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The purpose of this thesis is to describe embedded software platform architecture for low 

tier applications. The point of view of this software platform description is hardware 

oriented. General trends influence the solutions that have been selected to the final 

architectural design of the software platform. The Open Source Software (OSS) is 

becoming more common in the software product development. Many chip manufacturers 

offer a comprehensive baseline for the development software and the whole embedded 

system. Development communities and system development companies re-develop the 

open software components and hardware components to final, type approved products.  

 

Nowadays it is very common that a customer has some product or business idea which 

should be processed to a final product onto the market. The customer in this case means the 

organization who wants to purchase an R&D and/or productization project from someone 

else. Other starting points for this work are low tier and low cost aspects.  The processor / 

microcontroller and Real Time Operating System (RTOS) choices are significant factors 

when designing a modular and cost efficient embedded system.  

 

The main aim of the thesis is to create architectural design for an embedded product 

platform. It gives the preliminary solutions to develop modular, configurable, and 

maintainable embedded systems.  

________________________________________________________________________________

Keywords: Embedded software platform, Software architecture, Low tier product platform, RTOS, 

Embedded systems, Open source software, Wireless  



 

 

PREFACE 
 
 

I graduated as an Engineer of Computer Science from Raahe Institute of Computer Science 

in 2001. The first couple of years after the graduation I worked at Buscom Oy. Buscom Oy 

is known as Fara Oy nowadays. My responsibilities were smart card related tasks in 

software development. I left Buscom Oy at the end of 2006. 

 

I started at Sweco Industry Oy at the beginning of 2007 as software specialist. Sweco 

Industry is a consultant house. I started in a team that developed an automated test system 

for digital Application Specific Integrated Circuits (ASIC) in the cellular phone platform 

development. The work tasks were embedded software mainly. In April 2010 Lewel Group 

Finland Oy bought the electronic and mechanic departments from Sweco Industry and the 

employees continued as old workers.  

 

In the autumn of 2010 we started to plan the Fast Prototyping Platform to boost an entire 

Research and Development (R&D) project selling for customers speeding up the product 

development. I have been the software architect in the development. Low Tier Device 

(LTD) platform development started in the autumn of 2011. The engineering work of the 

LTD Platform has been done as collaboration with Oulu and Kuopio people. This thesis 

describes the work of the LTD platform software architecture. 

 

I would like to thank all Lewel people which are involved in my daily work. I thank 

employees which participated to the LTD platform development; Aleksi Ukkola, Mika 

Tapaninaho, Markus Paldanius, Kari Salo, Juha Kortesalmi, Mikko Alafrantti, Tommi 

Takkinen and as well as Marko Pylkkänen and Markku Soininen the professionals of 

Kuopio. They all ensured that the thesis reached its target. I would like to direct special 

thanks to Hannu Ylönen, the system architect of LTD and the mentor of this thesis in 

addition, I thank the thesis supervisor Kari Laitinen from OUAS. 

  

Oulu, Finland, August 2012                       

Teemu Kangasharju 



 

 

CONTENTS 

 
 

1 INTRODUCTION ................................................................................................... 9 

1.1 Embedded Software Development ................................................................... 9 

1.2 The Idea of Embedded Software Product Platform .......................................... 9 

1.3 Outline of the Thesis ...................................................................................... 10 

2 EMBEDDED SOFTWARE PLATFORM ............................................................ 12 

2.1 Product Development ..................................................................................... 12 

2.2 Technical Trends ............................................................................................ 12 

2.3 Wireless Subsystems ...................................................................................... 13 

3 RESEARCH PROBLEM ....................................................................................... 15 

3.1 Problem Definition ......................................................................................... 15 

3.1.1 Business Oriented Approach ...................................................................... 15 

3.1.2 Product Development Oriented Approach .................................................. 16 

3.2 Technical Requirements for LTD Product Platform ...................................... 17 

3.2.1 Software Requirements ............................................................................... 17 

4 LTD SW ARCHITECTURE ................................................................................. 19 

4.1 Introduction .................................................................................................... 19 

4.1.1 LTD API Services ....................................................................................... 22 

4.1.2 Operating System – MQX .......................................................................... 23 

4.1.3 LTD Hardware Abstraction Layer .............................................................. 24 

4.1.4 LTD BSP Configuration ............................................................................. 25 

4.2 LTD Software Architecture Description ........................................................ 25 

4.2.1 Interface Description ................................................................................... 27 

4.3 Software Component Description .................................................................. 29 

4.3.1 Application Level ....................................................................................... 29 

4.3.2 Low Tier Device API Layer ....................................................................... 30 

4.3.3 LTD Hardware Abstraction Layer .............................................................. 34 

4.3.4 LTD BSP Creation ...................................................................................... 52 



 

 

5 CONCLUSION ...................................................................................................... 54 

5.1 Results ............................................................................................................ 54 

5.1.1 CPU Subsystem .......................................................................................... 54 

5.1.2 Low Tier Device Board Support Package .................................................. 54 

5.1.3 Communication ........................................................................................... 55 

5.1.4 User Interface .............................................................................................. 55 

5.2 Further Development Possibilities ................................................................. 55 

5.2.1 USB On The Go .......................................................................................... 56 

5.2.2 Power Management .................................................................................... 56 

5.2.3 Bootloader ................................................................................................... 57 

5.2.4 Bluetooth Low Energy ................................................................................ 57 

REFERENCES ............................................................................................................... 58 

  



 

 

TERMS AND ABBREVIATIONS 
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RTC  Real Time Clock 

PLL   Phase Lock Loop 

FLL  Frequency Lock Loop 

MCG  Multipurpose Clock Generation 

FBE  FLL Bypassed External 



 

9 
 

1 INTRODUCTION 
 

 

This chapter introduces the focus of the thesis. It describes special features of an embedded 

software development.  In addition, the idea of the embedded software platform is 

presented shortly in this chapter. 

 

1.1 Embedded Software Development 

 

When planning software for embedded systems, it has to be considered from a different 

point of view than in the general software development. Embedded software often has to 

deal with memory constraints, critical timing demands, power consumption demands, etc. 

When constructing embedded systems to some specific areas such as medical, automotive, 

telecommunications or consumer electronics, these rules and constraints should be applied 

into development.  It is a common trend that embedded systems have to be small, cheap and 

powerful.  

 

1.2 The Idea of Embedded Software Product Platform 

 

Nowadays it is very common that a customer has some product or business idea which 

should be processed to final a product onto the market. The customer in this case means the 

organization who can be a product owner, who wants to purchase an R&D and/or 

productization project from someone else. They have not necessarily the engineering 

resources and knowledge to get progress for it. This thesis gives some answers for these 

demands from the software perspective. The thesis presents one solution to create an 

embedded software platform.  

 

This Software architecture design is  divided into two main software parts: Application 

Programming Interface (API) and Hardware Abstraction Layer (HAL). These parts should 

be operated as independently as possible of application functionality and hardware solution. 

It is obvious the customer’s needs influence these layers, but target is that customer specific 
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needs can be just an API service like some specific measurement technique controlling 

interface for application. Hardware-wise the product platform can be like a reference 

design, and the actual research and development work tailors it to customer specific format. 

 

The main focus areas of the thesis work are to plan modularity and maintainable software 

architecture and to observe and investigate the portability of different wireless protocol 

stacks. Bluetooth (BT), Bluetooth Low Energy (BLE) and Wireless Local Area Network 

(WLAN) are the wireless technologies under review. The modularity aspect contains how 

easily the customer needs can be ported into basic platform set up and how easily it can be 

configured to another application requirements. Wireless protocol stacks are usually 

licensed. BLE is quite new technology, are therefore the code portability could be a 

challenge.  

 

The other starting points for this master’s thesis work are low tier and low cost aspects and 

thus the processor / microcontroller and real time operating system (RTOS) choices are 

significant factors when designing the modularity and cost efficient embedded system. The 

design tool choices allow effective designing work. The selections of the processor 

architecture and preliminary RTOS choice have been done before this thesis. The design 

processes influence the progressing of the thesis work. 

 

One aim is to create architectural design for an embedded product platform. It gives the 

preliminary solutions to develop a modular, configurable and maintainable embedded 

software platform. Another target of this work is to open a wireless protocol stack for 

portability, giving guidelines for software developing work. In addition, different business 

areas and their standards are challenges for product designing processes. 

