
KEMI-TORNIO UNIVERSITY OF APPLIED SCIENCES
TECHNOLOGY

Häkkinen Henri

Pointing and Tracking Aid for the Modular Radar
System using the Automatic Identification System

The Bachelor’s Thesis Information Technology programme
Kemi 2011

Häkkinen Henri BACHELOR'S THESIS I

PREFACE

I would like to express my gratitude for Professor Gert Hvedstrup Jensen who originally
recommended me for this project, my instructor Teppo Aalto whose assistance and
guidance was invaluable as well as for the whole team at the Applied Resarch department
of the Danish Defence Acquistion and Logistics Organization.

Häkkinen Henri BACHELOR'S THESIS II

ABSTRACT

Kemi-Tornio University of Applied Sciences, Technology
Degree Programme Information Technology
Name Henri Häkkinen
Title Pointing and Tracking Aid for the Modular Radar System

using the Automatic Identification System
Type of Study Bachelor’s Thesis
Date 9 May 2011
Pages 39 pages + 5 appendices
Instructor Teppo Aalto, M.Sc.
Company Danish Defence Acquisition and Logistics Organisation
Supervisor from Company Jesper Møller, M.Sc. EE, Danish Defence

The purpose of this thesis was to develop a Pointing and Tracking Aid software
engineering project for the Danish Defence Acquisition and Logistics Organization. The
project was to implement a utility that is to be used for placing the measurement area of the
Modular Radar System more accurately. The radar system is used to perform scientific and
other diagnostic measurements for the Applied Research department of the organization.

The application uses a system known as the Automatic Identification System to identify
and locate nearby ships and other naval targets. The aim is to communicate with the AIS
via its own proprietary binary protocol in order for the application to receive information
regarding ships. The software is also intended to be used in conjunction with the radar's
control unit which was developed by the Danish Defence.

The application was developed in accordance with modern software engineering practices
by first performing a throughout system analysis followed by a software architecture
modelling phase and finally ending into an implementation and testing phase. UML was
used as the modelling language of the software system, C++ programming language as the
implementation language and Qt as the application framework.

The application was successfully developed and taken into use by the Danish Defence
team of scientists. Communication with both the AIS system and the existing radar control
unit was implemented successfully and verified to function properly. Some error was
detected in the computed vessel distances from the AIS and the magnitude of the error was
proportional to the distance itself. This suggests that the algorithm used for computing the
ship distances or one of the parameters used contain inaccuracies. Further work is needed
to resolve the issue.

Keywords: MRS, AIS, DALO, C++, Qt.

Häkkinen Henri BACHELOR'S THESIS III

TIIVISTELMÄ

Kemi-Tornion ammattikorkeakoulu, Tekniikan ala
Koulutusohjelma Tietotekniikka
Opinnäytetyön tekijä Henri Häkkinen
Opinnäytetyön nimi Pointing and Tracking Aid for the Modular Radar System

using the Automatic Identification System
Työn laji Opinnäytetyö
Päiväys 9.5.2011
Sivumäärä 39 + 5 liitettä
Opinnäytetyön ohjaaja FM Teppo Aalto
Yritys Tanskan puolustusvoimat
Yrityksen yhteyshenkilö FM Jesper Møller

Insinöörityön aiheena oli toteuttaa Pointing and Tracking Aid -ohjelmistoprojekti Tanskan
puolustusvoimien hankinta ja logistiikkayksikön käyttöön. Projektissa toteutettiin
apuohjelma, jota on tarkoitus käyttää avuksi Tanskan puolustusvoimien modulaarisen
tutkajärjestelmän (engl. Modular Radar System) mittausalueen tarkempaan
kohdentamiseen. Kyseistä tutkajärjestelmää käytetään tieteellisten mittauksien ja
muunlaisten kokeiden toteuttamiseen.

Apuohjelma käyttää avukseen Automatic Identification System -järjestelmää, joka kykenee
paikallistamaan ja tunnistamaan tutka-alueen sisäpuolella kulkevat laivat sekä muut
kohteet. Apuohjelma kommunikoi järjestelmän kanssa sen omalla binaarisella
protokollallaan saaden tietoa lähialueen kohteista. Ohjelman on myös tarkoitus toimia
yhdessä jo olemassa olevan puolustusvoimien tutkan hallintayksikön ohjelmiston kanssa.

Ohjelma kehitettiin käyttäen nykyaikaisia ohjelmistotuotannon käytäntöjä aloittaen
kokonaisvaltaisella järjestelmäarkkitehtuurin analysoinnilla, edeten suunnittelu- ja
mallinnusvaiheeseen sekä lopulta päätyen kehitys- ja testausvaiheeseen. Ohjelman
arkkitehtuurin mallinnukseen käytettiin UML-mallinnuskieltä sekä C++-ohjelmointikieltä
ja Qt-kirjastoa ohjelman tekniseen toteutukseen.

Ohjelma kehitettiin onnistuneesti ja se otettiin Tanskan puolustusvoimien tutkintayksikön
käyttöön. Kommunikointi AIS-järjestelmän ja hallintayksikön ohjelmiston kanssa
toteutetiin onnistuneesti ja sen toiminta varmistettiin. Laivojen lasketuissa etäisyyksissä
huomattiin pieni laskennallinen virhe, jonka suuruus oli verrannollinen laivan etäisyyteen
AIS-vastaanottimesta. Tämä antaa aihetta olettaa, että ohjelman laivojen etäisyyden
laskemiseen käytetyssä algoritmissa tai jossain sen parametreissa on epätarkkuutta.
Lisätutkimuksia tarvitaan tämän ongelman selvittämiseen.

Avainsanat: MRS, AIS, DALO, C++, Qt.

Häkkinen Henri BACHELOR'S THESIS IV

TABLE OF CONTENTS

Preface...I
Abstract..II
Table of Contents...IV
Explanation of Characters and Abbreviations..VI
1.Introduction...1
2.System Analysis..3

2.1.System Architecture...3
2.1.1.Modular Radar System..4
2.1.2.Automatic Identification System...5

2.2.Requirements Analysis...8
2.3.Use Case Analysis..9

2.3.1.Use Case: Tag Ship...10
2.3.2.Use Case: Untag Ship..10
2.3.3.Use Case: Select Ship..10
2.3.4.Use Case: Change Settings..11
2.3.5.Use Case: Identify Ship...11
2.3.6.Use Case: Rotate Beam...11

2.4.Mathematical Theory...11
2.4.1.Computing the Distance..12
2.4.2.Computing the Bearing...13
2.4.3.Computing the Aspect...14

3.Design and Implementation...16
3.1.Considerations..16

3.1.1.Programming Language..16
3.1.2.Application Framework...17

3.2.Software Architecture...18
3.2.1.Main Window..20
3.2.2.Settings..21
3.2.3.Mailslot..22
3.2.4.MRS Parser..23
3.2.5.AIS Parser..24
3.2.6.AIS Messages..24
3.2.7.Ship Manager..26
3.2.8.Radar...28
3.2.9.Ship List..29

3.3.Use Case Realization..29
3.3.1.Use Case: Tag Ship...30
3.3.2.Use Case: Untag Ship..31
3.3.3.Use Case: Select Ship..32
3.3.4.Use Case: Change Settings..33
3.3.5.Use Case: Identify Ship...34
3.3.6.Use Case: Rotate Beam...37

4.Conclusions...40
References..42
List of Appendices..43

Häkkinen Henri BACHELOR'S THESIS V

Appendix 1: Payload Armoring...44
Appendix 2: Payload Character Encoding...47
Appendix 3: Payload Messages..50
Appendix 4: Use Cases...55
Appendix 5: Source Code...59

Häkkinen Henri BACHELOR'S THESIS VI

EXPLANATION OF CHARACTERS AND ABBREVIATIONS

AIS Automatic Identification System
API Application Programming Interface
DALO Danish Defence Acquisition and Logistics Organization
IP Internet Protocol
IPC Inter-Process Communication
ISO International Organization for Standardization
JNI Java Native Interface
LAN Local Area Network
MMSI Maritime Mobile Service Identifier
MRS Modular Radar System
PATA Pointing and Tracking Aid
TCP Transmission Control Protocl
UML Unified Modelling Language
VTS Vessel Traffic Services

Häkkinen Henri BACHELOR'S THESIS 1

1. INTRODUCTION

The study presents a solution for a pointing and tracking software system that is used as an
aid with the Modular Radar System for positioning the radar measuring area more
precisely for a specific ship of interest. The Modular Radar System is in use by the Danish
Defence Acquisition and Logistics Organization for performing scientific measurements
and tests on vessels and other naval targets in various of military applications.

The study was conducted for a team of Danish scientists working in the Applied Research
department of the Danish Defence Acquisition and Logistics Organization. During the
course of the study, a working software application was designed and implemented with
the team of scientists acting as an expert advisory group into the radar system for which the
tracking software was targeted for.

This thesis describes the system architecture of the problem domain in question, provides a
throughout system analysis and explains the implementation of the software system which
was developed. The software system was developed in accordance with modern Software
Engineering Principles with the Unified Process model used a basis for the design practice
but without following it pedantically. Since the development team consisted of only a
single programmer, the actual software engineering practice in the end was more a kin to
the Agile development methodology than anything else.

Organization

The Danish Defence Acquisition and Logistics Organization is the specialized material
centre and logistics authority of the Danish defence forces. The organization acquires,
develops and phases out material capacities and ensures provisions in due time for the
Danish Defence operations. The organization administers a budget of approximately 7
billion Danish Crowns of the total Danish defence budget and it is used to provide efficient
support primarily to international operations and operational units. The organization also
employs approximately 2400 employees and its headquarters are located in Ballerup near
Copenhagen.

Problem Statement

The Module Radar System is used to measure the radar cross section of various objects
such as ships and aircrafts. The radar is fitted into a 20 feet (approximately 6 meters)
container with the radar front-end mounted on the top. The radar is controlled via a control
panel software installed on a control PC that is located inside the container and a joystick is
used to control the direction of the radar beam. In order to see where the radar is pointing
at, a visual and an infrared camera is also fitted into the front-end casing and the camera
output is displayed on the control panel software.

Häkkinen Henri BACHELOR'S THESIS 2

In poor weather conditions it can be hard to recognize a specific ship using only the visual
and the infrared camera display. Multiple ships may be coaligned along the radar beam
axis, making it harder to position the measuring area of the radar against the ship of
interest. Therefore a more advanced pointing and tracking system is required to make sure
the right ship is being measured.

This tracking system would have to display ships in the vicinity of the radar on a top-down
radar map with the area of the radar beam superimposed over it. The aim is to provide
means for the radar operator to observe information regarding targets such as its distance
and heading. Provided with this information the radar operator would then be able to place
the measuring area over the ship given its distance from the radar station.

A commercially available Automatic Identification System is an automated tracking
system used on ships and by Vessel Traffic Services for identifying and locating vessels by
electronically exchanging data with nearby ships and VTS stations. An AIS system will be
used in conjuction with the tracking software to detect and identify ships. That is, the AIS
system will track the movements of ships within the nearby region while the software will
use this information provided to display ships on the radar map.

Previous Work

Previous work was done by Nicholas Howard in his Pointing and Tracking Aid for the
Modular Radar System (MRS) Using a Commercially Available Automatic Identification
System (AIS) Bachelor's thesis upon which this thesis is in partly based on. In his Bachelor
project Nicholas Howard chose a Java-based implementation that was able to succesfully
communicate with the Automatic Identification System using a serial port connection. His
solution was elegant but fundamentally incomplete – the communication with the Modular
Radar System was left completely unfinished due to lack of time and unresolved technical
issues.

Solution

Due to technical reasons described later, a Java-based implementation is inconvenient and
unoptimal. Therefore the solution presented in this thesis takes a different aproach. Instead
C++ programming language and the Qt framework is used to develop the tracking system
which shall be referred to as the Pointing and Tracking Aid in the rest of this thesis. Qt is a
cross-platform application framework which is used to implement the graphical user
interface of the application.

Häkkinen Henri BACHELOR'S THESIS 3

2. SYSTEM ANALYSIS

This chapter lays down the ground work upon which the actual implemention of the
software rests upon. Overall system architecture description is followed by more precise
subsystem descriptions and the interfaces which these subsystems use to inter-
communicate. Finally we are left with a requirements and use case analysis that explains
the framework how the Pointing and Tracking Aid application is to behave and the
Mathematical basis for calculating the required data for each ship.

2.1. System Architecture

The system consists of four main subsystems. These are the Control PC, the Modular
Radar System, the Automatic Identification System and the Pointing and Tracking Aid
itself which will be used in a separate laptop computer. The system architecture is
illustrated in the figure 1./8,9/

The Control PC contains the control panel software which is used to control the Modular
Radar System. The control panel can used to rotate the radar beam horizontally and
vertically, observe the visual and infrared camera output on a display and perform various
diagnostic as well as scientific measurements using the radar./8,9/

The Automatic Identification System communicates with the Pointing and Tracking Aid to
provide information regarding ships and other stations within its range. The subsystem
reports information for each identified ship such as its geographic location, speed, course,

Fig. 1. System architecture

AIS

PATA

AIS identifies and
tracks ships

Pointing and Tracking Aid displays ships on the radar
map and gives their distances

Radar operator
places the

measuring area over
the ship of interest

Control PC reports the current
beam angleControl PC

MRS

Häkkinen Henri BACHELOR'S THESIS 4

heading, call sign, ship name, destination etc. The model that will be used in this project is
the AIS 200P from Kongsberg which is only used in receiver mode./4,8,9/

The Pointing and Tracking Aid will be used from a laptop computer which is separate from
the Control PC. The application communicates with the Control PC by using a Windows
Mailslot to know about the current radar beam angle of the Modular Radar System. A
wireless ethernet connection is used to communicate with the Automatic Identification
System by using an ASCII-based NMEA 0183 protocol./8,9/

2.1.1. Modular Radar System

Inter-Process Communication mechanism known as the Windows Mailslot is used to
communicate about the current MRS beam direction over the Local Area Network to each
recipient who is interested to know about it. That is, each time the radar beam is reoriented
to a new direction, the radar beam angle gets propagated by the control panel software to
each mailslot listener./8,9/

Windows Mailslot is a Microsoft Windows operating system specific IPC mechanism
which implements a one-to-many communication topology. A host opens a mailslot into
which multiple others hosts may send messages. A single sending host is also able to
broadcast a message to multiple mailslots over the Local Area Network without actually
specifying the recipients explicitly. Mailslots are identified by path names which always
have the format \\ComputerName\Mailslot\MailslotName where ComputerName is the
name of the computer where the mailslot exists and the MailslotName is a unique identifier
identifying a mailslot from other mailslots in the same host. A dot character may be used
as the ComputerName to indicate the local computer and an asterisk character may be used
to indicate all computers in the Local Area Network when a message is being broadcasted
to all listening recipients. Mailslots are however limited in that they operate only within a
Local Area Network – sending a message to a remote host over a Wide Area Network is
not supported./5,6/

The control panel software uses a mailslot named MRS-Mail to notify changes on the radar
beam direction. Each message sent contains exactly four lines. The first line always
contains the string Message. The second line contains the name of the user account that is
used to run the control panel software such as Administrator. The third line contains the
name of the computer the control panel software runs on. The fourth line contains the
current azimuth angle of the radar beam followed by the elevation angle. Both angles are
expressed in degrees and are separated by a semicolon character. Lines are separated by
using the Windows operating system line ending convention, that is, a carriage return
followed by a line feed character. The azimuth angle is always expressed using three digits
for the integer part and two digits for the fractional part while conversely two digits are
used for both the integer part and the fractional part in the elevation angle. A comma is
used as the decimal point. The reference angle for the radar beam azimuth points to North
and the angle increases in clockwise direction while the reference angle for the elevation is
coplanar with Earth's surface with the positive angle increasing upwards./8,9/

Häkkinen Henri BACHELOR'S THESIS 5

The following gives an example of a typical message sent. In this example the name of the
user account that is used to run the control panel software is Administrator while the name
of the computer the control panel runs on is MRS2. The radar beam azimuth angle is 90.23
degrees (pointing approximately to East) and the elevation angle is 4.01 degrees (pointing
slightly upwards).

Message
Administrator
MRS2
090,23; 04,01

2.1.2. Automatic Identification System

The specific Automatic Identification System model used allows two different ways to
communicate with the Pointing and Tracking Aid: a wireless ethernet connection or a
serial port RS-232 connection. In the wireless ethernet case the AIS basically acts as a
TCP/IP server into which clients connect to./4,8,9/

The Automatic Identification System uses a simple ASCII-based protocol in which the data
is transmitted in the form of sentences. Formally this protocol is known as NMEA 0183
and it is defined by the National Marine Electronics Association. The NMEA standard is
proprietary and it sells for at least 325 USD. However the protocol has been reverse-
engineered by several public sources./10,14/

In the NMEA 0183 protocol each sentence begins with a dollar sign followed by two
ASCII characters to identify the talker and three ASCII characters to identify the type of
the message. Next a comma-separated list of data fields follows. The last data field may be
followed by an asterisk and a two-digit checksum representing a hexadecimal number. The
check sum is a bitwise exclusive-OR of all characters between the dollar sign and the
asterisk and it may used to validate the correctness of the transmitted message. Each
sentence ends with a pair of carriage return and line feed./10,14/

AIVDM/AIVDO Sentences

The Automatic Identification System however uses a special extension to the NMEA 0183
standard in which the data is encoded using a six-bit message payload armoring. To mark
the beginning of these types of sentences, an exclamation mark is used instead of a dollar
sign. The character pair AI is used to identify the AIS being the talker and the message
type is always either VDM or VDO. Therefore each relevant six-bit armored AIS sentence
always begin either with !AIVDM or !AIVDO strings./14/

The following gives an example of an AIVDM sentence:

!AIVDM,1,1,,B,177KQJ5000G?tO`K>RA1wUbN0TKH,0*5C

Häkkinen Henri BACHELOR'S THESIS 6

The fields have the following meanings:

• Field 1 !AIVDM identifies the sentence as an AIVDM message./14/
• Field 2 is the count of the fragments in the currently accumulating message. The

NMEA 0183 standard limits each sentence to 82 characters so it is sometimes
required to split a message into several fragments./14/

• Field 3 is the one-based fragment number of the sentence. A sentence with both the
fragment count and the fragment number as one is a complete message itself./14/

• Field 4 is a sequential message identifier for a multi-sentence messages./14/
• Field 5 is a radio channel code./14/
• Field 6 is the six-bit armored message payload./14/
• Field 7 is the number of fill bits required to pad the payload to a six-bit boundary

ranging from 0 to 5. Subtracting five from this gives the number of least significant
bits of the last 6-bit nibble in the payload that should be ignored./14/

• The two-digit hexadecimal sequence after the asterisk is the check sum./14/

The format for AIVDO sentences is exactly the same with the exception that AIVDM
sentences are used to describe remote naval targets while AIVDO sentences describe the
local AIS station itself such as its geographic location./14/

Payload Armoring

Each character in the payload represents six bits of data. To deduce the value of a single
character, subtract 48 from its ASCII character value and if the result is higher than 40,
subtract 8. Concatenating all six-bit nibbles with the most significant bit first will give the
decoded binary presentation of the payload message./14/

For example, a payload data of ”177K” gives the following series of six-bit nibbles after
decoding:

000001 000111 000111 011011

When concatenated together the nibbles will yield the following series of bytes which is
the decoded payload message:

00000100 01110001 11011011

Appendix 1 lists the corresponding values for each armored payload character.

