

both mappings database to java classes and query language to manage

database, these should be handled separately.

JSR-338 defines a large set of annotations which can be used to as metadata

that represents database definitions. These annotations are applied to classes

that represent database structure and are annotated with @Entity annotation.

Each field or property that represent a column in a database is annotated with

corresponding metadata annotation in entity class, for example, a primary key

field is annotated with @Id annotation or a one-to-one relationship is marked

with @OneToOne annotation. These annotations are highly tight to database

design and application's needs from the database and the way they are used

varies from case to case.

The query language part is more interesting in the perspective of this master's

thesis because SQL injections are conducted by querying or updating a

database. By using Java Percistence API queries can be executed by using

two different techniques NamedQueries and CriteriaQueries. NamedQueries

are static expression and they can be defined by using Java Persistence

Query Language (JPQL) or using native SQL (DeMichiel 2013, 151-152).

Criteria API queries are defined by using object-based query definition objects

(DeMichiel 2013, 235). Following code snippets shows the usage of

NamedQueries and Criteria API queries.

19

public Person getPersonNamedQuery(String name) {

Query personQuery = this.entityManager.
 createNamedQuery("SELECT P FROM Person P WHERE
p.name = :name", Person.class);
personQuery.setParameter("name", name);
return (Person)personQuery.getSingleResult();

 }

public Person getPersonCriteriaAPI(String name) {

 CriteriaBuilder builder = this.entityManager
 .getCriteriaBuilder();

 CriteriaQuery<Person> query =
builder.createQuery(Person.class);

ParameterExpression<Integer> parameter =
builder.parameter(Integer.class);

Root<Person> person = query.from(Person.class);
query.select(person).where(builder.equal(person.get("name"),

name));
return entityManager.createQuery(query)

.getSingleResult();
 }

Gnanasundar expresses in his blog post that JPQL and native queries have

an injection weakness if not used correctly (Gnanasundar N.D). This is

because neither way cannot detect if query itself is parsed or not and the

parsed parameter can have harmful characters that are not escaped. The

setParameter method will escape harmful characters, and injections are not

possible. For the sake of clarity the following code snippets shows an example

of this.

public Person getPersonNamedQueryUsingParsing(String name) {
 String queryString =

"SELECT P FROM Person P WHERE p.name=" + name;
 Query personQuery = this.entityManager

.createQuery(queryString, Person.class);
 return (Person)personQuery.getSingleResult();
}

2.1.2.6JSR-339 Java API for ReSTful Web Services (JAX-RS)
2.0

JSR 339 defines how to implement Representational State Transfer (REST)

Web services and their clients with Java. Components for implementing a

REST are resources, providers, filters, interceptors and validation.

Resources are the main part of REST services because they are entry points

20

to the service. Resources are defined by using @Path annotation. Resource

class can have properties or fields that are annotated with @MatrixParam,

@QueryParam, @PathParam, @CookieParam, @HeaderParam or

@Context. Values for these properties or fields are extracted from the

corresponding part of the request. These annotations are supported only for

resources that use per-request life cycle.

Resource methods present methods in resource class with @GET, @POST,

@PUT, @DELETE, @HEAD or @OPTIONS annotation on them. These

annotations represent the HTTP method used to access the resource.

Resource methods can return Void, Response or GenericEntity which each

are mapped to 200 or 204 HTTP return code to indicate that all went fine.

Resource methods also can have @Path annotation to specify an additional

ULR or a parameter that has to be present to invoke the resource method.

@Path annotation takes String as its value that presents URL's part or

placeholder for the parameter's name. As following code snippet shows,

deletePerson method is invoked from URL http://localhost/persons/9 when

DELETE HTTP method is used.

@Path("persons")
public class PersonService {

@DELETE
@Path("{id}")
public Response deletePerson(@PathParam(”id”)

String id) {
...
return response;

}
}

Method could even define in the @Path annotation that id-parameter must

match the regular expression which would be defined as @Path(“{path:

([ABC])”) and which would match only those requests that have only A, B or C

character in the id part. (Pericas-Geertsen & Potociar 2013, 13-16.)

21

JAX-RS implementation can be extended in run-time by using providers.

Providers provide MessageBodyReader and MessageBodyWriter

implementations that are responsible for converting messages to Java objects

and Java objects to messages. Providers themselves are not prone to security

weaknesses as a technology is, but if MessageBodyWriter or

MessageBodyReader are badly implemented they can cause side effects that

cannot be predicted. (Pericas-Geertsen & Potociar 2013, 27- 30.)

Providers, on the other hand, offer a way to extend JAX-RS to support

different type of messages interceptors and filters, and enables developer to

add different capabilities to JAX-RC service, like logging, authentication,

confidentiality, entity compression etc. Interceptors wrap method invocation

and can execute code around invocation as filters execute code at the

extension point; however they do not wrap method invocation. Filters offer four

extension points for the response and the request at client and at server end.

These are invoked when a request leaves from client or when it is received by

server and when a response is sent from server and received by client.

(Pericas-Geertsen & Potociar 2013, 37- 40.)

JAX-RS relies on the JSR 349 bean validation specification which is

introduced later in this chapter.

In perspective of this master's thesis, the interesting parts of the specification

are resources with JAX-RS annotated properties, non-public methods with

@Path annotation and validation. JAX-RS annotated resource properties

should not be written in any other life cycle phase than creation because that

can cause errors in concurrency. Non-public methods with @Path annotation

cannot be accessed outside of application and therefore are unnecessary. The

regular expression capabilities of @Path annotations are also interesting

because by using them it is possible to white list valid paths.

2.1.2.7JSR-340 Java Servlet 3.1

JSR-340 is used to produce dynamic content in web applications. Servlets use

by default HTTP and optionally HTTPS protocols to communicate with clients,

22

for example web browsers, and all JSR-340 containers must support at least

HTTP protocol. HttpServlet subclass adds dedicated methods for all HTTP

methods that call automatically GenericServlets service method. The servlets

are initialized through init-method of the Servlet interface, therefore

developers should not do any container related operation in class construction

methods because the servlet might not be yet active in the container. The

servlet container can handle concurrent requests; however the developer can

alternate this behaviour by implementing SingleThreadModel interface which

forces the container to serialize requests or to maintaining pool of servlet

instances. Another way to achieve this is to mark the service method as

synchronized; however this could have a huge performance impact. As the

servlets support concurrency it is important that the developer is aware that

Request and Response classes methods are not thread safe, except

startAsync and complete methods. If other methods are called by multiple

thread the container can not ensure that results are correct from the caller's

point of view. (Wai Chang & Mordani 2013, 2-5 - 2-21.)

When using HTTP or HTTPS protocol the servlets support cookies by

HttpServletRequest class getCookies method. Also, HttpOnly cookies are

supported that indicated that cookies cannot be read on client side by scripts.

When HTTPS protocol is used with the servlet, container expose cipher suite

bit size of the algorithm and SSL session id to developer to use. And if the

request includes SSL certificate it is also exposed to the developer. The

Servlet API also allows controlling timeout time of the sessions. If the timeout

is set to zero it will be handled as infinite timeout. (Wai Chang & Mordani

2013. 3-29 - 3-30.)

Static resources can be accessed from the servlet by using getResource or

getResourceAsSteam methods. These methods load resource relative to root

of context or relative to META-INF/resources from jars that are in WEB-INF/lib

folder. These methods should not be used to obtain dynamic resources

because they will not be processed. (Wai Chang & Mordani 2013. 4-41.)

23

The Response class has sendRedirect method which can be used to redirect

client to a different URL. The method's parameter should be the absolute path

of the new address. Response class has also sendError method which should

be used to send an error message to a client with appropriate headers and

body content.(Wai Chang & Mordani 2013, 5-48.)

2.1.2.8JSR-341 Expression Language 3.0

JSR 341 specifies simple language that is syntax restricted to the evaluation

expressions which can be used to access underlying Java object's values and

methods for example from the presentation layer. Expression language uses $

{} and #{} expression to imply expressions which are evaluated in run-time.

(Chung 2013, 2-3.)

As expression language only allows developers to access the underlying Java

objects it will itself not present any possible ways for the developer to misuse

it, and because of that, it will not expose any security weaknesses to

developer and will not be discussed within the scope of this master's thesis.

2.1.2.9JSR-343 Java Message Service API 2.0

JSR-343 specifies standard Java API and architectural solution for enterprise

messaging products which are used in a company's internal network.

Enterprise messaging systems can include non-java products, which may be

communicated with this API. JSR-343 defines two types of communication,

point-to-point and publish and subscribe. In point to point communication the

client will send a message straight to another client by using an abstract

queue, and in the publish and subscribe solution the client sends messages to

topic, and clients that want receive messages will subscribe to the same topic.

(Deakin 2013, 12 -13.)

The specification states that it will not include any security API for controlling

the privacy and integrity of the messages. An as using the new 2.0 API is not

error prone because it only includes some interfaces and their methods. For

these reasons, JSR-343 will be left out of this master's thesis.

24

2.1.2.10 JSR-344 JavaServer Faces 2.2

JSR-344 specifies user interface framework for Java web applications. The

JSF framework is based on JavaServer Pages, Expression language 3.0,

Servlets, JavaBean and JavaServer Pages Standard Taglibary. JSF provides

easy-of-use reusable components for building a user interface. Framework

also allows developer to develop their own reusable components. It also

simplifies data migration to and from the user interface and offers a simple

model for wiring user interface events to server side code (Burns 2013, 44 &

47.)

When building user interface with JavaServer Faces the view layer is

developed by using components representing different UI elements that create

tree of components. All components have common ancestor

javax.faces.component.UIComponent and have unique identifier in context of

Naming Container. All components in the view can be accessed through

component tree by their unique identifier. Components are transformed to

HTML output stream by javax.faces.render.Renderer implementations that are

assigned to the component. The value of the component is bound to it by

using expression languages value expressions, which will wire up the value in

the page to the corresponding Java Bean variable. The bound value is

converted from java.lang.String to appropriate by

javax.faces.convert.Converter assigned to the component. The component

can have javax.faces.validator.Validator implementation that is responsible for

validating the given data. The expression language can also be used to

method expression which presents the method calls to the corresponding

object's public methods. (Burns 2013, 85 - 96, 165-166.)

25

JSR-344 defines execute and render life cycle for handling incoming requests.

The life cycle consist of six different phases which all have their own

responsibilities for handling requests. The life cycle handles one view and all

its components at the time. The life cycle takes care of component's states in

any given moment. As Figure 5 shows the view is first restored, then values

are processed by converters and validator, and updated to model and last

before sending the response the application itself is invoked.(Burns 2013, 56-

60).

As JavaServer Faces technology is used to implement web applications all

common web applications are present in it. Open Web Application Security

Projects has a top ten list of most common web application security risks that

have to be acknowledged when developing user interfaces with JavaServer

Faces. It is also possible to developers to misuse the framework and access

the component's raw value through component tree and use an invalidated

value.

Figure 5: JSF execute and render lifecycle (see org. Burns
2013, 55)

26

2.1.2.11 JSR-345 Enterprise JavaBean 3.2

Enterprise JavaBeans aim to be standard component architecture for building

object-oriented Java EE applications. They simplify application's development

by hiding low-level transaction and state management details, multi-threading,

connection pooling and other complex low-level APIs. (Vatkina 2013b, 26.)

JSR-345 defines three types of enterprise beans; session objects, message-

driven objects and entity objects which are optional. Session beans are

executed on behalf of the client, they can be transaction-aware and update

shared data but does not represent the data itself. Message-driven objects

have the same characteristics as session beans ; however they are always

asynchronously invoked and are stateless. Entity objects represents the data

and are long lived. (Vatkina 2013b, 32-33.)

