

Improvement of Test Automation

Process
Devecto Oy

Anzhelika Kettunen

Bachelor’s thesis
April 2019
Technology, communication and transport
Degree Programme in Information and Communications Technology

Description

Author(s)

Kettunen, Anzhelika
Type of publication

Bachelor’s thesis
Date

April 2019

Language of publication:
English

Number of pages

58
Permission for web publi-

cation: yes

Title of publication

Improvement of Test Automation Process

Degree programme

Information and Communications Technology

Supervisor(s)

Ari Rantala

Assigned by

Devecto Oy

Abstract

The main goal was to develop a new method to automate quality assurance processes and
available tools for its realization, which would significantly increase labour productivity.
The project aimed to create a platform that enables to automate the testing routines and
reduce the amount of manual testing.

The structure of CI system, its components and variants of available tools for implementa-
tion were researched. A new system able to automatically create test routines from a test
drive test run is described here. Justification of the selected technologies and the descrip-
tion of the implementation were carried out as well.

The principles of the script creation software, concept and logic were developed 100%
within this project. As a result, the application was designed and programmed on C#. The
demo version demonstrated the testing capabilities and basic requirements of the exam-
ple of implementation and usage script creation software in HIL testing of heavy moving
machinery. The purpose of the application was to define the necessary data and parame-
ters to enable creating scripts based on signal changes.

The developed application allows seeing signals of real machines during manual test exe-
cution, saving signals’ values and generating robot scripts based on them. The application
was also successfully tested in real environment.

Keywords/tags (subjects)

Robot Framework, HIL, ALM, Continuous Integration, CI, Testing

Miscellaneous (Confidential information)

http://finto.fi/en/
https://intra.jamk.fi/opiskelijat/student/thesis/Pages/publicity.aspx

Kuvailulehti

Tekijä(t)

Kettunen, Anzhelika
Julkaisun laji

Opinnäytetyö, AMK
Päivämäärä

Huhtikuu 2019

Julkaisun kieli
Englanti

Sivumäärä

58
Verkkojulkaisulupa

myönnetty: kyllä

Työn nimi

Improvement of Test Automation Process

Tutkinto-ohjelma

Tieto- ja viestintätekniikka

Työn ohjaaja(t)
Ari Rantala

Toimeksiantaja(t)
Devecto Oy

Tiivistelmä

Tavoitteena oli luoda alusta, jonka avulla toimeksiantajan asiakkaat pystyvät automatisoi-
maan ohjelmiston testaamiseen tarvittavien testirutiinien tekemisen ja vähentämään kuor-
mittavaksi havaittua manuaalitestaustyötä. Tämä oli tarkoitus toteuttaa ohjelmistorobotii-
kan keinoin siten, että manuaalista testausta tekevät henkilöt voisivat suorittaa kertaalleen
manuaalisen testin ja tallentaa saman rutiinin tämän jälkeen testiautomaation suoritetta-
vaksi. Päätavoitteena oli luoda ohjelmisto testausrutiinien automatisointiin sekä manuaali-
sen testauksen määrän vähentämiseen.

Työssä tutkittiin CI-järjestelmän rakennetta sekä sen komponentteja ja työkaluja. Lisäksi
kuvailtiin uutta järjestelmää, joka pystyy automaattisesti luomaan testirutiinit koeajotes-
tistä, hakemaan luodut robot-skriptit versiohallinnan palvelimelta, suorittamaan robot-tes-
tit HIL-simulaattorilla ja raportoimaan testituloksista. Tehtiin valittujen teknologioiden pe-
rustelut ja toteutuksen kuvaus.

Ohjelmiston periaatteet, konsepti ja logiikka kehitettiin täysin projektin sisällä. Sovellus to-
teutettiin C#-ohjelmointikielellä käyttäen Microsoft Visual Studio 2017 ja TAPI dll-kirjastoa,
joka oli valmistettu testauskoneen mallin ominaisuuksien perustella. Sovellus saa TAPI-
kirjaston avulla testauskoneen signaalitiedot, tallentaa ne, analysoi ja generoi robot-skrip-
tit annetun sapluunan ja ehtojen perustella. Demo-versio kuvasi testausominaisuuksia ja
perusvaatimuksia. Esimerkkinä oli raskaiden liikkuvien koneiden HIL-testaus.

Sovellus testattiin onnistuneesti todellisessa ympäristössä.

Avainsanat (asiasanat)

Robot Framework, HIL, ALM, Continuous Integration, CI, Testing

Muut tiedot

http://finto.fi/en/

1

Contents

Contents .. 1

Acronyms ... 5

1 Introduction ... 6

1.1 Background .. 6

1.2 Goals of study .. 7

2 Available implementations (research) ... 8

3 Application Lifecycle Management Software ... 9

3.1 About ALM phases ... 9

3.2 JIRA .. 11

3.3 Polarion ... 11

3.4 Chapter summary .. 12

4 Continuous Integration Servers ... 12

4.1 About Continuous Integration process ... 12

4.2 Jenkins ... 13

4.3 Buildbot ... 14

4.4 CruiseControl ... 15

4.5 Chapter summary .. 16

5 Test Automation frameworks ... 16

5.1 Types of Test Automation Frameworks .. 16

5.2 Robot Framework .. 18

5.3 Cypress .. 18

5.4 Citrus Framework .. 19

5.5 Chapter summary .. 19

2

6 Simulation system .. 20

6.1 Purposes .. 20

6.2 HIL (Hardware-In-The-Loop) .. 20

6.3 ECU .. 21

6.4 Hardware ... 22

7 Design and technology choices ... 22

7.1 Polarion ALM ... 24

7.2 Robot Framework .. 25

7.3 Jenkins ... 27

7.4 Communication flow ... 29

7.5 TAPI .. 31

8 Script Creation Software (development result) .. 31

8.1 Workflow ... 31

8.2 Requirements .. 32

8.3 Test case scenario ... 32

8.4 List of signals ... 34

8.4.1 Input/output signal flag .. 34

8.4.2 Script template ... 35

8.4.3 Conditions for script creation ... 35

8.4.4 Default value ... 36

8.5 Manual testing ... 37

8.6 Script creation ... 39

8.7 Commit to SVN .. 40

3

9 Developed software testing .. 40

10 Conclusions .. 45

References ... 46

Appendices .. 48

Appendix 1. getDataFromIOFile function .. 48

Appendix 2. Recording of data (programm code) ... 49

Appendix 3. Stop recording and display recorded data 50

Appendix 4. Save recorded data to file .. 51

Appendix 5. Script creation diagram (part1) ... 52

Appendix 6. Script creation diagram (part 2) ... 53

Appendix 7. Script Creation diagram (part 3) .. 54

Appendix 8. Additional functions (programm code) 55

Appendix 9. getScriptTemplate function ... 56

Appendix 10. Manual test VS. generated script .. 57

Appendix 11. Generated file .. 58

Figures

Figure 1. Devecto's Software Development Services .. 6

Figure 2. Goal architecture ... 8

Figure 3. Application Lifecycle Management phases ... 10

Figure 4. Continuous Integration process .. 13

Figure 5. Jenkins in action .. 14

Figure 6. Buildbot operating principle ... 15

Figure 7. CruiseControl architecture diagram .. 16

Figure 8. Types of Test Automation Frameworks .. 17

Figure 9. Typical test scenario (Citrus) ... 19

Figure 10. Hardware in the loop simulation .. 21

Figure 11. Example of ECU ... 22

Figure 12. Polarion Jenkins Connector main functions .. 23

Figure 13. Test automation architecture ... 24

file:///C:/Users/anzhelika.kettunen.DEVECTO/Music/omat/Työ/Kettunen_Anzhelika_Thesis(viimeinen).docx%23_Toc7700073

4

Figure 14. Polarion screenshot ... 25

Figure 15. Jenkins screenshot .. 27

Figure 16. Build Triggers ... 29

Figure 17. Web Socket Communication ... 30

Figure 18. Script creation workflow ... 32

Figure 19. Main form of application... 37

Figure 20. Form "Set I/O signals" ... 38

Figure 21. Examples of data ... 39

Figure 22. Commit to SVN .. 42

Figure 23. Jenkins console output .. 43

Figure 24. Test results .. 44

Tables

Table 1. Preconditions for manual test .. 33

Table 2. Test case steps and expected results ... 33

5

Acronyms

ALM Application Lifecycle Management

API Application Programming Interface

CAN Controller Area Network

CI Continuous integration

CVS Concurrent Versions System

DOM Distributed Object Model

DUT Device/Unit under test

ECU Electronic Control Unit

EDT Electronic Diagnostic Tool

HIL Hardware-in-the-loop

HTTP Hypertext Transfer Protocol

JRE Java Runtime Environment

RMI Remote Method Invocation

SCM Software Configuration Management

SUT System Under Test

TAPI Test Application Programming Interface

XML eXtensible Markup Language

6

1 Introduction

1.1 Background

The world is moving forward and the current technological progress affects people in

very different areas. It changes the way they live and the way they work.

