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Abstract 

These days cyberattacks pose a growing risk to cyber-physical systems (CPSs) that act as a part of critical 
infrastructure (CI) that are vital to a nation’s economy and security. These attacks can disrupt vital devices 
and services, paralyze whole societies, and cause even life-threatening consequences. More robust and re-
silient infrastructure is required to combat an ever-increasing number of incoming cyberattacks, which can 
be divided into denial-of-service (DoS), distributed denial-of-service (DDoS), Malware, and Phishing attack 
domains. 
 
The research focus was on studying some of the most common cyberattacks studied in the chapter: 
“Cyberattacks Against Critical Infrastructure Facilities and Corresponding Countermeasures” by Vähäkainu 
et al. (2022) targeting critical infrastructure facilities, machine learning defensive mechanisms to provide 
additional detection and defense capabilities to extend the inadequate protection of critical infrastructure 
facilities against cyber threats, and reviewing the detection accuracy and best fit of these mechanisms to 
identify incoming cyberattacks. To reach the research objectives, information was acquired by performing 
database searches from various scientific databases and web pages on the internet, and comparative study 
methods were applied to analyze the data collected. The data gathered was used to gain an understanding 
of what is the best suitable machine learning classifier to detect the most common cyberattacks previously 
mentioned, and with what accuracy. 
 
The results indicated that the decision tree and random forest classifiers provided an excellent perfor-
mance outperforming other classifiers compared. The random forest achieved the best accuracy among all 
the classifiers reviewed providing 97–99 % DDoS, 89 % FDIA, 92–99 % Malware, 96–100 % Phishing, and 99 
% Ransomware attack detection accuracy, reaching the best choice of the classifiers examined. The Ran-
dom Forest is a well-known and extensively utilized classifier capable of preventing overfitting, and it can 
be applied in the domains previously mentioned. The results also showed that the Naïve Bayes classifier 
was able to provide only rather poor performance, 62–99 % DDoS, 89 % FDIA, 70–91 % Malware, 95 % 
Phishing, and 35 % Ransomware accuracy in most of the experiments, and hence, it is not advised to utilize 
it as a countermeasure against incoming cyberattacks, except possibly with FDIA attacks in some cases. 
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Acronyms 

AES Advanced Encryption Standard is a standard for encrypting digital data  

AI Artificial intelligence can be defined as an ability to mimic human intelligence 

ANN Artificial neural network is a computational model consisting of various processing 

units obtaining inputs and delivering outputs based on predefined functions 

API Application programming interface is a software intermediary allowing two applica-

tions to communicate with each other 

APT Advanced Persistent Threat is an attack campaign utilizing continuous, illicit, and so-

phisticated hacking techniques to obtain access to a system and stay inside 

BN Bayesian Network is a probabilistic graphical model using Bayesian inference for 

probability calculations 

CDBN Conditional deep belief network is a deep-learning classifier and a probability genera-

tion model 

CI Critical infrastructure consists of essential systems, networks, and assets required to 

remain operational to maintain security 

CISA Certified Information Systems Auditor is ISACA’s standard for achievement for those 

who audit and assess an organization’s information technology 

CNN Convolutional neural network is a form of artificial neural network (ANN) classifier, 

which includes convolutional layers, commonly used to analyze visual imagery 

CPS Cyber-physical systems are systems utilizing computing and communication technol-

ogy to control, coordinate, and monitor the operations of physical systems 

CPPS Cyber-physical Power System is an interconnected architecture that interacts with 

the physical power system environment 

C&W Carlini & Wagner Attack is a method to efficiently generate adversarial examples 

DDoS Distributed denial-of-service is a malicious cyberattack by an adversary to disable a 

server, service, or network by flooding it with internet traffic 

DL Deep learning is a subset of artificial intelligence providing self-learning and function-

improving capabilities by examining algorithms 

DNN Deep neural network is a form of ANN that includes various layers and can be uti-

lized, for example, in image classification or text and speech recognition 

DT Decision tree is a supervised learning method, which can be utilized for classification 

and regression tasks 
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DOM Document Object Model is a programming interface for web documents 

FDIA False data injection attack means the attack where an adversary alters/modifies the 

original sensor measurements affecting the control center computational capacity 

FGSM Fast gradient sign method is a method to create adversarial images 

GMM-EM Gaussian mixture model – expectation maximization is a parametric statistical model 

assuming that the data originates from a weighted sum of several Gaussian sources 

GAN Generative adversarial networks are a deep-learning-based generative model using 

two neural networks competing 

GCN Graph convolutional network is a method for learning data with a graph structure in 

a semi-supervised manner 

HTTP Hypertext transfer protocol is a protocol operating on the application layer that can 

be used to transfer web pages and other hypermedia documents like HTML 

HVAC Heating, ventilation, and air conditioning is the technology that can be used to con-

trol air quality, humidity, and temperature in a closed space 

ICMP Internet control message protocol is a protocol operating on a network layer usable 

for network devices to identify problems in network communication 

ICS Industrial control system is an information system used to control various industrial 

processes like distribution, manufacturing, and production 

ICT Information and communication technology can be defined as a set of resources and 

tools for creating, exchanging, sharing, storing, and transmitting information 

IDS Intrusion Detection System can be considered as a gadget or application examining a 

network for illicit operation or violation of rules 

IP Internet Protocol is the network protocol defined in the TCP/IP model used for send-

ing packets from source to destination 

JSMA Jacobian-based Saliency Map Attack is a gradient-based white box -method for fool-

ing classification models 

KNN K-nearest neighbor is a simple Machine Learning classifier based on a supervised 

learning technique 

LDA Linear discriminant analysis is a machine learning technique that can be used to miti-

gate the dimensionality of data and solve multi-class classification problems 

LR Linear regression in statistics is a linear approach for modeling the relationship be-

tween a scalar response and one or more explanatory variables  
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LSTM Long short-term memory is a type of RNN used in deep learning to learn long-term 

dependencies, such as sequence prediction 

ML Machine learning is a subfield of artificial intelligence allowing machines to learn 

from data without being programmed explicitly 

MLP Multilayer perceptron is a neural network capable to learn the relationships between 

linear and non-linear data 

NB Naïve Bayes is a method of classification utilizing Bayer’s theorem, and it can be ap-

plied to both binary and multiple-class categories classification problems 

NIST National Institute of Standards and Technology assists in promoting innovation and 

improving competitiveness in the industry sector 

NN Neural network is imitated by the structure of the human brain, and it is a compo-

nent of ML to solve complex signal processing or pattern recognition problems  

OSI Open systems interconnection model is a framework enabling various communica-

tion systems to connect using standard protocols 

OT Operational technology is a type of computing and communicating system used to 

control, manage, and monitor industrial operations  

PCA Principal component analysis is a widely used unsupervised machine learning algo-

rithm to mitigate the dimensionality of a data 

PCAP Packet Capture is an API, which captures live network packet data from layers 2-7 of 

the OSI model 

PG Power grid, consisting of generator stations, transmission lines, and towers, is a net-

work for delivering electricity to consumers 

PPP Phish-prone-percentage is known as each organization’s employee susceptibility to 

phishing attacks 

RF Random Forest is a widely used supervised machine learning method based on en-

semble learning used in classification and regression problems 

RNN Recurrent neural networks are neural networks used, for example, for time series 

data instead of traditional feedforward networks 

RSA Rivest-Shamir-Adleman is a public-key asymmetric encryption algorithm 

SCADA Supervisory control and data acquisition is a control system architecture that uses 

computers, data communication networks, and a user interface to supervise ma-

chines and processes 
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SDN Software-defined networking (SDN) is a method of network management that uti-

lized software-based controllers or APIs to control the network’s flow of information 

SE State Estimation is a process to estimate the electrical state of a network by eliminat-

ing inaccuracies and errors from the measurement data 

SQL Structured query language is a standard programming language for managing and 

operating data in relational databases 

SSH Secure shell protocol is a network communication protocol enabling two computers 

to securely communicate and share data over an unsecured network 

SVE State vector estimator is a method for attack detection of smart grids, or wind power 

generations using reservoir computing (RC) 

SVM Support vector machine is a machine learning classifier that can be used for both 

classification and regression tasks 

TCP Transmission control protocol is a standard, which defines the beginning, maintain-

ing, and ending of a network conversation for exchanging application data 

UDP  User datagram protocol is a communications protocol utilized to establish fast and 

low-tolerance connections between internet applications 

URL Uniform Resource Locator is a unique identifier that can be used to find a specific re-

source on the internet 
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1 Introduction 

1.1 Background of the research 

Cyberattacks against cyber-physical systems (CPSs) acting as part of critical infrastructure (CI) 

cause challenging situations nowadays, for example, in the form of hacking attack attempts. Hack-

ing attacks on CI, such as power grids and telecom networks, or even governments can paralyze 

whole societies, produce kinetic results, and in some cases can also be life-threatening. Critical in-

frastructure and its assets are vital to a nation’s security or economy and therefore are under high 

priority to be protected. Hacking attacks can also act as a military weapon, which we have seen 

happening in the Ukraine conflict that started in 2022 (Juutilainen, 2022). To defend against an 

ever-increasing number of incoming cyber-attacks, stronger and more resilient infrastructure is 

needed. In this thesis, the most common and the most relevant cyberattacks, such as adversarial, 

DoS, DDoS, False data injection (FDI), Malware, and Phishing attacks against critical infrastructure, 

and defense mechanisms against these attacks are studied. Critical infrastructure protection is an 

important step in ensuring security acting as a motivator for this study. 

Cybersecurity of critical infrastructure is a known and important problem, but progress toward 

better security has been slow. In the past, it was commonly thought that the risk of cyberattacks 

against critical infrastructure was not high due to a lack of suitable internet connection, specialist 

knowledge of the control system configuration, and administrative operations (Mutsuo & Hi-

rofumi, 2017). Nowadays industries are mainly vulnerable to cyberattacks because they are ex-

posed to the internet. To cause significant damage and even destruction, an adversary must hack 

into the system and apply and run malicious code (for example, malware) on the computers to cut 

off the energy supply, and cause explosions at chemical plants, processing plants, or even nuclear 

power plants. The impact of successful cyberattacks on critical infrastructure can be severe, there-

fore, cyber defenders must anticipate how they might detect and defend against future potential 

developments of these kinds of attacks. 

According to the World Economic Forum’s 2020 Global Risk Report (World Economic Forum, 

2020), cyberattacks have been ranked among the top five increasing global risks of disrupting op-

erations and critical infrastructure. Based on Accenture estimates, the number of cyberattacks has 

gone up by 67 % in the past five years (Ghosh, 2019). Cyberattacks can induce significant business 
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disruptions and lead to great financial losses reaching hundreds of millions of dollars (Nozomi Net-

works, 2022). According to Erma Pte Ltd. (2022), on a global scale and in general, according to Brit-

ish insurance company Lloyd’s, cyberattacks cost businesses as much as 400 billion USD a year, 

and the amount is growing. Due to the rapid digitalization of consumers’ lives and enterprise rec-

ords, the cost of data breaches will climb up to more than 2.1 trillion USD globally, almost four 

times the estimated cost of breaches in 2015. 

This study is based on the chapter: “Cyberattacks Against Critical Infrastructure Facilities and Cor-

responding Countermeasures” by Vähäkainu et al. (2022). The chapter focused on exploring 

cyberattacks on critical infrastructure and defensive mechanisms to provide auxiliary detection 

and defense capability to enhance the insufficient protection of the smart critical facility against 

outsider threats. This study enhances the chapter and concentrates on examining some of the 

most common cyberattacks on critical infrastructure and seeking an answer to which one of the 

widely used machine-learning algorithms performs the best as a countermeasure on the defensive 

side. The research questions and objectives in the research objectives and limitations section clar-

ify the nature of this study. 

1.2 Introduction of the research article 

Cyberattacks on critical infrastructure (CI) can cause life-threatening consequences, not just minor 

and inconvenient effects one could consider. Various countries throughout the world are increas-

ingly under the influence of cyberattacks on critical infrastructures, such as smart power grids, wa-

ter suppliers, military facilities, various cyber-physical systems, etc. 

The article authored by Vähäkainu et al. (2022) concentrates on researching traditional and more 

sophisticated cyberattacks studied and compared in this thesis to provide an overview of the situ-

ation. In addition, the authors of the article introduce defensive mechanisms to provide additional 

detection and defense capability to improve the current level of protection of critical infrastruc-

ture facilities countering incoming cyber threats. 

1.3 Research objectives and limitations 

To make the detection of cyberattacks more actionable, effective, and scalable than traditional 

technologies requiring human intervention, the use of machine learning (ML) and deep learning 
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(DL) methods can be applied. This thesis focuses on studying some of the most common cyberat-

tacks on critical infrastructure facilities and corresponding machine- and deep-learning defense 

mechanisms, and with what accuracy these defense mechanisms can identify incoming cyberat-

tacks. This study aims to present these defensive mechanisms to provide auxiliary detection and 

defense capability to enhance the insufficient protections of critical infrastructures, such as the 

smart critical facility against outsider cyber threats. The study is independent research by the au-

thor of this study based on a chapter by the author (Vähäkainu, 2022), and there is no commis-

sioner. 

The research questions can be formulated as follows: 
 

• With what accuracy machine learning classifiers (methods), such as decision tree (DT), sup-

port vector machine (SVM), Naïve Bayes (NB), or neural network (NN) can detect cyberat-

tacks, such as DDoS, FDIA, malware, phishing, and ransomware? 

• What is the most suitable machine learning classifier presented in the previous question to 

detect DoS/DDoS, FDIA, malware, and phishing attacks? 

 
1.4 Research Methodology 

The research methodology used in this study is the comparative study. According to Hantrais 

(1995): “Comparative research methods have been used for a long time in cross-cultural studies to 

identify, analyze, and explain similarities and differences across societies”. Ibsrekken (2022) states 

that comparative study is about looking at an object of study in relation to another. The object of 

study is usually compared across space and/or time. Comparative methods can be qualitative or 

quantitative, and in this study quantitative method is selected due to the nature of the data and 

machine learning classifier performance evaluation and comparison.  

According to Buhari (2011), two main styles, descriptive comparison, and normative comparison 

form the comparative study. Descriptive aims at describing and explaining the invariances of the 

objects. The purpose of this style is not to generate changes in the objects but to avoid them. It 

can be challenging to find all potential causal influences solely based on empirical study, hence, a 

comprehensive literature study for finding theory and data of comparable cases is required and 

applied in the implementation part of the thesis. This thesis aims to provide a descriptive compari-

son between machine learning classifiers (models) and domains based on accuracy, precision, and 

recall, and therefore descriptive style is selected as a study method. 
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Another major style of comparative study is normative comparison. This style is required if the aim 

is not only to detect and explain but also to improve the present state of the object or to improve 

or develop a similar object in the future (Routio, 2007). Despite the comparative research method-

ology being mostly applied in the field of social sciences, it can also be utilized in other fields of sci-

ence, such as Information Technology (Lor, 2019, 2). 

The research questions in 1.3 are intended to be answered by acquiring information by performing 

database searches from databases, such as arXiv.org, Elsevier, IEEE Xplore Digital Library, and Sci-

enceDirect, and by internet searches, and conducting a comparison. A comparative study was ap-

plied based on the data gathered. 

1.5 Ethicality and reliability of the research 

The author of this thesis has followed good scientific practice and got familiar with the guidelines 

of the Finnish Advisory Board on Research Integrity 2012 (Varantola et al., 2013). The theory and 

empirical data of the thesis have been gathered from public and trustworthy sources on the inter-

net websites, and databases by using proper citing (APA7) to references, avoiding fabrication, falsi-

fication, misrepresentation, misappropriation, and other kinds of scientific misconduct. The gath-

ered theoretical and empirical data does not include any personal details or illicit use of 

copyrighted material. 

The author determined the credibility of a source document/material by researching the writer, 

and his/her credentials, what press published the document, how long time ago the document 

was created, evaluating the site’s credibility, and avoiding untrustworthy internet sites, such as 

Wikipedia. The author favored academic sources, such as reliable scientific databases with peer-

reviewed conferences or journal literature. Articles written by respected and well-known authors 

were favored. The author also followed the Ethical Principles for JAMK University of Applied Sci-

ences (2018) guidelines in conducting the study, the American Psychological Association (APA) eth-

ical code (APA, 2022), and the European Code of Conduct for Research Integrity guidelines (Allea, 

2017). 

According to Hirsjärvi et al. (2004, 216 – 217), the repeatability of the measures taken is directly 

proportional to the reliability of the research. Reliability means consistent results from data collec-

tion and analysis. For example, research is reliable if at least two researchers end up with similar 

results. The gathered empirical material is reliable if it does not include incoherence. Material can 
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be reliable even if it does not include validity, but validity is not possible without reliability. Validity 

means a measure is accurate and measures what it is supposed to measure. 

The author states that the empirical results of this thesis are reproducible under the same condi-

tions, which means selecting the same references, such as books, databases, web pages, and other 

sources used in this thesis. A possibility that two or more researchers can reach the same conclu-

sions is required, and in addition, results of the measures are what they should have measured, it 

can be concluded that both reliability and validity have been reached. 

1.6 Structure of the thesis 

This thesis is organized as follows: The first chapter is the introduction, where the author provides 

background information about the research, research objectives and limitations, and methodology 

of the research, and discusses the ethicality and reliability of the research.  The second chapter 

concerns theoretical framework and concepts, general information about cyber-physical systems 

and implementations, presents cybersecurity definitions and concepts, introduces critical infra-

structure, discusses trends, explains the basics of artificial intelligence and machine learning, and 

presents common cyberattacks on critical infrastructure facilities and countermeasures. The third 

chapter comprises the implementation and results of the research, and it explains how the data 

was gathered, explains performance evaluation metrics, and presents the processing and analysis 

of data. The fourth and final chapter is a discussion and conclusion chapter in which the author 

summarizes the research results, discusses criticism of the research, and presents further research 

ideas. 
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2 Theoretical framework and concepts 

2.1 Cyber-physical systems and implementations 

Cyber-physical systems (CPS) are automated systems that link the functioning of physical reality 

with computing and communication infrastructures (Jazdi, 2014). Tiwari et al. (2021) described 

cyber-physical systems as: “Cyber-Physical Systems (CPS) are collections of physical and computer 

components that are integrated to operate a process safely and efficiently”. Cyber-physical sys-

tems can be considered sociotechnical systems that seamlessly merge analog, digital, physical, and 

human components designed to function through integrated physics and logic. (Griffor et al., 

2017). In cyber-physical systems, embedded computers keep track of and monitor physical pro-

cesses, typically feedback loops, in which physical processes influence computations and vice 

versa. (Lee, 2015). CPSs provide the foundation of critical infrastructure (CI) and ways to develop 

and implement novel future smart services. However, a smart building, which includes built-in IoT 

sensors and possibly machine-learning-based predictive controls of electrical devices, can form a 

cyber-physical system, which can also be a critical infrastructure facility. Cyberattacks on these 

kinds of facilities provide an important research context and it is conducted in this thesis. 

Typically, CPSs are composed of where several interconnected agents, such as sensors, actuators, 

control processing units, and communication devices, that interface with the physical world. Sen-

sors are considered devices that convert physical events and characteristics into digital signals, ac-

tuators convert digital signals into physical events and characteristics. CPSs can be data-intensive 

generating a huge amount of data while operating. The foundation of critical infrastructure and 

the ability to create and execute intelligent services that enhance the quality of life is based on 

CPSs and data collection. One method of implementing CPS is through feedback systems, which 

can be adaptive and predictive, intelligent, real-time, networked, or distributed, and may incorpo-

rate wireless sensing and actuation. 

Applications of cyber-physical Systems can be seen everywhere, such as in the automotive indus-

try, assisted living, energy conservation, HVAC (heating, ventilation, and air conditioning) (HVAC, 

2023), manufacturing, medicine, military, physical security, power generation, and distribution, 

robotics, traffic control, and safety, water management systems, etc. Lee (2015). In smart build-

ings, CPS provides means to use sensors in collecting data, such as carbon dioxide, electricity, en-
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ergy, humidity, inside and outside temperature, motion detection, and water consumption to ad-

just and control automatically, for example, HVAC systems. Control and optimization of HVAC are 

among the most relevant tasks of a smart building concept providing extensive influence on the 

quality of life of occupants and when implemented well, they can provide significant cost savings 

(Stamatescu, 2016). 

A smart grid is a typical example of a cyber-physical application that combines physical power sys-

tems and cyber systems, including sensing, monitoring, communication, and control (Guo et al., 

2017). Smart Grid includes electricity distribution services, two-way communications, intelligent 

sensors, automated metering, and computer systems to improve reliability, and performance, and 

enhance the efficiency decision of the customer and the utility provider (Forte, 2010). According 

to Sun et al. (2022), smart grids utilize a vast amount of information collected from the physical 

system to be analyzed by the cyber system, and in turn, finally affecting the operation of the physi-

cal system through economic and remedial actions. Smart grids can keep track of the grid's status 

in real time and use that information to run the grid securely, reliably, and stably, reducing costs 

and enhancing energy efficiency (Alonso et al., 2020).  Integrating cyber and physical systems is 

critical, bringing in new types of risks in which an adversary may utilize cyber systems to initiate 

fake commands to damage facilities or even initiate a sequence of cascading effects (Sun et al, 

2020). However, functionalities required by CPS need accurate measurement data from the physi-

cal system. Sensor, device, or communication failures provide incorrect data causing delivering im-

portant commands to a successful operation. 

Artificial intelligence can be considered an "intelligent agent" that solves real-time problems in 

smart grids. It can be utilized to integrate renewable energy, stabilize energy networks, carry out 

user behavior analysis, respond to sudden changes in customer demands, power outages, sudden 

drops and rises in energy outputs, perform fault diagnostics, and mitigate financial risks caused by 

fluctuations in the infrastructure. Simulations and AI-based forecasting can be used to optimize 

energy systems and improve their efficiency. Developing and implementing cost-effective smart 

grid solutions require extensive knowledge of energy systems and their elements. 

Jiao (2020) suggests using deep learning classifiers like LSTM for forecasting power load in a smart 

grid. LSTM is derived from RNN networks and employs memory modules to prevent the gradient 

from disappearing or expanding after multiple steps. This makes LSTM particularly useful for deal-
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ing with and forecasting events with prolonged intervals and delays in time series data. LSTM clas-

sifier can also be applied in forecasting renewable energy, such as wind power and photovoltaic 

power generation. Deep learning classifiers can be useful, for instance, in identifying faults, pro-

tecting flexible equipment in power systems, and examining consumer electricity consumption. 

Smart grids, among other computerized systems, are prone to cyberattacks. Deep learning can be 

applied to automatically detect characteristics of network attacks, identify malware and intrusion, 

and furnish network security for power systems. 

2.2 Cybersecurity definition and concepts 

Cybersecurity can be perceived as “the art of protecting networks, devices, and data from unau-

thorized access or criminal use and the practice of ensuring confidentiality, integrity, and availabil-

ity of information” (CISA, 2009). Confidentiality states that data should not be disclosed to unap-

proved individuals, organizations, or processes, or accessed without the appropriate authorization. 

Integrity indicates that the data in question must not be modified or tampered with in any way, 

thus ensuring the accuracy and completeness of the data is crucial. The data is expected to be ac-

cessed and modified by authorized individuals and should remain in its intended state. Availability 

is ensuring that information is accessible upon legitimate request and that authorized individuals 

can access the data when required. 

Cybersecurity risks include financial loss, disruption, or damage to the reputation of the organiza-

tion due to the failure of its IT systems. Cyber risk can be seen as a potential situation of exposure 

of business-related knowledge or data and/or communication systems to malign actors, elements, 

or circumstances that may cause loss or damage. Risk can be determined from the formula: asset 

+ threat + vulnerability (Flores et al., 2017). Malign actors, such as black-hat hackers, malware au-

thors, organized cyber-criminals, or even governmental/state actors utilize threats (attack vec-

tors), such as DoS/DDoS, malware, phishing attacks, social engineering, and ransomware to exploit 

vulnerabilities to obtain, damage, or destroy assets. An asset can be, for example, data, devices, or 

other components of an organization’s systems containing important and/or sensitive data, or an 

asset can be used as a tool or way to access such relevant information (NIST, n.d.). 

