
 
 

 
 

 

 

 

 

 

 

 

 
Milosz Mazurkiewicz 

GUI TEST AUTOMATION WITH SWTBOT 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Technology and Communication 
2010 

 



  



  

VAASAN AMMATTIKORKEAKOULU 

UNIVERSITY OF APPLIED SCIENCES 

Degree Programme of Information Technology 

 

ABSTRACT  

 

Author   Milosz Mazurkiewicz 

Title GUI Test Automation with SWTBot.  

Year   2010 

Language  English 

Pages    50 + 3 Appendices 

Name of Supervisor Dr Smail Menani (VAMK), Jakub Drzazga (NSN) 

In this thesis the author presents theoretical background of GUI test automation as well 
as technologies, tools and methodologies required to fully understand the test program 
written in SWTBot. Practical part of the thesis was to implement a program testing File 
Menu options of Pegasus RCP application developed in Nokia Siemens Networks. 
 
Concluding this dissertation, in the author’s opinion test programs written using 
SWTBot are relatively easy to read and intuitive for people familiar with basic concepts 
of Eclipse RCP. Without any doubt SWTBot’s API is large enough to test effectively 
such complex application as Pegasus RCP. The biggest problem could be lack of good 
documentation and tutorials which makes it difficult to start with. The best and most up 
to date is Javadoc that comes with SWTBot’s code. Therefore a developer which wants 
to start writing SWTBot tests has to spend some time with it to get familiar with the API 
experimenting with the code. Although SWTBot is not a commercial tool, the growing 
community of testers and developers using it seems promising considering the need of 
support. Despite of what is published on SWTBot’s home page, SWTBot lacks 
a recorder which implicates that the tester has to be a programmer. As the analysis has 
shown the automated tests execute over twenty times faster comparing with manual 
tests. 
 
Pieces of code presented in this document, instructions how to achieve tests 
independence, error recovery, and test synchronization, together with big test program 
implementation (APPENDIX 2) make up a great tutorial which will help developers 
to get familiar with SWTBot’s capabilities. FileMenuTest.java consists of 30 test cases 
and has almost 1500 lines of code. The author has made those tests compliant with all 
the objectives for well-designed test cases. The program was integrated with the nightly 
builds of CruiseControl, which means the author’s work is utilised on a daily basis. 
 

Keywords  SWTBot, software testing, GUI testing, test automation



 2 (50)    

CONTENTS 

 
1 INTRODUCTION ..............................................................................................7 

1.1 Rationale and Background of the Project .................................................7 

1.2 Aims and Restrictions...............................................................................7 

1.3 Materials for Thesis Writing.....................................................................7 

2 THEORY OF GUI TEST AUTOMATION .......................................................9 

2.1 Introduction and Background ...................................................................9 

2.2 Why Do We Need a Methodology for GUI Testing?...............................9 

2.3 The Benefits of Test Automation............................................................10 

2.4 The Risks of Test Automation ................................................................12 

2.5 Test Planning and Design .......................................................................14 

2.5.1 The Purpose of Test Documentation ...........................................15 

2.5.2 Finding Bugs During Test Design Process..................................16 

2.6 Well-designed Test Cases.......................................................................17 

2.6.1 A Test Case Is Independent .........................................................18 

2.6.2 A Test Case Has a Single Purpose...............................................18 

2.6.3 Unsuccessful Test Case Should Not Cause Others to Fail ..........19 

2.6.4 A Test Case Is Well Documented................................................19 

2.7 Standardised error recovery ....................................................................19 

2.8 Testing in Agile Development Environment ..........................................20 

2.8.1 Agile Methodology......................................................................20 

2.8.2 Agile Testing ...............................................................................21 

2.9 Best Practices Summarised.....................................................................22 

2.9.1 Test Project Planning...................................................................22 

2.9.2 Writing the Tests .........................................................................23 

3 SWTBOT IN GUI TEST AUTOMATION......................................................25 

3.1 Introduction to SWTBot .........................................................................25 

3.2 Installation and Configuration of SWTBot.............................................26 

3.2.1 Install Eclipse IDE.......................................................................26 

3.2.2 Install SWTBot Plug-in ...............................................................26 

3.2.3 Create Test Plug-in ......................................................................27 

3.2.4 Create a Simple Test....................................................................28 



 3 (50)   

3.2.5 Run a Test ................................................................................... 28 

3.3 Eclipse RCP............................................................................................ 29 

4 DESCRIBING SWTBOT TEST CODE .......................................................... 31 

4.1 The Skeleton of the Code ....................................................................... 31 

4.2 SWTBot API in Examples ..................................................................... 32 

4.2.1 Menu ........................................................................................... 33 

4.2.2 Views .......................................................................................... 33 

4.2.3 Editors .........................................................................................33 

4.2.4 Windows ..................................................................................... 34 

4.2.5 Tree ............................................................................................. 34 

4.2.6 Perspectives................................................................................. 35 

4.2.7 Buttons ........................................................................................ 35 

4.2.8 Tool Bar Buttons......................................................................... 35 

4.2.9 Check Boxes ............................................................................... 35 

4.2.10 Text Fields................................................................................... 35 

4.2.11 Time and Speed Control.............................................................. 36 

4.3 Error Recovery Implementation............................................................. 36 

4.3.1 Test without Error Recovery....................................................... 36 

4.3.2 Test with Error Recovery............................................................ 37 

4.4 Tests Independence Implementation ...................................................... 38 

4.4.1 Cleanup Method.......................................................................... 39 

4.4.2 Test Synchronisation................................................................... 39 

5 ANALYSIS ...................................................................................................... 41 

5.1 Analysis of Capture/Playback Mechanism............................................. 41 

5.1.1 Why Capture/Playback Is a False Economy? ............................. 41 

5.1.2 Recorder in SWTBot – a Marketing Stunt.................................. 42 

5.2 What Cannot Be Tested with SWTBot .................................................. 42 

5.3 Measuring Benefit of Using Automated Tests ....................................... 43 

6 CONCLUSION ................................................................................................ 47 

LITERATURE FOR THESIS WRITING ............................................................ 49 

APPENDICES 



 4 (50)    

APPENDICES 
 
Appendix 1. SimpleExampleTest.java (page 50) 

Appendix 2. FileMenuTest.java (CD:\APPENDICES\FileMenuTest.java) 

Appendix 3. FileMenuTest.avi (CD:\APPENDICES\FileMenuTest.avi) 

  



 5 (50)   

MARKINGS AND ABBREVIATIONS 
 

SWTBot  SWTBot is an open-source Java based GUI testing tool for 

SWT and Eclipse based applications. 

SWT  Standard Widget Toolkit is an open-source graphical widget 

toolkit for Java platform (alternative for AWT and Swing). 

Eclipse RCP  Eclipse Rich Client Platform is a framework to build Java 

applications that have look-and-feel of native applications. It 

utilises Equinox OSGI, plug-in architecture, SWT and JFace. 

Pegasus RCP  Pegasus test automation framework is NSN’s product for all 

kinds of tests: regression, reliability, stability, protocol tests, 

performance measurements. Pegasus is used mostly in 

telecommunication branch. It is the AUT in this thesis work. 

JUnit  JUnit is a unit testing framework for the Java programming 

language. 

Agile  Agile software development refers to a group of software 

development methodologies which follow Agile Manifesto. 

Scrum  Scrum is a popular Agile methodology. It is an iterative 

incremental framework for managing software projects.  

record/playback  A mechanism that allows recording user actions and 

replaying them. Can also be referred to as capture/replay. 

bug  A defect that can make a program to crash, give unexpected 

output or just causes inconvenience to the user. 

AUT  Application Under Test. The application, product, subsystem, 

or component that is being tested. 

test case  The smallest unit of a test. A subroutine that tests a single 

aspect (or function) of the AUT. 

GUI  Graphical User Interface 

NSN  Nokia Siemens Networks 



 6 (50)    



 7 (50)   

1 INTRODUCTION 

1.1 Rationale and Background of the Project 

The topic of this dissertation: GUI Test Automation with SWTBot was a natural 

choice for the author since he had to become SWTBot specialist for Pegasus 

project held in Nokia Siemens Networks Software Development Centre in 

Wroclaw. The purpose of automating GUI tests was to increase the code coverage 

for parts of the code which could not be tested with JUnit (user interface), and 

therefore increasing the quality of the developed software. SWTBot as an open 

source, Java based functional testing tool targeted for SWT and Eclipse based 

applications seemed the best choice for this task.  