Digitalization allows people to use information more efficiently, which leads to the

fact that one can easily find new ways to develop it. Information processing can be

applied to almost all areas of the business world. New innovative solutions have a big

power on the market nowadays. More and more complex machines are developed,

and the competition is growing. One of the priorities of production companies is to

develop safe, high-quality products. All the time companies try to speed up the

development, automate testing processes. This study discusses one of the ways to

improve the automated testing process.

This project is assigned by Devecto Oy. Devecto is a software R&D company specialis-

ing in demanding software development for smart machines and devices.

Devecto's business consists almost entirely of product development related to soft-

ware design for industrial product development. The design process varies slightly

from one customer to another; nevertheless, the software design project that is typi-

cal in its content usually covers software requirements, implementation, and quality

assurance. (Devecto Oy 2019.)

For easier understanding Figure 1 represents Devecto’s generalized groups of ser-

vices on the diagram.

Figure 1. Devecto's Software Development Services

7

As can be seen in Figure 1, the services affect different areas, such as design, testing

and consulting. Devecto takes care of the quality job in software architectures, em-

bedded software design, model-based software design, software testing and soft-

ware testing development, functional safety, user interface design and IoT solutions.

Hence, working as an employee at Devecto gives a good opportunity for self-devel-

opment from student to specialist.

1.2 Goals of study

The main goal of this study is to develop a new method to automate quality assur-

ance processes and available tools for its realization, which would significantly in-

crease labour productivity.

Quality assurance is currently being made automatized so that new software changes

can be tested in as agile method as possible. Automation also enables the so-called

regression testing for the entire software, so that the integrity and dependencies of

the big entity can be verified.

The project aims to create a platform that enables to automate the testing routines

and reduce the amount of manual testing. This is supposed to be implemented by

software robotics so that operators doing manual testing could perform a manual

test only once and save data of a performed routine for future run of the same test,

yet already on a simulation platform.

For example, in situations where new software changes or repairs occur in the soft-

ware at the finishing stage of development, the test periods can last for several days,

including sections that could be easily exported to automation. If test runs were au-

tomated, it would safe working hours for the most demanding tests, and greatly

speed up the test cycle. In this case, customers get their products faster on the mar-

ket and project payback times are reduced.

Writing test routines manually is almost as laborious as doing the actual software.

Performing test routines for example on rolling stock projects on the real machine is

much faster than writing a routine.

8

This paper discusses and describes a new system that should be able to automatically

create test routines from a test drive test run and structure of CI system, its compo-

nents and variants of available tools for implementation.

2 Available implementations (research)

This study examines different kinds of technologies are examined, which can be used

for the required system implementation. In the next chapters, the principle of opera-

tion simulation system, test automation frameworks, continuous integration servers

and Application Lifecycle Management Software are discussed. Figure 2 presents

how the system should be organized in details. Based on this information, the devel-

opment of a new automatic test creation software is implemented. This figure also

demonstrates the connection of automatic test creation software with continuous

integration block.

Figure 2. Goal architecture

9

Development of a project can be managed via Application Lifecycle Management

software, which can contain the specification of product, stages of development,

testing and maintenance information.

Continuous integration server is connected with ALM, as the design of test execution

takes place based on the requirements; the project management also implies man-

agement of test results; hence, they should be provided from CI to ALM.

Usually the mediator between CI server and Simulator is test automation framework,

which provides the execution environment for automation test scripts.

Simulation system (hardware parts and software) represents the behaviour of a sim-

ulated machine, its response on conducted in tests actions. The behaviour of the sim-

ulation system must meet the requirements (the requirements are manage in ALM).

The goal of this project is to get a system/software that could generate ready test

scripts based on manual tests, which could be used in a common automated test

process. Generally, the system should get the opportunity to save test scripts for fu-

ture automatic execution.

Automatic Test Creation Software should be able to communicate with TAPI. During

the manual machine testing, TAPI can send operator events to test creation soft-

ware, which processes the events and generates the test scripts for the simulation

model. An additional advantage of this system is that the run results can be also used

for verification of simulation quality (see more information in Chapter 6 “Simulation

system”).

3 Application Lifecycle Management Software

3.1 About ALM phases

Application Lifecycle Management covers the entire lifecycle of a product from con-

ception through retirement. ALM includes the specification, design, development,

and testing of a software application, and also deployment and maintenance. Figure

3 represents the sequence of Application Lifecycle Management phases.

10

Figure 3. Application Lifecycle Management phases

Any application’s lifecycle starts from the definition of requirements. The first phase,

Requirements specification, can also include development of priorities. Require-

ments can have a hierarchical tree structure, where each node is a sub-requirement

for its larger parent node. Prioritization can be performed as classification of require-

ments, e.g. what is a must or what can come later.

As for testing, preparing of environments and test-cases for testing phase should

start during the development phase. The testing team already at this stage can pro-

vide feedback on the software, contact the developers and help them to validate the

features if needed.

Once the development is completed, the full integration testing of the entire system

should be done. The main task of the testing phase is to verify that the application

complies with the defined requirements. At this stage, the testing team runs their

verifications of all the features developed. The testers identify and report issues that

need to be addressed by development.

11

The quality of software mostly depends on the work done in the previous phases.

The better planned the requirements, the closer the system is to the actual needs of

the user. The more issues were caught in development and testing phases, the fewer

problems there are during maintenance process. (Application Lifecycle Management

Software 2019.)

3.2 JIRA

JIRA Scrum Framework helps developers in collaboration and management of com-

plex projects. Jira Scrum Board provides a visual display of progress during the devel-

opment cycle. Jira Scrum Board could be a very good choice for highly technical

teams who practice agile project management, in especially if the most important as-

pects are: (Средства для разработки ПО. Jira Software 2019)

- Team members’ communication and transparency of progress.
- Organizing the work around the sprint timeframe.
- Transparency in the team's work by utilizing burndown and velocity reports.

In the author’s opinion, the strongest feature of Jira is an easy way of tasks and bugs

tracking. However, this project is designed for realization of test automation for big

and complicated systems, which have a large number of requirements and develop-

ment stages. At least the author did not find among Jira’s opportunities an easy

enough way of managing the simulation of complicated.

3.3 Polarion

Polarion ALM, Application Lifecycle Management platform provides requirement

management, reuse and branch management, configuration management, and re-

porting. Polarion helps to handle and support requirements, design, testing and

tracking defects, improve application development processes as well as coding, test-

ing and release. It also allows to gather, make approvals, manage requirements, and

link them to user stories even for complex systems during all project lifecycles. Polar-

ion has browser-based access and provides easy way for editing of specification doc-

uments. (Polarion ALM 2019.)

12

Polarion ALM is a good tool for big complicated projects, especially if several teams

with quite different tasks are working on the same project.

3.4 Chapter summary

In previous chapters, some ALM systems were described, which helps to understand

the differences between solutions and main features. Now it can be concluded, that

ALM for test automation system should be chosen based on the possibility to provide

the next features and possibilities:

- Should provide functionality to help estimate and plan projects.
- It could be useful, if use cases were stored in the system and had links to the require-

ments.
- Create, edit and manage test cases.
- Track bugs, enhancements and issues linked to test cases.
- Record bugs linked to test steps for full test traceability.
- Manage both manual and automated testing.
- Ability to attach documents, screenshots and URLs to all artefacts.