Session objects have three subtypes; stateful, stateless and singleton session

beans. The main difference with these subtypes is how beans are presented

for clients. Stateful session bean instances are always client specific, once the

client acquires references to the bean. The client can invoke bean's business

methods multiple times and it will always get the same instance of the bean.

The instance is destroyed after the client invokes @Remove annotated

method or if the instance is passivated specified amount of time. The EJB

container passivate an instance when the container implementation specific

caching algorithm decides so, generally it should be done at the end of each

method although the instance cannot be passivated within transaction.

Stateful session bean can store the state of the client but the state is lost if the

instance is destroyed. Invoking destroyed stateful bean will throw

javax.ejb.NoSuchEJBException. Stateless session beans otherwise are not

client specific and the client can be sure that it does get the same instance

reference when invoking a bean multiple times. Container will create and

destroy stateless session bean instances on demand of active clients;

therefore a client's state cannot be stored in stateless session beans.

Singleton session bean instances are shared among all clients. There can be

27

only one instance of a singleton session bean per JVM. As singleton session

bean instance is shared, it should not store client specific state. (Vatkina

2013b, 83 - 85, 92 - 94, 98-99.)

JSR-345 have some points where a developer can make a mistake and cause

security weaknesses. If the developer stores client's state to a stateless

session bean it could be exposed to a different client. This could be hard to

find in run-time because the client that sets the state could get the same

instance back in the next invocation or the bean's instance could be destroyed

before any other clients acquire it. Also, the developer could store a client's

state to singleton session bean, and the state would be shared among all

clients. Depending on business case this could be a wanted behaviour;

however developers should still pay attention to this. This is much easier to

find out than a case with stateless session beans because this happens

during every invocation.

2.1.2.12 JSR-346 Context and Dependency Injection for Java
1.1

JSR-346 specification aims to provide a set of services that can help to

improve the application's structure. The specified services are following:

• Life cycle for stateful objects that are bound to life cycle

contexts.

• Type-safe dependency injection mechanism that can select

dependencies either on development or deployment time.

• Integration to JSR-341

• Way to decorate injected objects

• Way to associate interceptors with injected objects

• Event notification model

• Addition to servlet specifications contexts, conversational

context

28

• Portable extensions to integrate with the container

JSR-345 is not meant to be used alone but along with other specifications

such as JSR-318, JSR-330, JSR-344, JSR-345 or JSR-349. (Muir, 2013, 1-3.)

As JSR-345 shows through examples, the only thing that is left to the

application developer, in perspective of JSR-345, is adding annotations to

code and if needed implementing marker annotations. All the other things are

done under the hood by containers and other specifications, and as

configuration is evaluated in development or deployment time, it is highly

unlike that any error could be slipped to production. Specification even states

that all definition errors are developer errors and are cached in container's

initialization time. The last point for the discovery of definition errors is

application's startup, as JSR-345 specifies that containers must perform bean

discovery and raise definition an exception if any definition errors exists. (Muir

2013, 4-10, 111-112.)

Therefore, this specification will itself not cause possible security weaknesses

that a developer can implement, thus it is not interesting from the point of view

of this master's thesis.

2.1.2.13 JSR-349 Bean Validation 1.1

JSR-349 defines validation mechanism and object level constraint

declarations for Java. Constraints are defined by using annotations that have

been marked with @Constraint annotation. Constrains can be applied to

types, fields, methods, constructors, parameters or other constraints if

composition is needed. Constrains define a valid value of the target or multiple

Java types if used to cross-parameter validation. ConstraintValidators are

used to implement the constraint's validation logic. The validation framework

automatically invokes ConstraintValidators for the correct constraints and

validates the given value. If constraint annotation is used for unsupported type

UnexpectedTypeException will be thrown. If the constrains definition is not

valid ConstraintDefinitionException will be thrown in run-time. (Bernard 2013,

29

5-9.)

The life cycle of constraint validation object is not defined and validation

providers can cache these instances for future use. Although initialize -method

is invoked before using the implementation, the value should not be stored

into instances state. (Bernard 2013, 25.)

JSR-349 have some points of failure that can cause unwanted behaviour in

application's run-time. Developers should be able to get a warning if

constraint's definition is not valid or constraint is applied to unsupported type,

or the validated object's value is stored to constraint validator's state.

2.1.2.14 JSR-352 Batch Application for the Java Platform

JSR-352 specification defines Java API for applications that are intended for

bulk processing and usually are long running and computing or date intensive.

Batch application can be divided into seven components; JobRepository,

JobOperator, Job, Step, ItemReader, ItemProcessor and ItemWriter as shows.

JSR-352 can execute a batch sequentially or parallel. (vignola 2013, 5)

The job is specified by using Job Specification Language (JSL) which JSR-

352 defines. JSL is implemented by using XML and has its own XML element

for Job and step components and their attributes. (Vignola 2013, 19.)

The batch API or the JSL does not expose any possible security themselves

as APIs are simple and JST is used to control these APIs. Security

Figure 6: Batch Applications components (See org. Vignola 2013, 5)

30

weaknesses in batch applications are caused by misuse of other technologies

used to implement batch application's functionality. Therefore, this

specification is not within scope of this master's thesis.

2.1.2.15 JSR-907 Java Transaction API (JTA) 1.2

JSR-907 specifies interfaces between transaction manager and the

application, resource managers and application servers. The interface for

application's is a high level interface that can be used to define the

application's transactions. The interface for application server allows

application server to control transaction boundaries for the application being

managed. The specification also offers Java mapping for the industry standard

X/Open XA protocol, so transactional resource manager can participate in a

global transaction that is controlled by external transaction manager.

(Parkinson 2013, 7.)

In transactional Java EE applications there are two of kinds of transactions,

container managed and user managed. If the developer uses container

managed transactions he/she need only to define transaction type for

methods. Available types are REQUIRED, REQUIRES_NEW, MANDATORY,

NOT_SUPPORTED and NEVER which can be assigned by using

Transactional annotation. When using user managed transactions the

developer will handle start and end of the transaction progmatically. For this

specification offers UserTransaction interface which has following methods to

interact with the transaction. (Parkinson 2013, 11 - 25.)

• begin: Create a new transaction and associate it with current thread

• commit: Complete the transaction associated with current thread

• getStatus: obtain the status of the transaction associated with current

thread

• rollback: Rollback the transaction associated with current thread

• setRollbackOnly: Modify the transaction associated so that its only

31

outcome can be roll back

• setTransactionTimeout: Modify current threads transactions timeout

The container managed transactions do not leave much place for misuses and

therefore are not within scope of this master's thesis. Misused user

transactions, on the other hand can cause dramatic errors in run-time. If a

transaction is not completed after an operation that needs it, the resource will

be reserved longer and will cause performance issues.

2.1.3 Security layers

Java EE applications have three security layers application, transport and

message. Developers usually handle application-layer's security and

transport-layer and message-layer security are handled by infrastructure or

application server maintainers.

The containers which are introduced in chapter 2.1 provide application-layer

security. As Jendrock and partners report containers can be secured using

declarative or programmatic security; declarative means using either

annotations in code or deployment descriptors to define secured resources

and their authentication and authorization information programmatic security is

embedded in the application itself. The advantage of application-layer security

is that the security is uniquely tailored for the application and it is fine-grained

with application-specific settings. On the other hand, it is dependent on

security attributes that cannot be transferred between application types, and

support for different protocols makes it vulnerable and data is lost or contained

with the point of vulnerability. (Jendrock and co N.D, 47-8 - 47-9.)

The transport-layer security is used to secure data transport between server

and client. It is fully implemented outside of the application and so it is out of

the focus of this master's thesis.

32

Message-layer security is used to secure SOAP messages or SOAP message

attachments. As Jendrock and partners lights up in their Java EE tutorial,

WSS is used to implement message-layer security and it is not part of Java

EE platform; therefore, this level static security analysis is also out of the focus

for this master's thesis (Jendrock and co N.D, 47-8 - 47-9).

2.2 Static Application Testing

Static application testing is usually done by developers with tools that are

specially developed to analyse source code. Applications source code itself

has not been executed while performing static application testing so it does

not need run-time environment for the application. Instead, static application

testing aims to find violence of best practices rather than trying to prove that

an application works as planned (Ayewah, Pugh, Hovermeyer, Morgenthaler &

Penix 2010, 22). These best practices include practices from code styling, line

length or use of parentheses to application design that can cause cyclomatic

complexity. These best practise violations can cause serious vulnerabilities

like SQL-injections where user can execute unwanted SQL-statement to

database (Livshits & Lam N.D, 3). The following code example would be

marked as issue by static application analysis because it does concatenate

input parameters to SQL-query.

public boolean authenticate(String username, String password){
Connection conn = getConnection();
Statament statement =

connection.createStatement(
“SELECT * FROM accounts WHERE username =\'” +
username + “\' and password=\'” +

 password +”\'”
);
ResultSet rs = statement.execeuteQuery();
return rs.next();

}

33

Another example is infinite recursive loops that cause application to crash

eventually to stack overflow (Ayewah and co, 23).

 public boolean isAuthenticated() {

return this.isAuthenticated();
}

Beside finding the best practice violation static application analysis tools can

show code metrics by counting depth of nesting, cyclomatic complexity or

distinct paths from one line of code to the another (Graham, Veenendall,

Evans & Black, 73).

2.2.1 SonarQube

SonarQube is an open source platform for source code quality management

that is developed by SonarSource. SonarQube has four components server,

database, plugins and scanner. Server has two processes, a web server

which offers user interface to explore analysed projects and Elasticsearch

based search server which is used by user interface for queries. The database

is used to store installation's configuration and project analyses. Scanner is

the component that do the hard part of work by analysing projects and

sending the results to the SonarQube server. The fourth component contains

plugins that can be used to extend SonarQube platform's functionalities.

SonarQube architecture is presented in Figure 7. (Gigleux 2015.)

34

SonarQube can analyse multiple programming languages through language

plugins (Mallet 2016). Language plugins contains default analysing rules for

the language they support, however, more rules can be added through rule

plugins like checkstyle plugin which enforces coding convention standards for

Java.

 There are two types of rules: standard rules and security related rules.

Standard rules should not produce any false positive issues where as security

related rules can produce some false positive issues. Every rule represents a

single issue type in the code like Exception should be catched instead of

Throwable. Rules can have tags defined, which makes it easier to categorize

rules, tags can be something like security, CWE or convention. (Campbell

2015a.)

The Java Plugin itself contains more than 300 rules for analysing Java source

code. There are rules for coding conventions, bug detection and security

problems. Security related rules contains checks for some CERT and CWE

weaknesses as for some SANS top 25 most dangerous software errors and

some OWASP top 10 weaknesses. All rules are CWE compatible so it is

possible to search rules by CWE identifier. (Racodon 2016.)

For all the issues that SonarQube recognizes a severity classification is

Figure 7: SonarSource architecture (See org. Gigleux 2015)

35

applied:, blocker, critical, major, minor and info (Campbell 2015b). Default

severity of the rule can be changed to express better company policies for

example when creating a quality profile. Quality profiles are sets of rules that

are assigned to projects under analysis (Campbell 2015c). Ideally all projects

that are implemented with same language would use the same quality profile

so they can be compared to each other.

2.3 Application vulnerabilities and how to measure them

Application vulnerabilities are weaknesses in application that users can

exploit. By exploiting an application's weakness malicious user can affect

applications functionalities and gain some benefit from this or influence the

service's confidentiality, integrity or availability which are the three tenets of

information security as shown in Figure 8.

Figure 8: The three tenets of
information system security (See
org. Kim; Solomon. 10)

C
on

fid
en

tia
lit

y

Integrity

Avaibility

36

Weaknesses can be ranked by using different scoring systems like CWSS or

CVSS. These different scoring systems are presented next.