1.2 Aims and Restrictions 

Testing is an invincible part of software development process, especially when 

using Agile methodologies. In this thesis the author introduces theoretical 

background of test automation as well as technologies, tools and methodologies 

used in the project. Practical part of the thesis was to implement 

a program testing File Menu options of Pegasus application. The program was 

later integrated with the nightly builds of CruiseControl, which means the author’s 

work is utilised on a daily basis. The thesis document itself was already used 

as a guide for Pegasus team members and other teams in NSN considering using 

SWTBot in their projects. SWTBot is still an incubation project and this itself 

makes it challenging and innovative to work with. Deeper analysis and calculating 

return on investment for the test automation project was not possible because the 

author was not allowed to disclose any financial related data about NSN. 

1.3 Materials for Thesis Writing 

Literature for thesis writing consists of latest publications available in the field 

of GUI test automation. Materials used range from books and articles written 

by greatest authorities in the field of test automation, through professional 

periodicals, to projects’ official home pages. Writing test program required mostly 

studying SWTBot’s Javadoc and a lot of hands-on experience.  



 8 (50)    



 9 (50)   

2 THEORY OF GUI TEST AUTOMATION 

2.1 Introduction and Background 

Modern software applications become more and more complex. This applies also 

to graphical user interfaces (GUIs) being implemented, offering enhanced ease 

of use, and of course higher profit to the vendor. It seems to be obvious that the 

GUI code should be tested. First commercial GUI test tools started to appear 

in the late 1980s. They provided possibility to write test scripts manipulating 

the graphical user interface identically as a human would use it. 

Since then many software companies tried to apply different GUI test tools 

in their projects. The rationale behind it was usually the same: because manual 

testing is costly, therefore we should focus our effort on automating the tests 

so that they could be run repeatedly, which should give more time to test new 

features instead of retesting the old code. But without proper tools and - even 

more importantly – proper methodology for designing and building GUI tests 

suites, the investments usually did not pay off. A systematic approach to planning, 

designing, building flexible and maintainable automated test suites needs 

to be employed. An approach that would bring the best out of the testing efforts. 

(Fewster, Graham 1994, 517; Hutcheson 2003, 4-20.)  

 
2.2 Why Do We Need a Methodology for GUI Testing? 

A question can be asked: why do we need a methodology? What makes GUI 

testing unlike any other form of automated testing? The answer lies in the nature 

of graphical user interfaces and the way they are developed and maintained.  

1. The GUI changes more often than the business logic that it invokes. 

Introducing new functionality to the application often requires GUI 

reorganization to be able to present the new data in a coherent way. This 

implicates that more effort needs to be put into maintenance as it becomes 

very probable that new versions will break the existing GUI tests. Business 

logic tests, like unit tests, seem much more static.   



 10 (50)    

2. AUT’s GUI complexity . There are usually several ways to perform 

a given operation, which translates into more things to test. 

3. GUI test tools complexity. Majority of GUI test tools available 

on the market have their own robust scripting language. GUI test tools 

have to run as a separate process from the AUT which requires 

synchronizing test execution speed with the speed of actions performed 

on the application. Large number of GUI controls to be manipulated 

and queried entails the large API that has to be available to the script 

writer. 

4. Custom controls handling is difficult. Modern GUI test tools can handle 

the common controls in an abstract way, utilising semantics corresponding 

with the function of the control, e.g. button(“OK”).click(). Dealing with 

custom controls usually has to be handled in a very primitive way, like 

using x and y screen coordinates which makes the test scripts inflexible. 

(Fewster, Graham 1994, 519; Patton, Ron 2005, 324) 

2.3 The Benefits of Test Automation   

Test automation enables some testing tasks to be executed far more efficiently 

in comparison with manual testing. It has many benefits, including those listed 

below (Fewster, Graham 1994, 9-10; Graham, Veenendaal, Evans, Black 2007, 

185): 

1. Run existing tests on a new version of a program. This is probably 

the most obvious objective for the tests. Test automation should minimise 

the effort used to perform regression testing. The tests that worked with 

the previous version of the program should also pass on the latest version. 

2. Run more tests more often. A visible benefit of test automation 

is the capability to run many tests in less time, therefore making it possible 

to run them more frequently. This leads to increased confidence 

in the system. 



 11 (50)   

3. Execute tests difficult or impossible to do manually. Trying to perform 

a live test of an online system with say 500 users would be impossible 

to do but the input from 500 users can easily be simulated using automated 

tests. Automated tests can be run by technical person who do not have 

to know all the complexities of the application, or even by another tool 

like CruiseControl.  

4. Tests reusability. The efforts and costs put into designing, building and 

making tests highly reliable can be distributed over many runs of those 

tests. Writing modular and reliable code improves the quality and speeds 

up building of new tests. 

5. Better use of resources. By automating time consuming and boring tasks, 

like entering long list of test inputs, one can improve the staff morale and 

free the skilled testers to be creative and put more energy into designing 

better test cases to be executed. Also computers can be used to run the 

tests instead of being idle overnight or at the weekend. 

6. Coherency and repeatability of tests. Tests which are repeated 

automatically will be repeated exactly each time. Of course this assumes 

that tests are synchronised well with the AUT. Although automation offers 

a level of consistency that is very difficult to achieve in manual tests. 

The same tests can be run on different hardware and operating systems. 

This can confirm cross-platform quality and consistency which would 

be costly and almost impossible to accomplish with manual testing.   

7. Increased confidence. If an application passes extensive set of well 

designed automated tests, there can be higher confidence that 

no unpleasant surprise will show up in the released version. The tester can 

make more profound testing with less effort, resulting with higher quality 

and productivity. 

8. Earlier time to market . After you automate a set of tests, they can 

be executed much faster than they would be manually. Therefore the time 



 12 (50)    

needed to test application decreases and developers can start fixing 

the bugs earlier. 

2.4 The Risks of Test Automation  

While trying to automate testing a number of problems can be encountered. 

Realising the possible problems is needed to be able to avoid them or overcome 

them. The most common risks are listed below (Fewster, Graham 1994, 9-10; 

Graham, Veenendaal, Evans, Black 2007, 186-187): 

1. Poor testing practices. When the tests are poor quality, badly organised 

and designed, with none or ambiguous documentation, with little chance to 

find any bug, than there is no sense to automate them. The focus should be 

to better the testing effectiveness first rather than improving efficiency. 

After automating chaos, all you get is a faster chaos. 

2. Unrealistic expectations. Testing tools vendors promise that their tool 

will solve all your problems. Ecstatic enthusiasm of marketing people 

and salesmen is contagious. Vendors obviously emphasize the benefits that 

can be achieved, examples of (real or not) implementation victories, 

in the same time playing down the amount of effort needed to get lasting 

benefits. If this wild optimism will translate into management’s unrealistic 

expectations, than no matter how close to perfection the tool is, it will 

not meet the expectations. 

3. Anticipation that automated tests should find many new bugs. 

The biggest probability to find a defect is during the first time the test 

is run. Rerunning the same test gives much less probability to find 

a new bug, unless application’s code was changed. Those changes could 

brake application’s functionalities directly or indirectly. Other possibility 

to rise chances to find a defect is to rerun the tests in a different hardware 

or software environment. Tests which do not find defects are not useless. 

Although a well designed test should aim at finding defects, however 



 13 (50)   

passing test suits can give the confidence that the changes made 

in the code did not break previously implemented functionalities.   

4. Tests maintenance. After some changes have been made in the 

application under test it is often inevitable to update some, or in the worst 

case scenario all test so that they could be re-executed successfully. 

The effort required for tests maintenance was often the last nail 

in the coffin for many test automation initiatives. If it is less time 

consuming to rewrite the test than just update them, then the test 

automation is very likely to be ceased. This dissertation aims to help the 

reader not to become a victim of excessive maintenance costs. 

5. False confidence. Only because a test suite executed successfully, it does 

not mean that the software is faultless. The tests themselves can contain 

defects or they can be just incomplete. There is always a chance that 

the tester has unconsciously implemented tests which can preserve the 

incorrect results for indefinite time. 

6. Technical problems and lack of customer support. Test execution tools 

are third-party software products which themselves are not error proof. 