 

1.3 Outline of the Thesis 

 

Chapter 2 describes a technological and business based background of this work. It is 

followed by the problem research. Chapter 3 presents the requirements for this software 
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platform, and chapter 4 discusses the actual work. In that chapter the architecture of the 

software platform and its different software components are described. Chapter 5 contains a 

discussion about further development possibilities. 
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2 EMBEDDED SOFTWARE PLATFORM 
 

 

This chapter describes a technological framework to develop an embedded system. It also 

presents the technical trends, which are common in the embedded product development 

nowadays.     

 

2.1 Product Development 

 

Naturally, development of an entire embedded system takes time. A product development 

of a certain business area or technology branch (as medical, automotive, 

telecommunications or consumer electronics) has a big impact onto the work amounts of 

the system development. That is because of the standard requirements of specific 

technology branches. The requirement of the product life cycle management (PLM) differs 

widely depending on the business branch. Usually, the intent is that the product has to be 

launched onto the market as soon as possible.  

 

2.2 Technical Trends 

 

The open source software (OSS) is becoming more common in the software product 

development. Many chip manufacturers offer a comprehensive baseline for the 

development software and the whole embedded system development. One business 

philosophy of them is to boost their electronic component selling. They open their reference 

designs to all, and the development communities and system development companies re-

develop the open software components and hardware components ahead to the final, type 

approved product. Some good examples of that kind of companies are STMicroelectronics, 

Texas Instrument (TI) and Freescale Semiconductors. Both sides, the re-developers and 

component manufactures, can have benefits:  

 The chip manufacturers boost their business. As usual, when more and more 

manufacturers sell their components, components are becoming cheaper. 
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 The systems development ahead, and in that way the new innovations come up more 

easily.   

 The systems can become more reliable when it is controlled by communities. 

 

Along the new technology development the companies make more collaboration. For 

example, some parts of the development or evaluation boards are compatible between 

different manufacturers.  

 

The embedded systems are becoming more powerful and smaller, what is obvious, but on 

other hand the battery technology development does not progress so rapidly. In many cases 

the battery size is bigger than the other device assembly. Wireless subsystems are coming 

into the embedded devices. It sets challenges for minimizing the power consumption of the 

hand held and battery operated embedded devices. 

 

2.3 Wireless Subsystems 

 

Electronic systems are increasingly becoming wireless. Viewing the battery operated 

devices in general, the wireless subsystems take a significant part of the entire power 

consumption of the embedded device. It is an obvious direction of the wireless technology 

progress. Bluetooth (BT) has evolved to Bluetooth Low energy (BLE). 

 

Another prevailing research direction is to get a higher data transferring rate. BT based 

systems can be adapted to the entire system via a serial link as the Serial Peripheral 

Interface (SPI) bus. WLAN has two kinds of physical connection ways such as SPI and 

Secure Digital Input Output (SDIO). Basically, the SPI connection limits the speed of the 

data transferring.  

 

Usually, the BT software stacks are licensed strictly. Therefore the stacks are not free 

although the BT hardware reference designs are available. The solution from the OSS side 
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can be found for base porting it into the embedded system. Progressing that way it is very 

important to know the open source licensing policy. The most common license type there is 

the General Public License (GPL) in the OSS world. 
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3 RESEARCH PROBLEM 
 

 

This chapter describes the approach to a principled problem of the product development. In 

addition, the requirements of the LTD product platform software are shown in this chapter. 

 

3.1 Problem Definition 

 

The problem is surveyed from two directions, the business oriented approach and the 

product development oriented approach.  

 

3.1.1 Business Oriented Approach 

 

Basically, a customer has some product or business idea which should be processed to the 

final product onto the market as fast as possible. Briefly, the more ready a product platform 

is for the customer requirements, the faster the product will be on the market. Many product 

creation houses are developing their own platforms, and therefore competition is quite tight 

in this business area, which means that company has to focus on the special knowledge of 

them. For example, the specialty can be knowledge of some physical phenomenon or 

specific business sector knowhow. In this case the focus is to do an embedded product 

platform for low tier applications which do not have for example wireless data transfer 

features. 

 

The following are competing platforms which are on the market already: 

 Navicron Oy – FUSIONSOFTWARE (1). 

 Aava Mobile Oy – Aava Core (2). 

 ERNI – WHITEspeed (3). 
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3.1.2 Product Development Oriented Approach 

 

From a technical point of view the platform development needs comprehensive knowledge 

about the embedded system architectures and their subsystems. An effective and wide 

partner network is an important part of the system and platform development. Usually, big 

component manufactures do not collaborate and therefore it is important to create 

connections to the suppliers who can handle a component distribution effectively. A direct 

connection with component manufacturers means either big volumes of the end product or 

co-operation with well-known company. 

 

This software platform work is based on the System on Chip (SoC) of Freescale. Freescale 

Semiconductors is a big worldwide company. Their business philosophy is a somewhat 

different from that of their competitors. They open their system giving source codes of their 

own platform modules and they support all kinds of companies, smaller, bigger and start 

ups. In that way they boost their component selling. For this kind of a low tier product 

platform Freescale has, for example, its own open real time operating system (RTOS) 

named MQX. The kernel of MQX is open, Board Support Package (BSP) level code is 

open, and that means, a system creator has a base for starting then own platform or product 

development.  

 

In an ideal situation reprocessing the end product for the customer means that existing 

hardware and software components are integrated in a customer specific product 

development project.  

 

An expanded component library and good knowledge of the platform environment offer 

faster feedback for customer requirements. The following section specifies the requirement 

for a platform. 

 

 



 

17 
 

3.2 Technical Requirements for LTD Product Platform 

 

The most important features to be planned were that the platform should be purposed to 

small, portable devices. The platform for the end product should be power consumption, 

size and cost efficient. The application of the device has not necessarily a support of the 

display component. The indication of application state can be solved by the LED blink 

sequence, for example.   

 

The LTD hardware platform must be equipped with the following functional sub modules: 

 CPU based on Cortex-M4 architecture. Freescale Kinetis K20 

 USB 2.0 interface (LS/FS) 

o On The Go (OTG) support  

 PM (Power management) 

 Liquid Crystal Display (LCD) I/F via GPIO   

o Three LEDs & buttons 

 Optional Bluetooth, BT 4.0. BLE 

 I/O connector for external I/O components and peripheral devices 

 

3.2.1 Software Requirements 

 

At the general level, the most important software requirements for LTD are related to the 

power consumption and code size efficiency. The operation modes of SoC should be used 

widely to get better efficiency. The RTOS capacity has to utilize as well as possible 

concerning the tight real time requirements. The software architecture should be modular 

the way that the new customized software components can be fitted easily to the existing 

system. In addition, the maintainability should be taken into account. The requirements for 

the LTD product platform software are: 

 Freescale MQX Real Time Operating System support 

 Kernel (PSP) and BSP base porting for LTD hardware  
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 I/O drivers for equipped hardware components of LTD 

o GPIOs, I2C, SPI, Flextimer, Analog to Digital Converters (ADC), Digital to 

Analog Converters (DAC) etc. 

 USB 2.0 interface (LS/FS) support 

o On the Go (OTG) support 

o OTG communication between LTD device and mobile phone (e.g. Samsung 

Galaxy S2) 

o BLE 

 Proximity (PXP) profile support for both monitoring and reporting 

 LTD should be worked as monitor and reporter 

o UI  

o Sharp 96*96 graphical LCD support 

o EQUI support 

o Led & Button functionality 

 Test Application 

o Tests functions for CPU and peripherals 

o Test function menu is shown in LCD 

o Test function selection by buttons 

o Result of tests are indicated within LCD, LEDs and beeps of buzzer  

 Detailed specification for LTD test application is described in the document LTD Test 

SW Design. (4). 
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4 LTD SW ARCHITECTURE 
 
 

This chapter describes the results of this work. The LTD software architecture will be 

cleared out in more detail in section 4.2. 

 

4.1 Introduction 

 

This section and its sub-sections work as an introduction for the actual work of the 

architecture design. The point of view of this software platform description is hardware 

oriented. The planning of the LTD Software Architecture needs a great deal of 

investigations and studies of the Freescale product family. The Kinetis chip series is quite a 

new product family. It is based on the ARM Cortex M4 core microcontroller. Freescale has 

its own TWR (Tower) development platform to evaluate the Kinetis microcontrollers and 

peripheral devices.  

 

The first steps to create the entire LDT platform have been done in the TWR evaluation 

environment. The SoC Choice for LTD was Kinetis K20. Different Kinetis SoCs have the 

same core. Only some IC blocks are activated in different Kinetis configurations as can be 

seen in figure 1. Every Kinetis family K20 has many package and memory based variants. 
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 FIGURE 1. K20 based variants 

 

The LTD product platform software is based on the Freescale Kinetis K20 SoC solution. 

