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Abstract 

Many national and global institutions share open data for anyone to use. One such institution is the Euro-
pean Space Agency (ESA) that shares the images from their satellites as open data. The ESA satellite data 
was utilized in Jamk University of Applied Sciences’ Data for Utilization project where the research investi-
gated the use of Sentinel-1 synthetic aperture radar satellite images for storm damage detection. The re-
search required an easy access to the satellite images over the whole research life cycle. However, no exist-
ing solutions were found for this task. Therefore, a spatial data storage platform that would support the 
research needed be implemented. This thesis used the design science research process to implement the 
solution and communicate the implemented solution and gained knowledge to other engineers and re-
searchers that are working with similar problems. The data storage platform was implemented using open-
source projects such as PostGIS, GDAL, QGIS, and SNAP. The supported research was a success thanks to 
the data storage platform, and it produced a scientific research article, thus demonstrating and validating 
the success of the solution. A preprint version of the research article is attached to this thesis report. 
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1 Introduction 

Geospatial data, or often just spatial data, is commonly occurring datatype that has a geospatial 

location attached to it (Zhang & Yi, 2010). This type of data is often collected when observing real 

world events that happen in nature. A good example of geospatial data is weather data. Weather 

is a very localized phenomenon; therefore, the weather data always includes the location of the 

weather station that collected the data. The station location is the main feature that is used when 

querying the data later from the data storage, thus the data storage system and other tooling that 

handles the data must be optimized to support this feature. 

This thesis report introduces open-source projects that can be used to handle geospatial data. 

More specifically, the thesis report focuses on a use case where the open-source geospatial tool-

ing was used to handle data from synthetic aperture radar (SAR) satellites. The data was used in a 

study where an improved methodology of generating difference images for SAR satellite-based 

change detection classifiers was developed. The change detection classifiers are used to find 

changes between two satellite images that are captured at different times. The information about 

the change locations can be used in different ways. For example, it can be used to conduct rescue 

operations after a natural disaster by directing help to most damaged areas, or it can be used to 

monitor glacier melting (Sood et al., 2021; Sublime & Kalinicheva, 2019). 

The improved methodology of generating difference images for change detection classifiers is doc-

umented in a preprint of a research article that is attached as the Appendix 1 to this thesis report. 

The article was submitted to IEEE Transactions on Geoscience and Remote Sensing journal that co-

vers satellite based remote sensing topics. The article was part of a larger project where the use of 

SAR satellite images for forest damage detection was studied. This thesis report extends and pro-

vides more context to the article by describing the data storage system, processes that were used 

to handle the data, and the original assignment for the project in more detail than what can be 

possible in the constraints of a peer reviewed journal article. 

This research was conducted in the “Data for utilization” project (Jamk University of Applied 

Sciences, 2021). 
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2 Research Paradigm 

Design science research paradigm was used to conduct this research. Design science is a widely 

used research paradigm in the field of information systems and other engineering disciplines 

where it is used to create design knowledge from solving practical problems (Engström et al., 

2020). The paradigm is a good fit for this research, since the project had a well-defined practical 

problem that needed to be solved with a real-world implementation. The project created 

knowledge during the planning, development, and validation phases that other developers and 

researchers can use to solve other similar practical problems, thus it is important to report the 

gained knowledge. This thesis uses the design science research process that is introduced by 

Peffers et al. (2006) where the research process consists of six distinct steps which are: problem 

identification and motivation, objectives of a solution, design and development, demonstration, 

evaluation, and communication. The following paragraphs include more information about each of 

the steps. 

Problem Identification and Motivation 

The data for utilization project in Jamk University of Applied Sciences had a subproject where we 

studied the potential use case of applying European Space Agency Sentinel-1 SAR images to storm 

damage detection in forested areas. An automatic damage detection system could alarm forest 

owners that a storm has damaged their property, thus speeding up the cleanup and insurance 

claims. The satellite images are open data and available for download from Copernicus Open Ac-

cess Hub (European commission, n.d.). The success of the project relied on easy access to the sat-

ellite images. However, the project did not have unlimited resources of developing a data storage 

system from scratch and no existing solution for the problem was found, therefore we needed to 

use existing open-source projects to implement a data storage, handling, and access system for 

the project. 

Objectives of a Solution 

The solution must support research tasks in the different parts of its life cycle. At the beginning of 

the research project, the solution must support explorative data analysis where the tooling is used 

to store and query only few satellite images. However, the solution must also be scalable to the 

final task of creating a large dataset that was used to train a neural network. The dataset creation 
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phase required that a large number of images are easily accessible using the image properties, 

such as the acquisition date, as the premise for the access. Moreover, the developed solution had 

to support storing other sources of spatial data in addition of the SAR satellite images. Both, the 

exploratory phase and the dataset creation phase also required that the different sources of data 

are easily spatially joinable among each other. 

Design and Development 

The theoretical basis for the solution was created by researching existing open-source projects 

that can be used for spatial data handling and storing tasks. In addition, existing publications in the 

topic were also studied. The suitable open-source tools were then used to implement the data 

storage and handling platform that was used in the project. 

Demonstration 

The success of the developed storage and handling platform was demonstrated by supporting a 

research project that used the spatial data that was stored in the platform. The research in ques-

tion was successful and produced a scientific article that is attached to this thesis report as an ap-

pendix. 

Evaluation 

The ease of data access and performance were important for the research project. Therefore, 

these properties were evaluated during the development of the data storage and handling plat-

form, and during the implementation of the supported research project. Furthermore, the overall 

success of the data storage and handling platform was validated by the success of the supported 

research project. 

Communication 

The created design knowledge is communicated in this thesis report. 
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3 Research Ethics Review 

This research follows the ethical principles of Jamk University of Applied Sciences (Jamk University 

of Applied Sciences, 2018). All the data that was used to implement the research is open data that 

is available for anybody to download free from the internet. Links to the data download portals 

are available in this report. The data does not include any sensitive information that would need 

special handling or ethical considerations. Although, the satellite images image the whole planet 

continuously, the resolution of the Sentinel-1 SAR images is not high enough to provide any identi-

fiable information about small objects such as houses or other private properties. Only large ter-

rain features such as lakes, swamps, fields, forests, and in some cases roads, are identifiable from 

the SAR images. The research is carried out with the best of author’s ability to follow good scien-

tific practices. The reproducibility of the research is considered. The results that are described in 

the article are documented in detail and the source code that includes the developed neural net-

work model is shared openly on internet with a permissive MIT license https://github.com/janne-

alatalo/sar-change-detection. Furthermore, the dataset is also shared openly in the Fairdata.fi ser-

vice https://doi.org/10.23729/7b22c271-5e25-40fe-aa6a-f5d0330b1872. The openly shared code 

and dataset allows the repeatability of the results that are documented in the article. None of the 

authors of the article have conflict of interest with the work. The funding of the project is declared 

in the article, and the funding entity did not have influence over the research results that are re-

ported in the article or this report. 

4 Result Reliability Considerations 

This thesis consists of two parts, this report and the article. This report communicates the ac-

quired design knowledge that was created from the data platform development. The results are 

produced with the best of the author’s ability to be reliable. The overall reliability of the reported 

solution was validated in a real-world use case where it was used to support scientific research 

that produced a scientific article, thus confirming that the solution works. However, some aspects 

of the solution, such as developer experience of accessing the data, were validated by using quali-

tative method that can be subjective. The SQL query language data access method was considered 

to offer an excellent developer experience, although many engineers might disagree with the 

opinion. Furthermore, the solution that is introduced in this thesis is not the only possible way of 

solving the described problem, or it might not be the most efficient solution. Nevertheless, this 

https://github.com/janne-alatalo/sar-change-detection
https://github.com/janne-alatalo/sar-change-detection
https://doi.org/10.23729/7b22c271-5e25-40fe-aa6a-f5d0330b1872
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does not mean that the result reliability is not good. The research result of the used research 

methodology is the design knowledge that is gained from the research. The results are communi-

cated in this thesis report as they are. It is the readers responsibility of evaluating if the knowledge 

is usable in their own similar research problems. 

The reliability of the results in the research article are also produced with the best of the author’s 

ability to be reliable. The implementation of the experiment was a complex task where errors can 

always be present. However, special care was put in to verifying the code and data that was used 

in producing the results. Moreover, since the code and data is openly shared, anybody that ques-

tions the reliability of the results can themselves use the code and data to repeat the experiment. 

5 Theoretical Basis 

5.1 Previous Research 

Steiniger and Hunter (2012) did related research where they listed existing open-source projects 

that can be used to build a spatial data infrastructure. The paper defines spatial data infrastructure 

to include seven categories, which are: desktop GIS, spatial database management systems, web 

map server, server GIS, web GIS clients, mobile GIS and GIS libraries and extensions. The paper 

concluded that open-source projects exist in all categories and many open-source solutions even 

compete with proprietary software. The same authors have published a second paper expanding 

the review to include research, development, and teaching use cases (Steiniger & Hunter, 2013). 

More recent look to the different open-source projects is given in a paper by Brovelli et al., (2017), 

where they list the tools by different use cases. Furthermore, in similar topic is the paper by Swain 

et al. (2015) where the authors surveyed published articles about water resource and earth sci-

ence web applications and report what open-source projects are used to implement the applica-

tions. The paper verifies that open-source tooling is commonly used to support spatial research, 

however there is a clear lack of case studies that focus on reporting how the open-source projects 

can be used fulfill this task. The only paper in this category, that was found during the research 

phase, was authored by She et al. (2019) where they completed a case study of using open-source 

projects to extend the functionality of a geoportal. 
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This review of the existing research is not claimed to be complete. However, it shows that there is 

a clear lack of case studies that focus on how open-source project can be used to support spatial 

research or the studies are not titled as such to be easily discoverable. This thesis attempts to cor-

rect the lack of research in this category. 

5.2 Vector and Raster Data 

Spatial data comes in two flavors. Raster data is easy to understand as an image where the data is 

stored in rows and columns of a table where each cell of the table corresponds to a pixel of the 

image analogy. The georeferencing of the raster is done by knowing the geolocation of one corner 

of the raster (which is often the left upper corner), and the geographical size of one pixel 

(McInerney & Kempeneers, 2015).  A raster can have multiple bands that are similar to color chan-

nels of a color (RGB) image, therefore every pixel in a raster is associated with one or more values 

of some data type. The data type in a raster can be continuous, binary, complex, or categorical to 

name only a few, however the physical bit representation and support for the different data types 

is dependent on the raster file format (McInerney & Kempeneers, 2015). Although rasters are al-

ways rectangular, many raster formats have support for NODATA values, or some valid value is re-

served for this task and documented in the file format, therefore a raster can also represent a non-

rectangular area (Farkas, 2017). 

An example of a spatial raster data is satellite image. Satellite images are georeferenced so that 

the data users know what location the satellite has captured in the image. A second example of a 

raster data is interpolated weather information. Weather is measured at weather stations that are 

scattered around the country. However, many applications require to know what the weather is at 

some exact location that is not close to any weather stations. The scattered weather data can be 

transformed to continuous coverage of the whole area using interpolation algorithms (Aalto et al., 

2016). Using a raster format to store this type data is a good choice. 