Häkkinen Henri BACHELOR'S THESIS 7

Payload Datatypes

Data inside a payload message after decoding the armoring are encoded using bit fields.
Bit fields are interpreted as different data types depending on the message which the
payload contains./14/

The following data types are supported:

• Numeric bit fields encoded as a big endian two's-complement integers; the sign bit
is the highest bit if the integer is signed./14/

• Single bit boolean flag with true encoded as a 1-bit and false as a 0-bit./14/
• Character strings encoded using a special text encoding in which each six-bit nibble

maps to a specific ASCII character. Values 0-31 map to ASCII characters '@'
through '_' while values 32-63 map to ASCII characters ' ' (that is, a space) through
'?'. Any other ASCII character cannot be encoded. Terminating '@' marks the end
of the string and that character should not be considered as being part of the
text./14/

For example given the following series of six-bit nibbles:

001000 000101 001100 001100 001111 000000 000000 000000

Gives the following series of ASCII characters after decoding using the text encoding
described above:

HELLO@@@

Since the @ character is used to mark the end of the text, the trailing three characters are
not considered to be part of the decoded text.

Appendix 2 gives the full AIS text encoding to ASCII mapping in a tabular format.

Payload Messages

The first 6 bits of the decoded payload marks the type of the message. In total there are 27
different types of messages in the standard encoding such information as position reports,
class of the ship and its voyage, navigational support aids, time and date inquiries and
responses, binary encoded broadcast messages, safety related broadcasts and
acknowledgements etc./14/

The Pointing and Tracking Aid however is only interested to know about message types 1-
3 and 5. Message types 1-3 give information about the position, speed and course of
vessels and the message type 5 contain the call sign and ship name information.

Häkkinen Henri BACHELOR'S THESIS 8

In summary, message types 1-3 contains the following fields which are of interest to the
Pointing and Tracking Aid application:

1. Bits 8-37: Unique identifier of the ship encoded as an unsigned integer./14/
2. Bits 38-41: Navigation status such as “under way using engine”, “at anchor” etc.

encoded as an unsigned integer code./14/
3. Bits 42-49: Rate of turn expressed in degrees per minute encoded as a signed

integer./14/
4. Bits 50-59: Speed over ground expressed in knots encoded as an unsigned

integer./14/
5. Bits 61-88: Longitude of the ship expressed in 1/10000th of a minute encoded as a

signed integer./14/
6. Bits 89-115: Latitude of the ship expressed in 1/10000th of a minute encoded as a

signed integer./14/
7. Bits 116-127: Course over ground expressed in degrees encoded as an unsigned

integer./14/

Correspondingly messages of type 5 has the following fields of interest:

1. Bits 8-37: Unique identifier of the ship encoded as an unsigned integer./14/
2. Bits 40-69: Call sign of the ship encoded as a character string./14/
3. Bits 112-231: Name of the ship encoded as a character string./14/

Appendix 3 gives the full list of message types supported by the protocol and the exact
encoding of the message types of interest.

2.2. Requirements Analysis

Functional requirements for the Pointing and Tracking Aid application is given in the
following:

1. The application must interface with the Automatic Identification System to identify
ships./8,9/

2. The application must display the identified ships on a graphical radar map as well
on a list./8,9/

3. The application must provide means for the radar operator to inspect ship details
which the Automatic Identification System provides. Specifically the following
data must be present for each ship:/8,9/

◦ Maritime Mobile Service Identifier/8,9/
◦ Call sign/8,9/
◦ Ship name/8,9/
◦ Navigation status/8,9/
◦ Rate of turn/8,9/
◦ Speed over ground/8,9/

Häkkinen Henri BACHELOR'S THESIS 9

◦ Course over ground/8,9/
◦ Longitude/8,9/
◦ Latitude/8,9/

4. The application must interface with the Modular Radar System to be informed
about the current beam direction./8,9/

5. The application must display the Modular Radar System radar beam on the radar
map./8,9/

6. The application must provide means for the radar operator to select a ship./8,9/
7. The application must display a direction towards the selected ship to allow the

radar operator to point the Modular Radar System beam towards it./8,9/
8. The application must allow the radar operator to tag ships for logging which will

subsequently cause the ship to be logged to an external log file when its state is
updated from the AIS./8,9/

9. The application must display the distances, bearings and aspects between a ship and
the AIS station./8,9/

Additionally the application must be operable on the Control PC which has Windows XP
operating system installed./8,9/

2.3. Use Case Analysis

Three different actors exists which interact with the Pointing and Tracking Aid application.
These are:

1. The Radar Operator in terms of interacting with the application's user interface.
2. The Automatic Identification System in terms of sending information regarding

identified ships within its range.
3. The Modular Radar System in terms of sending the current radar beam angle. To be

precise, the actual acting entity is the control panel software installed on the
Control PC which communicates the information using mailslots but for simplicity
and abtraction we consider this to be the radar system itself in our discussion.

Each of the described actors interact with the application in a specific way. The Radar
Operator tags ships for logging, selects a ship from the ship list to highlight it in the radar
map and changes the application's settings. The Automatic Identification System
communicates with the application to identify ships and the Modular Radar System
communicates about the current radar beam location. Use cases and the related actors are
presented graphically in the figure 2 below.

Häkkinen Henri BACHELOR'S THESIS 10

Appendix 4 contains the full list of formal use case definitions and those are not repeated
here. Instead a brief description of each interaction by each actor is given in the following
section.

2.3.1. Use Case: Tag Ship

The use case begins when the Radar Operator tags a ship for logging. The ship's state is
updated accordingly and any subsequent messages coming from the AIS involving the
tagged ship will cause it to be logged to an external log file.

2.3.2. Use Case: Untag Ship

The use case begins when the Radar Operator untags a ship from being logged. The ship's
state is updated accordingly and subsequent AIS messages involving the ship will no
longer cause it to be logged.

2.3.3. Use Case: Select Ship

The use case begins when the Radar Operator selects a ship from the ship list. The Pointing
and Tracking Aid updates its internal reference to the currently selected ship and redraws

Fig. 2. Actors and use cases of the Pointing and Tracking Aid

Häkkinen Henri BACHELOR'S THESIS 11

the relevant parts of the user interface to give a visual feedback to indicate a ship is being
selected.

2.3.4. Use Case: Change Settings

The use case begins when the Radar Operator selects ”change settings” actions. The
application displays a dialog which allows the settings to be changed. The changeable
settings include the mailslot name which is used to listen for the Modular Radar System's
current radar beam direction, the IP address and port number of the Automatic
Identification System and the default longitude and latitude coordinates of the AIS
receiver's location which will be used as the origin of the radar map before the AIS has
sent any message to indicate its own location.

2.3.5. Use Case: Identify Ship

The use case begins when the Automatic Identification System sends a message to the
Pointing and Tracking Aid regarding an identified ship or the local AIS station itself. The
Pointing and Tracking Aid decodes the information contained in the message payload,
updates its internal cache of ships accordingly and redraws the relevant parts of the user
interface to display the ship for the Radar Operator. If a ship which the AIS message
involves is tagged for logging, the ship's data is logged to an external log file.

2.3.6. Use Case: Rotate Beam

The use case begins when the Modular Radar System sends a message to the Pointing and
Tracking Aid regarding a recent update in the radar beam angle. The message contains the
new direction of the radar beam expressed in degrees relatively to the reference angle
pointing to North. The Pointing and Tracking Aid decodes the angle from the message,
update its internal state and redraw the radar map to reflect changes in the beam angle.

2.4. Mathematical Theory

There are numerous different ways of calculating distances between geographical
coordinates. The Pointing and Tracking Aid adopts a method where a coordinate pair
consisting of latitude φ and longitude λ is first projected on a two-dimensional x-y plane
using the following equations:

x = λ cos ϕ
y = ϕ

Häkkinen Henri BACHELOR'S THESIS 12

Computations involving geographical coordinates are then conducted on a two-
dimensional Cartesian coordinate space more conveniently from an algorithmical point of
view than by dealing them as pairs of geographic latitude and longitude. For additional
simplicity the Earth is also assumed to be a unit sphere which does introduce an error
proportional to the latitude of the coordinate – as the coordinate approaches a pole the
more error it should contain since the Earth is in actuality a vertically truncated ellipsoid.

The approach also does not take into consideration the cases involving geographical
coordinates at opposite ends on the projected two-dimensional coordinate space – the
distance drawn from a coordinate A to coordinate B as a straight line is much greater than
what it actually is in reality since the Earth as a round sphere wraps around three-
dimensionally.

However these considerations are negligible since we know by certainty that the problem
domain deals with geographical coordinates in relative close proximity towards each other
and the radar system is located near Copenhagen. We do not need to consider the
coordinate space as a boundless finite space since the application will never deal with
coordinates pairs at the opposite ends of the world.

2.4.1. Computing the Distance

The distance between the geographical location of the AIS and a ship is given by the
Pythagora's theorem as illustrated in the figure 3.

The distance d is the distance between two points on a unit sphere given in radians. The
actual distance on the Earth's surface is given by multiplying d by the Earth's radius.

Fig. 3. Distance

AIS

Ship

N

Δy

Δx

d

d =√Δ x2+Δ y2

Häkkinen Henri BACHELOR'S THESIS 13

2.4.2. Computing the Bearing

An angle between a line drawn from the coordinate system origin to a point in the two-
dimensional Cartesian coordinate space and one of the coordinate system's axis can be
calculated by using trigonometry as illustrated in the figure 4.

However special cases must taken into account when the coordinate lies within different
quadrants of the coordinate system – a constant term must be added to the equation in
order to calculate the full angle relatively to the reference axis of choice. This is illustrated
in the figure 5.

Luckily the two-argument variation of the arctangent function – atan2 in the C standard
library – gives the angle in radians between the positive x-axis and a point, taking into
account the coordinate system quadrant the point lies within. The arctangent function
variation returns a signed angle value in the range [-π, π] which is positive for points

Fig. 4. Angle to the specific point of interest

θ

Δx

Δy

θ = arctan(Δy/Δx)

(x, y)

Fig. 5. Special cases in calculating the full
angle

Δx
1

Δx
2

Δx
3

Δx
4

Δy
1

Δy
2

Δy
3 Δy

4

θ
1
 = arctan(Δy

1
/Δx

1
)

θ
2
 = arctan(Δx

2
/Δy

2
) + π/2

θ
3
 = arctan(Δy

3
/Δx

3
) + π

θ
4
 = arctan(Δx

4
/Δy

4
) + 3π/2

θ
4

θ
1

θ
2

θ
3

(x
2
, y

2
) (x

1
, y

1
)

(x
3
, y

3
)

(x
4
, y

4
)

Häkkinen Henri BACHELOR'S THESIS 14

residing in the upper half of the coordinate system and negative for points residing in the
lower half of the coordinate system. This is illustrated in the figure 6./1/

Bearing is the angle between a line drawn from the geographic location of the AIS to the
geographic location of a ship and the reference angle pointing to North. The angle
increases in clockwise direction. This angle can be calculated using the two-argument
variation of the arctangent function as illustrated in the figure 7.

2.4.3. Computing the Aspect

In the context of the Pointing and Tracking Aid, an aspect is the relative direction of a ship
as seen from the point of view of the radar operator. When a ship is facing directly towards
the AIS, the aspect is zero. Conversely when a ship facing directly away from the AIS, the
aspect is 180 degrees. The aspect increases in a counter-clockwise direction as the ship
rotates as illustrated in figure 8.

Fig. 6. Arctan2 function

θ = arctan2(Δy, Δx) > 0
(x, y) Δx

Δy
θ

θ'

θ' = arctan2(Δy', Δx') < 0
(x', y')

Δx'

Δy'

Fig. 7. Bearing angle

N

Δx

Δy

θ

θ = arctan2(Δx, Δy)
AIS

Ship

Häkkinen Henri BACHELOR'S THESIS 15

The aspect can simply be calculated as the difference between the bearing angle from the
ship towards the AIS station and the course over ground of the ship. This is illustrated in
the figure 9.

That is

γ=β−α

Where α is the course over ground of the ship, β is the bearing angle and γ is the aspect
angle.

Fig. 8. Aspect of a ship

Fig. 9. Aspect angle

N

AIS

Ship α
β

γ

Ship's heading

Häkkinen Henri BACHELOR'S THESIS 16

3. DESIGN AND IMPLEMENTATION

This chapter builds on the system analysis conducted in the Chapter 2 and provides a
detailed software architecture for the Pointing and Tracking Aid application.
Considerations are given on choosing the programming language and the user interface
toolkit for the application and a rationale is given why these tools were chosen. Finally the
use cases are realized for the software architecture explained.

3.1. Considerations

The biggest issues which must be taken into consideration is the fact that the application
must interface with the Control PC by using a legacy Windows Mailslots IPC mechanism.
This puts some restrictions on the implementation chosen since the application must be
able to call Windows specific system calls to implement this feature.

Also it should be mentioned that operating the AIS protocol does require a support for
bitwise binary operations since the payload armoring needs to be decoded and the data
fields extracted using bit fields in binary level.

Other minor considerations include such things as stability, continued and possibly long-
term support for the user interface toolkit chosen and the possibility of porting the
application to newer platforms than Windows XP.

3.1.1. Programming Language

C/C++ programming language was chosen since it compiles into native machine code,
allows direct calling of Windows operating system calls and supports bitwise operations.
The language itself does not contain any additonal runtime system other than perhaps the
standard library and the application framework which is used to implement the graphical
user interface.

The class library of the Java programming language does not contain functionality to
support the Windows Mailslot IPC mechanism. This is understandable due to design
priciples which Java is using – Java is designed to be portable across operating systems
and platforms so it does not support platform specific features. Additonally Java does not
have well formed support for manipulating data at binary level which is required to operate
the AIS protocol./3/

Java does however allow arbitrary system calls to be made using additional wrapper
known as Java Native Interface. This programming framework allows native applications
to call Java and conversely allows Java to call native code./3/

Häkkinen Henri BACHELOR'S THESIS 17

The JNI interface however does introduce additional complexity to the application which is
inherently unnecessary. Combined with the lack of bitwise operations Java is not therefore
the optimal solution for implementing the Pointing and Tracking Aid.

3.1.2. Application Framework

Qt framework was chosen as the application framework for the Pointing and Tracking Aid
but also the following other frameworks were considered.

• MFC (Microsoft Foundation Classes) is a C++ application framework for the
Windows operating system written by Microsoft./7/

• wxWidgets (formerly known as wxWindows) is a cross-platform C++ application
framework which is in use across many industry sectors including Xerox, AMD,
NASA and others./15/

• Gtk+ is another application framework written in the C programming language and
it is being used most notably in the desktop Linux world and was originally
developed as the widget toolkit for the GNU Image Manipulation Utility (also
known as GIMP)./2/

The table 1 gives a comparison over these mentioned frameworks.

Table 1. Framework comparison
Framework Written in License Cross-platform

MFC C++ Proprietary No

wxWidgets C++ Open source Yes

Gtk+ C Open source Yes

Qt C++ Open source Yes

Qt is a cross-platform application framework which is widely used for developing
application software with a graphical user interface. The framework is most notably used
in such applications as Autodesk Maya, Google Earth, KDE desktop system, Adobe
Photoshop Album, Skype, VLC media player, VirtualBox and Wolfram Mathematica. Qt
was originally developed by a Norwegian company known as Trolltech but has since been
acquired by the Nokia Corporation./11,12/

Qt uses standard C++ but employs a special code generator known as the Meta Object
Compiler to extend the capabilities of conventional C++. These extensions include such as
runtime introspection, signal and slots system and asynchronous function calls.
Additionally Qt provides a fully integrated development environment called Qt Creator
and an extensive class library supporting features such as SQL database access, XML
parsing, unified cross-platform API for file handling, network access and thread
management among many others./11/

Häkkinen Henri BACHELOR'S THESIS 18

Qt was chosen over the other choices since it has a well engineered and extensive object-
oriented class library providing ready to use facilities for implementing rich graphical user
interface multi-threaded applications and communicating with other processes using
TCP/IP sockets. Qt provides much more convenient programming model than Gtk+ which
is a more lower level framework implemented in the C programming language or
wxWidgets or MFC which use preprocessor macro based message maps to route system
events.

3.2. Software Architecture

This section describes the software architecture of the Pointing and Tracking Aid
application. UML class and activity diagrams are used for presenting the application's
static structure and runtime behaviour. Code listings are given to illustrate a behaviour
more precisely. Comments are removed and only the high-level parts are shown to explain
a point. Interested readers should refer to Appendix 5 for the full source code. An overview
of classes and how they interact with each other is given in the figure 10.

UML class diagrams presented in the following sections do not fully model all classes
completely but omit certain information for clarity. Typically each class diagram provide
enough information to discuss a certain subset of the application's behaviour rather than
intending to rigorously document every service provided by a class. Such things as
constructors are omitted as well as accessor methods since they are not typically relevant
for discussing the application's internal logic.