Nowadays cyberattacks are becoming more and more sophisticated, targeted, widespread, and 

undetected. According to Zheng et al. (2022), the traditional cyber technologies used in cybersecu-
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rity, such as access control, authentication, encryption, intrusion detection system (IDS), vulnera-

bility scanning, and virus protection, etc. have provided a certain level of security. However, the 

development of e.g., diversification attacks the traditional cyber defense measures are not suffi-

cient. Lahcen & Mohapatra (2022) states that even though artificial intelligence, and its subset, 

machine learning is not an omnipotent solution in the field of cybersecurity, it can still provide an 

efficient tool that can be exploited in various areas of information security. Security analysts are 

receiving a significant number of alerts and as a result, need an efficient system to evaluate them. 

Machine learning can bring efficiency, improve authentication, and protect against attacks. In this 

thesis, machine learning classifiers will be examined from the cyberattack countermeasure (attack 

detection) point of view. 

2.3 Critical infrastructure and trends 

According to Lewis (2006), certain national infrastructures are so important that if they fail or are 

destroyed, it will greatly affect the defense or economy of the country and are therefore called 

critical infrastructures. Various definitions of critical infrastructure exist, and the definition has 

changed over time. In 1996 President Clinton signed Executive Order EO-13010 1996, providing 

the first official federal definition of critical infrastructure. EO 13010 also created eight critical 

physical and cyber threats and assuring the continuity of their operations. Critical infrastructures 

include systems such as banking and finance, emergency services, government continuity, gas and 

oil storage and transportation, power systems, telecommunications, transportation, and water 

supply systems. 

Critical Infrastructure can be seen as assets, systems, and networks vital for the functioning of a 

society and insuring citizens’ well-being and industrial and economic development (Rosato et al., 

2020). According to Communication from the Commission on Critical Infrastructure Protection in 

the Fight against Terrorism (2004), critical infrastructure can be defined as: “critical infrastructures 

are those physical and information technology facilities, networks, services and assets which, if 

disrupted or destroyed, would have a serious impact on the health, safety, security or economic 

well-being of citizens or the effective functioning of governments in European Union countries”. In 

contrast, the Australian state, and territory shared the following definition of critical infrastruc-

ture: “those physical facilities, supply chains, information technologies, and communication net-

works which, if destroyed, degraded, or rendered unavailable for an extended period, would sig-

nificantly impact the social or economic wellbeing of the nation, or affect Australia’s ability to 
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conduct national defense and ensure national security (Australian Government)”. These defini-

tions are very similar to each other, but the Australian state, and territory bring to light Australia’s 

ability to conduct national defense and ensure national security. These defense and security fields 

are vital to be secured and appropriately protected from incoming cyberattacks. 

Critical infrastructure sectors are not separate, but they produce interdependent relationships 

meaning that a single critical infrastructure can be dependent on products and services provided 

by another critical infrastructure. Hence, the critical infrastructure may be depending on the prod-

ucts and services provided by the previous critical infrastructure. In case of a cyberattack, causing 

possible disruption, damage, or even destruction of critical infrastructure, intercedence between 

critical infrastructures may pose cascading effect in the “network” of critical infrastructures. Inter-

dependencies can be physical, geographical, cyber, and logical. A cyber interdependency means a 

dependency on information and communications systems. Cyberattacks on cyberinfrastructure 

may lead to a significant effect on performance, reliability, security, and safety for each of the de-

pendent infrastructures. (Alcaraz, 2014) 

Critical infrastructures, such as transportation, electric power plants, communication grids, 

healthcare facilities, etc. are under daily attack these days. According to Microsoft Digital Defence 

Report (2022), cyberattacks targeting critical infrastructure increased from 20 % of all state attacks 

Microsoft detected to 40 %. The climb was due to Russia’s aim of causing harm and destroying 

Ukrainian infrastructure, and espionage on Ukraine’s allies. Up to 90 % of the Russian attacks de-

tected targeted NATO member countries, and almost half of the attacks were against IT compa-

nies in NATO countries, most of them against the USA. 

Attacking critical infrastructure can be life-threatening and cause significant harm to people, even 

loss of life. For example, damaging electric power plants, obstructing healthcare operations and 

patient care, poisoning drinking water, the air, etc., can cause considerable damage. The energy 

sector is one of the primary critical infrastructure targets of cyberattacks, along with other vulner-

able sectors, such as the critical manufacturing industry, public sector services, telecommunica-

tions, and transport.  According to the Microsoft Defence Report (2022), most of the cyberattacks 

targeted information technology (22 %), nongovernmental organizations (17 %), education (14 %), 

government (10 %), finance (5 %), media (4 %), and 2% for communications, healthcare, intergov-

ernmental organizations, and transportation. Commonly used cyberattacks against critical infra-

structure are DoS/DDoS, false data injection attacks (FDIA), malware, phishing, and ransomware. 
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Organizations are in growing need of cybersecurity and cyber-resilience plans to protect against 

cyberattacks and mitigate damage caused by cyberattacks concerned. Especially in the case of crit-

ical infrastructure systems, which are extremely complex and interdependent. Cyber resilience 

may be defined as the ability to adapt to changing conditions (CISA, 2019). Cyber resilience can be 

seen as the ability of an organization to protect itself from, detect, respond to, and recover from 

cyberattacks. Therefore, according to Rehak et al. (2018), resilience can be perceived as a charac-

teristic that decreases the vulnerability of an element, withstands the effects of disruptive events, 

increases the element's ability to react and recover, and enables its adjustment to disruptive 

events like those encountered in the past. When being resilient, organizations can mitigate the ef-

fect of an attack, protect digital data, and systems from cyberattacks, and continue to operate ef-

fectively in case of a successful attack. 

2.4 Basics of artificial intelligence and machine learning 

Buczkowski (2017) states that artificial intelligence is an umbrella term that includes Machine 

Learning (ML), and Deep Learning (DL). Artificial intelligence can be seen as the development of 

smart systems or intelligent machines carrying out tasks that typically require human intelligence. 

Therefore, the objective of artificial intelligence is to empower computers and systems to imitate 

human thinking, replicate human activities, and solve problems more quickly and efficiently than 

humans typically can. According to SCS (2020) Machine learning provides algorithms for learning 

from data and makes decisions based on patterns observed. Machine learning requires human in-

tervention when the decision is not correct. Deep learning is a subset of machine learning utilizing 

an artificial neural network to reach accurate conclusions without human intervention. Deep 

Learning uses various layers within the network structure and attempts to learn the hidden mean-

ing of the data, which is why they are called deep. 

Decision Tree (DT) represents the more conventional methods used in artificial intelligence devel-

opment, but it is still the most powerful and popular tool for classification and prediction. A deci-

sion tree has many analogies in real life, and it has influenced a broad area of machine learning 

and has been utilized in both classification and regression tasks. The decision tree is a flowchart-

like tree-structure model of decisions using the branching method to visualize every possible out-

put for a specific input. According to Uddin et al. (2019), the decision tree has certain advantages 
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such as the data preparation can be easier than for other classifiers, it can generate robust classifi-

ers, and the computational requirements are lower. It is prone to overfitting, and it does not per-

form as well as other classifiers presented in this thesis. 

Random Forest (RF) is a method of ensemble learning that combines the output of multiple deci-

sion trees to produce more accurate results in comparison to a standard decision tree classifier. A 

forest of trees protects each other from unique errors and improves the final prediction. (Shahri-

vari et al., 2020). Random forest classifiers perform better than a single decision tree, they scale 

well for large datasets and avoid overfitting due to the use of multiple trees. Random forests are, 

though, more complex, and computationally expensive. Overfitting is possible also for random for-

est classifiers, but they are less prone to it compared to decision trees. Visualization of random 

forests is complicated, and the process of generation and analysis requires time. (Uddin, 2019) 

However, in general, random forests are easy to use and flexible, and they provide accurate pre-

dictions that can be used in various fields. 

According to JavaTpoint (2021), Naïve Bayes (NB) is a probabilistic machine learning classifier used 

for classification tasks, such as sentiment analysis, spam filtering, text classification, and recom-

mendation systems due to its simplicity, efficiency, and easy understandability. Naïve Bayes is 

based on Bayes’ theorem, used to determine the probability of a hypothesis with prior knowledge, 

depending on the conditional probability. Uddin et al. (2019) state that Naïve Bayes is known for 

its simplicity and usefulness for large datasets, its ability to yield probabilistic predictions, its ap-

plicability for both binary and multi-class classification problems, and its ability to direct the pre-

diction of posterior probabilities. As a disadvantage, the classifier assumes the normal distribution 

of numeric attributes, and the classification performance may be decreased due to the presence 

of dependency between attributes. 

A support Vector Machine (SVM) is a supervised learning classifier used for the classification, re-

gression, and detection of outliers. Support Vector Machine learns by example to assign labels to 

objects, which it can use, for example, to detect fraudulent credit card activity by exploring a sig-

nificant number of fraudulent and non-fraudulent credit card activity reports (Noble, 2006). Sup-

port Vector Machines can also be applied to, for example, intrusion detection, or healthcare-re-

lated prediction and recognition tasks, such as breast cancer diagnostics or protein structure 

prediction. According to Uddin et al. (2019), Support Vector Machine is less prone to overfitting, it 

performs well in classifying semi-structured or unstructured data, such as images, text, and trees, 
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and it works well outside of training data. However, Support Vector Machine is computationally 

costly, particularly for big and complex datasets, and it does not perform well if the data set con-

tains noise, for example, target classes overlap. Additionally, interpreting and understanding the 

final model, variable weights, and individual impact is difficult. 

A neural network (NN) is a classifier inspired by the biology of nervous systems, used to solve 

problems in pattern recognition, data analysis, and control. Neural networks are endeavors of gen-

erating machines that operate similarly to the human brain by using components behaving like bi-

ological neurons (Picton, 1994). According to Uddin (2019), neural networks can be used for both 

classification and regression problem-solving, and there are various types of networks with unique 

and special strengths. For example, convolutional neural networks (CNNs) can be applied in image 

classification and signal processing, Recurrent Neural Networks (RNNs) could be used in text-to-

speech conversation technology, etc. The disadvantage of neural networks is the lack of user ac-

cess to the exact decision-making process, predictions not always in a continuous range, and the 

computational expenses of neural networks when training the network for a complex classification 

problem. 

2.5 Performance evaluation metrics 

The performance of the classification algorithms (ML Technique) can be evaluated by calculating 

the accuracy, precision, and recall based on True Positive (TP), True Negative (TN), False Positive 

(FP), and False Negative (FN) for each machine learning classification algorithm. 

Accuracy (performance measure) is the ratio of correct predictions to all predictions that are cal-

culated by dividing correct predictions with all the instances into the test data (Joshi, 2016). Accu-

racy is illustrated as the percentage of correct predictions over all instances. The equation is the 

following: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

Precision is the ratio of true positives to all positive predictions (Joshi, 2016). Precision indicates 

how accurate the classifier is at identifying an attack. Precision can be determined by the number 

of true positive findings divided by the addition of true positive and false positive findings. The 

equation to calculate precision is the following: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

Joshi (2016) states that recall, which can also be considered sensitivity, can be indicated as the ra-

tio of the quantity of correctly identified positive findings to the total quantity of actual positive 

findings in the data. Recall expresses the number of cyberattacks the classifier can detect. 

The formula to calculate Recall is the following: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

2.6 Cyberattacks on critical infrastructure facilities and countermeasures 

In this section, adversarial attacks, DoS and DDoS attacks, FDI attacks, malware attacks, phishing 

attacks on critical infrastructure, and corresponding defensive mechanisms are studied. This sec-

tion provides fundamental information about these attacks and countermeasures forming a theo-

retical foundation to provide an understanding of how these attacks function and how they affect 

critical infrastructure facilities. 

2.6.1 Adversarial attacks and defenses 

Nowadays adversarial attacks on machine learning and deep learning classifiers are more and 

more general, causing various security concerns and in the worst case posing serious threats to 

critical infrastructure facilities using artificial intelligence-based models. As stated by Vähäkainu et 

al. (2022): “in the context of a smart building, an attacker may have a chance to deceive the ML 

model into causing harm, such as to create conditions for consumption spikes, when attacking the 

heating system guided by predictive machine learning-based feedback system”. Adversarial at-

tacks can be considered attack vectors constructed by utilizing artificial intelligence. By using these 

kinds of attacks, an adversary can cause adversarial perturbations that are invisible in the eyes of 

the beholder but can cause adverse effects on neural network classifiers (models). An adversarial 

attack is a technique for creating adversarial examples, which are inputs given to a machine-learn-

ing classifier, deliberately causing disruption, and triggering the classifier or classifiers concerned 

to operate incorrectly or inaccurately and to make false predictions while providing a valid input in 

human eyes (Ibitoye et al, 2019). 
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According to Sagduyu et al. (2019), adversarial attacks can be causative, evasion, or exploratory 

type. A characteristic of a causative attack is a manipulation of training time data producing mis-

classification effects. Typical for evasion attacks is to concentrate on specifying the data samples 

that can be already misclassified by the target classifier. For example, an evasion attack can be a 

spam mail generator that has the capability to circumvent spam detection filters. Exploratory at-

tacks target the testing phase of a classifier and can be considered white-box attacks, in which 

case an adversary has sufficient knowledge about the classifier algorithm or training data. In some 

cases, exploratory attacks can also consist of black-box attacks, and in that situation, the adversary 

has no knowledge about training data nor the classifier algorithm or type, or the detector’s model 

parameters to analyze the vulnerability of the model (Biggio et al., 2013). 

One kind of strategy to conduct an effective attack is to use a black-box attack method and train a 

substitute classifier mimicking the target black-box classifier, and then use white-box attack meth-

ods, such as FGSM or JSMA, on the substitute classifier concerned after the substitute classifier is 

trained and strong enough. According to Wiyatno et al. (2019): “concretely, the attacker first gath-

ers a synthetic dataset, obtains predictions on the synthetic dataset from the targeted model, and 

then trains a substitute model to imitate the targeted model’s predictions”. After details of the 

substitute model are known, white-box methods can be applied. Whether this attack method is 

successful or not depends on selecting similar synthetic data samples and substitute model archi-

tecture in addition to having adequate knowledge of the target classifier. 

Vähäkainu et al. (2022) state that: “a white-box attack uses the target model’s gradients in produc-

ing adversarial perturbations”. The Fast Gradient Sign Method (FGSM), introduced by Goodfellow 

et al. (2018), is a technique for generating adversarial examples against neural networks. The 

method applies to any machine learning classifiers that use gradients and weights and can be exe-

cuted with relatively limited computational resources. The gradient is calculated by using the back-

propagation method. According to Co (2018), FGSM can be efficient to execute if the learning clas-

sifier architecture is known and internal weights are identified. FGSM is one of the simplest 

methods to generate adversarial examples, and it produces perturbations in many dimensions, 

which means it can become detectable in some cases even in the eye of the beholder. 

Jacobian Saliency Map Approach (JSMA) is another gradient-based white-box attack presented by 

Papernot et al. (2016), which can be used to deceive machine learning (or deep learning classifi-
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ers), such as neural networks, by generating adversarial examples to be sent to the targeted classi-

fier. According to Wiyathno & Xu (2018), JSMA is usually applied in image classification tasks to 

fool image classification models by saturating a few of the pixels in the image concerned to maxi-

mum or minimum values. As a result, the classification model misclassifies the resulting adversar-

ial image as a specified erroneous target class. JSMA can cause even more perturbation than 

FSGM, despite altering just a few pixels. Due to the capability of perturbing only a few pixels when 

conducting an attack, JSMA is far less detectable than FSGM and it can be used for targeted mis-

classification attacks. However, JSMA is an iterative and therefore greedy algorithm and requires 

more computational resources than FGSM. 

Carlini and Wagner (2017) presented an iterative gradient-based attack method (C&W attack), 

which can succeed against most defensive methods, such as the defense distillation, and un-

distilled neural networks with 100 % probability. Defensive distillation is a technique that en-

hances the robustness of a neural network chosen at random and greatly diminishes the effective-

ness of adversarial examples creation from a 95% success rate to just 0.5%. "According to 

Vähäkainu et al. (2022), a C&W attack is an attempt to make a modified image as similar as possi-

ble to the original while still causing the model to classify it incorrectly. This is in alignment with 

the findings of Short et al. (2019). C&W attacks are generally so powerful against neural networks 

that they can mitigate classifier accuracy near zero percent, and they can reach high success rates 

against trained neural networks used in image classification tasks (Ren et al., 2020). However, the 

C&W method’s computational resource requirements to generate adversarial examples are emi-

nent due to the optimization problem (Poudel, 2020), hence it is still currently one of the best al-

gorithms to generate them. 

Defending against adversarial attacks is challenging. However, one of the first methods to combat 

adversarial examples is adversarial training of machine learning classifier (such as DNN), making 

the classifier concerned more robust to counter incoming adversarial attacks. As stated by 

Vähäkainu et al. (2022), the robustness of a machine learning classifier can be improved by aug-

menting the classifier training dataset with perturbed inputs containing both non-iterative and it-

erative adversarial examples. However, if an adversary uses a different attack strategy, it has a 

mitigating effect on adversarial training accuracy. In addition to high computational cost and com-

plexity, the robustness of adversarial training can be circumvented by initiating a joint attack with 

random perturbation from other models. 
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Papernot et al. (2015) presented a defensive mechanism called defense distillation to mitigate the 

impact of adversarial examples on machine learning DNN classifiers and make them less prone to 

exploitation. According to Goodfellow & Papernot (2017), defense distillation is a method of train-

ing a classifier (model) by having it predict the probabilities of another model that was trained be-

fore it. In other words, the distillation procedure uses knowledge from a different deep neural net-

work, at times from a larger architecture to a smaller one, to train a selected deep neural network. 

Defense distillation mitigates adversarial samples crafted using the FSGM or JSMA methods, 

makes the crafting process more challenging, generalizes the samples outside the training set, mit-

igates the effectiveness of adversarial samples on deep neural networks, and increases the resili-

ence of deep neural networks to adversarial samples. However, defense distillation can prevent 

weaker attacks, but more powerful attacks, such as C&W, have been proven to evade the defense-

distilled defenses. 

The effect of adversarial attacks has been attempted to mitigate by utilizing various defense meth-

ods, such as previously mentioned adversarial training or defense distillation. These methods 

among others have certain limitations when defending against adversarial attacks, such as being 

effective in either white-box or black-box attacks, but not in both. Defense distillation is also vul-

nerable to poisoning attacks where an adversary corrupts the training data The Defense-GAN ap-

proach introduced by Samangouei et al. (2018) can be used to protect classification networks 

against both white-box and black-box adversarial attacks, even without knowledge of how the ad-

versarial examples were created, as stated by Samangouei et al. (2018). According to Laykaviriakul 

& Phaisangittisagul (2023), the method tries to re-create legitimate samples from the adversarial 

samples instead of the auto-encoder by using a generative adversarial network (GAN) that is 

trained on unperturbed data, e.g., unperturbed images. The method locates the closest output to 

the given image that does not include adversarial changes and passes it to the classifier. The de-

fense-GAN method can be used to prevent the effect of novel powerful attacks, such as C&W. 

However, if GAN is not correctly trained, the performance of the Defense-GAN can considerably 

mitigate (Chakraborty et al., 2018). 

2.6.2 DoS and DDoS attacks and defenses 

A distributed denial-of-service (DDoS) attack is a form of denial-of-service (DoS) attack that in-

volves using multiple systems to attack a targeted system. Nowadays these attacks concerned are 



24 
 

 

numerous, devastating, sophisticated activities, and sometimes even considerable business. Vari-

ous types of DDoS attacks are identified and most of them are efficient in paralyzing communica-

tion in the networks. Adversaries may conduct these types of attacks by using a single or a net-

work of remotely controlled, well-structured, and widely dispersed nodes (zombie computer 

resources) that utilize all the target’s servers (for example, bank, credit card payment gateway, 

etc.) A DDoS attack has the capability to prevent legitimate users from accessing the resources re-

quired by overwhelming a server with malicious traffic. As a result of the attack, the target server 

either crashes or becomes incapable of serving legitimate requests. Detecting DDoS attacks can be 

challenging as they often affect slow network traffic or technical problems. Not all attacks can be 

detected and prevented, but various kinds of advanced countermeasures exist to mitigate these 

attacks. 

The Open System Interconnection (OSI) model consists of 7 layers, namely: Physical, Datalink, Net-

work, Transport, Session, Presentation, and Application. DDoS attacks can be conducted on three 

of these layers: network, transport, and application. Most DDoS attacks target the network and 

transport layers. According to Qureshi (2018), common attacks on these layers are ICMP flooding 

on the network layer, SYN flooding, and Smurf attacks on the transport layer. By exploiting a vul-

nerability in the Telnet server running on the switch, an attacker can use DDoS techniques to dis-

rupt the availability of Telnet services at the session layer. On the application layer, a breach or 

vulnerability in a web application can be exploited to flood the server or database the application 

is using to knock it down. DDoS attacks can pose a remarkable threat to critical infrastructure sec-

tors, such as energy and transportation, for example, by disrupting and incapacitating heating dis-

tribution systems, causing train delays, paralyzing ticket systems, and overall disruption over travel 

services. 

Detecting and preventing DDoS attacks is extremely difficult due to their distributed nature. DDoS 

attacks can be detected, for example, by using statistical, knowledge-based, or soft computing 

methods. In the statistical method, traffic statistics are extracted including destination/source In-

ternet Protocol (IP) addresses, Transmission Control Protocol (TCP) flags, packet sizes, flow rate, 

and others, to classify abnormal traffic behavior from normal behavior (Majed, 2020). Hence, sta-

tistical tests are used to examine whether new instances belong to the statistical model of normal 

traffic or are classified as anomalies (Kumar, 2013). Ghaben (2021) states that in the knowledge-

based method of traffic or flow, patterns are matched against a set of predefined rules. If an at-

tack fits the rules, the traffic or flow is flagged as an attack, otherwise, it is considered normal. 
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DoS/DDoS attacks can also be detected by using soft computing methods, such as fuzzy logic, 

probabilistic reasoning, neural networks, machine learning methods, etc. He et al. (2017) sug-

gested a DoS attack detection system that employs supervised machine learning methods such as 

Linear Regression, SVM, Naive Bayes, and Random Forest and unsupervised methods such as K-

means and GMM-EM. The authors found that supervised algorithms achieved 93% accuracy while 

unsupervised methods only attained 63-64% accuracy. 

2.6.3 FDI attacks and defenses 

False data injection (FDI) attacks are among one the top priority attacks against cyber-physical sys-

tems these days and due to their sophisticated nature, it poses a remarkable threat to the power 

grids, and smart grids used to provide power to critical infrastructure facilities. According to 

Farmanbar (2019), smart grids use information and communications technology (ICT) to create a 

system that is reliable, efficient, and robust for electricity transmission and distribution. It also in-

tegrates non-renewable and renewable energy sources to decrease environmental issues. The crit-

ical infrastructure of the country includes the power system; hence the safe operation of power 

grids is crucial to national security. There are various examples in the world of cyberattacks against 

power grids, such as an attack on the Ukrainian power grid in December 2015 (CISA, 2021), caus-

ing a massive blackout. False data injection attack seriously threatens the secure and smooth op-

eration of complex information-physical coupled smart grids, therefore efficient means of False 

data injection attack detection are essential (Li et al., 2022). 

Smart grids can be targeted through false data injection attacks, which can disrupt the balance of 

energy demand and supply, affect the functioning of the grid network, and alter electricity pricing. 