The other flavor of spatial data is vector data. Vector data consists of geographical objects that are 

represented with a set of coordinates. A vector feature consists of a geometry – that can be a 

point, line, polygon, or some more complex geometry that is composed from multiple entities of 

these basic geometry types – and any number of attributes that are associated with the geometry 

(Farkas, 2017). The attributes can be used to store additional information about the geometry. For 
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example, the maximum depth of the lake and the lake name could be directly associated with the 

geometry that defines the lake banks. Another example of vector data could be GPS based vehicle 

tracking, where the tracking device produces continuous stream of location information with 

some time interval. This data can be represented as vector data using the point geometry type 

where the position of the point is the GPS location, and the measurement time is stored as an as-

sociated attribute. 

The two spatial data types are inherently different. Technically it is possible to convert one data 

type to another, however there are multiple problems with the conversion, thus it is not advised 

(Congalton, 1997). Therefore, if the project needs support for both types of spatial data, it is im-

portant to verify that the tooling supports it. The SAR satellite images that were used in this study 

are raster data. However, the project also used vector data such as the topographical database of 

Finland. Furthermore, the vector and raster data needed to be spatially joined with each other, 

thus the tooling needed to be carefully selected to support both data types. 

5.3 Distributing Spatial Data 

Spatial data always includes a location. The location information can be used to join spatial data to 

other spatial data, thus enriching it. Many government agencies create useful open spatial data 

that can be used for enriching purposes. Examples of such agencies in Finland are Finnish Meteor-

ological Institute, National Land Survey of Finland, and Finnish Forest Centre, to name only a few. 

Joining data from that many places would be difficult without well-established standards for shar-

ing such data. 

National Land Survey of Finland provides a download portal for users to download the open data. 

They use data formats such as ESRI Shapefile, GeoTIFF, JPEG 2000, GML, and GeoPackage 

(National Land Survey of Finland, n.d.-a). From these formats, the GeoPackage format is a newer 

spatial data format that defines a relational database-based standard for storing both vector and 

raster spatial data in a SQLite database with SQL-based access interface for the data (Pons & 

Masó, 2016). The GML format is a XML based format that is specially suitable for sharing vector 

data since it is modeled after the OpenGIS Simple data model, therefore generalizing well for 

transformations between different formats (Zhu et al., 2011). From the raster data formats, both 
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GeoTIFF and JPEG 2000 are based on image formats that are extended to store geospatial refer-

ence metadata and they both support both lossless and lossy compression algorithms (GDAL/OGR 

contributors, 2023a; Gerlek & Fleagle, 2007). The ESRI shapefile format is possibly the most widely 

supported spatial data format, however it is old standard and includes multiple limitations that 

make the usage of the format unadvisable in modern systems (ESRI, 1998; Jachym Cepicky, 2017). 

Moreover, some spatial data is also distributed using the netCDF format, which is a generic data 

format for storing multi-dimensional array data, therefore it can work as a raster storage format 

(Rew & Davis, 1990). However, the netCDF does not have a universal standard for storing the 

georeferenced information, thus working with spatial data that is stored in netCDF format can be 

difficult (GDAL/OGR contributors, 2023b). 

In addition to different data formats, many spatial web service standards exist, such as WMS, 

WMTS, WCS, and WFS (Varol & Şanlıoğlu, 2017). These standards allow the client to directly con-

nect to the server and query the data over the network without requiring the user to download 

the data as a file. The client can use properties, such as spatial extent to query only part of the 

data in the server, thus requiring less bandwidth and processing resources. The WMS, WMTS, and 

WCS standards are for raster data, and the WFS standard is for vector data. 

5.4 Spatial Database 

Spatial databases are a specific type of database that are built to store and query spatial data. All 

of the popular relational databases, including MySQL, MS SQL, IBM Db2, Oracle Database, SQLite 

and PostgreSQL, have some sort of support of storing and querying spatial data (Piórkowski, 2011). 

There are two standards for spatial data support in relational databases. The older of the stand-

ards is OpenGIS Simple Features Specification that was first introduced in 1999, and although the 

newer standard, SQL/MM Spatial, was introduced in the same year it is heavily influenced by the 

older standard and many of the features are backwards compatible between them (Stolze, 2003). 

The standards define a class model with new spatial data geometry types and their associated 

functions that can be used to handle spatial features in the database. The geometry types that the 

SQL/MM Spatial standard defines can be used to add points, polygons, lines, and collections of 

those types to the database tables. The functions can be used with the geometry types to convert 
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them to other formats, extract properties from them, compare them among each other, or create 

new geometries from them (Stolze, 2003). 

The comparison functions enable spatial joins between the tables where the spatial positions of 

the features are used as the join relation. A practical example of this could be a database where 

there are two tables. The first table includes the borders of all municipalities in Finland as poly-

gons, and the second table includes the polygons of all lakes in Finland. The two tables could be 

spatially joined in a query using ST_Contains function as the join relation clause. The ST_Contains 

function returns checks if one geometry is completely inside other geometry. This would result in a 

joined table where one could analyze the distribution of lakes based on the municipality borders, 

therefore a query such as “What municipality has the largest number of lakes” would be trivial to 

implement. Furthermore, one could use the property extraction functions of the standard, such as 

the ST_Area function, and write queries like “What is the average size of the lake in each munici-

pality”. 

The SQL/MM Spatial standard is missing types and functions for handling raster data, however 

storing raster data to a relational database is not unheard of. From the more popular relational 

databases, the Oracle database (Oracle Spatial GeoRaster) and PostgreSQL/PostGIS include raster 

support with functionality for in-database raster analysis and processing (Obe & Hsu, 2021; Xie et 

al., 2013). However, only PostgreSQL/PostGIS is open-source project whereas Oracle database is 

proprietary product. Since we needed to support both raster and vector data in this use-case, and 

PostgreSQL/PostGIS was only open-source database providing support for both spatial data types, 

the selection of database technology was easy. The following chapter introduces the Post-

greSQL/PostGIS database in more depth. 

5.5 PostgreSQL and PostGIS 

The open-source PostgreSQL database with the open-source PostGIS plugin is one of the most ca-

pable spatial database available even when compared to proprietary spatial database products; it 

implements the SQL/MM Spatial standard better than many other products, and it also provides 

support for spatial raster data (Obe & Hsu, 2021). PostgreSQL is a normal relational database that 

can be extended with the PostGIS plugin to support the spatial data types and functions that are 



12 
 

 

defined by the SQL/MM Spatial standard with addition of similar data types and functions for ras-

ter data. Both projects are under permissive licenses, with PostgreSQL being licensed under a cus-

tom PostgreSQL license and PostGIS being under the more common GPL v2 license (PostGIS: Li-

cense, 2012/2023; PostgreSQL: License, 2023). Therefore, both projects can be used even in 

commercial setting, with restriction that the GPL v2 license can cause additional requirements if 

the PostGIS source code is modified and distributed. PostgreSQL/PostGIS combination is available 

for all three major operating systems (Linux, Windows, MacOS). 

In addition of implementing the SQL/MM Spatial compliant functions and data types, PostGIS also 

defines many other additional functions that work with the spatial data (Chapter 15. PostGIS Spe-

cial Functions Index, n.d.). This includes the additional support for raster data that is not defined in 

the SQL/MM Spatial standard. Some functions even allow mixing the data types, such as the 

ST_Clip function that can be used to clip a raster with a geometry. 

PostGIS installation comes with the raster2pgsql tool for uploading the raster data to the data-

base. There are two strategies when storing rasters to the database: in-db and out-db. The in-db 

storage strategy uploads the raster pixel data to the database table like one would expect when 

thinking about storing something to a database. However, when using the out-db strategy only the 

metadata of the raster is uploaded to the table and the raster is referenced with the raster file 

path. Therefore, when using the out-db strategy, the large raster file can be stored on a cheaper 

storage system, or even on cloud, while the database itself is stored on a fast SSD drive. With both 

raster storage strategies, it is recommended that the original raster is divided to smaller tiles that 

are stored as rows in the database table. The raster2pgsql command-line tool incudes arguments 

to automate the raster tiling process. 

5.6 GDAL Project 

The GDAL project is an important open-source project for spatial data handling as many of the 

other spatial projects are built on top of it. It provides a library for handling raster and vector data 

that can be used from multiple different programming languages (including Python, C/C++, C#, 

Ruby), and a set of very useful command-line utility tools that are included in the standard installa-

tion for spatial data handling (Garrard, 2016). The library defines a unified data model for raster 

and vector data with abstraction layers for loading and saving them in different file formats using 
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drivers (Warmerdam, 2008). The driver abstraction for saving and loading data enables to easily 

extend the GDAL project to support any new spatial data formats in the future. Both, the GDAL li-

brary and the command-line utility tools, were extensively used during the project. The Results 

section provides many examples of GDAL usage. 

5.7 Geospatial Data Visualization with QGIS 

An obvious way of visualizing geospatial data is to draw the data on a map layer. The open-source 

QGIS project allows to do that. It is an application that provides a graphical user interface to visual-

ize, edit, and analyze spatial data. The project is built on top of the Qt project – which is a pro-

gramming framework that is used to create cross platform graphical user interfaces, thus enabling 

QGIS to support all major operating systems (Linux, Windows, and macOS); and GDAL project – 

that enables support for the large variety of different spatial data formats that the GDAL project 

supports (Baghdadi et al., 2018). 

Thanks to GDAL, QGIS supports over 75 vector formats; over 130 raster formats; and many web 

service formats, such as WMS, WMTS, WFS, WCS, WPS, and CSW (GDAL/OGR contributors, 2023e, 

2023d; Khan & Mohiuddin, 2018). QGIS integrates well with PostGIS by offering an excellent sup-

port for visualizing vector data tables, including an option of constructing custom SQL queries for 

visualization. Raster tables can be visualized too, however from the author’s experiences during 

the project the raster data visualization support is not as good. User cannot create custom queries 

that return raster data, instead QGIS supports only visualization of full raster tables. Fortunately, 

such omissions in functionality can be corrected by extending QGIS using the plugin API that QGIS 

offers using Python or C++ programming languages (QGIS project, 2023). The project also main-

tains a public repository for existing plugins that users have created and shared 

https://plugins.qgis.org.  

5.8 Extract Transform Load 

Extract transform load (ETL) is an industry standard term used to describe a system that down-

loads data from somewhere (extract) and uploads it to a centralized storage (load). However, of-

ten just downloading and uploading the data is not enough, instead the data needs to be cleaned, 

https://plugins.qgis.org/
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validated, processed, or otherwise changed to different format, thus a step is needed between ex-

tracting and loading (transform). There is no single correct way of implementing an ETL system, 

the system design depends on many aspects, such as business needs, compliance and security re-

quirements to name only a few (Kimball & Caserta, 2004). 

Although there is no one solution to fit all, there is often some common design aspects between 

the ETL systems. The temporary storage location where the data is often stored when the data is 

extracted from the location, but not yet transformed is often called the staging area. It is also rec-

ommended to use the staging area between the transform and load steps. The staging area can be 

a directory in a file system, or it can be a temporary table in a relational database. Technically the 

staging area can be in a program memory, however it is recommended to use persistent storage 

for the staging area since it allows better recoverability, backups, and easier auditing (Kimball & 

Caserta, 2004). 

The use of a staging area between the ETL steps works as a decoupler making the steps independ-

ent from each other. This way the whole ETL process does not have to be rerun when one step 

fails. Instead, the failed step can be restarted using the data from the staging area. Other ad-

vantage from the decoupling is that the different ETL steps can be implemented using different 

tools and programming languages. The data is often distributed in a well-known industry standard 

format as was discussed in the section 5.3. This allows the usage of existing open-source tools that 

often exist for handling and processing the data in these formats. Furthermore, the step-based ETL 

architecture that is decoupled with a staging area can work well with existing workflow manage-

ment platforms such as Apache Airflow (Suleykin & Panfilov, 2019, 2020). The workflow manage-

ment platforms provide a graphical user interface for handling, scheduling, and monitoring the ETL 

process. 

