

Tatiana Tassi

Implementation of an Educational Wireless
Biopotential Recorder Application

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

14 September 2016

Author(s)
Title

Number of Pages
Date

Tatiana Tassi
Wireless Biopotential Recorder

32 pages + 3 appendices
September 2016

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)

Antti Piironen, Principal Lecturer
Sakari Lukkarinen, Lecturer

The goal of the project was to implement a system to record electroencephalography biopo-
tential measurements, and to send them wirelessly to a cloud storage service. Moreover,
the application should allow the user to view and manage the recorded data using a browser.
The application was planned to be used for educational purposes as a part of courses at
Metropolia University of Applied Sciences. The EEG measurements were recorded using an
OpenBCI 32bit board while the software application was implemented using Python 2.

The measurements consisted of a potential difference between each of the input electrodes
and a reference electrode. The voltages were produced by the activity of the neurons closest
to the area where the electrode was positioned. Displaying the measured voltages from each
individual channel over time allowed the user to detect patterns in the signals produced by
brain activity. In particular, patterns within defined frequency ranges correlated to specific
types of brain activities.

The result of the project was an application which allows users to easily record EEG signals,
which are then transmitted to and stored in the Metropolia cloud. The recordings can be
viewed using the web application implemented as part of the project. In addition to displaying
the recordings stored in the cloud, the application allows user to manage and organize the
recordings based on parameters such as the patient from which they have been measured,
the course of which the recording session is a component, and the instructor responsible for
each course.

The initial goal of the project was achieved successfully. However, several improvements
are possible as regards the security and the quality of the user experience of the application.
Moreover, the system requires to be adapted to eventual future changes to the Metropolia
cloud infrastructure. Nevertheless, the current state of the project can be useful as an edu-
cational tool and as a foundation for future development.

Keywords OpenBCI, electroencephalography, Python, brain-computer
interfaces

Contents

1 Introduction 1

2 Theoretical Background 1

2.1 Introduction 1

2.2 Physiology 2

2.2.1 Nervous System 2

2.2.2 Neurons 3

2.2.3 Neuronal Signal Transmission 5

2.2.4 Brain Rhythms 7

 Electroencephalography 9

2.3.1 Electrodes 10

2.3.2 Amplifiers 11

2.3.3 Artifacts and Filters 12

2.3.4 Safety 13

3 Materials 13

 OpenBCI 32-bit Board 13

 OpenBCI Graphical User Interface 15

 Other tools 15

4 Results 18

 Hardware Preparation 18

 Data Transmission to the Server 21

 Database and API 23

 Data presentation and database extension 24

 Application transfer to Metropolia cloud 27

5 Discussion 29

6 Conclusion 32

References 33

Abbreviations and Terms

BCI Brain-computer interface

CNS Central nervous system

ATP Adenosine triphosphate

ECG Electrocardiogram

EEG Electroencephalogram

EMG Electromyogram

GUI Graphical user interface

TCP Transmission control protocol

UDP User datagram protocol

EOT End of transmission

API Application programming interface

ER model Entity-relationship mode

HTML Hypertext markup language

VM Virtual machine

1

1 Introduction

The goal of the project is to implement a system to record electroencephalography bi-

opotential measurements and to send them wirelessly to a cloud storage service. The

server should also allow the user to retrieve and display the stored data. The final goal

of the project is to provide an educational tool to be employed in courses related to

healthcare and medical instrumentation. For this reason, the project includes the devel-

opment of an application which allows the user to view the recorded samples as line

charts. Moreover, the application will include tools to organize the stored sessions based

on courses, instructors, and patients. Finally, the application has to be implemented to

run on the Metropolia educational cloud.

The biopotential measurements will be recorded and handled using an OpenBCI 32-bit

board. OpenBCI is an open-source platform aimed at measuring, recording, and pro-

cessing biopotential measurements, focusing mainly on brain-computer interfacing. The

platform includes both hardware and software tools, such as the now deprecated

OpenBCI 8-bit board, the 32-bit board, the Daisy module, and the Ganglion bio-sensing

device which is currently under development.

In order to provide a better understanding of the phenomena underlying the measure-

ments gathered by the previously mentioned hardware, this paper will include an over-

view of the structure and physiology of the nervous system. Moreover, the processes

involved in signal reception, processing, and transmission in neurons will be described.

Finally, the topic of the hardware and software tools employed in the project will be ana-

lysed.

2 Theoretical Background

2.1 Introduction

The present chapter will review the theoretical topics on which the project implementation

is based. The considered topics include the physiology of the nervous system, the com-

ponents of the medical instrumentation used in encephalography, the OpenBCI tools

used in the project, and the programming language and libraries used in the project.

2

In the next subchapter, the physiological mechanisms which produce the signals meas-

ured through electroencephalograms will be described. The structure of the nervous sys-

tem will be described, with particular focus on the central nervous system (CNS). More-

over, neurons and their functioning will be described in further detail. Thirdly, an overview

of brain waves will be provided. Finally, the concepts of biopotential measurements and

electroencephalography will be discussed.

2.2 Physiology

2.2.1 Nervous System

Electroencephalography involves the measurement of biopotentials generated by the

brain [1]. Biopotentials are electrical signals produced by body cells and tissues in con-

nection with biochemical activity [2]. In order to achieve a clearer understanding of the

physiology underlying these biopotentials, the following section will describe the nervous

system. The main functions of the nervous system include the following:

- control of skeletal muscles thus allowing motion

- perception and interpretation of stimuli received by the body, such as sound and

temperature

- management of automatic functions in other body systems, such as circulation

and digestion, consciousness, thought, emotions.

The nervous system performs the previously listed functions through exchanges of sig-

nals between neurons and with other body cells. [3;4.]

From a physiological point of view, the nervous system can be divided into the central

nervous system and the peripheral nervous system. The central nervous system is com-

posed of two interconnected parts: the brain and the spinal cord. The main components

of the brain include the cerebrum, the cerebral cortex, and the brain stem which connects

the brain and the spinal cord. [3.]