On the base of information above, it can be concluded that Polarion is a more suita-

ble solution for big complicated projects. The negative sides of Polarion in compari-

son with Jira is that Polarion is harder to learn to use, when Jira (this decision was

made on the base of the writer’s own experience); however, it is not a big problem

especially if it is taken into use for big, long lasting projects.

4 Continuous Integration Servers

4.1 About Continuous Integration process

Continuous integration (CI) is the development practice of merging development

code to a shared repository as often as developers need it done. It is an important

part of the modern software development life cycle.

During software development process a new code can be added, the existing code

can be modified or deleted. Therefore, it is critical, that changes will not have a nega-

tive impact on already existing code elements. With this reason often automated

testing is an inherent part of the continuous delivery process. Ideally the whole pro-

cess of software development and all associated actions should be automated, which

13

makes the process much more efficient. In a case if test results show good results,

the tested software package can be, e.g. deployed in production. Otherwise develop-

ment team members should take into account errors detected during testing. (Con-

tinuous integration 2019.)

Figure 4 represents the cycle of Continuous Integration processes on diagram. It

starts from the planning and ends on the monitoring process, after that the next cy-

cle starts from the planning and repeats the same way again and again.

Figure 4. Continuous Integration process

Every year software development and testing techniques are becoming more and

more complex. To orchestrate the whole developing process, to ensure that the

steps required for software delivery are being executed in the correct order and that

failures are handled in a correct way, for all these purposes Continuous Integration

Server is used. Next, some of the most popular solutions are considered and re-

viewed from the perspective of integrating performance testing into the continuous

integration and delivery process.

4.2 Jenkins

Jenkins is an automation server platform that provides automated builds, unit tests,

SW deployments, HIL tests and reporting. The benefit of Jenkins is that it is Java-

based continuous integration tool and it is free, open source and modular. One of

14

the benefits is also the easy installation through native system packages, Docker or

with JRE. Figure 5 represents Jenkins in action. Web-Base user interface, opportunity

to run several jobs in the same time. The dependence between triggers and jobs can

be set. Jenkins jobs communicate over TCP/IP with job executors. Postexecution also

can be configured based on execution results.

Figure 5. Jenkins in action

Jenkins’ functionality can be extended through the installation of plugins. It supports

SCM tools, such as CVS, Mercurial, Git, Subversion; it can also execute arbitrary shell

scripts and Windows batch commands. There are more than 1,000 plugins providing

extra integrations to support building and automating any project. (Jenkins User Doc-

umentation 2019.)

4.3 Buildbot

Buildbot is a continuous development and build server. It supports many integra-

tions, distributed builds, custom build steps, notifications and others features.

Buildbot is some sort of a scheduling system; it can queue jobs, execute the jobs de-

pending the required resources are available, and report results. Buildbot installation

15

has one or more masters and several workers. The master can coordinate the activi-

ties of workers, monitor source-code for changes, and report the results to develop-

ers. The operation principle is presented in Figure 6.

Figure 6. Buildbot operating principle

Buildbot is a Python-based tool, and the config files are provided to the master as

very simple Python scripts, which allows dynamic generation of configuration and

customized components. (Buildbot Basics. N.d.)

4.4 CruiseControl

CruiseControl is one of the oldest CI tools; at the same time it is an extensible frame-

work for creating a custom continuous build process. Web-based interface provides

details of the current and previous builds. The configuration is XML-based. Cruise-

Control is available in three distributions: binary distribution, source distribution and

windows installer. Figure 7 represents the architecture diagram, where can be seen

that HTTP and RMI technologies allow to monitor and control the CruiseControl build

loop.

16

Figure 7. CruiseControl architecture diagram

The Build Loop runs as a scheduled daemon process, checks changes in codebase,

builds and sends notifications regarding the build. (CruiseControl 2019.)

4.5 Chapter summary

Polarion Jenkins Connector is Polarion Extension, which provides connection be-

tween Polarion and allow to trigger a Jenkins job, to notify Polarion about job results,

and automated Jenkins test results can be imported as Polarion Test Runs. (PJ – Po-

larion Jenkins Connector 2016.) Therefore, Jenkins is a good choice as a continuous

integration tool.

5 Test Automation frameworks

5.1 Types of Test Automation Frameworks

Testing frameworks are quite an important part of successful automated testing pro-

cess. The main goal of test automation frameworks is to provide an execution envi-

17

ronment for automation test scripts. It helps to reduce testing efforts, expenses, min-

imize manual intervention, increase test speed and efficiency. There are different

types of automated testing frameworks, so developer should take into account their

architecture, benefits and disadvantages, to develop, execute and reports efficiently.

(Автоматизированное тестирование 2018.)

Figure 8 demonstrates 6 types of Test Automation Frameworks on diagram.

Figure 8. Types of Test Automation Frameworks

In brief, the list below covers Test Automation Framework Types: (Test Automation

Frameworks 2019)

Modular Based Testing Framework: the application under test should be divided

into separate units, which will be tested separately.

Library Architecture Testing Framework is based on modular framework but uses li-

braries of common functions that can be used by multiple test scripts.

Data-Driven Framework: The test scripts are connected to the external data source

and can read and populate the necessary data when needed.

Keyword-Driven Framework: The functions of the tested application are saved in a

table with a series of instructions in consecutive order for each test that needs to be

run.

Behaviour Driven Development Framework, also known as Linear Automation

Framework: There is no need to write custom code; the tester just records each step

and then plays the script back automatically to conduct the test. This is one of the

fastest ways to generate test scripts. Recording takes place quite fast; however, the

18

data is hardcoded into the test script and tests cannot be re-run with multiple sets. If

the data is altered, tests scripts also have to be modified.

Hybrid Test Automation Framework is a combination of any of the previously men-

tioned frameworks.

This information can be useful on the stage of choosing testing software. The next

chapters describe some of the most popular test automation frameworks.

5.2 Robot Framework

The Robot Framework is an open source Python-base software and quite useful es-

pecially if Python is used for test writing; anyway, also IronPython (.NET) can be used

or Jython (Java). Robot Framework is an application and it is operating system inde-

pendent. This product uses a keyword driven approach that makes tests easy to read,

understand and create. It includes many tools, most of which are developed as sepa-

rate projects; however, there are also tools built into the framework. The libraries

can communicate with the system directly. Robot Framework is easy to use; a test

execution is started from the command line and the test report will be provided in

HTML or XML format. (Robot Framework 2019)

5.3 Cypress

Cypress is an open source test runner built for the modelling web. Using Cypress it is

easy to run end-to-end functional tests for anything that runs in a browser. Cypress is

developer-friendly and focused on making test-driver development easier in order to

understand everything happening inside and outside the browser. Cypress allows to

add a debugger in a developing application. The developer has native access to every

DOM element. The installation is quite simple, there is no configuration needed, no

dependencies or changes to the code are required. Cypress allows to write tests

quickly and watch them executed in real time. (Cypress 2019)

19

5.4 Citrus Framework

 This open-source framework can help to automate integration tests for data format

or any messaging protocol. Figure 9 demonstrates a diagram of typical test scenario.

Citrus Framework is the most useful tool to test messaging integration in cases, when

HTTP, REST, SOAT, FTP, SSH, JSON, XML or JMS messaging transport are used.

The system under test (deployed on an application server) can interact with Citrus

over various message transports. The test is fully automated; hence, the integration

tests can be added to continuous build. (Citrus Integration Testing 2019)

5.5 Chapter summary

Probably Robot Framework is the best solution for this project. It is especially quite

useful that developers can create their own higher-lever keywords using the same

syntax as for creating test cases; hence, the modular architecture can be extended,

and also open source test libraries can be used.

Cypress can be useful in this project in case of developing a web-based user interface

for test automation software.

Citrus Framework is suitable for testing communication between software and TAPI,

however, due to the limited time (script creation software should be developed

CITRUS

SOAP/XML SOAP Client

SUT

System Under Test

 JMS/XML

HTTP/JSON

JMS Producer

REST Client

Figure 9. Typical test scenario (Citrus)

20

within one month), no communication protocols were developed inside of this pro-

ject.