Manipulating energy demand, through the introduction of false values in the state estimation pro-

cess, can lead to power outages and cause financial harm to both consumers and providers. At-

tacks on energy supply induce incorrect energy distributions leading to extra costs or even devas-

tating consequences (Chen et al., 2015). According to Elmrabet et al. (2018), false data injection 

attacks are a form of violation that disrupt the integrity of measurements taken by devices, lead-

ing to errors and distortion. This can negatively impact the precision of state estimation, which is 

vital for ensuring the reliable operation of the power system and gathering accurate real-time 

data. Violations of SE’s integrity can make the smart grid system unstable. An attacker can use a 

false data injection attack to manipulate smart meter data to reduce their electricity bills or target 

smart meters, sensors, or remote terminal units (RTU), intercept communication between sensor 
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networks and the SCADA system, or gain access to the SCADA system to introduce false data that 

closely mimics the actual states and parameters of the system. This makes false data injection at-

tacks difficult to detect, especially if the system architecture is not well understood. As a result, it 

can cause prolonged power outages and wide-area power failure accidents. 

There have been various attempts to detect false data injection attacks, including methods such as 

sparse matrix optimization, using a Kalman filter with a threshold based on the Euclidean distance 

metric, blockchain technology, cryptography, and learning-based techniques (Reda et al., 2021). 

While threshold-based detection methods have shown to be effective in identifying false data in-

jection attacks, some attacks have been able to bypass these methods. Cryptography has been 

used to prevent false data injection attacks, but computing requirements are extensive. The use of 

blockchain to protect power generation and distribution systems helps to prevent data manipula-

tion and guarantee data immutability (Aggarwal et al., 2021). The learning-based method is a 

novel and sophisticated countermeasure to detect false data injection attacks. According to Wang 

et al. (2019), in empirical tests, the RNN-based method reached 92.58 %, accuracy, the SVM-based 

method 90.06 %, Sparse optimization 86.79 %, and Euclidean detection 72.68 %. The recurrent 

neural network with wide components consisting of fully connected layers of neural networks 

reached up to 95.23 % accuracy. Another approach, conditional deep belief networks (CDBN), has 

been proposed as a means of detecting false data injection attacks that may evade detection by 

the state vector estimator (SVE) mechanism. This method aims to identify false data injections that 

are otherwise unobservable. 

2.6.4 Malware attacks and defenses 

Malware, also considered malicious software, is a tool employed by adversaries with the intent to 

disrupt or damage target computer functions or devices, extract sensitive information, or gain un-

authorized access to private computer systems and networks. Palo Alto Networks (2022) defines 

malware as follows: “Malware (short for “malicious software”) is a file or code, typically delivered 

over a network, that infects, explores, steals, or conducts virtually any behavior an attacker 

wants”. Malware comes in various forms such as adware, ransomware, spyware, trojan viruses, 

viruses, and worms (Cisco, 2022). Amongst them, worms and trojans are the most common type 

of malware threats, more prevalent than traditional computer viruses. In the past years, ransom-

ware attacks have been increasing, making it the most common form of malware impacting critical 
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infrastructures, such as hospitals, communications firms, railway networks, and governmental of-

fices. 

There has been a significant increase in malware attacks on critical infrastructure in recent years. 

The FBI internet crime complaint center found that in 2021, ransomware was a leading threat to 

critical infrastructure security in the USA, impacting over 600 organizations (Waldman, 2022). Dos-

sett (2021) states that in 2021 Kaseya, which provides IT solutions for other companies, was hit by 

the cybercriminal group REvil in a ransomware attack. The group impacted more than 1500 organi-

zations throughout the world and claimed thousands to multiple millions of dollars as ransoms. 

JBS USA, one of the largest suppliers in the US, was hit by ransomware that causes its operations 

to temporarily halt. JBS ended up paying 11 million USD as a ransom. America’s largest “refined 

products” pipeline was knocked down by the Darkside group by a ransomware attack. The pipeline 

covers over 5500 miles and transports more than 100 million gallons of fuel per day. The attack 

affected gallons of gas price in the USA, and the price increased by more than 3 USD for years. 

Ransomware attacks like these are increasing, and posing a significant threat to critical infrastruc-

ture, organizations, and people in general in the world. 

The critical infrastructure energy sector, one of the main targets of cyberattacks on critical infra-

structure, has been hit by various malware attacks over the years, such as BlackEnergy on the 

Ukrainian electrical power industry for opening a backdoor to hackers, Shamoon on Saudi Arabia’s 

national oil conglomerate (Saudi Aramco) for stealing passwords, wiping data, preventing reboot-

ing, etc., and Stuxnet worm on Iranian nuclear centrifuges damaging them. Dragonfly malware 

campaign targeted defense and aviation companies, but later, the cybercriminal group behind it 

started to focus on the energy sector. According to Cyber Security Review (2017), Dragonfly 2.0 

was a malware campaign targeting the critical energy sectors in the USA, Turkey, and Switzerland. 

In the campaign, the attackers used malicious email attachments, watering hole attacks, and Tro-

janized software as an initial attack vector to gain access to the target network. The attackers also 

utilized the Phishery toolkit to conduct email-based attacks to steal credentials. The campaign in-

cluded various remote access trojans permitting access to the target computer. 

Malware attacks have been increasingly targeted at healthcare organizations in the past years due 

to their dependency on access to relevant patient data. In 2022, healthcare organizations faced 

Venus Ransomware, which is capable of encrypting victims worldwide by targeting publicly ex-

posed Remote Desktop services and by using AES and RSA encryption algorithms (HC3, 2022). 
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Berry (2022) claimed that two-thirds (66 %) of healthcare organizations experienced ransomware 

attacks in 2021, and 61 % of them reported their data is encrypted during the attacks. Healthcare 

organizations that paid the ransom to restore their data recovered only 65 % of their data. How-

ever, almost ¾ of organizations were able to restore encrypted data from backup files. The lowest 

average ransom payment was almost 200 000 USD, but some organizations ended up paying more 

than one million. In addition, more than 90 % of healthcare organizations experienced that the 

ransomware attack impacted their operating ability and 90 % of them thought that attacks caused 

them to lose business or revenue. In 2021, the average time for a healthcare organization to re-

cover from a ransomware attack was around one week. 

There are various ways to detect malware. Xiao et al. (2018) state that two of the most widely 

used methods are signature-based detection and behavioral-based heuristic detection. Signature-

based detection uses an algorithm to calculate a unique numerical value (known as a malware sig-

nature) for specific types of malwares. This value can be used to identify and block malware from 

entering a system. The method is efficient, but it has challenges to detect zero-day or obfuscated 

malware. Heuristic scanning examines code for suspicious properties, looking for malware-like be-

havioral patterns. Heuristic scanning can detect unknown malware types in addition to encrypted, 

obfuscated, or polymorphic malware. According to Sprengers & Haaster (2016), another approach 

to detecting malware is heuristic classification, which often employs machine learning. Various 

machine and deep learning classifiers such as decision trees (DT), naive Bayes (NB), neural net-

works (NN), random forests (RF), and support vector machines (SVM) are effective in detecting 

malware with a high degree of accuracy. One of the disadvantages is that heuristic classification is 

prone to have a high false positive rate, meaning that various legitimate actions can be classified 

as intrusive. In addition, useful training data is needed, which is challenging to gather in a compre-

hensive IT environment. 

2.6.5 Phishing attacks and defenses 

According to Imperva (2022), phishing is a form of social engineering attack that is used to steal 

personal information such as login credentials or credit card numbers by bypassing technical con-

trols in information systems. In social engineering, an adversary attempts to exploit human error 

or lack of knowledge to collect sensitive private information, access, or valuables. An adversary ap-

pears as a trusted entity luring a victim user to click and open an incoming email, text, or short 

message, and a malicious link included in the message can freeze the system, unveil critical and/or 
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sensitive information, provide means to identity theft, stealing funds, etc. Phishing attacks can be 

used as a part of more comprehensive attack scenarios, such as advanced persistent threats (APT). 

In the advanced persistent threat scenario, compromised victims are exploited to circumvent se-

curity perimeters, spread malware inside the information system, or obtain access to critical se-

cured data. 

Phishing is among the top cyberattacks causing data breaches with almost 14.5 billion spam emails 

sent daily (Ripa et al., 2021). In 2022 phishing was the most common way cybercriminals pene-

trated an organization. According to Cytomic (2019), up to 46% of successful cyber-attacks begin 

with an email phishing attack. Phishing attacks are conducted even more these days as it requires 

only a single employee of an organization to make a mistake to cause a significant loss of business 

and reputation. Adversaries are continuously updating their phishing attack procedure and utiliz-

ing advanced, and novel tools for conducting these attacks. Hence, cybersecurity professionals 

must continuously update their knowledge about new types of phishing attack trends to develop 

and implement corresponding defensive countermeasures. 

According to Enisa (2022), one of the widely used and more sophisticated versions of phishing is 

spear phishing. According to DNI, Spear phishing is: “a type phishing campaign that targets a spe-

cific person or group or often will include information known to be of interest to the target, such 

as current events or financial documents”. Spear phishing exploits the human component to take 

an advantage of basic human traits, such as being helpful and friendly, being loyal to authority, or 

just curious about topical events and news. Spear phishing can be used to target specific individu-

als or organizations to gain unauthorized access to confidential information. An adversary can uti-

lize publicly available information on social media, for example, Facebook or LinkedIn to customize 

the spear phishing email to deceive the target end-user (victim) who is then likely to react to it. 

While the purpose of spear phishing usually is to steal confidential data, adversaries may also uti-

lize it to install malware on the end user’s computer to perform malicious actions. 

Adversaries utilize spear-phishing attacks to target individuals, or groups of people with something 

in common, such as employees working in the same department having access to important infor-

mation system accounts on banks in the financial services sector, which is one of the essential crit-

ical infrastructure sectors. In 2016, adversaries conducted a business email compromise (BEC) 

spear-phishing attack targeting a high-ranking executive (CEO) of Belgian Crelan bank gaining ac-
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cess to his email account. Adversaries were then able to spoof the CEO’s email account by person-

ating the executive as the sender and asking employees to deposit money (up to $75.8 million in 

total) into the executive’s account. The attack was detected during the internal audit process, but 

the identity of the adversaries remained unknown. 

According to MSTIC (2022), the Microsoft Threat Intelligence Center (MSTIC) revealed that the 

Russian-linked Gamaredon/Actinium (primitive bear) hacker group has targeted government, mili-

tary, non-government (NGO), judiciary, law enforcement, and non-profit organizations in Ukraine 

to steal sensitive information. Actinium, which has been considered in belonging to the Russian 

Federal Security Service (FSB), has been observed with objectives related to cyber espionage. The 

group has conducted cyber-espionage campaigns in Ukraine since at least 2014 until today. As the 

first attack vector, the group concerned utilizes spear-phishing emails, fooling them to come from 

legitimate organizations, but containing malicious macro attachments, and tracking components 

providing information to the adversary if the email(s) has been opened. The group uses targeted 

“spear-phishing” emails using remote document templates and remote macro scripts to infect 

only specific targets and mitigate being detected by anti-malware systems (Tung, 2022). 

According to Aljofey et al. (2020), defensive measures against phishing attacks can be classified 

into various categories, such as list-based detection, deep learning-based detection, machine 

learning-based detection, heuristic-based detection, and hybrid methods. List-based detection can 

be divided into two sub-categories: whitelist-based and blacklist-based technologies. Whitelist-

based techniques maintain a list of safe URLs and IP addresses that are permitted to access data or 

networks. One drawback of list-based techniques is that they may not be able to detect phishing 

sites if the targeted site is not included in the whitelist. Blacklist-based techniques, on the other 

hand, maintain a list of known malicious items that are required to be blocked. These are com-

monly used in anti-phishing toolbars such as Google safe browsing, providing warnings to end-us-

ers. A list of malicious phishing URLs is challenging to keep up to date as the threat situation 

changes continually. To enhance blacklist-based detection methods, additional information such 

as domain name and server details or a blacklist of signatures can be employed to detect new 

phishing URLs. 

Heuristic-based detection methods, which evolved from list-based detection techniques, rely on 

extracting characteristics from a web page (potentially a phishing site) to determine its authentic-

ity, rather than relying on pre-compiled lists. Heuristic-based detection methods extract features 
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from the website's URL and HTML Document Object Model (DOM). According to Bhattacharyaa et 

al. (2017), these features are then compared with a set of known characteristics gathered from 

both phishing and legitimate pages to determine the legitimacy of the website. Aljofey et al. 

(2020) state that an example of a heuristic method is Cantina, which uses the Google search en-

gine to gather keywords and domain names from a website and employs research results and 

other heuristic rules to determine the legitimacy of a webpage; whether it can be considered be-

nign (legitimate) or malicious (phishing). Heuristic-based detection has fewer false positives and 

false negatives, and it is faster than the list-based technique, but as a disadvantage, it is less accu-

rate and it can be circumvented if the heuristic technique has been revealed (Rao et al., 2015). 

According to Aljofey et al. (2020), machine learning-based methods, which enable computer sys-

tems to learn, can be used to develop techniques for mitigating phishing attacks. An extensive 

amount of information can improve phishing detection accuracy, but in general, both computa-

tional resources and time are limited resources, and therefore a significant number of features are 

not possible to extract. Features may include content-related, lexical, or WHOIS-related features. 

Lexical features include dots in URLs, special characters, and IP-address contained in URLs (Zhang 

et al., 2011). As an example of phishing detection by using ML-based methods, Jain et al. (2018) 

proposed URL based anti-phishing learning method by extracting 14 features of the URL to identify 

the website as malicious (phishing), or benign (legitimate). The authors trained their proposed sys-

tem using over 30,000 malicious and benign URLs, utilizing Support Vector Machine (SVM) and Na-

ive Bayes (NB) classifiers, achieving an accuracy rate of up to 90% in detecting malicious websites 

with the SVM classifier. Rao et al. (2019) proposed a more sophisticated method, CatPhish, which 

can predict whether a URL is legitimate or not without accessing the website's content. It extracts 

features from questionable URLs and uses a random forest classifier for classification. 

Deep Learning-based methods, such as convolutional neural networks (CNN), deep neural net-

works (DNN), recurrent neural networks (RNN), and recurrent convolutional neural networks 

(RCNN), generally offer higher accuracy and the ability to extract features from primary data with-

out the need for prior information or human intervention. According to Catal et al. (2022), deep 

learning-based algorithms, deep neural networks, recurrent neural networks, convolutional neural 

networks, and hybrid learning algorithms have been able to provide the best results in experi-

ments. Surprisingly the traditional Multi-Layer Perceptron (MLP) algorithm can also provide decent 

results. One possible reason for the performance results can be that deep neural networks are 

based on multi-layer perceptron algorithms, which may be due to the widespread adoption of 
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these algorithms compared to other novel alternatives. Various combinations of hybrid algorithms 

exist, such as RNN-RNN or LSTM-LSTM, which can provide slightly better precision than solely an 

individual recurrent neural network or long short-term memory method. Hybrid methods combine 

different classification methods to combine their advantages and mitigate the disadvantages of an 

individual classifier providing higher accuracy, and therefore hybrid models should be considered 

when designing prediction models. 
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3 Implementation and results of the research 

3.1 Data gathering 

The review data (scientific articles) of this study was gathered from various databases, such as 

from arXiv free distribution and an open-access archive, the Institute of Electrical and Electronics 

Engineers (IEEE) IEEE Xplore Digital Library, SpringerLink (Springer-Verlag), ScienceDirect (Reed 

Elsevier), Theseus Open Repository of the Universities of Applied Sciences, and scientific journals, 

such as Frontiers, International Journal of Advanced Computer Science and Applications (IJACSA), 

International Journal of Engineering and Advanced Technology (IJEAT), International Journal of Ad-

vanced Trends in Computer Science and Engineering (IJATCSE), Mendel Soft Computing Journal, 

and Scientific Reports open access journal, etc. 

The data were searched for with the following search keywords: “phishing attacks machine learn-

ing detection”, “DDoS detection classification algorithms”, “an ensemble-based malware detec-

tion”, “false data injection attacks in the smart grid”, “machine learning classifiers for detecting 

malware”, “DDoS attack detection with Decision Tree algorithm”, “DDoS attack detection using 

machine learning”, “intelligent malware detection”, “convolutional neural network in malware 

classification”, “false data injection attack classification method”, “DDoS mitigation using machine 

learning”, ”ransomware detection with machine learning”, “phishing detection using machine 

learning”, “false data injection attacks detection in power systems”, “unknown malware detec-

tion”, “malware prediction”, “machine learning to detect unknown malware”, “machine learning 

performance for phishing attack detection”. The data-gathering process has been consistent, and 

it is reproducible. 

The data gathered was then processed and presented in a form of a table describing the machine 

learning (ML) technique (classifier), the domain of the cyberattack, the dataset used in the re-

search examined, reference to the research study, year of publication, and results consisting of ac-

curacy, precision, and recall performance evaluation metrics used in conducting the research stud-

ies. ML techniques examined and compared were Decision Tree (DT), Support Vector Machine 

(SVM), Naïve Bayes (NB), Random Forest (RF), Neural Network (NN), and domains DDoS, FDIA, 

Malware Phishing, Ransomware, respectively. 
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3.2 Processing and analysis of the data 

In this section, scientific articles obtained from various databases are studied. These articles pro-

vide rather good accuracy, recall, and precision performance measures of the machine learning 

classifiers examined. These machine learning classifier performances in detecting various cyberat-

tacks are explored and compared in this section. 

3.2.1 Decision Tree in detecting cyberattacks 

Decision Tree classifier performance in identifying DDoS 

The DDoS attack is relatively simple to conduct, impacting millions of clouds and traditional server 

resources worldwide each year. Detecting and preventing DDoS attacks has been under extensive 

research due to the popularity of the attack type concerned. Alsirhani et al. (2019) examined sev-

eral machine learning classifiers, such as Naïve Bayes, Decision Tree, and Random Forest against 

DDoS attacks. Authors two different custom datasets with from 100 000 to two million packets. 

The Decision Tree classifier performed relatively well and reached 97 % accuracy, 97 % recall, and 

97 % precision on DDoS attacks (Table 1). Manikumar et al. (2020) utilized the CIDDoS2019 dataset 

containing benign and the most up-to-date common DDoS attack consisting of real-world PCAP 

data. The authors tested K-Nearest Neighbor, Decision Tree, and Random Forest classifiers on 

DDoS attacks. The decision Tree provided an average result with 93.83 % accuracy and 94.56 % 

precision (Table 1), slightly less than the performance using a custom dataset in Alsirhani’s re-

search.  

In Kashab et al. (2021) research, the Decision Tree classifier provided 86.74 % accuracy, 99.62 % 

precision, and 54.27 % recall respectively (Table 1), and the Support Vector Machine provided the 

lowest accuracy (71.17 %) and recall (0 %) scores. Kareem et al. (2022) utilized the CICIDS2017 da-

taset containing widely used and benign attacks, such as the CIDDoS2019 dataset. Their decision 

stump (DT) classifier resulted in only 81.58 % accuracy, 76 % precision, and 100 % recall (Table 1). 

Shaaban et al. (2019) utilized a custom dataset and Decision Tree classifier, which performed rela-

tively well, providing 95 % (dataset-1) and 93 % (dataset-1) accuracy (Table 1) in detecting DDoS 

attacks. K-Nearest Neighbor classifier provided the weakest results in the research, which is com-

parable to performance results in Manikumar’s and Khashab’s research. 
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Decision Tree classifier performance in identifying FDIA 

FDIA attack is a generally used method to modify the original measurements provided by sensors 

influencing, for example, the control system’s computational resources. The Decision Tree classi-

fier provided weaker results compared to when utilizing it to detect incoming DDoS attacks. In Lu 

et al. (2020) research, the Decision Tree classifier provided 81.89 % accuracy, 82.34 % precision, 

and 88.78 % recall (table 1).  

Ashrafuzzaman et al. (2021) used the MATPOWER-generated dataset simulating the standard 

IEEE-bus system and presented FDI cyberattacks on the measurement data. The authors utilized 

the Decision Tree, Linear Regression, Naïve Bayes, Neural Network, and Support Vector Machine 

Classifiers in the research. The Decision Tree classifier provided 89.31 % accuracy, 99.91 % preci-

sion, and 73.02 % recall (Table 1) in the test arrangement. The authors also tested ensemble classi-

fiers consisting of five individual and seven ensemble classifiers. In situation, the performance re-

sults of individual classifiers and ensemble classifiers did not vary much. Surprisingly, other 

classifiers than Decision Tree utilized in the research provided quite similar results, even compared 

to each other. According to the authors, this may be due to the imbalanced dataset. 

Qu et al. (2021) used the ICT data set, which is CPPS data provided by Mississippi State University 

consisting of 15 sets of data and containing about 5000 pieces of information, such as control 

panel, relay records, snort logging data, etc. The authors selected six machine learning classifiers 

for testing: Decision Tree, K-Nearest Neighbor, Random Forest, SACS-SAE, and XGBoost. The per-

formance of the Decision Tree classifier against the stealthy FDIA attacks before the feature selec-

tion for accuracy was 82.4 %, and precision 81.1 %, and after the feature selection 82.7 % for accu-

racy, and 81.5 % for precision (Table 1). The Decision Tree classifier provided an average result in 

the research compared to other classifiers tested. The Random Forest, SACS-SAE, and XGBoost 

classifiers provided slightly better (but less than 90 %) accuracy and precision performance. 

Decision Tree classifier performance in identifying Malware 

Malware is a common intrusive malicious software, posing a serious global security threat, and 

acting as an umbrella term for various malicious programs designed to intentionally cause harm or 

exploit to a computer, server, computer or telecommunication network, or infrastructure (for ex-

ample, critical infrastructure). As traditional signature-based methods fail in detecting novel mal-
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ware families, various research to identify unknown malware families have been conducted. San-

tos et. al. (2011) utilized machine learning classifiers, such as Bayesian Network (BN), Decision 

Tree, K-Nearest Neighbor, Naïve Bayes, and Support Vector Machine, to detect these kinds of 

novel malware families. The authors collected a malware dataset from the VxHeavens website 

consisting of 13189 malware executables. Results indicated that the Decision Tree classifier accu-

racy was 92.34 %, which was slightly higher than Naïve Bayes (89.81 %), and Bayesian Network 

(87.29 %) classifiers. In this research, the K-Nearest Neighbor classifier (from 93.16 % to 94.73 % 

accuracy) performed best with the Support Vector Machine classifier from 91.70 % to 95.80 % ac-

curacy). 

Shhadat et al. (2020) used the Bernoulli Naïve Bayes, Decision Tree, Hard Voting, K-Nearest Neigh-

bor, Linear Regression, Random Forest, and Support Vector Machine classifiers, and collected a 

dataset consisting of 1156 files (984 malicious and 172 benign). In the research, Random Forest, 

and Decision Tree classifiers provided the best performance with 97.8 % accuracy, 87.3 % recall, 

and 96.4 % precision (Table 1), Naïve Bayes performed the worst with 91 % accuracy, 89.6 % recall, 

and 66.8 % precision (Table 3). Amer et al. (2019) gathered a dataset containing 41 324 benign, 

and 96724 malicious samples, and utilized various individual machine learning classifiers, such as 

follows: AdaBoost, Decision Tree, Extra Tree Classifier, K-Nearest Neighbor, Linear Discriminant 

Analysis, Multilayer Perceptron, Random Forest, Support Vector Machine, and XGBoost, and en-

semble classifiers. The individual Random Forest and Decision classifiers performed the best in the 

research with 99.9 % accuracy, and ensemble classifiers (Proposed Ensemble Model + Random 

Forest + Extra Tree Classifier) provided 99.8 % accuracy respectively. However, the benefit of en-

semble classifiers is that they are not prone to overfitting (unlike the decision trees) and are more 

generalized. 