3

Figure 1 illustrates the structure of the nervous system.

Figure 1. Human nervous system. Reprinted from OpenStax College (2013). [5.]

The nervous system is composed of neural cells, which can be divided into neurons or

nerve cells, and glia or glial cells. Both subsystems include neurons, but the types of glial

cells present in each subsystem are different. Neurons have the function of receiving,

processing and transmitting information, while glia cells are located between nerve cells

and have a function of the support and protection of nerve cells. [3;4.]

2.2.2 Neurons

Neurons are characterized by a body called soma and by a varying number of processes.

Two types of neuron processes exist: dendrites and axons. Each neuron has several

dendrites, which are shorter than the axons and feature several small ramifications. Neu-

rons usually have only one axon, which splits into branches in some types of nerve cells,

4

and has the function of carrying information from the neuron towards other nerve cells

or target organs through output terminals. Neurons receive information from other cells

through synapses, which are located on dendrites, soma, and axon hillock. Figure 2

shows the general structure of neuronal and glial cells. [3,4]

Figure 2.Morphology of neuronal and glial elements. Reprinted from Niedermeyer [4].

Among the variety of existing types of neurons, one of the main differences is the direc-

tion of information transmission between central and peripheral nervous system. Afferent

neurons carry information about stimuli to the central nervous system. Efferent neurons

carry signals away from the central nervous system, and are divided into motor cells,

which bring information to skeletal muscles, and autonomic cells, which bring information

to smooth muscles, cardiac muscles and gland cells. An additional category of neuron

5

exists: interneurons are located exclusively in the central nervous system, and are con-

nected to other neurons. [3,4.]

2.2.3 Neuronal Signal Transmission

In the next section the processes of signal reception and transmission in nerve cells will

be discussed. When neurons are not receiving any input, the inside of the cell is more

negative than the outside, with resting membrane potential around -75 mV [1]. Positive

potassium and sodium ions are present both outside and inside the cell in different con-

centration, and the concentration of positive charges is higher in the extracellular me-

dium. The tendency of positive ions to move towards the more negative side causes

potential gradients across the cell membrane. Moreover, neuronal cells have a higher

concentration of potassium ions and a lower concentration of sodium ion in respect to

the extracellular medium. The difference in concentration, in conjunction with the higher

permeability to potassium of the cell membrane, causes part of the potassium ions to

cross the membrane and move to the extracellular medium. [1;3;4.]

The sodium-potassium pump, shown in figure, 3, is one of the main mechanisms in-

volved in neuronal signal transmission, as it contributes to maintaining the sodium and

potassium ions concentrations required for the resting potential state.

Figure 3. Sodium-potassium pump. Reprinted from Mariana Ruiz Villarreal. [6.]

The function of the pump consists of moving sodium ions located inside the neuron to

the extracellular medium, and transferring potassium ions from the outside of the cell to

the intracellular medium. When neurons are in an inactive state, the sodium-potassium

6

pump binds with adenosine triphosphate (ATP) and with sodium ions. ATP hydrolysis

provides energy that causes the shape of the pump to change into the active configura-

tion, in which the bond of the pump with the sodium ions weakens. The sodium ions are

then released outside the cell membrane, against charge and concentration potentials.

Moreover, while the pump is in the activated state, potassium ions located outside the

cell can bind to it, which causes the pump to revert the previous inactive configuration.

The state change causes the potassium ions to be released inside the cell, countering

the outward flow due to potassium concentration and cell membrane permeability. [3.]

When an input is received by a neuron through its synapses from other cells or from

physical stimuli, a change in the membrane potential occurs. The magnitude and dura-

tion of the graded potential are dependent on the received input. Once the resulting po-

tential on the axon hillock exceeds a specific threshold, an action potential sends a signal

across the cell membrane through the neuron axon. The produced signal has high inten-

sity and brief duration. While the magnitude of the graded potential depends on the trig-

gering input, the magnitude of the action potential is fixed and dependent on the type of

cell. Once the signal reaches the axon terminal, it will cross over to the target cell in form

of neurotransmitter molecules which bind to receptors on the target cell and influence its

behaviour. [3;4.]

Synaptic potentials are divided into excitatory postsynaptic potentials and inhibitory

postsynaptic potentials, depending on the direction of the potential flow between the in-

tracellular and extracellular medium. These potentials have longer duration than action

potentials, and constitute the main source of extracellular current flow measured through

electroencephalography, and, together with analogous ones occurring in other body sys-

tems, can be used to assess the status and help detecting issues in brain, heart and

muscles.

7

Table 1 provides a list of the most common biosignal types and the corresponding sensor

measurements. [1]

Table 1. Common biosignals. Data collected from Niedermeyer. [4].

Phenomena Biosignal measurement

Electrical signals from heart activity Electrocardiogram (ECG)

Surface signals from central nervous system

activity

Electroencephalogram (EEG)

Electrical signals from muscle activity Electromyogram (EMG)

As the electric signals generated by cell activity are typically characterized by small am-

plitudes, the instrumentation used needs to amplify the signals in order for analysis, re-

cording, and display to be possible [3].

2.2.4 Brain Rhythms

Brain waves are mostly produced by both thalamus and cerebral cortex, in different ratios

depending on the type of rhythm. Different types of waves may present overlapping fre-

quency ranges. Nevertheless, waves with the same or similar frequency ranges do not

necessarily share a similar origin and function. The three main types of neurons involved

in the production of brain waves are thalamic neurons with cortical projections, thalamic

reticular neurons, and cortical neurons. [4.]