At this stage, the goal can be defined more detailed: test automation software

should create Robot scripts, which can be used in simulator testing.

6 Simulation system

6.1 Purposes

The main goal of simulation system creation is to get a system, which could model a

target vehicle, plane or other technical device and be used in software testing. Ide-

ally, this system has to return the same results or at least the results have to be as

close as possible to the results of a real device. For example, a tractor simulation sys-

tem represents some sort of imitation of tractor as a machine. The creation of a sim-

ulator requires a well-defined description of the machine, its characteristics and be-

haviour in different situations. Simulations can be used in developing processes, for

testing and performance, to show the machine reaction and behaviour in alternative

conditions and actions. Usually, simulating system consists of software model and

hardware parts. (RD-hankkeet ja simulointi N.d.)

6.2 HIL (Hardware-In-The-Loop)

Hardware-In-The-Loop is a useful technique during development and test processes.

HIL includes electrically emulated sensors and actuators. The value of each sensor is

controlled by the software environment and can be read by the system under test.

HIL testing offers an excellent alternative to traditional testing methods.

HIL simulation is mostly used in developing and testing of complex control, protec-

tion or monitoring systems. In case of traditional testing on a physical equipment, it

can be inefficient, expensive, take much time and finally it can be unsafe. Figure 10

demonstrates connections between workstation, HIL simulator and ECU.

21

Figure 10. Hardware in the loop simulation

The HIL hardware is connected to the control electronics (DUT), where the software

component to be tested is installed.

This technique differs from real-time simulation by the addition of a real component

into the loop, which makes the development process more effective. Some real hard-

ware components can be used instead of simulated ones due to the ease of use and

lower expenses.

Today, Hardware-In-The-Loop is quite important in aerospace, power systems, auto-

motive, power electronics industries, also it helps to meet the security requirements

of critical infrastructure systems, which can be vulnerable to cyberattacks. The use of

HIL improves the quality of testing, increasing the volume of the tested processes.

(Программно-аппаратное моделирование 2018.)

6.3 ECU

In automotive electronics, the term Electronic Control Unit is used for designation of

a device that can control the electrical systems in a machine.

Connection/communication between HIL hardware and ECUs is implemented

through busses and electricity, and it involves input/output operations. In today’s

new modern machines the number of ECUs becomes higher and higher and the com-

plexity increases with this. For example, in a car, such electronic features, as elec-

tronic fuel injection setup, braking system and others can be controlled by separate

ECUs. Figure 11 shows appearance of ECU.

Workstation HIL Simulator ECU

22

Figure 11. Example of ECU

An ECU fed with some number of inputs. Received from these inputs data can be e.g.

a clutch pedal, accelerator position, or engine speed. The ECU processes the received

data and alters the behaviour of the components of some system, such as ignition

system and fuel injectors by sending control signal data by outputs.

6.4 Hardware

On the market, there are different providers of tools for developing, testing and cali-

brating electronic control units, e.g. dSPACE (digital signal processing and control en-

gineering) or Speedgoat. The simulation system can consist of one or several cabi-

nets, where equipment and wirings are installed. The equipment includes processor

and I/O boxes, current to voltage converts, frequency converters, power source and

PC. (HIL testing 2019.)

7 Design and technology choices

The main subject of this chapter is the presentation of the made decisions, justifica-

tion of the selected technologies and the description of the implementation. As men-

tioned before, the main goal of this project was to find a solution for automatic cre-

ating test routines from a test drive test run, which could be implemented in the test

automation process.

23

At first, the system as a whole is discussed. The development starts from the defini-

tion of requirements and conditions, planning of working process, and therefore the

project management is handled in Polarion ALM. Jenkins is used for test execution.

The test results can be provided by Polarion Jenkins Connector (see Figure 12).

Figure 12. Polarion Jenkins Connector main functions

Jenkins puts into operation the scheduled jobs and runs Robot Test Suites. Robot

Framework provides the execution environment for automation test scripts. In addi-

tion, Jenkins updates the developed robot keyword library and robot scripts from

SVN server. New Robot Scripts can be created writing manually or using Test Script

Creation Software.

The tasks of CI platform will be:

- Retrieve the latest software versions from the version control system
- Download the software to the embedded hardware
- Retrieve and download the correct simulation model for the hardware
- Apply for the latest software test cases
- Perform and report tests

Figure 13 represents the architecture of the system as a whole. As can be seen, the

results from the testing machine can be received through CANUSB and TAPI. TAPI

should be created exactly for tested machine.

24

Figure 13. Test automation architecture

7.1 Polarion ALM

Polarion ALM is a consistent solution for software lifecycle management. Polarion

provides traceability and transparency of software development and supports all the

most important software development activities.

In 2005, Polarion company released the first 100% browser-based development plat-

form designed to optimize enterprise development. In 2016, Siemens PLM Software

acquired Polarion Software to expand their support for ALM market. During 10 years

of growth, Polarion got over 2.5 million users. These numbers confirm that the users

trust this platform. (About Polarion Software, a Siemens Company 2018.)

Polarion ALM is a very good solution in case of difficult environment and distributed

documentation management. Data types in Polarion can be specified, for example

requirement, test case, task, defect, and package. Figure 14 shows example docu-

ment view in Polarion.

25

Figure 14. Polarion screenshot

7.2 Robot Framework

Robot Framework is an open source software initially was developed at Nokia Net-

works. Nowadays it is sponsored by Robot Framework Foundation.

Robot Framework is application independent and provides easy-to-read result re-

ports in HTML format, gives opportunities to create data-driven test cases, different

levels setups and teardowns, and comes with its own reusable keywords.

Scripts can be saved into a file with .robot extension. Robot file contains the setting

table, variables, test cases and keywords.

Setting table

Setting table contains the test case related settings such as tags, template, library,

metadata, documentation, test and suite setup and teardown.

Tags are used for classifying test cases. There are two types of tags: (Robot Frame-

work User Guide 2019)

- Force Tags: all test cases always get specified tags in a test case file with this setting.
- Default Tags: only those test cases get these tags which do not have a tag setting of

their own.

Test templates convert test cases into data-driven tests. Such test cases contain only

the arguments for the template keyword.

26

Library: The test library contains library keywords, which interact with the system

under test. Remote library is used in a case when test libraries are located on differ-

ent machines than where Robot Framework itself is running.

Test teardown executes after a test case or in situations if a test case fails.

Metadata is an information set shown in test reports and logs.

Variables mentioned in this section are necessary for settings, for example global

variables, path to specific folder, address.

Test cases: The first column contains test case names, and the second column has

keyword names.

Keywords: This part describes Suite Setup (executes once in the beginning), Test

Setup (executes before every test case), Test Teardown (executes after every test

case), and Suite Teardown (executes for the suite once in the end).

For example: a vehicle acceleration test. The steps are following:

1. Suite Setup: changing shuttle lever position to “forward”.
2. Test Case “Test Acceleration Pedal 100%” executing using arguments: percent

of press (100) and expected speed (43).
3. Keyword “Test pedal”, test steps: acceleration pedal is pressed 100%, after 5

seconds the vehicle speed must be 43 km/h. If condition is not met, the test is
failed.

4. Keyword “Teardown” executes (test teardown executes after every test case).
5. All following test cases will be executed the same way.
6. Suite Teardown: changing shuttle lever position to “forward”.

The file content is demonstrated below:

*** Settings ***

Library Remote http://${ADDRESS}:${PORT}

Documentation Example of robot file

Suite Setup Setup

Test Teardown Teardown

Suite Teardown Suite Teardown

*** Variables ***

${ADDRESS} %{ROBOT_SERVER_ADDRESS}

${PORT} 8265

*** Test Cases ***

Test Acceleration Pedal 100%

 Test pedal 100 43

Test Acceleration Pedal 50%

 Test pedal 50 22

27

***Keywords ***

Setup

 Set Shuttle Lever forward

Test pedal

 [Arguments] ${accel_press} ${speed}

 Set Acceleration Pedal ${accel_press}

 Wait 5s

 Vehicle Speed Should Be Above ${speed}

Teardown

 Set Acceleration Pedal 0

 Wait Until Vehicle Speed Is Below 0.1

Suite Teardown

 Set Shuttle Lever park

Execution:

7.3 Jenkins

Depending of users’ needs, Jenkins can be used as a simple CI server or turned into a

continuous delivery hub for any project. Configuration takes place via web interface.