The following UML stereotypes are used to model addtional behaviour:

• The <<signal>> operation stereotype indicating the operation is a Qt signal.
• The <<slot>> operation stereotype indicating the operation is a Qt slot.

Fig. 10. Overview of classes

Häkkinen Henri BACHELOR'S THESIS 19

• The <<abstract>> class stereotype indicating the class is not intended to be
instantiated (whether or not the class is actually an abstract in the strict sense).

• The <<entity>> class stereotype indicating the class encapsulates information about
something while providing very little behaviour.

• The <<utility>> class stereotype indicating the class provides some, usually low-
level, services on behalf of other classes while not necessary being useful alone.

• The <<boundary>> class stereotype indicating the class exists on the boundary
between the application and an external actor communicating with the system.

• The <<control>> class stereotype indicating the class acting as a central
coordinator of behaviour.

• The <<emits>> relationship stereotype indicating that one or more Qt signals is
connected to a slot or slots of another class. An arrow indicates the signal emission
direction – the arrowhead points to the class which contains the slot.

• The <<uses>> relationship stereotype indicating that a class uses another class to
perform an operation.

The following naming conventions are also used throughout the application:

• Classes beginning with the character Q are part of the Qt framework and therefore
are not discussed in great lengths in this thesis. Interested readers are encouraged to
consult the Qt reference manual.

• Variable names beginning with an underscore indicates a private instance variables.
A class usually defines a pair of accessor methods for setting and getting the value
of these variable.

In the discussion which follow, one class is omitted. This is the Coord datatype class which
implements a geographical coordinate and operations such as calculating the distance
between two of them. This class is illustrated as an UML diagram in the figure 11.

Fig. 11. Coord class

Häkkinen Henri BACHELOR'S THESIS 20

3.2.1. Main Window

MainWindow as illustrated in the figure 12 is the first object created (excluding the Qt
application object explained below) and it acts as a central place for setting up the rest of
the application. The class is responsible for creating all the other objects and connecting
signals and slots approatively. It also handles the menu actions ”change settings” and
”about the application” by connecting them to the slots settings and aboutApp respectively.
The readLayout and writeLayout are called at applications startup and shutdow to save and
restore the user interface layout between application runs.

MainWindow object is created in the application's main function. The following contains
its code listing:

int main(int argc, char **argv) {
 QApplication a(argc, argv);
 QCoreApplication::setApplicationName(ApplicationName);
 QCoreApplication::setOrganizationName(OrganizationName);
 QCoreApplication::setOrganizationDomain(OrganizationDomain);

 QDir dir;
 dir.mkpath(LogDirectory);

 MainWindow w;
 w.show();

 return a.exec();
}

The Qt application object is created first which performs necessary initialization
procedures of the application framework. The application object is given the application's

Fig. 12. MainWindow class

Häkkinen Henri BACHELOR'S THESIS 21

and the organization's name and its domain which are used for finding the correct location
in the user preferences database for storing the user interface layout and other persistent
settings.

3.2.2. Settings

Settings class is described in the figure 13. The class is responsible for handling a modeless
dialog box which is used to alter the application settings. These are:

• MRS mailslot name
• AIS IP address or host name
• AIS port
• Default latitude
• Default longitude

The class uses QSettings to actually access the operating system's registry – once the ok
button is pressed, the new settings are stored persistently using it. The Settings dialog is
illustrated in the figure 14.

Fig. 14. Settings dialog

Fig. 13. Settings class

Häkkinen Henri BACHELOR'S THESIS 22

3.2.3. Mailslot

Mailslot as seen in the figure 15 implements an object-oriented Qt wrapper around the low-
level Windows Mailslots API. Listening for incoming messages is handled asynchronously
and interested parties wishing to get notified when something is received are done so by
using the Qt's signal-slots mechanism. Mailslot does not by itself perform any processing
or parsing on the received message but instead forwards it as is to any listening slot and
relies on the receiver of the signal to make sense of it.

The following code listing illustrates the background poll loop which keeps reading
messages coming through the mailslot:

void Mailslot::pollLoop() {
 while (1) {
 if (!pollMessage()) break;
 }
}

bool Mailslot::pollMessage() {
 char buffer[424];
 DWORD length = 0;
 if (!ReadFile(_win32Handle, buffer, 424, &length, 0)) {
 return false;
 }
 QByteArray message(buffer, length);
 emit messageReceived(QString(message));
 return true;
}

The pollLoop method is called asynchronously once the operating system level mailslot is
open. The loop keeps polling for new messages until the mailslot handle is closed and in
which case the ReadFile Windows system call return false. It should also be noted that the
ReadFile call blocks until there is a message to receive. Once a message is available a
QString object is created for it and the messageReceived signal gets emitted to whatever
slot it is connected to. Qt handles the signal emission across thread boundaries by itself so
there's no need to use a mutex or other thread synchronization primitives.

Fig. 15. Mailslot class

Häkkinen Henri BACHELOR'S THESIS 23

3.2.4. MRS Parser

The figure 16 illustrates the MRSParser class which listens for incoming messages from
the Module Radar System and parses them into radar beam angles which in turn are
forwarded to the Radar. The class does not handle the low-level details of communicating
with the MRS but relies on the Mailslot to implement that in any way approative.

Since the protocol which the MRS uses for communicating the radar beam angle contains
other unnecessary information as well, the class uses regular expressions for extracting the
interesting part of the message. What is known is the fact that the radar beam angle is
located at the begining of the fourth line in the message containing three digits and a
decimal point followed by two digit fractional part and terminating into a semicolon. To
make the parser a little more permissive – just in case the message format changes slightly
in the future – the radar beam is allowed to be located at any line and the decimal point
may either be a comma or a dot. The radar beam angle is also not required to be located at
the beginning of a line. Therefore the following regular expression is used:

[0-9]{3}[,.][0-9]{2};

That is, three digits in the range 0-9 followed by a comma or a dot as the decimal point
followed by two digits in the range 0-9 and terminating into a semicolon. The regular
expression matches the first string found conforming with this format. Everything else in
the message is ignored.

Fig. 16. MRSParser class

Häkkinen Henri BACHELOR'S THESIS 24

3.2.5. AIS Parser

AISParser as seen in the figure 17 listens for incoming AIVDM/AIVDO sentences from
the AIS system and parses them into something meaninful. The class relies on a
QTcpSocket to handle the low-level details of communicating with the AIS at the TCP/IP
level.

Since the protocol is rather complicated, the responsibility of parsing it is split between the
classes AISParser, Payload and AISMessage derived classes. AISParser class handles the
parsing the protocol at a sentence level by splitting the sentence into fields, extracting the
payload and handling multi-fragmented sentences. Payload class handles decoding the
payload armoring and AISMessage derived classes each handle a specific message class.

Fig. 17. AISParser class

Häkkinen Henri BACHELOR'S THESIS 25

3.2.6. AIS Messages

The figure 18 illustrates AIS message classes which are used to parse a specific kind of
message received from the AIS.

AISMessage is the abstract base class for all AIS message types supported by the Pointing
and Tracking Aid application. AISMessage itself carries only the type identifier of the
actual message, a Maritime Mobile Service Identifier that identifies the ship for which the
message was received and a flag indicating whether the message sentence was AIVDM or
AIVDO. Derived classes define other members which are relevant to the message type in
question.

Two AISMessage derived classes are defined: PositionReport which corresponds to the
message types 1-3 and ShipVoyageData which corresponds to the message type 5.

Payload helper class is used to extract data fields from the armored message payload. The
class contains methods for extracting each data type supported, all of which take a range of
bit fields to extract the data from.

Fig. 18. AIS message classes

Häkkinen Henri BACHELOR'S THESIS 26

3.2.7. Ship Manager

ShipManager as given in the figure 19 is the repository for storing identified ships in the
application's memory. It maintains a list of ships identified so far by the Automatic
Identification System and provides means for accessing and searching them. The class is
also derived from the QAbstractTableModel base class which means that it can be used as
the data model for table-based Qt user interface objects such as the QTableView. The
handleMessage slot takes in an AISMessage object which is used to to keep the internal list
of ship up to date.

Ship class encapsulates data for each identified ship. A Ship knows how to update itself
given a AISMessage object encoding data received from the AIS but it doesn't do anything
else. Ships can be flagged for being logged and when the flag is set, the update method
emits dataChanged signal each the time the ship's data changes. This signal is connected to
ShipManager's logShip slot which performs the actual logging procedure.

Fig. 19. ShipManager class

Häkkinen Henri BACHELOR'S THESIS 27

DataFormatter helper class is used for formatting raw data received from the AISParser
into a human readable form. The class contains methods at the class level for each class of
data but no methods at the instance level.

3.2.8. Radar

The figure 20 describes the Radar class which is the user interface element responsible for
drawing the radar map with the area of the radar beam superimposed on top of it. Ships are
drawn as small triangular shapes as illustrated in the figure 21.

Fig. 20. Radar class

Fig. 21. Radar map showing ships

Häkkinen Henri BACHELOR'S THESIS 28

Radar uses the ShipManager to know about the locations of ships and the current
coordinate system origin. The setBeamAngle slot is connected to the MRSParser's
beamAngleReceived signal to keep the radar up to date about the changes of the radar
beam direction while the repaint slot is called by the shipSelectionChanged,
shipDatabaseChanged and originChanged signals of the AISParser to reflect the changes
on the state of the system on the radar map.

3.2.9. Ship List

The figure 22 illustrates the ship list. The ship list is the part of the user interface which
displays ships on a tabular form as seen in the figure 23.

Since the ShipManager class derives from the QAbstractTableModel class and Qt provides
a ready-made QTableView class which suits for this purpose, no derived class is needed.
The ship list is basically just an instance of the QTableView class and the ShipManager is
set as its model. Each time the ShipManager updates its internal list of ships, the
QTableView instance gets updated automatically by the Qt framework. QTableView class
also provides functionality for handling ship selection.

Fig. 22. Classes involving the ship list

Fig. 23. Ship list

Häkkinen Henri BACHELOR'S THESIS 29

3.3. Use Case Realization

This section realizes the use cases which were presented in the previous chapter and more
formally in the Appendix 4. Realization involves taking each use case and implementing
them in terms of the software architecture presented in the previous section.

3.3.1. Use Case: Tag Ship

Tag Ship use case as seen in the figure 24 handles the tagging of ships for logging. The
ship list contains a check box for each ship and when the ship is checked in this way, the
ship will be logged when its state changes as a response to a message received from the
AIS.

The use case begins when the Radar Operator checks a ship in the ship list. This calls the
setData method for the ShipManager class for the specified index corresponding to the
ship's location in the ship list. The method searches the ship from the list by using the
index and calls the setLogged method for the Ship with a value corresponding to true. This
will set the logging flag on for the ship and therefore making the ship to be logged next
time its state changes.

Fig. 24. Tag Ship use case
realization

Häkkinen Henri BACHELOR'S THESIS 30

3.3.2. Use Case: Untag Ship

Untag Ship use case seen in the figure 25 is similar to Tag Ship use case.

The use case begins when the Radar Operator checks off a ship in the ship list. This causes
the setData method of the ShipManager to be called with the ship's index passed in as the
argument. The ship is searched from the database using the provided index and the logging
flag is turned off by calling setLogged method for the ship with false as the argument.

Fig. 25. Untag Ship use case
realization

Häkkinen Henri BACHELOR'S THESIS 31

3.3.3. Use Case: Select Ship

The figure 26 illustrates the Select Ship use case which handles ship selection from the
ship list. Selecting a ship from the ship list causes the Radar to update itself to highlight the
currently selected ship.

The use case begins when the Radar Operator selects a ship from the ship list. This will
cause the currentRowChanged signal of the QTableView's selection model (the
QSelectionModel class) to get emitted which in turn is connected to the selectShip slot of
the ShipManager object. ShipManager updates the currently selected ship reference and
emits the originChanged signal. The signal is connected to the repaint slot of the Radar
object which redraws the radar map.

Fig. 26. Select Ship use case realization

Häkkinen Henri BACHELOR'S THESIS 32

3.3.4. Use Case: Change Settings

Change Settings use case is given in the figure 27 and it handles the operation of changing
application's settings.

The use case begins when the Radar Operator chooses the “change settings” action from
the menu. This causes the settings method of the MainWindow to be called. A Setting
object is created and its exec method called which subsequently displays a dialog for the
Radar Operator.

The Radar Operator is able to change the application's settings using the dialog. When the
ok button is pressed, the modified settings are written in the user preference's database
which are subsequently read at the next application startup. The application therefore must
be restarted in order for the setting changes to take any effect. If the cancel button is
pressed then any changes done on the application's settings will not be saved but are
ignored.

Fig. 27. Change Settings use case realization

Häkkinen Henri BACHELOR'S THESIS 33

3.3.5. Use Case: Identify Ship

The figure 28 describes the Identify Ship use case. The Identify Ship use case handles the
processing of the AIS protocol by parsing the raw AIVDM/AIVDO sentences into
meaninful message objects. Each message object is used to update the ShipManager's

Fig. 29. Identify Ship activity
diagram

Fig. 28. Identify Ship use case realization

Häkkinen Henri BACHELOR'S THESIS 34

internal cache of Ship objects which in turn are used to draw the list of ships and the radar
map user interface.

The use case begins when the AIS send a sentence via a TCP/IP connection. The
QTcpObject receives this data and as a response emits the readyRead signal. The signal is
connected to the parseData slot of the AISParser object which handles the low-level
parsing of the protocol. The following code listing illustrates this process:

void AISParser::parseData() {
 _sentenceBuffer.append(_socket->readAll());
 while (true) {
 int eol = _sentenceBuffer.indexOf("\n");
 if (eol == -1) break;
 parseSentence(_sentenceBuffer.left(eol));
 _sentenceBuffer.remove(0, eol + 1);
 }
}

void AISParser::parseSentence(const QByteArray &sentence) {
 if (sentence.startsWith("!AIVDM") || sentence.startsWith("!AIVDO")) {
 QList<QByteArray> fields = sentence.split(',');
 if (fields.count() < 7)
 return;
 uint fragmentCount = fields[1].toUInt();
 uint fragmentNumber = fields[2].toUInt();
 _payloadBuffer.append(fields[5]);
 if (fragmentNumber == fragmentCount) {
 parseMessage(_payloadBuffer, sentence.startsWith("!AIVDM"));
 _payloadBuffer.clear();
 }
 }
}

void AISParser::parseMessage(const QByteArray &message, bool aivdm) {
 Payload payload(message);
 uint type = payload.extractUInt(0, 6);
 if (type >= 1 && type <= 3) {
 PositionReport message(payload, aivdm);
 emit messageReceived(&message);
 } else if (type == 5) {
 ShipVoyageData message(payload, aivdm);
 emit messageReceived(&message);
 }
}

Since the received data is not necessary guaranteed to be send in a sentence-by-sentence
basis (the operating system may arbitrarily cut the transmitted data into different sized
packets) the parseData method temporiraly pushes all the incoming data into the so-called
sentence buffer. From there the sentences are cut at newlines and each sentence is send for
further processing by calling parseSentence method.

The parseSentence method processes each sentence further by splitting it into fields. In
case of a multi-fragmented sentence the payload is pushed into the payload buffer which
holds all the payloads accumulated so far for the currently pending message. When the end
of the fragment is reached the payload is send for processing by passing it as an argument
for the parseMessage method.

The parseMessage receives the payload and forwards it to the Payload class which
subsequently decodes the armoring. A specific derived class of the AISMessage is

Häkkinen Henri BACHELOR'S THESIS 35

constructed depending on the message's type. The AISMessage derived class decodes the
data from the unarmored payload and stores everything into memory for later processing.
Finally the messageReceived signal is emitted with the AISMessage object passed in as the
argument to whatever further processing needed by the ShipManager.

The ShipManager receives the AISMessage object and updates its own internal state
accordingly. What is done here depends on the type of the message received. For local
position reports the ShipManager stores the local geographical coordinate of the AIS
station. For a remote position report or a ship and voyage data report the ShipManager's
internal cache of ship records are updated by calling update method of the Ship in question.

If the ship in question is tagged for logging then the ship's data is written to the end of a
log file. Log files are named by the current data and are formatted in a line basis, each line
beginning with a time stamp and followed by a semicolon separated list of data fields in a
machine readable format.

The following is an example of a single line in a log file:

[2011-05-08T18:23:05]219000892;;;0;56.00247;11.32922;++;6.8;321.6;3.388;103.734;322.134

The data fields are the following:

• Time stamp enclosed in square brackets in the ISO 8601 standard format
expressing the time when the event was logged.

• MMSI identifier.
• Call sign.
• Ship name.
• Navigation status code as described in the Appendix 3.
• Latitude expressed as degrees.
• Longitude expressed as degrees.
• Rate of turn expressed as degrees per minute or alternatively strings ++ or -- to

indicate a rate of turn more than 5 degrees per 30 seconds to the right or left
respectively.

• Speed over ground expressed as knots.
• Course over ground expressed as degrees.
• Distance from the AIS expressed as kilometers.
• Bearing angle expressed in degrees.
• Aspect angle expressed as degrees.

Any of the data fields except the time stamp and MMSI may be missing in which case the
data was not available from the AIS.

Finally, both the ship list (as a QTableView object) and the Radar are repainted to reflect
the changes in the user interface.

Häkkinen Henri BACHELOR'S THESIS 36

3.3.6. Use Case: Rotate Beam

The figure 29 describes the Rotate Beam use case that handles messages received from the
MRS subsystem by extracting the radar beam angle from it and redrawing the
superimposed radar beam on top of the radar map.

The use case begins when a Mailslot reads a message in the background thread which
causes the messageReceived signal to get emitted.

The signal is processed in the parseMessage slot of the MRSParser. The slot extracts the
radar beam angle from the message using regular expressions which is illustrated in the
following code listing:

void MRSParser::parseMessage(const QString &message) {
 static const QRegExp pattern("[0-9]{3}[.,][0-9]{2};");
 if (pattern.indexIn(message) != -1) {
 qreal angle = parseAngle(pattern.cap());
 emit beamAngleReceived(angle);
 }
}

A note should be taken on the fact that the QRegExp is created on the stack using the static
keyword – that is, the instance is created the first time the method is called and the same
instance is reused on each subsequent method call. This is due to the fact that the regular

Fig. 29. Rotate Beam use case realization

Häkkinen Henri BACHELOR'S THESIS 37

expression given for the constructor must be compiled and processed into a form usable by
the matching algorithm. By using the static keyword some CPU processing time is gained
at the expense of memory since the regular expression will only be compiled just once.