Alpha waves have a frequency between 8 and 13 Hz. In normal EEG alpha waves occur

mostly during relaxed wakefulness and eye closure, while they are weakened during eye

opening and mental and visual effort. Alpha waves present symmetric voltage on both

sides, and origin from the posterior area of the head. Mu waves present a frequency

similar to that of alpha waves, between 8 to 10 Hz. Mu waves originate in the central part

of the head, and are possibly asymmetric in voltage. Moreover, they relate to the sen-

sorimotor cortex in the resting state, and are weakened by motor activity. The areas of

origin and the frequencies of Alpha and Mu waves may overlap. In such a case, eye

closing and opening may be used to identify the wave type in a clinical setting, as these

8

phenomena block Alpha rhythms but not Mu. [1; 7.] Figure 4 shows a graphical display

of some of the most common brain rhythms.

Beta waves are connected to light sleep, mental activation and drowsiness, and present

a frequency starting from 13 Hz. Theta waves occur mostly in the frontal regions with a

frequency of 4-7 Hz and various amplitudes. Lambda waves are similar to theta waves

and are frequent in small children and sometimes in young adults in connection with

complex visual stimuli. Delta waves present frequency smaller than 4 Hz, and occur dur-

ing the waking state in young children and in the elderly, and during slow-wave sleep.

Figure 4. Brain rhythms. Reprinted from Wearable Sensing. [8.]

9

[1;7.] Table 2 shows the previously mentioned brain rhythms and their respective fre-

quencies.

Table 2. Brain rhythms. Data collected from Prutchi (2005). [7.]

Name Frequency

Delta 0.5 – 4 Hz

Theta 4 – 7.5 Hz

Alpha 7.5 – 13 Hz

Beta 13 – 38 Hz

Gamma 30 – 70 Hz

Spindles are non-rhythmic waves produced by the thalamus, and have a frequency os-

cillating between 7 and 14 Hz in periods of one to two seconds. In humans, spindles

occur normally in stage 2 of Non-REM sleep. During stages 3 and 4 of Non-REM sleep,

the occurrence of sleep spindles decreases, in connection with the onset of a slower

rhythm with greater amplitude, named “delta”. Delta waves present a frequency of 1-4

Hz, and are divided into two groups, originating in the thalamus and in the cerebral cortex

respectively. [4.]

 Electroencephalography

The aim of electroencephalography (EEG) is to measure and record electrical brain ac-

tivity. This activity is created by the exchange of signals between neurons, and is ob-

tained by recording the changes over time in the difference of potential measured by

couples of electrodes positioned on the scalp. EEG is a method of biopotential measure-

ment, which has numerous applications in healthcare, such as the investigation of sleep

disorders and epilepsy. [4.]

The main tools used in electroencephalography consist of electrodes accurately placed

to perceive electrical activity, amplifiers and filters to obtain sufficiently accurate signals

and handle noise and interferences, and devices to record and display the obtained in-

formation. Once the signal has been gathered through the electrodes, amplified, and

handled through the use of the required filters, the data can be displayed in different

ways depending on the type of instrumentation used and on the specific application [1].

Usually the data is displayed as waveforms. Routine electroencephalography recordings

10

feature a paper speed of 30 mm/sec. A lower paper speed around 10mm/sec is used for

encephalographic monitoring during sleep. [1]

Each of the previously mentioned components will be analysed in further detail in the

following sections. Additionally, the topic of electrical security for electroencephalog-

raphy instrumentation will be outlined.

2.3.1 Electrodes

Electrodes are cup-shaped electrical conductors. The electrodes can be made of differ-

ent metals, although most commonly silver electrodes coated with silver chloride

(Ag/AgCl) are used [7]. Electrodes are individually connected to instrumentation with

wires, and positioned on the scalp, in some cases with the use of a conductive gel or

paste [1]. The electrodes employed in electroencephalography can be intracellular or

surface electrodes, depending on the accuracy required. Surface electrodes are applied

on the scalp, and measure the signals produced by groups of neurons. Intracellular or

depth electrodes are used to detect potentials across individual cell membranes. In most

cases the employment of surface electrodes is sufficient. [2;4.] For the scope of this

paper, only surface electrodes will be considered.

In electroencephalography, electrodes are used in pairs, by recording the difference of

the potentials measured by each electrode in the pair [2]. Electrodes can be disposable

or reusable. The number of electrodes employed for measurements varies depending

on the specific application. For example, in the case of infant electroencephalography,

usually a smaller than average number of electrodes is needed. [4.]

11

In most applications, the location of each electrode is based on the international standard

10-20 system illustrated in figure 6. The figure displays the electrode positioning in the

10-20 system, in addition to the designation of each area of the scalp used in this system.

Figure 5. Electrode positioning in 10-20 system. Reprinted from Wikipedia. [9.]

The 10-20 system uses physiological features as reference points to determine the

placement areas. The individual electrodes are then placed at a distance between each

other equal to either 10% or 20% of the total length of the skull either from the front to

the back or from the left to the right side.

2.3.2 Amplifiers

Amplifiers are a part of electroencephalography instrumentation which amplifies the volt-

age measured by each electrode. The signals handled by devices for biopotential meas-

12

urements have typically a small amplitude. This is particularly true in the case of electro-

encephalography, in which the analysed signals present an amplitude around 10µV to

100 µV for adults. For this reason, amplifiers connected to each pair of electrodes are a

fundamental component of medical instrumentation aimed at recording physiological sig-

nals. In order for the signals to reach an amplitude suitable for data display and handling,

a gain (ratio between input signal and output signal amplitude) between 100 and 100 000

is required. [7.]

The level of sensitivity in electroencephalography recordings varies depending on the

instrumentation, and can be adjusted depending on the specific application. Therefore,

the instrumentation requires a filter with adjustable amplitude range. Moreover, most

electroencephalography devices feature the possibility of adjusting the sensitivity of all

recording channels simultaneously. [4.]

2.3.3 Artifacts and Filters

All the signals obtained through encephalographic recordings, which are not produced

by the physiological activity of the brain, are called artifacts. Artifacts can be physical or

biological in origin, and their management must be implemented in electroencephalog-

raphy instrumentation in order to obtain useful and reliable data. Artifact management is

implemented on both hardware and software levels through the use of proper instrumen-

tation and of artifact detection algorithms. [4;7.]