5.9 ESA Sentinel-1 Data 

The European Space Agency (ESA) Sentinel-1 SAR satellite data was in central role in the project. 

As described in the section 2, the objective in the project where this solution was developed, was 

to research if radar satellite images are usable in the detection of storm damages to forested ar-

eas. ESA Sentinel-1 mission flies two identical satellites that are equipped with synthetic aperture 

radars that operate on C-band and provide fast revisit time that is measured in few days (six days 
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at the equator) (Fletcher & European Space Agency, 2012). The data generated by the satellites is 

open data and it is available for download to anyone from Copernicus Open Access Hub 

https://scihub.copernicus.eu (European commission, n.d.). 

The satellites image the planet continuously thus creating massive amounts of data. The data is 

available for download in three different processing levels, where the level-0 data is the raw data 

captured by the satellite; level-1 data is generated from the raw level-0 data by applying different 

data processing algorithms to it; and the level-2 data is further processed from level-1 products, 

however the level-2 data is available only for ocean areas and include data about wind, waves, and 

currents (Fletcher & European Space Agency, 2012). The level-1 ground range detected (GRD) 

product is best suited for the storm damage detection from forested areas user case. The product 

is projected to earth ellipsoid model and georeferenced. In the process the radar signal phase in-

formation is lost, however for this application the backscatter intensity should suffice for the use 

case. The GRD products are dual polarization acquisitions, which means that the signal is transmit-

ted from the satellite in one polarization and the backscatter signal is listened in two different po-

larizations. The GRD products are distributed using the SENTINEL-SAFE format, that stores the ac-

quisition metadata in XML file and the SAR backscatter intensity data is stored as two different 

GeoTIFF files (one GeoTIFF for each polarization) (European Space Agency, n.d.). 

Although the Sentinel-1 level-1 products already include some processing, it is advisable to further 

process these products before use. There are many processing steps that are advised to be applied 

for the GRD data (Filipponi, 2019). These preprocessing steps reduce the noise in the images, and 

correct imaging artifacts that are caused by the radar imaging technique. Many SAR image prepro-

cessing algorithms are implemented in the Sentinnel-1 Toolbox that is available in the Sentinel Ap-

plication Platform (SNAP) software package (European Space Agency, 2022) 

6 Results 

6.1 Solution Implementation 

6.1.1 Considerations 

Very quickly at the beginning of the project it was decided to select PostgreSQL/PostGIS (now on 

referred only as PostGIS) as the base technology for the solution based on the knowledge that was 

https://scihub.copernicus.eu/
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gained during the initial research for the solution. Other possible solutions were considered, such 

as not using a database at all, instead the solution would have been engineered from ground up 

using Python programming language and a spatial data handling library such as GDAL. However, 

that solution was quickly abandoned after the realization how large the processed satellite images 

are. It was known from the beginning of the project, that the solution would need to store a large 

number of satellite images, and the access to the images should be easy for the researchers. 

Therefore, if the solution would be built from ground up, a custom indexing system would have 

been needed for efficient access to the images based on image properties such as image acquisi-

tion time and location. Furthermore, the GDAL Python bindings are not very well documented, 

thus getting the project to usable level using this methodology would have required unavailable 

amount of programming resources to succeed. 

Fortunately, during the initial research phase, PostGIS was considered as the base for the solution. 

As was discussed in section 5.5 of this thesis report, PostGIS provides an excellent support for both 

vector and raster spatial data. Using a relational database as the base for the solution, we gained 

the ability of using SQL query language for accessing the data. Furthermore, we had the ability of 

storing related metadata to the database from the satellite images, such as the acquisition time, 

the satellite that captured the image (Sentinel-1A or Sentinel-1B), the satellite orbit direction 

(North to South or South to North) etc. Since PostGIS is built on top of PostgreSQL, the normal re-

lational database features are accessible, meaning that the metadata can be used as the premise 

for accessing different images in the SQL queries. The indexing of the data can be easily handled 

with PostgreSQL, thus providing efficient data access performance. 

6.1.2 Simplified System Diagram 

Figure 1 Illustrates a simplified view of the implemented system. The data is extracted from the 

open data sources using ETL scripts that upload the transformed data to PostGIS database. The 

data can be visualized using QGIS. The following chapters introduce the system in more detail. 
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Figure 1 Simplified System Diagram 

6.1.3 Open Data Sources 

An excellent feature that was gained by using PostGIS is the ability of making spatial joins between 

the database tables. As was discussed in the section 5.3, there are many sources of open spatial 

data that can be used to enrich other spatial data using spatial joins. All the data from the differ-

ent sources can be stored in one PostGIS database, thus allowing to perform the spatial joins in 

SQL queries. Table 1 lists the different open data sources that were saved in the PostGIS database. 

Table 1 Open data sources 

Provider Description License Link 

European Space Agency Sentinel-1 radar satellite im-

ages 

Other (European 

commission, n.d.)  

https://scihub.copernicus.eu/ 

Finnish Meteorological In-

stitute 

Daily weather data (precipi-

tation, temperature, and 

snow) 

CC BY 4.0 https://en.ilmatieteenlaitos.fi/gridded-

observations-on-aws-s3 

https://sentinels.copernicus.eu/documents/247904/690755/Sentinel_Data_Legal_Notice
https://scihub.copernicus.eu/
https://en.ilmatieteenlaitos.fi/open-data-licence
https://en.ilmatieteenlaitos.fi/gridded-observations-on-aws-s3
https://en.ilmatieteenlaitos.fi/gridded-observations-on-aws-s3
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National Land Survey of 

Finland 

Digital elevation model CC BY 4.0 https://asiointi.maanmittauslai-

tos.fi/karttapaikka/tiedosto-

palvelu?lang=en 

National Land Survey of 

Finland 

Topographic Database CC BY 4.0 https://asiointi.maanmittauslai-

tos.fi/karttapaikka/tiedosto-

palvelu?lang=en 

National Land Survey of 

Finland 

Division into administrative 

areas (defines the munici-

pality borders etc.) 

CC BY 4.0 https://asiointi.maanmittauslai-

tos.fi/karttapaikka/tiedosto-

palvelu?lang=en 

Finnish Forest Centre Forest mask CC BY 4.0 https://aineistot.metsaan.fi/avoinmetsa-

tieto/Metsamaski/Maakunta/ 

Finnish Forest Centre Forest usage data CC BY 4.0 https://aineistot.metsaan.fi/avoinmetsa-

tieto/Metsankayttoilmoi-

tukset/Maakunta/ 

  

6.1.4 Hardware 

One important feature that enabled the PostGIS usage as the base technology for the solution was 

the support for out-db rasters. As was discussed in the section 5.5, PostGIS enables saving the ras-

ter data outside of the database. This means that the database files, that store the data that exists 

in the PostgreSQL tables, and the satellite images can be located on different storage devices. The 

satellite images are large. Thus, it is not likely cost-effective to store the images on fast and expen-

sive devices when slower and cheaper storage media suffices. However, it is usually advisable to 

store the database files in as fast as possible storage media, since some queries can trigger a table 

scan which makes the database engine to go through the whole table searching matches for the 

query. In these cases, fast storage media can have major impact for the query performance. Post-

GIS allows the use of a solution that takes the best of both worlds. By using cheap disks that are 

based on the hard drive technology for the image storage and fast SSD disks for storing the data-

base files, we get a cost-efficient solution that has a good performance. PostGIS saves the raster 

tile metadata to the PostgreSQL table such as the extent of the tile. The tile extents can be used to 

construct a spatial index that allows efficient execution of queries that use the tile location as a 

https://www.maanmittauslaitos.fi/en/opendata-licence-cc40
https://asiointi.maanmittauslaitos.fi/karttapaikka/tiedostopalvelu?lang=en
https://asiointi.maanmittauslaitos.fi/karttapaikka/tiedostopalvelu?lang=en
https://asiointi.maanmittauslaitos.fi/karttapaikka/tiedostopalvelu?lang=en
https://www.maanmittauslaitos.fi/en/opendata-licence-cc40
https://asiointi.maanmittauslaitos.fi/karttapaikka/tiedostopalvelu?lang=en
https://asiointi.maanmittauslaitos.fi/karttapaikka/tiedostopalvelu?lang=en
https://asiointi.maanmittauslaitos.fi/karttapaikka/tiedostopalvelu?lang=en
https://www.maanmittauslaitos.fi/en/opendata-licence-cc40
https://asiointi.maanmittauslaitos.fi/karttapaikka/tiedostopalvelu?lang=en
https://asiointi.maanmittauslaitos.fi/karttapaikka/tiedostopalvelu?lang=en
https://asiointi.maanmittauslaitos.fi/karttapaikka/tiedostopalvelu?lang=en
https://www.metsakeskus.fi/fi/avoin-metsa-ja-luontotieto
https://aineistot.metsaan.fi/avoinmetsatieto/Metsamaski/Maakunta/
https://aineistot.metsaan.fi/avoinmetsatieto/Metsamaski/Maakunta/
https://www.metsakeskus.fi/fi/avoin-metsa-ja-luontotieto
https://aineistot.metsaan.fi/avoinmetsatieto/Metsankayttoilmoitukset/Maakunta/
https://aineistot.metsaan.fi/avoinmetsatieto/Metsankayttoilmoitukset/Maakunta/
https://aineistot.metsaan.fi/avoinmetsatieto/Metsankayttoilmoitukset/Maakunta/
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condition. Based on the spatial index, the pixel data need to be retrieved from the slower storage 

media only for the tiles that match the location condition. 

The first iteration of the developed solution was implemented on a consumer grade computer 

hardware. The computer had Intel Core i7-8700 CPU with 64GB of RAM. The database was stored 

on a fast Samsung 960 EVO 500GB NVME SSD, while the images were stored on two Western Digi-

tal WD Black 10TB 7200 rpm disks that were configured as a striped pool (raid-0) with ZFS. For a 

short time, the ZFS pool had a L2ARC cache that was implemented using Samsung 980 PRO 250GB 

NVME disk. The L2ARC should cache files that are accessed repeatably from the pool thus provid-

ing faster read performance when the files are served from the fast SSD disk instead of the hard 

drive. However, the performance improvement of the L2ARC cache was not verified because the 

SSD drive malfunctioned not long after the L2ARC enabled. 

At the end of the project, we received proper server grade hardware where the developed solu-

tion was migrated to. The specs for the server were: Xeon Gold 6342 CPU, 512GB RAM, with 

12x2.4TB Toshiba 12G SAS 10K, and 2xSeagate 12G SAS Enterprise Performance SSD disks. The 

other SSD disk was configured as a cache, same as in our consumer grade setup, and the other SSD 

was reserved for the database files. 