2.3.1 Common Weaknesses Scoring System

CWSS (Common Weaknesses Scoring System) offers a mechanism for

ranking weaknesses in consistent, flexible and open manner. It uses three

main metric groups to rank weaknesses: Base Finding, Attack Surface and

Environmental metric group. Each of these metric groups contains multiple

other metrics that are used to calculate the weakness ranking value (Coley &

Martin 2014). A full function listing of the sub metrics can be found in Appendix

A: CWSS submetrics.

Base finding metric group expresses the risk of weakness, how accurate the

finding is and the strength of controls. Attack Surface metric group handles

how easily attacker can exploit the weakness and Environmental metric group

specifies the environment and operational context of the weakness. CWSS

ranking value is calculated by placing the value to each factor in the Base

Finding metric group and then calculating them to Base Finding sub score

which will bee between 0 to 100. This same method is used to calculate Attack

Surface and Environmental metric groups which produces value between zero

to one. Finally, these three values are multiplied together to gain final CWSS

score. The formulas for each sub score are presented in Figure 9. (Coley &

Martin 2014.)

37

2.3.2 Common Vulnerability Scoring System

CVSS (Common Vulnerability Scoring System) is a similar scoring system

than CWSS; however, instead of weaknesses it focuses straight on the

vulnerabilities. So it is kind of one layer higher scoring system as earlier

mentioned vulnerabilities are weaknesses that have been exploited. Many

vulnerability that is listed in www.cvedetails.com site uses CVSS contains link

to the actual weaknesses in http://cwe.mitre.org site. As CWSS CVSS also

uses three sub metrics, however, they are called metric groups in its ranking

system: Base, Temporal and Environmental.

Base metric group is used to characterise vulnerabilities of those variables

that will not change over the time or the environment. Temporal metric group

is used to those variables that might changes over time but not across run-

Figure 9: CWSS Score Formulas (Coley; Martin. 2014)

Base Finding subscore
formula

Environmental subscore
formula

Attack surface subscore
formula

Base = [(10 * TechnicalImpact + 5 *
(AcquiredPrivilege + acquiredPrivilegeLayer) + 5*FindingConfidence) *
f(TechnicalImpact) * InternalControlEffectiveness] * 4.0

[20*(RequiredPrivilege + RequiredPrivilegelayer + AccessVector) + 20 *
DeploymentScope + 15*levelOfInteractions + 5 *
AuthenticationStrength] / 100.0

[(10*Businessimpact + 3*LikelihoodOfDiscovery + 4*LikelihoodOfExploit) +
3*Prevalence) * f(BusinessImpact) * ExternalControlEffectiveness] /

 20.0
f(BusinessImpact) = 0 if BusinessImpact == 0; otherwise f(BusinessImpact) = 1

 f(TechnicalImpact) = 0 if TechnicalImpact = 0; otherwise f(TechnicalImpact) = 1

38

time environment. As in CWSS, the environmental metric group represents

those variables that are relevant and unique to specific run-time environment.

This helps organizations to mitigate vulnerability by making changes to run-

time environment. (Hanford, 5-6). All these three metric groups contain sets of

metrics variables that help define vulnerability score. Only those metric

variables that belong to Base metric group are mandatory to calculate CVSS

score as Appendix B: CVSS metric vectors explains.

CVSS produces a ranking value between 0.0 and 10.0. It also produces a

vector string that represents values that are used to form CVSS value. Its

format is (AV:N/AC:M/Au:N/C:N/I:P/A:N) and it is usually displayed with

vulnerability details as Figure 10 shows. The ranking value itself is calculated

using formulas in Appendix C: CVSS score formulas. (Hanford 2015, 18 - 19.)

Figure 10: CVSS information example

2.4 Theoretical framework

It is widely studied that with static application testing it is possible to find

different kinds of coding mistakes that can cause bugs to application. But does

static application testing find security related mistakes that in the Java EE are

39

more or less related to metadata annotations for underlying containers that

take care of implementation of security mechanisms? Although it is possible

for developers to do programmatic security to applications, does static

application analysis know which is the correct way to use the APIs that make it

possible? Or does static application analysis only find coding mistakes that

are based Java SE's technologies?

I expected that static application analysis does not raise issues about

inadequate security definitions in Java EE technologies and that it can

understand the misuse of APIs used to produce programmatic security.

However, I also expect that by using static application analysis it is possible to

implement better security to the Java EE applications through the findings it

does from misuses of the Java SE technologies and misuses of the Java

language itself.

40

3 Methodology

This chapter presents the methodology used to determinate the usefulness of

SonarQube from security perspective. First subchapter presents how data is

produced. After that the testing environment is presented and in the end target

of the analysis.

3.1 Data collection

To study what weaknesses the SonarQube can find, a special application was

developed that contains security weaknesses that are identified in this

master's thesis, CWE and OWASP top ten. Not all weaknesses from those

sources are implemented to the application because it would expand the

master's thesis too much. The selected weaknesses and their implementation

reference points are listed in Appendix D: Identified weaknesses in Java EE

technologies and their implementation references

The application is analysed with SonarQube against two quality profiles. The

first one contains only security related rules that are provided by Java Plugin,

listed in Appendix E: Java plugins security rules profile, and the second one is

expanded with rules from third party plugins offering security related rules,

listed in Appendix F: Security rules profile from multiple plugins. After

analysing SonarQube the results are mirrored against the lists of known

weaknesses.

3.2 Static Application Testing environment

This chapter and its sub chapters defines the testing environment and all

components in it and presents the application under the analysis.

41

3.2.1 SonarQube setup

SonarQube is installed to a virtual machine running Arch Linux which has

Oracle JRE 7 installed for the SonarQube. To SonarQube is added Java

plugin and PMD, Findbugs, Web and XML plugins. From rules that are

provided by these plugin, two quality profiles are created. The first one contain

security related rules from Java plugin and the second one contain security

related rules from all of these plugins. Another virtual machine is used for

standalone PostgreSQL database where the SonarQube stores configurations

and results. The analysis is done by using SonarQube scanner for Maven

from developer desktop machine. Specific version of each component are

presented in Table 3.

Table 3: Test environment component versions

Component Version Comment

SonarQube Platform 5.4

SonarQube scanner for Maven 3.0.1 org.sonarsource.scanner.maven:sonar
-maven-plugin:3.0.1

Java Plugin 3.12 For the Java Language support and
default rules

PMD plugin 2.5 For enabling more security related
rules

Findbugs 3.3 For enabling more security related
rules

Web plugin 2.4 For enabling more security related
rules

XML plugin 1.4.1 For enabling more security related
rules

PostgreSQL 9.5.1

Java Runtime Environment 1.7.0_79 64bit build 15

42

3.2.2 Target of analysis

The analysed application is a simple application for registering responses to

invitations with authentication. The application also has management interface

for creating events and their invitations. The applications ready state

represents software under development. There is only 3041 lines of code so

application can be concerned as very small application.

The application was developed for the master's thesis and contains known

security weaknesses. The application's source code can be found in

GitHub.com repository called summons owned by Timizki and its tag called

thesis_frozen. The application is implemented by using the technologies used

by the assigner. The technologies were also limited further to contain only

those technologies that were recognized to have possible misuse

weaknesses. All weaknesses are marked with comment

“SECURITY_WEAKNESS“ in the code. The Application's structure is

presented in Figure 11.

Figure 11: Test applications structure

43

4 Results

This chapter present all results gained from the analysis of the test

application. First is presented how quality profiles were created. After that, the

results from the analysis of the Java plugins security rules profile are

presented. After that, the results of the analysis with security rules profile from

multiple plugins are discussed. The last subchapter analyses the results.

4.1 Creating quality profiles

Empty quality profiles were created from the Quality Profiles page in

SonarQube. SonarQube askes only the quality profile's name and language,

however, each additional plugin can add optional fields to the form as Figure

12 shows.

Figure 12: Create new quality profile dialog

44

After empty quality profiles were created, they had to be populated with rules

which was carried out through rule query page. The rule queries were limited

by tags and rule repositories. For both quality profiles the same tags was

used: security, cwe, owasp-a1, owasp-a2, owasp-a3, owasp-a4, owasp-a6

and owasp-a7. For the first quality profile, vanilla installation's profile, rules

were limited to SonarQube Java repository and for the second one all

repositories were included. At the end of each query all results were added to

the quality profile through bulk change button.

4.2 Results of the vanilla installations

The quality profile created from rules offered by the Java plugin contained 70

security related rules. Ten of those were classified as blocker, 43 as critical, 15

as major and 2 minor. Every rule had at least two tags where one was security

related and another might have been non-security related like bug. The quality

profile contained only 13 rules related to any Java EE technologies, all the

other rules were targeted for Java language in generally. The Java EE related

rules are listed in Table 4. Twelve of these rules were classified as critical and

the last one was classified as major.

Table 4: Java EE security rules in Java Plugin

Severity Rule name
Critical "HttpServletRequest.getRequestedSessionId()" should not be used
Critical Cookies should be "secure"
Critical Credentials should not be hard-coded
Critical Exceptions should not be thrown from servlet methods
Major Exit methods should not be called
Critical Fields in a "Serializable" class should either be transient or serializable
Critical HTTP referers should not be relied on
Critical Non-serializable objects should not be stored in "HttpSessions"
Critical Security constraints should be defined
Critical Struts validation forms should have unique names
Critical Values passed to SQL commands should be sanitized
Critical Web applications should use validation filters
Critical Web applications should not have a "main" method

45

With this quality profile SonarQube was able to detect 24 issues. From these

issues 14 were Java EE related and they are presented in Table 5. Two rules

raised four issues each, in different places. Thus, only eight unique issues

were found. All issues that was found are listed in Appendix G: Security issues

with Java plugin appendix contains also more information about the issues.

46

Table 5: Java EE related issues found with Java Plugin's security rules

Keys Severity Tags message

JDS-1 CRITICAL
cwe, jee, owasp-a7,

security, websphere

Add "security-constraint" elements

to this descriptor.

JDS-12, JDS-

13, JDS-14,

JDS-15

CRITICAL

cert, cwe, error-

handling, owasp-

a6, security

Add a "try/catch" block for

"forward".

JDS-16 CRITICAL

cert, cwe, error-

handling, owasp-

a6, security

Add a "try/catch" block for

"sendRedirect".

JDS-2 CRITICAL
injection, owas,p-

a1, security

Add a validation filter to this

"web.xml".

JDS-5 CRITICAL
cwe, owasp-a2,

owasp-a6, security

Add the "secure" attribute to this

cookie

JDS-6 CRITICAL bug, cwe
Make "Invitation" serializable or

don't store it in the session.

JDS-3, JDS-4,

JSD-8, JDS-10
CRITICAL

bug, cwe,

serialization

Make "<variable name>" transient

or serializable.

JDS-18 CRITICAL

cwe, owasp-a2,

sans-top25-porous,

security

Remove this hard-coded

password.

The analysis was started with Maven by command mvn clean verify

sonar:sonar which started sonar-maven-plugin. The whole build took

approximate only 42 seconds as Figure 13 shows.

47

4.3 Security tuned installations results

The second analysis was done by using quality profile that contained rules

from all plugins; thus, it contained all rules from the first quality profile and 74

more security related rules from other plugins. New rules were gathered from

FindBugs, SonarQube Web and PMD plugin repositories. In total the second

quality profile contained 144 active security related rules. From these rules 40

were Java EE related, and they are listed in Table 6.