The platform has an MQX RTOS operating system. The collection of the MQX 

documentation can be found in the project folder located on LTD SW\Freescale_MQX\. 

 

The software is created on the IAR embedded workbench development environment. The 

basic MQX RTOS packet does not include a Graphical User Interface (GUI) or a USB 
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OTG stack. The Kinetis K20 Family has many variations of memory, package and feature 

options.  

 

The architecture of the LTD Software consists of the following layers: 

 Application layer 

 API Services (RTOS, Tasks) LTD_API + customer specific components 

o Starting point of MQX version is MQX 3.70  

 Hardware abstraction layer LTD_HAL BSP  

 

The processor component used in the design is actually a SoC on Cortex M4 CPU. The 

LTD uses the Freescale Kinetis K20 series processor. Figure 2 presents a top level block 

diagram of K20.   The supported functions are dependent on the selected package. The 

largest 144 pin package is used in this prototype, because it allows the flexible I/O 

configuration. The customer application could use smaller pin counts if they are feasible.   
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FIGURE 2. Kinetis K20 System on Chip 

 

4.1.1 LTD API Services 

 

The purpose for this Software layer is to handle overall system resources, both hardware 

and software. For example, the measurement algorithms and device driver logic are built 

onto these level modules. API services are the interface to build a comprehensive 

application including RTOS resources. 

 

LDT_API offers the following services: 

 General LTD_API services 

 MQX 3.7.0 RTOS features 

 I/O configurations 

 Specific HW initializations 
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 System recourses 

 UI Services 

o Buttons 

o LEDs  

o Display functionality with graphics 

 Communication Services 

o Tasks intercommunication 

o USB communication with another host device. It is handled by the USB OTG 

module. 

o BT Low Energy protocol support. The proximity profile will be supported. 

 Flash File System (FFS) handling services 

o File system handling 

o Application specific results can be stored in the flash memory.  

 Measurement (imaginary) Services - Customer specific 

o Current pulse generation with Flex timer0 and DAC 

o Current pulse measurement via ADC 

 PM Services 

o Operation mode handling 

o Sleep mode handling 

o Voltage monitoring and control 

 

4.1.2 Operating System – MQX 

 

The manufacturer of the used operating system describes it in the following way. 

The Freescale MQX Real-Time Operating System (RTOS) provides real-time 

performance within a small, configurable footprint. This RTOS is designed to allow 

you to configure and balance code size with performance requirements. The easy-to-use 

API and out-of-box experience ensures first-time RTOS users can start developing their 

application on the day software is installed. For experienced OS developers, it is easy to 

migrate legacy application code to a Freescale MQX-based platform. The RTOS is 

tightly integrated with the latest ColdFire® processors from Freescale and provided 

with commonly used device drivers. The powerful Design and Development Tools are 

http://www.freescale.com/webapp/sps/site/overview.jsp?code=MQXTOOLS
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integrated with CodeWarrior™ tools to provide additional profiling and debugging 

capability.  

 

 

FIGURE 3. MQX RTOS – Customizable Component Set 

 

4.1.3 LTD Hardware Abstraction Layer 

 

Hardware Abstraction Layer (HAL) abstracts physical hardware solution. The I/O drivers 

of hardware are located in this layer. I/O drivers of MQX are slightly deviated subset of the 

POSIX standard I/O. LTD product platform has own configurable BSP. Guidelines for BSP 

porting are presented in the document Board Support Package Porting Guide. (5).   

 

 

 

http://www.freescale.com/webapp/sps/site/homepage.jsp?code=CW_HOME
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LTD HAL offers I/O drivers for the following subsystems: 

 CPU based on Cortex-M4 architecture 

 USB 2.0 interface (LS/FS) 

o OTG support 

o Mass Storage device class is supported  

 Power management 

 User Interface 

o LCD I/F via GPIO   

o Three LEDs & buttons 

 Optional Bluetooth, BT 4.0 

 

4.1.4 LTD BSP Configuration 

 

The LTD platform has its own BSP configuration including e.g. clock, processor, memory, 

fixed I/O lines and boot mode initializations as well as an overall control. The LDT BSP 

creation is based on the Board Support Package Porting Guide document. (5). 

 

After the design and evaluation stage of developing a product with MQX has been 

completed, the user often wants to be migrated the application project away from a 

Freescale evaluation board and to a custom board. Creating a new BSP for that end board is 

the most advisable move. Subsection 4.4.4 contains a more detailed description the creation 

of LTD BSP.  

 

4.2 LTD Software Architecture Description 

 

Figure 4 is the core of this thesis. It describes the structure of the LTD platform software. 

The design of the LTD platform software follows Freescale’s implementation and their 

paradigm using the readymade components. Three software layers are separated clearly as 

figure 4 presents. The architecture helps to design a modular application. Sharing layers 

helps to make a more maintainable system.  
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The LTD software architecture has been designed to be modular, reusable and maintainable 

as Figure 4 presents. It gives the possibility to fit different kinds of readymade and 

customized software components to the existing system. The purpose for the LTD API 

service software layer is to handle overall system resources. For example, the measurement 

algorithms and device driver logic are built onto these level modules. The API services are 

the interface to build a comprehensive application using RTOS resources. The MQX RTOS 

capacity is utilized for the applications which have the tight real time requirements. The 

software implementation has utilized the operation modes of SoC to achieve a better 

efficiency. The code size and code running speed optimization has been done having an 

advantage of the MQX configurability. The green colored blocks are the places where most 

of the customer specific customization is done. The FFS block means the Freescale MQX 

File System (MFS). It is an embedded File Allocation Table (FAT) file system compatible 

with The Microsoft Windows and MS-DOS file systems. 

 

BSP - Hardware Abstraction Layer (HAL) abstracts physical hardware solution. The I/O 

drivers of the hardware are located on this layer. The I/O drivers of MQX are a slightly 

deviated subset of the POSIX standard I/O. It is recommended that a new peripheral device 

is taken into use via the MQX I/O control. All blocks in figure 4 are described deeply in the 

following sections. 
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FIGURE 4. LTD SW Architecture 

 

4.2.1 Interface Description 

 

The software Interfaces at the function level are presented in the following sub-sections. 

There are two significant interfaces: 

 HW HAL. The hardware is abstracted with a HAL layer 

 LTD API  APPLICATION. LTD API services applications. 
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LTD API functions 

LTD API functions are listed in Appendix 1. The Listed functions are prototypes of the 

functions. Inputs and outputs are documented deeply in the source code. The code module 

headers are as follows: 

 

//---------------------------------------------------------------------------- 

// 

//  RDMMA845 Accelerometer 

//  ================================== 

//  

//  Copyright (C) 2012 Lewel Group Finland 

//  All Rights Reserved. 

//  

//  File:               RDMMA845_accm.c 

//  Product:         LTD Platform 

//  Purpose:        Interface for RDMMA845 accel 

// 

//  Last committed:  $Revision: 123 $ 

//  Last changed:    $Date: 2012-05-08 08:08:37 +0300 (ti, 08 touko 2012) $ 

//  Last changed by: $Author: teka $ 

// 

//--------------------------------------------------------------------------  
 

LTD Driver level functions 

The LTD driver level interface functions can be seen in Appendix 1. The inputs and outputs 

are documented deeply in the source code. The function headers are as follows: 

 

//---------------------------------------------------------------------------- 

//  uint_32 I2C_RDMMA845_accm_read( int i2c_device_address, 

//                           int sensor,  

//            int length); 

//  function read amount of bytes from pointed address 

//  input: int i2c_device_address, int sensor, int length 

//  output: return status 0 = OK 

uint_32 I2C_RDMMA845_accm_read(int i2c_device_address, int sensor, int 

 length); 
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4.3 Software Component Description 

 

4.3.1 Application Level 

 

Freescale‘s evaluation environment offers a many examples, applications and demo codes 

for the Kinetis based chips. That is one way to boost and shorten a software design cycle. 

The applications for the LTD board follow the software structure presented in figure 5.    

 

FIGURE 5. Freescale MQX based solution 
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4.3.2 Low Tier Device API Layer 

 

The LTD API implements the called service level functionality as figure 6 presents. It 

abstracts the HW solutions and choices. That gives a possibility to use a different HW 

configuration and an independent application in the future. The requirements of e.g. the 

measurement services could be customer specific requirements. Most of the customer 

specific customization is done in the light green colored blocks shown in figure 6. 

 

 

FIGURE 6. LTD API Level  

 

General API Services 

The general API service layer offers the functionality for application. In addition to the 

MQX RTOS and Kinetis core features, this layer could offer higher level algorithm services 

by the device drivers.  