6.1.5 Extract Transform Load 

The extract transform load (ETL) system was implemented using existing open-source tools or by 

developing scripts using Python programming language or shell scripting language. The satellite 

images were downloaded from the Copernicus Open Access hub using the open-source sentinelsat 

command-line tool and they were preprocessed using the SNAP toolkit (European Space Agency, 

2022; Will, 2015/2023). The research that was conducted using the satellite images did not require 

continuous access to new images. Instead, the research was focused on a large storm event that 

happened on 20th of June 2021. Therefore, it was enough that the satellite images were down-

loaded, processed, and uploaded to PostGIS once. There was no need for scheduled uploads of 

fresh imagery. The same thing applied to other data sources. They were also uploaded to PostGIS 

only once from the same time period as the satellite images. For this reason, it was decided not to 

invest development resources on workflow management software such as Apache Airflow. The 

addition of such component would have complicated the implementation without gaining much 
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benefit from it. Instead, the ETL system was implemented as a set of manually executed scripts 

that run the ETL process. However, the addition of a workflow management software was not 

ruled out completely. The developed ETL scripts should work well with a workflow management 

software since the scripts are distinct decoupled steps that use the file system as a staging area, 

therefore the orchestration of the ETL process would be simple. 

The satellite image preprocessing step requires considerable amount of computational resources. 

The first iteration of the implementation performed the satellite image preprocessing on the same 

server where the PostGIS database was running. As the number of satellite images grew, and we 

needed more processing power, the image preprocessing was moved to high-performance compu-

tation (HPC) server that we have available at Jamk University of Applied Sciences. The HPC server 

specifications were: 4 x Xeon Gold 6130 (Skylake) processors with hyperthreading turned off (64 

CPU cores); 768GB DDR4 2666 MHz RAM; 4 x Tesla V100 32GB GPUs. The preprocessing steps 

were not GPU optimized, thus having the GPUs on the server did not help, however the large 

amount of RAM and the large number of cores allowed parallel processing of the images. The GNU 

parallel program was used to implement the parallel processing of the images (Tange, 2011). 

The preprocessing step resulted in two GeoTIFF images per one acquisition (one GeoTIFF for both 

bands). It was decided to not use any compression for the images to maximize the query perfor-

mance. Section 6.3.1 compares the compression vs. query performance tradeoff more closely. The 

average size of a single GeoTIFF image was 5.5GB with resolution around 72500 x 22000 pixels. 

The radar images were uploaded to PostGIS using the raster2pgsql command-line tool using 

100x100 tile size which resulted to around 100,000 tiles per one GeoTIFF image to be inserted into 

the database. Tiles that included only NODATA values were not added to the database. Section 

6.3.3 talks about the performance problems of the NODATA check and a proposed workaround for 

the problem. The database included about 1,500 unique satellite acquisitions, thus with two Geo-

TIFF files per acquisition the database included about 3,000 GeoTIFF files. The uncompressed Geo-

TIFF files required around 17TB of storage space and the uploaded images resulted to 310,810,967 

tile rows in the database table. 
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6.1.6 Data Visualization 

One requirement of the data platform was an easy access to the data. Since the satellite images 

are very much visual data, it is important that there is an easy way to visualize the images. As de-

scribed in section 5.7, the open-source QGIS project is well suited for spatial data visualization. It 

can use the WFS, WMS, and WMTS services that many Finnish agencies provide for open data. The 

topographical maps that are provided by National Land Survey of Finland using the spatial web 

service standards were used extensively during the project (National Land Survey of Finland, n.d.-

b). The satellite images are not very accurate. Therefore, it was a good practice to visualize the im-

ages on top of an accurate topographical map that displayed what geographical features were at 

the imaged location. The layer functionality in QGIS allowed easy comparison of the satellite image 

and the topographical map, where the layer containing the satellite image could be made trans-

parent, or quickly turned on and off, thus revealing the underlining map. 

Although QGIS includes an excellent support for PostGIS vector data, the support for raster data is 

not as good. The vector data can be visualized from custom SQL queries, however the raster data 

cannot. QGIS allows only visualization of full raster tables. Fortunately, QGIS has an excellent 

plugin API that can be used to extend QGIS functionality. Since the satellite image raster data was 

in such central position in this research, it was important that the developed data platform pro-

vided good visibility to the satellite data that was stored in the database. An existing solution for 

this problem was not found, thus a custom solution was developed during the project using the 

QGIS plugin API. 

The plugin was developed using Python programming language. The implementation of the plugin 

was kept simple. The plugin was developed for this project’s needs with minimal time resources; 

thus, the resulting implementation is not usable in other projects without further development 

and modifications to the code. Figure 2 illustrates the plugin functionality with a screenshot of 

QGIS where the plugin is used to visualize a satellite image. When the plugin cursor tool is selected 

the user can click anywhere on the map and the plugin queries the database for all satellite images 

that are acquired from that location. All acquisitions from the location are listed in the panel that 

is shown on the right side in the screenshot. The user can click through the different acquisitions 

and the layer that visualizes the radar image is updated to show the acquisition from the selected 
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time. Furthermore, the plugin has features to enhance the contrast of the satellite image using his-

togram equalization, and to cluster the different image acquisition angles to groups where the im-

ages from same angle are easy to browse. The user can also change the geographical extent of the 

satellite image to fetch smaller or larger images. 

 

Figure 2 Screenshot of the QGIS Plugin. 

The plugin was built around PostGIS database ST_AsGDALRaster function which is used in the main 

image query to make the PostGIS server to return the images from the location in GeoTIFF format. 

The query response is parsed to store the raster in GDAL /vsimem virtual file where it is added to 

QGIS layer using QgisInterface.addRasterLayer method. Although the plugin is not usable without 

modifications in other projects, it was decided to open source the implementation in case some-

body finds it useful. The project was licensed under a permissive MIT license and it is available on 

the school’s Gitlab server https://gitlab.labranet.jamk.fi/tieto-tuottamaan/qgis-postgis-raster-ex-

ploration. 

https://gitlab.labranet.jamk.fi/tieto-tuottamaan/qgis-postgis-raster-exploration
https://gitlab.labranet.jamk.fi/tieto-tuottamaan/qgis-postgis-raster-exploration
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6.2 Solution Demonstration and Validation 

As was discussed in the section 4, the motivation to implement the system was to support re-

search that used the SAR satellite images. The solution validity was confirmed by demonstrating 

that the developed system can fulfill the requirements that the research posed. The development 

of the solution extended the full timeline of the research. The development was an iterative pro-

cess where new challenges were discovered in the research project and the data storage solution 

was improved to solve the problems. 

The solution needed to support the research at all its phases. At the beginning the system was 

used for explorative data analysis. This included answering to questions, such as “how much the 

radar image backscatter intensity has changed inside a geometry X, between two images that are 

acquired at times T1 and T2”. Answering these types of explorative data analysis questions was 

trivial using the SQL query language and the raster and vector functions that the PostGIS database 

offers. 

The satellite images were first visualized using QGIS, by adding the full image file as a layer to QGIS 

project. However, when the number of images grew it was impossible to add all images to QGIS 

for visualization since one full satellite image is over 5GB in size. A better solution was needed and 

for a while the images were visualized using custom Python scripts and matplotlib in a Jupyter 

notebook project where the images were queried from the PostGIS database using SQL. This solu-

tion did not support interactive exploration of different locations in the image, thus an even better 

solution was required. The problem was finally solved by developing the QGIS plugin that was de-

scribed in the section 6.1.6. Since the solution was developed using Python programming language 

and it had full access to the data from the query, it was trivial to implement extra features to the 

plugin in addition of just image visualization, such as the histogram equalization and imaging angle 

clustering features. The histogram equalization feature answered to the research problem where 

we wanted to better utilize the full dynamic range of the full color space to better see the small 

changes in backscatter intensities. Likewise, the imaging angle clustering feature was in central 

role in our research, since it allowed us to confirm that the imaging angle influences to resulting 

radar image even when inspecting the images by eye. 
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The final challenge for the data storage system was the generation of a neural network training 

dataset. The dataset was used to train a deep learning model that was used to create improved 

difference images for change detection classifiers. The research article that is attached to this doc-

ument as Appendix 1 details the developed methodology. It was an attempt of improving the ac-

curacy of change detection classifiers enough, so that they are accurate enough to find the small 

changes in radar image backscatter that are caused by the storm damages. Because the methodol-

ogy was based on neural network technology, it required a large training dataset to work. Fortu-

nately, the training dataset was unsupervised, meaning that it did not need human labeling, thus 

the dataset could be made directly from the data that was stored in the PostGIS database. 

The dataset creation script was implemented using Python. However, most of the work was done 

in PostGIS database with SQL. The database was queried for images from random locations in an 

area where the area was known to have storm damages in forests. Each execution of the query 

returned five images from successive overflies over the location. Furthermore, additional data was 

queried form the location, such as the weather conditions at the dates of the overflies, digital ele-

vation model from the location, and imaging angle information (radar signal incidence angle and 

satellite orbit direction). The final sample was created from the data by adjusting the pixel align-

ment of the five images so that all pixels across all images were geospatially aligned. The same op-

eration was done for the digital elevation model from the location, where the resolution of the 

model was also reduced to match that of the SAR images. The resulting dataset sample was en-

coded and stored in a TFRecord file, which is a file format specially made for neural network train-

ing data pipelines. 

Overall, the research was successful as is evident from the research article that is attached to this 

report as Appendix 1. The research would not have been possible without the developed data 

storage system, thus validating the effectiveness of the solution. The data platform supported the 

research over the full life cycle by providing an easy access to the data with SQL query language, 

and by providing simple data visualization interface using the developed QGIS plugin. 

6.3 Gained Design Knowledge 

As was discussed in section 2, the used design research methodology is focused in creating and 

sharing the accumulated design knowledge that was gained during the development of an artifact 
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that solves some real-world problem. Section 5 introduced the theoretical basis on which this re-

search was built on and the sections 6.1 and 6.2 introduced the implementation and validation of 

the solution thus documenting the gained knowledge from these aspects of the research process. 

However, some of the gained knowledge was not fitting well to any of these sections, therefore 

they are introduced in this additional section. 

6.3.1 Compressed vs. Uncompressed Rasters  

GeoTIFF raster images support many different compression algorithms (GDAL/OGR contributors, 

2023a). However, the format also supports storing the image without any compression. When 

PostGIS reads the pixel data from the GeoTIFF file, it needs to uncompress the image if it is com-

pressed, thus reducing the query performance. The effect on storage requirements and query per-

formance were experimented using a test SAR image. Three compression algorithms were tested: 

DEFLATE, LZW, and ZSTD. All three algorithms support the PREDICTOR parameter that can have 

one of three values: 1. No predictor, 2. Horizontal differencing, or 3. Floating point prediction 

(GDAL/OGR contributors, 2023a). All algorithms were tested with all three PREDICTOR values. The 

original file size was 6.12GB. Table 2 lists the results from the experiment. 

Table 2 Compression Benchmark 

PREDICTOR 1 2 3 

DEFLATE 3.61GB 3.43GB 2.78GB 

LZW 4.54GB 4.28GB 3.63GB 

ZSTD 3.60GB 3.42GB 2.80GB 

 

The best compression was achieved using ZSTD or DEFLATE algorithm with PREDICTOR parameter 

set to value 3. The resulting file size was under half the size of the original file (2.78 / 6.12 ≈ 0.45). 
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The compression results from both algorithms were so similar that they both were selected to the 

query benchmark. The LZW algorithm did not come even near the performance of the two other 

algorithms, therefore it was not selected for the query performance benchmark. 