After the radar beam angle is parsed from the message the MRSParser emits the
beamAngleReceived slot which is connected to the setBeamAngle of the Radar instance.
This causes the Radar object to update the beam angle and repaints the radar map.

Häkkinen Henri BACHELOR'S THESIS 38

4. CONCLUSIONS

The study conducted for the Danish Defence Acquistion and Logistics Organization
involved designing and implementing a pointing aid application to be used with the
Modular Radar System. The Automatic Identification System was employed as means for
tracking and identifying vessels in the radar's vicinity in order to display them on a radar
map.

Major part in conducting the study involved researching the interfaces used to
communicate between the subsystems and getting the software to work with the existing
control panel software. Since the actual radar unit was located on a remote military facility
and therefore the time reserved for interacting with the radar was limited, additional testing
software was required to be created which allowed the system to be emulated locally
without actually being at the site itself.

The C++ programming language and the Qt framework proved to be very suitable design
choices in implementing the application. Extensive class library of Qt provided the
framework for building the application's user interface as well as communicating with the
AIS using TCP/IP sockets. Since Qt did not understandably implement Window Mailslots
IPC mechanism itself, a reusable object-oriented wrapper around the Windows Mailslots
API was developed. Qt's signals and slots mechanism was able to handle communication
between the application's components across thread boundaries by itself properly. All the
services and functionality provided by the Qt framework greatly decreased the
development time required to implement the Pointing and Tracking Aid application.

During the testing phase of the final application, two anomalies were observed.

First, one case was observed in which the AIS seemed to output completely garbled
information for a ship. The ship list displayed the ship with completely invalid and
nonsensical values such as zero MMSI and the rate of turn completely out of bounds. The
only valid data fields were the call sign and ship name. Additionally the same ship (as
identified by the call sign and ship name) was reported twice as another row in the ship list
with all the data fields correctly displayed.

Secondly, ship distances relatively to the AIS contained significant inaccuracies. The
magnitude of the error was observed to be directly proportional to the distance itself from
the AIS. The inaccuracy for a ship of 4 kilometers away was in the range of 100 meters
while for a ship of 20 kilometers away was in the magnitude of 1 kilometer. The actual
distance of a ship was measured with the Modular Radar System itself.

The most probable reason for the first issue is either of the following two:

1. The message sent from the AIS to the application through the TCP/IP connection
was for a reason or the other malformed somewhere between the connection line.
The application interpreted the message as a genuine, containing information for a

Häkkinen Henri BACHELOR'S THESIS 39

ship with MMSI of zero. The ship manager created a record for the ship and the
ship list displayed the data. Subsequent messages regarding the same ship were
correctly formed with a correct MMSI, therefore creating an additional record in
the ship manager while still retaining the previous malformed ship record.

2. The AIS sent a Ship and Voyage Data message for a ship before a Position Report
message was sent for it and the application wasn't able to properly handle the case.

The solution for reason number one is to implement a check sum verification which is not
currently implemented. Since sentences optionally contain a hexadecimal check sum at the
end of each sentence, the check sum could be used to verify the validness of received
sentences and to ignore ones which are found to be malformed. Also additional sanity
checking could be implemented to verify the values received from the AIS.

The algorithm used for calculating the distance between the AIS and the ship contains
many simplifications and assumptions, all of which might accumulate a small cumulative
inaccuracy to the computed result. Perhaps the radius of the Earth used is not accurate
enough. Perhaps the method of projecting the geographical latitude and longitude pair into
a two-dimensional coordinate space and performing calculations using Cartesian
coordinates is not suitable. Perhaps the Automatic Identification System reported its own
geographical location inaccurately due to inadequate calibration or perhaps the Modular
Radar System used to measure the distance was miscalibrated itself. There are many issues
to consider and as of now the fundamental reason for the miscalculated distances remain
unknown and more studies would be required. The fact that the magnitude of the error was
proportional to the distance itself does give some suggestions to assume that the algorithm
itself might not accurate enough.

There are also many other ways how the application could be extended both in terms of
usability and technical features. The AIS parser could be improved to support the full
range of AIVDM/AIVDO message types and the sentence check sum verification could be
implemented for more reliability. The user interface could be improved by allowing
column customization in the ship list for example by allowing sorting of ships by a chosen
data field and allowing rearranging the columns by dragging. Much more data for each
ship can also be collected from the AIS and displayed in the ship list. A tracking algorithm
such as one employing a Kalman filter could be used to observe ships on the radar map in a
real-time manner as opposed to the current pseudo real-time approach where each ship is
updated every few seconds as new data is received from the AIS.

Another interesting project would be to extend the Pointing and Tracking Aid to work with
air crafts using an IFF (Identification Friend or Foe) receiver. An IFF works in very similar
fashion as an AIS except that it is being used for identifying air crafts instead of naval
vessels.

On a more personal level, the project provided an interesting technical challenge and a
rewarding experience in working with Danish scientists in the field of military
applications. A hands-one experience with software engineering using the Qt framework
was gained as well as in parsing binary-based protocol sentences.

Häkkinen Henri BACHELOR'S THESIS 40

REFERENCES

/1/ American National Standards Institute, ISO/IEC 9899:1999 Programming Languages -
C.

/2/ GTK+ - About, [WWW-document], <http://www.gtk.org/> 9.5.2011.

/3/ Java Language Specification, Third Edition, [WWW-document],
<http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html> 9.5.2011.

/4/ Kongsberg Seatex AS, Seatex AIS 200 P Instruction Manual, 2007-05-04.011.

/5/ Microsoft Corporation, About Mailslots (Windows), [WWW-document],
<http://msdn.microsoft.com/en-us/library/aa365130%28v=vs.85%29.aspx> 21.4.2011.

/6/ Microsoft Corporation, Mailslot Names (Windows), [WWW-document],
<http://msdn.microsoft.com/en-us/library/aa365581%28v=vs.85%29.aspx> 21.4.2011.

/7/ Microsoft Corporation, MFC Reference, [WWW-document],
<http://msdn.microsoft.com/en-us/library/d06h2x6e%28v=VS.100%29.aspx>
9.5.2011.

/8/ Møller Jesper, M.Sc. EE, Initial project meeting, 28.1.2011.

/9/ Møller Jesper, M.Sc. EE, Project description, 31.1.2011.

/10/ National Marine Electronics Association, NMEA, [WWW-document],
<http://www.nmea.org/content/nmea_standards/nmea_083_v_400.asp> 9.5.2011.

/11/ Nokia Corporation, Qt – Cross-platform application and UI framework, [WWW-
document], <http://qt.nokia.com/products> 21.4.2011.

/12/ Nokia Corporation, Qt in Use, [WWW-document], <http://qt.nokia.com/qt-in-use>
9.5.2011.

/13/ Oracle, Java Native Interface Specification, [WWW-document],
<http://gpsd.berlios.de/AIVDM.html> 21.4.2011.

/14/ Raymond Eric S., AIVDM/AIVDO protocol decoding, [WWW-document],
<http://download.oracle.com/javase/6/docs/technotes/guides/jni/spec/jniTOC.html>
30.4.2011.

/15/ Who Uses wxWidgets? - wxWidgets, [WWW-document],
<http://www.wxwidgets.org/about/whouses.htm> 9.5.2011.

Häkkinen Henri BACHELOR'S THESIS 41

LIST OF APPENDICES

Appendix 1: Payload Armoring
Appendix 2: Payload Character Encoding
Appendix 3: Payload Messages
Appendix 4: Use Cases
Appendix 5: Source Code

Häkkinen Henri BACHELOR'S THESIS 42

APPENDIX 1: PAYLOAD ARMORING

The information in this appendix is gathered from Eric S. Raymond's article
AIVDM/AIVDO protocol encoding which can be found online from:

http://gpsd.berlios.de/AIVDM.html

AIS messages are encoded into the NMEA 0183 protocol sentences using a special six-bit
payload armoring. Each ASCII character in the payload expresses a six-bit nibble. To
derive the nibble value from a single payload character, subtract 48 from it and if the result
is higher than 40, subtract 8. Concatenate all nibble with the most significant bit first to get
the binary presentation of the whole message. The table 2 gives the corresponding decoded
nibble for each payload character.

Table 2. Payload armoring
Payload Character ASCII Value Decoded Value Binary Nibble

0 48 0 000000

1 49 1 000001

2 50 2 000010

3 51 3 000011

4 52 4 000100

5 53 5 000101

6 54 6 000110

7 55 7 000111

8 56 8 001000

9 57 9 001001

: 58 10 001010

; 59 11 001011

< 60 12 001100

= 61 13 001101

> 62 14 001110

? 63 15 001111

@ 64 16 010000

A 65 17 010001

B 66 18 010010

C 67 19 010011

D 68 20 010100

E 69 21 010101

F 70 22 010110

Häkkinen Henri BACHELOR'S THESIS 43

Payload Character ASCII Value Decoded Value Binary Nibble

G 71 23 010111

H 72 24 011000

I 73 25 011001

J 74 26 011010

K 75 27 011011

L 76 28 011100

M 77 29 011101

N 78 30 011110

O 79 31 011111

P 80 32 100000

Q 81 33 100001

R 82 34 100010

S 83 35 100011

T 84 36 100100

U 85 37 100101

V 86 38 100110

W 87 39 100111

` 96 40 101000

a 97 41 101001

b 98 42 101010

c 99 43 101011

d 100 44 101100

e 101 45 101101

f 102 46 101110

g 103 47 101111

h 104 48 110000

i 105 49 110001

j 106 50 110010

k 107 51 110011

l 108 52 110100

m 109 53 110101

n 110 54 110110

o 111 55 110111

p 112 56 111000

q 113 57 111001

r 114 58 111010

Häkkinen Henri BACHELOR'S THESIS 44

Payload Character ASCII Value Decoded Value Binary Nibble

s 115 59 111011

t 116 60 111100

u 117 61 111101

v 118 62 111110

w 119 63 111111

Häkkinen Henri BACHELOR'S THESIS 45

APPENDIX 2: PAYLOAD CHARACTER ENCODING

The information in this appendix is gathered from Eric S. Raymond's article
AIVDM/AIVDO protocol encoding which can be found online from:

http://gpsd.berlios.de/AIVDM.html

The AIS protocol uses a special character encoding to express text. Each character is
expressed using a six-bit nibble and is mapped into an ASCII character. Character strings
are terminating with the @ character which should not be considered as being part of the
decoded text. The table 3 gives the corresponding ASCII character for each six-bit binary
nibble.

Table 3. Character encoding
Binary Nibble Decimal Value ASCII Character

000000 0 @

000001 1 A

000010 2 B

000011 3 C

000100 4 D

000101 5 E

000110 6 F

000111 7 G

001000 8 H

001001 9 I

001010 10 J

001011 11 K

001100 12 L

001101 13 M

001110 14 N

001111 15 O

010000 16 P

010001 17 Q

010010 18 R

010011 19 S

010100 20 T

010101 21 U

010110 22 V

010111 23 W

Häkkinen Henri BACHELOR'S THESIS 46

Binary Nibble Decimal Value ASCII Character

011000 24 X

011001 25 Y

011010 26 Z

011011 27 [

011100 28 \

011101 29]

011110 30 ^

011111 31 _

100000 32 (space)

100001 33 !

100010 34 “

100011 35 #

100100 36 $

100101 37 %

100110 38 &

100111 39 '

101000 40 (

101001 41)

101010 42 *

101011 43 +

101100 44 ,

101101 45 -

101110 46 .

101111 47 /

110000 48 0

110001 49 1

110010 50 2

110011 51 3

110100 52 4

110101 53 5

110110 54 6

110111 55 7

111000 56 8

111001 57 9

111010 58 :

111011 59 ;

Häkkinen Henri BACHELOR'S THESIS 47

Binary Nibble Decimal Value ASCII Character

111100 60 <

111101 61 =

111110 62 >

111111 63 ?

Häkkinen Henri BACHELOR'S THESIS 48

APPENDIX 3: PAYLOAD MESSAGES

The information in this appendix is gathered from Eric S. Raymond's article
AIVDM/AIVDO protocol encoding which can be found online from:

http://gpsd.berlios.de/AIVDM.html

Each payload message begins with a 38-bit header which is described in detail in the table
3.

Table 4. AIS message header
Bits Length Datatype Description

0-5 6 Unsigned integer Message type.

6-7 2 Unsigned integer Repeat indicator.

8-37 30 Unsigned integer A 9-digit Maritime Mobile Service Identifier (MMSI).

The repeat indicator field is a directive for an AIS transceivers to rebroadcast the same
message forward and increase the indicator by one on each rebroadcast. A value of three
indicates ”do not repeat”. This is intended to implement a rudimentary form of routing to
get around obstructions such as hills.

The MMSI field is a unique 9-digit identifier for the ship's radio. First three digits indicate
the country in which the identifier was issued. Denmark uses country codes 219 and 220.

The message type field specifies the structure of the message which follows after the
header. The message types are listed in the table 5.

Table 5. AIS message types
Message Type Message Class

1 Position Report Class A

2 Position Report Class A (Assigned schedule)

3 Position Report Class A (Response to interrogation)

4 Base Station Report

5 Ship and Voyage Data

6 Addressed Binary Message

7 Binary Acknowledge

8 Binary Broadcast Message

9 Standard SAR Aircraft Position Report

10 UTC and Date Inquiry

11 UTC and Date Response

12 Addressed Safety Related Message

Häkkinen Henri BACHELOR'S THESIS 49

Message Type Message Class

13 Safety Related Acknowledge

14 Safety Related Broadcast Message

15 Interrogation

16 Assigned Mode Command

17 GNSS Binary Broadcast Message

18 Standard Class B CS Position Report

19 Extended Class B Equipment Position Report

20 Data Link Management

21 Aid-to-Navigation Report

22 Channel Management

23 Group Assignment Command

24 Class B CS Static Data Report

25 Binary Message, Single Slot

26 Binary Message, Multiple Slot

27 Position Report for Long-Range Applications

Message classes Position Report Class A and Ship and Voyage Data are explained below.
Other message types are omitted here since they are not relevant to the Pointing and
Tracking Aid application.

Position Report Class A

Under normal operations an AIS transceiver mounted on a vessel will broascast a position
report every 2 to 10 seconds depending on the vessel's speed while underway and every 3
minutes while anchored and stationary. The table 6 gives the structure of the Position
Report Class A message.

Table 6. Position Report Class A message type
Bits Length Datatype Description

38-41 4 Unsigned integer Navigation status.

42-49 8 Signed integer Rate of turn.

50-59 10 Unsigned integer Speed over ground.

60-60 1 Boolean flag Position accuracy.

61-88 28 Signed integer Longitude expressed as minutes/10000.

89-115 27 Signed integer Latitude expressed as minutes/10000.

116-127 12 Unsigned integer Course over ground relative to North.

128-136 9 Unsigned integer True heading relative to North.

137-142 6 Unsigned integer Second of an UTC time stamp.

Häkkinen Henri BACHELOR'S THESIS 50

Bits Length Datatype Description

143-144 2 Unsigned integer Maneuver indicator.

145-147 2 Not used.

148-148 1 Boolean flag RAIM flag.

149-167 19 Unsigned integer Radio status.

The table 7 describes the values of the navigation status field.

Table 7. Navigation status
Navigation Status Description

0 Under way using engine.

1 At anchor.

2 Not under command.

3 Restricted manoeuvrability.

4 Constrained by her draught.

5 Moored.

6 Aground.

7 Engaged in fishing.

8 Under way sailing.

9 Reserved for future use.

10 Reserved for future use.

11 Reserved for future use.

12 Reserved for future use.

13 Reserved for future use.

14 Reserved for future use.

15 Not defined or default.

The rate of turn field has the following meanings:

• Value of 0 indicates the vessel is not turning.
• Values between 1 and 126 indicates the vessel is currently turning right.
• Values between -1 and -126 indicates the vessel is currently turning left.
• Value of 127 indicates the vessel is turning right at more than 5 degrees per 30

seconds.
• Value of -127 indicates the vessel is turning left at more than 5 degrees per 30

seconds.
• Value of 128 indicates no turn information is available.

The actual rate of turn is calculated using the following Mathematical formula:

Häkkinen Henri BACHELOR'S THESIS 51

(Rateof Turn
4.733)

2

degrees per minute

The speed over ground field indicates the speed of the vessel in knots expressed in 0.1
precision from 0 to 102 knots. For example the value of 101 means the vessel is
proceeding in 10.1 knots velocity. A special value 1023 indicates speed information is not
available.

The longitude and latitude fields give the geographic location of the vessel expressed as
1/10000th of a minute accuracy. To obtain the coordinate as a degree divide the value by
600000. A positive value of longitude increases to East and a positive value of latitude
increases to North. A special longitude value of 181 degrees indicates the longitude is not
available or is the default while a latitude value of 91 degrees indicates the same.

The course over ground indicates the course of the vessel in degrees expressed with a 0.1
precision relatively to North. A value of 1205 therefore indicates a course of 120.5
degrees. A special value of 3600 indicates no course information is available.

Rest of the fields are not used by the Pointing and Tracking Aid application so therefore
they are omitted here for clarity.

Ship and Voyage Data

Ship and Voyage Data will be broadcasted every 6 minutes by sailing vessels. The
structure of this message type is given in the table 8.

Table 8. Ship and Voyage Data message type
Bits Length Datatype Description

38-39 2 Unsigned integer AIS version.

40-69 30 Unsigned integer IMO number.

70-111 42 String Call sign.

112-231 120 String Vessel name.

232-239 8 Unsigned integer Ship type.

240-248 9 Unsigned integer Dimension to bow in meters.

249-257 9 Unsigned integer Dimension to stern in meters.

258-263 6 Unsigned integer Dimension to port in meters.

264-269 6 Unsigned integer Dimension to starboard in meters.