This is not a good showcase if testing tool is not properly tested itself, 

although it does happen. When choosing a testing tool one should also 

take into consideration if there is technical support for the product 

or at least active community of product’s users. Commercial test execution 

tools are usually big and complex products and extensive technical know-

how is needed to gain the best out of them. Therefore it would be good 

if tool vendor would offer training or at least extensive documentation 

for the future test automation engineers. Additionally to technical 

problems with test automation tool you can encounter technical problems 

with the application under test itself. Application to be tested should 

be designed and implemented with testability in mind, so that it would not 

be difficult to test it automatically or manually. 



 14 (50)    

7. Organizational issues. Test automation needs support and understanding 

from the management and it requires to be fit into the culture of the 

organization. Time is needed for choosing the right tool, for training, 

experimenting and getting hands on experience, and for promoting use of 

the tool within the organisation. Having a kind of tool champion would 

increase radically the probability of success. A charismatic person 

enthusiastic about tests automation could help a lot to promote the tool 

within the organisation. Start-up costs are always relatively high when 

introducing test automation, therefore a long term approach needs 

to be used. Not introducing standards from the very beginning can cause 

that incoherent approaches to test automation will be used, which can 

make it difficult to transfer and share automated tests and testers between 

teams. Also tool’s licensing has to be carefully thought over. Having too 

few licenses for people who want to use the tool could affect the success 

and cost of the test automation effort. Perception of work effort needs 

to be reviewed. Even if tests run automatically overnight, their results need 

to reviewed and analysed by the tester. Test analysis becomes a separate 

activity comparing with manual tests, where it was embedded in test 

execution activity. 

2.5 Test Planning and Design  

Relevant test planning is needed to be successful in applying automated testing. 

Testing effort has to be planned as any other aspect of software development 

process. But especially in case of GUI testing, it is hard to fight the temptation 

to trifle and neglect the planning stage, as: testing is supposed to be simple 

(especially with record/playback), the testing code will not be shipped 

to the customer anyway, and the deadlines are tight so “let’s better get to write the 

tests immediately”. Neglecting the need of proper planning and design is false 

economy. The quality of planning and design done “one the fly” while 

implementing the tests would be poor. Therefore it is fundamental to treat test 

planning as a separate intellectual effort from implementing the tests. As analysed 

in the previous chapter, GUI test automation is difficult: 



 15 (50)   

• Test planning and design is hard to do properly 

• Learning to use testing tool properly is time consuming 

• Writing and debugging the test scripts is difficult 

Trying to do all those tasks in the same time would make them even harder. 

(Pettichord 2001; Fewster, Graham 1994, 9-10) 

2.5.1 The Purpose of Test Documentation 

Test documentation has two main functions: it should be a communications 

vehicle and a blueprint for development. Contents of the documents will 

be of more significance than their form. The test specification is a kind 

of functional specification for testing. Its level of detail depends on the needs 

of the specific project. It usually covers topics like: testing environment, testing 

scope, risks, staffing needs, etc.  Test specification can be treated as a kind 

of checklist to insure that all activities follow the plan and schedule accepted 

by management. If the company does not yet have a software specification 

document to follow, a good template to start with is contained in IEEE Standard 

829 – IEEE Standard for Test Documentation. 

The test design acts as a blueprint, a detailed description of what will be tested 

(and what not), and how each test case should be implemented. In the simplest 

form a test plan can be just a list of tests. A test case design should consist 

of at least: 

• Test name or ID which should uniquely identify the test. 

• Test purpose: short description of what the test is supposed to do. 

• Test method: clear steps which should allow the user to perform a given 

test manually. 

• Pass/Fail criteria: how to tell if the test if the test works. 



 16 (50)    

Putting the effort to create test documentation as described above has several 

advantages: 

1. It allows reviewing the test plan and gives a complete overview 

of tasks to be done. During test reviews the team should make 

mindful trade-offs to improve the tests. 

2. It gives a basis for deciding which test cases to automate. In case 

of GUI tests not everything can be automated. And even more 

importantly, not everything is possible to automate cost effectively. 

Good example of operation which should be left for manual tests 

is printing. From the reviewed and accepted list of tests the ones 

that can not or should not be automated should be segregated. 

These tests should be added to manual testing checklist. 

3. It provides the basic test case documentation which can give 

a general view of the tests. It improves maintainability of tests. 

More detailed documentation should be included in the testing 

code comments. 

4. GUI test design process discovers bugs. This is the strongest 

argument for doing test design. The surprising fact is that while 

composing test cases and clicking through application a lot of bugs 

can be found before even starting to write automated scripts. 

This is an interesting issue worth of discussing in a separate 

chapter. (Fewster, Graham 1994, 522-525; Institute of Electrical 

and Electronics Engineers, Inc. 1998) 

2.5.2 Finding Bugs During Test Design Process 

As mentioned in previous chapter the surprising fact is that during writing detailed 

GUI test designs many bugs in application can be found even before starting 

to write test code. To begin with making detailed test plans usually the tester 

has to wait till the GUI stabilises. Luckily modern GUI builders allow engineers 

to build and modify complex user interfaces in very short time. While writing test 



 17 (50)   

design document the tester performs manual testing. Writing this document 

is often a first time anyone has systematically tested the user interface. Taking 

into account the complexity of modern GUIs, it is not surprising that plenty 

of defects are discovered. This denies the widely accepted opinion that “if you 

commit to building an automated GUI Test Suite, don’t expect it to pay off during 

the current release”. Usually approximately half of the defects are discovered 

during test design phase as a result of creating a test case to specifically test 

for that certain condition. Other bugs will be discovered incidentally, 

like misspelled labels in dialog windows or missing icons. The bugs reported 

range from trivial (e.g. inconsistent labels in dialog: File name:, File Name) 

to serious which crash the application under test.  

The fact that till the test automation document is ready many defects will 

be discovered should be used to gain a kind of confidence credit inside the 

company. Even if the schedule is so tight that building automated tests will not be 

possible, documenting the manual testing actions in a way described in previous 

chapters is still an excellent way of finding bugs and in the same time making 

a big step towards test automation. (Fewster, Graham 1994, 525-526; Pettichord 

2001) 

2.6 Well-designed Test Cases  

After test specification and design have been completed and reviewed, it is time 

to begin writing the tests. The effort put into creating well-designed Test Suites 

is to satisfy fundamental objectives. 

• They must be maintainable 

• They must be modular 

• They must be robust 

• They must be well documented 

• They should be built of reusable components 



 18 (50)    

The ideal tests should possess those attributes. (Fewster, Graham 1994, 527; 

Myers 2004, 43-44.) 

2.6.1 A Test Case Is Independent 

Every test case has to take care of its own set-up, verification, and clean-up. 

In the set-up phase application should be brought to a state where the actual test 

can be executed. In verification phase the actual testing is performed, results 

are evaluated to a pass/fail status. Clean-up phase should bring the application 

back to a state from before setup – so called base state – to make it ready for the 

next test. If a test case would rely on the results of the previous test case, then 

if the first test case would fail, it would most likely cause failure of the preceding 

test case. Such cascading errors would make it very difficult to find what the root 

cause of these failures was. It also enforces implicit ordering of the test cases 

which in practice is rarely documented. Unconscious reordering of test case 

execution (e.g. by a tester or testing framework) could cause a chain of failures 

in a Test Suite which executed faultlessly the previous day. Test cases should be 

executable in any sequence. This allows the maintainer to choose a subset of test 

cases to run without having to concern the interdependencies between test cases. 

This is sometimes hard to apply in practice. For tests that modify a complex 

global state (e.g. creating or modifying a database) beginning all tests from zero 

for each test case would be far too expensive. In such situations test cases relying 

on specific state can be grouped together but the interdependencies between them 

should be well documented to help future maintainers to analyse such a Test Suite 

(Fewster, Graham 1994, 527.) 

2.6.2 A Test Case Has a Single Purpose 

An ideal test case should have a single purpose. This should help keeping the code 

relatively short and simple to make it easy to understand, debug, and maintain. 

Moreover it also means that the outcome of the test case should always be one 

of the two: pass or fail. This makes it much easier to interpret the results. In case 

of failure of a single purpose test case it is trivial to locate the application function 



 19 (50)   

at fault. This implicates that a Test Suite should consist of many smaller test cases 

instead of few large ones (Fewster, Graham 1994, 527-528.) 