The query benchmark was conducted using the query that is shown in Listing 1 where the 

$nbr_points was doubled with each execution so that the benchmark was executed with following 

values: 10, 20, 40, 80, 160. The explain analyze print includes “Execution Time” information that 

was used as the execution time for the query. 

 
explain analyze with points as ( 
    select 
    (st_dumppoints(st_generatepoints(bounding_box, $nbr_points))).geom as point, 
    tiff_filename as filename 
    from radarimage_infos 
    inner join radarimage_metadata_filemaps on filename = xml_filename 
    where tiff_filename = 'radarimage.tif' 
) 
select  
    st_value(rast, point) 
from points 
inner join radarimages 
on points.filename = radarimages.filename and st_contains(radarimages.rast::geometry, point); 
 

Listing 1 Performance Test Query 

The query works by finding the geospatial extent of the radarimage.tif file from a metadata table 

in the common table expression clause. The image extent is used to generate $nbr_point of ran-

dom points that are inside the image extent using the ST_GeneratePoints PostGIS function. The 

main query finds the image tiles that contain the point locations using the ST_Contains PostGIS 

function. Finally, the ST_Value function is used to fetch the pixel value from the tile at the position 

of the point. By increasing the $nbr_point value, we can force the PostGIS access more tiles from 

the disk, thus making the query more demanding. All $nbr_point steps were executed 10 times for 

each compression method. Figure 3 illustrates the results from the benchmark. The plot includes 

error bars, however the timings between the 10 different executions were so similar that the error 

bars are not clearly visible in the figure. All results are linear when increasing the $nbr_point value. 

Uncompressed image access is clearly more performant when compared to compressed file data 

access. From the two compression algorithms ZSTD is clearly better performing. 
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Figure 3 Results from the Query Benchmark 

6.3.2 Changing the Compression of PostGIS out-db Raster 

The compression vs. query performance experiment that was described in the section 6.3.1 was 

conducted because at the end of the project the data storage requirements needed to be re-

leased. However, we did not want to delete the data yet. Often the data is needed some time af-

ter the project ends, therefore we researched the option of compressing the files and still have ac-

cess to the data if the need arises. The tradeoff of lower query performance is acceptable at the 

end of the project. The uncompressed GeoTIFF files required 17TB of storage. As the benchmark 

shows, after the compression the file sizes are reduced to under half of the original size. By using 

the ZSTD compression algorithm, the compression of all files resulted to only 7.5TB storage re-

quirement, thus releasing over half of the required storage requirement. 

The process of changing raster compression of out-db raster is simpler than one might expect. 

PostGIS uses the GDAL library as an abstraction layer for raster data access, thus decoupling the 
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file format from the database (Postgis/Postgis at 3.1.8, 2022). This results in the ability of changing 

the compression without updating the raster tile rows that are already in the PostGIS database. It 

seems that this feature is not documented anywhere, therefore even if the feature works in the 

3.1 version of PostGIS where it was tested, it might be unwise to rely on this feature in future ver-

sions of PostGIS. Abstraction layers almost always cause overhead that reduces the performance. 

Therefore, it is easy to imagine a situation where the PostGIS developers decide to remove the ab-

straction layer to improve performance. 

Since the compression does not need to touch the database rows, the process of compressing the 

rasters is trivially implemented using GDAL command-line tool. Listing 2 shows a script that first 

renames the old file; then compress the file with ZSTD algorithm with PREDICTOR setting 3; then it 

removes the old file. Because ZSTD is lossless compression algorithm, the original uncompressed 

file can be restored simply using the same method with COMPRESS=NONE argument (GDAL/OGR 

contributors, 2023a). 

 
mv "${filename}" "${filename}.old" 
gdal_translate "${filename}".old "${filename}" \ 
    -co COMPRESS=ZSTD -co PREDICTOR=3 -co BIGTIFF=YES 
rm "${filename}".old 
 

Listing 2 Script for Compressing the Raster 

6.3.3 Workaround for Poor raster2pgsql Performance 

During the development of the data platform, we noticed an extremely poor performance when 

using the raster2pgsql command-line tool to upload the rasters to PostGIS database. Later investi-

gation revealed that the raster2pgsql NODATA check feature was responsible for the poor perfor-

mance. The feature can be turned off using the raster2pgsql -k argument. However, the feature is 

very useful, since it does not upload tiles where all values are NODATA to the database. This is a 

very common situation at the edges of the satellite images, where there is a high number of 

NODATA values because the images are not perfectly square. Therefore, some other solution had 

to be found for the problem. 
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The raster2pgsql code was investigated for a possible fix for the poor performance, however the 

pixel value check was too tightly coupled with the GDAL file access abstraction for an easy fix. For-

tunately, during the investigation the GDAL GeoTIFF driver the GTIFF_DIRECT_IO and 

GTIFF_VIRTUAL_MEM_IO options were discovered that improved the raster upload performance 9 

to 10 times faster. The options are not very well documented, except that they turn on a special 

RasterIO implementation (GDAL/OGR contributors, 2023a). The options work only for uncom-

pressed rasters, however that was not a problem in our case where we used uncompressed files 

anyhow. With the method that was described in section 6.3.2, the options can be utilized with 

compressed raster uploads too by first uncompressing the file, then uploading it, and then chang-

ing the uncompressed file back to the compressed file. The issue and workaround was communi-

cated back to the community by implementing a simple benchmark that demonstrates the prob-

lem and the solution (Alatalo, 2023). 

6.3.4 Utilizing the GDAL Command-Line Tools 

“The best code is no code at all” (Jeff Atwood, 2007) is a commonly used saying in the field of soft-

ware engineering. Code always contains bugs, and one strategy of reducing the number of bugs is 

to write less code. Therefore, it is sensible to use existing tools to solve the problem at hand. As 

was discussed in the section 5.6, the GDAL project includes a set of extremely useful command-

line tools that were extensively used in this project. This section introduces some use cases for the 

command-line tools; about how they were used in the data platform implementation. This is not a 

comprehensive list of the functionality of these tools. However, they might serve as inspiration for 

other practitioners to read the GDAL documentation for these tools in case they have related 

problems where the command-line tools can be used to implement a simple reliable solution 

(GDAL/OGR contributors, 2023c). 

The two simplest commands are gdalinfo and ogrinfo. They return information about the spatial 

data files. The gdalinfo command is for raster data formats and ogrinfo is for vector data formats. 

The commands can show information such as is the NODATA value set for GeoTIFF file, what coor-

dinate system is in use, or what is the size of the raster in pixels and what are the spatial extent 

coordinates for the raster. With -stats argument, the gdalinfo command can also show simple sta-

tistics of the raster such as the minimum, maximum, and mean values. 
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Section 6.3.2 already showed how the gdal_translate command can be used to compress a Geo-

TIFF file. However, it can be also used to translate the raster between two formats. The following 

command transforms NetCDF file to GeoTIFF: 

gdal_translate -of GTiff input.nc output.tif 
 

Sometimes one needs to reproject a raster to different coordinate system. This can be beneficial 

when the source data is using different coordinate systems than some other spatial data that is 

already in PostGIS database. By using the same coordinate system there is no need to continu-

ously use ST_Transform PostGIS function to transform the geospatial data between different coor-

dinate systems, thus improving query performance. The reprojection of raster data can be 

achieved with the gdalwarp command. For example, the following command reprojects the in-

put.tif to EPSG:3067 coordinate system. 

gdalwarp -t_srs 'EPSG:3067' input.tif output.tif 
 

Similar useful commands are available for vector data using the ogr2ogr command. The following 

example extracts Central-Finland municipality borders from a GeoPackage file that includes the 

information about Finland division into administrative areas (National Land Survey of Finland, 

2023). The command also reprojects the data to EPSG:4326 coordinate system and simplifies the 

complex geometry. 

ogr2ogr -t_srs "EPSG:4326" -where "namefin = 'Keski-Suomi'" \ 
    -simplify 10000 -f geojson \ 
    keskisuomi.geojson SuomenHallinnollisetKuntajakopohjaisetAluejaot_2023_10k.gpkg \ 
    Maakunta 
 

Second example of ogr2ogr was used in other project where the same data platform was used to 

study speed limits in Finland. The command extracts the speed limits directly from Finnish 

Transport Infrastructure Agency’s open WFS service and uploads the data directly to PostGIS 

(Finnish Transport Infrastructure Agency, 2023)  
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ogr2ogr -f "PostgreSQL" "PG:dbname=vaylapilvi" \ 
  "https://avoinapi.vaylapilvi.fi/vaylatiedot/ows?service=wfs&request=getCapabilities" \ 
  tierekisteri:tl168 
 

7 Conclusion 

The research demonstrates that open-source projects can be used to implement an efficient data 

storage platform that can be used to support geospatial research. The platform supported the sim-

ple exploratory data analysis which is crucial part of the research at the beginning where the data 

is first familiarized with. Likewise, the platform scaled without any issues to the final use case 

where it was used to build the training dataset for the neural network model that was developed 

in the research project. The SQL query language support that was provided by the PostGIS data-

base was found to be an excellent interface for accessing and analyzing the data from the data 

storage system. Visualization of the satellite images from the data storage platform was at first a 

challenge, however when investigating the QGIS application and discovering its great extendibility 

using the plugin API, the problem was quickly solved by implementing a custom extension for the 

application. The open-source tooling that is available for handling and processing spatial data is 

excellent. The ETL system was implemented mostly by using pre-existing open-source command-

line tools that were used from shell scripts, thus requiring only small amount of custom code. The 

overall success of the data platform was demonstrated by supporting the research that used the 

data from the data storage platform to conduct research. The change detection research produced 

a scientific research article that is attached to this document as an Appendix 1. The success of the 

research validated that the implemented data platform solves the problem it was designed to 

solve. The data storage platform could be further developed to continuously fetch the newest sat-

ellite images to the platform. The ETL system in the current implementation is executed manually 

only once with a predefined time range that is used to fetch and process the satellite images and 

other data. The implementation was good enough for this use case. However, many applications 

might need access to the most recent data. For example, if the model that was developed in the 

change detection research was used in production setting, it would need access to the most re-

cent data to make predictions. Implementing this type of feature might be trivial with a workflow 

management software such as Apache Airflow as was discussed in the section 6.1.5. The software 

could be used to schedule the execution of the ETL pipeline with a time interval.  
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ABSTRACT

Satellite-based Synthetic Aperture Radar (SAR) images can be used as a source of remote sensed
imagery regardless of cloud cover and day-night cycle. However, the speckle noise and varying image
acquisition conditions pose a challenge for change detection classifiers. This paper proposes a new
method of improving SAR image processing to produce higher quality difference images for the
classification algorithms. The method is built on a neural network-based mapping transformation
function that produces artificial SAR images from a location in the requested acquisition conditions.
The inputs for the model are: previous SAR images from the location, imaging angle information
from the SAR images, digital elevation model, and weather conditions. The method was tested with
data from a location in North-East Finland by using Sentinel-1 SAR images from European Space
Agency, weather data from Finnish Meteorological Institute, and a digital elevation model from
National Land Survey of Finland. In order to verify the method, changes to the SAR images were
simulated, and the performance of the proposed method was measured using experimentation where
it gave substantial improvements to performance when compared to a more conventional method of
creating difference images.