The installation is quite simple; it was enough to download Jenkins from web-site,

open up a terminal in the download directory and run provided Java script. After

that, one can start to use Jenkins in the browser by opening http://localhost:8080.

Figure 15 demonstrates the view of main page.

Figure 15. Jenkins screenshot

The list below demonstrates some of plugins, which can be useful in this project:

http://localhost:8080/

28

Git

Git is a distributed version control system for software projects allowing migration

between different stages of development and keeping track of all application chang-

es.

CVS

Jenkins can be integrated with CVS version control system using a modified version

of the NetBeans CVS Client.

Build Pipeline

Build Pipeline plugin can be useful to define triggers for jobs that are required prior

to execution.

Job Import Plugin

Gives opportunity to import jobs from another instance.

Parameterized Scheduler

This plugin can be used to configure a timer schedule for parameterized builds. For

example, we can configure schedule so, that it will start builds every night. It is quite

useful if during daytime developers make changes in a code, and the tests will be run

at night time.

PostBuildScript plugin

PostBuildScript plugin can run one or more configurable actions after a build, which

depends e.g. on the build result.

Robot Framework plugin

This plugin allows to store Robot Framework test reports and show the summaries in

a project.

Build Triggers

Figure 16 shows an example of the usage of build triggers. In this example the sched-

ule for execution is set so that the run will start every day between 18:00 and 19:00.

29

Figure 16. Build Triggers

7.4 Communication flow

Web socket communication

Figure 17 describes web socket communication between client and server. Client

sends handshake to the server and starts waiting for handshake response. After re-

sponse is received, client sends request and starts waiting for the next response and

results. At this stage when data is received, the connection can be closed (timeout

can be the reason of connection close as well). Client sends close connection request,

and connection will be closed immediately after confirmation has been received or

due to the expiration of time.

The server is in standby mode and waiting for a request from client. When hand-

shake request is received, server responses to it and starts waiting for a request. Af-

ter request is received, server sends response for request, executes request and

sends results for request. Connection will be closed after close connection request

received or by the expiration of time.

30

Figure 17. Web Socket Communication

Test flow

The steps of communication flow in the system between ALM, CI and HIL are de-

scribed below:

1. Polarion contains requirements and test cases, which refer to robot scripts by identi-
fication number.

2. Source code can be stored on SVN server:
a. HILLibrary (keywords, variables)
b. Unit tests
c. Robot scripts
d. Jenkins properties (robot arguments and variables, paths, robot server ad-

dress etc.)
3. Jenkins updates changes from SVN server and executes the Robot Framework scripts

according to the schedule.
4. Robot Framework runs a test script.
5. The test script opens a web socket connection to the WSS (Web Socket Server).
6. The WSS connects to the correct HIL API.
7. Robot Framework provides test results to Polarion connector in XML mode.
8. Polarion connector writes test results to Polarion.

Client Server

31

7.5 TAPI

API, Application Programming Interface is a programming interface that consists of a

set of communication protocols, tools and implementation methods, and defines the

means of application communication between applications. In this project test API is

used for getting real machine signals through CANUSB, which connects real machine

under manual test with PC (script creation software is installed on it). TAPI is imple-

mented as dynamic-link library (or DLL). Script creation software communicates with

it simply with functions and arguments. It could be imaged that TAPI generates the

table of signals containing the values for each of them based on CAN messages,

which are coming periodically. TAPI decodes the messages, saves signal values in a

table and provides them to script creation software by request.

8 Script Creation Software (development result)

8.1 Workflow

Previous chapters described ready systems already available for use. The purpose of

this chapter is to describe the script creation software’s principles, concept and logic,

which were developed 100% inside this project. The main goal of this application is

to generate ready robot test scripts based on manual machine tests. The demo ver-

sion demonstrates testing capabilities and basic requirements on the example of im-

plementation and usage script creation software in heavy moving machinery HIL test-

ing. Visual Studio along with C# was used to create a Windows Forms demo applica-

tion. The purpose of this application was to define the necessary data and parame-

ters to make script creation possible based on signal changing.

The basic principle of application’s work is following:

- Receiving signals from the machine during manual test
- Filtering of signals
- Recording received data
- Data analysing
- Robot script generation

Figure 18 demonstrates the stages of script creation workflow from the determina-

tion of the requirements for the test machine till the delivery of ready scripts to SVN.

32

Figure 18. Script creation workflow

8.2 Requirements

Any testing is performed based on requirements, how testing machine or some other

technical device should respond to external influences. In case of moving machines,

the example of requirements can be: “Parking brake indicator is solid ON when park-

ing brake is engaged”, “Parking brake engagement is allowed only when the speed of

the machine is below speed limit parameter of parking brake”.

8.3 Test case scenario

Based on the requirements, the test case scenario is created. Usually it consists of

preconditions, test steps and expected results. The test case scenario provides the

sequence of actions, how the machine should be tested and which results should be

received to define that test was passed successfully.

33

The following is an example of parking brake status and parking brake indicator test-

ing. Table 1 represents the preconditions for manual test, which must be met before

the first test action.

Table 1. Preconditions for manual test

Preconditions

Engine running

Operator seated

None of the pedals are pressed

Shuttle lever is in P position

Often preconditions match the default conditions for HIL testing, however, in case

some of them differ, they must be mentioned obligatorily and performed as steps of

the test case.

The next table demonstrates an example of test case steps and the expected results

for them.

Table 2. Test case steps and expected results

Step Expected Result

Set Shuttle Lever to R Parking Brake Indicator is OFF

Machine speed increases over 5 km/h

Press Clatch and Brake pedals Machine stops

Set Shuttle Lever to F and release

pedals

34

Press Acceleration pedal on 50% Machine speed increases over 10 km/h

Release Acceleration pedal

Set Shuttle Lever to P Parking Brake Indicator is ON

This means that the test operator during testing performs the provided actions,

checks results of actions and compares them with the expected results of the test

case. In case the results differ from the expected ones, the test is considered failed

8.4 List of signals

In case of a complicated system, a machine can provide quite a large amount of sig-

nals, hundreds or even thousands. Usually therequirement means testing only a few

of the signals, which is why the filtering of signals should be implemented; otherwise

the application provides a robot script with a large amount of conditions, which

would test the whole system. It increases the probability to get a robot test, which

will fail in an HIL system, and a failure can occur for any other reason, not only due to

the tested conditions.

The list of signals needed for a particular test must also provide information about

every signal:

- Input/output signal flag
- Script template
- Conditions for script creation
- Default value

8.4.1 Input/output signal flag

Script is generated based on the detection of the change in signal value. If the value

of some signal is different than it was before, the script will be generated based on

the script template and script conditions. In case if in the moment of comparing sig-

nals was detected that more than one of the signals is changed, the script for input

signal will be generated first.

35

For example, shuttle lever status has input flag, parking brake status has output flag.

If during a manual test it was detected that at the same time the shuttle lever status

and parking brake status values are different from the values received before it, at

first the script for shuttle lever state must be generated, because the input signal

produces an impact on the output signal. It will be correct that on HIL system shuttle

lever state should be changed first, and only after that the output signal for parking

brake state should be checked.

8.4.2 Script template

Script template represents the HIL library keyword, which should be used for script

generation.

For example: output signal ParkingBrake could have keyword “Parking Brake Status

Should Be”. During testing the operator checks parking brake status and compares it

with a given expected result from a test case. However, in the process of robot script

generation based on the recorded signals from a real machine, the application per-

ceives the received signals’ values as required and uses them in the scripts.

8.4.3 Conditions for script creation

There are different types of signals, some of them with only two values, 0 and 1,

“off“ and “on”. Other signals could have several possible values (shuttle lever status:

park, neutral, forward, reverse) or even floating values (vehicle speed, pedal posi-

tion). It is quite important to use detailed conditions for signals, which have floating

values.