Biological artifacts are caused by physiological activity outside the brain, such as that of

muscles and eye movement. Physical artifacts include those produced by movement of

the patient, and electromagnetic and electric artifacts due to interference and noise from

power supplies and the instrumentation itself. In particular, noise produced from ampli-

fiers must be taken into account. [4.]

Filters are among the main tools for artifact management. Filters are needed in order to

isolate relevant signals from unneeded ones. In some cases, unnecessary signals pre-

sent a different frequency than relevant ones. For this reason, signal channels require

adjustable low-pass and high-pass frequency filters. However, the frequency ranges of

relevant and irrelevant signals can vary depending on the case, and may overlap. More-

over, it must be taken into account that filters typically cause a phase difference between

instrumentation input and output. In addition to the low-pass and high-pass filters, which

13

exclude artifact due to movement and unrelated physiological activity, a 60-Hz notch filter

is usually available to exclude artifact from power lines [4.]

2.3.4 Safety

Medical instrumentation employed in electroencephalography recording is implemented

as to guarantee electrical safety. Electrical safety includes the grounding and electrical

insulation of the equipment. Insulation of the electroencephalography device is required

for both input and output systems, particularly when the instrumentation is used in con-

nection with additional medical equipment. [4.]

Official regulations exist concerning minimum safety requirements for medical instru-

mentation. Nevertheless, such regulations may vary depending on the country. This re-

quires electroencephalography instrumentation to feature electrical safety systems con-

forming to the requirements of the region of employment. [4.]

3 Materials

 OpenBCI 32-bit Board

The OpenBCI 32-bit board uses an Arduino-compatible PIC32MX250F128B microcon-

troller, and an ADS1299 low-noise, 8-channel, 24-bit analog-to-digital converter by Texas

Instruments, optimized for electroencephalogram applications [9; 11]; however, it can be

used to measure brain, heart, and muscle activity. In addition, the board includes a micro

SD card slot and an accelerometer [10].

The board is powered by a 6V AA battery pack, and can communicate wirelessly with a

computer via Bluetooth by using the included USB programmable dongle and RFduino

Low Power Bluetooth radio modules. The dongle uses a serial connection on Mac de-

vices and a COM connection for PC and Linux. The OpenBCI 32-bit board can either be

used on its own, or together with the Daisy module expansion card, which increases the

number of input channels from eight to sixteen. [10.]

14

Figures 6 A and B show the OpenBCI board and its components.

Figure 6a. OpenBCI board components (front).

Figure 6b. OpenBCI board components (back).

Although OpenBCI offers an electrode starter kit, which includes 10 gold cup electrodes

and a jar of conductive electrode paste, other types of electrodes can also be used, and

15

converters to allow electrodes terminated in touch-proof design to be connected to the

board are available [10].

 OpenBCI Graphical User Interface

The OpenBCI graphical user interface (GUI) allows the user to start using the board to

measure and display biopotential measurements with minimal required setup. The soft-

ware can process data either in live mode from the board, or in playback mode from a

file, and is compatible with both eight and sixteen channel systems. In live mode the

data is fed to the computer wirelessly by using the USB dongle. As to the software side

of the system, only the OpenBCI GUI and the FTDI drivers need to be installed on the

computer.

The GUI includes several graphs to display the measurements in human readable for-

mat, in addition to various kinds of filters and utilities to adapt and optimize the system

for the desired type of measurement. Moreover, the user can hide individual channels

from the data stream user interface. However, this feature is available only when the

bottom row of pins on the board is used to connect to the electrodes. Figure 6 shows a

screen capture of the software streaming synthetic data in an 8-channel setting.

 Other tools

The main software tools used during the project were the following:

- OpenBCI GUI

- OpenBCI 32-bit firmware

- OpenBCI_Python software library

- Spyder development environment

- Python 2.7.

As regards the hardware tools employed in the project, the OpenBCI 32-bit board was

used together with one OpenBCI wireless USB dongle, 10 colour coded electrode ca-

bles, EEG electrodes 30mm x 24 mm, a 6V battery pack with four 1.5V, AA size alkaline

batteries as power source for the board, and soldered pin connectors to adapt the avail-

able electrode cables to the pins on the board.

16

The OpenBCI GUI was used exclusively in the initial phase of the project. The GUI was

employed to test and configure the connections between the electrodes and the board,

between the board and the USB dongle, and between the USB dongle and the computer.

Despite its usefulness during the preparation of the hardware, the GUI, of which some

details are shown in figure 7, was found not to be needed to gather and handle EEG data

from the board. Figure 7 displays the measured signals as diagrams (7A), and some of

the available filters and settings (7B).

Figure 7. Details from the OpenBCI GUI.

17

During the following phases of the project, Spyder was used as the development envi-

ronment. Spyder was chosen due to the presence of Python-specific testing and debug-

ging features and of signal processing libraries and tools.

Python 2.7 was chosen as the programming language due to its focus on code readabil-

ity, and the existence of a software library fitting with the scope of the project,

OpenBCI_Python [12]. In addition to the OpenBCI library, the following other Python li-

braries, frameworks, and modules were used:

- json

- socket

- Queue

- Autobahn

- Twisted

- Tornado

- Handlebars.

The json module is included in the Python standard library, and was used to convert the

EEG data samples to JSON strings to allow and ease transmission to the server. The

socket module was initially used to implement the transmission of data to the server over

TCP protocol. The Queue module was used to allow the gathering of samples from the

board and the transmission of samples to the server to run simultaneously. Autobahn

and Twisted were used to allow the transmission of the samples to the server with the

WebSocket protocol. The WebSocket protocol was used to replace the socket module.

This protocol runs over the TCP protocol, and allows the client script to stream the sam-

ple data to the server without requiring the opening of multiple connections. In the late

part of the project, the previously mentioned libraries were replaced with Tornado. The

reason behind the replacement is described in detail in chapter 4.2. In addition, the Han-

dlebar library was used to manage front-end forms.