Keywords change detection · Sentinel-1 · SAR · U-Net · mapping transformation function · remote sensing

1 Introduction

Remote sensing change detection can be used for many purposes, such as damage assessment after a natural disaster [1–
3], detection of forest damages after a storm [4, 5], and monitoring deforestation and glacier melting [6, 7], to name
only a few. Change detection works by comparing two images that have been captured at different dates in the same
geographical location and finding the areas that have changed during the time between the acquisitions [8]. Different
platforms can be used to image the terrain, such as airplanes and satellites, however only satellites provide the advantage
of continuously monitoring the whole planet [9]. The revisit time of some satellite systems can be as short as only a
few days, and the images are available from anywhere in the planet. This makes the satellite images a useful source of
remote sensing data for change detection applications. Some space agencies, such as European Space Agency (ESA),
provide some of the satellite images for anybody to download and use [10]. The ease of acquiring the data further
facilitates the development of change detection systems that are based on the satellite remote sensing techniques. The
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images from the satellites are captured using either optical or radar sensors, with radar having the advantage of piercing
the cloud layer, thus enabling it to work in various weather conditions [9]. However, the radar satellites have their
disadvantages as well. The resolution of the images is not as good as what the optical instruments can produce. The
resolution of the radar images is defined by the antenna length and the frequency band of the radar signal. To enable
higher resolution images, the satellites use the synthetic aperture radar (SAR) technique, where the satellite movement
over the ground is utilized to synthesize virtual aperture that is longer than the physical antenna on the satellite [11].
However, even with the SAR technique the radar images are lower resolution when compared to the optical images.
ESA has the Sentinel-1 mission with two SAR satellites that operate on the C-band and have the spatial resolution of
around 5× 20 meters [12]. Likewise, speckle noise reduces the quality of the SAR imagery. SAR images always have
a grainy look from the speckle, which is random noise that is always present in the images. Despite the shortcomings of
the SAR imagery, they are commonly used in remote sensing change detection [13–16].

One approach to implement a change detection system, that is generally used in unsupervised change detection, is to
proceed in steps [17]. Figure 1 illustrates this method. The images are first preprocessed to make them comparable
among each other. Then, two images from the same location, that are captured at different times, are used to produce a
difference image (DI) using an algebraic operation like subtraction, ratio, or log ratio. Finally, the DI is analysed by a
classifier algorithm to produce a change map that indicates the changed regions. The preprocessing step is crucial for this
method to work well. The issue with the speckle noise is commonly recognized problem with change detection on SAR
imagery [13, 15, 16], and to mitigate the issue, noise suppression algorithms are used in the image preprocessing step.
However, it is impossible to remove the noise completely, thus the DI also includes noise that causes misclassifications
in the classification step. Likewise, other image properties that influence the image comparability have an effect to the
quality of the DI. This includes properties such as the satellite orbit direction, incidence angle, and ground moisture
content. The satellite does not capture the image from the same angle during every revisit. In case of the ESA Sentinel-1
satellites, the satellite can be flying from North to South, or from South to North, during the image acquisition, and the
satellite orbit can be higher or lower with respect to the horizon from the ground perspective between the overflies.
The satellite imaging angle influences how the radar signal backscatters from the ground features [18], which results
in that images taken from different imaging angles likely produce lower quality DI than images taken from the same
imaging angle. Likewise, ground weather conditions can influence the DI quality. Soil moisture content changes the
dielectric constant of the soil, thus changing the backscatter intensity of the radar signal [19]. Images that are taken in
similar weather conditions are likely to produce better quality DI when compared to images that are taken in different
weather conditions. One solution to improve the DI quality is to favour images with similar acquisition conditions when
selecting the images that are used to produce the DI. However, this is not always possible.

In this paper we introduce a new method of producing better quality difference images by using neural network-based
mapping transformation function preprocessing step that factors in the image acquisition conditions of the SAR images,
thus making the SAR images more comparable. Existing research about SAR image preprocessing has focused on
removing speckle noise from the images [20, 21], or correcting the incidence angle variation [22, 23]. However, to the
best of knowledge of the authors, this is the first time when the comparability of the SAR images is improved by taking
in to account the overall image acquisition conditions using neural network-based preprocessing step. Project code is
available on GitHub 1.

2 Materials and Methods

2.1 Proposed Method

Figure 2 illustrates the overall architecture of the proposed method. It replaces the conventional method that is illustrated
in Figure 1 image differencing step. The idea of the proposed method is to improve the SAR image comparability by
considering the acquisition conditions of the SAR images. The proposed method utilizes a mapping transformation
function that creates artificial SAR images in the requested acquisition conditions. The mapping transformation function
F is a neural network model that is trained to predict the SAR image at the time t (It). The neural network output Ît is
the artificial SAR image that is created in the acquisition conditions of It, therefore it should be more comparable to the
It than previous SAR images from the location that might have been captured in different acquisition conditions. The
model input consists of three distinct features, which are: The previous SAR images from the location; the acquisition
conditions of the SAR images (including at time t); and the digital elevation map from the location. The objective of
the neural network model is to learn to replicate the SAR image at the time t. The only information from the time t in
the model input are the image acquisition conditions of the It. This means that for the model to be able to replicate
the It, it needs to learn to map the information contained in the previous SAR images and the digital elevation map
to the image acquisition conditions of the It. With an ideal model that could perfectly replicate the It, the Ît and It

1https://github.com/janne-alatalo/sar-change-detection

2

https://github.com/janne-alatalo/sar-change-detection
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Figure 1: Change detection is often implemented in three distinct steps. The first step is to make the images more
comparable to each other using a preprocessing pipeline. The preprocessed images are then used to create difference
images (IDI ) using a function g that is often a algebraic operation, such as subtraction, ratio, or log ratio. The IDI is
then used as an input to a change detection classifier that produces the change map that displays the changed areas.
The figure illustrates the conventional method of producing the difference images by using two SAR images that are
captured from the location in two different dates.

would be identical if nothing has changed between the image acquisition of the It−1 and It, however the Ît would be
missing the change if something had changed after the previous image acquisition since the information of the change
is not included in the model input data. In practice the SAR images include random noise that is impossible to replicate
accurately, and the acquisition conditions are not accurate enough for perfect replication of the It, therefore the Ît only
approximates the It.

The intuitive description of the Ît is that the neural network-based mapping transformation function produces a
prediction how the It should look like based on previous information about the location and the actual imaging
conditions of the It. The produced image Ît can be used with the actual image It to create the difference image ÎDI by
using a simple algebraic operation like subtraction, ratio, or log ratio. Generating the difference image is the standard
method of conducting change detection, especially when using unsupervised methods [17].

Conventional methods of producing the difference image often use only one of the previously captured images with
the most recent image to generate the image e.g. IDI = g(It, It−y) [24]. This method has the previously discussed
drawbacks of noise and imaging conditions affecting the final difference image quality. By using the proposed mapping
transformation function, the predicted image Ît is used in the place of the previously captured image to generate the
difference image e.g. ÎDI = g(It, Ît). The predicted image Ît does not contain noise and the mapping transformation
function can correct the acquisition condition mismatch between the images, therefore the proposed method should
produce better quality difference images when comparing it to the conventional method.

SAR imaging is sensitive to the soil moisture content of the imaged area [19]. Change in the soil moisture level changes
the dielectric constant of the soil, and that way changes the SAR backscatter intensity. Often the soil moisture content
changes should be ignored by the change detection system. Otherwise, the system would notify changes after every
rainy day. This is one of the advantages of the proposed method. By adding weather to the model input acquisition
condition parameters, the mapping transformation function can learn to construct the Ît in the actual weather conditions
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mapping transformation function

Input data

...

Digital
Elevation

Model

 is the neural network model

 is the predicted SAR image for the location at the time 

 are the SAR images from different times at the same location

 is the function producing the difference image 

 are the image acquisition conditions at the different times

Figure 2: Architectural overview of the proposed method. The neural network-based mapping transformation function
fuses the information from previous image acquisitions and predicts what the scene should look like at the imaging
conditions of It. The model output image Ît and the actual image It is used to produce the difference image ÎDI .

of It and should correctly model the changes in the soil moisture changing the backscatter intensity. Therefore, the
false positive changes, that are caused by soil moisture changes, are reduced.

In addition of weather, the acquisition condition parameters also include the imaging angle and identify the satellite
that captured the image. A location is imaged by one of the sentinel satellites with an interval ranging from a few
days to about a week. The satellite does not capture the image from the same angle every time. The satellite can be in
ascending or descending orbit during the image acquisition and the incidence angle can vary between the overpasses.
The ascending or descending orbit changes the look direction of the satellite, and that way has a considerable affect to
the resulting image. The Sentinel-1 satellites are right-looking. When the satellite is descending from North to South it
is imaging to the direction of West, and for ascending passes it is imaging to the direction of East [25]. Various 3D
features, like forest edges, lake banks and hills are sensitive to the look direction, therefore the imaging angle is an
important parameter when computing the difference image. When using an image differencing method where only
one previous image is used for difference image computation, the imaging angle of the most recent image can restrict
what previous images can be used to produce the difference image. Seasonal changes, like foliage growth or change in
snow cover, means that the most optimal image for the differencing would be the most recent previous image, however
different imaging angles can limit the usage of the most recent images. This problem is not present with the proposed
method. The model input includes n previous images and their imaging angle information. The model output image Ît
is produced using the actual acquisition conditions of It. The model can use all the information from all n input images,
despite the input including images from different look directions, and the produced image Ît represents an image that is
acquired from the same angle as It.

2.2 Neural Network Architecture

Figure 2 illustrates the architecture of the neural network-based mapping transformation function. The architecture is
based on the well-known U-Net neural network architecture [26]. The previous n SAR images, and the digital elevation
map (DEM) are stacked to construct the input. The previous images and the DEM are all from the same location. The
images are projected to the same resolution and the pixels across the different images are aligned to match the same
geographical position. The U-Net architecture is constructed from encoder and decoder units. The encoder takes the
input and compresses the input image stack to the latent space by using a set of downsampler blocks that half the
input resolution using convolution layers with stride 2× 2. The encoder stacks enough downsampler blocks so that
the input image stack is compressed to 1× 1 resolution in image height and width dimensions. The image acquisition
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Figure 3: The neural network architecture for the mapping transformation function. The architecture is based on the
well-known U-Net neural network architecture. The image acquisition conditions are injected to the latent vector
between the encoder and decoder.

conditions vector, that contains the information of the acquisitions conditions for the n input images and the target
image, is concatenated to the latent vector. The resulting vector is then fed to the decoder that decodes the vector
back to the dimensions of a normal SAR image outputting the Ît. The decoder is constructed from upsample blocks
that double the width and height dimensions using transposed convolution layers with stride 2× 2. The decoder has
same amount of upsampler blocks as the encoder has downsampler blocks. The number of filters, that are used in the
upsampler and downsampler blocks, can be configured for every block individually, except for the final upsample block
that has the same number of filters as the SAR image has bands. The encoder and decoder layers are connected with
skip connections that help the model in producing the output by not forcing the model to pack all the information to
the latent vector. Instead, the information can flow from the input to the output by skipping most of the layers in the
architecture. This is a standard method in U-Net style architectures.

2.3 Dataset

A dataset is needed for the training of the neural network-based mapping transformation function. As discussed
previously, the mapping transformation function input is composed from the previously taken SAR images; the
acquisition conditions of the previous and the most recent SAR image; and the digital elevation map from the location.
The objective of the model is to learn to predict the most recent SAR image based on the input, therefore the most
recent SAR image is the target in the training dataset. This means that the training dataset does not require any labelled
data making the learning process of the proposed method unsupervised and economical to implement. The dataset can
be generated directly from available data sources without needing human labelling for the data.
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Area

Finland

Figure 4: The dataset was generated from images acquired from the marked area. The figure contains data from
the National Land Survey of Finland Topographic Database [32] and data from @EuroGeographics distributed by
Eurostat [33].

