

Long Tran

DATA SCRAPING APPLICTION
WITH SCRAPY

Bachelor’s thesis

Bachelor of Engineering

Information Technology

2023

Degree title Bachelor of Engineering
Author(s) Long Tran
Thesis title Data scraping application with Scrapy
Commissioned by SPORTPRO Co. Ltd
Year 2023
Pages 49 pages, 5 pages of appendices
Supervisor(s) Timo Mynttinen

ABSTRACT

Because of the popularity of data nowadays, many businesses and companies

are interested in any means of collecting data. The objective of the thesis project

was to research and implement a robust solution for gathering and extracting

data from any website.

The thesis utilized Scrapy, a Python web scraping framework, to solve the

mentioned problem. To study and research the functionality of Scrapy, this

project attempted to scrape Amazon, one of the largest e-commerce websites.

The paper also briefly introduced other available frameworks for scraping.

Moreover, the scraping policy and other related problems were discussed as well.

The project successfully retrieved various pieces of information from Amazon and

exported the data into several formats. In addition, this study has been a great

help to understand many different elements of Scrapy. In future projects, the

commission could take advantage of this technology to learn more about their

customer needs and behaviors.

Keywords: Scrapy, Python, data, website, scraping

CONTENTS

1 INTRODUCTION .. 1

2 DATA SCRAPING DEFINITION ... 2

3 DATA SCRAPING FUNDAMENTALS .. 4

3.1 Hypertext Markup Language .. 5

3.2 Document Object Model ... 8

3.3 Document Object Model selector .. 9

3.3.1 XPath selector .. 10

3.3.2 CSS selector ... 12

3.4 Scraping framework .. 13

3.4.1 Scrapy ... 13

3.4.2 Selenium and Beautiful Soup .. 17

3.5 Programming language Python .. 18

3.6 Legal issues and ethical scraping ... 19

4 DATA SCRAPING APPLICATION WITH SCRAPY .. 20

4.1 Prerequisite .. 21

4.2 Data extraction.. 24

4.2.1 Navigating through Amazon .. 24

4.2.2 Extracting product information .. 30

4.2.3 Scraping multiple products .. 33

4.3 Data transformation .. 35

4.4 Data loading ... 37

4.4.1 Command-line method.. 38

4.4.2 Programming method ... 38

4.4.3 Export result .. 41

4.5 Optional settings ... 42

5 CONCLUSION .. 43

REFERENCES .. 45

LIST OF TABLES .. 47

LIST OF FIGURES .. 48

1

1 INTRODUCTION

Nowadays, data has always played an important role in many different fields. For

example, patient data assists healthcare providers to reduce errors, lower

readmission fees, gain better insight into illness treatment and causes of

diseases in healthcare (TEG Analytics, n.d.). There are more varieties of data in

the education field such as assessments, attendance, participation, grades, etc.

These data help teachers evaluate students more efficiently and deliver suitable

teaching methods (Learning A-Z, n.d.). In the retail industry, sales information

can be used to research consumer behavior. Therefore, businesses can utilize

this to attract more customers and enhance their overall shopping experience.

These are only one of the few benefits that data has brought to those subjects.

With the rapid growth in data usage and the rise of big data, companies have

attempted to collect data by using several methods or even creating their own

procedures to extract data from the desired source. A well-known approach for

businesses to gather information from a website is data scraping because there

is a significant amount of information people can find on the Internet nowadays.

Scrapy is one of the most popular web scraping frameworks on the market,

considering its high scalability and flexibility. Therefore, it technically could

compile information from any website from small to considerable volumes of data.

Moreover, it could emulate an ETL (Extract-Transform-Load) process, which

basically extracts and transforms the data into a readable material, then stores

the data in the desired format.

The objective of the thesis is to study the functionality of Scrapy by attempting to

scrape the Amazon website. This paper will go through the principles of data

scraping from understanding the core concept to developing a highly optimized

scraper by combining Scrapy with Python programming. This thesis also focuses

on experimenting with various settings of Scrapy to learn as many elements of

this framework as possible.

2

2 DATA SCRAPING DEFINITION

Data scraping (also known as web scraping, web harvesting, or even web data

extraction) is a process of collecting information that people can view from a

website. Another popular term that people usually hear in web scraping is web

crawling. Crawling is an action that specifies a web scraper having the ability to

navigate through different pages and links on a website. This is an important

factor in any data scraping project because the information is often distributed on

different pages on the website. The most obvious scraping action is manually

copying and pasting the online material into a text file or a spreadsheet such as

Microsoft Excel. While the user technically can manually extract the data, data

scraping nowadays is usually referred as a bot that executes an ETL (Extract-

Transform-Load) process.

Figure 1. Illustration of ETL process. Extract Transform Load (ETL). Databrick. n.d. Available at
https://www.databricks.com/glossary/extract-transform-load. Accessed April 2023

Figure 1 illustrates a typical ETL pipeline process. ETL pipeline, or data pipeline,

is a crucial term in the data industry. It stands for extract, transform, and load

which is a 3-phase data processing process. The details of each phase can be

found on Amazon Web Services (Amazon Web Services, n.d.):

- Data extraction (Extract): The first step of the process is pulling raw data
from one source or various sources. Data typically comes from SQL or
NoSQL servers, CRM (Customer Relationship Management) and ERP
(Enterprise Resource Planning), data storing format (XML, JSON,
spreadsheet), and from web pages. Correspondingly, the abstracted data
will be stored in a staging area. This area is a temporary storage for the
transform phase.

https://www.databricks.com/glossary/extract-transform-load

3

- Data transformation (Transform): This phase will transform the raw data
from the extraction phase to match the requirement of the user and deliver
it to the target format. These are the techniques that have many use
cases:
• Deduplication identifies and removes duplicate records
• Validation excludes unwanted information from the dataset
• Format revision converts data into the desired format. Converting
temperature from Fahrenheit (°F) to Celsius (°C), currency from euro (€) to
pound (£) or even dollars ($) are some examples
• Derivation calculates new values from the existing values
• Joining connects the same data from different data sources to create
a relationship between them
• Splitting separates a column or data attribute into multiple columns in
the target source. This will help to categorize data more dedicatedly
• Summarization improves data quality by reducing a large number of
data values into a smaller dataset
• Encryption protects the collected data by adding encryption before
delivering the data to the target format

- Data loading (Load): The final phase of the process is to move the
transformed data from the staging area into the target format. The whole
process is typically automated from beginning to end.

Web scraping technically functions in the same manner as an ETL pipeline.

Scrapers collect information on the website and then store the data in temporary

storage. Finally, the engine will distribute the scraped materials into the target

format such as database, JSON, XML, or even a spreadsheet. Therefore, this is

a huge advantage for organizations because ETL provides better data

management and high customization for their own use cases. However, building

pipelines that ensure high data reliability is extremely complex and requires a lot

of optimizations from the engineers because of the changeability coming from the

data itself, regardless of the source.

Occasionally, the manual copy-paste method can be better than modern scraping

technologies because many websites prevent machine automation. Additionally,

setting up a scraper engine practically requires some effort from the user.

However, a human-based operation is strictly limited when working with a large

amount of data. For instance, the scraper wants to find some questions about

data scraping on Stack Overflow, a popular forum for technology content.