2.6.3 Unsuccessful Test Case Should Not Cause Others to Fail 

A test case that fails due to an unexpected error leaves the application 

in an unknown state. The AUT is out of synch with what the test case 

is expecting. A well-behaved test should log the failure, abort and reset the 

application to a known base state. It is a task of a test tool to isolate test case 

failures so that an unexpected error in one test case does not cause a whole script 

to abort. All of the most popular GUI test tools provide this functionality 

(Fewster, Graham 1994, 528.) 

2.6.4 A Test Case Is Well Documented 

As already mentioned, one of the advantages of writing a good test design is that 

you can take the test case description from this document and use them as header 

comments in the test code. Of course also in-line comments should be used 

to describe the logic when necessary. 

All attributes discussed in chapter 2.6 make up requirements for well-designed 

test cases (Fewster, Graham 1994, 528.) 

2.7 Standardised error recovery  

There are many things besides a bug in the AUT which can cause a test case 

to fail. It could be a bug in the testing code, environmental error (e.g. network 

connection down, no disk space), intentional change in the application, excessive 

machine load causing timing errors, etc. All the modern GUI tools have built-in 

ability to detect an error, log it (with traceback), and move on to the next test case. 

The problem is that when the test crashes, it leaves the application in an unknown 

state and unless some actions are taken to reset the AUT to a known state, 

subsequent tests are likely to fail. A base state is usually main window open, 

active, and not minimized (just as if application was just started). A good practice 



 20 (50)    

is to implement the capability of recovering to a state which would allow 

continuing with next test cases. A recovery routine could be for instance: 

1. Log the error 

2. Abort the test case (because it is in an unknown state) 

3. Make attempt to come back to a known state (e.g. close all opened 

windows till the main window will be active). 

4. Resume execution with the next test case 

Implementing those steps should allow execution of the consequent test cases 

(Fewster, Graham 1994, 528-533.) 

2.8 Testing in Agile Development Environment 

2.8.1 Agile Methodology 

Agile methodologies started to become widely used at the beginning of this 

decade. To name just a few: Scrum, Extreme Programming, Crystal, FDD, 

and DSDM are probably most popular. What they all have in common was 

gathered in so called Agile Manifesto published in 2001 (Beck, et al. 2001): 

Manifesto for Agile Software Development 

We are uncovering better ways of developing 
software by doing it and helping others do it. 
Through this work we have come to value: 

 

Individuals and interactions over processes and tools 

Working software over comprehensive documentation 

Customer collaboration over contract negotiation 

Responding to change over following the plan 

That is, while there is value in the items on 

the right, we value the items on the left more. 



 21 (50)   

Using the values from the Manifesto it is possible to deliver small chunks 

of business value in very short release cycles (2-4 weeks). 

2.8.2 Agile Testing 

Everyone in Agile team is a tester. Anyone can perform testing tasks. If that 

is true, than what is the role of an agile tester? An Agile tester is a professional 

tester who embraces change, collaborates well with both business and technical 

people, understands the concept of using tests to drive development and document 

requirements. Agile testers are willing to learn what customers do to understand 

better what users’ and customers’ software requirements are. 

Ten principles for Agile testers listed below were derived from the Agile 

Manifesto and so called Twelve Principles of Agile Software (Beck, et al. 2001): 

1. Provide continuous feedback. If tests drive Agile projects, than it’s 

no surprise that feedback is very important in Agile team. Tester plays 

a role of information provider within a team. He helps the customer 

to articulate requirements for each story in the form of examples and tests. 

After that he cooperates with team members to turn those requirements 

into executable tests which will give meaningful feedback. 

2. Deliver value to the customer. The tester has influence on quality and 

the priority of the pieces of functionality that should be delivered 

to the customer. 

3. Enable face to face communication. Agile tester which knows 

the application from customer’s point of view and understands 

the technical aspects and limitations related to implementing features 

can help customers and developers achieve a common language. 

4. Have courage. Tester should have courage to ask questions, challenge 

the ways how things are done, join meetings and conversations he wasn’t 

invited for. 



 22 (50)    

5. Keep it simple. Test “just enough” with the lightest-weight tools 

and techniques that can be found which will do the job.  

6. Practice continuous improvement. Searching for ways to do a better 

job should be part of an agile tester’s mind-set. 

7. Respond to change. Agile testers need to respond to frequently changing 

requirements, priorities and they have to accommodate changes. 

8. Self-organize. When the Agile team faces a major problem, like a broken 

build, it is everyone’s problem. Team members discuss the issue right 

away and decide how to fix the problem and who will do it. 

9. Focus on people. Every team member should have opportunity to grow 

and develop his skills. Agile testers are not treated as second-class citizens 

in software development world. They contribute unique value to their 

teams. 

10. Enjoy. Working in environment where all team members are responsible 

for quality and testing, where everyone collaborates, where you 

are engaged in the project from start to finish - it seems like a tester’s 

Utopia, therefore enjoy it. (Crispin, Gregory 2009, 19-34.) 

2.9 Best Practices Summarised 

This chapter will summarise briefly the theory of GUI test automation by pointing 

out the most important steps which should lead to successful implementation 

of test automation (Fewster, Graham 1994, 534-535; Pettichord 2001.) 

2.9.1 Test Project Planning 

• Create a test plan containing high-level aspects of the project; 

• Create a test design document that should be a base for test cases creation; 

• Get official approval of the design before you start coding tests; 



 23 (50)   

2.9.2 Writing the Tests 

• Keep the test programs simple and easy to understand; 

• Build independent test cases. Do not rely on the results of a previous test  

case as a basis for another test case; 

• Take header comments for each test case from the test plan. Make 

the code easy to maintain. Comment and document well, especially 

any workarounds and interdependencies in the test code; 

• Make sure each test case has clear result: pass or fail; 



 24 (50)    

 



 25 (50)   

3 SWTBOT IN GUI TEST AUTOMATION 

3.1 Introduction to SWTBot 

SWTBot is an open-source Java based functional/UI testing tool for testing SWT 

and Eclipse based applications. It is a kind of click-robot. SWTBot provides 

simple to read and write Application Programming Interfaces. APIs hide 

the complexities of SWT and Eclipse, making the tests more intuitive to write. 

SWTBot integrates well with Eclipse, and supports Ant tasks so that one can run 

his builds from within CruiseControl or any other Continuous Integration tool. 

SWTBot can run on any platform that SWT runs on, therefore also with Eclipse 

RCP applications. Very few testing tools provide support for such a variety 

of platforms. SWTBot also supplies its own set of assertions that are useful 

for SWT. After installing SWTBot into Eclipse using the SWTBot update 

site, a new “Run As…” choice appears (SWTBot Test). SWTBot’s test 

case classes, SWTBotTestCase (for standalone SWT app testing), 

and SWTBotEclipseTestCase (for Eclipse SWT plug-in testing) subclass JUnit’s 

TestCase class, so all of the JUnit facilities are available, plus some extra magic 

for accessing SWT widgets: 

 

Figure 1 SWTBot is an API that depends on JUnit and SWT 

Many events that SWTBot sends to the UI are blocking. SWT dialogs are a good 

example of one of them. What it means in practice is that functions opening 

dialogs will block until the dialog closes.  Since we do not want our tests 



 26 (50)    

to be blocked when a dialog opens up, SWTBot runs in a non-UI thread, and posts 

events to the UI thread: 

 
Figure 2 SWTBot and threading 

In SWT, access to native resources is controlled by a single Display object. This 

object is created by the single UI thread. Shell objects represent windows and 

of course there can be many of them in your application. (Pedegaonkar,  

Rodrigues 2009) 

In December 2008 SWTBot project moved from SourceForge to Eclipse. 

It is currently in Incubation Phase of the Eclipse development process. This means 

that its developers are currently implementing the requirements that a full Eclipse 

project must meet in terms of its processes, community and technology. The code 

base of the project is already stable and mature. Nevertheless, one have 

to be prepared for one or the other change in the API. (Ebert 2009) 

 
3.2 Installation and Configuration of SWTBot 

3.2.1 Install Eclipse IDE 

SWTBot tests require Eclipse IDE. In case of the project the author was involved 

in - Eclipse for RCP/Plug-in Developers should be installed. It can be found on 

the official Eclipse web site: http://www.eclipse.org/downloads/packages/eclipse-

rcpplug-developers/galileor [referenced 15.09.2009]. 