18

4 Results

 Hardware Preparation

In order to prepare the recording system for use, the following process was used. First,

the previously mentioned software (firmware and graphical user interface) was installed

on a desktop computer. Second, the switch on the USB dongle was set to direct the

signal to the RFduino GPIO6 pin, and the dongle was then connected to the computer.

Third, the batteries were inserted to the battery pack, and the pack was then connected

to the socket on the bottom side of the board. For the initial testing phase, two pin bars

with four pins each were soldered together and plugged on the board. Fourth, the board

was powered on by moving the power switch to the “PC” position. Finally, the OpenBCI

GUI software was launched; the following settings were used for the configuration:

- Data source: LIVE

- Serial/COM port: COM3 (port for the USB dongle)

- Channel count: 8 channels

- Write to SD?: Do not write to SD.

The “Start System” button was then used to successfully establish a connection between

the computer and the board.

During the initial testing phase, the connector bars were soldered in order to accommo-

date only six cables. The connections established between the electrodes and the board

were based on the instructions provided by the OpenBCI website, with minimal changes

to accommodate the previously mentioned differences in the pin setup.

19

Table 3 shows the electrodes used during this phase, the pin to which each of them was

connected, and the function and position of each electrode.

Table 3. Test phase electrode connections

Cable Pin Role Position

White SRB2 Reference elec-

trode

A1/left earlobe

Black BIAS2 Ground and noise

cancellation

A2/right earlobe

Purple Bottom N2P Input Fp2/left side of

forehead

Green Bottom N4P Reference elec-

trode for channel 4

On muscle of right

forearm

Blue Top N4P Input Inner right wrist

Red Bottom N7P Input O1/back of the

head, left side

After connecting and positioning the electrodes, the live data stream was started from

the OpenBCI GUI, and the unused channels 1, 3, 5, 6, and 8 were hidden from the graphs

displayed by the software. Moreover, in the channel settings channel 4 was removed

from BIAS and SRB2 in order for the ECG and EMG signals not to interfere with the EEG

input on channels 2 and 7. In addition, the notch filter was switched to 50 Hz.

20

Figure 8 displays the soldered pins, and the connections between the electrodes and the

board. The colours of the cables listed in table 3 are marked on the respective connectors

in the top picture, and the connectors are linked to their respective pin in the bottom

picture.

Figure 8. Electrode connections to board.

As the previously mentioned setup yielded satisfactory results, I proceeded to solder

additional pin bars to accommodate a total of ten cables. As none of the signals of inter-

est was recorded from ECG or EMG, the bars were applied exclusively to the pins on

the bottom row of the board. The correct functioning of the soldered pins was then tested

21

using the OpenBCI GUI. The signals obtained were sufficiently precise and without arti-

facts, with the exception of the issues caused by the presence of hair between the elec-

trode and the scalp. The situation was improved by increasing the electrode stability

using medical tape on each electrode and a fabric band around the head.

 Data Transmission to the Server

The following phase of the project focused on fetching the raw EEG data recorded from

the board and transmitting it to a server. For purpose of investigating the format of the

data produced by the board, initially the scripts and plugins included in the OpenBCI_Py-

thon library were used. Specifically, the use of the “print” plugin allowed me to use the

command line interface to establish a connection between the board and the computer,

and to print a stream of EEG data samples. Each sample consisted of an array of the

voltage from each of the eight channels on the board in microvolts, in addition to a pro-

gressive integer identification number in order to allow the detection of skipped packets.

However, after checking the available plugins, due to the lack of the functionalities

needed by the project, I decided to create my own scripts to handle the data and send it

to the server.

When planning the implementation of the scripts, I decided to send the data to the server

over the Transmission Control Protocol (TCP). The TCP was chosen rather than User

Datagram Protocol (UDP) in order to ensure a reliable data stream. Moreover, I designed

two separate scripts for the client and the server side respectively. From the

OpenBCI_Python library I kept only the file containing the implementation of the

OpenBCIBoard and the OpenBCISample classes, in order to ease the processes of con-

necting to the board and of managing the EEG data samples respectively.

As illustrated in Appendix 1, I imported the file in the client side script, configured the

connection to the local host and the one between the USB dongle and the computer, and

created an instance of the OpenBCIBoard class. After starting the stream from the board,

I stored each sample as Python dictionary containing the sample identification number

and the array of channels voltage values, and then converted the dictionary to JSON

string. Finally, after successfully testing the process of fetching the data from the board

by printing the resulting samples, I submitted each string to the server. In the server side

script, I configured the TCP connection, and implemented the handling and printing of

the data transmitted by the client.

22

Figure 9 shows the first data stream received and printed by the server.

Figure 9. First data stream to server.

In order to implement the TCP connection, both scripts used the socket Python module.

During the first test, the data was received successfully from the server. However, the

client script opened a new socket connection for each sample, creating unnecessary

traffic. Therefore, the socket variable was changed to global, allowing the socket con-

nection to be opened only once during the stream. On the server side, several values

were tested for the buffer size, and 250 was found to fit the format of the samples. The

server script was implemented as to listen for data from the client, and to close the con-

nection if no data is received. The server script received the data successfully and in

correct format. However, due to the use of TCP on its own, and the consequent lack of

a defined end of transmission character (EOT), the stream was automatically interrupted

shortly after starting the connection.

To better fit the transmission of the sample as a stream, I decided to use the WebSocket

protocol to send data. To implement this, Autobahn [13] and Twisted [14] libraries were

imported in both client and server scripts. After implementing the transmission with the

new protocol, the connection to the server was established successfully. However, no

data was received by the server. The issue was caused by the sample reading, which

blocked the client script, preventing the data from being sent. The problem was fixed by

moving the sample reading and the sample transmission in separate threads running

simultaneously. The communication between threads was handled using the Queue

module. After the change, the samples were received successfully by the server.