Figure 13: Analyze time with Java plugin security rules profile

48

Table 6: Java EE related security rules in second quality profile

Severity Rule Name

Critical
"HttpServletRequest.getRequestedSessionId()" should not be
used

Critical Cookies should be "secure"
Critical Credentials should not be hard-coded
Critical Exceptions should not be thrown from servlet methods
Major Exit methods should not be called

Critical
Fields in a "Serializable" class should either be transient or
serializable

Critical HTTP referers should not be relied on
Critical Non-serializable objects should not be stored in "HttpSessions"
Critical Security constraints should be defined
Critical Struts validation forms should have unique names
Critical Values passed to SQL commands should be sanitized
Critical Web applications should use validation filters
Critical Web applications should not have a "main" method
Major Absolute path traversal in servlet
Major Relative path traversal in servlet

Minor
Security - A prepared statement is generated from a nonconstant
String

Minor Security - Found JAX-RS REST Endpoint

Major Security - Hard Coded Password
Blocker Security - Hardcoded constant database password
Minor Security - HTTP Headers Untrusted
Major Security - HTTP Response splitting vulnerability
Major Security - JSP reflected cross site scripting vulnerability

Critical
Security - Nonconstant string passed to execute method on an
SQL statement

Critical Security - Potential SQL/JPQL Injection (JPA)
Critical Security - JSP reflected cross site scripting vulnerability
Critical Security - Potential XSS in JSP
Minor Security - Potentially Sensitive Data in Cookie
Critical Security - Potential XSS in Servlet
Critical Security - Servlet reflected cross site scripting vulnerability
Critical Security - Servlet reflected cross site scripting vulnerability
Minor Security - Untrusted Content-Type Header
Minor Security - Untrusted Hostname Header
Minor Security - Untrusted Query String
Minor Security - Untrusted Referer Header
Minor Security - Untrusted Servlet Parameter
Minor Security - Untrusted Session Cookie Value
Minor Security - Untrusted User-Agent Header
Major Security - Unvalidated Redirect
Major Security - XSSRequestWrapper is Weak XSS Protection

49

Before rerunning a static analysis with Maven the old analysis was deleted

from SonarQube platform and the second quality profile was set as default

profile. The analysis produced 27 issues at this time. From these issues

seventeen were Java EE related which are listed in Table 7. Also this time two

rules found four issues different places and because of that only eleven

unique issues were identified. As with the first analysis all the rest issues were

related to Java in generally. All issues that were found are listed in Appendix

H: Security issues with multiple plugins.

Table 7: Java EE related issues found with security rules from
multiple plugins

Key Severity Tags Message

JES-25 CRITICAL
injection, owasp-a1,

security

Add a validation filter to this

"web.xml".

JES-24 CRITICAL
cwe, jee, owasp-a7,

security, websphere

Add "security-constraint"

elements to this descriptor.

JES-17, JES-18,

JES-19, JES-20
CRITICAL

cert, cwe, error-

handling, owasp-a6,

security

Add a "try/catch" block for

"forward".

JES-21 CRITICAL

cert, cwe, error-

handling, owasp-a6,

security

Add a "try/catch" block for

"sendRedirect".

JES-10 CRITICAL
cwe, owasp-a2,

owasp-a6, security

Add the "secure" attribute to this

cookie

JES-22 MAJOR cwe, owasp-a3

HTTP parameter directly written
to HTTP header output in
io.vksn.summons.ui.servlet.Redir
ectServlet.doGet(HttpServletReq
uest, HttpServletResponse)

JES-11 CRITICAL bug, cwe
Make "Invitation" serializable or
don't store it in the session.

JES-8, JES-9,
JES-13, JES-15

CRITICAL
bug, cwe,
serialization

Make "<variable name>"
transient or serializable.

JES-2 CRITICAL
cwe, owasp-a2,
sans-top25-porous,
security

Remove this hard-coded
password.

50

Key Severity Tags Message

JES-5 CRITICAL
cwe, injection,
owasp-a1, security,
wasc

The query is potentially
vulnerable SQL/JPQL injection

JES-23 MAJOR cwe, security, wasc Unvalidated Redirect

The second analysis took 12 seconds longer to finish meaning a total

approximate build time of 54 seconds as Figure 14 shows.

4.4 Analysis of results

SonarQube was able to find issues from Java SE technologies as Java EE

technologies, although there were more Java SE related issues than Java EE

related issue. This was expected as the application contained more Java SE

related code than Java EE. The SonarQube was able to find eleven unique

weaknesses out of the 35 Java EE weaknesses implemented in the test

application. In total there were 44 different recognized weaknesses, one of

those, MTW-17, was detected by a compiler giving compile error.

The vanilla installation found seven of these eleven issues whereas security

tuned installation found all the issues. However, when rule count is taken into

account there is not such a big difference since the security tuned installation

had more than 50% more rules. The issues which were found are mapped to

identified weaknesses in Table 8. SonarQube did found one issue that was not

Figure 14: Analyze time with extended security rules profile

51

identified in the master's thesis. The issue was about storing non-serialiable

object to session. Even though SonarQube was able to find some

weaknesses from owasp top ten categories, it does not mean that all of them

were to be found because weaknesses in the categories can be implemented

in many ways and almost in all Java EE technologies.

Table 8: Issues mapped to identified weaknesses

Weakness identifier Issue identifier

MTW-2 JDS-18 JES-2

MTW-8 JES-5

OWASP-A1 JDS-2, JDS-25

OWASP-A3 JES-22

OWASP-A7 JDS-1, JES-24

OWASP-A10 JES-23

CWE-536
JDS-12, JDS-13, JDS-14, JDS-15, JDS-16,

JES-17,JES-18, JES-19,JES-20, JES-21

CWE-594
JDS-4, JDS-10,JDS-3, JDS-8,

JES-9, JES-13, JES-15, JES-8

CWE-600
JDS-12, JDS-13, JDS-14, JDS-15, JDS-16,

JES-17,JES-18, JES-19,JES-20, JES-21

CWE-601 JES-23

CWE-614 JDS-5, JES-10

Weakness not

identified

JDS-6,

JES-11

Even though SonarQube was not able to find all weaknesses it is not

catastrophe because SonarQube did not report any false positive issues

either, which makes SonarQube more reliable and decreases the time to be

used to ensure the correctness of bugs. The time used to resolve bug was

reduced even more because most of the rules in SonarQube offers clear

52

information on what is a noncompliant solution and what is a compliant

solution as Figure 15 shows. This offers also a good way to all developers to

learn how some specific thing in code should be done even if they do not fix

the bug. All issues were also clearly listed and categorized by file.

Even though there were more than 50% more rules in the second quality

profile the analysis time did not increase proportionately as much. This

encourages to create quality profiles that contain a large amount of rules and

still developers could run the analysis quickly and often and get feedback from

SonarQube.

SonarQube's Java plugin itself offers good set of rules that are able find

reliable security issues from Java EE and Java SE code. And when quality

profiles are enriched rules form the other plugins SonarQube's capabilities are

even more reliable; however, there is still long way to go before SonarQube

can find even all the major security issues. There is also some parties that

works with the SonarSource to bring more security rules to SonarQube's Java

plugin. This will ensure that SonarQube's capability to find security issues will

get better in the future.

Figure 15: Issue explanation

53

5 Conlusions

The objectives that were set to this master's thesis were reasonable and

achievable. The research questions and restrictions set to the master's thesis

guided me through the work. Without the restrictions research background

would have increased too much to be carefully covered in the implementation

phase.

The results shows that SonarQube can be used to improve Java EE

application's security because SonarQube is Java EE and Java SE technology

aware more or less. The test application developed for this master's thesis

should be peer reviewed or evaluated to make sure that the security

weaknesses are implemented correctly to be found. Also, the security

weaknesses recognized in this master's thesis marked with identifier MTW-*

should be evaluated to ensure that they are real weaknesses.

In the implementation phase when analysing the results it was hard to draw a

line which of the rules was related to Java EE and which to Java SE, however

in the end it does not matter so much because they all involved the security

aspect. To get more reliable results the test applications should contain more

security weaknesses. Weaknesses should be implemented in many different

ways so that SonarQube's ability to detect different weakness variants could

be studied. However, it is time consuming to implement weaknesses so that

they mirror even somehow the real world use cases.

SonarQube pefromed better in detecting weaknesses from the Java EE

application than was expected, which is a good thing. However, it still can

detect only the tip of the iceberg from the all possible weaknesses. Luckily,

SonarSource and other parties are working to improve the SonarQube's

security weakness detection capabilities in every release.

To me this master's thesis was very interesting to do because I had to study

many Java EE specifications to get an understanding if they have possible

security weaknesses, and on the side of that I could gather much valuable

54

knowledge about those technologies. When studying those technologies there

was a worry about what the security state of reference implementations of

those technologies is, and it would be interesting to study security of Oracle's

JDK and Open JDK. Another issue that came to my mind while writing this

master's thesis was how static application testing could effectively be a part of

the software development process and how other parties, like project

managers, could use information it produces.

55

List of references

Ayewah, N. Pugh, W. Hovemeyer, D. Morgenthaler, D. Penix J. 2010. Using
Static Analysis to Find Bugs. IEEE Computer Society.

Chinnici, R. 2003. Java(TM) API for XML-based Remote Procedure Call (JAX-
RPC) Specification (“Specification”) Version 1.1

Concurrency Utilities for Java EE. Version 1.0. Final Release. 2013. Oracle
America, inc.

Goncalves, A. 2013. Begining Java EE 7 (Expert voice in Java).Apress.

Graham, D. Van Veenendaal, E. Evans, I. Black, R. 2008. Foundations of
software testing ISTQB Certification. Thomson.

Hanford, S. 2015. Common Vulnerability Scoring System V3.0 specification
Document.

Jendrock, E., Cervera-navarro, R., Evans, I., Haase K., Markito, W. 2014.
Java Platform, Enterprise Edition (The Java EE Tutorial). Oracle.

JSR-196 java Authentication service provider Interface for
Container(“Specification”). Version 1.1. Maintenance Release. 2013. Oracle
America, Inc.

Kim, D. Solomon, M. 2012. Fundamentals of Information System Security.
Jones & Bartlett learning.

Kin-man, C. 2013. JavaServer Pages(TM) Spesification. Version 2.3.
maintenace Release 3.

Livshits, B. Lam, M. N.D. Finding Security Vulnerabilities in Java applications
with Static Analysis. Computer Science Department Stanford University.

Martin, R. Coley, S. Kenderdine, J. Piper, L. 2015. CWE Version 2.9. The
MITRE Corporation.

OWASP Top 10. 2013. The Open Web Application security Project.

Vidergar, A. Stender, S. 2008. Concurrency Attacks in Web Applications. iSEC
Partners, Inc.

Völter, M., Schmid, A., Wolff, E. 2002. Server Component Patterns. John
Wiley & Sons ltd.