3.2.2 Install SWTBot Plug-in 

Next step is installation of SWTBot plug-in. The easiest way is to use the update 

site: http://download.eclipse.org/technology/swtbot/galileo/dev-build/update-site/ 

[referenced 15.09.2009]. Using the menu in Eclipse with Help > Software 

Updates > Installed Software the following entries should be displayed: 



 27 (50)   

• SWTBot Eclipse Feature 

• SWTBot Feature  

Both of them have to be installed and Eclipse should be restarted. 

3.2.3 Create Test Plug-in 

After completion of SWTBot plug-in installation, a test plug-in can be created. 

The author advises to use a naming convention in which the name of the plug-in 

is suffixed by .swtbottests. Example: 

• Plugin to be tested: pegasus.core 

• Test plug-in: Pegasus.core.swtbottests 

A test plug-in is a normal Eclipse Plug-in. One can create it in the normal way 

by unchecking some options: 

• Uncheck <This plug-in will make contributions to the UI> 

• Uncheck <Generate an activator, …> 

• Uncheck <Create a plug-in using one of the templates> 

Add the following required plug-in dependencies to your test plug-in manifest 

file: 

• org.junit4 

• org.eclipse.swtbot.eclipse.finder 

• org.eclipse.swtbot.swt.finder 

• org.hamcrest 

• org.apache.log4j 

• org.eclipse.swt 



 28 (50)    

• org.eclipse.ui 

And last but not the least, the plug-in to be tested: 

• pegasus.core 

3.2.4 Create a Simple Test 

Code example in APPENDIX 1: SimpleExampleTest.java can be added 

to the plug-in: pegasus.core.swtbottests.SimpleExampleTest.java. The code can 

be used as a skeleton for writing other SWTBot tests for Pegasus. The test opens 

Run perspective from the menu bar, makes some assertions, than switches back 

to Test perspective. What it does exactly is not important at the moment. Its main 

purpose is to check if any SWTBot test can be run. 

3.2.5 Run a Test 

In order to verify the correctness of steps described in chapters 3.2.1 to 3.2.4, 

running a test is needed: 

• Perform Run as SWTBot test on the test class SimpleExampleTest.java 

• Even if the first run leads to errors – it creates a default run configuration 

• Perform Run As / Run Configurations… 

• Open the Main  tab 

• Define Run a product as pegasus.branding.PegasusRCP 

• Run the test 

After the test run a JUnit view opens. If the tests execute, then everything is ok. 

The environment is prepared to write SWTBot tests. 

 



 29 (50)   

3.3 Eclipse RCP 

RCP provides a generic Eclipse workbench that developers can extend in order 

to construct their own applications. Among many advantages of RCP applications 

the most important are: easy to extend plug-in architecture, responsiveness, 

native-looking user interface, easy to write help system. Every Eclipse RCP 

application comprises of at least one custom plug-in and uses the same 

UI elements as eclipse 3.5 IDE. It is important to get familiar with the basic 

elements of Eclipse user interface to understand SWTBot tests which will 

be covered later. Figure 3 shows those elements in Pegasus RCP – application 

to be tested later:  

 

Figure 3 Basic UI elements of Pegasus RCP 

Pegasus RCP – application which the author is going to test with SWTBot 

was written using Eclipse RCP framework. It consists of elements like views, 

editors, perspectives, etc. This chapter helps to get familiar with basic terminology 

regarding Eclipse RCP applications which will benefit in better understanding 

of SWTBot’s API covered in consecutive chapters.   



 30 (50)    

The workbench provides a robust set of classes and interfaces for building 

complex user interfaces. Workbench window (IWorkbenchWindow) is the top-

level window in a workbench. It is the frame that holds the menu bar, tool bar, 

pages, views, editors, etc. The term workbench can also be used loosely to refer 

to “the window that opens when you start the platform”. Next paragraphs describe 

the main visual components that make up the workbench. 

Inside the workbench window there is one page (IWorkbenchPage) that in turn 

contains parts. Pages are used for grouping parts.  

Perspectives are an additional layer of organization inside the workbench page. 

A perspective defines an appropriate collection of views, their layout, 

and available actions for a given user task. Users can switch between perspectives 

as they move across tasks.   

When the plug-in programmer adds a visual component to the workbench, 

he must decide whether he wants to implement a view or an editor. How does 

he decide this? 

A view is typically used to create a file navigator, to open an editor, or to display 

properties for the active editor. For example, in Pegasus there is a Navigator view 

which allows browsing the contents of the workspace. Properties and outline 

views are used to show information about an object in the active editor. 

Any modifications made in a view (like changing value of a property) are saved 

immediately. 

An editor is mostly used to edit or browse a document or input object. 

Modifications made in an editor follow an open-save-close model, similarly 

to any external file system editor. (Vogel 2009) 

 

 

 

 



 31 (50)   

4 DESCRIBING SWTBOT TEST CODE 

This chapter uncovers SWTBot API and explains the nuances of SWTBot test 

program written as a practical part of the thesis: FileMenuTest.java 

(see APPENDIX 2). FileMenuTest was designed to test File Menu options. 

It consists of 30 test cases and almost 1500 lines of code. Movie presenting the 

tests running can be found in APPENDIX 3.  

4.1 The Skeleton of the Code 

This chapter familiarises the reader with the basic elements of every SWTBot test, 

and other issues that the test automation engineer should be familiar with. 

SWTWorkbenchBot offers API for testing Eclipse workbench items like views, 

editors and perspectives. What is also interesting here is that all non-constant 

member variables in the code start with the underscore. This coding convention 

comes from Java Sun™ Coding Standard. The rationale behind it is that 

it facilitates auto-completion (typing ‘_’ shows class members only). 

The drawback is that it reduces readability for programmers not familiar with this 

coding convention. Message if assertion fails _assertionFailedMessage is also 

a member variable. It is utilized to store the messages displayed when assertion 

fails. 

@BeforeClass annotation precedes a setUpBeforeClass() method. When several 

tests need to share a computationally expensive setup, the setup code can be put 

inside its body. While this can compromise the independence of tests, sometimes 

it is a necessary optimization. This method will be run once before any of the test 

methods in the class. In the discussed test code it is used to instantiate the _bot 

variable (of type SWTWorkbenchBot). 

@AfterClass annotation precedes teardownAfterClass() method. If expensive 

external resources were allocated in BeforeClass method, they have to be released 

after all the tests in the class have run. All @AfterClass methods are guaranteed to 

run even if BeforeClass method throws an exception. Therefore here the _bot 

resource is released by setting it to null. 



 32 (50)    

@Before annotation causes the method setUp() to run before every @Test 

method in the current class. 

@After annotation precedes tearDown() method which is usually used to release 

the resources (allocated in @Before method) after the test runs. This method will 

execute even if the @Test method throws exception. In the discussed code 

a cleanup() method was put to assure the tests independence. The cleanup() 

method will be covered in more detail later. 

@Test annotation tells JUnit that the public void method to which it is attached 

can be run as a test case. To run the method, JUnit first constructs a fresh instance 

of the class than invokes the annotated method. Any exceptions thrown by the test 

will be reported by JUnit as a failure. If no exceptions are thrown, the test 

is assumed to have succeeded. 

It is worth to mention that each test class has its own workspace. If there 

is a need for the test to have a fresh workspace, than a separate test class have 

to be written. Otherwise the test methods inside the same class will share 

a common workspace. 

Javadoc comments are used throughout all the code although there are not many 

comments inside the test methods. The reason for it is that the author was taught 

at work in NSN that the code itself should be clear enough not to need comments. 

If there is a need for the comment – than writing another method or thinking 

of naming variables and methods in more descriptive way should be considered. 

The other reason is that the comments themselves become additional thing 

to maintain. The author agrees with those rules and tries to comply with them 

the best he can. 

4.2 SWTBot API in Examples 

The pieces of code gathered in this chapter form a kind of tutorial needed to get 

familiar with the basics of SWTBot’s API. Its main goal is to equip the reader 

in the knowledge essential to be able to understand the code of FileMenuTest 

from APPENDIX 2. 