4

Figure 2. Stack Overflow example #1

Figure 2 shows the search result for the data scraping topic on Stack Overflow.

There are approximately 500 results on this topic and this could take a lot of time

if the scraper decides to collect this the traditional way. In contrast, web scraping

not only provides us a consistent way to extract the data from the site but also

delivers better data quality. Furthermore, when pairing with a scheduler, it is

ensured that the information is kept up to date at all times.

In short, data scraping is a process that performs scraping operations on web

pages with high flexibility and optimization. The engine can perform complex data

transformation and ensure data reliability because scraper operations execute

similarly to an ETL pipeline.

3 DATA SCRAPING FUNDAMENTALS

To perform data scraping, scrapers need to understand the basics of HTML

which are the building blocks of web pages. They also need to have some

programming skills to write code that can navigate through websites and extract

the desired data. In addition, it is important to know that web scraping raises

ethical and legal concerns, particularly when it involves collecting personal or

5

sensitive information without consent. All of the above problems will be discussed

in this chapter.

3.1 Hypertext Markup Language

Data scraping retrieves data from the Internet by actively interacting with the web

pages. Therefore, HTML (Hypertext Markup Language) is a crucial factor when it

comes to web scraping. HTML is a markup language used for creating websites

alongside CSS (Cascade Style Sheet) and JavaScript. People might mistake

HTML as a kind of programming language although it is not. A markup language

is a computer language that performs text-encoding on a set of symbols inserted

in a text document to control its structure, formatting, or even the relationship

between the components rather than performing any action itself (Wikipedia,

n.d.). Meanwhile, the programming language is also a computer language that

developers use to build programs, scripts, and various sets of instructions for

computers to execute.

When scraping, developers have to interact with HTML elements frequently to

communicate with the web page itself. Therefore, it is mandatory to know the

working principles of HTML. This paper will use the example on the Mozilla blog

to explain the basic functionality of HTML.

Figure 3. HTML element. HTML basics. Mozilla. n.d. Available at https://developer.mozilla.org/en-
US/docs/Learn/Getting_started_with_the_web/HTML_basics. Accessed April 2023

Figure 3 displays the most basic form of HTML. HTML tags are used to define the

elements inside an HTML document. The browser will use these tags to adjust

https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics

6

the web layout the match the settings correspondingly. Both tags on the figure

share some similarities:

- The opening tag: The tag contains the name of the element, which is “p” in
the figure. This will instruct the web page to implement this component
starting from this point. The structure of the opening tag is “<name of the
element>”

- The closing tag: The tag also has the name of the element inside closed
brackets, which is “p”. However, its structure is “</name of the element>”
which is slightly different from the opening tag to distinguish them from
each other. The closing tag states the ending of the element

- The consent: The content of the element which is normally plain text

- The element: The combination of opening tag, closing tag, and consent

It is useful to know some of these regularly seen tags when you are trying to

collect data on any website. Programmers can find the full detail of the above

tags as well as every other tag of HTML on the W3Schools website:

https://www.w3schools.com/tags/

Table 1. Popular tag in scraping

Tag Type Functionality

DOCTYPE meta Declare the type of the document to the browser

title meta Declare the title of the document

p text Specify a paragraph

h1-h6 text Represent 6 levels of section headings (font size)

br text Execute a line break

span style Container that marks up a part of text

a link Define a hyperlink

base link Specify the base link or/and target for all relative link

img image Embed an image into the page

ul list Specify unordered list

ol list Specify ordered list

li list Specify a list of items; usually inside ul, ol or menu tags

table table Specify an HTML table; consists of th, tr, and td tags

th table Define table name

tr table Define table row in the corresponding table element

td table Define table cell in the corresponding table element

https://www.w3schools.com/tags/

7

All HTML elements can provide additional information about the elements by

specifying attributes in the opening tag. Figure 4 shows another example from

Mozilla that the writer will use to explain HTML attributes.

Figure 4. HTML attribute. HTML basics. Mozilla. n.d. Available at https://developer.mozilla.org/en-
US/docs/Learn/Getting_started_with_the_web/HTML_basics. Accessed April 2023

In this element, “class” is the attribute name while “editor-note” is the attribute

value. Attributes have various useful functions to support the elements. For

instance, the “class” attribute in the figure serves a non-unique identifier that can

be targeted alongside with other classes has the same value to customize with

style information and other things. Scrapers are going to interact a lot with this

“class” attribute. Hence, it is useful to know what it does beforehand. In addition,

the “id” attribute is also an essential element for web scraping, which specifies a

unique identifier for an HTML element. In HTML, this attribute is used to point to a

specific style declaration in a style sheet. While in data scraping, scrapers use

“id” as an identifier to extract the information they need.

It is crucial for the scrapers to retrieve the HTML document in order to be able to

extract the information from web pages. Thankfully, most of the modern web

browsers nowadays is equipped with a developer tool that can view the HTML

document of the page with a few clicks: Right click on the web page you want to

view the HTML → View page source / Inspect. Figure 5 shows two available

options that the developer tool offers:

Figure 5. Developer tool example

https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics

8

- View page source: This option basically allows us to view the entire HTML
document as it was delivered from the web server to our browser.

- Inspect: The more popular option for web scrapers. This option allows
scrapers to choose whichever part on the web page to scan for its HTML
element in the form of an HTML DOM (Document Object Model). For
instance, if we try to inspect a random element on the page, the developer
tool will appear and point to the corresponding element.

3.2 Document Object Model

DOM represents the structure of the HTML page as a tree of nodes and it is

created whenever the page is loaded. Each HTML element is presented as a

node. This object model acts as a programming interface for HTML because it

allows developers to add, update, delete, or even move nodes on the tree. DOM

is extremely useful in web scraping because programmers can use these nodes

to interact with the HTML page extract the needed information. Figure 6 shows

example of a DOM tree

Figure 6. Example of a DOM tree

9

The aspect that makes DOM more manageable than the original HTML is DOM

presents every node of elements or attributes as a hierarchical relationship. The

writer will further examine the previous example to understand more about DOM.

Figure 7. DOM tree characteristics

Figure 7 explains the main characteristics of the nodes:

- <html> is the root parent which consists of a collection of child nodes that
represent the elements, attributes, and content of the HTML component

- Each node in the tree has a parent node, except the root element

- Each node can also have multiple child nodes

- Nodes having the same parent are siblings

- Each node represents an HTML element

Programmers take advantage of this to operate the HTML by using a technology

called selector, which is frequently used in markup languages.

3.3 Document Object Model selector

As it was discussed in the previous chapter, we can interact with the web page

through programming by utilizing the DOM node. In order to extract the

information from the HTML elements, developers have to initialize a setup that

consists of several steps: search for the needed tags → select the desired

attribute → extract the information using regular expression → handle special

10

cases. That is a great deal of work due to the fact that how messy and

complicated modern website’s DOM tree is. Therefore, a selector is required to

pass the targeted elements for the programming language to work with. A

selector can simplify lots of the abstraction process from the traditional way by

selecting and processing elements with high precision. The technology has the

flexibility to navigate through every layer of tree hierarchy.