Bernard, E. 2013. JSR 349 Bean Validation specification. Version 1.1. Final

56

Release. Accessed on 22.1.2016. Retrieved from
http://download.oracle.com/otn-pub/jcp/bean_validation-1_1-fr-eval-
spec/bean-validation-specification.pdf

Burns, E. 2013. JSR 344 JavaServerTM Faces Specification. Version 2.2. Final
Draft. Accessed on 22.2.2016. Retrieved from http://download.oracle.com/otn-
pub/jcp/jsf-2_2- fr-eval-spec/javax.faces-api-2.2-FINAL.zip

Butek, R. Gallardo, N. 2006. Web services hints and tips: JAX-RPC versus
JAX-WS, Part 1. Accessed on 28.7.2015. Retrieved from
http://www.ibm.com/developerworks/library/ws-tip-jaxwsrpc/index.html

Campbell, A. 2015a. Rules. Accessed on 4.3.2016. Retrieved from
http://docs.sonarqube.org/display/SONAR/Rules

Campbell, A. 2015b. Issues. Accessed on 4.3.2016. Retrieved from
http://docs.sonarqube.org/display/SONAR/Issues

Campbell, A. 2015c. Quality profiles. Accessed on 4.3.2016. Retrieved from
http://docs.sonarqube.org/display/SONAR/Quality+Profiles

Chung, K. 2013. JSR 341 Expression Language Specification. Version 3.0.
Final Release. Accessed on 15.1.2016. Retrieved from
http://download.oracle.com/otn-pub/jcp/el-3_0-fr-eval-spec/EL3.0.FR.pdf

Coley, S. Martin, B. 2014. Common Weakness Scoring system (CWSS(TM)).
Accessed on 4.8.2015. Retrieved from
http://cwe.mitre.org/cwss/cwss_v1.0.1.html

Common Vulnerability Scoring System, V3 Development Update. 2015.
Accessed on 5.8.2015. Retrieved from https://www.first.org/cvss

Data Validation. 2013. Accessed on 3.8.2015.
https://www.owasp.org/index.php?title=Data_Validation

Deakin, N. 2013. JSR 343 Java Message Service. Version 2.0. Final Release.
Accessed on 15.1.2016. Retrieved from http://download.oracle.com/otn-
pub/jcp/jms-2_0-fr-eval-spec/JMS20.pdf

DeMichiel, L. 2013. JSR 338: Java Persistence API, version 2.1. Final
Release. Accessed on 18.12.2015. Retrieved from
http://download.oracle.com/otn-pub/jcp/persistence-2_1-fr-eval-
spec/JavaPersistence.pdf

Gigleux, A. 2015. Arhitecture and Integration. Accessed on 3.3.2015.
Retrieved from
http://docs.sonarqube.org/display/SONAR/Architecture+and+Integration

Gnanasundar, P. How To Fix SQL Injection: JPA. N.D. Accessed on
18.12.2015. Retrieved from http://software-security.sans.org/developer-how-

http://software-security.sans.org/developer-how-to/fix-sql-injection-in-java-persistence-api-jpa
http://docs.sonarqube.org/display/SONAR/Architecture+and+Integration
http://download.oracle.com/otn-pub/jcp/persistence-2_1-fr-eval-spec/JavaPersistence.pdf
http://download.oracle.com/otn-pub/jcp/persistence-2_1-fr-eval-spec/JavaPersistence.pdf
http://download.oracle.com/otn-pub/jcp/jms-2_0-fr-eval-spec/JMS20.pdf
http://download.oracle.com/otn-pub/jcp/jms-2_0-fr-eval-spec/JMS20.pdf
https://www.owasp.org/index.php?title=Data_Validation
https://www.owasp.org/index.php?title=Data_Validation
https://www.first.org/cvss
http://cwe.mitre.org/cwss/cwss_v1.0.1.html
http://download.oracle.com/otn-pub/jcp/el-3_0-fr-eval-spec/EL3.0.FR.pdf
http://docs.sonarqube.org/display/SONAR/Quality+Profiles
http://docs.sonarqube.org/display/SONAR/Issues
http://docs.sonarqube.org/display/SONAR/Rules
http://www.ibm.com/developerworks/library/ws-tip-jaxwsrpc/index.html
http://download.oracle.com/otn-pub/jcp/jsf-2_2-fr-eval-spec/javax.faces-api-2.2-FINAL.zip
http://download.oracle.com/otn-pub/jcp/jsf-2_2-fr-eval-spec/javax.faces-api-2.2-FINAL.zip
http://download.oracle.com/otn-pub/jcp/jsf-2_2-fr-eval-spec/javax.faces-api-2.2-FINAL.zip
http://download.oracle.com/otn-pub/jcp/bean_validation-1_1-fr-eval-spec/bean-validation-specification.pdf
http://download.oracle.com/otn-pub/jcp/bean_validation-1_1-fr-eval-spec/bean-validation-specification.pdf

57

to/fix-sql-injection-in-java-persistence-api-jpa

Mordani, R. 2013. JSR 250: Common annotations for the java platform.
Maintanance release. version 1.2. Accessed on 11.12.2015. Retrieved from
http://download.oracle.com/otn-pub/jcp/common_annotations-1_2-mrel2-eval-
spec/jsr-250-1.2-final.pdf

JSR 67: Java(TM) APIs for XML Messaging 1.0. N.D. Referenced 29.7.2015.
Retrieved from https://jcp.org/en/jsr/details?id=67

JSR-93: Java(TM) API for XML Registries 1.0 (JAXR). N.D. Accessed on
29.7.2015. Retrieved from https://www.jcp.org/en/jsr/details?id=93

Kotanraju, J. 2011. The Java API for XML-Based Web Services (JAX-WS) 2.2
Rev a. Maintenance Release. Accessed on 25.02.2016. Retrieved from
http://download.oracle.com/otn-pub/jcp/jaxws-2_2a-mrel4-eval-spec/jaxws-
2_2a-mrel4-eval-spec.pdf

ldemichiel. 2014. Java EE Platform Specification. Accessed on 28.7.2015.
Retrieved from https://java.net/projects/javaee-spec/pages/Home

Mallet, F. 2016. Plugin Library. Accessed on 4.3.2016. Retrieved from
http://docs.sonarqube.org/display/PLUG/Plugin+Library

Muir, P. 2013. JSR 346 Contexts and Dependency Injection for the Java EE
platform. Version 1.1. Final Release. Accessed on 22.1.2016. Retrieved from
http://download.oracle.com/otn-pub/jcp/cdi-1_1-fr-eval-spec/cdi-spec.pdf

Operations. 2014. Article in Kelas website. Accessed on 25.5.2015. Retrieved
from http://www.kela.fi/web/en/operations

Parkinson, P. 2013. Java Transaction API (JTA). Version 1.2. Accessed on
22.2.2016. Retrieved from http://download.oracle.com/otn-pub/jcp/jta-1_2-
mrel2-eval-spec/JTA1.2Specification.pdf

Pericas-Geertsen,S. Potociar, M. 2013. JAX-RS: Java™ API for RESTful Web
Services. Version 2.0. Final Release. Accessed on 14.1.2016. Retrieved from
http://download.oracle.com/otn-pub/jcp/jaxrs-2_0_rev_A-mrel-eval-
spec/jsr339-jaxrs-2.0-final-spec.pdf

Racodon, D. 2016. Java Plugin. Accessed on 4.3.2016. Retrieved from
http://docs.sonarqube.org/display/PLUG/Java+Plugin

Shanon, B., Hapner, M. 2003. JSR 151: Java 2 Platform, Enterprise Edition
1.4 (j2ee 1.4) Spesification. Accessed on 28.7.2015. Retrieved from
https://jcp.org/en/jsr/detail?id=151

Vatkina, M. 2013a. JSR 318: Interceptors 1.2. Maintanance Release. Version
1.2. Accessed on 11.12.2015. Retrieved from http://download.oracle.com/otn-
pub/jcp/interceptors-1_2-mrel2-eval-spec/interceptor-1-2-mrel-spec.pdf

http://download.oracle.com/otn-pub/jcp/interceptors-1_2-mrel2-eval-spec/interceptor-1-2-mrel-spec.pdf
http://download.oracle.com/otn-pub/jcp/interceptors-1_2-mrel2-eval-spec/interceptor-1-2-mrel-spec.pdf
https://jcp.org/en/jsr/detail?id=151
http://docs.sonarqube.org/display/PLUG/Java+Plugin
http://download.oracle.com/otn-pub/jcp/jaxrs-2_0_rev_A-mrel-eval-spec/jsr339-jaxrs-2.0-final-spec.pdf
http://download.oracle.com/otn-pub/jcp/jaxrs-2_0_rev_A-mrel-eval-spec/jsr339-jaxrs-2.0-final-spec.pdf
http://download.oracle.com/otn-pub/jcp/jta-1_2-mrel2-eval-spec/JTA1.2Specification.pdf
http://download.oracle.com/otn-pub/jcp/jta-1_2-mrel2-eval-spec/JTA1.2Specification.pdf
http://www.kela.fi/web/en/operations
http://download.oracle.com/otn-pub/jcp/cdi-1_1-fr-eval-spec/cdi-spec.pdf
http://docs.sonarqube.org/display/PLUG/Plugin+Library
https://java.net/projects/javaee-spec/pages/Home
http://download.oracle.com/otn-pub/jcp/jaxws-2_2a-mrel4-eval-spec/jaxws-2_2a-mrel4-eval-spec.pdf
http://download.oracle.com/otn-pub/jcp/jaxws-2_2a-mrel4-eval-spec/jaxws-2_2a-mrel4-eval-spec.pdf
https://www.jcp.org/en/jsr/details?id=93
https://jcp.org/en/jsr/details?id=67
http://download.oracle.com/otn-pub/jcp/common_annotations-1_2-mrel2-eval-spec/jsr-250-1.2-final.pdf
http://download.oracle.com/otn-pub/jcp/common_annotations-1_2-mrel2-eval-spec/jsr-250-1.2-final.pdf
http://software-security.sans.org/developer-how-to/fix-sql-injection-in-java-persistence-api-jpa

58

Vatkina, M. 2013b. JSR 345 Enterprise JavaBeansTM, Version 3.2 EJB Core
Contracts and Requirements. Accessed on 24.2.2016. Retrieved from
http://download.oracle.com/otn-pub/jcp/ejb-3_2-fr-spec/ejb-3_2-core-fr-
spec.pdf

Vignola, C. 2013. JSR 352: Batch Application for the Java Platform. Version
1.0. Final Release. Accessed on 23.2.2016. Retrieved from
http://download.oracle.com/otn-pub/jcp/batch-1_0-fr-eval-spec/JSR-352-1.0-
Final-Release.pdf

Wai Chang, S. Mordani, R. 2013 JSR 340 Java™ Servlet Specification.
Version 3.1. Accessed on 15.1.2016. Retrieved from
http://download.oracle.com/otn-pub/jcp/servlet-3_1-fr-eval-spec/servlet-3_1-
final.pdf

http://download.oracle.com/otn-pub/jcp/servlet-3_1-fr-eval-spec/servlet-3_1-final.pdf
http://download.oracle.com/otn-pub/jcp/servlet-3_1-fr-eval-spec/servlet-3_1-final.pdf
http://download.oracle.com/otn-pub/jcp/batch-1_0-fr-eval-spec/JSR-352-1.0-Final-Release.pdf
http://download.oracle.com/otn-pub/jcp/batch-1_0-fr-eval-spec/JSR-352-1.0-Final-Release.pdf
http://download.oracle.com/otn-pub/jcp/ejb-3_2-fr-spec/ejb-3_2-core-fr-spec.pdf
http://download.oracle.com/otn-pub/jcp/ejb-3_2-fr-spec/ejb-3_2-core-fr-spec.pdf

59

Appendices

Appendix A: CWSS submetrics

Group Name Summary

Base Finding Technical Impact
(TI)

The pontential result that can be produced
by the weakness, assuming that the weakness
can be successfully reached and exploited.

Base Finding Acquired
Privilege (AP)

The type of privileges that are obtained by
an attacker who can successfully exploit the
weakness.

Base Finding Acquired
Privilege Layer
(AL)

The operational layer to which the attacker
gains privileges by successfully exploiting
the weakness.

Base Finding Internal Control
Effectiveness
(IC)

The ability of the control to render the
weakness that can be exploited by an
attacker.

Base Finding Finding
Confidence (FC)

The confidence that the reported issue is a
weakness that can be utilized by an
attacker.

Attack
Surface

Required
Privilege (RP)

The type of privileges that an attacker must
already have in order to reach the
code/functionality that contains the
weakness.

Attack
Surface

Required
Privilege Layer
(RL)

The operational layer to which the attacker
must have privileges in order to attempt to
attack the weakness.

Attack
Surface

Access Vector
(AV)

The channel through which an attacker must
communicate to reach the code or
functionality that contains the weakness.