The SAR images for the dataset were acquired from the ESA Copernicus Open Access Hub [27]. The Ground Range
Detected products were used in this study [28]. The images were captured between March 2020 and August 2021
from the area illustrated in the Figure 4. All images from the time frame that included the area were downloaded from
the Copernicus Open Access Hub. The images were preprocessed using the Sentinel-1 Toolbox from the Sentinel
Application Platform (SNAP) [29], by applying the data preprocessing workflow described by Filipponi in [30]. The
optional noise filtering step was applied to the dataset using the Refined Lee filter from the SNAP toolkit. The more
accurate AUX_POEORB precise orbit files were used in the Apply Orbit File step. The AUX_POEORB files are
available 20 days after the image acquisition [31], and since the processing was done in spring 2022, the more accurate
orbit files were available for all images. The proposed workflow in [30] uses the SRTM Digital Elevation Database
in the Range Doppler Terrain correction step, however the database does not cover the area from where the dataset
was created, therefore the Copernicus 30m Global DEM was used that does cover the area. The SNAP toolkit can
automatically download the required DEM files during preprocessing and the Terrain Correction step supports multiple
different DEM sources, including the Copernicus 20m Global DEM, thus the change was trivial to implement. The
preprocessed images were saved as GeoTIFF files and uploaded to PostgreSQL 2 database that was using the PostGIS 3

extension. Using a relational database as the storage backend simplified the dataset generation process since all the data
was available in one place and queryable with SQL.

Although the Copernicus 30m Global DEM was used in the SAR image terrain correction preprocessing step, the
product was not used for the mapping transformation function input. Instead, we used more accurate DEM from
National Land Survey of Finland (NLS). NLS provides the DEM in multiple different resolutions of which the most
accurate 2m grid DEM was used [34]. The data is open access and distributed under Attribution 4.0 International (CC
BY 4.0) license 4. The DEM was downloaded in GeoTIFF format and uploaded to the same PostgreSQL database with
the SAR images.

As discussed before, the image acquisition condition data included information about the weather when the images were
captured. This data was acquired from Finnish Meteorological Institute (FMI) that provides daily weather observations
that are interpolated to 1 × 1km grid [35]. The interpolation method is described by Aalto et al. in [36]. The data
is distributed in NetCDF format and uploaded once a month. Daily mean temperature, daily precipitation sum, and

2https://www.postgresql.org/
3https://postgis.net/
4https://creativecommons.org/licenses/by/4.0/

6

https://www.postgresql.org/
https://postgis.net/
https://creativecommons.org/licenses/by/4.0/


J. Alatalo, T. Sipola, M. Rantonen A PREPRINT

snow depth data was downloaded from the time range. The daily observations were extracted from the NetCDF files,
converted to daily GeoTIFF rasters, and uploaded to the same PostgreSQL database with the SAR images and DEM.

The final data samples were created by sampling random locations from the area and random dates from the time range.
For training dataset, the time range was limited to the time before 20th of June in 2021, and for the test dataset the time
was limited after the date. The image size was set to 512× 512 pixels, and number of previous images was set to 4. To
keep the spatial resolution of the SAR images essentially unchanged, the geographical dimensions of the images was set
to 3× 3km. For each random location and date, the target SAR image It was the next SAR image from the location that
was available after the date. The input SAR images It−4, It−3, It−2, It−1 were the SAR images from the four previous
acquisitions from the location that were captured before the It. The SAR images and the DEM was queried from the
PostgreSQL database and the rasters were projected to the same projection window with the same 512× 512 resolution
and 3× 3km spatial dimensions using GDAL library [37]. The gdal.Translate function was used for the projection
with nearest neighbor resampling algorithm. After the projection, all pixels were geographically aligned across all
images and the images could be stacked to construct the input image stack. The Sentinel-1 satellites use Interferometric
Wide swath mode with dual polarization over the land areas thus one SAR image has two bands [12]. That makes the
input image stack to have 1 + 4 · 2 = 9 channels (DEM has one channel and every SAR image has two bands/channels).

The acquisition conditions were composed from the following features:

1. Mean temperature of the acquisition date
2. Snow depth in the acquisition date
3. Satellite orbit direction during the acquisition (Ascending/Descending)
4. Incidence angle
5. Satellite id (Sentinel-1A or Sentinel-1B)
6. Precipitations amount in the acquisition date and three previous dates

All other features were scalar values from the acquisition date except for precipitation that is a vector with values for
four different days. Since the moisture content of the soil has known effect to the signal, and moisture can linger long
times in the soil, it was decided to include the precipitation amounts from multiple days to the acquisition conditions.
Taking the precipitation amounts from the previous 4 days was a somewhat arbitrary decision with a reasoning that the
neural network can learn to ignore the precipitation amounts from previous days if they have no use. The features were
flattened to the final vector with dimensionality of |D| = 9.

2.4 Experiment Setup

The performance of the proposed method was measured using experimentation. The main contribution of this paper is to
offer a new strategy for computing the difference image. Existing methods generally use a strategy where the difference
image is computed using IDI = g(It−y, It), where the g is the differencing function, It−y is one of the previous images
from the location captured at some previous date, and It is the most recent image from the location. The proposed
method uses the neural network output Ît in place of the It−y to compute the difference image ÎDI = g(Ît, It). The
mapping transformation function factors in the imaging conditions of It when generating the Ît, therefore the ÎDI

should be higher quality when compared to IDI . The difference image is generally further used in the change detection
system to detect the changes by applying a classifier to the difference image. The classifier outputs a change map
indicating the pixels that contain the detected changes. By using identical classifier to classify the difference images
generated by the two different methods and comparing the classifying accuracy of the resulting change maps, the quality
of the two difference images can be measured.

2.4.1 Change Simulation

The experiment needs a dataset with known changes so that the accuracy of the change detection classifier can be
determined. This is a challenge since only a small number of datasets exists for remote sensing change detection even
for optical satellite images [38]. For SAR images there are only few datasets such as the ones used in the following
publications [39, 40], however they consist of only few SAR image pairs with a hand labelled change map. Currently
there are no large enough SAR datasets for deep learning applications available online [41].

To avoid the problem with the lack of change detection datasets for SAR images, the decision was made to use
simulation to add changes to real SAR images. This technique was used by Inglada and Mercier in [42] where they
measured the performance of their statistical similarity measure change detection algorithm using simulated changes.
The authors used three different methods for change simulation. The techniques were: offset change, where the original
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value was shifted by a value; Gaussian change, where the original value was changed by adding zero mean Gaussian
noise to the value; and deterministic change, where a value was copied from some other location in the image. Likewise,
Cui et al. used change simulation for SAR images when they introduced an evaluation benchmark for SAR change
detection algorithms [43]. The change simulation methods in the paper try to replicate changes that are commonly seen
in the real world using techniques that correctly resemble the statistical properties of the real world changes. Based on
these papers two change simulation methods were devised for this study.

1. Offset change: A value is added to the original pixel value. The simulation does not try to replicate any real
world change, however it is trivial to implement, and the offset value can be changed to test different offsets.

2. First-order statistical change: The statistical distribution of the change area is converted to the statistical
distribution of some other nearby geographical feature. This replicates the real world changes more accurately.

Figure 5 illustrates the simulated change methods when applied to an example SAR image. The changes were added to
the SAR images by creating a random shape mask and positioning the mask to a random location in the SAR image.
The pixel values inside the mask were changed using the selected method. The location of the mask was restricted to
forested geographical areas in the SAR image. If the mask location was at forest edge, the mask part that landed outside
of the forested area was not changed. The information about different geographical features was acquired from the
NLS Topographic Database [44]. The database was also utilized in first-order statistical change implementation where
the forest area pixel values were changed to follow the statistical distribution of some other geographical feature. The
nearest areas of the desired geographical feature type were queried from the database, and the statistical distribution
of the pixel values was estimated using a univariate kernel density estimator (KDE) from the statsmodels Python
library [45]. A second univariate KDE model was fitted to the pixel values of all forested area pixels in the SAR image.
The mapping of the pixel values was implemented using the method of modifying first-order statistical distribution
described in [43]. The change area pixel values were first mapped to uniform distribution in the interval [0, 1] by using
the cumulative distribution function (cdf) of the forest area KDE. After that, the inverse cdf of the second KDE model
is applied to the uniformly distributed values, thus mapping them to the distribution of the desired geographical feature.

2.4.2 Change Classifier

The quality of the difference images was measured using two different classifiers. The first method is a simple threshold
method. A thresholding value is chosen, and the pixels are classified to changed or unchanged based on if the value
is smaller or greater than the threshold. This requires that the pixels have scalar values. The scalar valued difference
images were produced using the following equations:

ÎDI(x, y) =

√∑
b

(It(x, y, b)− Ît(x, y, b))2 (1)

IDI(x, y) =

√∑
b

(It(x, y, b)− It−y(x, y, b))2 (2)

In the equations, ÎDI is the difference image that is computed using the proposed method, IDI is the difference image
that is computed using the conventional method, b is the band, and the x and y define the pixel location. The different
bands are considered as vector dimensions. Pythagorean theorem is used to compute the vector length that is used as
the value for the difference image pixel. The threshold method was used as an example of an unsupervised classifier
algorithm [41]. The performance of the threshold classifiers was measured using the well known area under curve
(AUC) metric that is computed from the receiver operating characteristic (ROC) curve. The metrics were computed to
the test partition of the neural network mapping function dataset. The ÎDI and IDI difference images were computed
for every sample in the test dataset, and the pixels from all samples were used to generate the two datasets that were
used to compute the ROC curves and AUC metrics.

The second classifier was the linear support vector classifier (SVC). The support vector classifier was used as an example
of supervised machine learning algorithm. The support vector models work with multidimensional data, therefore the
difference images were produced using simple subtraction:

ÎDI(x, y, b) = It(x, y, b)− Ît(x, y, b) (3)

IDI(x, y, b) = It(x, y, b)− It−y(x, y, b) (4)
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(a) Original image (b) Change mask

(c) Offset change (d) First-order statistical change

Figure 5: Example of the two simulated change methods. The SAR images are visualized as RGB image by using red
and green channels for the two bands. The blue channel is set to zero. The offset change is −2.5 dB in the image c, that
is close to the mean change introduced by the first-order statistical change method in the image d.

9



J. Alatalo, T. Sipola, M. Rantonen A PREPRINT

Table 1: Parameters for the neural network architecture. The parameters configure the convolutional layers in the
upsampler and downsampler blocks seen in the architectural diagram Figure 3.

Block number Downsampler (filter size, kernel
size)

Upsampler (filter size, kernel size)

1 64, 4 512, 4
2 128, 4 512, 4
3 256, 4 512, 4
4 512, 4 512, 4
5 512, 4 512, 4
6 512, 4 512, 4
7 512, 4 256, 4
8 512, 4 128, 4
9 512, 2 2, 4

The test dataset from the mapping transformation function training was used to train the classifiers. For each sample,
the two difference images were computed, and the pixels from all difference image samples were used to create the two
datasets. The first dataset was generated using the pixels from the ÎDI samples, and the second dataset was generated
using the pixels from the IDI samples. The two datasets were further divided to train and test datasets with a rule that
all pixels originating from one image sample end up in the same side of the split. The train test split was also identical
for both datasets. The datasets were used to train two instances of the classifier and measure their accuracy.