¨

After an additional testing session for both the server and the client scripts, I decided to

switch to the Tornado library [15] for the server script. The change was motivated by the

fact that Tornado offered in a single library the features from Autobahn, Twisted, and

23

Http required in the project. Therefore, I proceeded to rewrite the server script in order

to use only the Tornado library, while maintaining the same functionalities. As the main

functionalities of both server and client scripts had been implemented, I proceeded to

design and develop the database for the project.

 Database and API

The following section will describe the design and implementation of the database, and

of the API handling the stored data. To implement the database, I started by designing

an ER model. The preliminary model, shown in figure 10, included only two entities, Ses-

sions and Samples.

I then created a new file for the purpose of gathering the functionalities related to the

database, and the definition of the Database class. In this file implemented a function to

create the Sessions and Sample tables, and functions to store in the database instances

of the session and sample objects. The creation a session record was implemented in

relation to the opening of a WebSocket connection, while the creation of a sample record

was triggered by the arrival of a new message to the server. Successively, the sample

time column in the Samples table was replaced with the order number of the individual

sample in reference to the Session containing it. The numbering of the samples and the

Figure 10. First ER model.

24

detection of skipped packets was implemented based on the packet ids sent by the board

with each sample.

After testing the storage of information to the database, handlers for the listing of ses-

sions and samples records were created. These functions were implemented through

functions to fetch all existing records in the sessions table, and all the records in the

sample table with the given session id. The results were passed from the database to

the handlers in the form of lists. The sets of result were then converted to dictionaries.

The “get” function was then implemented to display the fetched data in the browser.

 Data presentation and database extension

The following section will outline the process of implementation of the front-end side of

the project, in addition to the design of an extended version of the database. To contain

the static HTML and JavaScript files, a new sub-directory was created in the main server

directory. The path to the static file folder was then defined in the “make_app” function

of the “__main__” server-side file. The built-in Tornado class StaticFileHandler was then

used to allow the application to be accessed from browser. Successively, the file “in-

dex.html” was created to contain the implementation of the front-end layout and form

templates, and for the inclusion of external libraries for scripting and styling. Moreover,

the file “scripts.js” was added to implement the front-end functionalities and the trans-

mission of data from and to the server.

During this phase, major changes were applied to the database structure. The Session

table was extended to store data about the sample rate and measurement resolution of

each session. Moreover, in order to better fit the educational purpose of the project, three

new entities were added: course, patient, and instructor. Relationships were then

implemented between each course and the instructor responsible for it, between each

session and the course in which the measurements were involved, and between each

session and the patient from which the measurements were taken.

25

Figure 11 displays the extended ER model, which includes the added classes and

attributes.

Figure 11. Extended ER model.

After applying the changes to the project database, the scripts for the interface were

implemented. First, one function for each entity was implemented in the database han-

dler class to fetch all the records stored in each table for the purpose of listing the records

to the user. Second, for each entity functions were implemented in the script file to fetch

the records from the server and display them as lists in tables. Third, a navigation bar

was added to the layout to allow the user to move between the available entity records.

Forms were added to the application, in order to allow users to create and modify in-

stances of courses, patients, instructors, and sessions. Handlebars [16] was used to

implement forms based on templates defined in the HTML file. A script was then added

to send the data gathered through the form to the server using the POST method.

On the back-end, each class was extended with a post function to receive the form data,

parse it and submit it to the database. Finally, a function was added to the database

26

class to create new database records based on the form data. Figure 12 displays one of

the implemented forms, used to create a new course record. Moreover, the figure dis-

plays the previously mentioned navigation bar.

Figure 12. ”Add course” form.

After implementing the creation of a new instance for courses, instructors, and samples,

the functionality of modifying existing records of each entity type were created. To

achieve this, a new class was created for each entity type, in order to handle individual

records. Then, each form template was modified to use data from existing records, if

present, as input value. Finally, new scripts were added to create links to the modification

form for each record, the form themselves, and the logic to serve record data to the form

and submit form inputs to the server. After the newly created functionalities were tested,

the display of sample data from an individual session as a line graph was developed.

27

Initially the graph creation was achieved using the Chart.js library. However, such library

was found to scale badly when a high number of points is plotted. Moreover, the config-

uration of the graphs and of the canvas element containing them was complex and not

flexible. Therefore, the Chart library was replaced with the Plotly library for JavaScript.

The sample listing for an individual session was then implemented as to display an indi-

vidual line chart for each of the board input channels. The Plotly graph creation function

receives as arguments the page element in which the graph has to be displayed, the

data to be plotted on the graph, and a variable containing the graph layout configuration

data. The result displayed on the page is a line chart which allows the users to easily

zoom on a section of the graph of their choice, and to freely navigate the length of the

chart.

 Application transfer to Metropolia cloud

After I implemented and tested all the required functionalities locally, the application was

transferred to its final location the Metropolia cloud. First, I created a virtual machine

(VM) on the cloud server to run and manage the application. The VM was configured to

run Debian 8, and to have 40 GB of disk space, to allow sufficient storage for the sample

database. Second, I configured the VM to allow the reception of the sample data over

TCP. Third, I transferred the application files to the VM. Figure 13 displays the summary

of the virtual machine technical specification.

Figure 13. VM details.

28

Before running the application in its new location, some changes were applied to the

sample server and database scripts. The changes allowed the user to configure basic

features of the application, such as the path where the database file is stored, from the

command line without the need of editing the code. Moreover, logging functionalities

were added to the server script, in order to clearly display the start and end of a sample

reception session on the command line interface.

For added security, a new basic user named “samplesserver” was created on the VM.

The application files were then transferred to /home/samplesserver, and the application

was set up to be run by samplesserver user, in order to have the application run by a

user with no root rights. Moreover, nginx [17] was used as reverse proxy server to handle

communication between the application server and the internet. Figure 14 illustrates the

structure of a reverse proxy server.