Attack
Surface

Authentication
Strenght (AS)

The strengthj of the authentication routine
that protects the code/functionality that
contains the weakness.

Attack
Surface

Level of
Interaction (IN)

The actions that are required by the human
victim(s) to enable a successful attack to
take place.

Attack
Surface

Deployment Scope
(SC)

Whether the weakness is present in all
deployable instances of the software, or if
it is limited to a subset of platforms
and/or configurations.

Enviromental Business Impact
(BI)

The potential impact to the business or
mission if the weakness can be successfully
exploited.

Enviromental Likelihood of
Discovery (DI)

The likelihood that an attacker can discover
the weakness.

60

Enviromental Likelihood of
Exploit (EX)

The likelihood that, if the weakness is
discovered, an attacker with the required
privileges/authentication/access would be
able to successfully exploit it.

Enviromental External Control
Effectiveness
(EC)

The capability of controls or mitigations
outside of the software that may render the
weakness more dificult for an attacker to
reach and/or trigger.

Enviromental Prevalence (P) How frequently this type of weakness appears
in software.

61

Appendix B: CVSS metric vectors

Group name Metric name Possible
value

Mandatory

Base Attact Vector, AV [N,A,L,P] True

Base Attack Complexity, AC [L,H] True

Base Priveleges required, PR [N,L,H] True

Base User Interaction, UI [N,R] True

Base Scope, S [U,C] True

Base Confidentiality, C [H,L,N] True

Base Integrity, I [H,L,N] True

Base Availability, A [H,L,N] True

Temporal Exploit code maturity, E [X,H,F,P,U] False

Temporal Remediation level, RL [X,U,W,T,O] False

Temporal Report confidence, RC [X,C,R,U] False

Environmental Confidentiality req., CR [X,H,M,L] False

Environmental Integrity req., IR [X,H,M,L] False

Environmental Availibility req., AR [X,H,M,L] False

Environmental Modified attack vector, MAV [X,N,A,L,P] False

Environmental Modified attack complexity,
MAC

[X,L,H] False

Environmental Modified privileges required,
MPR

[X,N,L,H] False

Environmental Modified user interaction,
MUI

[X,N,R] False

Environmental Modified scope, MS [X,U,C] False

Environmental Modified confidentiality, MC [X,N,L,H] False

Environmental Modified integrity, MI [X,N,L,H] False

Environmental Modified availibility, MA [X,N,L,H] False

62

Appendix C: CVSS score formulas

Base metric group

Base score
If (Impact sub score =< 0) 0 else,

Scope Unchanged[4] Round up (Minimum [(Impact +
Exploitability),10])
Scope Changed Round up (Minumum [1.08 × (Impact +
Exploitability),10])

Impact sub score (ISC)
Scope Unchanged 6.42 × ISCBase
Scope Changed 7.52 × [ISCBase−0.029] − 3.25 × [ISCBase−0.02]15
ISCBase = 1 - [(1−ImpactConf) × (1−ImpactInteg) × (1−ImpactAvail)]

Exploitability sub score
8.22 × AttackVector × AttackComplexity × PrivilegeRequired ×
UserIntercation

Temporal metric group

Temporal score
Round up(BaseScore × ExploitCodeMaturity × RemediationLevel ×
ReportConfidence)

Environmental metric group

Enviromental score
If (Modified Impact Sub score =< 0) 0 else,

If Modified Scope Unchanged Round up(Round up (Minimum [
 × (M.Impact + M.Exploitability),10])

 × Exploit Code Maturity
 × Remediation Level
 × Report Confidence)

If Modified Scope Changed Round up(Round up (Minimum [1.08
 × (M.Impact + M.Exploitability),10])

 × Exploit Code Maturity
 × Remediation Level

 × Report Confidence))

Modified impact sub score
If Modified Scope Unchanged 6.42 × [ISCModified]
If Modified Scope Changed 7.52 × [ISCModified−0.029] - 3.25

× [ISCModified−0.02]15
ISCModified = Minimum[[1−(1−M.IConf × CR)×(1−M.IInteg × IR)

×(1−M.IAvail × AR)],0.915]
Modified exploitability sub scroe

8.22 × M.AttackVector × M.AttackComplexity
× M.PrivilegeRequired × M.UserInteraction

63

Appendix D: Identified weaknesses in Java EE technologies and
their implementation references

Identi
fier

Name Description Implementati
on reference

MTW-1 Do not use Java SE
concurrency API in
Java EE application

Container is not aware threads
started through Java SE
concurrency API and they can
cause race conditions

SECURITY_WEAK
NESS:
weakness_4:

MTW-2 DataSourceDefinitio
n have password
defined

The specification encourages not
to add password to
DataSourceDefinition annotation

SECURITY_WEAK
NESS:
weakness_8

MTW-3 Services access
have not been
limited

Service does not declare RunAs,
RolesAllowed, PermitAll, DenyAll
or DeclaredRoles annotations to
restrict access to service

Application
does not
restrict any
public
interfaces

MTW-4 JAX-RS annotated
properties should
not be written
other lifecycle
phase than creation

JAX-RS annotated resource
properties should not be written
other life cycle phase than
creation because it can cause
errors in concurrency

Not
implemented

MTW-5 Non-public methods
should not be
annotated with
@Path annotation

 Non-public methods with @Path
annotation can not be accessed
outside of application and
therefore are unnecessary
annotations

SECURITY_WEAK
NESS:
weakness_12

MTW-6 @PATH annotation
could use regular
expression to white
list accepted paths

By using regular expression
services possible access paths
could be limited and therefore
attack surface would be smaller

SECURITY_WEAK
NESS:
weakness_2

MTW-7 JAX-RS service
should use bean
validation to
validate methods
parameters

All input to service should be
handled as insecure to increase
security.

Application
does not
validate any
input

MTW-8 JPQL injection by
miuse of
createQuery method

If JPQL-query is concatened from
input parameters the query is not
parsed by JPA

SECURITY_WEAK
NESS:
weakness_1

MTW-9 Using container in
construction of
servlet

Servlets are iniatialized through
init-method and are not active in
container befor this

Not
implemented

MTW-10 Sevlets service
method is marked as
synchronized

Performance can be lost if
servlets service methods is
marked as synchronized

SECURITY_WEAK
NESS:
weakness_9

64

MTW-11 Request objects
other methods than
startAsync and
completed should
not be accesed
multiple threads

Request objects startAsync and
complete methods are only threads
safe methods in class. Accessing
other methods from multiple
threads can cause concurrency
problems

Not
implemented

MTW-12 Response objects
other methods than
startAsync and
completed should
not be accesed
multiple threads

Response objects startAsync and
complete methods are only threads
safe methods in class. Accessing
other methods from multiple
threads can cause concurrency
problems

Not
implemented

MTW-13 Servlets
getResource and
getResourceAsStream
methods should use
only for static
resources

If dynamic resources, like jsp
pages, are acquired through
getResource or
getResourceAsStream methods they
will not be processed by servlet

Not
implemented

MTW-14 Servlet should use
sendError method
instead of throwing
exception to
indicate error

Servlets sendError method adds
appropriate header information to
response

SECURITY_WEAK
NESS:
weakness_11

MTW-15 Servlets session
timeout should not
be infinite

If servlets session timeout is
set to zero , session will not be
timeouted and it can reserve
unnecessarry server resources.

SECURITY_WEAK
NESS:
weakness_10

MTW-16 ConstraintValidator
should not store
validated value to
its state

ConstrainValidator instances can
be reused and therefore it should
not store validated value to its
state

SECURITY_WEAK
NESS:
weakness_21

MTW-17 Constraint is
defined to
unsupported type

Constraints that are bound to
unsupported type will cause
UnexpectedTypeException to raise

Not
implemented
because IDE
gives
compiler
error when
applying
wrong type
constraint

MTW-18 Components value
should not be
accessed through
component tree

JavaServer Faces components value
should not be obtained through
component three because it is not
necessarry been validated yet.

SECURITY_WEAK
NESS:
weakness_25

MTW-19 User managed
transaction
associated with
current thread
should be mark as
completed

Developer starts transaction with
commit method invocation but
commit, rollback or setRollback
method is never called.

SECURITY_WEAK
NESS:
weakness_9

MTW-20 Stateless session
bean should not
store client state
to beans member
variables

Container can reuse stateless
session bean instances between
clients so clients confidential
data can be exposed to other
clients

SECURITY_WEAK
NESS:
weakness_5

65

MTW-21 Storing client
state to singleton
session bean can
cause lose of
confidentiality

Same singleton session bean
instance is shared between all
clients, therefore it can expose
clients confidential data to
other clients

SECURITY_WEAK
NESS:
weakness_3

MTW-22 BindingProvider
should not be used
to hard code
username and
password

Hard coded passwords and
usernames are harder and slower
to change when needed.

SECURITY_WEAK
NESS:
weakness_7

MTW-23 @WebService
annotations should
define namespace

Missing namespace can cause
conflicts in services published
in same endpoint address.

Not
implemented
because
application
server failed
obtain
reference to
web service
missing
namespace

OWASP-
A1

A1 - Injection Injection flaws, such as SQL, OS,
and LDAP injection occur when
untrusted data is sent to an
interpreter as part of a command
or query (OWASP Top 10 2013, 6).

SECURITY_WEAK
NESS:
weakness_1

OWASP-
A2

A2 - Broken
Authentication and
Session Management

Application to compromise
passwords, keys, or session
tokens, or have other
implementation flaws so attacker
can assume other user's
identities (OWASP Top 10 2013,
6).

SECURITY_WEAK
NESS:
weakness-20

OWASP-
A3

A3 - Cross-site
scripting

XSS flaws occur whenever an
application takes untrusted data
and sends it to a web browser
without proper validation or
escaping (OWASP Top 10 2013, 6).

All
applications
public
interfaces
are missing
validation

OWASP-
A4

A4 - Insecure
direct object
references

A direct object reference occurs
when a developer exposes a
reference to an internal
implementation object, such as a
file, directory, or database key
(OWASP Top 10 2013, 6).

Every class
in
io.vksn.summo
ns.entity
package
exposes
atleast
database key
with direct
reference

OWASP-
A6

A6 - Sensitive data
exposure

Web application do not properly
protect sensitive data, such as
credit cards, tax IDs, and
authentication credentials.
Attackers may steal or modify
such weakly protected data.
(OWASP Top 10 2013, 6)

Application
does not
protect any
data

66

OWASP-
A7

A7 - Missing
function level
access controll

Web applications verify function
level access rights before making
that functionality visible in the
UI. However, applications need to
perform the same access control
checks on the server when each
function is accessed. (OWASP Top
10 2013, 6)

None of
public
interface
functions
limits access
rights

OWASP-
A8

A8 - Cross-site
request forgery

A CSRF attack forces a logged-on
victim’s browser to send a forged
HTTP request, including the
victim’s session cookie and any
other automatically included
authentication information, to a
vulnerable web application (OWASP
Top 10 2013, 6).

Applications
servlet does
not implement
any CSRF
protection
mechanisms.

OWASP-
A10

A10 - Unvalidated
redirects and
forwards

Web applications redirect or
forward users to other pages and
websites, and use untrusted data
to determine the destination
pages. Without proper validation,
attackers can redirect victims to
phishing or malware sites, or use
forwards to access unauthorized
pages. (OWASP Top 10 2013, 6)

ECURITY_WEAKN
ESS:
weakness_22

CWE-
536

Information
Exposure Through
Servlet Runtime
Error Message

A servlet error message indicates
that application does not handle
all errors correctly (Martin,
Coley, Kenderdine and Piper 2015,
879).

SECURITY_WEAK
NESS:
weakness_11

CWE-
574

EJB Bad Practices:
Use of
Synchronization
Primitives.