270-273 4 Unsigned integer Position fix type.

274-277 4 Unsigned integer Estimated time of arrival: month.

278-282 5 Unsigned integer Estimated time of arrival: day.

283-287 5 Unsigned integer Estimated time of arrival: hour.

Häkkinen Henri BACHELOR'S THESIS 52

Bits Length Datatype Description

288-293 6 Unsigned integer Estimated time of arrival: minute.

294-301 8 Unsigned integer Draught expressed as meters/10.

302-421 120 String Destination.

422-422 1 Boolean flag DTE.

423-423 1 Not used.

The only fields from this message class which are used in the Pointing and Tracking Aid
applications are the call sign and ship name fields. These fields are encoded as character
strings using the special AIS text encoding as explained in Appendix 2.

Häkkinen Henri BACHELOR'S THESIS 53

APPENDIX 4: USE CASES

Use case: Tag Ship
Brief description:
The Radar Operator tags a ship for logging. Subsequent messages received from the AIS
regarding the ship causes the ship's data to be logged into a log file.
Primary actors:
Radar Operator
Secondary actors:
None
Preconditions:
None
Main flow:

 1 The use case begins when the Radar Operator tags a ship.
 2 The application set the logging flag on for the ship.

Postconditions:
 1 The ship was flagged on for logging.

Alternative flows:
None

Use case: Untag Ship
Brief description:
The Radar Operator untags a ship from being logged. Subsequent messages received from
the AIS regarding the ship no longer causes the ship's data to be logged.
Primary actors:
Radar Operator
Secondary actors:
None
Preconditions:
None
Main flow:

 1 The use case begins when the Radar Operator untags a ship.
 2 The application sets the logging flag off for the ship.

Postconditions:
 1 The ship was flagged off from being logged.

Alternative flows:
None

Häkkinen Henri BACHELOR'S THESIS 54

Use case: Select Ship
Brief description:
The Radar Operator selects a ship from the application's user interface. The application
highlights a ship to give visual feedback of the selection.
Primary actors:
Radar Operator
Secondary actors:
None
Preconditions:
None
Main flow:

 1 The use case begins when the Radar Operator selects a ship.
 2 The application updates its internal state of the currently selected ship.
 3 If a new ship was selected

 3.1 The application highlights the ship on the radar map and the ship list.
Postconditions:

 1 The application highlighted the selected ship if one was selected.
Alternative flows:
None

Use case: Change Settings
Brief description:
The Radar Operator changes application's settings.
Primary actors:
Radar Operator
Secondary actors:
None
Preconditions:
None
Main flow:

 1 The use case begins when the Radar Operator selects “change settings” action.
 2 The application displays a settings dialog for the Radar Operator.
 3 The Radar Operator changes settings.
 4 If the ok button is pressed

 4.1 The application stores the settings into a user preferences database.
Postconditions:
None
Alternative flows:
None

Häkkinen Henri BACHELOR'S THESIS 55

Use case: Identify Ship
Brief description:
The AIS sends a message regarding a remote naval vessel or the local station itself.
Primary actors:
AIS
Secondary actors:
None
Preconditions:
None
Main flow:

 1 The use case begins when the AIS sends a message.
 2 The application decodes the message's payload armoring and finds the message

type and the MMSI identification number.
 3 The application decodes the rest of the data found in the payload according to the

message's type.
 4 If the message describes a remote naval vessel

 4.1 If a ship record with the specified MMSI already exists
 4.1.1 The application updates the existing ship record from the decoded data.

 4.2 Else
 4.2.1 The application creates a new ship record using the decoded data.

 5 Else
 5.1 The application updates the local station's record.

Postconditions:
 1 The application handled the message.

Alternative flows:
None

Häkkinen Henri BACHELOR'S THESIS 56

Use case: Rotate Beam
Brief description:
The MRS sends a message regarding changes in the current radar beam angle. The
application decodes the message and updates the radar map to reflect changes.
Primary actors:
MRS
Secondary actors:
None
Preconditions:
None
Main flow:

 1 The use case begins when the MRS sends a message.
 2 The application decodes the radar beam angle from the message.
 3 The application redraws the radar beam angle on the radar map.

Postconditions:
 1 The application handled the message.
 2 The application updated the radar map.

Alternative flows:
Non

Häkkinen Henri BACHELOR'S THESIS 57

APPENDIX 5: SOURCE CODE

List of source files
• aismessages.cpp: AIS Message classes.
• aismessage.h: AIS Message classes.
• aisparser.cpp: Automatic Identification System protocol parser.
• aisparser.h: Automatic Identification System protocol parser.
• constants.cpp: Compile-time constants.
• constants.h: Compile-time constants.
• coord.cpp: Geographic coordinate class.
• coord.h: Geographic coordinate class.
• dataformatter.cpp: AIS Data Formatter class.
• dataformatter.h: AIS Data Formatter class.
• mailslot.cpp: Object-oriented Windows Mailslots API wrapper.
• mailslot.h: Object-oriented Windows Mailslots API wrapper.
• main.cpp: Application main entry-point.
• mainwindow.cpp: Main Window class.
• mainwindow.h: Main Window class.
• mrsparser.cpp: Modular Radar System protocol parser.
• mrsparser.h: Modular Radar System protocol parser.
• payload.cpp: AIS Message Payload decoder.
• payoad.h: AIS Message Payload decoder.
• radar.cpp: Radar user interface component.
• radar.h: Radar user interface component.
• settings.cpp: Settings dialog.
• settings.h: Settings dialog.
• ship.cpp: Ship data encapsulation.
• ship.h: Ship data encapsulation.
• shipmanager.cpp: Ship Manager class.
• shipmanager.h: Ship Manager class.

File: aismessage.cpp

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * aismessages.cpp
 *
 * Implementation of the AIVDM/AIVDO protocol messages classes.
 */

#include "aismessages.h"
#include "payload.h"

Häkkinen Henri BACHELOR'S THESIS 58

AISMessage::AISMessage(const Payload &payload, bool aivdm) {
 _aivdm = aivdm;
 _type = payload.extractUInt(0, 6);
 _mmsi = payload.extractUInt(8, 30);
}

PositionReport::PositionReport(const Payload &payload, bool aivdm) :
 AISMessage(payload, aivdm)
{
 _status = payload.extractUInt(38, 4);
 _turn = payload.extractInt(42, 8);
 _speed = payload.extractUInt(50, 10);
 _lon = payload.extractInt(61, 28);
 _lat = payload.extractInt(89, 27);
 _course = payload.extractUInt(116, 12);
}

ShipVoyageData::ShipVoyageData(const Payload &payload, bool aivdm) :
 AISMessage(payload, aivdm)
{
 _callSign = payload.extractString(70, 42);
 _shipName = payload.extractString(112, 120);
}

File: aismessage.h

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * aismessages.h
 *
 * AIVDM/AIVDO protocol message classes.
 *
 * Protocl reference:
 * - http://gpsd.berlios.de/AIVDM.html
 */

#ifndef AISMESSAGES_H
#define AISMESSAGES_H

#include <QObject>
#include "coord.h"

class Payload;

class AISMessage : public QObject {
 Q_OBJECT

public:
 AISMessage(const Payload &payload, bool aivdm);
 virtual ~AISMessage() {}

 bool isAIVDM() const { return _aivdm; }
 uint type() const { return _type; }
 uint mmsi() const { return _mmsi; }

private:
 bool _aivdm; // AIVDM or AIVDO sentence?
 uint _type; // Message Type
 uint _mmsi; // Mobile Marine Service Identifier

Häkkinen Henri BACHELOR'S THESIS 59

};

// Type 1, 2 and 3: Position Report Class A
class PositionReport : public AISMessage {
 Q_OBJECT

public:
 PositionReport(const Payload &payload, bool aivdm);

 uint status() const { return _status; }
 int turn() const { return _turn; }
 uint speed() const { return _speed; }
 Coord coord() const { return Coord(_lat, _lon); }
 int lon() const { return _lon; }
 int lat() const { return _lat; }
 uint course() const { return _course; }

private:
 uint _status; // Navigation Report
 int _turn; // Rate of Turn
 uint _speed; // Speed Over Ground
 int _lon; // Longitude (Minutes/10000)
 int _lat; // Latitude (Minutes/10000)
 uint _course; // Course Over Ground
};

// Type 5: Ship and Voyage Data
class ShipVoyageData : public AISMessage {
 Q_OBJECT

public:
 ShipVoyageData(const Payload &payload, bool aivdm);

 QString callSign() const { return _callSign; }
 QString shipName() const { return _shipName; }

private:
 QString _callSign; // Call Sign
 QString _shipName; // Vessel Name
};

#endif // AISMESSAGES_H

File: aisparser.cpp

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * aisparser.cpp
 *
 * Implementation of the AISParser class.
 */

#include <QMessageBox>
#include <QTcpSocket>
#include "aismessages.h"
#include "aisparser.h"
#include "payload.h"

Häkkinen Henri BACHELOR'S THESIS 60

AISParser::AISParser(QTcpSocket *socket, QObject *parent) :
 QObject(parent),
 _socket(socket)
{
 connect(_socket, SIGNAL(readyRead()), this, SLOT(parseData()));
 connect(_socket, SIGNAL(error(QAbstractSocket::SocketError)), this, SLOT(error()));
}

void AISParser::error() {
 // Called when an error occurs on the TCP/IP connection.
 QMessageBox::critical(0, "Error", "AIS connection error:\n" + _socket->errorString());
}

void AISParser::parseData() {
 // Called when there is an incoming data coming from the AIS transceiver.

 _sentenceBuffer.append(_socket->readAll());
 while (true) {
 int eol = _sentenceBuffer.indexOf("\n");
 if (eol == -1) break;
 parseSentence(_sentenceBuffer.left(eol));
 _sentenceBuffer.remove(0, eol + 1);
 }
}

void AISParser::parseSentence(const QByteArray &sentence) {
 // Parse an AIVDM/AIVDO protocol sentence. Sentences not beginning with !AIVDM or
 // !AIVDO or otherwise malformatted sentences are silently ignored.
 //
 // Note: sentence checksum verification is not implemented!

 if (sentence.startsWith("!AIVDM") || sentence.startsWith("!AIVDO")) {
 QList<QByteArray> fields = sentence.split(',');
 if (fields.count() < 7)
 return;

 uint fragmentCount = fields[1].toUInt();
 uint fragmentNumber = fields[2].toUInt();
 _payloadBuffer.append(fields[5]);

 if (fragmentNumber == fragmentCount) {
 parseMessage(_payloadBuffer, sentence.startsWith("!AIVDM"));
 _payloadBuffer.clear();
 }
 }
}

void AISParser::parseMessage(const QByteArray &message, bool aivdm) {
 // Parse a message contained in the armored payload.

 Payload payload(message);
 uint type = payload.extractUInt(0, 6);

 if (type >= 1 && type <= 3) {
 PositionReport message(payload, aivdm);
 emit messageReceived(&message);
 } else if (type == 5) {
 ShipVoyageData message(payload, aivdm);
 emit messageReceived(&message);
 }
}

Häkkinen Henri BACHELOR'S THESIS 61

File: aisparser.h

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * aisparser.h
 *
 * Automatic Identification System (AIS) message parser. Parses messages received over
 * TCP/IP network into high-level objects and emits signals as things are recognized from
 * the input stream.
 *
 * Protocol reference:
 * - http://gpsd.berlios.de/AIVDM.html
 */

#ifndef AISPARSER_H
#define AISPARSER_H

#include <QObject>

class QTcpSocket;
class AISMessage;

class AISParser : public QObject {
 Q_OBJECT

public:
 AISParser(QTcpSocket *socket, QObject *parent = 0);

signals:
 void messageReceived(const AISMessage *message);

private slots:
 void error();
 void parseData();

private:
 void parseSentence(const QByteArray &sentence);
 void parseMessage(const QByteArray &payload, bool aivdm);

 QTcpSocket *_socket;
 QByteArray _sentenceBuffer;
 QByteArray _payloadBuffer;
};

#endif // AISPARSER_H

File: constants.cpp

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * constants.cpp
 *
 * Compile-time constants.

Häkkinen Henri BACHELOR'S THESIS 62

 */

#include <cmath>
#include "constants.h"

const QString OrganizationName = "Danish Defence Acquistion and Logistics
Organization";
const QString OrganizationDomain = "forsvaret.dk";
const QString ApplicationName = "Pointing and Tracking Aid";
const QString ApplicationVersion = "1.0";
const QString ApplicationIconName = "icon48.ico";
const QString LogDirectory = "logs";
const QString LogFileExtension = ".txt";
const QString MRSMailslotName = "MRS-Mail";
const QString AISHostname = "192.168.127.254";
const quint16 AISPort = 4001;
const qreal RadarDefaultLatitude = 56.0097;
const qreal RadarDefaultLongitude = 11.2784;
const qreal RadarDefaultZoom = 0.01;
const qreal RadarBeamAngle = 3.5 * M_PI/180.0;
const qreal ShipSize = 2.0;
const QColor ShipColorRegular = QColor(255, 0, 0);
const QColor ShipColorSelected = QColor(0, 0, 255);
const qreal EarthRadius = 6371.0;

File: constants.h

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * constants.h
 *
 * Compile-time constants.
 */

#ifndef CONSTANTS_H
#define CONSTANTS_H

#include <QtGlobal>
#include <QString>
#include <QColor>
#include "coord.h"

// Name of the organization.
extern const QString OrganizationName;

// Domain name of the organzation.
extern const QString OrganizationDomain;

// Full application name.
extern const QString ApplicationName;

// Application version string.
extern const QString ApplicationVersion;

// Application icon filename.
extern const QString ApplicationIconName;

// Directory where ship logs are being stored.

Häkkinen Henri BACHELOR'S THESIS 63

// Don't include a trailing path separator!
extern const QString LogDirectory;

// File extension of a log file.
extern const QString LogFileExtension;

// Name of the MRS mailslot to listen to.
extern const QString MRSMailslotName;

// Hostname / IP address of the AIS server.
extern const QString AISHostname;

// Port number of the AIS server.
extern const quint16 AISPort;

// Default radar origin.
extern const qreal RadarDefaultLatitude;
extern const qreal RadarDefaultLongitude;

// Default radar zoom.
extern const qreal RadarDefaultZoom;

// Radar beam cut-off angle in radians.
extern const qreal RadarBeamAngle;

// Size of a ship drawn on the radar.
extern const qreal ShipSize;

// Color of a ship drawn on the radar.
extern const QColor ShipColorRegular;
extern const QColor ShipColorSelected;

// Earth's radius in kilometers.
extern const qreal EarthRadius;

#endif // CONSTANTS_H

File: coord.cpp

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * coord.cpp
 *
 * Implementation of the Coord class.
 */

#include <cmath>
#include "constants.h"
#include "coord.h"

const int Coord::UndefinedLatitude = 91 * 600000;
const int Coord::UndefinedLongitude = 181 * 600000;
const Coord Coord::Undefined(91 * 600000, 181 * 600000);

qreal Coord::distance(const Coord &ca, const Coord &cb) {
 // Calculates the distance from point 'ca' to point 'cb' as kilometers.

Häkkinen Henri BACHELOR'S THESIS 64

 // Returns -1 if either of the points is 'undefined'.

 if (ca.isUndefined() || cb.isUndefined())
 return -1;

 const qreal dx = cb.x() - ca.x();
 const qreal dy = cb.y() - ca.y();
 return EarthRadius * sqrt(dx*dx + dy*dy);
}

qreal Coord::bearing(const Coord &ca, const Coord &cb) {
 // Calculates the bearing from point 'ca' to point 'cb' relatively to the reference
 // angle which points to North. The returned angle is expressed in degrees and is
 // always normalized into the range [0, 360]. A -1 is returned if either of the passed
 // coordinates is 'undefined'.
 //
 // Note that the order which the two input coordinates are passed to this function
 // is significant! bearing(a, b) is different from bearing(b, a)!

 if (ca.isUndefined() || cb.isUndefined())
 return -1;

 const qreal dx = cb.x()- ca.x();
 const qreal dy = cb.y()- ca.y();
 const qreal brn = atan2(dx, dy) * 180.0 / M_PI;
 return fmod(brn + 360.0, 360.0);
}

qreal Coord::aspect(const Coord &ca, const Coord &cb, uint course) {
 // Calculates the aspect from point 'ca' to point 'cb' with 'course' defining the
 // course over ground of a ship located at point 'cb'. The 'course' is the value
 // received from the AIS and is expressed with 0.1 degree precision -- a value of
 // 105 means 10.5 degrees and the value therefore must be divided by 10 to get the
 // angle in degrees.
 //
 // A -1 is returned if either of the points are 'undefined'. Again, the order which
 // the two locations are passed to this function is significant!

 if (ca.isUndefined() || cb.isUndefined())
 return -1;

 const qreal aspect = bearing(cb, ca) - course/10.0;
 return fmod(aspect + 360.0, 360.0);
}

Coord::Coord() :
 _lat(UndefinedLatitude),
 _lon(UndefinedLongitude)
{ /* nothing to do here */ }

Coord::Coord(int lat, int lon) :
 _lat(lat),
 _lon(lon)
{
 // Project the geographical location into a 2D Cartesian plane.
 qreal latRad = latRadians();
 qreal lonRad = lonRadians();
 _x = lonRad * cos(latRad);
 _y = latRad;
}

Häkkinen Henri BACHELOR'S THESIS 65

File: coord.h

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * coord.h
 *
 * Geographic Coordinate datatype class.
 *
 * A coordinate may be 'undefined' which does not express any real geographical
 * location. The 'isUndefined' returns true for these kinds of coordinates.
 */

#ifndef COORD_H
#define COORD_H

#include <QtGlobal>

class Coord {
public:
 static const int UndefinedLatitude;
 static const int UndefinedLongitude;
 static const Coord Undefined;

 static qreal distance(const Coord &ca, const Coord &cb);
 static qreal bearing(const Coord &ca, const Coord &cb);
 static qreal aspect(const Coord &ca, const Coord &cb, uint course);

 Coord();
 Coord(int lat, int lon);

 int lat() const { return _lat; } // Minutes/10000
 int lon() const { return _lon; } // Minutes/10000
 qreal latDegrees() const { return _lat / 600000.0; }
 qreal lonDegrees() const { return _lon / 600000.0; }
 qreal latRadians() const { return latDegrees() * 0.0174532925; }
 qreal lonRadians() const { return lonDegrees() * 0.0174532925; }
 qreal x() const { return _x; }
 qreal y() const { return _y; }

 bool isUndefined() const {
 return (_lat == UndefinedLatitude) || (_lon == UndefinedLongitude);
 }

private:
 int _lat, _lon; // latitude & longitude expressed as 1/10000th of a minute
 qreal _x, _y; // projected 2D Cartesian coordinate
};

#endif // COORD_H

File: dataformatter.cpp

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.