 33 (50)   

4.2.1 Menu 

 
//CLICK ON A MENU ITEM  
_bot.menu( "File" ).menu( "New" ).menu( "Test Hierarchy" ).click(); 
 
 
//CHECK IF MENU ITEM IS ENABLED  
assertTrue( _bot.menu( "File" ).menu( "Move..." ).isEnabled()); 

4.2.2 Views 

 
//SET FOCUS ON PARAMETER VIEW 
_bot.viewByTitle( "Navigator" ).setFocus(); 
 
 
//SHOW VIEW 
_bot.viewByTitle( "Navigator" ).show(); 
 
 
//PRINT LIST OF ALL VISIBLE VIEWS TO CONSOLE  
ArrayList<SWTBotView> viewsList; 
viewsList = new ArrayList<SWTBotView>( _bot.views()); 
 
if  (viewsList.isEmpty()) 
    System. out.println( "\n\n>There is no view<\n\n" ); 
else  { 

System. out.println( "There are "  + viewsList.size() + " views 
visible:" ); 

for  ( int  i = 0; i < viewsList.size(); i++) { 
    System. out.println(viewsList.get(i).getTitle()); 
} 
 
//EXAMPLE OUTPUT:  
//   There are 6 views available:  
//   Navigator  
//   Test Procedures  
//   Parameter Types  
//   Problems  
//   Parameter  
//   Outline  
 

4.2.3 Editors 

 
//GET THE TITLE FROM EDITOR TAB  
String th1 = _bot.editorByTitle( "TestHierarchy1.xml" ).getTitle(); 
 
      
//GET TEXT FROM EDITOR WITH GIVEN TITLE  
String editorContents = 
_bot.editorByTitle( "TestHierarchy2.xml" ).toTextEditor().getText();  
 
 
//SET TEXT INSIDE THE EDITOR         
_bot.editorByTitle( "TestHierarchy3.xml" ).toTextEditor() 

.setText( "My text here" ); 



 34 (50)    

//CLOSE EDITOR TAB WITH A GIVEN TITLE  
_bot.editorByTitle( "TestHierarchy4.txt" ).close(); 
 
 
//SAVE EDITOR TAB WITH A GIVEN TITLE  
_bot.editorByTitle( "TestHierarchy5.xml" ).save(); 
 
 
//SET FOCUS ON THE EDITOR WITH A GIVEN TITLE  
_bot.editorByTitle( "TestHierarchy6.xml" ).setFocus(); 
 

 
//RETURN THE NUMBER OF EDITOR TABS  
_bot.editors().size(); 

 

4.2.4 Windows 

 
//CHECK IF WINDOW IS ACTIVE  
assertTrue( _bot.shell( "New Project" ).isActive()); 

 
 
//CLOSE WINDOW 
_bot.shell( "New Project" ).close();  
 
 
//GET ACTIVE WINDOW'S TITLE  
String activeWindow = _bot.activeShell().getText();  

4.2.5 Tree 

 
//SELECT A TREE ITEM (2 EQUIVALENT WAYS SHOWN)  
_bot.tree().expandNode( "General" ).select( "Project" );   
_bot.tree().expandNode( "General" ).expandNode( "Project" ).select();  
 
 
//SELECT A TREE NODE (INSIDE A VIEW)  
_bot.tree(1).expandNode( "Project1" ).getNode( "th1.xml" ).select();  
 
 
//CHECK WHETHER A TREE ITEM IS AVAILABLE  
assertTrue( _bot.tree().getTreeItem( "slave1" ) != null );         
assertTrue( _bot.tree().expandNode( "slave1" ).select( "Properties" )!= 
null ); 
 
 
//CHECK WHETHER A TREE LEAF IS AVAILABLE  
assertTrue( _bot.tree().expandNode( "slave1" ) 
 .expandNode( "Properties" ).getNode( "slaveName = slave1" ) != null ); 

 
 
//CHECK IF TREE Project1 (INSIDE A VIEW) CONTAINS N ODE th1.xml  
assertTrue(( _bot.tree(1).expandNode( "Project1" ).getNodes()) 

.contains( "th1.xml" )); 



 35 (50)   

 
 
 
//GET THE NUMBER OF TOP LEVEL NODES (INSIDE A VIEW)  
int  topLevelNodes = _bot.tree(1).getAllItems(). length ; 
 
 
//DELETE THE TOPMOST ITEM (INSIDE A VIEW)  
_bot.tree(1).getAllItems()[0].contextMenu( "Delete" ).click(); 
 

4.2.6 Perspectives 

 
//ACTIVATE A PERSPECTIVE WITH A GIVEN LABEL  
_bot.perspectiveByLabel( "Run" ).activate();  
 
 
//CHECK IF PERSPECTIVE WITH A GIVEN LABEL IS CURREN TLY ACTIVE  
_bot.perspectiveByLabel( "Test" ).isActive();  
 

4.2.7 Buttons 

 
//CLICK BUTTON  
_bot.button( "Next >" ).click(); 
 
 
//CHECK WHETHER A BUTTON IS DISABLED  
assertFalse( _bot.button( "Finish" ).isEnabled()); 

 

4.2.8 Tool Bar Buttons 

 
//CLICK TOOL BAR BUTTON  
_bot.toolbarButtonWithTooltip( "New" ).click();  
 
 
//CHECK WHETHER TOOL BAR BUTTON IS ENABLED 
assertTrue( _bot.toolbarButtonWithTooltip( "New" ).isEnabled()); 
 

4.2.9 Check Boxes 

 
//SELECT CHECK BOX  
_bot.checkBox().select(); 
 

4.2.10 Text Fields 

 
//WRITE TEXT INTO TEXT FIELD  
_bot.textWithLabel( "Project name:" ).setText( "MyTestProject3_1" ); 
 
 



 36 (50)    

//READ TEXT FROM TEXT FIELD  
String text = _bot.textWithLabel( "Project name:" ).getText(); 

 

4.2.11 Time and Speed Control 

 
//SLEEP (VALUE IN MILLISECONDS)  
_bot.sleep(1000); 
 
 
//SLOW DOWN THE EXECUTION OF TESTS (VALUE IN MILLIS ECONDS) 
SWTBotPreferences. PLAYBACK_DELAY = 100;  
 
4.3 Error Recovery Implementation 

In chapter 2.7 a standardised error recovery approach was introduced to the reader 

theoretically. In this chapter it will be explained in practice. To understand what 

error recovery does, a real situation will be uncovered. 

4.3.1 Test without Error Recovery 

One of the developers accidentally checked-in a code that caused creating new 

Test Hierarchy files to stop working. More precisely, clicking Finish button does 

not create a Test Hierarchy file and does not close the ‘New Test Hierarchy’ 

window: 

 
Figure 4 New Test Hierarchy window - Finish button stopped working 



 37 (50)   

As a result all the subsequent tests after the failed test will also fail (see Figure 5) 

because the focus stays on ‘New Test Hierarchy’ window, not the default 

‘Pegasus RCP’ that every test expects. After double-clicking on the first failed test 

one can see exactly in which line the test failed and Failure Trace gives a hint 

about the reason of the failure. But all the consequent tests fail. Even the ones that 

have nothing to do with creating Test Hierarchies will fail in the first line of their 

execution. This can be very confusing for the maintainer of the test who needs 

to analyze the reason of the failure fast. In this situation it is difficult to isolate the 

real reason of the failure and even worse – it is easy to overlook some other bug 

that might have appeared in the same time. 

 

Figure 5 Execution of SWTBot tests without error recovery 

4.3.2 Test with Error Recovery 

The error recovery routine code is presented below: 

try  { 
    //METHOD BODY 
} 
catch  (WidgetNotFoundException e) { 
    closeDialogWindow(); 
    throw  e; 
} 
 
/**  
 * Closes dialog window if there is any (when 'Pega sus  RCP' 
 * is not currently active shell).  
 */  
private  void  closeDialogWindow() { 
    String activeShellName = _bot.activeShell().getText().trim(); 
    String labelText = "Pegasus RCP" ; 



 38 (50)    

    if  (!activeShellName.equals(labelText)) { 
        _bot.shell(activeShellName).close(); 

} 
} 

The error recovery relies on taking the method body into try-catch block. When 

some unexpected situation occurs, usually WidgetNotFoundException will 

be thrown. In the catch block first information is logged that 

the closeDialogWindow() method was entered. Then the algorithm checks if there 

is any dialog window opened so that it could make an attempt to close dialog 

window (if any) to bring the application back to its base state and allow other tests 

to continue. And at the end it rethrows the exception to be able to see its contents 

for each failed test. A good proof of error recovery algorithm correctness will 

be running the tests again with this algorithm implemented for every test: 

 

Figure 6 Execution of SWTBot tests with error recovery implemented 

Now the behaviour of the test is correct. Only the tests that use faulty feature 

of creating new Test Hierarchies fail. For every failed test it is possible to see the 

exact line in which the test has failed with correct error messages. 