Sarah et al. (2021) selected the Drebin dataset, which consists of 215 features extracted from 15 

036 applications (5560 malware, and 9476 benign) when conducting the research. The authors 

used four conventional machine learning classifiers, such as the Decision Tree, Gaussian Naïve 

Bayes, Logistic Regression, and Support Vector Machine in malware detection. In addition, the au-

thors selected four ensemble machine learning classifies, such as the Decision Tree, Gradient 

Boosting, Light GBM, Random Forest, and XGBoost, respectively. The research analysis showed 

that ensemble classifiers reached slightly higher accuracy compared to individual machine-learning 

classifiers. The Decision Tree provided 99.84 % accuracy, 100 % precision, and 100 % recall (Table 

1), substantially higher than Gaussian Naïve Bayes, which provided only 75.82 % accuracy and 75.9 
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% precision, respectively, and 82.6 % recall. However, ensemble classifiers, such as the LightGBM, 

provided fractionally higher performance with 99.83 % accuracy, 100 % precision, and 99.67 % re-

call. Azmee et al. (2020) used the Kaggle dataset consisting of malicious and benign data from PE 

files. The authors utilized nine classification algorithms: Adaboost, Artificial Neural Network, Deci-

sion Tree, Extra Tree Classifier, K-Nearest Neighbor, Logistic Regression, Random Forest, Support 

Vector Machine, and XGBoost. Artificial Neural Network provided 98.0 % accuracy, 98 % precision, 

99 % recall (Table 5), Random Forest 98.1 % accuracy, 99 % precision, 98 % recall (Table 4), and 

XGBoost 98.6 % accuracy, 99 % precision, 99 % recall provided the best results, respectively. The 

Decision Tree classifier’s performance was average with 97.2 % accuracy, 98 % precision, and 98 % 

recall (Table 1). 

Liu et al. (2022) conducted their research by using the malware dataset, CICAndMal2017 consist-

ing of 10 854 samples (4354 malware, and 6500 benign) from various sources. The authors con-

ducted experiments on the dataset and compared it with the proposed Bidirectional Recurrent 

Neural Network (BIR-CNN), Convolutional Neural Network (CNN), Decision Tree, Random Forest, 

and Support Vector Machine classifiers. Experiments showed that the BIR-CNN classifier provided 

the best accuracy (99 %), precision (99 %), and recall (99 %). In this experiment, Support Vector 

Machine performed the worst with 89 % accuracy, 91 % precision, and 90 % recall (Table 2). The 

accuracy, precision, and recall of the Decision Tree was 91 %. 

Li et al. (2022) collected a custom dataset (2020) consisting of 13 624 samples (6686 malware, and 

6938 benign). The authors conducted their research using Convolutional Neural Network, Decision 

Tree, Graph Convolutional Neural Network (GCN), Naïve Bayes, Random Forest, Recurrent Neural 

Network, and Support Vector Machine classifiers. Research results showed that Graph Convolu-

tional Neural Network provided the best accuracy (94.67 %), precision (94.64 %), and recall (93.21 

%), Convolutional Neural Network provided 93.61 % accuracy, 93.44 % precision, and 92.59 % re-

call, and Decision Tree 92.45 % accuracy, 91.64 % precision, and 93.19 % recall (Table 1). Naïve 

Bayes provided the lowest accuracy 79.27 %, precision 81.9 %, and recall 78.47 % (Table 3). 

Decision Tree classifier performance in identifying Phishing 

Traditional anti-phishing techniques have not been sufficient and accurate enough, hence, the ac-

curacy and efficiency of these techniques are essential to get improved. Meenu et al. (2019) gen-

erated custom datasets to train and test the Decision Tree, Logistic Regression, Neural Network, 



38 
 

 

and Support Vector Machine classifiers utilized in the research. Logistic Regression and Neural 

Network classifiers provided the best accuracy at 94.1 % for Logistic Regression, 93.65 % precision, 

and 93.8 % recall, and 94.31 % for Neural Network, 94.30 % precision, and 94.4 % recall (Table 5), 

the Decision Tree classifier provided 93.9 % accuracy, 93.3 % precision, and 93.6 % recall (Table 1), 

and the Support Vector Machine reached only 88.6 % accuracy, 89 % precision, and 89.6 % recall 

(Table 2). The authors proposed also an improved Logistic Regression classifier, which utilized the 

feature selection method, and reached 95.5 % accuracy. 

Alam et al. (2020) a legitimate phishing dataset from Kaggle.com consisting of 32 features. The au-

thors used Decision Trees, and Random Forest Classifiers when conducting the experiment. The 

Decision Tree classifier reached 91.94 % accuracy, 88.04 % precision, and 93.84 % recall (Table 1), 

while the Random Forest classifier provided better accuracy at 96.96 %, and 96.89 % precision, but 

42.16 % recall (Table 4). According to the authors, Random Forest had less variance, and it was 

able to handle the over-fitting problem. Sharivari et al. (2020) gathered a dataset, which contains 

11 000 sample phishing websites. However, the authors utilized only 10 % of these samples in the 

testing phase. The Authors utilized various classifiers, such as Ada Booster, Decision Tree, Gradient 

Boosting, K-Nearest Neighbor, Neural Network, Random Forest, Support Vector Machine, and 

XGBoost when conducting the research experiment. Random Forest and XGBoost classifiers pro-

vided the best performance with 97.26 % accuracy, 91.76 % precision, and 93.19 % recall for Ran-

dom Forest (Table 4), and 98.32 % accuracy, 98.72 % precision, and 98.10 % recall for XGBoost, re-

spectively. The Decision Tree classifier performance was only slightly lower with 96.59 % accuracy, 

96.76 % precision, and 97.14 % recall (Table 1). 

Siti et al. (2020) collected two datasets consisting of email (spam and legitimate messages) and 

SMS messages for conducting the research The first dataset was fetched from GitHub and was 

containing 5180 instances, and the second one was fetched from Unicamp Website and was con-

taining 5574 instances. The authors utilized Decision Tree, K-Nearest Neighbor, Naïve Bayes, Ran-

dom Forest, and Support Vector Machine classifiers when conducting the research experiment. 

The decision Tree classifier provided 97.78 % accuracy, and 96.7 % precision (Table 1), Naïve Bayes 

98.94 % accuracy, and 98.9 % precision (Table 3), K-Nearest Neighbor and Random Forest classifi-

ers both provided 100 % accuracy, and 100 % precision, and Support Vector Machine 99.98 % ac-

curacy, and 99.8 % precision (Table 2). Naïve Bayes provided surprisingly high performance in 

phishing detection in this research as it did not perform well in detecting other attack vectors, 
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such as malware and ransomware. However, the Decision Tree classifier seems to provide decent 

performance in detecting all the cyberattacks enumerated in this thesis. 

Decision Tree classifier performance in identifying Ransomware 

Masum et al. (2022) gathered a ransomware dataset containing 138 047 samples with 57 features, 

where 70 % of samples were ransomware and 30 % were legitimate. The authors used Decision 

Tree, Linear Regression, Naïve Bayes, Neural Network, and Random Forest classifiers in the experi-

ment. Random Forest classifier provided the best performance with 99% accuracy, 99% precision, 

and 97 % recall (Table 4). The Decision Tree was the second one with high-performance results 

providing 98 % accuracy, 98 % precision, and 94 % recall (Table 1). Linear regression provided 96 % 

accuracy, 96 % precision, and 89 % recall, and the Neural Network 97 % accuracy, 97 % precision, 

and 95 % recall (Table 5). Naïve Bayes provided extremely low-performance results in this research 

in detecting ransomware attacks with 35 % accuracy, 31 % precision, and 99 % recall (Table 3). 

Table 1. Decision tree in detecting cyberattacks 

ML 
Technique Domain Dataset Reference Year 

Results 

Accuracy Precision Recall 

Decision 
Tree 

DDoS Custom Alsirhani et al. 2019 97.00 % 97.00 % 97.00 % 

CICDDoS2019 Manikumar et al. 2020 93.83 % 95 % - 

Custom Khashab et al. 2021 99.11 % 98.01 % 99.01 % 

CICIDS2017 Kareem et al. 2022 81.58 % 76 % 100 % 

Custom Shaaban et al. 2022 95.00 % - - 

FDIA Custom Lu et al. 2020 81.89 % 82.34 % 88.78 % 

Matpower 
(Gen.) 

Ashrafuzzaman et al. 2021 89.30 % 99.91 % 73.02 % 

ICS Qu et al. 2021 82.70 % 81.50 % - 

Malware Malware dataset Santos et al. 2013 92.34 % - - 

Custom Shhadat et al. 2017 97.80 % 96.40 % 87.30 % 

Custom Amer et al. 2019 99.10 % 99.90 % 99.90 % 

Drebin Sarah et al. 2019 99.84 % 100 % 100 % 

Kaggle (PE-
dataset) 

Azmee et al. 2020 97.20 % 98.00 % 98.00 % 

CICandMal2017 Liu et al. 2022 91.00 % 91.00 % 91.00 % 

Custom Li et al.  2022 92.45 % 91.64 % 93.19 % 

Phishing Custom Meenu et al. 2019 93.90 % 93.30 % 93.36 % 

Kaggle (Phishing-
dataset) 

Alam et al. 2020 91.94 % 88.04 % 93.84 % 

Custom Shahrivari et al. 2020 96.60 % 96.78 % 97.14 % 

Custom Siti et al. 2020 98.05 % 98.10 % - 

Ransomware Custom Masum et al. 2022 98.00 % 98.00 % 94.00 % 
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3.2.2 Support Vector Machine in detecting cyberattacks 

Khashab et al. (2021) utilized various machine-learning classifiers in detecting DDoS cyberattacks. 

The Decision Tree classifier provided slightly better performance compared to the Random Forest, 

which provided 86.72 % accuracy, 99.45 % precision, and 52.27 % recall. However, the Random 

Forest provided almost as high accuracy, precision, and recall as the Decision Tree. The recall (sen-

sitivity) of the Support Vector Machine and the Linear Regression was lower compared to other 

classifiers in the research indicating that the Support Vector Machine and Linear Regression did 

not detect as many attacks as the Decision Tree Classifier or the Random Forest. In Shaaban et al. 

(2019) experiment, the Support Vector Machine provided fractionally better performance for the 

Support Vector Machine (96.36 % accuracy) compared to the Decision Tree classifier, even though 

both classifiers performed relatively well. 

The support vector machine (78.92 % accuracy, 81.21 % precision, 86.96 % recall) provided similar 

results in detecting FDIA attacks in Lu et al. (2020) research compared to the Decision Tree classi-

fier (78.92 % accuracy, 81.21 % precision, 86.96 % recall). Surprisingly, the Ashrafuzzaman et al. 

(2021) experiment provided the same (89.31 % accuracy, 99.91 % precision, 73.02 % recall) perfor-

mance for the Support Vector Machine and the Decision Tree classifiers. In Qu et al. (2021) re-

search, the Decision Tree with 82.70 % accuracy, and 81.50 % precision, provided much better re-

sults compared to the Support Vector Machine with only 51.30 % accuracy and 52.40 % precision. 

In detecting malware attacks, the Santos et al. (2013) experiment provided 95.80 % accuracy for 

the Support Vector Machine outperforming other classifiers, such as the Decision Tree (92.34 % 

accuracy), and Naïve Bayes (89.81 % accuracy). In another research conducted by Shhadat et al. 

(2017), Amer et al. (2019), Sarah et al. (2019), Azmee et al. (2020), Liu et al. (2022), and Li et al. 

(2022), malware detection accuracy, precision, and recall did not vary much, but in each of the re-

search, the Decision Tree provided 1-2 percentage points better results compared to the Support 

Vector Machine. However, the precision in the Shadatt et al. (2017) research was significantly 

lower for the Support Vector Machine (88.50 %) than for the Decision Tree classifier (96.40 %).  

The performance provided in these malware research experiments was similar for the Decision 

Tree, the Random Forest, and the Neural Network classifiers, slightly outperforming the Support 

Vector Machine in most cases. Not surprisingly, Naïve Bayes considerably underperformed in de-
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tecting malware attacks compared to other classifiers. Naïve Bayes detected FDIA attacks with rea-

sonable performance in the Ashrafuzzaman et al. (2021) research, but malware detection perfor-

mance is weak. This may be due to the assumption that all features are independent, which may 

not be the real-world scenario. However, the Naïve Bayes classifier is fast and therefore can save 

time in solving multi-class prediction problems if the assumption of all features is independent is 

true. In many cases, the assumption of independent predictor features is a limiting factor. 

The Decision Tree classifier outperformed the Support Vector Machine in detecting phishing at-

tacks, even though the difference is not great. In the Meenu et al. (2019) research the Support 

Vector Machine provided 88.60 % accuracy, 90.40 % precision, and 93.10 % recall, and the Deci-

sion Tree provided 93.90 % accuracy, 93.30 % precision, and 93.36 % recall, the Neural Network 

provided 94.31 % accuracy, 94.30 % precision, and 94.40 % recall, respectively. In Siti et al. (2020) 

research experiment the Support Vector Machine provided almost two percentage points better 

accuracy, and precision compared to the Decision Tree classifier. In the experiment concerned, the 

Naïve Bayes classifier provided reasonable performance with 95.66 % accuracy and 96.50 % preci-

sion. Among all the classifiers compared in this thesis, the Random Forest classifier provided the 

best results in detecting phishing attacks, fractionally outperforming the Decision Tree, Support 

Vector Machine, and Neural Network classifiers. 

Masum et al. (2022) conducted an experiment on detecting ransomware attacks using various 

classifiers, such as the Decision Tree, Naïve Bayes, Ransom Forest, and Neural Network Classifiers. 

The Random Forest performed the best with 99 % accuracy, 99 % precision, and 97 % recall. The 

Decision Tree provided almost as high performance with 98 % accuracy, 98 % precision, and 94 % 

recall, Neural Network provided 97 % accuracy, 97 % precision, and 95 % recall. The Naïve Bayes 

did not provide sufficient performance in detecting ransomware attacks either, but it provided 

solely 35 % accuracy, 31 % precision, and 99 % recall. Generally, the Random Forest seems to pro-

vide good results in detecting various cyberattacks, such as DDoS, Malware, Phishing, and Ran-

somware. The Random Forest FDIA attack detecting performance needs further research though. 
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Table 2. Support vector machine in detecting cyberattacks 

ML 
Technique Domain Dataset Reference Year 

Results 

Accuracy Precision Recall 

Support 
vector 

machine 

DDoS 

Custom Alsirhani et al. 2019 - - - 

CICDDoS2019 Manikumar et al. 2020 - - - 

Custom Khashab et al. 2021 94.99 % 97.1 % 82.81 % 

CICIDS2017 Kareem et al. 2022 - - - 

Custom Shaaban et al. 2022 96.36 % - - 

FDIA 

Custom Lu et al. 2020 78.92 % 81.21 % 86.96 % 

Matpower (Gen.) Ashrafuzzaman et 
al. 2021 89.31 % 99.91 % 73.04 % 

ICS Qu et al. 2021 51.30 % 52.40 % - 

Malware 

Malware dataset Santos et al. 2013 95.80 % - - 

Custom Shhadat et al. 2017 96.10 % 88.50 % 86.20 % 

Custom Amer et al. 2019 98.30 % 99.00 % 98.00 % 

Drebin Sarah et al. 2019 98.31 % 98.00 % 98.00 % 

Kaggle (PE-dataset) Azmee et al. 2020 96.30 % 98.00 % 97.00 % 

CICandMal2017 Liu et al. 2022 89.00 % 91.00 % 90.00 % 

Custom Li et al.  2022 90.08 % 89.96 % 90.37 % 

Phishing 

Custom Meenu et al. 2019 88.60 % 90.40 % 93.10 % 
Kaggle (Phishing-

dataset) Alam et al. 2020 - - - 

Custom Shahrivari et al. 2020 95.21 % 94.65 % 96.88 % 

Custom Siti et al. 2020 100 % 100 % - 

Ransomware Custom Masun et al. 2022 - - - 

 

3.2.3 Naïve Bayes in detecting cyberattacks 

The Naïve Bayes classifier utilized by Alsirhani et al. (2019) and Khashab et al. (2021) provided sig-

nificantly poorer performance in detecting DDoS, Malware, and Ransomware cyberattacks com-

pared to other classifiers reviewed in this thesis. In Alsirhani et al. (2019) research, Naïve Bayes 

provided only 62.20 % accuracy, 62.25 % precision, and 62.22 % recall. The Decision Tree provided 

97.00 % accuracy, 97.00 % precision, and 97.00 % recall, and the Random Forest 97.20 % accuracy, 

97.30 % precision, and 97.20 % recall, which were quite identical. In Khashab et al. (2021) research 

the Naïve Bayes classifier's accuracy in detecting DDoS attacks was 99.64 %, precision 99.97 %, and 

recall 98.98 %, which slightly outperforms the Decision Tree classifier, but fractionally loses to Ran-

dom Forest classifier in performance reaching up to 99.76 % accuracy, 99.97 % precision, and 

99.29 % recall. Hence, the Random Forest classifier was the best suitable among other classifiers in 

the research. 
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Ashrafuzzaman et al. (2021) utilized Naïve Bayes in detecting FDIA attacks. Surprisingly, Naïve 

Bayes provided almost identical performance results (89.31 % accuracy, 99.91 % precision, 73.04 

% recall) compared to other classifiers, such as the Decision Tree, Linear Regression, Neural Net-

work, and Support Vector Machine, examined in the research. This may be due to the usage of the 

imbalanced dataset as the authors stated. Qu et al. (2021) used a Random Forest classifier to de-

tect FDIA attacks, and the classifier provided 89.60 % accuracy and 87.20 % precision by using dif-

ferent (ICS) datasets. In the same research, the Support Vector Machine classifier provided only 

51.30 % accuracy, and 52.40 % precision, and the Decision Tree solely 82.70 % accuracy, and 81.50 

% precision. Hence, the Random Forest classifier appears to be the best fit to detect FDIA attacks, 

especially, when considering the imbalanced dataset used in Ashrafuzzaman et al. (2021). 

The Naïve Bayes classifier provided satisfactory results in detecting malware attacks in Santos et 

al. (2013) research with 89.81 % accuracy using the malware dataset, and Shhadat et al. (2017) us-

ing the custom dataset with 91.00 % accuracy, 66.80 % precision, and 89.60 % recall, but in other 

research (table 1), the Naïve Bayes provided only less than 80 % performance results, which was 

the lowest result compared to other classifiers reviewed. The Decision Tree, Neural Network, Ran-

dom Forest, and Support Vector Machine were able to detect malware attacks with accuracy, pre-

cision, and recall higher than 90 % in most cases. The Random Forest classifier reached signifi-

cantly high results with accuracy between 97-100 %, precision between 96-100 %, and recall 

between 87-100 % in most of the research papers examined in this thesis. 

Siti et al. (2020) examined the Naïve Bayes classifier, which provided 95.66 % accuracy, and 96.50 

% precision performance, by using the custom dataset gathered by the authors. The Support Vec-

tor Machine and Random Forest classifiers provided 100 % accuracy, and 100 % precision, and the 

Decision Tree 98.05 % accuracy, and 98.10 % precision. The Decision Tree classifier and Random 

Forest seem to outperform the Naïve Bayes with accuracy, and precision results between 98-100 

%. Generally, the Decision Tree, Neural Network, and Random Forest provided the best perfor-

mance results in detecting phishing attacks among the classifiers reviewed. 
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Table 3. Naïve Bayes in detecting cyberattacks 

ML 
Technique Domain Dataset Reference Year 

Results 

Accuracy Precision Recall 

Naïve Bayes 

DDoS 

Custom Alsirhani et al. 2019 62.20 % 62.25 % 62.22 % 

CICDDoS2019 Manikumar et al. 2020 - - - 

Custom Khashab et al. 2021 99.64 % 99.97 % 98.98 % 

CICIDS2017 Kareem et al. 2022 - - - 

Custom Shaaban et al. 2022 - - - 

FDIA 

Custom Lu et al. 2020 - - - 

Matpower (Gen.) Ashrafuzzaman et 
al. 2021 89.31 % 99.91 % 73.04 % 

ICS Qu et al. 2021 - - - 

Malware 

Malware dataset Santos et al. 2013 89.81 % - - 

Custom Shhadat et al. 2017 91.00 % 66.80 % 89.60 % 

Custom Amer et al. 2019 70.01 % 70.00 % 100.00 % 

Drebin Sarah et al. 2019 75.82 % 75.90 % 82.60 % 

Kaggle (PE-dataset) Azmee et al. 2020 - - - 

CICandMal2017 Liu et al. 2022 - - - 

Custom Li et al.  2022 79.27 % 81.90 % 78.47 % 

Phishing 

Custom Meenu et al. 2019 - - - 
Kaggle (Phishing-

dataset) Alam et al. 2020 - - - 

Custom Shahrivari et al. 2020 - - - 

Custom Siti et al. 2020 95.66 % 96.50 % - 

Ransomware Custom Masum et al. 2022 35.00 % 31.00 % 99.00 % 

 

3.2.4 Random Forest in detecting cyberattacks 

The Random Forest classifier provided great results (accuracy > 95 %, precision >= 95 %, and recall 

> 97 %) in all the research experiments it was utilized, such as the research conducted by Alsirhani 

et al. (2029), Manikumar et al. (2020), Khashab et al. (2021), Kareem et al. (2022), and Shaaban et 

al. (2022). The Decision Tree was able to reach almost as good results as the Random Forest classi-

fier, but in Kareem et al. (2022) research experiment the Random Forest (99.84 % accuracy, 99.80 

% precision, 99.99 % recall) outperformed the Decision Tree classifier in accuracy and precision 

with a remarkable difference (81.58 % accuracy, 76 % precision, 100 % recall). 

In the Qu et al. (2021) research in detecting FDIA attacks Random Forest classifier performed well 

providing 89.60 % accuracy, and 87.20 % precision compared to the Decision Tree (82.70 % accu-

racy, and 81.50 % precision), and Support Vector Machine (51.30 % accuracy, and 52.40 % preci-

sion). In the Ashrafuzzaman et al. (2021) research, performance results (90 % for both accuracy, 

and precision) are better, but it can be due to the Imbalanced dataset as stated before. To detect 
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the FDIA attacks, the Decision Tree and the Support Vector Machine were examined the most 

among the classifiers reviewed. 

The Random Forest classifier and the Decision Tree classifiers provided almost the same perfor-

mance results in the Shhadat et al. (2017), Amer et al. (2019), Sarah et al. (2019), Azmee et al. 

(2020), Liu et al. (2022), and Li et al. (2022) research experiments, despite of different datasets uti-

lized. These classifiers were able to provide > 91% accuracy, and precision, and >87 % recall values. 

In general, the Malware detection performance provided by these classifiers was at a great level. 

The Support Vector Machine and Neural Network classifiers provided comparable results to these 

classifiers. In most research experiments examined in this thesis, at best, the Naïve Bayes classifier 

provided only satisfactory performance compared to more robust classifiers, such as the Decision 

Tree, and Random Forest. 

In detecting phishing attacks, the Random Forest classifier provided the best performance in the 

Meenu et al. (2019), Alam et al. (2020), Shahrivari et al. (2020), and Siti et al. (2020) research ex-

periments. The highest performance was measured in Siti et al. (2020) research, in which the Ran-

dom Forest and the Support Vector classifiers provided 100 % accuracy, and 100 % precision per-

formance results. The Decision Tree reached 98.05 % accuracy, and 98.10 % precision, and Naïve 

Bayes 95.66 % accuracy, and 96.50 % precision, which are both exquisite results. Neural Network 

classifier detected phishing attacks with 94.31 % accuracy, 94.30 % precision, and 94.40 % recall in 

Meenu et al. (2019) research, and with 96.98 % accuracy, 96.76 % precision, and 97.87 recall in 

Sharivari et al. (2020) research using custom datasets by authors. When utilizing the Kaggle phish-

ing dataset, the Random Forest classifier provided 96.96 % accuracy, and 96.89 % precision, but 

only 42.16 % recall. The Decision Tree classifier did not perform as well, but it still provided good 

enough 91.94 % accuracy, 88.04 % precision, and 93.84 % recall performance. 

Most of the classifiers examined in this thesis, such as the Decision Tree, Neural Network, and 

Random Forest were able to provide great performance results in detecting Ransomware attacks. 