Häkkinen Henri BACHELOR'S THESIS 66

 *
 * dataformatter.cpp
 *
 * Implementation of the DataFormatter class.
 */

#include <cmath>
#include "dataformatter.h"
#include "coord.h"

// Unicode Character 'Degree sign' (U+00B0).
static const QChar UnicodeDegreeSymbol(0x00B0);

QString DataFormatter::mmsi(uint mmsi) {
 // Formats the numeric MMSI as a text string.
 return QString::number(mmsi);
}

QString DataFormatter::callSign(const QString &callSign) {
 // Returns the call sign as is unless it's empty.
 if (callSign.isEmpty()) {
 return QString("Not defined");
 }
 return callSign;
}

QString DataFormatter::shipName(const QString &shipName) {
 // Returns the ship name as is unless it's empty.
 if (shipName.isEmpty()) {
 return QString("Not defined");
 }
 return shipName;
}

QString DataFormatter::status(uint status) {
 // Formats the navigation status as a human-readable text.

 switch (status) {
 case 0: return QString("Under way using engine");
 case 1: return QString("At anchor");
 case 2: return QString("Not under command");
 case 3: return QString("Restricted manoeuverability");
 case 4: return QString("Constrained by her draught");
 case 5: return QString("Moored");
 case 6: return QString("Aground");
 case 7: return QString("Engaged in fishing");
 case 8: return QString("Under way sailing");

 // Status codes 9-14 are "Reserved for future amendment of Navigation Status for HSC"
 // according to the unofficial protocol specification. We will just return "Not
 // defined" for them here.

// case 9: return QString("Reserved for future use");
// case 10: return QString("Reserved for future use");
// case 11: return QString("Reserved for future use");
// case 12: return QString("Reserved for future use");
// case 13: return QString("Reserved for future use");
// case 14: return QString("Reserved for future use");

 }

 return QString("Not defined");
}

Häkkinen Henri BACHELOR'S THESIS 67

QString DataFormatter::turn(int turn) {
 // Formats the rate of turn as a human-readable text.

 if (turn == 0) {
 // Value of 0 means the ship is not turning.
 return QString("Not turning");
 } else if (turn == 128) {
 // Value of 128 means the ROT is not defined.
 return QString("Not defined");
 } else if (turn == 127) {
 // Value of 127 means the ROT is more than 5degs/30s to right.
 return QString("More than 5") + QChar(0x00B0) + QString("/30s to right");
 } else if (turn == -127) {
 // Value of -127 means the ROT is more than 5degs/30s to left.
 return QString("More than 5") + QChar(0x00B0) + QString("/30s to left");
 }

 // Values -126 ... 126 mean something between 0 to 708 degrees per minute to right
 // (if ROT is positive) or to left (if ROT is negative).

 double degsPerMin = pow(turn / 4.733, 2.0);

 // E.g. "20.00 degs/min to right".
 return QString::number(degsPerMin, 'f', 2) +
 UnicodeDegreeSymbol + QString("/min") +
 QString(turn > 0 ? " to right" : " to left");
}

QString DataFormatter::speed(uint speed) {
 // Formats the speed over ground as a human-readable string.

 if (speed == 1023) {
 // Value of 1023 means the SOG is not defined.
 return QString("Not defined");
 }

 // Values 0 ... 1022 gives the speed over ground as knots with 0.1 precisions.
 // The SOG value therefore must be divided by 10 to get the actual value in knots.

 return QString::number(speed / 10.0, 'f', 1) + QString(" knots");
}

QString DataFormatter::course(uint course) {
 // Formats the course over ground as a human-readable string.

 if (course == 3600) {
 // Value of 3600 means the COG is not defined.
 return QString("Not defined");
 }

 // Values 0 ... 3599 givs the course over ground in degrees with 0.1 precision.
 // The COG value must therefore be divided by 10 to get the actual value in degs.

 return QString::number(course / 10.0, 'f', 1) + UnicodeDegreeSymbol;
}

QString DataFormatter::coord(const Coord &coord) {
 // Formats the coordinate as a pair of latitude & longitude pairs.

 if (coord.isUndefined()) return QString("Undefined");

 QString str;
 str += QChar(coord.lat() >= 0 ? '+' : '-');

Häkkinen Henri BACHELOR'S THESIS 68

 str += QString::number(coord.latDegrees(), 'f', 4);
 str += QChar(0x00B0);
 str += QChar(' ');
 str += QChar(coord.lon() >= 0 ? '+' : '-');
 str += QString::number(coord.lonDegrees(), 'f', 4);
 str += QChar(0x00B0);

 return str;
}

QString DataFormatter::distance(qreal distance) {
 // Formats the distance either as kilometers or meters depending on its magnitude.
 if (distance < 0.0) {
 return QString("Undefined");
 } else if (distance < 1.0) {
 return QString::number(distance * 1000.0, 'f', 2) + QString(" m");
 }
 return QString::number(distance, 'f', 2) + QString(" km");
}

QString DataFormatter::bearing(qreal bearing) {
 // Formats the bearing angle as is unless it's -1 (undefined).
 if (bearing < 0.0) {
 return QString("Undefined");
 }
 return QString::number(bearing, 'f', 2) + UnicodeDegreeSymbol;
}

QString DataFormatter::aspect(qreal aspect) {
 // Formats the aspect angle as is unless it's -1 (undefined).
 if (aspect < 0.0) {
 return QString("Undefined");
 }
 return QString::number(aspect, 'f', 1) + UnicodeDegreeSymbol;
}

QString DataFormatter::logMMSI(uint mmsi) {
 // Formats the MMSI as a string.
 return QString::number(mmsi);
}

QString DataFormatter::logCallSign(const QString &callSign) {
 // Returns the call sign as is.
 return callSign;
}

QString DataFormatter::logShipName(const QString &shipName) {
 // Returns the ship name as is.
 return shipName;
}

QString DataFormatter::logStatus(uint status) {
 // Formats the navigation status as a numeric code.
 return QString::number(status);
}

QString DataFormatter::logTurn(int turn) {
 // Formats the rate of turn as a decimal number except as '++'/'--' when
 // out of bounds.

 if (turn == 0) {
 return QString("0");
 } else if (turn == 128) {
 return QString();
 } else if (turn == 127) {

Häkkinen Henri BACHELOR'S THESIS 69

 return QString("++");
 } else if (turn == -127) {
 return QString("--");
 }
 double degsPerMin = pow(turn / 4.733, 2.0);
 return QString(turn > 0 ? "" : "-") + QString::number(degsPerMin, 'f', 5);
}

QString DataFormatter::logSpeed(uint speed) {
 // Formats the speed over ground as a decimal number unless it's undefined.
 if (speed == 1023) {
 return QString();
 }
 return QString::number(speed / 10.0, 'f', 1);
}

QString DataFormatter::logCourse(uint course) {
 // Formats the course over ground as a decimal number unless it's undefined.
 if (course == 3600) {
 return QString();
 }
 return QString::number(course / 10.0, 'f', 1);
}

QString DataFormatter::logLon(uint lon) {
 // Formats the longitude as a degrees.
 return QString::number(lon / 600000.0, 'f', 5);
}

QString DataFormatter::logLat(uint lat) {
 // Formats the latitude as degrees.
 return QString::number(lat / 600000.0, 'f', 5);
}

QString DataFormatter::logDistance(qreal distance) {
 // Formats the distance as a decimal number unless it's undefined.
 if (distance < 0.0) {
 return QString();
 }
 return QString::number(distance, 'f', 3);
}

QString DataFormatter::logBearing(qreal bearing) {
 // Formats the bearing angle as a decimal number unless it's undefined.
 if (bearing < 0.0) {
 return QString();
 }
 return QString::number(bearing, 'f', 3);
}

QString DataFormatter::logAspect(qreal aspect) {
 // Formats the aspect angle as a decimal number unless it's undefined.
 if (aspect < 0.0) {
 return QString();
 }
 return QString::number(aspect, 'f', 3);
}

File: dataformatter.h

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for

Häkkinen Henri BACHELOR'S THESIS 70

 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * dataformatter.h
 *
 * Class for formatting values received from the AIS into a more human-readable form.
 */

#ifndef DATAFORMATTER_H
#define DATAFORMATTER_H

#include <QString>

class Coord;

class DataFormatter {
public:
 // for the ship list
 static QString mmsi(uint mmsi);
 static QString callSign(const QString &callSign);
 static QString shipName(const QString &shipName);
 static QString status(uint status);
 static QString turn(int rot);
 static QString speed(uint speed);
 static QString course(uint course);
 static QString coord(const Coord &coord);
 static QString distance(qreal distance);
 static QString bearing(qreal bearing);
 static QString aspect(qreal aspect);

 // for the log file
 static QString logMMSI(uint mmsi);
 static QString logCallSign(const QString &callSign);
 static QString logShipName(const QString &shipName);
 static QString logStatus(uint status);
 static QString logTurn(int rot);
 static QString logSpeed(uint speed);
 static QString logCourse(uint course);
 static QString logLon(uint lon);
 static QString logLat(uint lat);
 static QString logDistance(qreal distance);
 static QString logBearing(qreal bearing);
 static QString logAspect(qreal aspect);
};

#endif // DATAFORMATTER_H

File: mailslot.cpp

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * mailslot.cpp
 *
 * Implementation of the Mailslot class.
 */

#include <QtConcurrentRun>
#include <QMessageBox>
#include "mailslot.h"

Häkkinen Henri BACHELOR'S THESIS 71

Mailslot::Mailslot(const QString &localName, QObject *parent) :
 QObject(parent),
 _localName(localName),
 _fullName("\\\\.\\mailslot\\" + localName)
{
 // Open a mailslot in the local computer and start running the poll-loop in a
 // background thread.
 _win32Handle = CreateMailslotA(_fullName.toLatin1().constData(), 0,
 MAILSLOT_WAIT_FOREVER, NULL);
 if (!_win32Handle) {
 QMessageBox::critical(0, "Error", "Could not create a mailslot\n" + _fullName);
 } else {
 QtConcurrent::run(this, &Mailslot::pollLoop);
 }
}

Mailslot::~Mailslot() {
 // Close the mailslot handle; will terminate the poll-loop.
 CloseHandle(_win32Handle);
}

void Mailslot::pollLoop() {
 // Poll messages from the mailslot in a loop. The loop runs until an error happens
 // while reading the mailslot. This function runs in a background thread.
 while (1) {
 if (!pollMessage()) break;
 }
}

bool Mailslot::pollMessage() {
 // Poll any awaiting messages from the mailslot. Return false if there were errors
 // while reading the mailslot in which case the poll-loop is terminated. This function
 // will wait and block until there is a message to read.
 //
 // Maxium length of a single message is 424 characters.

 char buffer[424];
 DWORD length = 0;

 if (!ReadFile(_win32Handle, buffer, 424, &length, 0)) {
// qDebug() << "ReadFile failed.";
 return false;
 }

// qDebug() << length << "bytes received from the mailslot";

 QByteArray message(buffer, length);
 emit messageReceived(QString(message));

 return true;
}

File: mailslot.h

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * mailslot.h
 *
 * Object-oriented Qt wrapper around the Windows Mailslot API. Background thread is

Häkkinen Henri BACHELOR'S THESIS 72

 * started in the Mailslot constructor to listen for incoming messages. Each time a
 * message is received, the dataReceived signal is emitted with the message passed in
 * as a function argument using a QByteArray object.
 *
 * A mailslot has a name, which is used by other processes to send messages into it.
 * The name has always the following format:
 *
 * \\ComputerName\mailslot\MailslotName
 *
 * ComputerName is the name or the IP address of the host which opened the mailslot while
 * MailslotName is an arbitrary identifier of the mailslot. To send a message to a local
 * mailslot, the process would use a dot instead of the host name. To broadcast a message
 * to every mailslot in the Local Area Network, the sending process should use * as the
 * ComputerName.
 *
 * This class uses a Windows-specific API so therefore it is not portable outside the
 * Windows operating system.
 *
 * Windows Mailslot API reference:
 * - http://msdn.microsoft.com/en-us/library/aa365576(v=vs.85).aspx
 */

#ifndef MAILSLOT_H
#define MAILSLOT_H

#include <QObject>
#include <windows.h>

class Mailslot : public QObject {
 Q_OBJECT

public:
 Mailslot(const QString &localName, QObject *parent = 0);
 ~Mailslot();

 const QString &localName() const { return _localName; }
 const QString &fullName() const { return _fullName; }

signals:
 void messageReceived(const QString &data);

private:
 void pollLoop();
 bool pollMessage();

 QString _localName;
 QString _fullName;
 HANDLE _win32Handle;
};

#endif // MAILSLOT_H

File: main.cpp

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * main.cpp
 *
 * Application main entry-point.

Häkkinen Henri BACHELOR'S THESIS 73

 */

#include <QApplication>
#include <QDir>
#include "constants.h"
#include "mainwindow.h"

int main(int argc, char **argv) {
 // Initialize the application.
 QApplication a(argc, argv);
 QCoreApplication::setApplicationName(ApplicationName);
 QCoreApplication::setOrganizationName(OrganizationName);
 QCoreApplication::setOrganizationDomain(OrganizationDomain);

 // Make sure the log directory exists.
 QDir dir;
 dir.mkpath(LogDirectory);

 // Initialalize the main window.
 MainWindow w;
 w.show();

 // Run the application.
 return a.exec();
}

File: mainwindow.cpp

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * mainwindow.cpp
 *
 * Implementation of the MainWindow class.
 */

#include <QAction>
#include <QApplication>
#include <QCloseEvent>
#include <QMenu>
#include <QMenuBar>
#include <QMessageBox>
#include <QHeaderView>
#include <QSettings>
#include <QSplitter>
#include <QTableView>
#include <QTcpSocket>

#include "aisparser.h"
#include "constants.h"
#include "mailslot.h"
#include "mainwindow.h"
#include "mrsparser.h"
#include "radar.h"
#include "settings.h"
#include "shipmanager.h"

MainWindow::MainWindow(QWidget *parent) : QMainWindow(parent) {
 QSettings settings;

Häkkinen Henri BACHELOR'S THESIS 74

 // Create actions.
 _settingsAction = new QAction("&Settings...", this);
 _exitAction = new QAction("E&xit", this);
 _zoomInAction = new QAction("Zoom &in", this);
 _zoomOutAction = new QAction("Zoom &out", this);
 _aboutAppAction = new QAction("&About " + ApplicationName + "...", this);
 _aboutQtAction = new QAction("About Qt...", this);

 _zoomInAction->setShortcut(Qt::Key_Plus);
 _zoomOutAction->setShortcut(Qt::Key_Minus);

 // Create the menu.
 QMenu *fileMenu = menuBar()->addMenu("&File");
 QMenu *viewMenu = menuBar()->addMenu("&View");
 QMenu *helpMenu = menuBar()->addMenu("&Help");

 fileMenu->addAction(_settingsAction);
 fileMenu->addSeparator();
 fileMenu->addAction(_exitAction);
 viewMenu->addAction(_zoomInAction);
 viewMenu->addAction(_zoomOutAction);
 helpMenu->addAction(_aboutQtAction);
 helpMenu->addAction(_aboutAppAction);

 connect(_settingsAction, SIGNAL(triggered()), this, SLOT(settings()));
 connect(_aboutQtAction, SIGNAL(triggered()), qApp, SLOT(aboutQt()));
 connect(_aboutAppAction, SIGNAL(triggered()), this, SLOT(aboutApp()));
 connect(_exitAction, SIGNAL(triggered()), qApp, SLOT(quit()));

 // Create the main user interface.
 _splitter = new QSplitter(this);
 _shipList = new QTableView(this);
 _radar = new Radar(this);

 _splitter->setOrientation(Qt::Vertical);
 _splitter->addWidget(_radar);
 _splitter->addWidget(_shipList);

 _shipList->setShowGrid(false);
 _shipList->setAlternatingRowColors(true);
 _shipList->setSelectionMode(QAbstractItemView::SingleSelection);
 _shipList->setSelectionBehavior(QAbstractItemView::SelectRows);
 _shipList->setCornerButtonEnabled(false);

 setCentralWidget(_splitter);
 setWindowTitle(ApplicationName);
 setWindowIcon(QIcon(ApplicationIconName));
 readLayout();

 // Create the AIS parser.
 _tcpSocket = new QTcpSocket(this);
 _aisParser = new AISParser(_tcpSocket, this);

 // Create the MRS parser.
 _mailslot = new Mailslot(settings.value("MRS/mailslot", MRSMailslotName).toString(),
this);
 _mrsParser = new MRSParser(_mailslot, this);

 connect(_mrsParser, SIGNAL(beamAngleReceived(qreal)), _radar,
SLOT(setBeamAngle(qreal)));

 // Create the ship manager.
 _shipManager = new ShipManager(this);
 _shipList->setModel(_shipManager);

Häkkinen Henri BACHELOR'S THESIS 75

 _radar->setShipManager(_shipManager);

 connect(_shipManager, SIGNAL(shipSelectionChanged()), _radar, SLOT(repaint()));
 connect(_shipManager, SIGNAL(shipDatabaseChanged()), _radar, SLOT(repaint()));
 connect(_shipManager, SIGNAL(originChanged()), _radar, SLOT(repaint()));
 connect(_zoomInAction, SIGNAL(triggered()), _radar, SLOT(zoomIn()));
 connect(_zoomOutAction, SIGNAL(triggered()), _radar, SLOT(zoomOut()));
 connect(_shipList->selectionModel(),
SIGNAL(currentRowChanged(QModelIndex,QModelIndex)), _shipManager,
SLOT(selectShip(QModelIndex)));
 connect(_aisParser, SIGNAL(messageReceived(const AISMessage*)), _shipManager,
SLOT(handleMessage(const AISMessage*)));

 // Connect to the AIS server.
 _tcpSocket->connectToHost(settings.value("AIS/host", AISHostname).toString(),
 settings.value("AIS/port", AISPort).toUInt(),
 QIODevice::ReadOnly | QIODevice::Text);
}

void MainWindow::settings() {
 // Called in response of the "Settings..." menu item. Displays a settings
 // dialog for the user.