 

General API services offer the following features: 

 Kinetis core features  

 Application and HW initialization 

 CPU based on Cortex-M4 architecture 

 MQX RTOS features 

o Tasks, events, scheduler, semaphores, message handling.  

o See MQX reference manual 

o RTOS customization. MQX is optimized concerning the power consumption 

and memory wise. Small ram configuration is used.  

 Core features  
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 Application and HW initialization 

 Device I/O 

o General I/O initialization.  

o Clock, processor, memory, fixed I/O lines and boot mode initializations and 

overall control.  

o LTD board related initializations to be done in BSP level. See section 4.3.3. 

 

Most of the MQX related configurations are done in the following files: 

..\ Freescale MQX 3.7\mqx\source\bsp\ LTD_BOARD_twrk60n512\user_config.h 

..\Freescale MQX 3.7\mqx\source\include\mqx_cnfg.h 

..\Freescale MQX 3.7\lib\LTD_BOARD_twrk60n512.iar\small_ram_config.h, 

Appendix 2. 

 

The LTD BSP configuration is defined in the following header file: 

..\Freescale MQX 3.7\mqx\source\bsp\LTD_BOARD_twrk60n512\ 

 LTD_BOARD_twrk60n512.h 

 

Device Driver Services 

The device driver services are provided for the application specific functionality. Some 

specific algorithm is implemented at that level. That kind of services can be as follows:  

 Accelerometer functionality via I2C bus 

o open, read, write implementation for 3D accelerometer 

 Display functionality is performed via SPI bus 

o Individual task for graphical display is used  

o I/F for application is running: void show_frame(char *pixel_data); 
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Power Management Services 

The power management (PM) interface provides services for creating applications that 

control the power consumption. MQX supports the Kinetis specific lower power modes. 

The following list contains the main features of the PM services.  

 Power mode handling 

o Transition handling between different operation modes 

o RUN, Very Low Power Stop (VLPS) and Very Low Power Run (VLPR) modes 

are supported 

 Boot mode initializations 

 Voltage control 

o Battery level monitoring via ADC 

 

User Interface Services 

The UI services for creating the application offer the following features: 

 Human Machine Interface (HMI) driver handling to be handled via a GPIO driver. 

Buttons, LEDs etc. 

 Display functionality via SPI driver with some dedicated pins 

o Mono color Graphical display support  

 eGUI API interface. eGui is Freescale’s own free graphical component. The 

complimentary Freescale embedded graphical user interface (eGUI) allows single chip 

microcontroller (MCU) systems to implement a graphical user interface and drive the 

latest generation of the color graphics LCD panels with the integrated display RAM and 

the simple serial peripheral interface (SPI) or a parallel bus interface.  

 

Communication services 

The communication interface offers services to communicate between the devices via USB 

2.0 or BLE. JTAG and UART are meant for the debugging purpose. The following list 

presents the main features of the communication services: 

 Serial interface communication via serial driver 

 MQX 3.8 has USB HOST and DEVICE stack supporting LS and FS speeds. 



 

33 
 

o LTD flash is shown as hard disk in USB communication  

o HS support availability is expected e/o 2012 in MQX.  

o OTG stack support is expected in MQX at 7/2012.   

 Protocol definition between host and LTD 

 BLE data transfer interface 

o PXP BLE profile is supported. The Profile is done following the specification 

PXP_SPEC_V10. (6). 

 

FFS services 

The Freescale MQX File System (MFS) is an embedded FAT file system compatible with 

the Microsoft Windows and MS-DOS file systems. It can format, read, write and exchange 

files with any operating systems running a FAT-12, FAT-16 or FAT-32 files system. It is 

fully re-entrant and uses the Freescale MQX RTOS file device driver to access disk 

devices. Also, included with the Freescale MQX RTOS is a Trivial File System (TFS) that 

can be used in HTTP applications requiring a simple read-only file system.  

 

MFS provides a library of functions. The functions let an embedded application access the 

file system in a manner that is compatible with the MS-DOS Interrupt 21 functions. All the 

functions guarantee the application tasks a mutually exclusive access to the file system. 

MFS is a device driver that an application must install over a lower-level device driver.  

 

Measurement services 

The Measurement services module is an imaginary specification for example to serve some 

specific measurement application. The measurement can be handled by an external I/O 

measurement board.  

 

The measurement related functions could be as the following functions: 

 FlexTimer controlling to give a pulse length definition via DAC 

 DAC controlling for example the current or voltage output value creation 

http://www.freescale.com/webapp/sps/site/overview.jsp?code=MQXRTOS
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 ADC sampling would be used to get the measurement results as feedback.  

 

Debugging Facilities 

Debugging is done over the JTAG-connection. The connector includes signals for Trace 

capturing and programming. JTAG debugging options should be defined in the project 

options depending on the software work bench. 

 

4.3.3 LTD Hardware Abstraction Layer 

 

The hardware block diagram is described in the LT Engine HW Block Diagram. (7). The 

LTD HAL development follows based on that HW concept.  See the MQX IO Drivers User 

Guide document for using drivers. (8). See the GPIO mapping in the document LT Engine 

Hardware Specification. (9, p.28-44). The LTD HAL level implements the HW adaptations 

as figure 7 presents.  

   

 

FIGURE 7. LTD Hardware Abstraction Layer (HAL) 

 

Clock Generation 

Figure 8 presents the clock generation of the Kinetis K20/K60 based chips. The system 

starts up by using an internal 32 kHz oscillator. It is used until the external clocks are 

started. As a default the software configures the clock to use external crystal and enables 

internal Phase Lock Loop (PLL) in the Frequency Lock Loop (FFL) Bybassed External 

file:///E:/MIT0SY/MasterThesis/D2035SP009_0.1%20LT%20Engine%20HW%20Block%20Diagram.pdf


 

35 
 

(FBE) mode. It is important to notice that as the default Freescale K60 software uses 

external clock instead crystal. 

The clock frequencies in the LTD are: 

 System oscillator is 8MHz 

 Real Time Clock (RTC) oscillator is 32kHz 

 

The multipurpose Clock Generation (MCG) Control 1 Register (MCG_C1) has settings for 

the system clock in a normal operation. The recommended operating mode is High-

frequency mode 1, low power. The selection is configured in the MCG Control 2 Register 

(MCG_C2). The clock rate settings are configured for MQX in the bsp\”board”.h header 

file and other clock configurations are in the init_hw.c file. The following configuration 

must be defined in the LTD_BOARD_twrk60n512.h header file.  

 

/* The clock configuration */ 
#define BSP_CLOCK_SRC      (8000000ul)   // oscillator freq 
#define BSP_REF_CLOCK_SRC  (2000000ul)   // must be 2-4MHz 
 
#define BSP_CORE_DIV  (1) 
#define BSP_BUS_DIV   (1) 
#define BSP_FLEXBUS_DIV    (1) 

#define BSP_FLASH_DIV  (2) 
#define BSP_USB_DIV        (1) 
#define BSP_USB_FRAC       (0)   
 
/*  BSP_CLOCK_MUL from interval 24 – 55 BSP_CORE_CLOCK = 48MHz */ 
#define BSP_CLOCK_MUL   (24)       
 
#define BSP_REF_CLOCK_DIV  (BSP_CLOCK_SRC / BSP_REF_CLOCK_SRC) 
#define BSP_CLOCK      (BSP_REF_CLOCK_SRC * BSP_CLOCK_MUL) 
 
/* CORE CLK, max 100MHz*/ 
#define BSP_CORE_CLOCK   (BSP_CLOCK / BSP_CORE_DIV)  
 
/* SYSTEM CLK, max 100MHz */  
#define BSP_SYSTEM_CLOCK  (BSP_CORE_CLOCK) 
 
/* max 50MHz */ 
#define BSP_BUS_CLOCK  (BSP_CLOCK / BSP_BUS_DIV)   
#define BSP_FLEXBUS_CLOCK  (BSP_CLOCK / BSP_FLEXBUS_DIV) 

 
/* max 25MHz */ 

#define BSP_FLASH_CLOCK   (BSP_CLOCK / BSP_FLASH_DIV)  
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FIGURE 8. Clock Generation of Kinetis 

 

EEPROM 

To provide an enhanced EEPROM functionality, the FlexMemory uses a RAM block 

(FlexRAM), a flash block (FlexNVM), and an EEE state machine. When the EEE 

functionality is enabled, the FlexRAM becomes the user’s EEE memory. The FlexRAM 

address space is where one accesses all of the EEE data. The detailed description of the 

Kinestis EEPROM is shown in EEPROM configuration instructions document. (10.) 
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FIGURE 9. Eeprom solution in Kinetis (10). 