Example 1: signal “ParkingBrake” can have only “0” or “1” values. “0” means, that

parking brake is “off”, and “1” means parking brake is “on”. In such cases two cases

must be mentioned:

- case=0:off
- case=1:on

In this demo version following syntax was used:

case<comparison sign>:<output for script>

Comparison sign could be “<”, “>” or “=”.

36

Hence, if during the analysis of the recorded signals is detected that “ParkingBrake”

signal was changed from 1 to 0, the generated script will be “Parking Brake State

Should Be off”.

Example 2: signal “ShuttleLeverStatus” can have several values, so cases could be

mentioned in the same way like in previous example:

- case=4:park
- case=1:neutral
- case=3:reverse
- case=2:forward

Example 3: signal “VehicleSpeed” has float values, there is no need to generate script

every time when change was detected. For such cases logic of script generation was

developed for floating values. At first it should be decided, which values are the most

interesting in this test. The chapter “Test case scenario” provided an example, where

the vehicle speed points can be noticed which should be noticed during the test:

“Machine speed increases over 5 km/h” and “Machine speed increases over 10

km/h”. Situations, when speed changes and goes over 5 km/h and over 10 km/h are

of interest; also it could be useful to detect, when the machine stops, so the speed

drops under 1 km/h. The script template for “VehicleSpeed” is “Wait Until Value Is”.

The conditions could be:

- case>5: Above CANSpeed 5 (Wait Until Value Is Above CANSpeed 5)
- case>10:Above CANSpeed 10 (Wait Until Value Is Above CANSpeed 10)
- case<1:Below CANSpeed 1 (Wait Until Value Is Below CANSpeed 1)

The demo version of the product uses conditions saved in .txt file. It is recommenda-

ble to save the data in some other format.

8.4.4 Default value

Default values should be used for teardown generation, also they could be useful in

the beginning of an analysis for comparing the first received values with default val-

ues.

Examples:

- Input signal “ShuttleLever” def=4
o case=4:park, teardown script will be “Set Shuttle Lever park”

- Output signal “ParkingBrake” def=1

37

o case=1:on, so default state for parking brake is “on”, teardown script will be
“Parking Brake Status Should Be on”

8.5 Manual testing

The demo version of developed application is demonstrated in this chapter.

Work flow:

1. Operator connects the computer to the test machine using CANUSB.
2. Launchs script creation software before manual test started.
3. Executes preconditions, mentioned in test case.
4. Using script creation SW operator starts recording of signals.
5. After manual test case is finished, operator stops recording.
6. If needed, received data can be saved into file.
7. Script creation SW generates test scripts and save them into robot file.

Figure 19 demonstrates the main view of the developed application. The operator

can choose the model of the tested machine (in this case it is “S1”). After it, TAPI con-

nection must be established (button “Open connection”). The application provides

available signals for the selected model. Here the signals needed for upcoming test

should be marked.

Figure 19. Main form of application

Pressing button “Set I/O for selected signals” opens a form, which provides the op-

portunity to modify the input/output signal flag, script template, conditions for script

38

creation and default value (see chapter 8.3 List of signals). Form “Set I/O signals” is

demonstrated in Figure 20.

Figure 20. Form "Set I/O signals"

After modifications are made and “Save” button pressed, the file containing signal

data for the selected machine model will be updated.

In the main application form, the operator presses the button “Add selected signals”

and can see the current signal values for each signal in DataGridView in the lower left

corner of the form containing signal name, raw value, scaled value and some other

information.

The operator starts recording the signals and executes the actions described in the

test case. When the manual test is finished, the operator stops recording. After that,

he/she can see the table of recorded values for each signal. The application checks

and records signals every 100 ms (frequency can be changed) even despite the fact

that no signal was changed from the last record, it causes duplicating of rows, where

only “Time” column has a different value. Button “Extract” helps to clear the table by

39

deleting duplicate rows. The recorded signals can be saved to a file or loaded from a

file created before.

At this stage, the operator can press “Create script” button, choose a file name and

location for the robot test file, after which the script will be generated and saved into

the mentioned place.

8.6 Script creation

The generated script will be saved in the robot file. The logic of script creation is

demonstrated in Appendixes 5-7. After “Create script” button was clicked, Save-

FileDialog requests to mention the file name for the robot file. As script templates

and other necessary information for each signal are saved in the file, the application

tries to get data from input/output file and fill in two tables:

// Input table
private Dictionary<string, string> inputs = new Dictionary<string, string>();
// Output table

private Dictionary<string, string> outputs = new Dictionary<string, string>();

The tables contain only the signals meant for the current test case.

Figure 21 demonstrates some of the functions and variables used or modified in the

mentioned function, and gives an example, what kind of data the variable contains.

This information can be useful in case of deep application code analysis, which is per-

formed in appendixes 1-9.

Figure 21. Examples of data

40

ShowFileResults() function is used to display just the recorded or loaded data from

the file. Functions getDataFromIOFile() and createInputOutputTables() are used for

script creation.

After “inputs” and “outputs” tables are filled, the application goes through each key-

value pair in “inputs” table, gets default value for signal and compares it with the

value in the first row of records. If the value is not the same as the default, the script

will be generated based on the template for the current signal. When all input signals

have been compared, the same operation is repeated for the output signals.

Script creation diagram in Appendix 6 demonstrates the next step, the current signal

value compared with the previous value. The loop is used to go from the second until

the last row of table (list of records). The same way, the input signals are checked

first and compared with the previous values for the same signal. If a value is changed,

a script will be added. After the input signals the output signals will be compared.

There can be special cases, such as for signal “VehicleSpeedWheelBased”, which has

the script template “Wait Until Value Is”. If at the same time more than one signal

was changed, the script “Wait Until Value Is” must appear before others.

Appendix 7 represents the final part, teardown generation. The same way as the first

input signals are checked, the generated scripts set the default values for them, after

which the teardown for output signals will be done.

After all data is save into the file, it will be opened for the operator.

8.7 Commit to SVN

A generated robot file must be committed to SVN, so it can be used for HIL testing by

CI platform.

9 Developed software testing

The developed application was successfully tested on a real machine. The stages

from requirements specification until commitment to SVN are described in the re-

port. In this chapter, the real test is presented, which confirms the correctness of the

generated scripts.

41

Test case

The test case can be found in chapter 8.3 Test case scenario.

List of signals

The list of signals is saved in .txt file:

ParkingBrake 0 Parking Brake Status Should Be def=1 case=0:off case=1:on

AccPedal1Position 1 Set Acceleration Pedal def=0 case<5:0 case>45:50

VehicleSpeedWheelBased 0 Wait Until Value Is case>5:Above CANSpeed 5 case>10:Above

CANSpeed 10 def=0,1 case<1:Below CANSpeed 1

ShuttleLeverStatus 1 Set Shuttle Lever def=4 case=4:park case=1:neutral case=3:reverse

case=2:forward

ParkingBrakeIndicator 0 Parking Brake Indicator State Should Be def=1 case=0:off case=1:on

FrontBrakePedalStatus 1 Press Brake def=0 case=0:0 case=2:50

FrontClutchPedalBoc 1 Set Clutch Pedal def=0 case=0:0 case=1:100

Data was used this way (in txt file) only by the reason of limited development time.

The best way to save and use such kind of data, using database.

Manual test vs. generated script

Appendix 10 represents the comparison of manual test actions with the generated

script. As can be seen, the generated robot test has more actions than was described

in the manual test. For example: in manual test one step “Set Shuttle Lever reverse

position” generated four scripts for HIL testing:

- Set Shuttle Lever neutral
- Parking Brake Status Should Be off
- Parking Brake Indicator State Should Be off
- Set Shuttle Lever reverse

In the tested machine the shuttle lever is by default in park position. When the oper-

ator changes the position from park to reverse, the shuttle lever goes through neu-

tral position, which is the reason why the application generated it. This is quite good

for HIL testing, because the simulator must work exactly the same way like a real ma-

chine. At the same time it will be tested that already at this stage the parking brake

status and parking brake indicator state must be changed, not only after shuttle lever

42

is set to reverse position as described in the manual test. Therefore, the generated

script is much more accurate than if it could be written manually.