Application violates EJB
specification by using thread
synchronization primitives.
(Martin, Coley, Kenderdine and
Piper 2015, 916 - 917).

SECURITY_WEAK
NESS:
weakness_26

CWE-
575

EJB Bad Practices:
Use of AWT Swing

EJB session bean uses AWT or
Swing classes in implementation
(Martin, Coley, Kenderdine and
Piper 2015, 917 - 919)

Not
implemented
because Swing
and AWT are
outdated
technologies

CWE-
576

EJB Bad Practices:
Use of Java I/O

Application uses classes from
java.io package and will not
behave consistently between EJB
containers (Martin, Coley,
Kenderdine and Piper 2015, 919 -
920).

SECURITY_WEAK
NESS:
weakness-23

CWE-
577

EJB Bad Practices:
Use of Sockets

Application implements Socket
server as EJB which conflicts
basic function of the EJB
(Martin, Coley, Kenderdine and
Piper 2015, 920 - 922).

Not
implemented

67

CWE-
578

EJB Bad Practices:
Use of Class Loader

Application creates or obtains
current class loader from EJB
which can compromise containers
security (Martin, Coley,
Kenderdine and Piper 2015, 922 -
923).

SECURITY_WEAK
NESS:
weakness-24

CWE-
579

J2EE Bad Practices:
Non-serializable
Object Stored in
Session

The application stores a non-
serializable object as an
HttpSession attribute which cause
that session cannot be replicated
(Martin, Coley, Kenderdine and
Piper 2015, 924).

SECURITY_WEAK
NESS:
weakness-16

CWE-
594

J2EE Framework:
Saving
Unserializable
Objects to Disk

Application uses in the J2EE
container non-seriazable classes
which can cause application to
crash if they are tried to
serializate to disk (Martin,
Coley, Kenderdine and Piper 2015,
)

SECURITY_WEAK
NESS:
weakness-15

CWE-
598

Information
Exposure Through
Query Strings in
GET Request

Application uses the GET method
to process request that contains
sensitive infomation like social
security number. These URLs can
be exposed later through the
browser's history. (Martin,
Coley, Kenderdine and Piper 2015,
944).

SECURITY_WEAK
NESS:
weakness-14

CWE-
600

Uncaught Exception
in Servlet

Application leaks technical
exceptions from public interfaces
like servlets that can reveal
sensitive debuggind information
(Martin, Coley, Kenderdine and
Piper 2015, 946).

SECURITY_WEAK
NESS:
weakness-13

CWE-
601

URL Redirection to
Untrusted Site
('Open Redirect')

Application accepts user-
controlled input as target of
external link (Martin, Coley,
Kenderdine and Piper 2015, 946 -
950).

SECURITY_WEAK
NESS:
weakness-22

CWE-
614

Sensitive Cookie in
HTTPS Session
Without 'Secure'
Attribute

Application sets cookie with
sensitive data without calling
setSecure(true) method (Martin,
Coley, Kenderdine and Piper 2015,
966 - 967).

SECURITY_WEAK
NESS:
weakness-17

CWE-
615

Information
Exposure Through
Comments

Comments that are in view layer
expose applications structure or
known bugs (Martin, Coley,
Kenderdine and Piper 2015, 967 -
968).

SECURITY_WEAK
NESS:
weakness-18,
SECURITY_WEAK
NESS:
weakness-19

68

Appendix E: Java plugins security rules profile

<?xml version='1.0' encoding='UTF-8'?>
<profile>

<name>Java-security</name>
<language>java</language>
<rules>

<rule>
<repositoryKey>squid</repositoryKey>
<key>AssignmentInSubExpressionCheck</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>CallToDeprecatedMethod</key>
<priority>MINOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>ClassVariableVisibilityCheck</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>ObjectFinalizeCheck</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>ObjectFinalizeOverridenCallsSuperFinalizeCheck</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S00112</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1143</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1145</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1147</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1148</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1174</key>
<priority>MAJOR</priority>
<parameters />

</rule>

69

<rule>
<repositoryKey>squid</repositoryKey>
<key>S1181</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1182</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1193</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1194</key>
<priority>MINOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1206</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1217</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S128</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1313</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1444</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1696</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1698</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1724</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1850</key>
<priority>MAJOR</priority>

70

<parameters />
</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1854</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1872</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1873</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1948</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1989</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2039</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2068</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2070</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2076</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2077</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2078</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2089</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>

71

<key>S2092</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2095</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2096</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2142</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2151</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2184</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2221</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2222</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2225</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2245</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2250</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2254</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2257</key>
<priority>BLOCKER</priority>
<parameters />

</rule>

72

<rule>
<repositoryKey>squid</repositoryKey>
<key>S2258</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2259</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2276</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2277</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2278</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2384</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2386</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2441</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2583</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2653</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2658</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2976</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S3066</key>
<priority>CRITICAL</priority>

73

<parameters />
</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S3318</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S3355</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S3369</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S3374</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S864</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S888</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>StringEqualityComparisonCheck</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>SwitchLastCaseIsDefaultCheck</key>
<priority>MAJOR</priority>
<parameters />

</rule>
</rules>

</profile>

74

Appendix F: Security rules profile from multiple plugins

<?xml version='1.0' encoding='UTF-8'?>
<profile>

<name>extended-security</name>
<language>java</language>
<rules>

<rule>
<repositoryKey>findbugs</repositoryKey>
<key>DMI_CONSTANT_DB_PASSWORD</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findbugs</repositoryKey>
<key>HRS_REQUEST_PARAMETER_TO_HTTP_HEADER</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findbugs</repositoryKey>
<key>PT_ABSOLUTE_PATH_TRAVERSAL</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findbugs</repositoryKey>
<key>PT_RELATIVE_PATH_TRAVERSAL</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findbugs</repositoryKey>
<key>SQL_NONCONSTANT_STRING_PASSED_TO_EXECUTE</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findbugs</repositoryKey>

<key>SQL_PREPARED_STATEMENT_GENERATED_FROM_NONCONSTANT_STRING</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findbugs</repositoryKey>
<key>XSS_REQUEST_PARAMETER_TO_JSP_WRITER</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findbugs</repositoryKey>
<key>XSS_REQUEST_PARAMETER_TO_SEND_ERROR</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findbugs</repositoryKey>
<key>XSS_REQUEST_PARAMETER_TO_SERVLET_WRITER</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>ANDROID_BROADCAST</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>ANDROID_EXTERNAL_FILE_ACCESS</key>

75

<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>ANDROID_GEOLOCATION</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>ANDROID_WEB_VIEW_JAVASCRIPT</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>ANDROID_WEB_VIEW_JAVASCRIPT_INTERFACE</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>ANDROID_WORLD_WRITABLE</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>BAD_HEXA_CONVERSION</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>BLOWFISH_KEY_SIZE</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>CIPHER_INTEGRITY</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>COMMAND_INJECTION</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>COOKIE_USAGE</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>CUSTOM_MESSAGE_DIGEST</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>DES_USAGE</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>ECB_MODE</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

76

<repositoryKey>findsecbugs</repositoryKey>
<key>ESAPI_ENCRYPTOR</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>FILE_UPLOAD_FILENAME</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>HARD_CODE_KEY</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>HARD_CODE_PASSWORD</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>HAZELCAST_SYMMETRIC_ENCRYPTION</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>JAXRS_ENDPOINT</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>JAXWS_ENDPOINT</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>LDAP_INJECTION</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>NULL_CIPHER</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>PADDING_ORACLE</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>PATH_TRAVERSAL_IN</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>PATH_TRAVERSAL_OUT</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>PREDICTABLE_RANDOM</key>
<priority>MAJOR</priority>
<parameters />

77

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>REDOS</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>RSA_KEY_SIZE</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>RSA_NO_PADDING</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>SCRIPT_ENGINE_INJECTION</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>SERVLET_CONTENT_TYPE</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>SERVLET_HEADER</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>SERVLET_HEADER_REFERER</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>SERVLET_HEADER_USER_AGENT</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>SERVLET_PARAMETER</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>SERVLET_QUERY_STRING</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>SERVLET_SERVER_NAME</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>SERVLET_SESSION_ID</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>SPEL_INJECTION</key>

78

<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>SPRING_ENDPOINT</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>SQL_INJECTION_HIBERNATE</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>SQL_INJECTION_JDO</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>SQL_INJECTION_JPA</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>STATIC_IV</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>STRUTS1_ENDPOINT</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>STRUTS2_ENDPOINT</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>STRUTS_FORM_VALIDATION</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>TAPESTRY_ENDPOINT</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>UNENCRYPTED_SOCKET</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>UNVALIDATED_REDIRECT</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>WEAK_FILENAMEUTILS</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

79

<repositoryKey>findsecbugs</repositoryKey>
<key>WEAK_MESSAGE_DIGEST</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>WEAK_TRUST_MANAGER</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>WICKET_ENDPOINT</key>
<priority>INFO</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>XML_DECODER</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>XPATH_INJECTION</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>XSS_JSP_PRINT</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>XSS_REQUEST_WRAPPER</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>XSS_SERVLET</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>XXE_DOCUMENT</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>XXE_SAXPARSER</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>findsecbugs</repositoryKey>
<key>XXE_XMLREADER</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>pmd</repositoryKey>
<key>ArrayIsStoredDirectly</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>pmd</repositoryKey>
<key>MethodReturnsInternalArray</key>
<priority>CRITICAL</priority>
<parameters />

80

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>AssignmentInSubExpressionCheck</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>CallToDeprecatedMethod</key>
<priority>MINOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>ClassVariableVisibilityCheck</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>ObjectFinalizeCheck</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>ObjectFinalizeOverridenCallsSuperFinalizeCheck</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S00112</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1143</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1145</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1147</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1148</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1174</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1181</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1182</key>

81

<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1193</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1194</key>
<priority>MINOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1206</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1217</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S128</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1313</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1444</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1696</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1698</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1724</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1850</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1854</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

82

<repositoryKey>squid</repositoryKey>
<key>S1872</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1873</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1948</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S1989</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2039</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2068</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2070</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2076</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2077</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2078</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2089</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2092</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2095</key>
<priority>BLOCKER</priority>
<parameters />

83

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2096</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2142</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2151</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2184</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2221</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2222</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2225</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2245</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2250</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2254</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2257</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2258</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2259</key>

84

<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2276</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2277</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2278</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2384</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2386</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2441</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2583</key>
<priority>BLOCKER</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2653</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2658</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S2976</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S3066</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S3318</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

85

<repositoryKey>squid</repositoryKey>
<key>S3355</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S3369</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S3374</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S864</key>
<priority>MAJOR</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>S888</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>StringEqualityComparisonCheck</key>
<priority>CRITICAL</priority>
<parameters />

</rule>
<rule>

<repositoryKey>squid</repositoryKey>
<key>SwitchLastCaseIsDefaultCheck</key>
<priority>MAJOR</priority>
<parameters />

</rule>
</rules>

</profile>

Appendix G: Security issues with Java plugin

Key Rule
Seve
rity

Module File Line Tags message

JDS-
1

squid
:S336
9

CRITI
CAL

summons-
ui

WEB-INF/web.xml

cwe, jee,
owasp-a7,
security,
websphere

Add "security-
constraint"
elements to this
descriptor.

JDS-
2

squid
:S335
5

CRITI
CAL

summons-
ui WEB-INF/web.xml

injection,
owas,p-a1,
security

Add a validation
filter to this
"web.xml".

JDS-
3

squid
:S194
8

CRITI
CAL

summons-
ui

io/vksn/summons
/ui/beans/Creat
eEventBean.java

38
bug, cwe,
serializati
on

Make "service"
transient or
serializable.