Finally, systemd was used as to manage the processes for both nginx and the applica-

tion. This allows the application to be run automatically when the VM is started, and to

be restarted in case of shutdown of the server, the virtual machine, or of the application

itself.

The application was tested in order to ensure that the newly implemented functionalities

and configuration worked correctly. Testing of the automated launch of the application,

of the proxy server, and of the logging functionalities yielded positive results. However,

due to the transfer of the application to the Metropolia private cloud, the application was

accessible exclusively from the Metropolia network. Nevertheless, as the application was

implemented for educational purposes as part of Metropolia courses, this limitation was

considered not to be a major issue.

Proxy Application

server

Internet

Virtual machine

Figure 14. Reverse proxy diagram.

29

5 Discussion

The result of the project was an application to be used as part of Metropolia courses.

The application records biopotential measurements using an OpenBCI board, transmits

them wirelessly to a client script, and submits the recorded data to the Metropolia cloud.

The samples are then stored in a database, and can be displayed and managed through

a browser. In order to improve the use of the application as an educational tool, and to

provide a more organized system to users, additional entities related to the sample ses-

sions were added to the database and to the interface. These entities include courses,

instructors, and patients. Using a browser while connected to the Metropolia network,

the user can view information about the instances of each entity stored in the database.

Moreover, the measurements from each session can be displayed graphically as line

diagrams. Figure 15 illustrates the structure of the whole application.

Figure 15. Application structure.

30

While viewing the sample graphs from an individual session, users can zoom in and out

on any section of each diagram, in addition to being able to scroll through the graph using

the mouse, and to download the graph in PNG format. In addition, the same data can be

accessed in JSON format using the application API. Figure 14 shows an example of the

samples measured on the first channel of an individual session displayed as graph.

Figure 16. Samples displayed as graph.

However, due to time constraints, the application presents some limitations. As can be

seen in Appendix 2, the client script does not include configuration features in the user

interface. Therefore, to modify the measurement settings such as sample frequency, the

user is required to modify the script code directly. Moreover, the user interface accessed

with browser is extremely basic, and presents limited features. In addition, both the in-

terface forms and the application database feature insufficient and generic data valida-

tion. Finally, both the client script and the browser user interface can be used only within

the Metropolia network.

31

Figure 17 shows an example of the presentation of the list of instructors currently stored

in the database.

Figure 17. Instructor list.

As a side note, due to time and skill limitations, and to library and environment compati-

bility issues, the application was implemented using Python 2, rather than Python 3. The

final version of Python 2 was released in 2010, whereas Python 3 is under ongoing de-

velopment. Therefore, it may be beneficial to consider a migration of the application to

Python 3 in the future.

32

6 Conclusion

The goal of the project was to implement a wireless biopotential recorder for educational

purposes. The developed application allows the transmission of EEG sample data to the

Metropolia cloud. The samples were recorded using a 32bit OpenBCI board, and sent to

the client script via Bluetooth. The data is then sent to the server, where it is stored in a

database. Moreover, the data can be accessed and managed through a browser. In ad-

dition, an interface organizing sample sessions in relation to courses and patients was

created.

The main purpose of the project was achieved successfully, allowing the application to

be used as an educational tool in Metropolia courses. Due to the location of the applica-

tion on the Metropolia cloud, the application itself is accessible only from within the

Metropolia network. Moreover, despite the general purpose of the application being im-

plemented, several improvements and additions are possible. For example, the function-

alities for displaying the stored sample data could be expanded. Moreover, the forms in

the user interface could be provided with data validation features, in order to ensure that

data in the correct format is sent to the server. In addition, a more user-friendly and

configurable client interface could be implemented. Finally, the functionality to display

the samples on a graph could be improved.

The OpenBCI 32bit board allows the user to measure biopotentials from brain, heart and

muscle activity in a relatively inexpensive and simple way. As several compatible pieces

of software are available in open-source format, and as the board is delivered with a pre-

installed firmware, using the basic features of the platform does not require a particularly

wide understanding of hardware functioning. Nevertheless, the client script can be mod-

ified to allow the configuration of measurements settings such as filtering and sampling

frequency, and to fit the use with different versions and modules of the OpenBCI hard-

ware. Therefore, the OpenBCI platform, paired with the application developed in this

project, can be a useful tool for understanding and elaborating EEG, ECG and EMG

measurements for both inexperienced users and more experienced developers.

33

References

1. Tatum WO, Husain A, Bembadis S. Handbook of EEG interpretation. New York:

Demos Medical Publishing; 2014.

2. Theis, FJ, Meyer-Bäse A. Biomedical Signal Analysis. Cambridge, US: MIT

Press;2010.

3. Brodal P. The central nervous system: structure and function. Oxford University

Press; 2004.

4. Niedermeyer, E. Electroencephalography: Basic Principles, Clinical Applica-

tions, and Related Fields. LWW, Philadelphia, PA, USA.

5. OpenStax College. Anatomy & Physiology [online]. Connexion Web site; Jun 19,

2013.

URL: http://cnx.org/content/col11496/1.6/

Accessed 14 September 2016.

6. Ruiz Villarreal, M. Sodium-potassium pump [online]. Wikimedia Commons.

URL: https://commons.wikimedia.org/wiki/File%3AScheme_sodium-potas-

sium_pump-en.svg

Accessed 14 September 2016.

7. Prutchi D, Norris M. Design and Development of Medical Electronic Instrumen-

tation. Hoboken, US: Wiley-Interscience;2005.

8. Wearable sensing. Brain rhythms [online]. Wearable Sensing.

URL: http://www.wearablesensing.com/images/EEG.png

Accessed 14 September 2016.

9. Wikipedia. 10-20 system [online]. Wikipedia.

URL: https://en.wikipedia.org/wiki/10-20_system_(EEG)

Accessed 14 September 2016.