3.3.1 XPath selector

XPath means XML (Extensible Markup Language) Path Language. XPath is a

selector that utilizes path expressions to select nodes or node sets in an XML

document. The reason that web scraping can utilize this selector technique is

XML is also a markup language similar to HTML. While XPath is not a

programming language itself, this selector can create an expression that can

directly point to a specific DOM node containing HTML tags or attributes without

manually iterating the entire DOM tree. The below figure shows an example of a

typical XPath syntax.

Figure 8. XPath components

The example shows the basic fundamental of an XPath syntax. This expression

will retrieve the text value from all of the span tags that have id=’productTitle’.

While the function is optional, some of them are extremely useful to manipulate

the result. The text() will extract the plain text from the attribute value. The thesis

will mainly utilize this selector for the project. Therefore, the author will further

11

research each component of XPath to understand more about the capabilities of

this selector.

Table 2 showcases fundamental XPath expression in scraping:

Table 2. XPath expressions

XPath expression Functionality

nodename Select all nodes with nodename

/ Select node from the path starting from root node

// Select node from the context node

. Select the current node

.. Select the current node’s parent

@ Select attribute

List of the useful functions when extracting data is shown in the following table:

Table 3. XPath functions

XPath function Usage

text() Return the plain value from the element

number() Convert data or node to number type

string() Convert data or node to string type

substring() Extract a substring from a string

contains() String validation using another string

starts-with()

ends-with()

Check if the string starts/ends with the given string;

return True/False

Axes that are the components that XPath uses to access through the different

layer of the DOM tree. List of commonly used axes for web scraping:

Table 4. XPath axes

XPath axes Usage

following:: Indicate all the nodes that appear after the context node

preceding:: Indicate all the nodes that appear before the context node

parent:: Indicate the parent node of the context node

child:: Indicate the child of the context node (Default option if

XPath expression does not specify an axis argument)

self Indicate the context node itself

12

These are some XPath expression examples and their usage to showcase the

functionality of the above components:

Table 5. XPath examples

Example Explanation

/html/body/title Select the title node

//span Select all the span nodes

//span[@id] Select all the span nodes that have the

id attribute

//span[@id=’title’] Select all the span nodes with the

following attribute: id=’title’

//span[@id=’title’]/text() Retrieve the text content of every span

element that has id=’title’

//h1/span[1] Select the first child of the element

//* Select every element in the document

//div[@class=’product’]//following::span Select every span element after the div

element that has class=’product’

//div[@class=’product]//parent::span Select every span parent element within

the div element that has class=’product’

On that account, the XPath selector is a crucial technology for web scraping.

XPath can examine several different layers of a markup document to extract the

needed elements. More real-life usage of XPath will be showcased in the later

chapter of the thesis because the project is going to utilize XPath to develop a

web scraping application.

3.3.2 CSS selector

CSS selector is another viable option to extract the needed information from

HTML. In CSS, selectors are used to target the HTML elements on web pages in

order to implement CSS settings. Web scraping takes advantage of this

functionality to extract the selected elements.

13

While the project chooses XPath as its main selector, it is difficult to fully explain

the CSS option without project implementation. Therefore, the writer will not

explain in detail how CSS selector works and only list it as a viable option for web

scraping. More detail about this selector can be found on Web Scraper

documentation: https://webscraper.io/documentation/css-selector

3.4 Scraping framework

Scraping frameworks are designed to automate the process of collecting data

from the web, allowing developers to efficiently retrieve large amounts of

information from multiple sources. They typically provide a set of tools and

libraries that make it easier for developers to extract and process data from web

pages, as well as handle common issues such as page navigation, authentication

and storage.

3.4.1 Scrapy

Scrapy is an open-source framework for extracting data from websites and it is

the thesis’s main focus. The framework is currently maintained by Zyte, a web

scraping development company, and many other contributors. Scrapy is written in

Python and it still frequently gets updated because of the large community

support. It is available on three main operating systems which are Windows,

Linux and MacOS. However, this framework is only available on one

programming language, which is Python at the moment. Scrapy gains many

benefits from Python and the author will discuss this in the later section.

Scrapy workflow is constructed by several components which are engine,

spiders, scheduler, downloader, item pipeline, downloader middlewares, and

spider middlewares. The information about these can be found on the Scrapy

documentation page (Scrapy, n.d.):

- The engine controls the data flow between all of the components and
triggers events when actions occur

- The scheduler manages requests from the engine

- Downloader fetches web pages into the engine

https://webscraper.io/documentation/css-selector

14

- Spider parses responses using HTTP requests and extracts the needed
items from the response

- Item pipeline is responsible for processing the data once they have been
extracted by the spiders. Users interact with this component to create data
transformation tasks including cleaning, validation, and persistence

- Downloader middleware is the middle process of the engine and the
downloader. The middleware passes information from both sides.
However, users can adjust the configurations based on their usage. For
instance:

• change received responses before passing it to a spider
• send a new request instead of passing the received response
• pass responses to a spider without fetching a web page
• drop request

- Spider middleware is the middle process of the engine and the spider.
While it is optional, this middleware is capable of:

• adjust the post-process output of spider callbacks
• change received responses before passing it to a spider
• handle spider exceptions

Figure 9. Scrapy dataflow. Architecture overview. Scrapy. n.d. Available at
https://docs.scrapy.org/en/latest/topics/architecture.html. Accessed April 2023

Figure 9 illustrates how each component interacts with the other:

1. The engine receives the initial requests to crawl from the spider
2. The engine instructs the scheduler to automatically send a new request

after the first one from the spider

https://docs.scrapy.org/en/latest/topics/architecture.html

15

3. The scheduler returns the next request to the engine. From this point, the
process will keep repeating until there are no new requests left

4. The engine sends the request to the downloader
5. The downloader generates a response from the request and then sends it

back to the engine
6. The engine receives the response from the downloader and sends it back

to the spider for data processing
7. The spider processes the item from the previous step and then returns the

processed item to the engine
8. The engine sends the processed item to the item pipelines for data

reformatting and exporting

From the workflow, the developer can observe that Scrapy architecture resolves

heavily around the core engine. The engine handles every response and request

from other components and then passes it to the proper destination. However,

while the core engine typically functions behind the scene, users mainly work with

Scrapy through spiders and item pipelines.

The combination of spider and item pipelines represents an ETL process.

Spider is a custom Python class that allows programmers to customize their

coding to parse and gather the data from the response. In this class, users

choose what web page to parse and utilize XPath to extract the needed HTML

elements from the site, and setups the crawler to navigate through the pages.

Therefore, the spider technically serves as the Extract phase from ETL. While the

spider specializes in abstraction, item pipelines handle the scraped material and

process them into the desired format. These working principles are relatively the

same as the Transform phase and the Load phase from ETL. Therefore, this is a

significant advantage for Scrapy for having a built-in ETL architecture. As the

writer already discussed in the previous chapter, ETL delivers high-quality data

and provides better control over the data flow.

Parallel processing is another useful feature that Scrapy supports. It allows the

engine to scrape multiple items concurrently. For example, the developer has to

collect all questions related to the database on Stack Overflow.