Commit to SVN

For the test purposes the folder named “Manual tests” was created. The robot file

generated by the test application was saved into it and committed to SVN as seen in

Figure 22.

Figure 22. Commit to SVN

43

Jenkins (CI platform)

Jenkins job was created to automate robot tests on HIL simulator. It can be sched-

uled to run e.g. every night. Figure 23 represents console output that happened dur-

ing its run:

1. SVN updates were made
2. Robot Server was launched
3. Run all robot tests in folder “Manual tests” was executed.

Figure 23. Jenkins console output

44

Test results

Jenkins created a test results report (report.html, the path of which can be found in

the console output), shown in Figure 24.

Figure 24. Test results

As can be seen, the generated robot test passed successfully. The generated script

can be found in Appendix 11.

45

10 Conclusions

As a result, an application was developed that creates robot test scripts based on a

manual test. The most important issue in this project is conception. One of the goals

was to get a confirmation that the implementation is possible even for quite compli-

cated systems and to find out the script creation logic. The purpose was also to un-

derstand what data is needed and what is the best way to retrieve/update it, and in

which form.

For practical usage this application could be developed with web-based user inter-

face. The database should be taken into use for saving and retreaving information

mentioned in chapter 8.4 “List of signals”, hence, it will contain:

- Basic information about machine models and list of available signals for each of
them.

- Types of signals.
- Script templates (depend on test case).
- Conditions for script creation (also depend on test case).
- Default values.

The developed application allows to see the real machines’ signals during manual

test execution, to save the signals’ values and generate robot scripts based on them.

The application was also successfully tested in a real environment. The test results

are demonstrated in this document in chapter 9 “Developed software testing”. The

pre-set requirements and goals for the thesis were achieved, which means that the

thesis project can be considered to be successful.

46

References

About Polarion Software, a Siemens Company. 2018. Siemens. Accessed on 11 March
2019. Retrieved from https://polarion.plm.automation.siemens.com/company/index

Application Lifecycle Management Software. 2019. Capterra. Accessed on 7 March
2019. Retrieved from https://www.capterra.com/application-lifecycle-management-
software/

Buildbot Basics. N.d. Buldbot official web-site. Accessed on 29 March2019. Retrieved
from https://buildbot.net/

Citrus Integration Testing. 2019. Citrus web-pages. Accessed on 28 February 2019.
Retrieved from https://citrusframework.org/

Continuous integration. 2019. Wikipedia, the free encyclopedia. Accessed on 29
March 2019. Retrieved from https://en.wikipedia.org/wiki/Continuous_integration

CruiseControl. 2019. CruiseControl official web-pages. Accessed on 4 March 2019.
Retrieved from http://cruisecontrol.sourceforge.net/

Cypress. 2019. Cypress web-pages. Accessed on 28 February 2019. Retrieved from
https://www.cypress.io/

Devecto Oy. 2019. Devecto’s web-pages. Accessed on 10 April 2019. Retrieved from
https://devecto.com/

Electronic control unit. 2019. Wikipedia, the free encyclopedia. Accessed on 29
March 2019. Retrieved from https://en.wikipedia.org/wiki/Electronic_control_unit

HIL testing. 2019. dSPACE GmbH. Accessed on 29 March 2019. Retrieved from
https://www.dspace.com/en/pub/home/products/systems/ecutest.cfm

Jenkins User Documentation. 2019. Jenkins. Accessed on 4 March 2019. Retrieved
from https://jenkins.io/doc/

PJ – Polarion Jenkins Connector. 2016. Polarion Extention Portal. Accessed on 10
March 2019. Retrieved from http://extensions.polarion.com/extensions/171-pj-
polarion-jenkins-connector

Polarion ALM. 2019. Siemens. Accessed on 29 March 2019. Retrieved from
https://polarion.plm.automation.siemens.com/products/polarion-alm

Polarion Extentions. 2016. Polarion Extention Portal. Accessed on 5 March 2019.
Retrieved from http://extensions.polarion.com

RD-hankkeet ja simulointi. N.d. Protacon’s web-page. Accessed on 29 March 2019.
Retrieved from https://www.protacon.com/tuotekehitysorganisaatiot/rd-hankkeet-
ja-simulointi/

Real-Time Target Machines. 2019. Speedgoat web-page. Accessed on 13 April 2019.
Retrieved from https://www.speedgoat.com/products-services/real-time-target-
machines

Robot Framework User Guide version 3.1.1. 2019. Robot Framwork web-page.
Accessed on 10 April 2019. Retrieved from

47

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.htm
l

Robot Framework. 2019. Robot Framework official web-pages. Accessed on 4 March
2019. Retrieved from https://robotframework.org/

Test Automation Frameworks. 2019. Smartbear. Accessed on 29 March 2019.
Retrieved from https://smartbear.com/learn/automated-testing/test-automation-
frameworks/

Автоматизация тестирования [Test Automation]. 2018. PerformanceLab. Accessed
on 5 March 2019. Retrieved from https://www.performance-lab.ru/avtomatizacija-
testirovanija

Автоматизированное тестирование [Automated Testing]. 2018. Wikipedia, the free
encyclopedia. Accessed on 29 March 2019. Retrieved from
https://ru.wikipedia.org/wiki/Aвтоматизированное_тестирование

Программно-аппаратное моделирование [Software and hardware modeling].
2018. Wikipedia, the free encyclopedia. Accessed on 29 March 2019. Retrieved from
https://ru.wikipedia.org/wiki/Программно-аппаратное_моделирование

Средства для разработки ПО [Software Development Tools]. Jira Software. 2019.
Atlassian. Accessed on 7 March 2019. Retrieved from
https://ru.atlassian.com/software/jira/features

48

Appendices

Appendix 1. getDataFromIOFile function

 private void getDataFromIOFile()
 {
 signalsFromIOFile.Clear();
 if (File.Exists(fileName))
 {
 string line;
 StreamReader sr = new StreamReader(fileName);
 while ((line = sr.ReadLine()) != null)
 {
 string[] data = line.Split('\t');
 signalsFromIOFile.Add(data[0], data[1].ToString());
 }
 sr.Close();
 }
 else
 {
 Console.WriteLine("File doesn't exists. Press button 'Set I/O signals and fill data'");
 }
 createInputOutputTables();
 }

49

Appendix 2. Recording of data (programm code)

public partial class Form1 : Form
 {

private void buttonRecordSignals_Click(object sender, EventArgs e)
 {
 GlobalVar.recording = true;
 StartRecording();
 buttonRecordSignals.Text = "Recording in progress";
 buttonRecordSignals.BackColor = Color.Red;
 buttonRecordSignals.Enabled = false;
 buttonStopRecord.Enabled = true;
 dataGridView2.Rows.Clear();
 dataGridView2.Refresh();
 }
 public static void StartRecording()
 {
 GlobalVar.listOfRecords.Clear();
 RecordThread thread = new RecordThread();
 Thread t = new Thread(new ThreadStart(thread.Recording));
 t.Start();
 }
}

public class RecordThread
 {
 public void Recording()
 {
 Stopwatch stopwatch = new Stopwatch();
 stopwatch.Start();
 while (GlobalVar.recording)
 {
 Dictionary<string, double> row = new Dictionary<string, double>();
 row.Add("Time", stopwatch.ElapsedMilliseconds);
 for (int i = 0; i < GlobalVar.readSignalBindings.Count; i++)
 {
 TAPIReadSignal signal = (TAPIReadSignal)GlobalVar.readSignalBindings[i];
 row.Add(signal.SignalID.ToString(), signal.ScaledValue);
 }
 GlobalVar.listOfRecords.Add(row);
 Thread.Sleep(GlobalVar.freq);
 }
 stopwatch.Stop();
 }
 }