34

10. Texas Instruments. ADS1299 Datasheet: Low-Noise, 8-Channel, 24-Bit Analog

Front-End for Biopotential Measurements [online]. Texas Instruments Incorpo-

rated, Texas; August 2012.

URL: http://www.ti.com/lit/ds/symlink/ads1299.pdf

Accessed 17 February 2016.

11. OpenBCI. OPENBCI 32bit Board [online]. OpenBCI; 2015.

URL: http://openbci.com/

Accessed 17 February 2016.

12. OpenBCI. OPENBCI HARDWARE DOCUMENTATION [online]. OpenBCI; 18

October 2015.

URL: http://docs.openbci.com/hardware/01-OpenBCI_Hardware#openbci-hard-

ware-documentation-openbci-32bit-board-32bit-board-specs

Accessed 7 February 2016.

13. OpenBCI. OpenBCI_Python software library [online]. OpenBCI;2016.

URL: https://github.com/OpenBCI/OpenBCI_Python

Accessed 7 August 2016.

14. Tavendo GmbH. Autobahn|Python [Online]. Tavendo GmbH; 2016.

URL: http://autobahn.ws/python/

Accessed 16 August 2016.

15. Twisted Matrix Labs. What is Twisted? [online]. Twisted Matrix Labs; 2016.

URL: https://twistedmatrix.com/trac

Accessed 16 August 2016.

16. The Tornado Authors. Tornado [online]. The Tornado Authors, 2016.

URL: http://www.tornadoweb.org/en/stable/

Accessed 16 August 2016.

17. Katz Y. Handlebars [online]. Github; 2016.

URL: https://github.com/wycats/handlebars.js

Accessed 16 August 2016.

35

18. Nginx. Nginx: about [online]. Nginx, Inc; 2016.

URL: https://nginx.org/en/

Accessed 29 August 2016.

Appendix 1

1 (2)

Appendix 1: Initial implementation of data transmission over TCP

Client side – sample_streamer.py

import socket

import open_bci_v3 as bci

import json

sock = None

configure board and server connection

def start_streaming():

USB dongle settings

port = "COM3"

baud = 115200

server target

tcp_ip = "127.0.0.1"

tcp_port = 1912

open connection to server

global sock

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((tcp_ip, tcp_port))

connect to board

board = bci.OpenBCIBoard(port=port, baud=baud, fil-

ter_data=False)

board.start_streaming(process_sample)

format sample as json string

def process_sample(sample):

dict_sample = {

"id": sample.id,

"channel_data": sample.channel_data

}

Appendix 1

2 (2)

json_sample = json.dumps(dict_sample)

send_sample(json_sample)

send sample data to server

def send_sample(json_sample):

sock.send(json_sample)

if __name__ == "__main__":

start_streaming()

Server side – receive_stream.py

import socket

tcp_ip = "127.0.0.1"

tcp_port = 1912

buffer_size = 250

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.bind((tcp_ip, tcp_port))

sock.listen(1)

conn, addr = sock.accept()

print "Connection address:", addr

while 1:

 data = conn.recv(buffer_size)

 if not data: break

 print "received data:", data

 conn.send(data)

conn.close()

Appendix 2

1 (3)

Appendix 2: Final implementation of client script

import open_bci_v3 as bci

import json

from Queue import Queue

from twisted.internet.defer import inlineCallbacks,

CancelledError

import sys

import os

from twisted.python import log

from twisted.internet import reactor, threads

from autobahn.twisted.websocket import WebSocketClientProtocol, \

 WebSocketClientFactory

queue = Queue()

order_number = 0

last_packet_id = None

def read_samples():

 # USB dongle settings

 port = "COM3"

 baud = 115200

 # connect to board

 board = bci.OpenBCIBoard(

port=port,

baud=baud,

filter_data=False

)

 board.start_streaming(process_sample)

def process_sample(sample):

Appendix 2

2 (3)

 """ format sample as json string and add it to queue """

 global last_packet_id

 global order_number

 if last_packet_id is not None:

 # it is assumed that no more than 255 packets are skipped

 difference = (sample.id - last_packet_id) % 256

 order_number = order_number + difference

 last_packet_id = sample.id

 dict_sample = {

 "channel_data": sample.channel_data,

 "order_number": order_number

 }

 json_sample = json.dumps(dict_sample)

 queue.put(json_sample)

def wait_for_sample():

 """ defer queue reading """

 d = threads.deferToThread(read_queue)

 #reactor.callLater(0, read_queue, d.callback)

 timeout = reactor.callLater(5, d.cancel)

 def cancel_timeout(result):

 if timeout.active():

 timeout.cancel()

 return result

 d.addBoth(cancel_timeout)

 return d

def read_queue():

 ### get sample values stored in queue and give results to

Deferred ###

 sample = queue.get()

 return sample

Appendix 2

3 (3)

class MyClientProtocol(WebSocketClientProtocol):

 def onConnect(self, response):

 print("Server connected: {0}".format(response.peer))

 @inlineCallbacks

 def onOpen(self):

 print("WebSocket connection open.")

 while True:

 try:

 sample = yield wait_for_sample()

 self.sendMessage(sample)

 except CancelledError:

 self.sendClose()

 def onClose(self, wasClean, code, reason):

 print("WebSocket connection closed: {0}".format(reason))

 os._exit(0)

if __name__ == '__main__':

 log.startLogging(sys.stdout)

 factory = WebSocketClientFactory(

"ws://127.0.0.1:1912/api/samples"

)

 factory.protocol = MyClientProtocol

 reactor.connectTCP("127.0.0.1", 1912, factory)

 reactor.callInThread(read_samples)

 reactor.run()

Appendix 3

Links to the complete code of the website

The code of this project will be available for 3 years, starting from September 2016 until

September 2019. The code contains the version of the product as it was when this thesis

was completed. However, the actual code used as educational tool at Metropolia UAS

could be modified.

Public Github repository on Tatiana Tassi/Squonkbadger personal account:

URL: https://github.com/squonkbadger/thesis