16

Figure 10. Stack Overflow example #2

Figure 10 shows that there are approximately 192,405 questions for this topic. If

the users are using 50 items per page layout, they have to scrape relatively 3,849

pages. Parallel processing allows Scrapy to perform 16 requests at the same

time assuming that each request takes one second to collect 50 questions on a

single page. Users will be able to generate 16 pages in one second meaning 16 *

50 = 800 items. Accordingly, this will take about 3,849 / 16 = 241 seconds in total

to gather all the needed data. It is important to keep in mind that the performance

is subjective because it heavily relies on several elements such as hardware and

internet bandwidth. Scraper can also setup how many requests to execute at a

time and the default value is 16. There is no limit to this value, however, setting

this value too high might cause heavy traffic to the targeted website. The

developer should ask the website owner for permission in this case. The parallel

processing is still an outstanding feature that makes Scrapy scales application

more effectively than other scraping framework on the market, all things

considered.

Despite the speed and efficiency, Scrapy still has several limitations to consider.

Scrapy could not handle dynamically-loaded content such as JavaScript by

default. The reason is JavaScript elements typically will not be shown on the

HTML document or DOM tree. This is a noticeable downside since JavaScript is

casually implemented in most modern websites nowadays. Fortunately, there is a

17

workaround solution for this problem which is Splash. Splash is a Python library

that directly supports Scrapy to extract data from JavaScript rendered websites,

more information about Splash can be found in the Splash documentation:

https://splash.readthedocs.io/en/stable/faq.html. While Scrapy provides massive

flexibility and highly customizable settings, the framework produces a decent

amount of complexity and might be overwhelming for anyone who attempts to

learn and use Scrapy.

3.4.2 Selenium and Beautiful Soup

While the thesis mainly focuses on Scrapy framework, this section will briefly

introduce other available options for data scraping. Depending on situations,

these alternatives may prove to be a better solution than Scrapy.

Selenium is an open-source automated testing framework that specializes in

validating web applications across different browsers and platforms. Unlike

Scrapy, Selenium is available for several programming language such as Java,

C#, Python and many others. Selenium can render all elements of the selected

web page including JavaScript into its web engine. After that, the programmer

can freely interact with the website elements to collect the information by utilizing

several built-in methods. Because the framework was not originally designed for

data scraping, Selenium is missing a lot of support features for scraping itself.

Moreover, the performance is not comparable to Scrapy because Selenium

basically loads the entire web page into its engine to function. In contrast, if

speed is not your top priority, Selenium will be a decent option since it can also

handle JavaScript effortlessly.

Beautiful Soup is a Python library that directly supports data scraping. While

Beautiful Soup is technically not a framework, it is worth mentioned because this

library is a powerful tool for scraping data on the Internet. The engine also cannot

handle dynamic content because it also parses web data using HTTP request,

which is similar to Scrapy. Because Beautiful Soup is a lightweight library, it lacks

the customization and the performance to extract large volume of data. However,

this characteristic makes BeautifulSoup suitable for small-scale projects.

https://splash.readthedocs.io/en/stable/faq.html

18

3.5 Programming language Python

Python is a general-purpose programming language that was originally found by

Guido van Rossum in 1991. General-purpose programming language is a term

that describes computer language that can be used to build a wide variety of

applications serving different usage. Python is available on multiple operating

systems including Windows, macOS, Linux/UNIX and more. Python is designed

to have great code readability with the use of significant indentation. Therefore,

the language is not difficult to learn and start programming with it. Moreover,

Python supports several programming paradigms including structured, functional

and object-oriented programming (Wikipedia, n.d.).

Python has always been one of the best programming languages for data

processing. The simplicity is not the only reason that makes Python extremely

popular in the data industry. Users can regularly find solutions and helps on the

Internet nowadays because Python have such a huge and active community.

Moreover, the language has accessed to considerable number of data-related

libraries and frameworks:

- Pandas: A popular library that allows programmers to perform data
processing and data visualization

- NumPy: NumPy offers several high-level mathematical functions to
perform calculations with the data

- Sklearn: A library specializes in machine learning. Sklearn provides utilities
for developing machine learning model

- Matplotlib: A powerful data visualizer for many variants of data

- Scrapy, Selenium, Beautiful Soup: All three popular scraping tools are all
available on Python

Therefore, Python is a solid option for data scraping project. Scrapy and other

scraping framework have accessed to many useful tools that Python has to offer.

There are others language that developers can consider for their data scraping

project such as C++, Java, JavaScript and many others. However, it is not

recommended to use these languages for complex data project because most of

them are limited to powerful data processing tools comparing to Python.

19

3.6 Legal issues and ethical scraping

Many people assume that scraping is an act of stealing data on the Internet. In

contrast, data scraping is a technique that collects only visible information on the

Internet. Web scraping is technically legal based on the definition. There are no

laws or restrictions that prohibit people from scraping websites under normal

circumstances. It is important to know that there are also exceptions:

- Scraper uses the collected information for the harmful intention

- Scraper extracts personal information which heavily violates the
regulations of many countries such as GDPR (General Protection
Regulation) in the EU

- Scraper copies the material that is copyrighted

Another crucial element that helps us to identify what is allowed to scrape is the

robots.txt file. This text file is basically a set of instructions for bots that try to

navigate through the website. The bots in this case are mostly search engines

such as Google and Bing. Web scrapers can also utilize robot.txt in order to

decide which section of the page is allowed to scrape.

Figure 11. robots.txt example

Figure 11 shows how to access the robots.txt of most modern websites

nowadays. The file can be accessed by adding /robots.txt to the path of the URL

20

address. In addition, the content of the text file is also shown and we are going to

use this example to show how robots.txt create rules for the website:

Table 6. robots.txt rules

Sitemap Show the sitemap URL, which is used to display important

content that the site recommends the bot to navigate

User-agent: * Specify that the following rule applies to all bots and users

Allow: /* Permit bots to crawl the entire website not including the

exception from the Disallow rule

Disallow: /api/* Forbid bots to crawl the context URL path

While scraping is completely legal, many websites recommend that they are not

being scraped in general. One major problem that website owner has with

scraping is it could potentially cause heavy traffic or even interrupt the website

services if scrapers parse numerous requests concurrently over a long period.

This could be treated as a DoS (Denial-of-Service) attack due to the

consequence that overload scraping can cause. Correspondingly, a few numbers

of webpages such as Newegg directly prohibit scraping on their site, which is

understandable. Therefore, developers should carefully read the terms of service

and policy agreement on the targeted website. Additionally, these are several

things that the developer should consider before scraping any website:

- Prioritize API (Application Programming Interface) over scraping if the
website provides

- Only scrape the data that you need

- Always check the terms of use and robots.txt of the selected website

- Schedule your scrapers properly to not overload the website
infrastructures

4 DATA SCRAPING APPLICATION WITH SCRAPY

This project attempted to scrape Amazon, one of the largest e-commerce

websites at the moment. By implementing this, the developer will have a better

understanding of the capabilities of Scrapy and data scraping in general. This

chapter will showcase how to build a web scraper from installing needed

components to optimizing Scrapy performance.

21

Figure 12. Project architecture

The scraping project architecture is shown in Figure 12. This project will attempt

to build a data scraping application that collects any product information on the

site including price, name, description, and many others. The main functionalities

of this application are specifying the needed product through the search bar,

extracting its information, and navigating through different pages to collect all

data of the searched product. Moreover, the collected data will be transformed by

utilizing the item pipelines of Scrapy. The final step is exporting the data to the

desired format which can be a spreadsheet, JSON, XML, or a database table.