 

MQX I/O 

The MQX I/O subsystem implementation is a slightly deviated subset of the POSIX 

standard I/O. It follows the UNIX model of open, close, read, write, and ioctl functions. 

The I/O subsystem makes calls to I/O device-driver functions. The MQX I/O uses the 

pointers to the FILE, as returned by fopen(), instead of the file descriptors (FDs). The MQX 

I/O has three layers as presented in figure 10. (8.) 

 

FIGURE 10. MQX I/O layers (8). 

 

Device I/O Control 

Figure 11 shows the relationship between a file handle (FILE_STRUCT) that is returned by 

fopen(), the I/O device structure (allocated when the device is installed), and the I/O driver 

functions for all I/O device drivers. (8.) 
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FIGURE 11. I/O Device Structure — I/O Device Drivers (8). 

 

Serial I/O Control 

The serial device drivers are complex in that they have a generic driver layer and a low-

level standard simple interface to the serial hardware. Figure 12 shows the relationship 

between a file handle (FILE_STRUCT) that is returned by fopen(), the I/O device structure 

(allocated when the device is installed), and the upper-level serial-device driver functions. 

(8.) 
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FIGURE 12. I/O Device Structure — Serial-Device Drivers (8). 

 

USB On The Go Driver  

The LTD engine supports the USB 2.0 interface in the LS and FS modes. The supported 

modes are Device, OTG. The design can also support USB Host protocol, but the power 

supply to VBUS is limited to the level that is required in the OTG-mode when the device is 

acting as host, i.e. 5V / 8mA rather than 5V / 500mA as required for the standard USB host. 

 

In the Device mode the VBUS voltage is regulated down to the 3.3V inside processor. The 

data lines of the USB are terminated to that voltage with internal termination resistors. 

 

The USB OTG implementation requires an external component MAX3353E, which 

supplies the power to VBUS, includes the ESD protection and a possibility to terminate the 

data lines. MAX3353E is controlled by I2C (I2C0).   
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TABLE 1. Pin description of USB cable (9). 

Pin Signal 

1 VBUS 

2 D- 

3 D+ 

4 ID 

5 GND 

 

I2C Driver 

The chip has three I2C channels. The desired I2C I/O control is taken into use by activating 

that in the user_config.h header file. The I2C specific commands and the definition are 

presented in the i2c.h file. The I2C I/O driver’s use example is shown below. 

 

/* first, initialize the file descriptor */ 
MQX_FILE_PTR  i2C1_fd = NULL; 
 
/* open I2C1 channel */ 
i2c1_fd = fopen("i2c1:", NULL); 
if (NULL == i2c1_fd)  
 { 
  printf ("Error opening I2C driver!\n"); 
  _time_delay (200L); 
 _task_block (); 
} 
 
/* IOCTL calls specific to I2C */ 
i2c.h 
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SPI Driver 

The chip has three SPI channels, SPI0, SPI1 and SPI2. The desired SPI I/O control is taken 

into use by activating it in the user_config.h header file. The SPI specific commands and 

the definition are presented in spi.h. The SPI Driver’s use example is shown below. 

 
/* first, initialize the file descriptor */ 
MQX_FILE_PTR  spifd = NULL; 
 
/* open SPI2 channel */  

spifd = fopen("spi2:", NULL); 
if (NULL == spifd)  
{ 
  printf ("Error opening SPI driver!\n"); 
  _time_delay (200L); 
 _task_block (); 
} 
 
/* Set device mode  */ 
param = SPI_DEVICE_MASTER_MODE; 
if (SPI_OK == ioctl (spifd, IO_IOCTL_SPI_SET_TRANSFER_MODE, &param))  
{ 
    printf ("device mode SET OK\n"); 
} 
 
/* write operation */   
if (SPI_OK == ioctl (spifd, IO_IOCTL_SPI_READ_WRITE, &rw_struct)) 
{ 
   /* printf ("line data sent OK\n"); */ 

} 
 
/* IOCTL calls specific to SPI */ 
see spi.h 

 

GPIO Driver 

The I/O Pins of the CPU can be multiplexed to different functional modules. Each 

individual I/O pin has a control register to select the multiplexing and to setup the hardware 

configuration of the pin. The processor has five 32-pin ports as figure 13 shows. Each 32-

pin port is assigned one interrupt. The digital filter option has two clock source options: bus 

clock and 1-kHz LPO. The 1-kHz LPO option gives the user this feature in low power 

modes. The digital filter is configurable from 1 to 31 clock cycles when enabled. See GPIO 

mapping of the LTD in the document LT Engine Hardware_Specification. (9, p.28-44). 
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FIGURE 13. Signal Multiplexing and Port Control (12). 

 

GPIO driver in LTD Board Support Package implementation 

Three on/off buttons are connected to the GPIO pins. The buttons can be used to simulate a 

simple UI or used for different control purposes depending on the application’s need. One 

LED is reserved for each control button. If UI is not implemented, the LEDs can be used 

for example to indicate different operating modes. The TWR MQX GPIO driver 

implementation is ported to LTD_BOARD BSP. The use of GPIO goes in the same way as 

the use of the other drivers. See the following GPIO driver use example. 

 

/* define gpio pin */ 
#define LCD_EXTCOMIN (GPIO_PORT_D | GPIO_PIN5)  
 
/* define pin list and default values of them (pin listing is not mandatory if 
just one signal is in question) */ 
uint_32 extcomin_pin[] =  
{ 
  LCD_EXTCOMIN | GPIO_PIN_STATUS_1, 
  GPIO_LIST_END 
};  
 
/* ...in the function 
  first, initialize the file descriptor */ 
MQX_FILE_PTR  extcomin_fd = NULL; 
 

/* Open gpio port as output ("gpio:write”) */ 
extcomin_fd = fopen ("gpio:write", (char_ptr) &extcomin_pin); 
if (NULL == extcomin_fd)  
{ 

printf ("Error opening extcomin GPIO!\n"); 
    _time_delay (200L); 
    _task_block (); 
} 
/* GPIO IOCTL commands from io_gpio.h */ 
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Analog-to-Digital Converter Driver 

The Desired ADC I/O control is taken into use by activating that in the user_config.h 

header file. The chip has two ADC channels, ADC0 and ADC1. The application specific 

ADC usability can be specified separately. The use of the ADC channels goes in the same 

way as the serial bus controlling with the open, read and write functions. 

  

The ADC HW implementation is shown in figures 14 and 15. Figure 14 shows ADC 

channels with the Pin Grid Array (PGA) integration, and the Interleaved ADC channels are 

presented in figure 15. The detailed information of the ADC channels is described in the 

document LT Engine Hardware Specification. (9.) 

 

 

FIGURE 14. ADC Channels with PGA Integration (12). 
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FIGURE 15. Interleaved ADC channels (12). 

 

Digital-to-Analog Converter Driver  

There are 2 DAC outputs. The MQX has not a DAC driver implemented as POSIX API. 

Therefore the DAC usability has to be built with direct register configurations.  The 

application specific DAC usability can be specified separately.  

 

Power Management (PM) Driver 

The three primary modes of the operation are run, wait and stop. The WFI instruction 

invokes both wait and stop modes for the chip. The primary modes are augmented in a 

number of ways to provide lower power based on the application’s needs. The chip level 

operating modes of the processor are listed in table 2.  
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TABLE 2. Operation modes of Kinetis (9). 
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Figure 16 shows the operation mode transitions. As figure 16 presents, the operation mode 

transition is possible between low power modes. There can be applications which need the 

low power modes all the time.  

 

 For example, in the VLPS mode some blocks (ADC, DAC etc.) and memories are 

powered.  

 The VLPS power consumption of the microcontroller is about 50uA as mentioned in 

the K20 Sub-Family Datasheet. (12). 
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FIGURE 16. Operation mode transitions (12). 

 

See the following example of the VLPS mode entry routine. It puts the processor into the 

VLPS mode directly from the normal run mode.  

 

If the VLPS mode is entered directly from a normal RUN mode, then the LPWUI bit is 

forced to 1 by the hardware. This means that when an interrupt occurs the user will exit to 

normal run mode instead of VLPR. If, however, the VLPS mode is entered from VLPR, the 

state of the LPWUI bit determines the state the MCU returns to upon the exit from VLPS. 

If LPWUI is set and an interrupt occurs, one exits to the normal run mode instead of VLPR.  