50

Appendix 3. Stop recording and display recorded data

 private void buttonStopRecord_Click(object sender, EventArgs e)
 {
 GlobalVar.recording = false;
 buttonRecordSignals.Text = "Start recording";
 buttonRecordSignals.BackColor = Color.Green;
 buttonRecordSignals.Enabled = true;
 buttonStopRecord.Enabled = false;
 ShowResults();
 labelData.Text = "Data from the last record";
 }

 public void ShowResults()
 {
 dataGridView2.Rows.Clear();
 dataGridView2.Refresh();
 dataGridView2.ColumnCount = GlobalVar.readSignalBindings.Count + 1;
 GlobalVar.columns.Clear();
 int rowId = dataGridView2.Rows.Add();
 int col = 0;
 // Get all records line by line
 for (int i = 0; i < GlobalVar.listOfRecords.Count; i++)
 {
 List<string> list = new List<string>();
 // Every row in a table saved as dictionary.
 // Take one row and get key value pair for signals.
 Dictionary<string, double> signal = GlobalVar.listOfRecords[i];
 foreach (KeyValuePair<string, double> kvp in signal)
 {
 // In case of the first row dataGridView columns will be added
 if (i == 0)
 {
 dataGridView2.Columns[col].Name = kvp.Key;
 GlobalVar.columns.Add(kvp.Key);
 col++;
 }
 list.Add(kvp.Value.ToString());
 }
 string[] row = list.ToArray();
 dataGridView2.Rows.Add(row);
 }
 }

51

Appendix 4. Save recorded data to file

 private void buttonSave_Click(object sender, EventArgs e)
 {
 SaveFileDialog saveFileDialog1 = new SaveFileDialog();
 saveFileDialog1.Title = "Save Into File";
 saveFileDialog1.Filter = "Text file|*.txt";
 saveFileDialog1.ShowDialog();
 string fileName = saveFileDialog1.FileName;
 if (fileName != "")
 {
 // Meke the first row with columns names
 string colNames = "";
 foreach (string col in GlobalVar.columns)
 {
 if (colNames != "") colNames += "\t";
 colNames += col;
 }
 // Add columns names into the file
 var file = new StreamWriter(saveFileDialog1.FileName);
 file.WriteLine(colNames);
 // Add signal values into the file
 for (int i = 0; i < GlobalVar.listOfRecords.Count; i++)
 {
 string line = "";
 for (int j = 0; j < GlobalVar.columns.Count; j++)
 {
 string key = GlobalVar.columns[j];
 Dictionary<string, double> signal = GlobalVar.listOfRecords[i];
 double value = signal[key];
 if (line != "") line += "\t";
 line += value;
 }
 file.WriteLine(line);
 }
 file.Close();
 }
 }

52

Appendix 5. Script creation diagram (part1)

53

Appendix 6. Script creation diagram (part 2)

54

Appendix 7. Script Creation diagram (part 3)

55

Appendix 8. Additional functions (programm code)

 private void getDataFromIOFile()
 {
 signalsFromIOFile.Clear();
 if (File.Exists(fileName))
 {
 string line;
 StreamReader sr = new StreamReader(fileName);
 while ((line = sr.ReadLine()) != null)
 {
 string[] data = line.Split('\t');
 signalsFromIOFile.Add(data[0], data[1].ToString());
 }
 sr.Close();
 }
 else
 {
 Console.WriteLine("File doesn't exists. Press button 'Set I/O signals and fill data'");
 }
 createInputOutputTables();
 }

 public void createInputOutputTables()
 {
 inputs.Clear();
 outputs.Clear();
 foreach (string colName in GlobalVar.columns)
 {
 try
 {
 string value = signalsFromIOFile[colName];
 if (value.Substring(0, 1) == "1")
 inputs[colName] = value.Substring(3);
 if (value.Substring(0, 1) == "0")
 outputs[colName] = value.Substring(3);
 }
 catch
 {
 Console.WriteLine(colName + " not found");
 }

 }
 }

56

Appendix 9. getScriptTemplate function

private string getScriptTemplate(string data, double currentValue, double prevValue)
 {
 string value = "";
 var items = data.Replace(" ", "*");
 string[] array = items.Split('*');
 string returnText = "empty";
 bool isCase = false;
 foreach (string item in array)
 {
 if (item.Substring(0,4) == "case")
 {
 isCase = true;
 if (item.Substring(4,1) == "=")
 {
 int symbol = item.IndexOf(':');
 string val = item.Substring(5, symbol-5);
 if (Double.Parse(val) == currentValue)
 {
 value = item.Substring(symbol+1);
 returnText = " " + array[0] + " " + value;
 }
 }
 else if (item.Substring(4, 1) == ">")
 {
 int symbol = item.IndexOf(':');
 string val = item.Substring(5, symbol - 5);
 if (currentValue > Double.Parse(val) && prevValue <= Double.Parse(val) && returnText
== "empty")
 {
 value = item.Substring(symbol + 1);
 returnText = " " + array[0] + " " + value;
 }
 }
 else if (item.Substring(4, 1) == "<")
 {
 int symbol = item.IndexOf(':');
 string val = item.Substring(5, symbol - 5);
 if (currentValue < Double.Parse(val) && prevValue >= Double.Parse(val) && returnText
== "empty")
 {
 Console.WriteLine("Script making: Prev: {0}, current: {1}, script: {2}",
prevValue, currentValue, item);
 value = item.Substring(symbol + 1);
 returnText = " " + array[0] + " " + value;
 }
 }
 }
 }
 if (isCase && returnText == "empty") returnText = "null";
 else returnText = " " + array[0] + " " + value;
 return returnText;
 }

57

Appendix 10. Manual test VS. generated script

Tractor manual test description: Generated robot test script

Set Shuttle Lever reverse position

Wait Until Speed is above 5km/h

Press Clatch Pedal 100%

Press Brake pedal 50%

Set Shuttle Lever forward position

Release Clatch Pedal

Release Brake pedal

Press Acceleration pedal 50%

Wait Until Speed is above 10km/h

Release Acceleration pedal

Set Shuttle Lever park position

Check what parking brake indicator is on

Test it

 Set Shuttle Lever neutral

 Parking Brake Status Should Be off

 Parking Brake Indicator State Should Be off

 Set Shuttle Lever reverse

 Wait Until Value Is Above CANSpeed 5

 Set Acceleration Pedal 0

 Set Clutch Pedal 100

 Press Brake 50

 Wait Until Value Is Below CANSpeed 1

 Set Shuttle Lever neutral

 Set Shuttle Lever forward

 Set Clutch Pedal 0

 Press Brake 0

 Set Acceleration Pedal 50

 Wait Until Value Is Above CANSpeed 5

 Wait Until Value Is Above CANSpeed 10

 Set Acceleration Pedal 0

 Set Shuttle Lever neutral

 Set Shuttle Lever park

 Parking Brake Status Should Be on

 Parking Brake Indicator State Should Be on

Teardown

 Set Acceleration Pedal 0

 Set Clutch Pedal 0

 Set Shuttle Lever park

 Press Brake 0

 Parking Brake Status Should Be on

 Parking Brake Indicator State Should Be on

58

Appendix 11. Generated file

*** Settings ***

Library Remote http://${ADDRESS}:${PORT}

Documentation This test was generated automatically on the base

of manual test

Test Teardown Teardown

*** Variables ***

${ADDRESS} %{ROBOT_SERVER_ADDRESS}

${PORT} 8265

*** Test Cases ***

Test it

 Set Shuttle Lever neutral

 Parking Brake Status Should Be off

 Parking Brake Indicator State Should Be off

 Set Shuttle Lever reverse

 Wait Until Value Is Above CANSpeed 5

 Set Acceleration Pedal 0

 Set Clutch Pedal 100

 Press Brake 50

 Wait Until Value Is Below CANSpeed 1

 Set Shuttle Lever neutral

 Set Shuttle Lever forward

 Set Clutch Pedal 0

 Press Brake 0

 Set Acceleration Pedal 50

 Wait Until Value Is Above CANSpeed 5

 Wait Until Value Is Above CANSpeed 10

 Set Acceleration Pedal 0

 Set Shuttle Lever neutral

 Set Shuttle Lever park

 Parking Brake Status Should Be on

 Parking Brake Indicator State Should Be on

***Keywords ***

Teardown

 Set Acceleration Pedal 0

 Set Clutch Pedal 0

 Set Shuttle Lever park

 Press Brake 0

 Parking Brake Status Should Be on

 Parking Brake Indicator State Should Be on