4.1 Prerequisite

The first step is always to check if the selected website specifically forbids data

scraping. In this case, Amazon does not prohibit scraping activities in their terms

of service. Therefore, it is safe to collect the data from Amazon website.

Additionally, developer should also review the robots.txt of Amazon to learn

which section of the site is not available to interact with. The robots.txt of Amazon

can be accessed by navigating to https://www.amazon.com/robots.txt

After researching the site rules, we set up the project environment. The operating

system that the writer used for this project is Windows. Two core components of

this application are Scrapy and Python:

- Python 3.11 will be used. The installation file for Windows can be found
from on the Python website: https://www.python.org/downloads/

https://www.amazon.com/robots.txt
https://www.python.org/downloads/

22

- Scrapy 2.7.1 will be used. Programmers can install Scrapy through pip, a
Python package installer. Pip is automatically installed when the user
installs Python. It is recommended to install the framework under a virtual
environment that Python has to offer. This will prevent version conflict
between the components. Using the following command will install Scrapy:
pip install scrapy

After the installation, programmers can start working on the project immediately.

In the initialization step, the user needs to create necessary files for Scrapy by

doing it manually or entering Scrapy built-in command into the command prompt:

scrapy startproject scrapy_amazon

This will create a directory including all the files we need for our project:

- Folder spiders contains all the spiders, which are used to extract the data.
There can be multiple spiders in a project

- items.py defines the data model of the scraped items

- middlewares.py controls the mid-process of every component in Scrapy

- pipelines.py contains the item pipelines, which perform all of the data
processing work of the project

- settings.py allows the user to adjust multiple settings including the number
of concurrent requests, cookies configuration,…

- scrapy.cfg contains the meta information about the current project

Figure 13. Project folder

A spider can be created by using the following syntax:

scrapy genspider Products www.amazon.com

The syntax will generate a script named Products.py inside the spiders folder.

The command includes our spider name and the targeted website for scraping.

http://www.amazon.com/

23

Figure 14. Initial the spider

Scrapy will generate a template for our spider, a Python class. The class contains

metadata for Scrapy to process. Users can create requests to websites by using

the parse function. Scrapy also supports many different types of spiders serving

different purposes:

Table 7. Spider types

Spider A generic spider that serves multiple purposes based on

how users setup. This spider will be used for the thesis.

CrawlSpider Focus on navigating through different pages and links

XMLFeedSpider Specialize in extracting XML content

CSVFeedSpider Specialize in extracting CSV content

SitemapSpider A crawl spider that prioritizes the sitemap rules

Finally, before building the spider, the scraper needs to plan how the spider

parses the website in advance.

Figure 15. Project flow

Figure 15 shows how the spider navigates in this project: Front page → Product

listing → Product information.

24

4.2 Data extraction

Data extraction is a crucial step in web scraping, which is the process of

automatically collecting and extracting data from websites. In this chapter, the

author attempted to study the web structure of Amazon and extracted the data.

4.2.1 Navigating through Amazon

In order to be able to collect certain product information, the programmer has to

guide the spider from the starting point to the destination. URL and HTML are two

important components that help us to navigate around the website. This section

of the project will utilize the URL address to parse the product listing into the

engine. It is important to know the different components of a web address.

Figure 16. URL components. Components of a URL. GeeksforGeeks. n.d. Available at
https://www.geeksforgeeks.org/components-of-a-url/. Accessed April 2023

The following diagram from GeeksforGeeks shows how a URL is address

typically constructed. From front page to product listing, we are going to take

advantage of the search function of Amazon.

Figure 17. Amazon search #1

https://www.geeksforgeeks.org/components-of-a-url/

25

From Figure 17, we can see that every time the user searches for a product, the

page will redirect the user to the searched item catalog. By searching

“processor”, Amazon redirects the user to the “processor” catalog. Our main

focus in the figure is the address. The address is overwhelming in this situation.

However, spiders do not need the full address to access the web page. Most

components in the address are optional arguments. These arguments are mostly

query-string which is indicated by a precede “?” symbol or “&” symbol. Scrapers

can safely ignore these and focus on the important parts which are the domain

name and the path of the address.

Figure 18. Search URL

Now we can clearly see the URL format of the catalog page on Amazon.

Developers can assume that “s?k” presents for “searched keyword” because it

has “processor” value, which is our searched item. We need to confirm this by

performing a simple test. The author will attempt to change the “s?k” element to

another value for this test.

Figure 19. Amazon search #2

26

Figure 19 proves our theory was correct. By adjusting the “s?k” value, Amazon

will redirect us to the corresponding catalog. Therefore, the developer can safely

implement this logic into the spider.

Figure 20. Implement search function

- search_key receives the inputted item from the user

- search_item handles the spacing between items that contain many words

such as Raspberry Pi, graphic cards, etc.

- The search function will be implemented at the start of the program

because we want this to run as soon as the spider starts

After successfully parsing the listing into the Scrapy engine, users can interact

with HTML contents of the page by utilizing Scrapy. Therefore, the writer will

analyze the product properties to figure out a reliable way to navigate to the

product information page from the catalog. Every product should have the same

HTML patterns so the scraper only needs to examine any single item. This is

where programmers should utilize the Inspect option from developer tools

provided by the web browsers. We are looking for the href element which usually

contains the product information link. In this case, clicking the image or the

product title will move the user to the corresponding product page. Therefore, the

image and the title of the product are the two elements that we are going to

analyze using the tools. The author will attempt to examine the image element

using the Inspect option:

27

Figure 21. Inspect Amazon product listing #2

The developer tool also points out the property that the user uses the inspect

option on. From the figure, we can see the href that we are looking for is the

parent node of the highlighted node. It is important to know that the tool only

highlights the actual image node not including any other nodes. Scraper can also

apply the same logic to the process of getting the link from the item title similar to

Figure 22.

Figure 22. Inspect Amazon product listing #3

28

Finally, the programmer needs to implement these findings into the spider. When

working with DOM and HTML, XPath and Scrapy interactive shell are used to

interact with them. Scrapy shell provides a command line environment that allows

developers to test their XPath expression. While the whole engine will run when

spiders start a request, Scrapy shell only renders the targeted address with

needed components for code testing. It is recommended to use the shell for

testing or debugging extraction code because of the efficiency. The programmer

can start a Scrapy shell section by inputting the following command:

scrapy shell https://www.amazon.com/s?k=processor

Figure 23. Scrapy shell interface

The following figure contains the XPath expression for retrieving the address path

from both the product image and title. This is known as the traditional way to

retrieve a URL address from any webpage. The data-asin attribute is from the

parent node in both elements which is used to identify the context item.

Figure 24. Testing XPath expression with Scrapy shell

Another approach for accessing the product page is using ASIN. ASIN is the

acronym for Amazon Standard Identify Number. These identifiers typically have

10-character alphanumeric assigned by Amazon. Each product on Amazon is

given a unique ASIN. For example, the B09FXDLX95 presents the i9-12900k

https://www.amazon.com/s?k=processor

29

processor. Every product link on Amazon has the same format when ignoring all

optional parameters: “https://www.amazon.com/dp/{asin}”.

The writer will choose the ASIN method to implement in the Scrapy spider. The

parse function contains most of the extraction code of the spiders. We need to

loop the entire product listing page to gather all the available product addresses.