If LPWUI is clear and an interrupt occurs, one exits to VLPR. 
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void enter_vlps(char lpwui_value) 
{ 

 /*  Write to PMPROT to allow VLPS power modes write one if not all set make 
sure all enabled this write-once bit allows the MCU to enter the very low 
power modes: VLPR, VLPW, and VLPS. */ 

  MC_PMPROT = MC_PMPROT_AVLP_MASK;    
     
  /* Set the LPLLSM field to 0b010 for VLPS mode - Need to set state of LPWUI  
bit 8 */ 
  if(lpwui_value) 
  { 
    MC_PMCTRL = ( MC_PMCTRL_LPWUI_MASK |    // set LPWUI  

MC_PMCTRL_LPLLSM(2));            // set LPLLSM = 0b10 
  }  
  else  
  { 
    MC_PMCTRL = (!MC_PMCTRL_LPWUI_MASK     |     // set LPWUI 
                 MC_PMCTRL_LPLLSM(2));           // set LPLLSM = 0b10 

  }        
   
  sleep_ltd_disable_ports_partial(); 
   
  OSC_CR = 0; 
   
  /* Now execute the stop instruction to go into VLPS */ 
  /* Set the SLEEPDEEP bit to enable deep sleep mode (STOP) */ 
  SCB_SCR |= SCB_SCR_SLEEPDEEP_MASK;  
   
  /* WFI instruction will start entry into STOP mode */ 
  asm("WFI"); 
} 

 

Timer Driver 

See the following use example of the low power timer 0. The interrupt is generated when 

the compare value is reached. 

 

void lptmr0_interrupt(int compare_value) 
{ 
  // disable LPT INT 
  _cortex_int_init(INT_LPTimer, LPT_INT_PRIORITY, FALSE); 
 
  // Clear global variable 
  LPTMR_INTERRUPT = 0;  
   
  // Reset LPTMR module 
  lptmr0_clear_registers(); 
 
  // install lptmr interrupt service routine 
  _int_install_isr(INT_LPTimer, lptmr0_isr, NULL); 

  
  // Enable LPTMR0 Interrupt in NVIC 
  _cortex_int_init(INT_LPTimer, LPT_INT_PRIORITY, TRUE); 
   
  // Set compare value 
  LPTMR0_CMR = LPTMR_CMR_COMPARE(compare_value);  
   
  // Use LPO clock and bypass prescale 
  LPTMR0_PSR = LPTMR_PSR_PCS(0x1) | LPTMR_PSR_PBYP_MASK;   
   
  // Enable LPT interrupt 



 

49 
 

  LPTMR0_CSR = LPTMR_CSR_TIE_MASK;                   

 
  // Turn on LPTMR and start counting 
  LPTMR0_CSR |= LPTMR_CSR_TEN_MASK;  
   
  // Wait for the global variable to be set in LPTMR ISR  
  while(LPTMR_INTERRUPT == 0) {} 
 
  DEBUG_PRINT1("Timer should have waited for %d msec\n", compare_value); 
 
  // Turn off LPT to avoid more interrupts 
  LPTMR0_CSR &= ~LPTMR_CSR_TEN_MASK;  
 
  // Reset LPTMR module 
  lptmr0_clear_registers(); 
} 

 

Flash RW Driver 

The Freescale MQX File System (MFS), which is used on the flash memory driver, is an 

embedded FAT file system compatible with Microsoft Windows and with the MS-DOS file 

systems. It can format, read, write and exchange files with any operating systems running a 

FAT-12, FAT-16 or FAT-32 files system. Examples of the lower-level drivers are drivers 

for memory devices, flash disks, floppy disks, or partition-manager devices. MFS uses the 

lower-level driver to access the hardware device.  

 

The creation of the file system is possible when the chip packet has Flex NVM memory. 

See more information about the Flex memory and EEPROM configuring in document 

EEPROM configuration instructions. (10). 

 

Display Driver 

The Sharp 96 * 96 pixel 1.35 inch display is used. The Screen refresh is done by its own 

display task. ShowFrame() function is a interface for higher application layers. The 

Sharp LCD is controlled by the SPI controller.  The SPI controller has to be configured in 

the way that the LTD is a master. The data is transferred Least Significant Bit (LSB) first. 

The chip select must stay high during the burst (one line or frame). The frame size has to be 

set accordingly or the end of the queue flag has to be used and a continuous chip select has 

to be enabled. Display must be refreshed within a certain interval. The refreshing is done 

using the EXTCOMIN pin of the display interface. The EXTCOMIN signal is connected to 

PTE26. The output can be either software controlled or a 1Hz clock output from RTC. The 
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DISP signal is used to switch on the display ON or OFF.  It is connected to PTD15 and it is 

Software controlled output. The display signal interface is shown in table 3. 

 

TABLE 3.  Signals of Display interface (9).    

 

 

 

Bluetooth Low Energy Driver 

The design is based on the Nordic Semiconductor nRF8001 controller. The operating 

principle is shown in figure 17. The following is a description of the nRF8001 operational 

modes: 

 

Sleep mode: 

 Power saving mode; all functionality is stopped 

 Stored configuration settings are retained in memory 

 Dynamic data (like bonding information) is stored in memory 

 

Setup mode: 

 nRF8001 configuration and setup: 

 Generic Access Profile (GAP) configuration 
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 Generic Attribute Profile (GATT) service and GATT client configuration 

 Hardware configuration 

 Default operating mode entered upon reset unless setup is stored in NVM 

 All dynamic data is cleared 

 

Active mode: 

 Mode used for runtime operation 

 Active mode controls three levels of activity: 

 Connected; nRF8001 is connected to a peer device, data transfer 

 Advertising; nRF8001 is advertising/trying to connect 

 Standby; No radio activity, Idle state 

 Completing the setup sequence puts nRF8001 in active mode 

 Establish a connection with a Bluetooth low energy central device 

 Establish a bonded relationship with a Bluetooth low energy central device 

 Send and receive data using service pipes 

 Save or restore dynamic data such as bonding and pipe status 

 

Test mode: 

 Two test features are available: RF PHY and ACI physical connection 

 Direct RF PHY Direct Test Mode (DTM)3 for qualification, test and evaluation of RF 

 PHY layer performance 

 ACI physical connectivity test 

 All dynamic data is cleared 



 

52 
 

FIGURE 17. BLE operating principle (9).  

 

4.3.4 LTD BSP Creation 

 

The custom BSP creation follows directly the instructions of the Board Support Package 

Porting Guide. (5.) It is recommended that every different chip package has its own Board 

Support Package. (11, p.149-154.)  

 

LTD board specific modifications 

MK60N512VMD100.h is used in the LTD K20 board definitions. K20 and K60 have a 

similar memory mapping. The LTD_K20_BOARD pre-processor option is used in the case 

of K20 chip based the LTD board. The LTD board specific definition is done to the 

user_config.h, LTD_BOARD_twrk60n512.h, init_bsp.c files. The clock rate settings are 

configured to the MQX in bsp\”board”.h header and the other clock configurations are 

implemented in the init_hw.c file. See below the LTD board specific modifications for the 

reference software design. 
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// Display.c 

// LTD LCD pin mapping 

#define LCD_EXTCOMIN (GPIO_PORT_E | GPIO_PIN26) 

#define LCD_EXTCOM_PORT PORTE_BASE_PTR  

#define LCD_EXTC_PINNUM 26   /* defined to set ALT to pin control reg */ 

 

// LTD specific power enables  

#define LCD_DISP     (GPIO_PORT_D | GPIO_PIN15)  

#define LCD_2V8      (GPIO_PORT_C | GPIO_PIN12)   

#define LCD_5V0      (GPIO_PORT_C | GPIO_PIN13) 

 

// LTD_BOARD_twrk60n512.h 

// LTD BOARD Leds 

#define LTD_BSP_LED1  (GPIO_PORT_A | GPIO_PIN27) 

#define LTD_BSP_LED2  (GPIO_PORT_A | GPIO_PIN28) 

#define LTD_BSP_LED3  (GPIO_PORT_A | GPIO_PIN29)   

 

// LTD BOARD buttons    

#define LTD_BSP_BUTTON1   (GPIO_PORT_A | GPIO_PIN24) 

#define LTD_BSP_BUTTON2   (GPIO_PORT_A | GPIO_PIN25) 

#define LTD_BSP_BUTTON3   (GPIO_PORT_A | GPIO_PIN26) 
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5 CONCLUSION 
 

 

This chapter describes the results of the work. It discusses which could be good further 

development possibilities. 

 

5.1 Results 

The Existing reference designs from Freescale gave a good baseline to create the LTD 

software platform. This architecture is based on the TRW system design of Freescale. 