In Masum et al. (2022) research, the Decision Tree provided 98.00 % accuracy, 98.00 % precision, 

and 94 % recall, Random Forest provided 99.00 % accuracy, 99.00 % precision, and 97.00 % recall 

and Neural Network provided 97.00 % accuracy, 97.00 % precision, and 95.00 % recall. The Naïve 

Bayes classifier was able to provide only 35.00 % accuracy, and 31.00 % precision, but 99.00 % re-

call performance results. 
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Table 4. Random Forest in detecting cyberattacks  

ML 
Technique Domain Dataset Reference Year 

Results 

Accuracy Precision Recall 

Random 
forest 

DDoS 

Custom Alsirhani et al. 2019 97.20 % 97.30 % 97.20 % 

CICDDoS2019 Manikumar et al. 2020 95.19 % 95 % - 

Custom Khashab et al. 2021 99.76 % 99.97 % 99.29 % 

CICIDS2017 Kareem et al. 2022 99.84 % 99.80 % 99.99 % 

Custom Shaaban et al. 2022 - - - 

FDIA 

Custom Lu et al. 2020 - - - 

Matpower (Gen.) Ashrafuzzaman et 
al. 2021 - - - 

ICS Qu et al. 2021 89.60 % 87.20 % - 

Malware 

Malware dataset Santos et al. 2013 - - - 

Custom Shhadat et al. 2017 97.80 % 96.40 % 87.30 % 

Custom Amer et al. 2019 99.40 % 99.00 % 99.00 % 

Drebin Sarah et al. 2019 99.84 % 100 % 100 % 

Kaggle (PE-dataset) Azmee et al. 2020 98.10 % 99.00 % 98.00 % 

CICandMal2017 Liu et al. 2022 92.00 % 92.00 % 91.00 % 

Custom Li et al.  2022 92.26 % 91.76 % 93.19 % 

Phishing 

Custom Meenu et al. 2019 - - - 
Kaggle (Phishing-

dataset) Alam et al. 2020 96.96 % 96.89 % 42.16 % 

Custom Shahrivari et al. 2020 97.26 % 96.98 % 98.14 % 

Custom Siti et al. 2020 100 % 100 % - 

Ransomware Custom Masum et al. 2022 99.00 % 99.00 % 97.00 % 

 

3.2.5 Neural network in detecting cyberattacks 

The Neural Network classifier has been utilized in all the cyberattack domains reviewed in this the-

sis. Shaaban et al. (2022) examined various classifiers, such as the Decision Tree, Support Vector 

Machine, and Neural Network in detecting cyberattacks. Neural Network provided the best perfor-

mance in detecting DDoS attacks with 98.03 % accuracy. The Support Vector Machine provided 

96.36 % accuracy and the Decision tree 95.00 % accuracy, respectively, indicating the Neural Net-

work classifier as the best-performing classifier in Shaaban et al. (2022) research. 

In Ashrafuzzaman et al. (2021) research, which concerned detecting FDIA attacks, performance re-

sults for all the classifiers examined in this thesis provided quite similar results due to the imbal-

anced dataset. The Neural Network classifier was not an exception. In detecting Malware cyberat-

tacks, the Neural Network classifier provided slightly better 98.00 % accuracy, 98.00 % precision, 

and 94.00 % recall in Azmee et al. (2020) research utilizing Kaggle (PE-dataset) compared to other 
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classifiers examined in this thesis, except the generally well-performing Random Forest classifier 

providing 98.10 % accuracy, 99.00 % precision, and 98.00 % recall. 

In the Meenu et al. (2019) research in detecting phishing attacks, the Neural Network classifier 

provided 94.31 % accuracy, 94.30 % precision, and 94.40 % recall, and the Decision Tree provided 

93.90 % accuracy, 93.30 % precision, and 93.36 % recall, Support Vector Machine 88.60 % accu-

racy, 90.40 % precision, and 93.10 % recall. Hence, the Neural Network classifier slightly provided 

the highest performance among these classifiers. In Shahrivari et al. (2020) research, the Random 

Forest classifier provided 97.26 % accuracy, 96.98 % precision, and 98.14 % recall outperforming 

other classifiers examined. The Neural Network classifier was able to provide almost as good a 

performance result as the Random Forest providing 96.98 % accuracy, 96.76 % precision, and 

97.87 % recall. The Decision Tree classifier provided 96.60 % accuracy, 96.78 % precision, and 

97.14 % recall, and Support Vector Machine 95.21 % accuracy, 94.65 % precision, and 96.88 % re-

call. 

Masum et al. (2022) examined ransomware attacks and conducted research utilizing the Decision 

Tree, Naïve Bayes, Neural Network, and Random Forest classifiers. The Random Forest classifier 

provided the best performance among these classifiers with 99.0 % accuracy, 99 % precision, and 

97 % recall. The Decision Tree was able to provide 98.00 % accuracy, 98.00 % precision, and 94.00 

% recall, and the Neural Network 97.00 % accuracy, 97.00 % precision, and 95.00 % recall, respec-

tively. Naïve Bayes reached only 35.00 % accuracy, and 31.00 % precision, but 99.00 % recall per-

formance. The Random Forest classifier was able to provide the best performance compared to 

other classifiers reviewed, but the difference in comparison with the Decision Tree classifier is not 

ample. Due to the nature of Naïve Bayes, the classifier was not able to provide decent perfor-

mance results in detecting phishing attacks either. 
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Table 5. Neural network in detecting cyberattacks 

ML 
Technique Domain Dataset Reference Year 

Results 

Accuracy Precision Recall 

Neural 
network 

DDoS 

Custom Alsirhani et al. 2019 - - - 

CICDDoS2019 Manikumar et al. 2020 - - - 

Custom Khashab et al. 2021 - - - 

CICIDS2017 Kareem et al. 2022 - - - 

Custom Shaaban et al. 2022 98.03 % - - 

FDIA 

Custom Lu et al. 2020 - - - 

Matpower (Gen.) Ashrafuzzaman et al. 2021 89.31 % 99.91 % 73.04 % 

ICS Qu et al. 2021 - - - 

Malware 

Malware dataset Santos et al. 2013 - - - 

Custom Shhadat et al. 2017 - - - 

Custom Amer et al. 2019 - - - 

Drebin Sarah et al. 2019 - - - 

Kaggle (PE-dataset) Azmee et al. 2020 98.00 % 98.00 % 94.00 % 

CICandMal2017 Liu et al. 2022 - - - 

Custom Li et al.  2022 - - - 

Phishing 

Custom Meenu et al. 2019 94.31 % 94.30 % 94.40 % 
Kaggle (Phishing-

dataset) Alam et al. 2020 - - - 

Custom Shahrivari et al. 2020 96.98 % 96.76 % 97.87 % 

Custom Siti et al. 2020 - - - 

Ransomware Custom Masum et al. 2022 97.00 % 97.00 % 95.00 % 
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4 Discussion and Conclusions 

4.1 Summary 

This thesis concentrated on researching the most common cyberattacks, such as DDoS, FDIA, Mal-

ware, Phishing, and Ransomware, which can be used against critical infrastructure facilities. The 

research clarified what kind of widely known machine learning classifiers exist that can be used as 

defensive mechanisms in detecting these incoming cyber-attacks, and with what accuracy. The re-

search also introduced and explained these defensive mechanisms to provide additional detection 

and defense capability to improve the protection of critical infrastructure facilities in encountering 

incoming cyber threats. In addition, the research elucidated what is the most suitable machine 

learning classifier (method) that can be utilized in detecting DoS/DDoS, FDIA, Malware, and phish-

ing attacks. 

The literature review conducted in the theoretical framework chapter of the thesis presented the 

cybersecurity definition and concepts, explained the basics of artificial intelligence and machine 

learning, and discussed critical infrastructure, and trends. The literature review also presented 

cyber-physical systems and implementations, cyberattacks on critical infrastructure facilities, and 

countermeasures. The fundamental purpose of the theoretical framework was to function as a 

theoretical foundation to support the processing and analysis of the data chapter of this thesis and 

to provide a general understanding of the concepts, and previous research in the field of study. 

The decision tree provided good results in detecting cyberattacks examined in this thesis. The DT 

was able to detect DDoS attacks with 81–99 % accuracy, and in most cases, the accuracy was 

higher than 90 %. The DT detection accuracy of FDIA attacks was between 81–89 % in the experi-

ments, respectively. Malware attacks were detected by DT with 91–99 % accuracy, which is high 

and depends on the datasets used. Phishing attack detection was between 91–98 %. DT was able 

to detect ransomware attacks with 98 % accuracy. The support vector machine (SVM) detected 

DDoS with 94–96 %, FDIA attacks with 51–78 %, malware attacks with 89–98%, and phishing at-

tacks with 88–100 % accuracy. Naïve Bayes (NB) had the lowest detection accuracy, and it de-

tected DDoS with 62–99 %, FDIA attacks with 89 %, malware attacks with 70–91 %, phishing at-

tacks with 95 %, and ransomware attacks with only 35 % accuracy. Random Forest (R)F) was able 

to detect DDoS attacks with 95–99 %, FDIA attacks with 89 %, malware attacks with 92–99 %, 

phishing attacks with 96–100 %, and ransomware attacks with 99 % accuracy. Neural network 
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(NN) detected DDoS attacks with 98 %, FDIA attacks with 89 %, malware attacks with 98 %, phish-

ing attacks with 94–96 %, and ransomware attacks with 97 % accuracy. 

The Decision Tree and Random Forest classifiers provided great performance results in experi-

ments conducted by authors of the scientific research papers examined while pursuing this thesis. 

The Random Forest outperformed the Decision Tree and other classifiers presented and compared 

in the processing and analysis of the data chapter of this research, making it the best option of the 

classifiers examined to detect cyberattacks presented in this thesis. The Random Forest is widely 

used due to its combination of accuracy and explicability providing accurate and precise results, 

and in addition, preventing overfitting. The classifier is usable in all the domains (DDoS, FDIA, Mal-

ware, Phishing, and Ransomware) presented in this thesis to detect malicious cyberattacks. The 

Naïve Bayes classifier provided the lowest performance in most of the experiments, and therefore, 

it cannot be recommended as a defensive measure. 

4.2 Criticism of the research 

As stated before, the review part of this thesis is based solely on the comparison of research ex-

periments already conducted by comparing common machine-learning classifiers in detecting vari-

ous cyberattacks. The data gathered and used in comparison in the empirical part of this thesis has 

not been measured by the author of this thesis, and there are no custom-made research experi-

ment arrangements, whose results could have been used in comparison with the results gathered 

from already published research articles. In addition, it would have been beneficial to use the 

same datasets (if possible, and publicly available) as used in the articles and research experiments 

already published to conduct a custom-made research experiment by using, for example, other 

well-known and powerful classifiers to measure the performance in detecting cyberattacks dis-

cussed in this thesis. 

Due to limitations in technology resources and time, building the research test environment, 

teaching machine and deep learning models based on datasets under the domains concerned to 

detect incoming attacks, and conducting cyberattacks to test the accuracy, prediction, and recall 

of the models, weren’t feasible under the circumstances. This kind of simulation is not feasible ei-

ther by utilizing virtualized platforms located on the internet, such as TryHackme or HackTheBox, 

but requires a custom-built research test environment to conduct the experiments. 
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4.3 Further research suggestions 

This thesis did not compare machine and deep learning classifiers in detecting cyberattacks pre-

sented in the thesis, but it focused only on comparing machine learning classifiers and presenting 

some deep-learning-based adversarial attacks and corresponding countermeasures, already show-

cased in the chapter by Vähäkainu et al. (2022). In this context, a comparison of deep learning and 

machine learning classifiers would have provided more profound information and added value. In 

addition, a more comprehensive comparison using ensemble machine learning and deep learning 

classifiers would provide beneficial information and raise an interesting question “Does a ma-

chine-learning, deep-learning (or a hybrid of those) combination of ensemble classifiers exist, 

which could provide higher accuracy, precision, and recall compared to an individual classifier?”  

In the next research and in addition to the comparison of machine learning, deep learning, and en-

semble classifiers, it would be interesting to conduct a practical research experiment, providing 

novel information on comparing these classifier techniques with a custom-made or already pub-

lished dataset from public sources. It would be also interesting to find out, which one of these 

classifiers to be compared would be simple and cost-efficient enough to use fast and effective 

enough learners, and if it could provide self-learning capabilities to detect novel cyberattacks of 

the future without human intervention. 

These days adversarial attacks may pose a significant risk to machine learning and deep learning 

classifiers (models). If these models are used to adjust and/or control electrical devices or systems 

especially, in critical infrastructure facilities, and experienced a successful adversarial attack, con-

sequences may be unpredictable. Hence, it would be beneficial to create a virtualized test environ-

ment to simulate a control system, such as a heating system guided by a predictive machine or 

deep learning-based feedback system and conduct an adversarial attack campaign to obtain data 

on how the machine or deep learning classifier behaves for being under such attack. It would also 

be important to test the deep learning classifiers’, ensemble classifiers’, and machine learning clas-

sifiers' performance in detecting and predicting incoming adversarial cyberattacks on these critical 

infrastructure facilities. 

Ensemble classifiers were not compared when conducting the processing and analysis of the data 

section of this thesis. Hence, this thesis did not answer the questions: “Do ensemble classifiers im-
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prove accuracy, and if they do, is the improvement significant?”, “What kind of combination of en-

semble classifiers could the best improve the accuracy (if ever possible)?” or “Would an individual 

classifier perform better than an ensemble classifier or combination of ensemble classifiers in 

some cases?”. As this thesis could not answer these questions, but it just focused on comparing 

the performance of individual classifiers. Hence, conducting further research to provide answers 

to these questions would possibly provide better means of detecting the cyberattacks presented 

in this thesis. 
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Abstract Critical infrastructure (CI) is a vital asset for the economy and society's functioning, covering sectors 
such as energy, finance, healthcare, transport, and water supply. Governments around the world invest a lot 
of effort in continuous operation, maintenance, performance, protection, reliability, and safety of CI. How-
ever, the vulnerability of CIs against cyberattacks and technical failures has become a significant concern 
nowadays. Sophisticated and novel cyberattacks, such as adversarial attacks, may deceive physical security 
controls, for example, smart locks, providing a perpetrator an illicit entry to the smart critical facility (e.g., 
smart building). The same adversarial attacks may be used to deceive predictive machine learning (ML) based 
classifier, which automatically adjusts the heating, ventilation, and air conditioning (HVAC) of a smart build-
ing. Additionally, false data injection attacks have been used against smart grids. Traditional and widely used 
cyberattacks utilizing malicious code, such as DoS/DDoS, malware, phishing, and ransomware, are able to 
cause remarkable physical damage, such as blackouts and disruptions to energy production or the entire 
city's water supply when used as attack vectors to manipulate critical infrastructure controls of defense, en-
ergy providers, financial services, healthcare databases, power grids, etc. In order to detect incoming attacks 
and mitigate the performance of these attacks, we introduce defensive mechanisms to provide auxiliary de-
tection and defense capability to enhance the insufficient protections of the smart critical facility against 
outsider threats. 
 
Keywords adversarial attacks · critical infrastructure · cyberattacks · cyber-physical system · defensive mech-
anisms 
 
1 Introduction 

Cyber-physical systems (CPS) are sociotechnical systems seamlessly integrating analog, digital, physical, and 
human components engineered for function through integrated physics and logic (Griffor et al., 2017). Cyber-
physical systems can be considered as integrations of computation, networking, and physical processes. CPSs 
can be implemented as feedback systems that are adaptive and predictive, intelligent, real-time, networked, 
or distributed, possibly with wireless sensing and actuation. In CPSs, physical processes are controlled and 
monitored by embedded computers and networks with feedback loops where physical processes influence 
computations and contrarily. These kinds of systems provide the foundation of critical infrastructures (CI), 
providing means to develop and implement smart services of the future, and improving quality of life in 
various areas. Cyber-physical systems interact directly with the physical world; thus, they are able to provide 
advantages to our daily lives in the form of automatic warehouses, emergency response, energy networks, 
factories, personalized health care, planes, smart buildings, traffic flow management, etc. 

Critical infrastructure refers to infrastructure that is vital in providing community and individual functions. 
It can include buildings, e.g., airports, hospitals, power plants, schools, town halls, and physical facilities as 
roads, storm drains, potable water pipes, or sewer systems. (Planning for Hazards) CI can be considered a 
subset of the cyber-physical system, which includes smart buildings (Miller, 2014). Smart buildings utilize 
technology aiming to create a safe and healthy environment for its occupants. Smart building technology, 
which is still in the early stages of growth and adoption, increases moderately and is becoming a significant 
business around the world.  

Cyber threats against critical infrastructures raise concerns these days, and cyber-physical systems must 
operate under the same assumption that they might become a target. For example, in the case of an adver-
sarial attack, a perpetrator could fool the Machine Learning (ML) model and gain entry to a building causing 
significant security threats. The perpetrator may also use the predictive deep learning neural network (DNN) 
used to adjust the HVAC system by conducting adversarial attacks to cause challenging situations in the form 
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of energy consumption spikes causing high costs. The impact is not negligible as the cost of power spikes has 
a long payback time; in some cases, several years. Defensive countermeasures against these kinds of attacks 
are not always straightforward, but adversarial training, defensive distillation, or defense-GAN methods can 
be utilized in certain cases. 

DoS/DDoS, Malware, and Phishing, are traditional attacks capable of causing a considerable threat to crit-
ical infrastructure sectors, such as energy and transportation. Perpetrators have utilized DDoS attacks in dis-
rupting the heating distribution system by incapacitating the controlling computers used to heat buildings. 
This type of attack has also been used when attacking transportation services to cause delays and disruptions 
over travel services, such as communications, internet services, ticket sales, etc. (Metropolitan, 2016). Per-
petrators may also conduct False Data Injection Attacks (FDIA) to cause a significant threat to, for example, 
smart grids (SG). They may disrupt energy and supply figures to cause false energy distribution resulting in 
additional costs (Chen et al., 2015) often with destructive consequences, or they may conduct the attack 
towards the smart meter of the power grid to lower one's own electricity bills (Elmbrabet et al., 2018). If the 
perpetrator initiates an attack against the power-line connections of the power grid, he or she may be able 
to separate nodes from the power grid to fool the energy distribution system, which may result in power 
defects or increased energy transmission costs. In order to provide efficient countermeasures against FDIA 
attacks, detection methods, such as blockchain, cryptography, and learning-based methods, can be consid-
ered. 

In the past years, the utilization of malicious software (malware) when conducting attacks towards critical 
infrastructures have increased. In 2012, Shamoon malware was used to attack the Saudi Arabian national 
petroleum company, Aramco, by wiping hard disk drives (Alelyan & Kumar, 2018). In 2016, BlackEnergy mal-
ware was used to cause disruptions to the Ukrainian electrical grid (Santos, 2016). Petya malware infected 
websites of Ukrainian organizations, banks, ministries, newspapers, and electrical utilities (OSAC, 2018). 
Phishing attacks bring in a human component in which a perpetrator exploits human error and manipulates 
user behavior, for example, to obtain access to a target system. These kinds of attacks could be detected 
with deep learning (DL) methods. 

In this chapter, the authors briefly introduced the concepts of critical infrastructure, cyber-physical sys-
tems, and topical attack vectors against critical infrastructure and countermeasures, respectively. In chapter 
2, the authors explain critical infrastructure and resilience concepts in more detail. Chapter 3 addresses the 
cyber-physical system and presents some relevant CPS sectors these days. Chapter 4 defines cybersecurity 
and explains the intertwined concepts of cybersecurity, threat, vulnerability, and risks in more detail. Chapter 
5 describes artificial intelligence and machine learning and discusses the most common and sophisticated 
deep learning methods. In chapter 6, we showcase well-known cyberattacks utilized against critical infra-
structure facilities, such as smart buildings. Chapter 7 focuses on reviewing the defense mechanisms utilized 
in combating cyberattacks towards critical infrastructure facilities. Lastly, chapter 8 concludes the study. 
 
2 Critical Infrastructure and resilience 

Critical infrastructure (CI) is the body of systems, networks, and assets that are so essential that their contin-
ued operation is required to ensure the security of the state, nation, its economy, and the public's health and 
safety (Connecticut State, 2020). Critical infrastructure provides services crucial for everyday life, e.g., bank-
ing, communication, energy, food, finance, health, transport, and water. Infrastructure, which is resilient and 
secure, is a backbone in supporting productivity and economic growth. Disturbances in critical infrastructure 
can cause harmful consequences for businesses, communities, and governments affecting service continuity 
and supply security. (Australian Government Department of Home Affairs, 2020) Disruptions to critical infra-
structure can be caused by, for example, real-world cyber-attacks, which may include environmental dam-
age, financial loss, and even substantial personal injury. 

In Finland, critical infrastructure has not been defined in legislation, but the Finnish Government discussed 
Finnish supply security objectives in 2013. The Finnish Government's decision on supply security objectives 
contains information about integral threats against the performance of society's vital functions. The decision 
divides critical infrastructure protection as follows: "Energy production and distribution systems, financial 
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services, infrastructure and communications systems, transport and logistics, information and communica-
tion systems, networks and services, transport and logistics, waste management in special situations and 
water supply." (Valtioneuvosto, 2013) 

European Parliament adopted the directive on security of network and information systems (the NIS di-
rective) on 6 July 2016, aiming to bring cybersecurity capabilities at the same level of development in all the 
EU Member States and ensure that exchanges of information and cooperation are efficient, including at the 
cross border level. The directive increases and facilitates strategic cooperation and the exchange of infor-
mation among the EU Member States.  

(European Commission, 2016) The core idea of the NIS directive is that relevant service operators and 
digital service providers shall ensure their information infrastructure is secure, ensure business continuity in 
case of adverse information security disruptions, and report any substantial information security breaches to 
authorities. (Cagla, 2018) According to (EUR-Lex, 2016), NIS sectors, according to the directive, are the fol-
lowing: 1) Banking, 2) Digital infrastructure, 3) Drinking water supply, 4) Energy, 5) Financial market infra-
structure, 6) Health, 7) Transport.  

In the United States, there are 16 critical infrastructure sectors whose assets, systems, and networks are 
so vital to the country that operational incapability or destruction would have a harmful impact on security, 
economic security, public health, or safety. These 16 sectors are the following: 1) Chemicals, 2) Business, 3) 
Communications, 4) Critical manufacturing, 5) Damns, 6) Defense industry, 7) Emergency services, 8) Energy, 
9) Financial services, 10) Food and agriculture, 11) Government facilities, 12) Healthcare and public health, 
13) Information technology, 14) Nuclear reactors, materials, and waste, 15) Transportation systems, 16) Wa-
ter and wastewater systems. (CISA, 2020) 
 

Table. 1 Critical infrastructure sectors in Finland, EU and United States. 
 

NIS-directive Supply security United States 
Banking Energy Chemicals 
Digital infrastructure Financial services Business 
Drinking water supply Infrastructure construction and mainte-

nance 
Communications 

Energy Information and communication  Critical manufacturing 
Financial market infra. Transport and logistics Damns 
Health Waste management in special situations Defense industry 
Transport Water supply Emergency services 
  Energy 
  Financial services 
  Food and agriculture 
  Government facilities 
  Healthcare and public health 
  Information technology 
  Nuclear reactors, materials and waste 
  Transportation systems 
  Water and wastewater systems 

 
Critical infrastructure is facing various threats that may lead to the appearance of disruptive events causing 
disruption or failure of the services provided. Minimizing the impact of disruptions and ensuring continuity 
of services is often cost-effective and the most resilient way, which can be approached with strengthening 
the resilience. Resilience in the CI system can be seen as a quality that mitigates vulnerability, minimizes the 
effects of threats, accelerates response and recovery, and facilitates adaptation to a disruptive event. (Rehak 
et al., 2018). According to Berkeley et al. (2010), resilience is a fundamental strategy that makes the business 
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stronger, communities better prepared, and nations more secure. Hence, resilience is an ability to absorb, 
adapt to, and quickly recover from a disruptive event (Rehak et al., 2018). 

In cybersecurity, (cyber) resilience denotes the ability to plan, respond, and recover from cyber-attacks 
and possible data breaches and continue to operate efficiently. An organization can be cyber resilient if it can 
safeguard itself against cyberattacks, provide expedient risk control for information protection, and assure 
continuity of operation within and after a cyber incident. For an organization, cyber resilience aims to pre-
serve the ability to deliver goods and services concerned, such as the ability to restore common mechanisms, 
change or modify mechanisms according to the need during a crisis or after a security breach. (Teceze, 2018) 
These kinds of attacks, such as cybersecurity breaches or cyberattacks, are able to cause companies signifi-
cant damage attempting to destroy, expose, or obtain unauthorized access to computer networks, personal 
computer devices, or computer information systems (RSI Security, 2019). 