 Settings settings;
 settings.exec();
}

void MainWindow::aboutApp() {
 // Called when the user selects "About Pointing and Tracking Aid" from the Help menu.
 // Displays a modal message box with a text explaining the application version, build
date
 // and the author.

 const QString text =
 "Version " + ApplicationVersion + "\n" +
 "Build Date " + __DATE__ + "\n\n" +
 "This software was written by Henri Häkkinen as part of his Bachelor's thesis
for\n" +
 "the Danish Defence Acquistion and Logistics Organization during Spring
2011.\n\n" +
 "Copyright (C) 2011 " + OrganizationName;

 QMessageBox::about(this, "About " + ApplicationName, text);
}

void MainWindow::closeEvent(QCloseEvent *event) {
 // Called by the Qt framework when the window is about to be closed; save
 // UI layout and quit.

 writeLayout();
 event->accept();
}

void MainWindow::writeLayout() {
 // Save the UI layout to the user preferences database.

 QSettings settings;
 settings.setValue("MainWindow/geometry", saveGeometry());
 settings.setValue("Splitter/state", _splitter->saveState());
 settings.setValue("ShipList/state", _shipList->horizontalHeader()->saveState());
}

void MainWindow::readLayout() {
 // Restore the UI layout from the user preferences database.

Häkkinen Henri BACHELOR'S THESIS 76

 QSettings settings;
 restoreGeometry(settings.value("MainWindow/geometry").toByteArray());
 _splitter->restoreState(settings.value("Splitter/state").toByteArray());
 _shipList->horizontalHeader()-
>restoreState(settings.value("ShipList/state").toByteArray());
}

File: mainwindow.h

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * mainwindow.h
 *
 * MainWindow class creates the user interface and acts as a central coordinator of
 * action.
 */

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

class QAction;
class QLineEdit;
class QSplitter;
class QTableView;
class QTcpSocket;
class QToolBar;

class Mailslot;
class Radar;
class ShipManager;
class AISParser;
class MRSParser;

class MainWindow : public QMainWindow {
 Q_OBJECT

public:
 MainWindow(QWidget *parent = 0);

private slots:
 void settings();
 void aboutApp();

private:
 void closeEvent(QCloseEvent *event);
 void writeLayout();
 void readLayout();

 QAction *_exitAction;
 QAction *_settingsAction;
 QAction *_zoomInAction;
 QAction *_zoomOutAction;
 QAction *_aboutAppAction;
 QAction *_aboutQtAction;

 QSplitter *_splitter;

Häkkinen Henri BACHELOR'S THESIS 77

 QTableView *_shipList;
 Radar *_radar;

 QTcpSocket *_tcpSocket;
 Mailslot *_mailslot;
 AISParser *_aisParser;
 MRSParser *_mrsParser;
 ShipManager *_shipManager;
};

#endif // MAINWINDOW_H

File: mrsparser.cpp

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * mrsparser.cpp
 *
 * Implementation of the MRSParser class.
 */

#include <QRegExp>
#include "mailslot.h"
#include "mrsparser.h"

MRSParser::MRSParser(Mailslot *mailslot, QObject *parent) :
 QObject(parent),
 _mailslot(mailslot)
{
 connect(_mailslot, SIGNAL(messageReceived(QString)), this,
SLOT(parseMessage(QString)));
}

void MRSParser::parseMessage(const QString &message) {
 // Called when a new message is received from the mailslot.

 static const QRegExp pattern("[0-9]{3}[.,][0-9]{2};");
 if (pattern.indexIn(message) != -1) {
 qreal angle = parseAngle(pattern.cap());
 emit beamAngleReceived(angle);
 }
}

qreal MRSParser::parseAngle(const QString &string) {
 // Called to parse an angle from the message.
 //
 // An angle is always formatted in the form "DDD.DD" where 'D' is a single
 // digit as the amount of degrees relatively to the reference angle. For
 // example 90.15 degrees would be "090.15".

 if (string.length() < 6)
 return 0;

 int digit1 = string[0].toAscii() - '0';
 int digit2 = string[1].toAscii() - '0';
 int digit3 = string[2].toAscii() - '0';
 int digit4 = string[4].toAscii() - '0';
 int digit5 = string[5].toAscii() - '0';

Häkkinen Henri BACHELOR'S THESIS 78

 return digit1 * 100.0 + digit2 * 10.0 + digit3 * 1.0 + digit4 * 0.1 + digit5 * 0.01;
}

File: mrsparser.h

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * mrsparser.h
 *
 * Modular Radar System (MRS) message parser. Parses message received from the MRS control
 * panel software using the Windows Mailslots IPC mechanism.
 */

#ifndef MRSPARSER_H
#define MRSPARSER_H

#include <QObject>

class Mailslot;

class MRSParser : public QObject {
 Q_OBJECT

public:
 MRSParser(Mailslot *mailslot, QObject *parent = 0);

signals:
 void beamAngleReceived(qreal angle);

private slots:
 void parseMessage(const QString &message);

private:
 qreal parseAngle(const QString &str);

 Mailslot *_mailslot;
};

#endif // MRSPARSER_H

File: payload.cpp

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * payload.cpp
 *
 * Implementation of Payload class.
 */

#include <QByteArray>

Häkkinen Henri BACHELOR'S THESIS 79

#include <QtDebug>
#include <cmath>
#include "payload.h"

static const QChar chartab[64] = {
 QChar('@'), QChar('A'), QChar('B'), QChar('C'), QChar('D'), QChar('E'), QChar('F'),
 QChar('G'), QChar('H'), QChar('I'), QChar('J'), QChar('K'), QChar('L'), QChar('M'),
 QChar('N'), QChar('O'), QChar('P'), QChar('Q'), QChar('R'), QChar('S'), QChar('T'),
 QChar('U'), QChar('V'), QChar('W'), QChar('X'), QChar('Y'), QChar('Z'), QChar('['),
 QChar('\\'), QChar(']'), QChar('^'), QChar('_'), QChar(' '), QChar('!'), QChar('"'),
 QChar('#'), QChar('$'), QChar('%'), QChar('&'), QChar('\''), QChar('('), QChar(')'),
 QChar('*'), QChar('+'), QChar(','), QChar('-'), QChar('.'), QChar('/'), QChar('0'),
 QChar('1'), QChar('2'), QChar('3'), QChar('4'), QChar('5'), QChar('6'), QChar('7'),
 QChar('8'), QChar('9'), QChar(':'), QChar(';'), QChar('<'), QChar('='), QChar('>'),
 QChar('?')
};

Payload::Payload(const QByteArray &data, int padBits) :
 _bits(data.length() * 6 - padBits)
{
 // Decode bits from the given series of bytes.

 for (int i = 0; i < data.count(); ++i) {
 char ch = data.at(i) - 48;
 if (ch >= 40) ch -= 8;
 for (int b = 0; b < 6; ++b) {
 if ((i * 6 + b) >= _bits.count())
 return;
 if (ch & (1 << (5 - b)))
 _bits.setBit(i * 6 + b);
 }
 }
}

bool Payload::extractBool(int index) const {
 // Returns the bit at the given index.

 if (index >= _bits.size()) {
 return false;
 }
 return _bits.testBit(index);
}

int Payload::extractInt(int start, int length) const {
 // Extracts a signed integer from the given range of payload bits.

 uint value = extractUInt(start, length);
 if (value & (1 << (length - 1))) {
 value = (uint) -(pow(2, length) - value);
 }
 return (int) value;
}

uint Payload::extractUInt(int start, int length) const {
 // Extracts an unsigned integer from the given range of payload bits.

 if ((start + length) >= _bits.size()) {
 return 0;
 }

 uint value = 0;
 for (int i = start; i < (start + length); ++i) {
 value <<= 1;
 if (_bits.testBit(i)) value |= 1;
 }

Häkkinen Henri BACHELOR'S THESIS 80

 //value &= ~(-1 << length);
 return value;
}

QString Payload::extractString(int start, int length) const {
 // Extracts a string from the given range of payload bits.

 if ((start + length) >= _bits.size()) {
 return QString();
 }

 QString value;
 for (int i = start; i < (start + length); i += 6) {
 uint ch = extractUInt(i, 6);
 if (ch == 0 || ch >= 64) break;
 value.append(chartab[ch]);
 }
 return value.trimmed();
}

File: payoad.h

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * payload.h
 *
 * Class handling the six-bit payload armoring.
 */

#ifndef PAYLOAD_H
#define PAYLOAD_H

#include <QBitArray>

class QByteArray;

class Payload {
public:
 Payload(const QByteArray &data, int padBits = 0);

 bool extractBool(int index) const;
 int extractInt(int start, int length) const;
 uint extractUInt(int start, int length) const;
 QString extractString(int start, int length) const;

private:
 QBitArray _bits;
};

#endif // PAYLOAD_H

File: radar.cpp

/*
 * Pointing and Tracking Aid

Häkkinen Henri BACHELOR'S THESIS 81

 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * radar.cpp
 *
 * Implementation of the Radar class.
 */

#include <QFont>
#include <QLinearGradient>
#include <QPaintEvent>
#include <QPainter>
#include <QPainterPath>
#include <cmath>

#include "constants.h"
#include "radar.h"
#include "ship.h"
#include "shipmanager.h"

Radar::Radar(QWidget *parent) :
 QWidget(parent),
 _beamAngle(0.0),
 _zoom(RadarDefaultZoom),
 _shipManager(0)
{ /* nothing to do here */ }

void Radar::paintEvent(QPaintEvent */*event*/) {
 // Called by the framework when the radar map needs repainting.

 int size = qMin(width(), height());
 if (size > 0) {
 QPainter painter(this);
 painter.translate(width() / 2.0, height() / 2.0);
 painter.scale(size / 200.0, size / 200.0);
 painter.setRenderHint(QPainter::Antialiasing, true);
 paintRadar(painter);
 paintBeam(painter);
 paintShips(painter);
 }
}

void Radar::paintRadar(QPainter &painter) {
 // Paints the radar map.

 QLinearGradient gradient(-100, 100, 100, -100);
 gradient.setColorAt(0, QColor(0, 10, 0));
 gradient.setColorAt(1, QColor(0, 120, 0));

 // background color
 QPainterPath path;
 path.addEllipse(-100, -100, 200, 200);
 painter.fillPath(path, QBrush(gradient));

 // coordinate axes
 painter.setPen(QPen(QColor(0, 200, 0)));
 painter.drawLine(0, -100, 0, 100);
 painter.drawLine(-100, 0, 100, 0);
 painter.drawEllipse(-100, -100, 200, 200);

 // coordinate system origin
 painter.setFont(QFont("Courier New", 4));
 QString lat = QString::number(_shipManager->origin().latDegrees(), 'f', 4);
 QString lon = QString::number(_shipManager->origin().lonDegrees(), 'f', 4);

Häkkinen Henri BACHELOR'S THESIS 82

 painter.drawText(0, 0, QString("(%1, %2)").arg(lat).arg(lon));
}

void Radar::paintBeam(QPainter &painter) {
 // Paints the radar beam.

 qreal radians = (_beamAngle - 90.0) * M_PI/180.0;
 QPainterPath beamPath;
 beamPath.moveTo(0, 0);
 beamPath.lineTo(100.0*cos(radians - RadarBeamAngle), 100.0*sin(radians -
RadarBeamAngle));
 beamPath.lineTo(100.0*cos(radians + RadarBeamAngle), 100.0*sin(radians +
RadarBeamAngle));
 beamPath.closeSubpath();
 painter.fillPath(beamPath, QColor(0, 255, 0, 70));
}

void Radar::paintShips(QPainter &painter) {
 // Paints ships on the radar map.

 painter.scale(1.0, -1.0);
 for (int t = 0; t < _shipManager->shipCount(); ++t) {
 Ship *ship = _shipManager->shipAt(t);
 qreal x = (ship->coord().x() - _shipManager->origin().x()) * (100.0 / _zoom);
 qreal y = (ship->coord().y() - _shipManager->origin().y()) * (100.0 / _zoom);
 if ((x*x + y*y) <= 10000) {
 QColor color;
 color = ((ship != _shipManager->selectedShip()) ? ShipColorRegular :
ShipColorSelected);
 paintShip(painter, x, y, ship->course()/10.0, color);
 }
 }
}

void Radar::paintShip(QPainter &painter, qreal dx, qreal dy, qreal course, const QColor
&color) {
 // Paints a ship on the radar map.

 static const QPointF shape[] = {
 QPointF(ShipSize*cos(0.436332313), ShipSize*sin(0.436332313)),
 QPointF(ShipSize*cos(3.141592650), ShipSize*sin(3.141592650)),
 QPointF(ShipSize*cos(-0.436332313), ShipSize*sin(-0.436332313))
 };

 QTransform transform = painter.worldTransform();
 painter.setBrush(color);
 painter.setPen(color);
 painter.translate(dx, dy);
 painter.rotate(-90.0 - course);
 painter.drawPolygon(shape, 3);
 painter.setWorldTransform(transform);
}

File: radar.h

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * radar.h
 *
 * Radar user-interface element.

Häkkinen Henri BACHELOR'S THESIS 83

 */

#ifndef RADAR_H
#define RADAR_H

#include <QWidget>
#include "coord.h"

class ShipManager;

class Radar : public QWidget {
 Q_OBJECT

public:
 Radar(QWidget *parent = 0);

 QSize sizeHint() const { return QSize(400, 400); }
 qreal beamAngle() const { return _beamAngle; }
 qreal zoom() const { return _zoom; }

 ShipManager *shipManager() const { return _shipManager; }
 void setShipManager(ShipManager *sm) { _shipManager = sm; }

public slots:
 void setBeamAngle(qreal angle) { _beamAngle = angle; repaint(); }
 void zoomIn() { _zoom -= 0.001; repaint(); }
 void zoomOut() { _zoom += 0.001; repaint(); }

private:
 void paintEvent(QPaintEvent *event);
 void paintRadar(QPainter &painter);
 void paintBeam(QPainter &painter);
 void paintShips(QPainter &painter);
 void paintShip(QPainter &painter, qreal dx, qreal dy, qreal course, const QColor
&color);

 qreal _beamAngle;
 qreal _zoom;
 ShipManager *_shipManager;
};

#endif // RADAR_H

File: settings.cpp

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * settings.cpp
 *
 * Implementation of Settings class.
 */

#include <QFormLayout>
#include <QHBoxLayout>
#include <QLineEdit>
#include <QPushButton>
#include <QSettings>

Häkkinen Henri BACHELOR'S THESIS 84

#include <QRegExp>

#include <QRegExpValidator>
#include <QDoubleValidator>
#include <QIntValidator>

#include "constants.h"
#include "settings.h"

Settings::Settings(QWidget *parent) :
 QDialog(parent)
{
 QSettings settings;

 QFormLayout *formLayout = new QFormLayout(this);
 QHBoxLayout *hboxLayout = new QHBoxLayout(this);

 _mailslotName = new QLineEdit(settings.value("MRS/mailslot",
QVariant(MRSMailslotName)).toString(), this);
 _aisHost = new QLineEdit(settings.value("AIS/host", QVariant(AISHostname)).toString(),
this);
 _aisPort = new QLineEdit(settings.value("AIS/port", QVariant(AISPort)).toString(),
this);
 _latitude = new QLineEdit(settings.value("Radar/latitude",
QVariant(RadarDefaultLatitude)).toString(), this);
 _longitude = new QLineEdit(settings.value("Radar/longitude",
QVariant(RadarDefaultLongitude)).toString(), this);

 mailslotName->setValidator(new QRegExpValidator(QRegExp("[a-zA-Z0-9-]+"), this));
 aisHost->setValidator(new QRegExpValidator(QRegExp("[a-zA-Z0-9-.]+"), this));
 _aisPort->setValidator(new QIntValidator(1, 65535, this));
 _latitude->setValidator(new QDoubleValidator(-90.0, 90.0, 4, this));
 _longitude->setValidator(new QDoubleValidator(-180.0, 180.0, 4, this));

 QPushButton *okButton = new QPushButton("Ok", this);
 QPushButton *cancelButton = new QPushButton("Cancel", this);

 hboxLayout->addWidget(okButton);
 hboxLayout->addWidget(cancelButton);

 formLayout->addRow("MRS mailslot name", _mailslotName);
 formLayout->addRow("AIS host/ip address", _aisHost);
 formLayout->addRow("AIS port number", _aisPort);
 formLayout->addRow("Default latitude", _latitude);
 formLayout->addRow("Default longitude", _longitude);
 formLayout->addRow(hboxLayout);

 setLayout(formLayout);
 setWindowTitle("Settings");

 connect(okButton, SIGNAL(clicked()), this, SLOT(accept()));
 connect(cancelButton, SIGNAL(clicked()), this, SLOT(reject()));
}

void Settings::accept() {
 // Called when the Ok button is pressed. Writes the settings to the user
 // preferences database.