Following the instructions and guidelines made by Freescale helped to create a 

comprehensive platform solution. It is recommended that every LTD based variant gets its 

own BSP configuration. (11, p.149-154). 

 

5.1.1 CPU Subsystem 

 

CPU works as planned with 48MHz clock. Two operation modes are supported. They are 

the RUN and VLPS (Very Low Power Stop) modes. The actual power consumption of 

different hardware components is quite difficult to verify separately referring to the 

hardware design of the LTD. The optimization of the hardware design can help to reduce 

the power consumption.  

 

5.1.2 Low Tier Device Board Support Package 

 

Naturally, the LTD has its own BSP. The LTD board differs in many ways from the 

reference design. For example, the HW initialization, I/O, GPIO, powering and clock 

configuration have their own implementations or modifications. MQX configuration got the 

modifications from baseline as well. The BSP creation is depending on the SW 

development environment. In this case the IDE Integrated Development Environment 

(IDE) was the AR embedded work bench version 6.21. 
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5.1.3 Communication 

 

USB On The Go  

The USB OTG implementation faced problems. At the moment the LTD works only in the 

HOST mode. Freescale promised that MQX has a full OTG support with Kinetis SoCs in in 

July 2012. The USB communication is tested only with the Samsung Galaxy S2 Android 

phone.   

 

Bluetooth Low Energy 

The LTD BLE demo was done against the Nordic Semiconductor’s software development 

kit (SDK). The LTD worked as slave and the master side was implemented in the PC. The 

proximity BLE profile was used. The proximity profile is specified to operate in two 

directions. More information for details of BLE PXP profile is described in the proximity 

profile specification. (6). 

 

5.1.4 User Interface 

 

The LEDs work as planned via GPIO lines. It is used in the test application to indicate the 

state of the application run. 

 

The Buttons work as planned via GPIO lines. It is used to control the test application. 

 

The Display works as planned with GPIO lines and dedicated pins. The test application 

uses the display to present the features are supported by the LTD software.  

 

5.2 Further Development Possibilities 

 

The LTD product platform gives many possibilities to create many kinds of applications. In 

general, the use of RTOS should be more efficient. An efficient operation mode control 

makes it possible to create powerful embedded applications. A comprehensive USB OTG 
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support helps to create more dynamic embedded systems. The bootloader helps to load a 

new firmware to the device. The bootloader can be handled for example via the USB or 

Ethernet. Some further development possibilities to improve the LTD product platform are 

listed below.  

 

5.2.1 USB On The Go  

 

There are some possibilities to handle the USB On the Go feature.  

1. Freescale has promised that MQX will get a full OTG support with the Kinetis SoCs in 

July 2012. 

2. The personal Health Care Device class (PHCD) stack has the OTG support which can be 

ported to the Kinetis K20 SoC.  

 

5.2.2 Power Management 

 

The Optimization of the hardware design can reduce the power consumption. MQX 

supports low power functions and many of them are only purposed for Kinetis chips. 

Adding some test points to the assembly of the LTD design would give possibilities to track 

the software operations and power consumption. 

 

Charging 

The first LTD assembly has not included the charging circuitry. The USB charging 

functionality is quite easy to implement to the LTD design. 

 

Power modes 

Now two operation modes are supported. They are RUN and VLPS (Very Low Power 

Stop) modes. The device has not a many functionalities in the VLPS mode. For example, 

the DMA data transfer is not usable in this mode. In the VLPR (Very Low Power Run) 
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mode many blocks are usable but the system clock is decreased down to 2MHz.  Appendix 

3 contains the comparison of the operation modes from the functionality’s point of view. 

 

5.2.3 Bootloader 

 

Bootloader is a small program put into a device that allows the user application codes to be 

uploaded to the device. Figure 18 present a location of the bootloader code area in the K20 

memory space. Bootloader helps to load a new firmware to the LTD based device. 

Bootloader can use either Ethernet or a USB. See more information about the creating of 

Ethernet and USB bootloader in documents. Using a bootloader application in MQX 

RTOS, it should be ensured that RTOS is stopped cleanly when jumping to the actual 

application. When a bootloader is used, the actual application must be linked in the way 

that its code is located in a certain memory address. (13.) (14.) 

  

 

 

FIGURE 18. Kinetis K20 / K60 bootloader memory map (13). 

 

5.2.4 Bluetooth Low Energy 

 

A further development step for the BLE functionality would make the LTD devices 

communicate together via the BLE and with proximity profile, in the way that one of 

device works as monitor and the others as reporters. The reporter is a node which serves the 

monitor device.  The monitor device can work as the gateway to the Internet.  
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//----------------------------------------------------------------------------- 

ltd_flash.h 

extern uint_32 flash_buffer_data_size; 

extern int_32 flash_buffer_init(void); 

extern int_32 flashbuf_seek(int_32 seek_location, int_32 seek_param); 

extern int_32 flashbuf_data_size(); 

 
//----------------------------------------------------------------------------- 

ltd_pmc_services.h 

void enterLTDtoSleep(void); 

void enterLTDtoStopMode(void); 

boolean is_battery_good(void); 

boolean is_100V_good(void); 

boolean is_INTVcc_good(void); 

uint_8 initialize_voltage_monitoring(void); 

 
//----------------------------------------------------------------------------- 

ltd_test_services.h 

int button1_pressed(void); 

void app_create_tasks(void); 

void app_stop_tasks(void); 

void app_go_to_sleep(void); 

void reset_selections(void); 

void flash_led(uint_32); 

 

void do_menu_action(int); 

void disp_menu_scr(void); 

void disp_button_scr(void); 

void disp_led_scr(void); 

void disp_buzzer_scr(void); 
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void disp_display_scr(void); 

void disp_flash_scr(void); 

void disp_power_scr(void); 

void disp_bt_scr(void); 

void disp_usb_scr(void); 

void disp_uart_scr(void); 

void disp_settings_scr(void); 

void disp_info_scr(void); 

 

void do_button_test(int); 

void do_led_test(int); 

void do_buzzer_test(uint_32, uint_32); 

void do_display_test(int); 

void do_flash_test(int); 

void do_power_test(int); 

void do_bt_test(int); 

void do_usb_test(int); 

void do_uart_test(int); 

void do_settings(int); 

 

void read_settings(void); 

void write_settings(void); 

void led_blink_all_1s(void); 

 
//----------------------------------------------------------------------------- 

protelK20.h 

#ifdef LTD_ENABLE_DISPLAY_TASK 

extern void display_task(uint_32); 
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#endif 

 

#ifdef LTD_ENABLE_USB_FILESYSTEM 

extern void USB_task(uint_32); 

#endif 

 

#ifdef LTD_ENABLE_LOGGING_TASK 

extern void Logging_task(uint_32); 

#endif 

 

extern void main_task(uint_32); 

extern void adc_task(uint_32); 

extern void ltd_accm_task(uint_32 initial_data); 

extern void Lebt_main(uint_32 initial_data); 

 

//----------------------------------------------------------------------------- 

Display.h 

extern LTD_STATUS init_lcd(void); 

extern LTD_STATUS close_lcd(void); 

extern void draw_pixel(uint_16 x, uint_16 y, uint_16 color); 

extern void draw_string(uint_16 x, uint_16 y, const char* text, struct FONT_DEF 
font); 

extern void draw_char(uint_16 x, uint_16 y, const char c, struct FONT_DEF font, 
uint_16 color); 

extern void draw_icon_16(uint_16 x, uint_16 y, uint_16 color, uint_16 icon[]); 

extern void draw_lewel_logo(uint_8 lewelBitmaps[]); 

extern void draw_horizontal_line(uint_16 y); 

extern void draw_vertical_line(uint_16 x); 

extern void draw_line(uint_16 x_start, uint_16 y_start, uint_16 x_stop, uint_16 
y_stop, uint_16 color); 
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extern void draw_line_dotted(uint_16 x0, uint_16 y0, uint_16 x1, uint_16 y1, 
uint_16 empty, uint_16 solid, uint_16 color); 

extern void draw_circle(uint_16 xCenter, uint_16 yCenter, uint_16 radius, uint_16 
color); 

extern void draw_circle_points(int cx, int cy, int x, int y, uint_16 color); 

extern void draw_circle_filled(uint_16 xCenter, uint_16 yCenter, uint_16 radius, 
uint_16 color); 

extern void draw_corner_filled(uint_16 xCenter, uint_16 yCenter, uint_16 radius, 
drawCornerPosition_t position, uint_16 color); 