 
4.4 Tests Independence Implementation 

In compliance with the rules of well designed test cases - the tests 

in FileMenuTest are independent of one another. This means each test method can 

be executed separately of any other. It makes the tests more modular, simplifies 

their maintenance and analysis after failure. 



 39 (50)   

4.4.1 Cleanup Method 

Tests independence is achieved mostly thanks to the cleanup() method which 

is placed in tearDown() method, therefore it is executed after each @Test method 

even if it throws an exception. The cleanup() method has the following contents: 

/**  
 * Performs cleanup needed after tests: close all o pened editors, 
 * reset perspective, delete all projects from Navi gator view.  
 */  
private  void  cleanup() { 
    if  ( _bot.menu( "File" ).menu( "Close All" ).isEnabled()) { 
        _bot.menu( "File" ).menu( "Close All" ).click(); 
    } 
    _bot.menu( "Window" ).menu( "Reset Perspective..." ).click(); 
 
    if  ( _bot.shell( "Reset Perspective" ).isActive()) { 
        _bot.button( "OK" ).click(); 
    } 
 
    deleteAllFromNavigator(); 
    } 
}  

4.4.2 Test Synchronisation 

Consider the following code: 

/**  
 * Wait until shell 'shellTitle' closes. Do nothing  if it does 
 * not exist anymore.  
 *  
 * @param shellTilte  
 */  
private  void  waitUntilShellCloses(String shellTilte) { 
try  { 
_bot.waitUntil(Conditions. shellCloses( _bot.shell(shellTilte))); 
} 
catch  (WidgetNotFoundException e) { 
    /*  
     * This have to be in empty catch block because  waitUntil 
     * throws exception when window 'shellTitle' is  not found. 
     * This window could be automatically closed af ter 
     * operation has finished.  
     */  
     } 
}  

Sometimes there is need to use the waitUntil(…) method. After confirming 

execution of some costly operation (e.g. creating a new file), this operation can 

take some time. If the next test would start to execute, it would crash because the 

focus would be still set to some dialog window or progress bar from previous test. 



 40 (50)    

First option to deal with such situation is using the sleep() method. But how 

to know how long will it take for the program to finish the operation? Setting 

a fixed number of seconds seems very inflexible. 

Much better option is using a SWTBot method designed specially to deal with 

such cases: 

_bot.waitUntil(Conditions. shellCloses( _bot.shell(shellTilte))); 

But once in few executions an unpleasant situation occurs – the tests will crash. 

The reason is that if the operation will finish quicker and the window will close 

sooner than expected, then _bot.shell(shellTilte) will throw 

WidgetNotFoundException. The only way to deal with it is to catch it, write 

a description why it was caught and log it. And exactly this is done in the code. 

 
 
 
 
 
 
 



 41 (50)   

5 ANALYSIS 

5.1 Analysis of Capture/Playback Mechanism 

Many GUI test tool vendors focus most of their attention on so called 

capture/playback (also known as capture/replay or record/playback) 

methodology. Those terms are in common use although they are somewhat 

confusing. Anyway, to know what exactly to do, test execution tool needs a test 

script, which is a program written in a programming language. 

5.1.1 Why Capture/Playback Is a False Economy? 

A captured test is a linear script and it is far from good solution for a number of 

reasons, including: 

1. The test script only stores inputs that have been recorded, not test cases. 

So it does not know what the expected results are until you program it. 

2. Small change introduced in the AUT can break most of your scripts. 

3. The captured script can only cope with precisely the same conditions 

as when it was captured. Any unexpected event (e.g. dialog window shows 

up because file already exists) will be interpreted as a bug. 

4. In addition to performing operation on AUT, the tool users are endlessly 

interrupted to insert verification points, test data and other check points. 

This is labour intensive and tedious task. (Li, Wu 2004, 20-21.) 

There are situations when recorded test inputs can be useful in short term. 

Captured tests can be acceptable for some tests where the effort to update them 

when the software changes is not very substantial. But they definitely will not 

scale to hundreds or thousands of tests. (Graham, Veenendaal, Evans, Black 2007, 

187-188.) 

The record feature can generate a lot of code but this code usually has 

to be reprogrammed by the tester in order to integrate it into the test. Therefore 



 42 (50)    

capturing tests does have a place but it is not significant in terms of automating 

test execution. Decreasing test creation time is a good idea but only if it does not 

increase the cost of maintenance. Schemes that optimise the test creation 

at the expense of test maintenance will in fact increase the life cycle costs instead 

of reducing them. (Fewster, Graham 1994, 520.)  

5.1.2 Recorder in SWTBot – a Marketing Stunt 

On the home page of SWTBot project (Pedegaonkar 2009) you can read: 

“SWTBot can record and playback tests…”. But the truth is that SWTBot lacks 

a Recorder! The SWTBot developers were working under it intensively till 

version 1.3 of the software. Since then it is not actively maintained, and even 

Ketan Pedegaonkar himself discourages using it. In the opinion of the author 

of this thesis not having a Recorder is not a big disadvantage. Recorder would 

help only initially but once you need to start writing reusable test modules, a 

Recorder looses much of its value.  

 
5.2 What Cannot Be Tested with SWTBot 

While writing SWTBot tests, a lot of time can be wasted while trying to do things 

that cannot be done. Things that will not be supported, or are not implemented 

yet. Therefore it seems a good idea to mention them in this thesis work, especially 

that the author did not found any similar list on any Internet source: 

• There is no support for native widgets (Open/Save File Dialogs, Color 

Dialogs, etc.). 

• When trying to test AUT’s restart - it restarts also all the tests 

and goes into infinite loop. 

• Cannot access status bar text; 

• Only partial support for close button x in the top right corner of every 

window. One can use close method for shells but it fails if there will 



 43 (50)   

be a confirmation dialog (which is a standard Eclipse behavior 

for the main window). 

• Cannot access context menu’s submenu items (e.g. in Navigator view). 

There is a workaround - treat submenus as elements of main context menu 

- but it fails when in different submenus there are elements with repeating 

names (e.g. “Other…”). 

 
 
5.3 Measuring Benefit of Using Automated Tests 

The table below presents the comparison between automatic and manual tests. 

It regards the test code from APPENDIX 2. It shows execution time in seconds 

of the consecutive tests which could also be observed on the movie attached 

as APPENDIX 3.  The author has also measured the time of manual tests for 

all the tests. The last column presents how many times faster the automated test 

was. 

Table 1 Comparison of Automated and Manual Tests Execution 

Test No Automated Test [s] Manual Test [s] Manual Test [s] / Automated Test [s] 

1 2,454 61 24,9 
2 3,471 134 38,6 
3 2,141 56 26,2 
4 1,732 48 27,7 
5 1,844 72 39,0 
6 1,207 64 53,0 
7 8,002 231 28,9 
8 8,157 57 7,0 
9 7,828 249 31,8 
10 3,561 144 40,4 
11 8,203 61 7,4 
12 14,032 487 34,7 
13 14,000 398 28,4 
14 8,156 228 28,0 
15 2,157 61 28,3 
16 63,735 419 6,6 
17 8,282 211 25,5 
18 8,125 274 33,7 



 44 (50)    

19 32,938 279 8,5 
20 32,735 926 28,3 
21 8,156 238 29,2 
22 8,141 135 16,6 
23 15,735 451 28,7 
24 30,235 978 32,3 
25 14,656 411 28,0 
26 14,797 211 14,3 
27 19,766 578 29,2 
28 26,357 709 26,9 
29 15,516 438 28,2 
30 21,013 422 20,1 
 SUM = 407,132 SUM = 9031 AVG = 22,2 

The last row summarizes results for all the tests. Execution of automated tests 

takes less than 7 minutes (407.132 seconds) while the same manual tests would 

take more than 2.5 hours (9031 seconds). This means that manual tests were about 

22 times more time consuming than the automated tests. 