Figure 25. parse() code

The parse() function will focus on scraping the product listing:

- product_listing extracts all the ASIN available on the catalog

- The loop makes sure that the spider visits every product inside

product_listing

- asin is extracted again for constructing the address

- product_address is the product URL address

- response is an object that represents an HTTP response which is used to

feed the spider for processing, follow method allows the response to

access a URL address. These are the parameters of the syntax

• urls = product_address

• callback executes the corresponding function, parse_product, when
the request is made. The parse_product function contains the data
extraction code for the product page and the author will demonstrate this
in detail in the next section. This option will be disabled for now.

• meta produces the metadata for the corresponding item

Scraper can test the codes by running the following command to start the spider

scrapy crawl Products

30

Although we did not build any code that exports output, we can still check the

Scrapy log which is automatically generated whenever the spider is running. The

log contains several useful pieces of information for debugging purposes:

- The initialization of the engine

- The shutdown of the engine

- Error codes if an error occurs

- HTTP request status

- Output of extraction code

The debug log shows that we have successfully accessed the product page. The

HTTP code 200 indicates that the request has succeeded.

Figure 26. Debugging with Scrapy log #1

As we can see from the figure above, the ASIN method affords a decently

cleaner URL address while the link from the traditional method contains too many

optional arguments in general. This is useful considering that scrapers usually

want their data as clean as possible. However, unlike Amazon, many websites do

not provide a unique identifier for their content. Therefore, it is recommended to

know the traditional way to extract an address because this method will work

most of the time.

4.2.2 Extracting product information

The first step is initializing the Scrapy engine to store the upcoming data. Scraper

accomplishes this by creating a data model in items.py. In this project, the writer

wants to store the following information:

31

Figure 27. Initialize Scrapy data model

These are the information that we are going to collect on Amazon. Each piece of

information represents a data field in Scrapy. Spiders usually return the extracted

data as items, Python objects that specify key-value pairs. Scrapy supports

multiple types of items through its built-in ItemAdapter library. The scraper also

needs to add the data class to the spider Products.py:

import scrapy

from scrapy_amazon.items import Product

Figure 28 shows the location of each needed information on the product page.

Figure 28. Examine Amazon product information page

32

Developers should approach this problem in the same manner as the previous

section. In summary, the scraper needs to carefully examine the HTML document

using developer tools, debug the XPath expression through Scrapy shell, then

implement the extraction codes into the spider.

Figure 29. parse_product() code

We are going to create a new parse function called parse_product:

- product is the data model that we created earlier for the engine

- title, price, price_currency, review_count, and rating are the collected data
using XPath

- asin, search_key, and url are variables from other parse functions

For the testing, it is recommended to test each function separately before

combining them by using the callback argument. asin, search_key will not be in

the output because they are from the initial parse function.

Figure 30. Debugging with Scrapy log #2

33

4.2.3 Scraping multiple products

After the scraper satisfied with the extracted information, enabling

parse_product function into the callback argument of the initial parse function

will allow the spider to parse every single product on the listing.

Figure 31. Adding scraping multiple products feature

The following output is generated from the keyword “processor”. From the engine

log in Figure 32, we can see from the log that we have been able to scrape 18

items in total of 23 pages. There are some missing pages because few of them

are not actually Amazon product page and they also have @data-asin attribute.

Figure 32. Debugging with Scrapy log #3

34

Another feature that programmer needs to implement is scraping multiple pages.

Scraper usually approaches this problem by examining the “next” button. They

setup a callback loop that automatically navigates to the next page if the HTML

element of the button is available. The loop will stop if it reaches the final page

meaning that the button is not accessible in this situation.

Figure 33. Inspecting "next" button

The author will attempt to add this logic into the parse() function because the

“next” button is still an element inside the item catalog.

Figure 34. Adding scraping multiple pages feature

- search_item is the class variable that contains the searched item. This will

be used to build the URL address

- page_counter will be used to track the page for the engine and construct

the page address. This variable can also be served as a page limiter

- next_button is the availability of the button

- next_page contains the URL address format of the pages

35

After adding the codes, the parse() function should look similar to the following.

Figure 35. Final version of parse() function

This concludes the extraction process of the project. In summary, starting the

spider will prompt the user an input which is the targeted item to collect

information on Amazon. After entering the desired item, the spider will navigate to

the corresponding product listing to collect all available product URL addresses.

These addresses will be visited by the spider to collect all the required data.

When there is no item left, the engine starts a new parse operation on the next

page. The process will stop when it reaches the destination page.

4.3 Data transformation

One of the main goals of data scraping is to extract structured data from

unstructured source which is typically web pages in this case. Data cleaning or

data formatting is an important process in scraping. Scrapy item pipelines provide

developers a powerful programming interface for the cleaning process. In this

section, programmers will interact mainly with the pipelines.py file and control the

pipelines through the settings.py.

36

Figure 36 shows the examples of what programmers can do in the transformation

phase of Scrapy:

Figure 36. Creating transform features

In order to enable the process, scrapers have to initialize them in settings.py. The

priority of the execution is represented by numbers similar to the figure below.

The pipeline process will execute from low to high order and start with the lowest

value, which is DuplicateCheck in the following configuration.

Figure 37. Adding features to pipelines

37

Scrapy divides the transformation process into multiple operations and these

processes are contained in a Python class. The class receives the collected item

and performs various actions over them. ItemAdapter is the core component of

this process which returns the scraped data by spiders into the pipeline engine.

The developer can interact with any data by calling adapter syntax. These are the

usage of the classes from Figure 45:

- DuplicateCheck drops any duplicate item using the title of the product.

- ItemValidation drops any unrelated item because there can be an item

from Amazon advertisement. If the title does not contain the search

keyword, the item will be dropped

- ReviewToInteger removes all non-numeric characters from review_count.

This enables the user the ability to perform any calculation on the data

The writer did not perform any complicated transformation in this project because

the product information on Amazon is fairly organized and well-structured

already. The example showcases several uses of the pipelines to customize our

data. These includes cleaning the data, validating data, dropping duplicate values

into the desirable format. One of the advantages of Scrapy is providing a

programming interface for this process. Transform data through programming

provides extremely high flexibility and customization in general.

4.4 Data loading

This is the final phase of a data scraping project. In the loading phase, the

scraper will deliver the structured data into the desired format. Scrapy provides

two solutions for this process either using command-line or programming. The

command-line method is performed by adding additional argument into the crawl

command while programming method utilizes built-in feature of Scrapy and

several libraries to produce an output source. The author is going to examine the

capabilities of both methods in detail in this section.

38

Table 8. Comparison of command-line and programming

Command-line Programming

Can export to the following format:

CSV, JSON, XML

Can export to the following format:

CSV, JSON, XML and database

Supports only local environment Supports both local and cloud platform

No special customization Customizable with other Python libraries

Does not require any additional

setup to function

Requires additional setup to function

4.4.1 Command-line method

The example shows how to create an output using one of these command lines:

scrapy crawl Products --output filename.csv

scrapy crawl Products -o filename.csv

scrapy crawl Products -O filename.csv to overwrite the file has the same name

Users can choose to export to another format by replacing the extension of the

file. This method is known for its convenience because no additional setup is

required. It is most used for debugging purposes during the development stage.