3 Results

3.1 Training the Neural Network-Based Mapping Transformation Function

Different neural network parameters were experimented with, and the best results were achieved with the parameters
shown in the Table 1. Mean squared error was used as the loss function, and AdamW [46] was used as the optimizer.
The final training dataset had around 230, 000 samples, and the training was monitored with a test dataset of around
9, 000 samples. The neural network architecture was implemented using TensorFlow deep learning framework [47].
The training was conducted on one NVIDIA V100 GPU with batch size of 200, and training time of around 30 hours.

Figure 6c demonstrates the model performance for one of the test samples. Figure 6a shows the real SAR image that
the model tries to predict. Figure 6b illustrates the difference between the real SAR image and the model output with a
heat map where lighter color indicates a greater error. The predicted image is very close to the real SAR image except
for lack of noise that is purely random and impossible for the model to predict. Likewise, the lower right corner of the
image has an area that has greater error in the prediction. The error is located in a lake, therefore the error can be a
result of waves that are likewise impossible to predict.

The proposed method depends on that the mapping transformation function adapts the predicted image Ît based on the
imaging conditions of It. To verify that the model genuinely uses the image acquisition conditions to produce the Ît,
the model was experimented to produce outputs with manually modified imaging condition vector Dt. Figure 6d and
Figure 6f image pair illustrates model outputs where the Dt is modified to have opposite orbit directions. Figure 6e
illustrates the difference between the images. The lake banks and the upper left corner of the image, where there
is a small hill, have large differences between the two generated images. All locations, where there are greater
differences between the images, are 3D features. The Sentinel-1 satellites have different look directions on ascending
and descending orbit directions. Therefore, the scattering of the radar signal is different and the difference is most
noticeable on 3D features. Since the differences are so clearly located on the 3D features in the image the model is
clearly factored in the orbit direction when generating the output. This verifies that the imaging conditions are used by
the model to produce the Ît in the imaging conditions of It.

The same experiment was conducted by modifying the precipitation amounts in Figure 6g and Figure 6i. The difference
between the generated images is shown in the Figure 6h. This time the difference between the generated images is
focused on swamp, meadow, and agricultural land areas in the image. The forest areas have only small differences
between the images. In forest areas, the radar signal is scattered back by the forest foliage where the moisture does not
affect the scattering properties as much as the open areas. In open areas, the radar signal hits the ground where the soil
moisture content is altered more by the rain, thus changing the backscatter intensity. This experiment suggests that the
model uses the precipitation information correctly when generating the output image.
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(a) Target image It (b) Difference between It and Ît (c) Predicted image Ît

(d) Ascending orbit direction (e) Difference between orbit directions (f) Descending orbit direction

(g) Zero rain (h) Difference between the rain conditions (i) Substantial amount of rain

Figure 6: Mapping transformation function outputs with different imaging conditions. The image a is the original SAR
image that is captured from coordinates 64.919 lat, 28.124 lon in 7th of July 2021. The image c shows the model output
Ît when it is trying to predict the It. Image b shows the difference between the true image It and the predicted image
Ît. The Images d, f, g and i are generated by manually modifying the imaging condition vector Dt. Image d has
ascending and e has descending orbit direction. Image e shows the difference between the different orbit direction
images. Identical experiment was conducted by varying the precipitation amount in images g and i. Image h shows the
difference between the images with the different precipitation amounts.
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3.2 Identifying the Best Conventional DI Strategy

The conventional method of computing the difference image is to use one of the previous SAR images that is captured at
some preceding date with the most recent image to produce the difference image IDI = g(It−y, It). There are multiple
different strategies when selecting the previous image. The simplest strategy is to select the previous image that is
preceding the image that was captured most recently. This strategy has the advantage that the least amount of time has
elapsed between the images, therefore the number of natural changes, like foliage growth or soil moisture changes,
are minimized. However, the problem is that the previous image has very likely different incidence angle and it might
have been captured from different orbit direction (ascending/descending). To make sure that we compare the proposed
method to the best conventional method, three different previous image selection strategies were compared to identify
the best strategy. The threshold classifier was used to compare the quality of the difference images that were produced
using the different strategies. The strategies have different trade offs between the elapsed time and imaging angle:

Method 1: Closest incidence angle and the same orbit direction.
Method 2: Most recent previous image with the same orbit direction.
Method 3: Most recent previous image preceding the target image (It−1).

Figure 7 illustrates the comparison of the three different methods using ROC curve plots. The strategy where the
previous image is captured from the same orbit direction and has the closest incidence angle with the It is the best It−y

selection strategy. From this on forward, the Method 1 is always used when referring to the conventional method of
computing difference image.

Figure 7: Comparison of different previous image selection strategies when using the traditional method of computing
the difference image.

3.3 Proposed Method vs. Conventional Method

3.3.1 Threshold Classifier

Figure 8 illustrates the ROC curve plots for the two threshold classifiers when measuring the quality of the difference
images generated with the two methods. In this experiment, the changes are simulated to the dataset using the offset
change method. The simulated shift is −2.5 dB in the change area, which represents a considerable change. In the real
world, this could be a change where the forest is clear cut, making it smoother, and that way reducing the backscatter
intensity. The threshold classifier that is using the difference images that are produced using the proposed method is
clearly better. This indicates that the proposed method generates better quality difference images.

Figure 9 illustrates the results of the same experiment when it is repeated to the simulated change dataset using the
statistical change method. The change areas are simulated to emit the backscatter intensity of nearby forest areas
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Figure 8: ROC curve for the two threshold classifiers when applied to the dataset with simulated changes using the
offset change method.

that are not as densely wooded making this more realistic representation of real changes in the forest. The mean
backscatter intensity change varied from around −0.5 dB to −2.5 dB in the change areas depending on the sample.
Both classifiers have considerably worse performance, however the proposed method is still better performing. The
overall poor performance is to be expected with the threshold classifiers. It is the simplest possible classifier working in
single pixel level without having any kind of visibility to the neighbouring pixels. Furthermore, the changes can be
small in the simulated change dataset that is created using the statistical change method.

Figure 9: ROC curve for the two threshold classifiers when applied to the dataset with simulated statistical changes.
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Table 2: Experiment results for the SVC models.
Dataset Proposed method accuracy Conventional method accuracy

Shift change 0.89 0.81
Statistical change 0.75 0.70

3.3.2 Support Vector Classifier

The experiments were repeated with the SVC model to the same two datasets. The linear kernel SVC implementation
LinearSVC from Scikit-learn library [48] was used to conduct the experiment. Linear kernel SVC was chosen due
to large dataset size. Other kernel types were tested, however they did not scale to the large number of samples. The
samples were normalized using the Scikit-learn StandardScaler to ease the model convergence. Table 2 displays the
results from the experiments. The proposed method is clearly superior to the conventional method in both experiments.
The performance in the statistical change dataset is considerably worse when compared to the shift change dataset.
However, this is to be expected with the similar loss of accuracy in the threshold classifier experiments. This experiment
uses supervised learning with labeled dataset which should improve the results when comparing to the threshold
classifier. However the SVC is still very simple classifier that performs the classification at pixel level without any
visibility to the neighbouring pixels, thus the accuracy scores are mediocre at best. Still, achieving high accuracy score
was not the goal of the experiment. Instead, the experiment is comparing the accuracies of the two classifiers and
the results from this experiment support the findings from the threshold classifier experiments. The proposed method
clearly produces higher quality difference images.

3.3.3 Model Without the Weather Data

The dataset creation for this project was a major undertaking which complicates the adaption of the proposed methodol-
ogy since the model needs to be trained to every location where it is used. Finnish Meteorological Institute provides
the interpolated weather data for the features we used in this study that are available in locations inside the borders of
Finland. However, equivalent data sources are not necessary available in other countries. Therefore, we experimented
how the neural network based mapping transformation function works without the weather data. The model training
pipeline was modified to drop the weather data during training and inference, thus the acquisition conditions consisted
only from incidence angle, satellite orbit direction, and satellite id. Figure 10 illustrates the results from the experiment.
The experiment used simulated changes with −2.5 dB shift and exact same model hyper parameters with the results
that are illustrated in Figure 8, thus the result is directly comparable. The resulting AUC metric is higher at 0.83 when
comparing to the conventional method at 0.79, however the result is worse when comparing to the model that has
visibility to the weather data with AUC metric of 0.87. Therefore, we can conclude that the proposed methodology can
be used also without weather data, and it achieves measurable improvement over conventional method. However, to
achieve the best performance, the model requires the weather data in addition of the other imaging condition features.

4 Discussion

The experiment results show that the proposed method produces higher quality difference images than the conventional
method. Since the output from the proposed method is a difference image, many of the existing change classification
techniques may benefit from the method without any modifications. The techniques generally use the conventional
method for producing the difference image, however it is completely separate step from the classification, and thus
could be replaced with the proposed method without changes to the classification step. Some methods do not use
the difference image computation step, instead they accept the two images directly to the model to carry out the
classification. Even with these techniques the usage of the proposed method could be beneficial. In these cases, the
earlier image (It−y) is replaced with the Ît, thus giving the classification model better understanding about what the
scene should look like in the correct image acquisitions conditions.

This study did not experiment with the more advanced change detection classifiers since the simple classifiers were
enough to prove that the proposed method is better than the conventional method. However, the clear improvement in
classification accuracy with the simple methods could indicate that similar improvement can be achieved with the more
advanced methods.

The use of simulated changes to measure the performance of the method was a necessary compromise caused by the
lack of existing change detection datasets suitable for training the neural network. The simulated changes are not
realistic enough to draw a final conclusion about how much the proposed method would improve the change detection
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Figure 10: Threshold classifier ROC when used with mapping transformation function that is trained without the
weather data.

performance in real world application. However, the experiments with the simulated changes indicate a substantial
performance improvement potential.

The downside of the proposed method is that the mapping transformation function is a neural network model that
requires a training dataset and considerable amount of processing power for training. The dataset creation is a complex
operation that combines data from multiple data sources. Some of the sources that were used in this study are available
only for geographical locations inside Finland, such as the interpolated weather data from Finnish Meteorological
Institute. The model requires training data from the locations it is used at inference time which complicates the adaption
of the method outside of Finland. However, many of the data sources very likely have equivalents available in other
geographical locations, therefore the adoption is not impossible. Even a global training dataset could potentially be
constructed, which could make the training of a universal model possible. The recent advances in neural network
architectures with natural language processing and image generation have shown that the models can learn from
impressive amounts of data. The model training is unsupervised, meaning it does not require labelled data, thus the
creation of such a dataset could be possible. Our experiment with a model that did not see the weather data in the
input shows that the method achieves measurable improvement over the conventional method even when the model has
information only about the imaging angle and the satellite. That data is available in the SAR images when they are
downloaded from the ESA open access portal, thus simplifying the dataset creation considerably. However, without
the weather data the mapping transformation function cannot generate accurate enough SAR images to achieve same
accuracy metrics that the model with the weather information achieves.
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Data Availability

The Sentinel-1 SAR imagery is available to download free of charge from Copernicus Open Access Hub [27].
The weather data is available to download free of charge from Finnish Meteorological Institute [35]. The digital
elevation map and topographic database are available to download free of charge from the National Land Survey of
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Finland open data file download service [34, 44]. Links to the download sites are available in the references. The
derived dataset that was used to train the neural network and supports the findings of this study can be downloaded
from the Fairdata.fi service [49]. The computer code that was used to produce the results is available at https:
//github.com/janne-alatalo/sar-change-detection.
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