 QSettings settings;
 settings.setValue("MRS/mailslot", _mailslotName->text());
 settings.setValue("AIS/host", _aisHost->text());
 settings.setValue("AIS/port", _aisPort->text());
 settings.setValue("Radar/latitude", _latitude->text());
 settings.setValue("Radar/longitude", _longitude->text());

Häkkinen Henri BACHELOR'S THESIS 85

 QDialog::accept();
}

File: settings.h

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * settings.h
 *
 * Settings dialog window.
 */

#ifndef SETTINGS_H
#define SETTINGS_H

#include <QDialog>

class QLineEdit;

class Settings : public QDialog {
 Q_OBJECT

public:
 Settings(QWidget *parent = 0);

public slots:
 void accept();

private:
 QLineEdit *_mailslotName;
 QLineEdit *_aisHost;
 QLineEdit *_aisPort;
 QLineEdit *_latitude;
 QLineEdit *_longitude;
};

#endif // SETTINGS_H

File: ship.cpp

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * ship.cpp
 *
 * Implementation of Ship class.
 */

#include "aismessages.h"
#include "ship.h"
#include "shipmanager.h"

Häkkinen Henri BACHELOR'S THESIS 86

Ship::Ship(ShipManager *parent) :
 QObject(parent),
 _logged(false)
{
 connect(this, SIGNAL(dataChanged(Ship*)), parent, SLOT(logShip(Ship*)));
}

Ship::Ship(const PositionReport *message, ShipManager *parent) :
 QObject(parent),
 _logged(false),
 _mmsi(message->mmsi()),
 _status(message->status()),
 _turn(message->turn()),
 _speed(message->speed()),
 _course(message->course()),
 _coord(message->coord())
{
 connect(this, SIGNAL(dataChanged(Ship*)), parent, SLOT(logShip(Ship*)));
}

Ship::Ship(const ShipVoyageData *message, ShipManager *parent) :
 QObject(parent),
 _logged(false),
 _callSign(message->callSign()),
 _shipName(message->shipName())
{
 connect(this, SIGNAL(dataChanged(Ship*)), parent, SLOT(logShip(Ship*)));
}

void Ship::update(const PositionReport *message) {
 // Updates state from the given AIS message. If logging is enabled for this ship
 // emits dataChanged signal which will be processed by ShipManager's logShip slot.

 _mmsi = message->mmsi();
 _status = message->status();
 _turn = message->turn();
 _speed = message->speed();
 _course = message->course();
 _coord = message->coord();

 if (_logged) {
 emit dataChanged(this);
 }
}

void Ship::update(const ShipVoyageData *message) {
 // Updates state from the given AIS message. If logging is enabled for this ship
 // emits dataChanged signal which will be processed by ShipManager's logShip slot.

 _callSign = message->callSign();
 _shipName = message->shipName();

 if (_logged) {
 emit dataChanged(this);
 }
}

File: ship.h

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for

Häkkinen Henri BACHELOR'S THESIS 87

 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * ship.h
 *
 * Encapsulates data for a single ship.
 */

#ifndef SHIP_H
#define SHIP_H

#include <QObject>
#include "coord.h"

class ShipManager;
class PositionReport;
class ShipVoyageData;

class Ship : public QObject {
 Q_OBJECT

public:
 Ship(ShipManager *parent);
 Ship(const PositionReport *message, ShipManager *parent);
 Ship(const ShipVoyageData *message, ShipManager *parent);

 bool isLogged() const { return _logged; }
 void setLogged(bool logged) { _logged = logged; }
 uint mmsi() const { return _mmsi; }
 QString callSign() const { return _callSign; }
 QString shipName() const { return _shipName; }
 uint status() const { return _status; }
 int turn() const { return _turn; }
 uint speed() const { return _speed; }
 uint course() const { return _course; }
 int lon() const { return _coord.lon(); }
 int lat() const { return _coord.lat(); }
 Coord coord() const { return _coord; }

 void update(const PositionReport *message);
 void update(const ShipVoyageData *message);

signals:
 void dataChanged(Ship *ship);

private:
 bool _logged; // Ship is being logged?
 uint _mmsi; // Mobile Marine Service Identifier
 QString _callSign; // Call Sign
 QString _shipName; // Ship Name
 uint _status; // Navigation Status
 int _turn; // Rate of Turn
 uint _speed; // Speed Over Ground
 uint _course; // Course Over Ground
 Coord _coord; // Latitude & Longitude
};

#endif // SHIP_H

File: shipmanager.cpp

/*
 * Pointing and Tracking Aid

Häkkinen Henri BACHELOR'S THESIS 88

 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * shipmanager.cpp
 *
 * Implementation of the ShipManager class.
 */

#include <QtDebug>
#include <QDate>
#include <QDateTime>
#include <QDir>
#include <QFile>
#include <QSettings>
#include <QTextStream>

#include "aismessages.h"
#include "constants.h"
#include "dataformatter.h"
#include "ship.h"
#include "shipmanager.h"

enum {
 // Hardcoded column indices:

 COLUMN_LOG, // Log checkbox
 COLUMN_MMSI, // MMSI
 COLUMN_CALLSIGN, // Call sign
 COLUMN_SHIPNAME, // Ship name
 COLUMN_STATUS, // Navigatin Status
 COLUMN_COORDS, // Coordinates
 COLUMN_ROT, // Rate of Turn
 COLUMN_SOG, // Speed Over Ground
 COLUMN_COG, // Course Over Ground
 COLUMN_DISTANCE, // Distance
 COLUMN_BEARING, // Bearing
 COLUMN_ASPECT, // Aspect

 COLUMNCOUNT // Total number of columns
};

ShipManager::ShipManager(QObject *parent) :
 QAbstractTableModel(parent),
 _selectedShip(0)
{
 QSettings settings;

 // Read the default origin from the user preferences database.
 _origin = Coord(settings.value("Radar/latitude",
RadarDefaultLatitude).toDouble()*600000,
 settings.value("Radar/longitude",
RadarDefaultLongitude).toDouble()*600000);
}

int ShipManager::rowCount(const QModelIndex &/*parent*/) const {
 // Returns the number of rows in this item model; that is, the number of ships received
 // so far.

 return _ships.count();
}

int ShipManager::columnCount(const QModelIndex &/*parent*/) const {
 // Returns the number of columns in this item model; that is, the number of data
 // elements per ship.

Häkkinen Henri BACHELOR'S THESIS 89

 return COLUMNCOUNT;
}

Qt::ItemFlags ShipManager::flags(const QModelIndex &index) const {
 // Returns the set of flags for the given model index. This will make the first column
 // (log) to be displayed as a checkbox.

 if (index.column() == COLUMN_LOG) {
 return Qt::ItemIsUserCheckable | Qt::ItemIsEnabled | Qt::ItemIsSelectable;
 }
 return Qt::ItemIsEnabled | Qt::ItemIsSelectable;
}

QVariant ShipManager::headerData(int section, Qt::Orientation orientation, int role) const
{
 // Called to get the labels etc. in the horizontal and the vertical header views.
 //
 // We are only interested in the top horizontal header view without any tooltips
 // or stuff like that.

 if ((orientation == Qt::Horizontal) && (role == Qt::DisplayRole)) {
 switch (section) {
 case COLUMN_LOG: return QVariant("Log");
 case COLUMN_MMSI: return QVariant("MMSI");
 case COLUMN_CALLSIGN: return QVariant("Call sign");
 case COLUMN_SHIPNAME: return QVariant("Ship name");
 case COLUMN_COORDS: return QVariant("Coordinates");
 case COLUMN_STATUS: return QVariant("Navigation Status");
 case COLUMN_ROT: return QVariant("Rate of Turn");
 case COLUMN_SOG: return QVariant("Speed Over Ground");
 case COLUMN_COG: return QVariant("Course Over Ground");
 case COLUMN_DISTANCE: return QVariant("Distance");
 case COLUMN_BEARING: return QVariant("Bearing");
 case COLUMN_ASPECT: return QVariant("Aspect");
 }
 }

 return QVariant();
}

QVariant ShipManager::data(const QModelIndex &index, int role) const {
 // Called to get the data element for each cell.

 if (!index.isValid())
 return QVariant();

 if (index.row() >= _ships.count())
 return QVariant();

 if (index.column() > COLUMNCOUNT)
 return QVariant();

 if (role == Qt::DisplayRole) {
 Ship *ship = _ships[index.row()];
 switch (index.column()) {
 case COLUMN_MMSI: return QVariant(DataFormatter::mmsi(ship->mmsi()));
 case COLUMN_CALLSIGN: return QVariant(DataFormatter::callSign(ship->callSign()));
 case COLUMN_SHIPNAME: return QVariant(DataFormatter::shipName(ship->shipName()));
 case COLUMN_COORDS: return QVariant(DataFormatter::coord(ship->coord()));
 case COLUMN_STATUS: return QVariant(DataFormatter::status(ship->status()));
 case COLUMN_ROT: return QVariant(DataFormatter::turn(ship->turn()));
 case COLUMN_SOG: return QVariant(DataFormatter::speed(ship->speed()));
 case COLUMN_COG: return QVariant(DataFormatter::course(ship->course()));
 case COLUMN_DISTANCE: return
QVariant(DataFormatter::distance(Coord::distance(_origin, ship->coord())));

Häkkinen Henri BACHELOR'S THESIS 90

 case COLUMN_BEARING: return
QVariant(DataFormatter::bearing(Coord::bearing(_origin, ship->coord())));
 case COLUMN_ASPECT: return
QVariant(DataFormatter::aspect(Coord::aspect(_origin, ship->coord(), ship->course())));
 }
 } else if (role == Qt::CheckStateRole) {
 if (index.column() == COLUMN_LOG) {
 return QVariant(_ships[index.row()]->isLogged() ? Qt::Checked : Qt::Unchecked);
 }
 } else if (role == Qt::TextAlignmentRole) {
 return QVariant(Qt::AlignHCenter);
 }

 return QVariant();
}

bool ShipManager::setData(const QModelIndex &index, const QVariant &value, int role) {
 // Called to alter the data in a cell. Only the "log" column is allowed to be edited.

 if (!index.isValid())
 return false;

 if (index.row() >= _ships.count())
 return false;

 if (index.column() != COLUMN_LOG)
 return false;

 if (role == Qt::CheckStateRole) {
 _ships[index.row()]->setLogged(value.toBool());
 return true;
 }

 return false;
}

void ShipManager::handleMessage(const AISMessage *message) {
 // Handle a message received from the AIS.

 if (!message->isAIVDM()) {
 // AIVDO message.
 if (message->type() >= 1 && message->type() <= 3) {
 updateLocal(qobject_cast<const PositionReport *>(message));
 }
 } else {
 // AIVDM message.
 if (message->type() >= 1 && message->type() <= 3) {
 updateRemote(qobject_cast<const PositionReport *>(message));
 } else if (message->type() == 5) {
 updateRemote(qobject_cast<const ShipVoyageData *>(message));
 }
 }
}

void ShipManager::selectShip(const QModelIndex &index) {
 // Called when the user selects a row in the ship list.

 if (!index.isValid())
 return;

 if (index.row() >= _ships.count())
 return;

 Ship *ship = _ships.at(index.row());

Häkkinen Henri BACHELOR'S THESIS 91

 if (ship != _selectedShip) {
 _selectedShip = ship;
 emit shipSelectionChanged();
 }
}

void ShipManager::logShip(Ship *ship) {
 // Called to log a ship into a file.
 //
 // The log file is a line-based plain text file in which each log entry is appened to
 // end. Log files are stored in the log directory (the LogDirectory compile-time
 // constant) and are named by the current date.
 //
 // The log file format is intended to be machine readable. A single line in the log
 // file looks like the following:
 // [DATE]MMSI;CALLSIGN;SHIPNAME;NAVSTATUS;LAT;LON;ROT;SOG;COG;DISTANCE;BEARING;ASPECT
 //
 // The [DATE] is an ISO 8601 standard conforming timestamp.

 QString filename = LogDirectory + QDir::separator() +
QDate::currentDate().toString(Qt::ISODate)
 + LogFileExtension;

 QFile file(filename);
 if (!file.open(QIODevice::WriteOnly | QIODevice::Append | QIODevice::Text))
 return;

 QTextStream output(&file);
 output << "[" << qPrintable(QDateTime::currentDateTime().toString(Qt::ISODate)) << "]"
 << qPrintable(DataFormatter::logMMSI(ship->mmsi())) << ";"
 << qPrintable(DataFormatter::logCallSign(ship->callSign())) << ";"
 << qPrintable(DataFormatter::logShipName(ship->shipName())) << ";"
 << qPrintable(DataFormatter::logStatus(ship->status())) << ";"
 << qPrintable(DataFormatter::logLat(ship->lat())) << ";"
 << qPrintable(DataFormatter::logLon(ship->lon())) << ";"
 << qPrintable(DataFormatter::logTurn(ship->turn())) << ";"
 << qPrintable(DataFormatter::logSpeed(ship->speed())) << ";"
 << qPrintable(DataFormatter::logCourse(ship->course())) << ";"
 << qPrintable(DataFormatter::logDistance(Coord::distance(_origin, ship-
>coord()))) << ";"
 << qPrintable(DataFormatter::logBearing(Coord::bearing(_origin, ship->coord())))
<< ";"
 << qPrintable(DataFormatter::logAspect(Coord::aspect(_origin, ship->coord(),
ship->course()))) << endl;
}

void ShipManager::updateLocal(const PositionReport *message) {
 // Called to handle a Position Report for the local AIS station.

 if (!message->coord().isUndefined()) {
 _origin = message->coord();
 emit originChanged();
 emit dataChanged(index(0, COLUMN_DISTANCE), index(_ships.count(), COLUMN_ASPECT));
 }
}

void ShipManager::updateRemote(const PositionReport *message) {
 // Called to handle a Position Report for a remote vessel.

 int idx;
 Ship *ship = findShip(message->mmsi(), &idx);
 if (ship) {
 ship->update(message);
 emit dataChanged(index(idx, 0), index(idx, COLUMNCOUNT));
 emit shipDatabaseChanged();
 } else {

Häkkinen Henri BACHELOR'S THESIS 92

 beginInsertRows(QModelIndex(), _ships.count(), _ships.count() + 1);
 _ships.append(new Ship(message, this));
 endInsertRows();
 emit shipDatabaseChanged();
 }
// qDebug() << "Position Report with MMSI" << message->mmsi();
}

void ShipManager::updateRemote(const ShipVoyageData *message) {
 // Called to handle a Ship And Voyage Data for a remote vessel.

 int idx;
 Ship *ship = findShip(message->mmsi(), &idx);
 if (ship) {
 ship->update(message);
 emit dataChanged(index(idx, 0), index(idx, COLUMNCOUNT));
 emit shipDatabaseChanged();
 } else {
 beginInsertRows(QModelIndex(), _ships.count(), _ships.count() + 1);
 _ships.append(new Ship(message, this));
 endInsertRows();
 emit shipDatabaseChanged();
 }
// qDebug() << "Ship and Voyage Data with MMSI" << message->mmsi();
}

Ship *ShipManager::findShip(const uint &mmsi, int *shipIndex) const {
 // Find a ship for the specified MMSI from the ship list database. If 'shipIndex'
 // is not 0, it will contain the ship's index in the database.

 for (int i = 0; i < _ships.count(); ++i) {
 Ship *ship = _ships[i];
 if (ship->mmsi() == mmsi) {
 if (shipIndex) *shipIndex = i;
 return ship;
 }
 }
 return 0;
}

File: shipmanager.h

/*
 * Pointing and Tracking Aid
 *
 * This software was written by Henri Häkkinen as part of his Bachelor's thesis for
 * the Danish Defence Acquistion and Logistics Organization during Spring 2011.
 *
 * shipmanager.h
 *
 * ShipManager manages a list of stations (eg. ships and other recognized identities)
 * within the AIS area. The class implements QAbstractTableModel which allows it to be
 * used as an item model for a QTableView.
 */

#ifndef SHIPMANAGER_H
#define SHIPMANAGER_H

#include <QAbstractTableModel>
#include <QList>
#include "coord.h"

class AISMessage;
class PositionReport;

Häkkinen Henri BACHELOR'S THESIS 93

class ShipVoyageData;
class Ship;

class ShipManager : public QAbstractTableModel {
 Q_OBJECT

public:
 ShipManager(QObject *parent = 0);

 Coord origin() const { return _origin; }
 Ship *selectedShip() const { return _selectedShip; }
 Ship *shipAt(int i) const { return _ships.at(i); }
 int shipCount() const { return _ships.count(); }

 // QAbstractTableModel overrides.
 int rowCount(const QModelIndex &parent = QModelIndex()) const;
 int columnCount(const QModelIndex &parent = QModelIndex()) const;
 Qt::ItemFlags flags(const QModelIndex &index) const;
 QVariant headerData(int section, Qt::Orientation orientation, int role =
Qt::DisplayRole) const;
 QVariant data(const QModelIndex &index, int role = Qt::DisplayRole) const;
 bool setData(const QModelIndex &index, const QVariant &value, int role);

signals:
 void shipSelectionChanged();
 void shipDatabaseChanged();
 void originChanged();

public slots:
 void handleMessage(const AISMessage *message);
 void selectShip(const QModelIndex &index);
 void logShip(Ship *ship);

private:
 void updateLocal(const PositionReport *message);
 void updateRemote(const PositionReport *message);
 void updateRemote(const ShipVoyageData *message);
 Ship *findShip(const uint &mmsi, int *shipIndex) const;

 Coord _origin;
 QList<Ship *> _ships;
 Ship *_selectedShip;
};

#endif // SHIPMANAGER_H

	1. Introduction
	2. System Analysis
	2.1. System Architecture
	2.1.1. Modular Radar System
	2.1.2. Automatic Identification System

	2.2. Requirements Analysis
	2.3. Use Case Analysis
	2.3.1. Use Case: Tag Ship
	2.3.2. Use Case: Untag Ship
	2.3.3. Use Case: Select Ship
	2.3.4. Use Case: Change Settings
	2.3.5. Use Case: Identify Ship
	2.3.6. Use Case: Rotate Beam

	2.4. Mathematical Theory
	2.4.1. Computing the Distance
	2.4.2. Computing the Bearing
	2.4.3. Computing the Aspect

	3. Design and Implementation
	3.1. Considerations
	3.1.1. Programming Language
	3.1.2. Application Framework

	3.2. Software Architecture
	3.2.1. Main Window
	3.2.2. Settings
	3.2.3. Mailslot
	3.2.4. MRS Parser
	3.2.5. AIS Parser
	3.2.6. AIS Messages
	3.2.7. Ship Manager
	3.2.8. Radar
	3.2.9. Ship List

	3.3. Use Case Realization
	3.3.1. Use Case: Tag Ship
	3.3.2. Use Case: Untag Ship
	3.3.3. Use Case: Select Ship
	3.3.4. Use Case: Change Settings
	3.3.5. Use Case: Identify Ship
	3.3.6. Use Case: Rotate Beam

	4. Conclusions