This doesn’t concern that the automated tests are integrated with Cruise Control’s 

nightly builds and the tests are executed automatically without the need of 

programmer’s intervention. Considering that the tester would have time to 

perform those tests once a month rather than once a day, this difference is actually 

much bigger. 

Therefore how to measure the increase in quality? One could calculate Return on 

Investment (ROI)  which should show the real value that the automation gives. 

The ROI value is not the value of automation versus the cost of executing tests 

manually. It could be defined rather as the benefit of this type of testing plus the 

benefit of whatever the manual tester is doing while the automated tests are 

executing. While calculating ROI one should take into account: 

- the cost of executing automated tests considering infrastructure required 

- The cost of maintaining the automation as the product evolves 

- The cost of additional tasks required by automation (reviewing results, 

maintaining documentation, training for staff, etc.) 



 45 (50)   

- ROI varies depending on the business environment, application under test, 

and even the type of tests which were automated. 

Calculating ROI for test automation project could be a topic for another bachelor 

thesis and it is beyond the scope of this thesis, which has more development and 

implementation nature. The other thing is that the author is not allowed to disclose 

any financial related data about NSN, therefore with these constraints it is 

impossible to cover calculating ROI. 

 



 46 (50)    

 
 



 47 (50)   

6 CONCLUSION 

As the reader of this dissertation had chance to discover, test programs written 

using SWTBot are relatively easy to read and intuitive for people familiar with 

basic concepts of Eclipse/Eclipse RCP. Without any doubt SWTBot’s API is 

large enough to test effectively such complex application 

as Pegasus RCP. The biggest problem could be lack of good documentation 

and tutorials which makes it difficult to start with. The best and most up to date 

is Javadoc that comes with SWTBot’s code. Therefore a developer which wants 

to start writing SWTBot tests has to spend some time with it to get familiar with 

the API experimenting with the code. Although SWTBot is not a commercial tool, 

the growing community of testers and developers using it seems promising 

considering the need of support. 

Despite of what is published on SWTBot’s home page, SWTBot lacks 

a recorder. Apparently there is one, but it is not actively maintained and its use 

is discouraged even by the project’s lead developer, Ketan Pedegaonkar. Lack 

of recorder is not a big disadvantage since the recorder generates inflexible, non-

modular, non-reusable code which makes it rather a nice to have toy than serious 

tool for test automation. Not having a recorder implicates also that the tester has 

to be a programmer. 

Automating tests has many benefits. The tests can be run overnight allowing 

to utilize hardware resources more effectively. Bugs can be detected and 

corrected much faster. Developers could even execute automated GUI tests 

before checking-in production code, without the need to wait for nightly build 

tests’ results. Release tester can remove already automated tests from manual tests 

list having more time to test new features rather than retesting the old ones. 

As the analysis has shown, the automated tests execute over twenty times faster 

comparing with manual tests. Considering that the tester would have time to 

perform those tests once a month rather than once a day, this difference is actually 

much bigger. 



 48 (50)    

Pieces of code presented in this document, instructions how to achieve tests 

independence, error recovery, test synchronization, together with big test program 

implementation which has almost 1500 lines of code (APPENDIX 2) make up 

a great tutorial which will help developers to get familiar with SWTBot’s 

capabilities. FileMenuTest.java consists of 30 test cases. The author has made 

those tests compliant with all the objectives for well-designed test cases listed in 

chapter 2.6. The tests proved to be reliable. They are written in a modular way 

allowing for code reuse. The author will continue his work as test automation 

engineer. Goals for nearest future include creating utilities abstract class with 

most useful methods, preparing training about SWTBot for developers 

and tracking the latest trends in GUI test automation.  

 

 
 



 49 (50)   

 
LITERATURE FOR THESIS WRITING  

Bach, James. Test Automation Snake Oil. 1999. 
 
Beck, Kent, et al. 2001. Manifesto for Agile Software Development. [referenced 
23.08.2009]. Available in www-form: <URL:http://agilemanifesto.org/> 
 
Crispin, Lisa and Gregory, Janet. 2009. Agile Testing. A Practical Guide for Testers 
and Agile Teams. Crawfordsville, USA. Addison-Weseley. 
 
Ebert, Ralf. 2009. German Java Magazin article about testing Eclipse RCP 
applications with SWTBot. Available in www-form: 
<http://www.ralfebert.de/articles/swtbot/> 
 
Fewster, Mark and Graham, Dorothy. 1994. Software Test Automation. Effective use 
of test automation tools. New York, USA. ACM Press. 
 
Graham, D., Van Veenendaal, E., Evans, I., Black, R. Foundations of Software 
Testing. ISTQB Certification. Cengage, USA.  Thomson. 
 
Hutcheson, Marnie. 2003.Software Testing Fundamentals: Methods and Metrics. 
New York, USA. Wiley Publishing Inc. 
 
Institute of Electrical and Electronics Engineers, Inc., IEEE Standard for Software 
Test Documentation. IEEE Std 829-1998. 1998, USA. 
 
Li, Kanglin and Wu, Mengqui. Effective GUI  Test Automation: Developing an 
Automated GUI Testing Tool. Alameda, USA. Sybex Inc. 
 
Patton, Ron. 2005. Software Testing (2nd  Edition). Indianapolis, USA. Sams 
Publishing. 
 
Myers, Glenford J. 2004. The Art of Software Testing. Second Edition. New Jersey, 
USA. John Wiley Publishing Inc. 
 
Pedegaonkar, Ketan. 2009. SWTBot Home Page. [referenced 19.09.2009]. Available 
in www-form: <URL: http://www.eclipse.org/swtbot/> 
 
Pedegaonkar, Ketan and Rodrigues, Vitor. 2009. SWTBot FAQ. [referenced 
15.09.2009]. Available in www-form: <URL: http://wiki.eclipse.org/SWTBot/FAQ> 
 
Pettichord, Bret 2001. Seven Steps to Test Automation. Revised version of a paper 
originally presented at STARWEST conference, San Jose. 
 
Vogel, Lars. 2009. Eclipse RCP – Tutorial (Eclipse 3.5). [referenced: 17.09.2009]. 
Available in www-form: 
< http://www.vogella.de/articles/RichClientPlatform/article.html> 
  



 50 (50)    

 
/* SimpleExampleTest.java */ 
 
package  pegasus.core; 
import  static  org.eclipse.swtbot.swt.finder.SWTBotTestCase. assertEnabled; 
import  static  org.eclipse.swtbot.swt.finder.SWTBotTestCase 

. assertNotEnabled; 
import  static  org.eclipse.swtbot.swt.finder.SWTBotTestCase. assertVisible; 
import  org.eclipse.swtbot.eclipse.finder.SWTWorkbenchBot;  
import  org.junit.AfterClass; 
import  org.junit.BeforeClass; 
import  org.junit.Test; 
 
/**  
 * Simple test to prove SWTBot works  
 * @author  mmazurki  
 */  
public  class  SimpleTest { 
 
  /**  
   * @see SWTWorkbenchBot  
   */  
  private  static  SWTWorkbenchBot bot; 
 
  /**  
   * @see BeforeClass  
   * @throws  Exception  
   */  
  @BeforeClass  
  public  static  void  setUpBeforeClass() throws  Exception { 
     bot = new SWTWorkbenchBot(); 
  } 
 
  /**  
   * @see AfterClass  
   * @throws  Exception  
   */  
  @AfterClass  
  public  static  void  tearDownAfterClass() throws  Exception { 
    bot = null ; 
  } 
 
  /**  
   * Switch to Run perspective via the Open Perspec tive dialog  
   */  
  @Test 
  public  void  openOtherRunPerspectiveTest() { 
    bot.menu( "Window" ).menu( "Open Perspective" ).menu( "Other..." ).click(); 
    bot.table().select( "Run" ); 
    bot.button( "OK" ).click(); 
 
    assertVisible( bot.toolbarButtonWithTooltip( "New" )); 
    assertNotEnabled( bot.toolbarButtonWithTooltip( "Save As" )); 
    assertEnabled( bot.toolbarButtonWithTooltip( "Search" )); 
  } 
 
  /**  
   * Quick switch to Test perspective  
   */  
  @Test 
  public  void  openTestPerspectiveTest() { 
    bot.menu( "Window" ).menu( "Open Perspective" ).menu( "Test" ).click(); 
    bot.sleep(2000); 
  } 
} 