4.4.2 Programming method

The programming method utilizes the feed export features of Scrapy. This feature

allows developers to generate feeds with the collected data. Developers need to

add the following code into settings.py to enable Scrapy feeds.

Figure 38. Scrapy feeds

39

Feed export can also deliver output to cloud platforms such as AWS (Amazon

Web Services) or GCP (Google Cloud Platform). We are going to implement a

feature that exports the scraped data to AWS S3, a storage service that stores

data as objects within buckets. The initial step is to install botocore which

provides a low-level interface to most AWS services. Users can install this

package by using pip installer: pip install botocore

Figure 39. Export data to AWS S3 using Scrapy feeds

This project assumes that the scraper had already setup the AWS account and

S3 service. Access key ID and secret access key are two components that users

need in order to access S3. After that, running the crawl command of the spider

will automatically send the result to the selected S3 bucket.

Figure 40. Exported data in S3

40

Figure 40 displays the extracted CSV on AWS S3. While the programming

method can work decently with cloud platforms, the method is also capable of

delivering scraped data to the database. Although Scrapy does not have a built-in

database export feature, this feature can still be implemented by utilizing the item

pipelines and SQL connector libraries. MySQL connector will be used because

MySQL is used to store the collected material in this project. The first step is to

install the connector and import the library into Scrapy pipelines:

pip install mysql-connector-python

import mysql.connector

Figure 41. Adding export to database feature

As we already know, we have to include a new feature to Scrapy pipeline as a

Python class. MySQLExport function includes a MySQL database authentication

and a SQL query to insert the scraped data. ItemAdapter is used to pass the data

into the query while the database connector handles the table creation and data

delivery. The programmer also needs to include the class in the settings.py

pipeline section to activate the SQL export feature.

41

4.4.3 Export result

The information from the below figure is generated using the search keyword

“motherboard” on Amazon.

Figure 42. Scraped data in JSON, CSV, XML and SQL database

Figure 42 shows the final product of the project. The outputs include several

popular data storing formats such as JSON, CSV, XML, and database. The

scraped data has a delightful format corresponding to our programming during

the transformation process.

42

4.5 Optional settings

When scrapers try to scrape a particular site, there might be a situation where the

spider is blocked or blacklisted by the website owner. In this project case,

Amazon website is not an exception. Many websites have a system that

automatically blocks the following scenario:

- The website receives too many requests from an IP address

- The website receives too many concurrent requests from an IP address

- The website receives requests from an IP address that has an unknown or

suspicious request header

- The website receives a request from a bot which is identified through the

address user-agent. User-agent is a string that displays the information

about the requesting application and operating system to the server

- The IP address violates the rules from the robots.txt file

Fortunately, Scrapy provides multiple configurations to resolve these problems.

All of these settings can be found in the settings.py. The following configurations

are essential to many scraping projects:

- ROBOTSTXT_OBEY: Enforces the rule from robots.txt to the spiders. This

option is enabled by default. Scrapers should keep this on all the time

- CONCURRENT_REQUESTS: Controls the number of requests that the

Scrapy engine parses concurrently. The default value is 16. Setting this

value too high might cause heavy traffic to the scraped website. The user

should adjust this value accordingly to the situation.

- DOWNLOAD_DELAY: Controls the delay between each request. The

default value is 0. If scrapers are getting blocked temporarily, they should

try to adjust this value

- DEFAULT_REQUEST_HEADERS: Request headers are used to provide

information about the HTTP request context. The configuration is empty by

default which makes the Scrapy engine typically suspicious to websites.

Therefore, developers should fill in the content of this configuration to

avoid being blocked by the website owner. There are many instructions or

blogs to fill these headers on the Internet. The following figure shows the

43

headers that the author uses for this project. More information about each

component can be found on Mozilla developer blog:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

Figure 43. DEFAULT_REQUEST_HEADERS setting

- DOWNLOADER_MIDDLEWARES: The programmer can activate a

downloader middleware by adding the component into this option.

Downloader middleware allows scrapers to alternate requests and

responses. The middlewares can set up a rotating proxies service for

Scrapy. This service provides multiple different IP addresses for scraping

instead of the user’s IP address. These addresses will be rotate frequently

to bypass the IP checking from the website.

5 CONCLUSION

The thesis provided data scraping as a method to gather the information on the

Internet. The reason why data scraping gains so much popularity nowadays is

the rapid development of the data industry and the Internet. The paper also

introduced many aspects of web scraping such as definition, properties, legal

issues. Additionally, the author examined in detail several useful frameworks and

libraries for gathering information on modern websites.

Another major topic of this thesis is Scrapy, one of the most efficient scraping

frameworks on the market at the moment. We have been able to scrape Amazon,

a website that has a decent amount of complexity, in order to learn more about

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

44

the functionality of Scrapy and how data scraping works in a project environment.

This data scraping application will collect the basic product information from the

user’s selected item. Then the scraped material is transformed into a desirable

format for the consumer. We learn how to set up various configurations that

Scrapy provides to make the engine works more effectively. Finally, our data is

stored in multiple different formats such as CSV, JSON, XML, and SQL

database. Moreover, we also configure Scrapy to deliver the data into S3, a

popular object storage on Amazon Web Services. This proves the ability to work

with cloud platforms of Scrapy.

Overall, data scraping is a reliable process to assemble information from the

online world while Scrapy is the most efficient tool for the job. However, a

reasonable effort is required to learn and utilize both data scraping and Scrapy

properly. In contrast, mastering this craft not only grants you the ability to gather

a large amount of information on the Internet but also significant boosts your

confidence as a data worker or a developer.

45

REFERENCES

Amazon Web Services. What is ETL (Extract Transform Load)?. Web page.
Available at: https://aws.amazon.com/what-is/etl/
[Accessed April 2023]

ComTec. Top 10 Advantages of Using Data Analytics in the Retail Industry.
Web page. Available at:
https://www.comtecinfo.com/rpa/top-10-advantages-of-using-data-analytics-in-
the-retail-industry/
[Accessed April 2023]

Databricks. Extract Transform Load (ETL). Web page. Available at:
https://www.databricks.com/glossary/extract-transform-load
[Accessed April 2023]

GeeksforGeeks. Components of a URL. Web page. Available at:
https://www.geeksforgeeks.org/components-of-a-url/
[Accessed April 2023]

Learning A-Z. Data in Education. Web page. Available at:
https://www.learninga-z.com/site/resources/breakroom-blog/data-in-education
[Accessed April 2023]

Mozilla. HTML basics. Web page. Available at:
https://developer.mozilla.org/en-
US/docs/Learn/Getting_started_with_the_web/HTML_basics
[Accessed April 2023]

Mozilla. HTTP headers. Web page. Available at:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
[Accessed April 2023]

Mozilla. XPath axes. Web page. Available at:
https://developer.mozilla.org/en-US/docs/Web/XPath/Axes
[Accessed April 2023]

Scrapy. Architecture overview. Web page. Available at:
https://docs.scrapy.org/en/latest/topics/architecture.html
[Accessed April 2023]

ScrapingBee. Practical XPath for Web Scraping. Web page. Available at:
https://www.scrapingbee.com/blog/practical-xpath-for-web-scraping/
[Accessed April 2023]