extern void draw_arrow(uint_16 x, uint_16 y, uint_16 size, drawDirection_t, 
uint_16 color ); 

extern void draw_rectangle(uint_16 x0, uint_16 y0, uint_16 x1, uint_16 y1, 
uint_16 color ); 

extern void draw_rectangle_filled(uint_16 x0, uint_16 y0, uint_16 x1, uint_16 y1, 
uint_16 color ); 

extern void draw_rectangle_rounded( uint_16 x0, uint_16 y0, uint_16 x1, uint_16 
y1, uint_16 color, uint_16 radius, drawRoundedCorners_t corners); 

extern void draw_triangle(uint_16 x0, uint_16 y0, uint_16 x1, uint_16 y1, uint_16 
x2, uint_16 y2, uint_16 color); 

extern void draw_triangle_filled(uint_16 x0, uint_16 y0, uint_16 x1, uint_16 y1, 
uint_16 x2, uint_16 y2, uint_16 color); 

extern void draw_swap(uint_32 a, uint_32 b); 

extern void draw_progress_bar(uint_16 x, uint_16 y, uint_16 width, uint_16 
height, uint_16 color, uint_8 progress); 

extern void draw_button(uint_16 x, uint_16 y, struct FONT_DEF font, uint_16 
color, char* text); 

extern void clear_screen(); 

extern void clear_box(uint_16 x_start, uint_16 x_stop, uint_16 y_start, uint_16 
y_stop); 

extern void clear_pixel(uint_16 x, uint_16 y); 

extern uint_8 get_pixel(uint_16 x, uint_16 y); 

extern void refresh(void); // Update screen with this method 

extern void test_lcd(); 

 

//----------------------------------------------------------------------------- 
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Flextimer.h 

void FlexTimer_configuration(_mqx_uint flextimer_module, uint_32 freq); 

void FlexTimer_enable_disable(_mqx_uint flextimer_module, boolean enable); 

pointer _bsp_get_FlexTimer_base_address(_mqx_uint ftm_index); 

static void FTM2_interrupt_handler(pointer param); 

void beep(int, uint_32); 

 

//----------------------------------------------------------------------------- 

DAC.h 

void dac0_clk_enable (void); 

void dac1_clk_enable (void); 

void dac0_1_clk_enable(void); 

void DAC12_VreferenceInit(DAC_MemMapPtr dacx_base_ptr,unsigned char Vinselect); 

int SET_DACx_BUFFER( DAC_MemMapPtr dacx_base_ptr, byte dacindex, int buffval); 

void DACx_register_reset_por_values (DAC_MemMapPtr dacx_base_ptr); 

void VREF_Init(void); 

void DAC_init(void); 

void DAC_write(int output_voltage); 

 

//----------------------------------------------------------------------------- 

ltd_acd.h 

uint8_t ADC_init(void); 

uint_8 ADC1_voltage_monitoring_init(void); 

uint_16 ADC1_voltage_monitoring_read(int channel); 

 

//----------------------------------------------------------------------------- 

ltd_hmi.h 

uint_32 hmi_init(void); 
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uint_32 leds_init(void); 

uint_32 buttons_init(void); 

uint_32 butt1_init(void); 

void leds_close(void); 

void buttons_close(void); 

void butt1_close(void); 

void led_on(uint_32 led_num); 

void led_off(uint_32 led_num); 

typedef void (*LTD_buttons)(void); 

extern void ltd_butt_set_int(LTD_buttons buttIntCB); 

extern void ltd_hmi_disable_int(void); 

void led_on_off(uint_32 led_num, uint_32 mode); 

 

//----------------------------------------------------------------------------- 

ltd_pmc.h 

void pm_mode_init(uint_32 power_mode); 

uint_16 get_battery_level(void); 

uint_16 get_INTVcc_level(void); 

uint_8 init_voltage_monitoring(void); 

 

//----------------------------------------------------------------------------- 

max3353_mini_host_mode.h 

uint_8 InitializeI2C_max3353(); 

void close_max3353(void); 

void max3353_write_I2C(int i2c_device_address, uchar reg, uchar value); 

void max3353_read_I2C(int i2c_device_address, int sensor, int length); 

uint_8 max3353_mini_host_mode_init(void); 
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uint_8 max3353_vbus_on_off(boolean enable); 

 

//----------------------------------------------------------------------------- 

RDMMA845_accm.h 

uint_32 I2C_RDMMA845_accm_init(void); 

uint_32 I2C_RDMMA845_accm_read(int i2c_device_address, int sensor, int length); 

uint_32 I2C_RDMMA845_accm_write(int i2c_device_address, uchar reg, uchar value); 

void I2C_RDMMA845_accm_close(void); 

uint_32 RDMMA845_accm_read_axels(  int_16 *acc_val_x, 

                                   int_16 *acc_val_y,  

                                   int_16 *acc_val_z ); 

uint_32 RDMMA845_accm_to_standby(void); 

uint_32 RDMMA845_accm_activate(void); 
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#ifndef __small_ram_config_h__ 

#define __small_ram_config_h__ 

 

/* Disable heavy weight components */ 

 

#ifndef MQX_USE_IPC 

#define MQX_USE_IPC                         0 

#endif 

 

#ifndef MQX_USE_LOGS          

#define MQX_USE_LOGS                        1 

#endif 

 

#ifndef MQX_USE_SEMAPHORES    

#define MQX_USE_SEMAPHORES                  1 

#endif 

 

#ifndef MQX_USE_SW_WATCHDOGS  

#define MQX_USE_SW_WATCHDOGS                0 

#endif 

 

#ifndef MQX_USE_TIMER         

#define MQX_USE_TIMER                       1 

#endif 

 

/* Other configuration */ 

#ifndef MQX_DEFAULT_TIME_SLICE_IN_TICKS 
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#define MQX_DEFAULT_TIME_SLICE_IN_TICKS     1 

#endif 

 

#ifndef MQX_LWLOG_TIME_STAMP_IN_TICKS    

#define MQX_LWLOG_TIME_STAMP_IN_TICKS       1 

#endif 

 

#ifndef MQX_TIMER_USES_TICKS_ONLY        

#define MQX_TIMER_USES_TICKS_ONLY           1 

#endif 

 

#ifndef MQX_EXTRA_TASK_STACK_ENABLE      

#define MQX_EXTRA_TASK_STACK_ENABLE         0 

#endif 

 

#ifndef MQX_IS_MULTI_PROCESSOR           

#define MQX_IS_MULTI_PROCESSOR              0 

#endif 

 

#ifndef MQX_MUTEX_HAS_POLLING            

#define MQX_MUTEX_HAS_POLLING               0 

#endif 

 

#ifndef MQX_USE_INLINE_MACROS              

#define MQX_USE_INLINE_MACROS               0 

#endif 
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#ifndef MQX_USE_LWMEM_ALLOCATOR            

#define MQX_USE_LWMEM_ALLOCATOR             1 

#endif 

 

#ifndef MQX_ROM_VECTORS 

#define MQX_ROM_VECTORS                     1 

#endif 

 

#ifndef MQX_USE_IDLE_TASK 

#define MQX_USE_IDLE_TASK                   0 

#endif 

 

#ifndef MQX_HAS_TIME_SLICE 

#define MQX_HAS_TIME_SLICE                  1 

#endif 

 

 

#ifndef MQX_KERNEL_LOGGING 

#define MQX_KERNEL_LOGGING                  1 

#endif 

 

#ifndef MQX_SPARSE_ISR_TABLE 

#define MQX_SPARSE_ISR_TABLE                1 

 

#ifndef MQX_SPARSE_ISR_SHIFT 

#define MQX_SPARSE_ISR_SHIFT                3 

#endif 
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#endif /* MQX_SPARSE_ISR_TABLE */ 

 

 

#ifndef MQX_TASK_DESTRUCTION      

#define MQX_TASK_DESTRUCTION                0 

#endif 

 

#ifndef MQX_EXIT_ENABLED 

#define MQX_EXIT_ENABLED                    0 

#endif 

 

/* 

** MFS settings 

*/ 

 

#ifndef MFSCFG_MINIMUM_FOOTPRINT 

#define MFSCFG_MINIMUM_FOOTPRINT            1 

#endif 

 

/* 

** RTCS settings 

*/ 

 

#ifndef RTCS_MINIMUM_FOOTPRINT 

#define RTCS_MINIMUM_FOOTPRINT              1 

#endif 
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#ifndef RTCSCFG_ENABLE_LWDNS 

#define RTCSCFG_ENABLE_LWDNS                1 

#endif 

 

#endif 

/* EOF */ 
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