Cyber resilience consists of four elements (Nathan, 2018), which are the following: 1) Manage and protect, 
2) Identify and detect, 3) Respond and recover, and 4) Govern and assure. Manage and protect consists of 
the capability to identify, analyze, and handle security threats associated with networks and information 
systems; third and fourth-party vendors included. Identify and detect consists of continuous security moni-
toring and surface management of threats to detect anomalies and data breaches in addition to leaks before 
they cause significant problems. Respond and recover concerns incident response planning in order to assure 
continuity of functions (e.g., business) even in case of a cyberattack. Govern and assure confirms that the 
cyber resilience scheme is supervised as usual through the whole organization. 
 
3 Cyber-physical systems 

NIST (2013) described cyber-physical systems (CPS) as "smart systems that encompass computational (i.e., 
hardware and software) and physical components, seamlessly integrated and closely interacting to sense the 
changing state of the real world" (NIST, 2013). Rajkumar, Lee, Sha, & Stankovic (2010) instead characterized 
cyber-physical systems as "physical and engineered systems whose operations are monitored, controlled, 
coordinated, and integrated by a computing and communications core." While according to Griffor et al. 
(2017), cyber-physical systems are sociotechnical systems seamlessly integrating analog, digital, physical, and 
human components engineered for function through integrated physics and logic (Griffor et al., 2017).  These 
definitions have many similarities, especially; they agree on CPS systems having a physical part, seamless 
integration of the devices, and controlling software. Compared to the NIST definition, on the one hand, the 
definition by Rajkumar et al. (2010) impress the need for monitoring, controlling, and coordinating the func-
tioning of the engineered system. On the other hand, the definition by Griffor et al. (2017) includes the hu-
man aspect and the need for the system to have a reason to exist in the first place. However, the most general 
definition the authors have come across is the one by Legatiuk and Smarsly (2018); all CPSs include both 
computational (cyber) part, which controls the system, and a physical part, which includes sensors, actuators, 
and the frame. 

There are various definitions of cyber-physical systems as introduced above. Therefore, the authors settle 
for defining a cyber-physical system as a cohesive group of computational devices capable of communication; 
and controlling, coordinating, and monitoring software, engineered and closely integrated aiming to solve 
the common problem the physical frame or the users of the physical frame might come across during oper-
ation of the entire system under uncertainties related to the physical frame and agents. The agents refer to 
hardware (e.g., sensors, actuators, or other devices) and software (e.g., ML-based access control, energy 
consumption control programs, etc.) that generate or process the data in any way, including humans. One 
should understand that different definitions of CPS serve a specific need, and every cyber-physical system 
might not fit the said definition even though it might be a cyber-physical system.  

CPSs can be implemented as feedback systems that are adaptive and predictive, intelligent, real-time, 
networked, or distributed, possibly with wireless sensing and actuation. In CPSs, physical processes are con-
trolled and monitored by embedded computers and networks with feedback loops where physical processes 
influence computations and contrarily. CPSs are data-intensive, generating a lot of data during their use. For 
example, sensors may be able to collect air pressure, CO2, humidity, motion detection, temperature, etc. 
These kinds of systems provide the foundation of critical infrastructures (CI), providing means to develop and 
implement smart services of the future, and improving quality of life in various areas. Cyber-physical systems 
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interact directly with the physical world; thus, they are able to provide advantages to our daily lives in the 
form of automatic warehouses, emergency response, energy networks, factories, personalized health care, 
planes, smart buildings, traffic flow management, etc. 

Feedback system refers to programs having the capacities to accept and use data both from previous time 
steps and current time step in the calculation of how the program should change the state of its comprising 
components or, in other words, how the actuators should be adjusted to implement changes to the system's 
flow. For example, the program might try to decide how the valve of the HVAC cooling device should be 
adjusted to save the maximum amount of energy with the least amount of changes made to the device's 
state. Without this knowledge of previous events or data by the system, it can be difficult to make intelligent 
choices that affect the future state of the network. 

CPS can utilize, for example, the interconnected network of various embedded Internet-of-Things (IoT) 
sensors, devices, and actuators, which observe a small portion of the physical world and, based on the deci-
sions made by the guiding program, change the actuators behavior and thus, cause change to the behavior 
of the surroundings. The change in physical surroundings might have large scale effects for the whole sys-
tem's operation, such as advancements of indications to impending and unavoidable service breaks. There-
fore, the software program attempts to harmonize the totality of the ensemble of sensors and actuators 
under the challenges brought upon by the system and the real-world. One of these challenges can be, for 
example, the replacement of an old actuator with a new one. If the new actuator has capacities beyond the 
old device, recognizes a different protocol, or stores data in some other format than the old one, then the 
program might not be able to communicate with the device, and it may cause an error to the system holisti-
cally, and thus, the CPS may need calibration or human intervention to correct.  

Cyber-physical systems are becoming more and more widespread in the future. For example, even though 
smart building technology is still in the early stages of growth, its adoption throughout the world is increasing, 
and it is becoming a remarkable business. For example, the value of smart cities (another embodiment of 
CPS) is expected to reach over USD 820 billion in the year 2025 (marketsandmarkets, 2020). The same could 
be said about smart grid technology used to manage energy consumption in energy networks. According to 
a whitepaper by Business Finland (2016), the energy clusters’ yearly turnover just in Finland has reached EUR 
4.4 billion (Business Finland, 2016).  

A smart building concept can be defined as a set of communication technologies enabling different ob-
jects, sensors, and functions within a building to communicate and interact with each other and be managed, 
controlled, and automated in a remote way (European Commission, 2017). It can measure information, such 
as the temperature of a room or state of windows (open or closed), by utilizing sensors located in the build-
ing. The building can become smart if it can obtain such information. An actuator can be used to open a door 
or to increase the heating temperature of buildings. Intelligent sensors provide significant amounts of infor-
mation, which must be gathered, processed, and utilized to enable smart functionalities. CPS provides means 
to utilize sensors to collect data from smart buildings to adjust and control automatically, for example, heat-
ing, ventilation, and air conditioning (HVAC) systems. Relevant variables, such as energy, electricity, water 
consumption, inside and outside temperature, humidity, carbon dioxide, and motion detection, can be uti-
lized in controlling the functions of smart buildings. 

Automation and digitalization have become important topics in the energy sector these days, as modern 
energy systems (e.g., smart grids) increasingly rely on communication and information technology to com-
bine smart controls with hardware infrastructure. The smart grid is another complex example of a cyber-
physical system, which continuously evolves and expands. These technologies leveraged the intelligence level 
of the SG by enabling the adoption of a wide variety of simultaneous operation and control methods into it, 
such as decentralized and distributed control, multi-agent systems, sensor networks, renewable energy re-
sources, electric vehicle penetration, etc. (Mohammad et al. 2018) In brief, smart grids are electric networks 
that employ advanced monitoring, control, and communication technologies to deliver reliable and secure 
energy supply, enhance operational efficiency for generators and distributors, and provide flexible choices 
for prosumers by integrating the physical systems (power network infrastructure) and cyber systems (sen-
sors, ICT, and advanced technologies) (Xinghuo, 2016).  
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4 Cybersecurity 

The history of cybersecurity dates back to the 1970s when ARPANET (The Advanced Research Projects Agency 
Network) was developed during a research project. At this time, concepts of ransomware, spyware, viruses, 
or worms did not yet exist. These days due to active cybercrime, these concepts are frequently mentioned in 
the headlines of newspapers. Cybersecurity has become a preference for organizations worldwide, especially 
concerning critical infrastructure. The question is not if the system will be under attack, but the question is 
when it will happen. Hence, proper measures to detect and prevent malicious cyberattacks are required in 
order to secure essential assets for the functioning of a society or economy. 

The concept of cybersecurity can be defined in various ways. Cambridge dictionary defines cybersecurity 
as follows: “things that are done to protect a person, organization, or country and their computer information 
against crime or attacks carried out using the internet.” Gartner defined cybersecurity as the combination of 
people, policies, processes, and technologies employed by an organization to protect its cyber assets. Cyber-
security can also be thought of as a practice of protecting systems, networks, and programs from digital 
attacks (Cisco). Furthermore, cybersecurity can be defined subsequently: “cybersecurity refers to the pre-
ventative techniques used to protect the integrity of networks, programs, and data from attack, damage, or 
unauthorized access.” (Paloaltonetworks, 2020). 

The main purpose of cybersecurity is to ensure information confidentiality, integrity, and availability, 
which form the well-known CIA triangle. Confidentiality means that data should not be exposed to unauthor-
ized individuals, entities, and processes or to be read without proper authorization. Integrity means that the 
data concerned is not to be modified or compromised in any way; therefore, maintaining the accuracy and 
completeness of the data is crucial. The data is assumed to be accessed and modified by authorized individ-
uals, and it is anticipated to remain in its intended state. Availability means that information must be available 
upon legitimate request, and authorized individuals have unobstructed access to the data when required. 
(Nweke, 2017) 

In the field of cybersecurity, threat, vulnerability, and risk are intertwined concepts. The risk is located in 
the intersection of an asset, threat, and vulnerability, being a function of threats exploiting vulnerabilities to 
obtain, damage, or destroy assets. Threats may exist, but if there are no vulnerabilities, there is no risk, or 
the risk is relatively small. The formula to determine risk is the following: risk = asset + threat +vulnerability. 
(Flores et al., 2017) The generic definition of risk is the following: “risk is a description of an uncertain alpha-
numeric expression (objective or subjective), which describes an outcome of an unfavorable uncertain event, 
which might degrade the performance of a single (or community of) civil infrastructure asset (or assets).” 
(Ettourney, 2016). Assets denotes what to be protected, a threat is a target to be protected against, and 
vulnerability can be experienced as a gap or weakness in protection efforts. Threats (attack vectors), espe-
cially in cybersecurity alludes to cybersecurity circumstances or events with prospective means to induce 
harm by way of their outcome. Attack surface sums up all attack vectors (penetration points), where a per-
petrator can attempt to gain entry into the target system. Common types of intentional threats are, for ex-
ample, DoS/DDoS attacks, malware, phishing attacks, social engineering, and ransomware. General vulnera-
bilities are, e.g., SQL injections, cross-site scripting, server misconfigurations, sensitive data transmitted in 
plain text, respectively. 

Measures in the field of cybersecurity are associated with risk management, vulnerability patching, and 
system resiliency improvements (Lehto, 2015, 3-29). Cybersecurity risk management uses the concept of 
real-world risk management and applies it to the cyber world by identifying risks and vulnerabilities and ap-
plying administrative means and solutions to sufficiently protect the organization. Reducing one or more of 
the following components (Riskviews, 2013) is an integral part of the risk management process: threat, vul-
nerability, and consequence. In order to improve system resiliency, improving one or more of the following 
components is required to be improved: robustness, resourcefulness, recovery, and redundancy. Robustness 
includes the concept of reliability and alludes to the capability to adopt and endure disturbances and crises. 
Redundancy involves having excess capacity and back-up systems, enabling the maintenance of core func-
tionality in case of disturbances. Resourcefulness denotes the capability to adjust to crises, respond resili-
ently, and, when possible, to change a negative impact into a positive one. Response means the capability to 
mobilize quickly prior to crises, and recovery denotes the capability to regain a degree of normality after a 
crisis or event.  
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The important question is to detect the challenges of cybersecurity and to counter them expediently. 
Cyberattacks cannot be prevented entirely. Hence, an integral part of cybersecurity is to preserve the capa-
bility to function under a cyberattack, stop the attack and restore the organization’s functions to the previous 
regular state before the incident took place (Limnell, Majewski & Salminen, 2014, 107). In order to counter 
cyber threats, appropriate measures are important to be taken care of in addition to building adequate pro-
tection against the harmful impact of the threats. For example, organizations may utilize an incident response 
plan (IRP) to detect and react to computer security incidents, determine their scope and risk, respond appro-
priately to the incident, communicate the results and risks, and reduce the likelihood of the incident from 
reoccurring (Carnegie Mellon, 2015). 
 
5 Artificial Intelligence and Machine Learning 

Artificial intelligence is a mathematical approach to estimate a function, and it can be expressed with math-
ematical terms as f(x): 𝑅𝑛 -> 𝑅𝑚, where f(x) is the function to model, 𝑅𝑛 represents the real multidimensional 
input values, and 𝑅𝑚 represents the possible real multidimensional output values. The machine learning 
research field is needed to make AI models and systems more capable of handling new situations (Jordan, & 
Mitchell, 2015) because resources might have been limited during initial training, and the occurring circum-
stance might be from outside the original input or output domain that was used for training of the model. 
Deep Learning (DL) is a subfield of ML, where the learning is done with models that have multiple layers 
within their structure. The additional depth can help the models to learn more complex associations within 
the given data than regular AI models (LeCun et al., 2015); hence DL models are called deep.  

Artificial intelligence is a very enticing choice for many different use cases, where the function to be esti-
mated either unknown or difficult to implement in practice, such as machine translations. In practice, the 
quality and quantity of data, the structure of the model, and training time, as well as the training method, 
affect how any AI learns to make its choices. Especially, the data quality is an important aspect of the training 
of an AI. In a case where there is no connection between given inputs and expected outputs, the outcome of 
the trained model will not reflect reality. In other cases, the poor quality of data may cause the model to gain 
no insights into the intended use. In a worse case, the model passes the production inspections and winds 
up in a live situation where it just does not function properly. The malfunction is even worse if it hides itself 
to take place only under certain specific situations or if the model's use case is of high importance. Therefore, 
the implementation of artificial intelligence requires, if not expert knowledge of the field where it is intended 
to be applied to, but rather clear, innate relation between the inputs and the outputs, and rigorous docu-
menting, testing, and follow up after the implementation. 

Ensemble methods refer to grouping different ML models together to process inputs, or according to 
Valle, Saravia, Allende, Monge, and Fernández (2010), to the manner, the data is to be used in the training 
phase of these models. Either the definition, both typically consider the ensemble as some version of two 
different structures, which either process the inputs in sequence or in parallel (that in the case of model 
training are both resource inefficient and inaccurate, respectively (Valle et al., 2010)). With the utilization of 
ensembles, it is possible to improve ML models' performance. Imagine that you have similar ML models, 
which have been trained for the same problem domain, but the data they have been trained with were from 
different patches or data sources. Hence, it is not probable that these models have had the same learning 
experience and that they would calculate exactly the same predictions with the same prediction confidences 
based on the same inputs. In an ensemble, the performance scores may rise as the result of the ensembled 
models' outputs, and confidence scores are compared against each other. The errors stemming from individ-
ual models' states get mitigated, thus lessening the effect of any bias within the models. The process can be 
thought of like voting, where the most endorsed output becomes the actual final output, or more commonly, 
the final output is some weighted combination of the predicted outputs. 

Decision trees (DTs) represent the more traditional algorithms used in artificial intelligence development, 
and their popularity is mostly related to the ease of interpretation of the results. The interpretation is simpler 
because these models' behavior is well defined, forming decision rules or paths from the data systematically. 
A decision tree is a flowchart-like tree structure where an internal node represents a feature or attribute, the 
branch represents a decision rule, each leaf node represents the outcome, and the first node in a DT is known 
as the root node. It learns to partition based on the attribute value partitioning the tree recursively and 
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providing the tree classifier a higher resolution to process different kinds of numerical or categorical datasets. 
(Shahrivari et al., 2020) Depending on the decision criteria, the algorithm chooses which part of the input 
data is most significant at each iteration until the conclusion criteria have been filled. It can model nonlinear 
or unconventional relationships. In other words, DTs can be used to explain the data and their behavior. In 
addition, many coding libraries have visualization capacities of these paths. However, the decision tree's per-
formance suffers from unbalanced data, overgrowing decision paths, which may also hinder the model's in-
terpretation, and updating a DT by new samples is challenging (Shahrivari et al., 2020). 

Random Forest (RF) includes a significant number of decision trees forming a group to decide the output. 
Each tree specifies the class prediction resulting in the most predicted class in DTs. RF trees protect each 
other from distinct errors, and if a single tree predicts incorrectly, other trees will correct the final prediction. 
RFs can reduce overfitting, deal with a huge number of variables in a dataset, estimate the lost data, or esti-
mate the generalization error. RFs experience challenges in reproducibility and interpreting the final model 
and results. RFs are swift, straightforward to implement, extremely accurate, and relatively robust in dealing 
with noise and outliers. RFs are not fit for all the datasets as they tend to induce randomness into the training 
and testing data. (Shahrivari et al., 2020) 

Neural network (NN) is a popular base model used in the development of AI solutions. The model has 
three layers: an input layer, a hidden layer, and an output layer, where data flows from the input layer 
through the hidden layer consisting of multiple layers, and the result is produced to the output layer. NNs 
are a collection of structured, interjoined nodes whose values are comprised of all the weights of the con-
nections coming to each node. Every value of a node is inputted to an activation function, such as a rectified 
linear unit (ReLu). The activation function is typically the same for all the nodes in the same layer.  

NN may require a lot of quality data. The need is formed based on the difficulty of the problem, suitability 
of the data, and the chosen structure and size of the model. In case there are a limited amount of quality 
data available, it can be beneficial to attempt using two competing neural networks to generate the missing 
training data. According to Probst (2015), the general way is to have the first model to generate new values 
based on the original data, and the second model tries to classify the original and generated inputs (the 
outputs of the first model) from each other. The results of the classifier are then used as feedback for im-
proving the generator and the classifier. Eventually, the generated outputs' distributions move closer and 
closer to the real inputs. This machine learning method is called Generative Adversarial Neural networks 
(GAN) (Probst, 2015). 

Long-Short Term Memory neural network (LSTM) is a special case of Recurring Neural Network (RNN) 
(Lipton et al., 2015), which retains output information from previous timesteps as part of the input infor-
mation. The extra information can be helpful, i.e., when forecasting with sequential data. Because NNs can 
suffer from the problems of vanishing and exploding gradients, which likely will increase with the growth of 
sequence size, LSTMs have three gates within each node that are used to control the information going 
through them (Lipton et al., 2015). These logical gates use sinh and tanh activation functions to control the 
flow and size of internal representations of the inputs and outputs. RNN, LSTM, and their various variants 
have been used, for example, in machine translation tasks (Zhang, Liu & Song, 2018), predicting the smart 
grid stability (Alazab et al., 2020), and classifying malware (Athiwaratkun & Stokes, 2017).  

Even though NN models suffer from data issues and it can be more difficult to interpret how models have 
reached their conclusions, they are perceived to attain more accurate results than some of the traditional 
algorithms, such as decision trees. In addition, Zhang, Yang, Ma, and Wu (2019) used DTs to interpret the 
predictions of a Convolutional Neural Network (CNN) model, thus explaining the model's behavior (Zhang, 
Yang, Ma & Wu, 2019). A convolutional neural network is a neural network that has special layers within its 
hidden layers. These layers group the inputs systematically from the previous layer and calculate a value for 
each of these groups, which they then output for the next layers as inputs (Albawi, Mohammed, & Al-Zawi, 
2017); consequently, reducing the layer's dimensions. The field of research focused on explaining and inter-
preting these malleable algorithms for human experts in an easily understandable form is called explainable 
artificial intelligence (XAI) (Barredo Arrieta et al., 2019). 
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6 Cyberattacks against critical infrastructure facilities 

6.1 Adversarial attacks 

An adversarial attack is an attack vector created using artificial intelligence. These attacks are adversarial 
disruptions constructed purposely by the attacker. The disruptions are imperceptible in the human eyes but 
generally adversely impact neural network models. These days, adversarial attacks towards machine learning 
models are becoming more and more common, bringing out noticeable security concerns. For example, in 
the context of smart building (CPS), an attacker may have a chance to deceive the ML model into causing 
harm, such as to create conditions for consumption spikes, when attacking the heating system guided by 
predictive machine learning-based feedback system. 

An adversarial attack happens when an adversarial example is sent as an input to a machine-learning 
model. An adversarial example can be seen as an instance to the input with features that deliberately cause 
a disturbance in an ML-model to deceive the ML-model into acting incorrectly and into making false predic-
tions (Ibitoye et al. 2019). Deep learning applications are becoming more critical each day, but they are vul-
nerable to adversarial attacks. Szegedy et al. (2013) argue that making tiny changes in an image can allow 
someone to cheat a deep-learning model to classify the image incorrectly. The changes can be minimal and 
invisible to the human eye and can eventually lead to considerable differences in results between humans 
and trained ML-models. 

The effectiveness of these attacks is determined based on the amount of information the perpetrator has 
concerning the model. In a white-box attack, a perpetrator has total knowledge about the model (f) used in 
classification, and she knows the classifier algorithm or training data. She is also aware of the parameters (θ) 
of the fully trained model architecture. The perpetrator then has a possibility to identify the feature space 
where the model may be vulnerable (e.g., where the model has a high error rate). The model can then be 
exploited by modifying an input using an adversarial example crafting method. (Chakraborty et al., 2018) 

There may be indirect ways to obtain an adequate amount of knowledge about a learned model to apply 
a successful attack scenario. For example, in case of a malware evasion attack, a set of features may be public 
through published work. Datasets used to train the detector might be public, or there might be similar ones 
publicly available. The learner might use a standard learning algorithm to learn the model, such as deep 
neural networks, random forest, or Support Vector Machine (SVM), by using standard techniques to adjust 
hyperparameters. This may lead to the situation that the perpetrator can get a similar working detector as 
the actual one (Vorobeychik & Kantarcioglu 2018). 

In the case of Black-box attacks, the perpetrator does not know the type of the classifier, detector’s model 
parameters, classifier algorithm, or have any knowledge about the training data in order to analyze the vul-
nerability of the model. (Biggio et al. 2013) For example, in an oracle attack, the perpetrator exploits a model 
by providing a series of carefully crafted inputs and observing outputs. In model inversion type of an attack, 
the perpetrator cannot directly access the target model, but she can indirectly learn information, such as 
model structure and parameters, about the model by querying the interface system and gather the re-
sponses. (Chakraborty et al., 2018) Papernot et al. (2017) presented a strategy (Papernot-attack) to produce 
synthetic inputs by using some collected real inputs. Many studies are focusing on research utilizing images 
as datasets (MNIST or CIFAR). In such a case, the perpetrator can, for example, fetch several pictures of the 
target dataset and use the augmentation technique for each of the pictures to find new inputs that should 
be labeled with the API. The next step is to train a substitute by sequentially labeling and augmenting a set 
of training inputs. After the substitute is accurate enough, the perpetrator can launch white-box adversarial 
attacks, such as FGSM (Fast Gradient Sign Method) or JSMA (Jacobian Saliency Map Approach), to produce 
adversarial examples to be transferred to the targeted model (Goodfellow, McDaniel & Papernot 2018). 

Jacobian-based saliency map algorithm (JSMA) was presented by Papernot et al. to optimize L0 distance. 
JSMA attack can be used for fooling classification models, for example, neural network classifiers, such as 
DNNs in image classification tasks. The algorithm can induce the model to misclassify the adversarial image 
concerned as a determined erroneous target class. (Wiyatno & Xu, 2018). JSMA is an iterative process, and 
in each iteration, it saturates as few pixels as possible by picking the most important pixel on the saliency 
map in a given image to their maximum or minimum values to deceive the classifier. (Pawlak, 2020) Even 
though the attack alters a small number of pixels, the perturbation is more significant than L∞ attacks, such 
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as FGSM (Ma et al., 2019). The method is reiterated until the network is cheated or the maximal number of 
altered pixels is achieved. JSMA can be considered as a greedy attack algorithm for crafting adversarial ex-
amples, and it may not be useful with high dimension input images, such as images from the ImageNet da-
taset (Ma et al., 2019).  

The JSMA attack can cause the predictive model to output more erroneous predictions, which can, even-
tually, make the controlling model either complacent or too reactive. Both choices could be monetarily crip-
pling. For example, Papernot et al. (2016) were able to perturb both categorical and sequential RNNs with 
JSMA adversarial attack. Therefore, the chance exists that the perpetrator could, if given enough time and 
resources, afflict damage to both AI models, namely the cybersecurity AI model and the controlling AI model. 