Splash. Splash documentation. Web page. Available at:
https://splash.readthedocs.io/en/stable/faq.html
[Accessed April 2023]

https://aws.amazon.com/what-is/etl/
https://www.comtecinfo.com/rpa/top-10-advantages-of-using-data-analytics-in-the-retail-industry/
https://www.comtecinfo.com/rpa/top-10-advantages-of-using-data-analytics-in-the-retail-industry/
https://www.databricks.com/glossary/extract-transform-load
https://www.geeksforgeeks.org/components-of-a-url/
https://www.learninga-z.com/site/resources/breakroom-blog/data-in-education
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/XPath/Axes
https://docs.scrapy.org/en/latest/topics/architecture.html
https://www.scrapingbee.com/blog/practical-xpath-for-web-scraping/
https://splash.readthedocs.io/en/stable/faq.html

46

TEG Analytics. Top 5 Benefits of Data Analytics in Healthcare. Web page.
Available at:
https://teganalytics.com/top-5-benefits-of-data-analytics-in-healthcare/
[Accessed April 2023]

W3Schools. HTML tags. Web page. Available at:
https://www.w3schools.com/tags/
[Accessed April 2023]

W3Schools. XPath syntax. Web page. Available at:
https://www.w3schools.com/xml/xpath_syntax.asp
[Accessed April 2023]

Web Scraper. CSS selector. Web page. Available at:
https://webscraper.io/documentation/css-selector
[Accessed April 2023]

Ryan, M. 2018. Web Scraping with Python: Collecting More Data from the
Modern Web. 2nd Edition. O’Reilly Media. Available at:
https://www.amazon.com/Web-Scraping-Python-Collecting-
Modern/dp/1491985577
[Accessed April 2023]

Wikipedia. Python (programming language). Web page. Available at:
https://en.wikipedia.org/wiki/Python_(programming_language)
[Accessed April 2023]

Wikipedia. Markup language. Web page. Available at:
https://en.wikipedia.org/wiki/Markup_language
[Accessed April 2023]

Wikipedia. Web scraping. Web page. Available at:
https://en.wikipedia.org/wiki/Web_scraping
[Accessed April 2023]

Wikipedia. Document Object Model. Web page. Available at:
https://en.wikipedia.org/wiki/Document_Object_Model
[Accessed April 2023]

Yodlee. The Power of Retail Analytics. Web page. Available at:
https://www.yodlee.com/data-analytics/big-data-retail-analytics
[Accessed April 2023]

https://teganalytics.com/top-5-benefits-of-data-analytics-in-healthcare/
https://www.w3schools.com/tags/
https://www.w3schools.com/xml/xpath_syntax.asp
https://webscraper.io/documentation/css-selector
https://www.amazon.com/Web-Scraping-Python-Collecting-Modern/dp/1491985577
https://www.amazon.com/Web-Scraping-Python-Collecting-Modern/dp/1491985577
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Markup_language
https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Document_Object_Model
https://www.yodlee.com/data-analytics/big-data-retail-analytics

47

LIST OF TABLES

Table 1. Popular tag in scraping .. 6

Table 2. XPath expressions ... 11

Table 3. XPath functions ... 11

Table 4. XPath axes .. 11

Table 5. XPath examples .. 12

Table 6. robots.txt rules ... 20

Table 7. Spider types .. 23

Table 8. Comparison of command-line and programming 38

48

LIST OF FIGURES

Figure 1. Illustration of ETL process. Extract Transform Load (ETL). Databrick.

n.d. Available at https://www.databricks.com/glossary/extract-transform-load.

Accessed April 2023 .. 2

Figure 2. Stack Overflow example #1 .. 4

Figure 3. HTML element. HTML basics. Mozilla. n.d. Available at

https://developer.mozilla.org/en-

US/docs/Learn/Getting_started_with_the_web/HTML_basics. Accessed April

2023 .. 5

Figure 4. HTML attribute. HTML basics. Mozilla. n.d. Available at

https://developer.mozilla.org/en-

US/docs/Learn/Getting_started_with_the_web/HTML_basics. Accessed April

2023 .. 7

Figure 5. Developer tool example .. 7

Figure 6. Example of a DOM tree .. 8

Figure 7. DOM tree characteristics .. 9

Figure 8. XPath components ... 10

Figure 9. Scrapy dataflow. Architecture overview. Scrapy. n.d. Available at

https://docs.scrapy.org/en/latest/topics/architecture.html. Accessed April 2023.. 14

Figure 10. Stack Overflow example #2 .. 16

Figure 11. robots.txt example .. 19

Figure 12. Project architecture .. 21

Figure 13. Project folder .. 22

Figure 14. Initial the spider .. 23

Figure 15. Project flow ... 23

Figure 16. URL components. Components of a URL. GeeksforGeeks. n.d.

Available at https://www.geeksforgeeks.org/components-of-a-url/. Accessed April

2023 .. 24

Figure 17. Amazon search #1 ... 24

Figure 18. Search URL .. 25

Figure 19. Amazon search #2 ... 25

Figure 20. Implement search function ... 26

Figure 21. Inspect Amazon product listing #2 .. 27

49

Figure 22. Inspect Amazon product listing #3 .. 27

Figure 23. Scrapy shell interface ... 28

Figure 24. Testing XPath expression with Scrapy shell 28

Figure 25. parse() code ... 29

Figure 26. Debugging with Scrapy log #1 .. 30

Figure 27. Initialize Scrapy data model ... 31

Figure 28. Examine Amazon product information page 31

Figure 29. parse_product() code ... 32

Figure 30. Debugging with Scrapy log #2 .. 32

Figure 31. Adding scraping multiple products feature ... 33

Figure 32. Debugging with Scrapy log #3 .. 33

Figure 33. Inspecting "next" button .. 34

Figure 34. Adding scraping multiple pages feature ... 34

Figure 35. Final version of parse() function ... 35

Figure 36. Creating transform features .. 36

Figure 37. Adding features to pipelines ... 36

Figure 38. Scrapy feeds .. 38

Figure 39. Export data to AWS S3 using Scrapy feeds 39

Figure 40. Exported data in S3 .. 39

Figure 41. Adding export to database feature ... 40

Figure 42. Scraped data in JSON, CSV, XML and SQL database 41

Figure 43. DEFAULT_REQUEST_HEADERS setting ... 43

	1 INTRODUCTION
	2 DATA SCRAPING definition
	3 DATA SCRAPING FUNDAMENTALS
	3.1 Hypertext Markup Language
	3.2 Document Object Model
	3.3 Document Object Model selector
	3.3.1 XPath selector
	3.3.2 CSS selector

	3.4 Scraping framework
	3.4.1 Scrapy
	3.4.2 Selenium and Beautiful Soup

	3.5 Programming language Python
	3.6 Legal issues and ethical scraping

	4 DATA SCRAPING APPLICATION WITH SCRAPY
	4.1 Prerequisite
	4.2 Data extraction
	4.2.1 Navigating through Amazon
	4.2.2 Extracting product information
	4.2.3 Scraping multiple products

	4.3 Data transformation
	4.4 Data loading
	4.4.1 Command-line method
	4.4.2 Programming method
	4.4.3 Export result

	4.5 Optional settings

	5 CONCLUSION
	REFERENCES
	LIST OF TABLES
	LIST OF FIGURES