JDS-
4

squid
:S194
8

CRITI
CAL

summons-
ui

io/vksn/summons
/ui/beans/Creat
eEventBean.java

41
bug, cwe,
serializati
on

Make "event"
transient or
serializable.

JDS-
5

squid
:S209
2

CRITI
CAL

summons-
ui

io/vksn/summons
/ui/beans/Parti
cipateBean.java

100

cwe, owasp-
a2, owasp-
a6,
security

Add the "secure"
attribute to
this cookie

86

JDS-
6

squid
:S244
1

CRITI
CAL

summons-
ui

io/vksn/summons
/ui/beans/Parti
cipateBean.java

93 bug, cwe

Make
"Invitation"
serializable or
don't store it
in the session.

JDS-
7

squid
:S222
1

CRITI
CAL

summons-
ui

io/vksn/summons
/ui/servlet/Lis
tEventsServlet.
java

37
cwe, error-
handling,
security

Catch a list of
specific
exception
subtypes
instead.

JDS-
8

squid
:S194
8

CRITI
CAL

summons-
ui

io/vksn/summons
/ui/servlet/Lis
tEventsServlet.
java

25
bug, cwe,
serializati
on

Make "service"
transient or
serializable.

JDS-
9

squid
:S198
9

CRITI
CAL

summons-
ui

io/vksn/summons
/ui/servlet/Lis
tEventsServlet.
java

39

cert, cwe,
error-
handling,
owasp-a6,
security

Add a
"try/catch"
block.

JDS-
10

squid
:S194
8

CRITI
CAL

summons-
ui

io/vksn/summons
/ui/servlet/Lis
tInvitationsSer
vlet.java

22
bug, cwe,
serializati
on

Make "service"
transient or
serializable.

JDS-
11

squid
:S198
9

CRITI
CAL

summons-
ui

io/vksn/summons
/ui/servlet/Lis
tInvitationsSer
vlet.java

31

cert, cwe,
error-
handling,
owasp-a6,
security

Add a
"try/catch"
block for
"parseLong".

JDS-
12

squid
:S198
9

CRITI
CAL

summons-
ui

io/vksn/summons
/ui/servlet/Lis
tInvitationsSer
vlet.java

34

cert, cwe,
error-
handling,
owasp-a6,
security

Add a
"try/catch"
block for
"forward".

JDS-
13

squid
:S198
9

CRITI
CAL

summons-
ui

io/vksn/summons
/ui/servlet/Lis
tInvitationsSer
vlet.java

34

cert, cwe,
error-
handling,
owasp-a6,
security

Add a
"try/catch"
block for
"forward".

JDS-
14

squid
:S198
9

CRITI
CAL

summons-
ui

io/vksn/summons
/ui/servlet/Lis
tInvitationsSer
vlet.java

36

cert, cwe,
error-
handling,
owasp-a6,
security

Add a
"try/catch"
block for
"forward".

JDS-
15

squid
:S198
9

CRITI
CAL

summons-
ui

io/vksn/summons
/ui/servlet/Lis
tInvitationsSer
vlet.java

36

cert, cwe,
error-
handling,
owasp-a6,
security

Add a
"try/catch"
block for
"forward".

JDS-
16

squid
:S198
9

CRITI
CAL

summons-
ui

io/vksn/summons
/ui/servlet/Red
irectServlet.ja
va

23

cert, cwe,
error-
handling,
owasp-a6,
security

Add a
"try/catch"
block for
"sendRedirect".

JDS-
17

squid
:S114
8

CRITI
CAL

summons-
service

io/vksn/summons
/ejb/AuditLogge
r.java

38
error-
handling,
security

Use a logger to
log this
exception.

JDS-
18

squid
:S206
8

CRITI
CAL

summons-
service

io/vksn/summons
/repository/Lis
tEventsReposito
ry.java

22

cwe, owasp-
a2, sans-
top25-
porous,
security

Remove this
hard-coded
password.

87

JDS-
19

squid
:S222
1

CRITI
CAL

summons-
service

io/vksn/summons
/repository/Lis
tEventsReposito
ry.java

44
cwe, error-
handling,
security

Catch a list of
specific
exception
subtypes
instead.

JDS-
20

squid
:S001
12

CRITI
CAL

summons-
service

io/vksn/summons
/repository/Lis
tEventsReposito
ry.java

46
cwe, error-
handling,
security

Define and throw
a dedicated
exception
instead of using
a generic one.

JDS-
21

squid
:S238
4

CRITI
CAL

summons-
service

io/vksn/summons
/rest/model/Sea
tingPlan.java

21

cert, cwe,
security,
unpredictab
le

Return a copy of
"tables".

JDS-
22

squid
:S238
4

CRITI
CAL

summons-
service

java/io/vksn/su
mmons/rest/mode
l/SeatingPlan.j
ava

24

cert, cwe,
security,
unpredictab
le

Store a copy of
"tables".

JDS-
23

squid
:S238
4

CRITI
CAL

summons-
api

io/vksn/summons
/entity/Table.j
ava

83

cert, cwe,
security,
unpredictab
le

Return a copy of
"chairs".

JDS-
24

squid
:S238
4

CRITI
CAL

summons-
api

io/vksn/summons
/entity/Table.j
ava

86

cert, cwe,
security,
unpredictab
le

Store a copy of
"chairs".

88

Appendix H: Security issues with multiple plugins

Key Rule
Seve
rity

Module File Line Tags Message

JES-
1

squid
:S001
12

CRITI
CAL

io.vksn.
summons:
summons-
service

io/vksn/summons
/repository/Lis
tEventsReposito
ry.java

46
cwe, error-
handling,
security

Define and
throw a
dedicated
exception
instead of
using a generic
one.

JES-
2

squid
:S206
8

CRITI
CAL

io.vksn.
summons:
summons-
service

io/vksn/summons
/repository/Lis
tEventsReposito
ry.java

22

cwe, owasp-
a2, sans-
top25-
porous,
security

Remove this
hard-coded
password.

JES-
3

squid
:S222
1

CRITI
CAL

io.vksn.
summons:
summons-
service

io/vksn/summons
/repository/Lis
tEventsReposito
ry.java

44
cwe, error-
handling,
security

Catch a list of
specific
exception
subtypes
instead.

JES-
4

squid
:S114
8

CRITI
CAL

io.vksn.
summons:
summons-
service

io/vksn/summons
/ejb/AuditLogge
r.java

38
error-
handling,
security

Use a logger to
log this
exception.

JES-
5

finds
ecbug
s:SQL
_INJE
CTION
_JPA

CRITI
CAL

io.vksn.
summons:
summons-
service

io/vksn/summons
/repository/Sum
monsRepository.
java

81

cwe,
injection,
owasp-a1,
security,
wasc

The query is
potentially
vulnerable
SQL/JPQL
injection

JES-
6

squid
:S238
4

CRITI
CAL

io.vksn.
summons:
summons-
service

ioio/vksn/summo
ns/rest/model/S
eatingPlan.java

21

cert, cwe,
security,
unpredictab
le

Return a copy
of "tables".

JES-
7

squid
:S238
4

CRITI
CAL

io.vksn.
summons:
summons-
service

io/vksn/summons
/rest/model/Sea
tingPlan.java

24

cert, cwe,
security,
unpredictab
le

Store a copy of
"tables".

JES-
8

squid
:S194
8

CRITI
CAL

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/beans/Creat
eEventBean.java

38
bug, cwe,
serializati
on

Make "service"
transient or
serializable.

JES-
9

squid
:S194
8

CRITI
CAL

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/beans/Creat
eEventBean.java

41
bug, cwe,
serializati
on

Make "event"
transient or
serializable.

JES-
10

squid
:S209
2

CRITI
CAL

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/beans/Parti
cipateBean.java

100

cwe, owasp-
a2, owasp-
a6,
security

Add the
"secure"
attribute to
this cookie

JES-
11

squid
:S244
1

CRITI
CAL

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/beans/Parti
cipateBean.java

93 bug, cwe

Make
"Invitation"
serializable or
don't store it
in the session.

89

JES-
12

squid
:S222
1

CRITI
CAL

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/servlet/Lis
tEventsServlet.
java

37
cwe, error-
handling,
security

Catch a list of
specific
exception
subtypes
instead.

JES-
13

squid
:S194
8

CRITI
CAL

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/servlet/Lis
tEventsServlet.
java

25
bug, cwe,
serializati
on

Make "service"
transient or
serializable.

JES-
14

squid
:S198
9

CRITI
CAL

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/servlet/Lis
tEventsServlet.
java

39

cert, cwe,
error-
handling,
owasp-a6,
security

Add a
"try/catch"
block.

JES-
15

squid
:S194
8

CRITI
CAL

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/servlet/Lis
tInvitationsSer
vlet.java

22
bug, cwe,
serializati
on

Make "service"
transient or
serializable.

JES-
16

squid
:S198
9

CRITI
CAL

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/servlet/Lis
tInvitationsSer
vlet.java

31

cert, cwe,
error-
handling,
owasp-a6,
security

Add a
"try/catch"
block for
"parseLong".

JES-
17

squid
:S198
9

CRITI
CAL

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/servlet/Lis
tInvitationsSer
vlet.java

34

cert, cwe,
error-
handling,
owasp-a6,
security

Add a
"try/catch"
block for
"forward".

JES-
18

squid
:S198
9

CRITI
CAL

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/servlet/Lis
tInvitationsSer
vlet.java

34

cert, cwe,
error-
handling,
owasp-a6,
security

Add a
"try/catch"
block for
"forward".

JES-
19

squid
:S198
9

CRITI
CAL

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/servlet/Lis
tInvitationsSer
vlet.java

36

cert, cwe,
error-
handling,
owasp-a6,
security

Add a
"try/catch"
block for
"forward".

JES-
20

squid
:S198
9

CRITI
CAL

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/servlet/Lis
tInvitationsSer
vlet.java

36

cert, cwe,
error-
handling,
owasp-a6,
security

Add a
"try/catch"
block for
"forward".

JES-
21

squid
:S198
9

CRITI
CAL

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/servlet/Red
irectServlet.ja
va

23

cert, cwe,
error-
handling,
owasp-a6,
security

Add a
"try/catch"
block for
"sendRedirect".

JES-
22

findb
ugs:H
RS_RE
QUEST
_PARA
METER
_TO_H
TTP_H
EADER

MAJOR

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/servlet/Red
irectServlet.ja
va

23 cwe, owasp-
a3

HTTP parameter
directly
written to HTTP
header output
in
io.vksn.summons
.ui.servlet.Red
irectServlet.do
Get(HttpServlet
Request,
HttpServletResp
onse)

90

JES-
23

finds
ecbug
s:UNV
ALIDA
TED_R
EDIRE
CT

MAJOR

io.vksn.
summons:
summons-
ui

io/vksn/summons
/ui/servlet/Red
irectServlet.ja
va

23
cwe,
security,
wasc

Unvalidated
Redirect

JES-
24

squid
:S336
9

CRITI
CAL

io.vksn.
summons:
summons-
ui

WEB-INF/web.xml

cwe, jee,
owasp-a7,
security,
websphere

Add "security-
constraint"
elements to
this
descriptor.

JES-
25

squid
:S335
5

CRITI
CAL

io.vksn.
summons:
summons-
ui

WEB-INF/web.xml
injection,
owasp-a1,
security

Add a
validation
filter to this
"web.xml".

JES-
26

squid
:S238
4

CRITI
CAL

io.vksn.
summons:
summons-
api

io/vksn/summons
/entity/Table.j
ava

83

cert, cwe,
security,
unpredictab
le

Return a copy
of "chairs".

JES-
27

squid
:S238
4

CRITI
CAL

io.vksn.
summons:
summons-
api

io/vksn/summons
/entity/Table.j
ava

86

cert, cwe,
security,
unpredictab
le

Store a copy of
"chairs".