A white-box attack uses the target model’s gradients in producing adversarial perturbations. FGSM was 
introduced by Goodfellow et al. (2018) to generate adversarial examples against NN. FGSM can be used 
against any ML-algorithms using gradients and weights, thus providing low computational cost. The gradient 
needed can be calculated by using backpropagation. If internal weights and learning algorithm architecture 
is known, with backpropagation FGSM is efficient to execute (Co, 2018). FGSM fits well for crafting many 
adversarial examples with major perturbations, but it is also easier to detect than JSMA; therefore, JSMA is 
a stealthier perturbation, but the drawback is higher computational cost than FGSM. Defense mechanisms 
can prevent a relatively considerable number of FGSM and JSMA attacks. (Goodfellow et al., 2018). 

Carlini and Wagner (C&W attack) has been presenting one of the most powerful iterative gradient-based 
attacks towards Deep Neural Networks (DNNs) image classifiers due to its ability to break undefended and 
defensively distilled DNNs on which, for example, the Limited-Memory-Broyden-Fletcher-Goldfarb-Shanno 
(L-BFGS) and DeepFool attacks fail to find the adversarial samples. In addition, it can reach significant attack 
transferability. C&W attacks are optimization-based adversarial attacks, which can generate L0, L2, and L∞ 
norm measured adversarial samples, also known by CW0, CW2, and CW∞, respectively. The attack attempts 
to minimize the distance between a valid and perturbed image while still causing the perturbed image to be 
misclassified by the model (Short et al., 2019). In many cases, it can decrease classifier accuracy near to 0 %. 
According to Ren et al. (2020), C&W attacks reach a 100 % success rate on naturally trained DNNs for image 
datasets, such as MNIST, CIFAR-10, and ImageNet. C&W algorithm is able to generate powerful adversarial 
examples, but computational cost is high due to the formulation of the optimization problem. 

Gradient-based and gradient-free adversarial attacks mentioned in this chapter, such as C&W, FGSM, and 
JSMA, can perturb the input data in such a way that the inputs seem valid for a human but mess maliciously 
with, e.g., a machine-learning model that can automatically adjust HVAC and other heating devices of smart 
buildings. This kind of model may gather data from local measurement units (IoT sensors) and external data 
from the weather database, including data from social media accounts. Data can then be properly merged 
and cleaned to be utilized in training the predictive model. The predictive model may use, e.g., LSTM neural 
networks to perform energy load forecasts and calculate the need for new commands to be sent to the ac-
tuators.  

This kind of a classification-oriented LSTM neural network can be attacked, for example, by using the 
mentioned JSMA attack method. It then perturbs the input in the desired direction to selectively make the 
model misclassify to an appropriate output class (Anderson et al., 2016). Deep neural networks can be de-
ceived by adding even minor perturbations, such as flawed pixels, to form an image classification problem 
and to be used to deceive sophisticated DNNs in the testing or deploying stage. The vulnerability of adver-
sarial examples is an ample and ever-growing risk, especially when the field of critical infrastructure is con-
cerned. Fooling the predictive deep neural network used to adjust the HVAC system of a cyber-physical sys-
tem can cause challenging situations in the form of energy consumption spikes causing increasing operational 
costs. 
 
6.2 DoS and DDoS attacks 

Denial of service (DoS), and its variant (DDoS), is one of the major threats, and it can cause disastrous conse-
quences because of its distributive nature. These attacks conducted by a perpetrator may use single or even 
multiple computers known as zombies in order to consume the victim's resources so that the server cannot 
provide a requested service to a legal or legitimate user. The perpetrator utilizes the advantage of the inter-
net, network bandwidth, and connectivity to target the open points and initialize floods of thousands or even 
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millions of packets to knock off the victim's server. The server either crashes or becomes incapable of serving 
all of the incoming requests, and it cannot serve the legitimate clients who are trying to use the service pro-
vided by the server concerned. These attacks' main targets can be, for example, default gateways, personal 
computers, web servers, etc. 

Perpetrators aim to look for the path they can use to gather the secret information they are after. This 
denotes compromising confidentiality. The second phase, which compromises the integrity, is to gain access 
to the confidential information to alter it. The third phase is to compromise the availability, which is the main 
target of perpetrators as compromising confidentiality and integrity are more challenging, requiring more 
advanced technical skills in order to succeed. Administrative privileges on the target system are not needed 
when availability is compromised. Perpetrators can compromise the service's availability by exhausting the 
resources to make the service unavailable for legitimate users, as mentioned earlier. 

DoS/DDoS attacks can be conducted in many ways using different kinds of program codes and tools, and 
they can be initiated from different OSI model layers. OSI has seven layers, which are physical (layer 1) cov-
ering transmission and reception of the unstructured raw bit stream over a physical medium, data-link (layer 
2) responsible for conducting an error-free transfer, network (layer 3) handles routing of the data, transport 
(layer 4) responsible for the packetization and delivery of data, session (layer 5) taking care of establishment, 
coordination, and termination of sessions, presentation (layer 6) handles data translation and sending it to 
the receiver, and application (layer 7) where communication partners are identified. All the messages and 
creating packets initiate at this level. (Obaid, 2020) 

DDoS attacks may cause physical destruction, obstruction, manipulation, or malfunction of physical assets 
on the physical layer. MAC flooding attack floods the network switch with data packets, which usually hap-
pens on the Data-link layer. Internet Control Message Protocol (ICMP) flooding utilizes ICMP messages to 
overload the targeted network's bandwidth, a network layer 3 infrastructure attack method. SYN flood and 
Smurf attacks are transport layer 4 attack methods. In an SYN attack, series of "SYN" (synchronize) messages 
are sent to a computer, such as a web server, after communication between two systems over TCP/IP has 
been established (TechTerms, 2020). A smurf attack is an old DoS attack, which uses a great number of ICMP 
packets to flood a targeted server. SYN attack utilizes TCP/IP communication protocol to bombard a target 
system with SYN requests to overwhelm connection queues and force a system to become unresponsive to 
legitimate requests. On the session layer, a perpetrator can use DDoS to exploit a vulnerability in a Telnet 
server running on the switch, forcing Telnet services to become unavailable. On the presentation layer, the 
perpetrator can also use malformed SSL requests as inspecting SSL encryption packets is resource-intensive. 
Vulnerabilities to DDoS attacks on the application layer are, e.g., use of PDF GET requests, HTTP GET, HTTP 
POST methods on website forms, when logging in, uploading photo/video or submitting feedback, etc. 
(Qureshi, 2018) 

Perpetrators may utilize botnets, which can be described as a network of several or a large number of 
computers or internet-enabled devices that have been taken over remotely, to launch numerous types of 
attacks, such as DDoS, spamming, sniffing and keylogging, identity theft, ransom and extraction attacks, etc. 
Botnet (zombies) target vulnerabilities in different layers of the open systems interconnection. These attacks 
can be divided, e.g., in the following way: 1. Application layer attacks, 2. Protocol attacks, and 3. Volumetric 
attacks. Application layer attacks are the most primitive form of DDoS mimicking normal server requests. 
This type of attack was explained in detail at the beginning of this chapter. Protocol attacks exploit the way 
servers process the data to overload and overwhelm the intended target. One way to conduct this type of 
attack is to send data packets, which cannot be reassembled, resulting in overwhelming the server's re-
sources. Volumetric attacks are similar to application attacks, but in this type of DDoS attack, the whole serv-
er's available bandwidth is used by botnet requests. A high amount of traffic or request packets to a targeted 
network will be sent in order to slow down or stop the target services. (Porter, 2019) 

DDoS attacks are able to cause a significant threat to critical infrastructure sectors, such as energy and 
transportation. The DDoS attack disrupted the heating distribution system, at least in two properties in the 
city of Lappeenranta, eastern Finland, in 2016. In the incident, attacks incapacitated the controlling comput-
ers of heating in the buildings concerned. The attack lasted from late October to November 3, causing incon-
venience and potentially hazardous situations as the outside temperature was below freezing. During the 
attack, the system tried to respond by rebooting the main control circuit, which was then continuously re-
peated, making heating incapable of working. Unfortunately, building automation security is often neglected, 
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and housing companies are often reluctant to invest in firewalls and other security measures in order to 
improve the general security situation. (Metropolitan, 2016) 

DDoS attacks have been conducted against transportation services, causing train delays and disruption 
over travel service. Swedish transportation system experienced such an attack on October 11 in 2017, via 
two internet service providers, TDC and DGC. The DDoS attack crashed the train location monitoring IT sys-
tem, guiding operators to go and stop the train. The attack also knocked out the federal agency's email sys-
tem, road traffic maps, and website services. As a result of the attack, train traffic and other services had to 
be operated manually by utilizing back-up processes. (Barth, 2017) In 2018 Danish rail travelers experienced 
trouble while buying tickets due to a paralyzing DDoS attack on Denmark's largest DSB railway company's 
ticket system. The attack made it impossible to buy a ticket via the DSB app, on the website, ticket machines, 
and kiosk stations. Additionally, the attack also restricted communications, telephone systems, and internal 
mail was also affected. Paganini (2018) In order to communicate delays to customers, the company had to 
utilize social media and ground staff (McCreanor, 2018). The Freedom of Information Data states that up to 
51 % of critical infrastructure organizations in the UK are potentially vulnerable to these attacks due to inca-
pability of detecting and mitigating short-duration DDoS attacks on their networks, and as a result, 5 % of 
these operators experienced DDoS attacks in 2017 (Reo, 2018). CI operators, such as transport agencies, 
cannot leave DDoS attack protection at the chance; they are required to build and improve resilience in com-
batting these attacks. 
 
6.3 False data injection (FDI) attacks 

False data injection (FDI) attack poses a significant threat towards the traditional power grid (PG), and in 
these days, smart grid, technologies that provide power to be used, for example, in cyber-physical systems, 
such as smart buildings. Smart grids are electrical grids, which utilize information and communication (ICT) 
technology in providing reliable, efficient, and robust electricity transmission and distribution. Hence, smart 
grids are not solely well-known power lines in traditional “dumb” energy infrastructures, but they represent 
a relatively new type of energy distribution system standing among the key relevant concepts in supporting 
sustainable energy city. SGs are connected to smart meters, which can be installed in entities, such as smart 
factories, hospitals, schools, etc. include components, which enable predictive analytic services in order to 
balance the production and consumption in the grid system. Advanced services, such as real-time pricing, 
provide consumers and suppliers relevant information to manage their energy demands and supplies. The 
service allows energy distribution to be performed in a dynamic and effective manner. (Chen et al., 2015) In 
addition, SGs merge the non-renewable and renewable energy resources into each other, reducing environ-
mental problems (Farmanbar et al., 2019). 

FDI attacks are typically utilized when conducting attacks against the functionality of smart grids in order 
to disrupt, for example, real energy and supply figures causing erroneous energy distributions resulting in 
additional costs or destructive consequences (Chen et al., 2015). According to Elmrabet et al. (2018), the 
perpetrator can, for instance, use these attacks to modify the smart meter data to lower her electricity bill 
or target remote terminal unit (RTU) to inject false data to the control center resulting in an increased outage 
time. FDI attacks can be considered as a type of integrity violation aiming to pose arbitrary errors and distor-
tion to the device’s measurements, influencing the state estimate (SE) precision. SE is a vital service for sys-
tem monitoring in ensuring reliable operation in the power system and in addition to the energy manage-
ment system (EMS), which processes real-time data gathered by the SCADA system. Smart meters are able 
to further infer state estimations (e.g., energy demands and supplies) and to make initial decisions, for ex-
ample, concerning data fusion before the estimations reach control centers. The information provided can 
be utilized to optimize energy distribution with regard to power grid performance metrics in order to max-
imize the network utility and energy efficiency while minimizing energy transmission costs. Hence, FDI attacks 
violate SE’s integrity making the smart grid system unstable in the worst-case scenario. 

The perpetrator may inject the false monitoring data into the smart grid by using, e.g., the following ways: 
1. compromising the smart meters, sensors or RTUs, 2. capturing the communication between sensor net-
works and SCADA system, 3. penetrating the SCADA system resulting in an incorrect estimate of the smart 
grid state, which may eventually lead even to large-area power failure accidents. According to Sargolzaei et 
al. (2020), the perpetrator’s aim is not solely to inject false information to distract the solid operation of the 
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target system but also to inject incorrect data, which keeps the system’s controller and detection mechanism 
in the shadows concerning the incident. The perpetrator may also utilize means to gather side-information, 
such as to perform particular analyses and techniques to collect knowledge about the nominal state values 
of the agents, concerning the structure of the target system to conduct FDI attacks to increase the destructive 
power of the attack. In order to conduct the malicious attack, the perpetrator may need to inject “realistic” 
false data, which is close enough to the nominal states and parameters of the system to various sensors at 
the same time. This procedure makes FDI difficult to detect, especially if system architecture is known. 

The perpetrator can conduct attacks against one or multiple of the following FDI attack surfaces: energy 
demand, energy supply, grid-network states, and electricity pricing. Attacking against energy demand can 
cause fraudulent values of the state estimation raising financial costs to both the energy users and providers 
due to extra cost of power transmission or waste energy. It may also lead to power outage situations, in 
which energy requests to the smart grid is less than the energy demand that nodes (representing the average 
energy demand/supply, e.g., a town) of the grid require. Energy-supply nodes provide the value of SE, and 
an FDI attack can secretly mitigate the amount of energy supplied, leading to an energy shortage situation of 
energy-demand nodes as the nodes cannot receive the required energy. In the opposite situation, an increase 
in wasted energy can occur. (Chen et al., 2015) 

Grid-network states represent the configurations and conditions of power grids, for example, grid topol-
ogies and power-lines capacities. The perpetrator can use FDI to attack power-line connections in order to 
isolate nodes from the power grid deceiving the energy distribution system and leading to power shortages 
or energy transmission costs. Dynamic electricity pricing helps in balancing the power loads between peak 
and off-peak periods and reduce consumer electricity bills. The perpetrator can lower her electricity price 
causing loss of company revenue or lower prices during peak hours, leading to the grid system eventually 
overloading. Hence, fake pricing causes remarkable damage to the financial and physical subsystem, oblite-
rating the advantages of optimum supply efficiencies. (Chen et al., 2015) 
 
6.4 Malware attacks 

Malware and software-enabled crime is not a new concept but dates back to the year 1986, when the first 
malware, Brain. A., appeared for a PC computer. The appearance of malware proved that PC is not a secure 
platform, and safety measures should be considered. Malware or malicious software is software created and 
possibly used by perpetrators to disrupt computer functions, collect sensitive information, damage the target 
device, or obtain access to a private computer system. The form of malware can be, for example, active 
content, code, scripts, or another kind of software. Malware incorporates adware, computer viruses, dialers, 
keyloggers, ransomware, rootkits, spyware, trojan horses, worms, and other types of malicious computer 
programs. In general, most of the common malware threats are worms or trojans instead of regular and 
ordinary computer viruses. (Milošević, 2013) Since 2018 Ransomware attacks have been showing signs of 
growth. Malware attacks can occur on all kinds of devices and operating systems, such as Android, iOS, ma-
cOS, Microsoft Windows, etc. 

Malware attacks against critical infrastructure have been increased during the past several years. In 2012 
Iran conducted a destructive retaliation wiper Shamoon malware attack towards Saudi Arabia's national oil 
conglomerate, Saudi Aramco. The functionality of Shamoon is to wipe out all data from hard disks, and it was 
used to overwrite hard drives of 30 000 computers in the Aramco -case. (Alelyan & Kumar, 2018) In 2016, a 
trojan type of malware called BlackEnergy was used to cause disruptions to the Ukrainian electrical grid. 
BlackEnergy is a modular backdoor that can be utilized to conduct DDoS, cyber espionage, and information 
destruction attacks towards ICS/Scada, government, and energy sectors worldwide. BlackEnergy malware 
family has been present since 2007, and initially, it started as an HTTP-based botnet for DDoS attacks. Later 
on, the second version, BlackEnergy2, was developed, which was a driver component-based rootkit installed 
as a backdoor. The above mentioned version of the backdoor predominantly spread via targeted phishing 
attacks by email, including the malware installer. The later version is BlackEnergy3, which was used to attack 
against Ukrainian electrical power industry. This version can be used when conducting phishing attacks con-
taining Microsoft Office Files packed with malicious obfuscated VBA macros to infect target systems. (Santos, 
2016) 
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Another type of malware that appeared in 2015 and which have been used in attacking healthcare sector 
critical infrastructure facilities is known as DragonFly. The malware specifically targets industrial control sys-
tem (ICS) field devices in the energy sector in Europe and in the US. Utilization of the DragonFly remarkably 
grew during the year 2017. Perpetrators have been interested in learning how energy facilities operate and 
also how to gain access to operational systems themselves. The malware uses different sorts of infection 
vectors to obtain access to a victim's network. These vectors include malicious emails, trojan software, and 
watering hole attacks to leak the victim's network credentials and exfiltrate them to an external server. Hi-
jacked device contacts a command and control server, which is controlled by perpetrators providing a back 
door to the infected device. (Biasi, 2018) 

Stuxnet malware (worm) increased awareness of cybersecurity and related issues in the world after it was 
detected in 2010. The worm was targeting centrifuges used in the uranium enrichment process in a nuclear 
plant in Natanz in Iran. Governments around the world had to face the fact the critical infrastructures were 
vulnerable to cyberattacks with a possibility to cause catastrophic effects. The aim of this malware was to 
sabotage centrifuges in the power facilities in order to stop or delay the Iranian nuclear program. It is believed 
that the malware was uploaded to the power plant's network by using an infected USB drive. (Baezner & 
Robin, 2017) 

Stuxnet is larger than other comparable worms, and it is implemented by using various programming 
languages with encrypted components. It used four zero-day exploits when infecting computers, which are 
a connection with shared printers, and vulnerabilities concerning privilege escalation, allowing the worm to 
run the software in computers during lock-down. The worm caused damage to the centrifuges by making 
them alternate between high and low speeds and by masking the change of speed to look normal. Due to 
the procedure, Iran had to replace 10 % of its centrifuges yearly. The incident showed critical infrastructure 
could be targeted by cyber threats, and even networks separated from each other did not protect against 
the malware. It is integral to increase protection against this kind of malware and, in addition, to improve 
resilience during cyberattacks. (Baezner & Robin, 2017) 

Duqu followed the well-known Stuxnet malware worm and was detected by the Laboratory of Crypto-
graphic and System Security at the Budapest University in Hungary in 2011. The similarity of the malware 
structure to Stuxnet is so, which indicates that it was developed and implemented by Stuxnet authors or 
developers who have had access to the source code. Unlike Stuxnet, Duqu was mainly implemented for cyber 
espionage purposes to obtain a deeper understanding of network structures in order to detect vulnerabilities 
to exploit and develop better attack methods to penetrate the defenses. (Benchsáth et al., 2012) Duqu is an 
information stealer rootkit targeting MS Windows-based computers collecting keystrokes and other relevant 
information, which could be used when conducting attacks against critical infrastructures, such as power 
plants or water supply around the world. After penetrating the defenses, Duqu injects itself into one of four 
general Windows processes: Explorer.exe, IEExplore.exe, Firefox.exe, or Pccntmon.exe, downloads and in-
stalls an information-stealing component to gather information from the infected target system, encrypts 
the data, and uploads it to the perpetrator's system. Smart grid with smart meters, substations, intelligent 
monitors, and sensors provide an attractive attack surface to perpetrators' exploitation of critical infrastruc-
ture systems in their minds. (Westlund & Wright, 2012) 

Triton is among the most hazardous malware spreading over the networks worldwide, targeting critical 
infrastructure facilities utilizing automated processes. The malware was first detected in 2017 during the 
malicious attack towards Tasnee-owned petrochemical plant facility using Schneider Electric's Triconex 
Safety Instrumented System (SIS), which then experienced a sudden shutdown. The malware was deployed 
in emergency safety devices, which are required to be started in case of plant toxic gas leaks and during 
emergency situations. Triton, among other dangerous malicious attacks, can cause safety mechanisms to 
experience physical damage due to the incapability of operating during emergency situations. It can be used 
to target industrial control systems (ICS) and to use a secure shell (SSH) based tunnel to deliver attack tools 
to the victim system and running remote commands of the malware program. A perpetrator accesses infor-
mation technology (IT)- and operational technology (OT) -networks, installs back doors in the computer net-
work, and accessing the safety instrumentation system (SIS) controller in the OT network in order to secure 
and maintain the target's networks using attack tools. (Myung & Hong, 2019) 
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6.5 Phishing attacks 

Phishing is a social engineering technique that can be utilized to override technical controls designed and 
implemented to mitigate security risks in information systems. Social engineering is a manipulation technique 
exploiting human error to obtain sensitive private information, access, or valuables. The weakest link in the 
security program is us, the humans. In cybercrime, perpetrators exploit the human component to deceive 
end-users of the system by manipulating user behavior to expose data, spread malware infections, or provide 
entry to the restricted system. Attacks can be conducted online, in-person, or via other means. In addition to 
manipulation of user behavior, perpetrators can exploit a user’s lack of knowledge, e.g., “drive-by-down-
load,” which infers to installing malicious programs to devices without the user’s approval. (Kaspersky, 2020) 

Phishing takes advantage of this weakness and exploits the vulnerability of human nature to obtain access 
to a target system. (Rader et al., 2013) Even though organizations have been long increasing employee aware-
ness of cybersecurity threats, phishing is still among the starting points for various cyberattacks. According 
to surveys, up to 46 % of successful cyber attacks started with a phishing email sent to an employee. (Cytomic, 
2019) According to Abdullah & Mohd (2019), the attack can be used to steal user’s confidential information, 
such as passwords, social security numbers, and banking information, and takes place when cybercriminals 
disguise as a trusted entity and fool users to click on fake links included in the email received. In addition, 
cybercriminals also target organizations belonging to the target country’s critical infrastructure sector (e.g., 
telecommunications or defense subsector) by utilizing the special form of phishing, a spear-phishing.  

Spear phishing is a certain type of phishing, in which the context and victim are examined, and which 
utilize custom-made email message that can be sent to the victim. As mentioned before, received email mes-
sages can include a malicious link or email attachment to deliver malware payload to direct a benevolent 
individual to counterfeit websites. These websites can then be used to inquire, e.g., login credentials or ask 
to download malicious (malware) software to the victim’s device. The perpetrator is then able to utilize the 
credentials or infected devices in order to obtain entry to the network, steal information, and in many cases, 
stay inconspicuous for a prolonged amount of time. (Bossetta, 2018) 
Spear phishing attacks used to conduct attacks towards critical infrastructure occurred in 2014 when a per-
petrator initiated a spear-phishing attack against Korea Hydro and Nuclear Power (KHNP). The attack resulted 
in the leak of personal details of 10 000 KHNP workers, designs and manuals, nuclear reactors, estimates of 
radiation exposures among residents, etc. During only a few days, the perpetrator managed to send almost 
6000 phishing email messages, which included malicious codes to more than 3000 employees. The catch was 
to demand money for not leaking sensitive classified information to other countries or not to be published 
in social media on the internet. Luckily, the server containing the information was isolated from the intranet; 
therefore, the perpetrator managed to cause only confusion in Korean Society. However, cyberattacks to-
wards nuclear power plants may pose a significant risk and damage to all living organisms and the environ-
ment over a wide area. Hence, extensive security countermeasures should be developed to mitigate these 
risks. (Seok & Kim, 2018) Additionally, it is suspected that the Ukrainian power grid was initially attacked with 
a phishing attack followed by BlackEnergy malware, leaving hundreds of thousands of homes without elec-
tricity for six hours (Allianz, 2020). 
 
7 Defensive mechanisms against cyberattacks 

7.1 Adversarial attacks 

Adversarial examples are maliciously perturbed inputs designed to deceive a machine learning model at test 
time, posing a significant risk to the ML models. These inputs can transfer across models meaning that the 
same adversarial example is generally misclassified by various models. Adversarial examples can be coun-
tered with adversarial training of ML model classifier, which is one of the earliest and well-known defense 
methods in combatting adversarial example crafting (e.g., FGSM). The adversarial training method has 
reached the de-facto standard status in providing robust models (Stutz et al., 2019). Robustness can be im-
proved by augmenting the ML model training dataset with perturbed inputs in case of the training set is the 
same as the perpetrator uses (Samangouei et al., 2018). Robustness can be reached by adversarial training 
based on the strength of the adversarial examples utilized. Hence, training a model by using fast non-iterative 
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FGSM produces robust protection towards non-iterative attacks, such as JSMA. Defending against iterative 
adversarial examples also requires training to be done with iterative adversarial examples. (Shafahi et al., 
2019) If a perpetrator uses a different kind of attack strategy, the efficiency of the adversarial training will 
decrease (Samangouei et al., 2018). 

This method can be applied to large datasets when perturbations are crafted using fast single-step meth-
ods. Adversarial training generally attains adversarial examples by utilizing an attack, such as FGSM, and tries 
to build adequate defense targeting such an attack. The trained model can indicate poor generalization ca-
pability on adversarial examples originated from other adversaries. When combining adversarial training on 
FGSM with unsupervised or supervised domain adaptation, the robustness of the defense could be improved. 
Unfortunately, the robustness of adversarial training is possible to evade by applying a joint attack with in-
discriminate perturbation from other models. (Song et al., 2019) In addition, utilization of adversarial training 
as a robust defense method is limited in real-life situations due to extensive computational complexity and 
cost (Shafahi et al., 2019). 

Defensive distillation can be considered as an adversarial defense method to counter adversarial attacks, 
such as FGSM or JSMA. The method is one of the adversarial training techniques, which provides flexibility 
to an algorithm’s process, making it less susceptible to exploitation. According to Zhang et al. (2019), the idea 
behind defensive distillation is to generate smooth classifiers that are more resilient to adversarial examples 
by mitigating the sensitivity of the DNN to the input perturbation. The technique also improves the general-
ization ability as it does not alter the neural network architecture, and in addition, it has low training over-
head and no testing overhead.  

Papernot et al (2016b) investigated the defensive distillation and introduced a method that can reduce 
the input variations making the adversarial crafting process more challenging, providing means to DNN to 
generalize the samples outside the training set and mitigating the effectiveness of adversarial samples on 
DNN. The defensive distillation reflects a strategy to pass the information from one architecture to another 
by reducing the size of DNN. The distillation method provides a dynamic method demanding less human 
intervention and the advantage of being adaptable with yet not known threats. In general, effective adver-
sarial defense training requires a long list of known vulnerabilities of the system and possible attack vectors. 
Utilization of defensive distillation decreases the success rate of the adversarial crafting process and is also 
effective against adversarial attacks, such as JSMA. 

As a disadvantage, if a perpetrator has a lot of computing power available and the proper fine-tuning, she 
can utilize reverse engineering to find fundamental exploits. Defense distillation models are also vulnerable 
to poisoning attacks in which a malicious actor corrupts a preliminary training database. (DeepAI) Defensive 
distillation can be evaded by the black-box approach (Papernot et al., 2016) and also with optimization at-
tacks (Szegedy et al., 2013). Carlini & Wagner (2017) proved that defensive distillation failed against their L0, 
L2, and L∞ attacks. These new attacks succeed in finding adversarial examples for 100 % of images on defen-
sively distilled networks. Previously known weaker attacks can be stopped by defensive distillation, but it 
cannot resist more powerful attack techniques. 

Defense-GAN (Generative Adversarial Networks) is a feasible defense strategy providing advanced de-
fense mechanisms against white-box and black-box adversarial attacks posing a threat towards machine 
learning classifiers. Defense-GAN is trained to model the distribution of unperturbed images, and before 
sending the given image to the classifier, the image is projected onto the generator by minimizing the recon-
struction error and passing the resulting construction to the classifier. Training the generator to model the 
unperturbed training data distribution reduces potential adversarial noise. Defense-GAN can be used in con-
junction with any ML classifier without a need to alter the classifier structure or re-train it, and utilization of 
the Defense-GAN mechanism should not significantly decrease the performance of the classifier. The mech-
anism can be used to combat any attack as it does not presume an attack model, but it can utilize the gener-
ative efficiency of GANs to reconstruct adversarial examples. (Samangouei et al., 2018) 

Defense-GAN overcomes adversarial training as a defense method, and when conducting adversarial 
training using FGSM in generating adversarial examples against, for example, the C&W attack, adversarial 
training efficiency is not sufficient. In addition, adversarial training does not generalize well against different 
attack methods. Increased robustness gained by using adversarial training is reached when the attack model 
used to generate the augmented training set is the same as that used by the perpetrator. Hence, as men-
tioned, adversarial training endures inefficiently against the C&W attack; therefore, a more powerful defense 
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mechanism should be utilized. Training GANs is a remarkably challenging task, and if GANs are not trained 
correctly and hyperparameters are chosen incorrectly, the performance of the defensive mechanism may 
significantly mitigate. (Samangouei et al., 2018) 
 
7.2 DoS and DDoS attacks 

Distributed Denial of Services (DDoS) attacks have been increasing, contributing to the majority of overall 
network attacks. Detecting and preventing DDoS attacks is a challenging task, and practically designing and 
implementing a DDoS defense is incredibly difficult. DDoS attack and defense issues have been under inten-
sive research, and various research has been conducted in the field of the subject concerned. The purpose of 
a traditional DDoS detection system is to separate malicious packet traffic from abnormal traffic (Mirkovic & 
Reiher, 2004). Under the traditional network environment, methods for defense against DDoS attacks mainly 
consist of attack detection and attack response. Attack detection bases on attack signatures, congestion pat-
terns, protocols, and source addresses, forming an efficient DDoS detection mechanism. (Cheng et al., 2018) 

The detection model has two categories: misuse-based detection and anomaly-based detection. Misuse-
based detection utilizes feature-matching algorithms and matches the gathered and extracted user behavior 
features with the known feature database of DDoS attacks to detect if an attack has been conducted earlier. 
An attack in a system is detected wherever the sequence of activities in the network matches with a known 
attack signature. Anomaly-based detection has been used with monitoring systems in order to determine if 
the states of the target systems and user’s activities differ from the normal profile, and it can then deduct if 
an attack is taking place. The following step is for an attack response to appropriately filter or limit the net-
work traffic as much as possible after the DDoS attack has been commenced. (Cheng et al., 2018) 

Artificial intelligence and its subfield of machine learning have been applied to cybersecurity in recent 
years, and it has affected the development of an ML-based attack detection model. Machine learning is able 
to gather relevant information from the data and integrate previously collected knowledge to discriminate 
and predict new data. Hence, ML-based methods can provide better detection accuracy in comparison to 
traditional detection methods. As a drawback, data generated by the DDoS attacks are usually burst and 
diverse. In addition, background traffic size may also have an impact on the detection model, mitigating the 
model’s detection accuracy. (Cheng et al., 2018) 

Various studies have been conducted to address the prevention and detection of cyberattacks, such as 
DDoS attacks, and numerous of them are utilizing ML-based methods, such as support vector machine (SVM), 
Random Forest, and Naïve Bayes. As an example, Pei et al. (2019) conducted research in order to detect DDoS 
attacks by using Random Forest and SVM ML-methods. Authors of the research trained random forest model 
with the training data set and mixed the remaining set of attack data packets with the normal traffic as the 
test set of the model, cross-sampled normal traffic and attack traffic, calculated behavior of each sample, 
and controlled the sampling flow period to control the ration of normal traffic to attack traffic. LIBSVM library 
was then utilized to detect the data of the SVM algorithm and compared it with the random forest model 
detection results. The research results showed that both Random Forest and SVM methods provided signifi-
cant (93 % - 99 %, depending on the sampling period) DDoS attack detection accuracy against TCP, UDP, and 
ICMP flood attacks. 

He et al. (2017) proposed a prototype DOS attack detection system on the source side in the cloud, based 
on machine learning techniques. The prototype was implemented under a real cloud setting, and it included 
six servers (S0...S5), each server running multiple virtual machines. The authors launched four different kinds 
of DDoS attacks (SSH brute-force, DNS reflection, ICMP flooding, and TCP SYN attacks) on virtual machines 
from the S0 server. The victim was a virtual machine on another server S1 running web service. Authors 
deployed their defense system on the server launching virtual machines running the attacks. Other virtual 
machines on servers (except S0 and S1) request web service, simulating the legitimate users. The data utilized 
in the experiment was gathered of network packages coming in and going out of the attacker virtual machines 
for nine hours. Supervised learning algorithms, such as Linear Regression (LR), SVM (linear, RBF, or polyno-
mial kernels), Decision Tree, Naïve Bayes, and Random forest, were evaluated. For unsupervised algorithms, 
such as k-means, Gaussian Mixture Model for Expectation-Maximization (GMM-EM), were evaluated, respec-
tively. Supervised algorithms all achieved over 93 % accuracy (Random Forest had the best accuracy with 
94.96 %), but unsupervised ones reached only 63 - 64 % accuracy. 
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Haider et al. (2020) presented a novel deep learning framework for the detection of DDoS attacks in Soft-
ware Defined Networks (SDNs), which is a prevalent networking paradigm decoupling the control logic from 
the forwarding logic. SDNs consist of applications (applications running on physical or virtual hosts), control 
(operating system), and forward planes (network constructed through programmable switches). The frame-
work utilizes ensemble CNN models for improved detection of Flow-based data being critical attributes to 
SDNs. The authors evaluated the proposed framework with the Flow-based dataset CICIDS2017, which is a 
public, fully labeled dataset comprised of at least 80 features of network traffic, including both benign and 
multiple types of attack traffic. The proposed approach provided 99.45 % detection accuracy and minimal 
computational complexity in detecting DDoS attacks with reasonable testing and training time. 
 
7.3 False data injection (FDI) attacks  

FDI attack was introduced in the smart grid domain causing remarkable security challenges to the operation 
of power systems and can be utilized to circumvent conventional state estimation bad data detection security 
measures implemented in the power system control room (Ayad et al., 2018). FDIA detection problem has 
been attempted to solve by using various kinds of optimization methods, such as sparse matrix optimization 
problem, which can be solved by using the combination of a nuclear norm minimization and low-rank matrix 
factorization methods.  In order to mitigate the resources required in the FDIA detection process, threshold-
based comparisons have been commonly utilized. An experimental study shows that the usage of the Euclid-
ean distance metric with a Kalman filter with the selected threshold helps to identify FDIA better than many 
other metrics. In addition, comparing residual signals with a predefined threshold can be used to detect the 
FDIA in a networked cyber-physical system. Nonetheless, a progressive number of FDIA attacks have been 
able to override threshold-based detection methods. (Wang et al., 2019) In order to efficiently combat FDIA 
attacks, more advanced detection methods, such as blockchain, cryptography, and learning-based methods, 
can be utilized. 

Shen et al. (2016) presented a prevention technique for FDI attack, which guarantees the integrity and 
availability of the measurement units (measuring the smart power grid’s status) and during their transmission 
to the control center even with the existence of compromised units. McEliece public-key cryptography sys-
tem is able to guard the integrity of the smart power grid data measurements and prevent the impact of 
FDIA. As a drawback, cryptographic algorithms require a substantial amount of computing resources due to 
computational complexity. One of the common buzzwords these days, a blockchain, has been examined by 
Ahmed et al. (2020) to generate a shield and protect the data authenticity. The authors empirically demon-
strated that the blockchain-based security framework is capable of securing healthcare images from false 
image injection attacks. The blockchain-based security framework introduced by the authors is decentralized 
as in nature, provided cryptographic authentication and consensus mechanism in order to counter FDIA at-
tacks more efficiently than other previous methods. 

Learning-based methods provide a novel and more sophisticated way of countering FDIA attacks. Esmali-
falak et al. (2017) proposed an FDIA detector mechanism by utilizing the principle component analysis (PCA) 
and supervised learning -based support vector machine (SVM) model to statistically separate normal opera-
tions of power networks from the case under stealthy attacks. Methods mentioned were utilized to combat 
a new type of FDIA attacks, such as stealth attacks, which cannot be detected by conventional bad data de-
tection using state estimation. The detection performance of the SVM-based method was relatively high, 
with 90.06 % accuracy in comparison to Euclidean detector’s 72.68 % and Sparse Optimization 86.79 % (Wang 
et al., 2019). Wang et al. (2019) utilized wide and recurrent neural networks (RNN) model to learn the state 
variable measurement data and identify the FDIA. The wide component consists of a fully connected layer of 
neural networks, and the RNN component includes two LSTM layers. The wide component is able to learn 
the global knowledge and the RNN component has a capability to catch the sequential correlations from state 
variable measurement data. Wide component accuracy reached 75.13 % and RNN model 92.58 %, respec-
tively. The proposed combination of Wide and RNN models detection performance reached up to 95.23 % 
accuracy, which outperforms the previously mentioned learning-based detection methods. 

He et al. (2017) presented Conditional Deep Belief Network (CDBN) in order to analyze the temporal at-
tack patterns that are presented by the real-time measurement data from the distributed sensors/meters. 
The aim is to efficiently reveal the high-dimensional temporal behavior features of the unobservable FDI 
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attacks, which are able to bypass the State Vector Estimator (SVE) mechanism. According to Niu et al. (2019), 
no prior studies have been conducted on the dynamic behavior of FDI attacks. Detecting FDI attacks is con-
sidered a supervised binary classification problem, which is not able to detect dynamically evolving cyber 
threats and changing the system configuration. The authors developed an anomaly detection framework 
based on a neural network in order, to begin with, the construction of a smart grid specific intrusion detection 
system (IDS). The framework utilizes a recurrent neural network with LSTM cell to capture the dynamic be-
havior of the power system and a convolutional neural network (CNN) to balance between two input sources. 
In case a residual between the observed and the estimated measures is greater than a given threshold, an 
attack is launched. 
 
7.4 Malware attacks 

Malware infections have been significantly increasing in the past years, and large quantities of malware are 
automatically created each day. According to AtlasVPN (2020), almost 10 million malware infection cases 
have occurred per day during the first quartal in 2020, and 64 % of the malicious attacks were targeting 
educational institutions. These days, there are nearly one billion malware programs out there, and up to 350 
000 new pieces of malware are detected each day (Jovanovic, 2019). The number of cybercriminals conduct-
ing vicious acts such as malicious attacks has been increasing quickly. The exponential growth of malware 
has been causing a remarkable threat in our daily life, sneaking in stealth to the computer system without 
revealing an adverse intent to disrupt the computer operations. Due to the enormous number of malware, 
it is impossible to deal with the malware solely by human engineers and security experts, but advances and 
sophisticated detection methods are required. 

Malware detection methods can be categorized in various ways depending on the point of view. One 
possible way is to divide malware detection methods into signature-based and behavioral (heuristic) -based 
methods. Signature-based detection has been the most widely utilized way method in antivirus program-
ming. This method extracts a unique signature from a malware file and utilizes it in order to detect similar 
malware. (Xiao et al., 2018) Signature-based detection can be efficiently used to detect the already known 
type of malware, but it has challenges in detecting zero-day malware and can also be easily defeated by 
malware that uses obfuscation techniques. Obfuscation techniques include, for example, dead code inser-
tion, register reassignment, instruction substitution, and code manipulation (Sihwail et al., 2018). Addition-
ally, signature-based detection requires prior knowledge of malware samples (Xiao et al., 2018). 

In behavior (heuristic or anomaly) -based detection, malware sample behaviors are analyzed during exe-
cution in the training (learning) phase in order to label the file as malicious or benign (legitimate) during the 
testing phase. In contrast to signature-based detection, behavior-based detection is also able to detect the 
unknown type of malware in addition to malware utilizing encryption, obfuscation, or polymorphism. A sig-
nificant number of false positives and considerable monitoring time requirement can be seen as the down-
sides of the method concerned. (Sihwail et al., 2018) The method incorporates a virtual machine (VM) and 
function call monitoring, information flow tracking, dynamic binary instrumentation, and Windows Applica-
tion Programming Interface (API) call Graph. Behavior detection method benefits of utilization of traditional 
machine learning methods, such as Decision Tree (DT), K-Nearest Neighbor (KNN), Naïve Bayes (NB), and 
Support Vector Machine (SVM) to comprehend the behaviors of running files. (Xiao et al., 2019) 

Deep learning is a subset of machine learning utilizing multiple layers of neural networks with the capa-
bility to perform better on unstructured data (Mathew et al., 2021). DL has been shown to include various 
advantages over traditional machine learning in areas such as speech recognition, computer vision, and nat-
ural language processing. Deep learning enables computational models to learn high-level features from orig-
inal data at multiple levels. As a drawback, DL requires more computation time to train and retrain the mod-
els, which is a common phase in the malware detection process as new malware types continuously emerge. 
In contrast, traditional machine learning algorithms are fast but not necessarily accurate enough. (Cakir & 
Dogdu, 2018) The deep learning model is able to learn complicated feature hierarchies and include steps of 
the malware detection process into one model, which can be then trained end-to-end with all of the compo-
nents simultaneously (Kaspersky, 2020). 

Deep learning has been adopted for the development of Malware Detection Systems (MDSs) due to its 
success when utilized in other relevant areas. In the beginning, a single deep learning model was applied to 
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the whole dataset, which ended up causing problems as the model experience challenges in dealing with 
increasingly complicated data distribution of the malware samples. A Group of deep learning models has 
been used in conjunction (ensemble approach) in order to solve the issue, but the utilization of multiple 
models have ended up in similar problems. Zhong & Gu (2019) presented a multi-level deep learning system 
for malware detection. The system can manage more complicated data distributions utilizing tree structure 
in order to provide means for each DL model to learn the unique data distribution for one group of a malware 
family. The authors demonstrated that their system improves the performance of malware detection systems 
compared to SVM, decision tree, the single deep learning model, and the ensemble-based approach. The 
system also provides more precise detection in less time to efficiently identify malware threats. (Zhong & Gu, 
2019) 

Kolosnjaji et al. (2016) presented a hybrid Deep Learning-based neural network model for the classifica-
tion of malware system call sequences. Authors combined two convolutional and one recurrent (LSTM) neu-
ral network layers into one neural network architecture in order to increase malware classification perfor-
mance. The malware classification process initiates with a malware zoo, which included open source-based 
Cuckoo Sandbox, where acquired malware binaries can be executed in a protected environment. Results of 
the executions are then preprocessed to obtain numerical feature vectors, which are sent to neural networks. 
Neural networks act as a classifier classifying the malware into one of the predefined malware families. Mal-
ware data samples with labels were gathered from Virus Share, Maltrieve, and private collections, which 
provided a large and diverse number of samples. Authors utilized Tensorflow and Theano frameworks provid-
ing GPU utilization when constructing and training the neural networks. The proposed Deep Learning-based 
hybrid model endures simpler neural network models and, in addition, even more sophisticated and broadly 
used Hidden Markov Models and Support Vector machines and provided an average accuracy, precision, and 
recall of over 90 % for most malware families. 
 
7.5 Phishing attacks 

Phishing can be counted as one of the most challenging problems in the cyber-world, causing financial wor-
ries for industries and individuals, and detecting phishing attacks accurately enough can be difficult. Phishing 
websites may look similar in appearance compared to equivalent legitimate websites implemented to fool 
users into believing they are visiting the correct and safe website. (Jain & Gupta, 2017) Though there are 
several anti-phishing software and techniques for detecting potential phishing attempts in emails and de-
tecting phishing contents on websites, phishers utilize new and hybrid techniques to circumvent the available 
software and techniques (Basnet et al., 2008). According to Oluwatobi et al. (2015), phishing detection tech-
niques tend to suffer relatively low detection accuracy and may induce an extensive number of false alarms, 
in particular, if novel and sophisticated phishing approaches have been utilized. Traditional phishing detec-
tion techniques utilized, such as the blacklist-based method, is not efficient enough countering these kinds 
of attacks nowadays due to easier registering of domains making blacklist databases quickly outdated. 

Phishing detection techniques can be classified into the following approaches: user awareness and soft-
ware detection. User awareness includes user training concerning phishing threats in order to lead users into 
correctly identifying phishing and non-phishing messages and mitigating the threat level. Relying on user 
training in the mitigating effect of phishing attacks is challenging due to human weaknesses. According to 
Khonji et al. (2013), end-users failed to detect 29 % of phishing attacks even after training. However, phishing 
detection techniques are usually evaluated against so-called bulk phishing attacks, which can affect the per-
formance with regards to targeted forms of phishing attacks. Using, e.g., proper simulated phishing platform, 
organization’s Phish-Prone percentage (PPP) indicating how many of their employees are likely to fall for 
phishing or social engineering scam, could be used as a training method. User training can be an effective 
method, but human errors still exist, and people are prone to forget their training. Training also requires a 
significant amount of time, and it is not much appreciated by non-technical users. 

Machine learning can be utilized as an effective tool in phishing detection due to the classification prob-
lem nature of phishing. Traditional ML classifiers, such as decision trees and random forest, can be considered 
as effective techniques what comes to computational time and accuracy.  
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Deep-learning-based methods have been recently proposed in the phishing website detection domain. 
Adebowale & Hossain (2020) introduced an intelligent phishing detection system (IDPS), which uses the im-
age, frame, and text content of a web page to detect phishing activities by utilizing deep learning methods, 
such as a convolutional neural network (CNN) and the long short-term memory (LSTM) to build a hybrid 
classification model. The proposed model was built by training the CNN and LSTM classifiers by using 1m 
universal resource locators and over 10 000 images. Various types of features have been extracted from 
websites to predict phishing activities. The knowledge model is used to compare the extracted features to 
determine whether the websites are phishing, suspicious, or legitimate. Phishing websites are indicated as 
red, suspicious as yellow, and legitimate as green color. The experimental results showed that the model 
achieved an accuracy rate of 93.28 % and an average detection time of 25 seconds. 
 
8 Conclusion 

In this paper, the authors reviewed the concepts of cybersecurity, cyber threats, cyber-physical systems, and 
artificial intelligence in critical infrastructure. The critical infrastructure field includes systems, networks, as-
sets, services, and infrastructure essential for the continued operation of everyone from citizens to the coun-
try. Examples of these high-importance necessities include banking and business services, digital infrastruc-
ture, drinking water supply, energy, health, transport and logistics, etc. It can be argued that cyber-physical 
systems are the future way to guarantee the operation of these services in the modern world because they 
offer accessibility and ease of use in a near real-time fashion with continuous automation of tedious and 
arduous processes. Some of the processes can be improved utilizing artificial intelligence, for example, in the 
access control service of smart buildings or the energy consumption optimization of the smart grid and the 
local smart buildings. 

The attacks towards CPSs are various, and many different attack vectors were identified, out of which the 
most concerning ones being adversarial attacks, false data injection attacks, malware attacks, and phishing 
attacks. These malicious attacks all rely on fooling humans on some level, having the capacity to harm the 
system itself and the human users. Especially, the malware attacks towards nuclear power plants are detest-
ing. The DoS/DDoS attacks do not attempt to deceive human users as the other mentioned attacks; however, 
they too are harmful, as the case of Metropolitan (2016) proved. The attack caused financial losses and dis-
gruntlement in the smart building occupants in the Lappeenranta region. 

In essence, the defense methods against these attacks focused on the second and fourth attribute of the 
cyber resilience concept, namely, “Identify and detect” and “Govern and assure.” These attacks can be de-
fended against with machine learning methods, and in the case of phishing attacks, users can be trained to 
detect some of the attack attempts. The authors recommend utilizing combinations of different ML models 
and frameworks to mitigate the risks associated with these attacks. For example, having a layered protective 
structure to first mitigate the DoS/DDoS attacks with trained artificial intelligence model, such as proposed 
by Pei et al. (2019), and then in conjunction a more optimized ensemble structure introduced in, for example, 
by Zhong & Gu (2019) could improve protection for the cyber-physical systems. The authors recommend that 
one uses defensive distillation and defense-GAN in the training of the ensemble models when applicable in 
order to enhance the defensive capabilities of the algorithms. Unfortunately, there exists no perfect solution 
to mitigate these threats. The CNN model introduced by Adebowale & Hossain (2020) should be utilized when 
people governing the CI have an elevated risk of encountering phishing attacks, or those attacks are geared 
towards the system. 
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