

Performance testing

Performance measurement of web application

Matus Kapralik

Bachelor’s thesis
May 2015

Software Engineering

School of Technology, Communication and Transport

Description

Author(s)
Kapralik, Matus

Type of publication
Bachelor’s thesis

Date
29.05.2015

Language of publication:
English

Number of pages
45

Permission for web
publication: x

Title of publication
Performance testing
Performance measurement of web application

Double degree programme
ITPRO

Tutor(s)
Salmikangas, Esa

Assigned by
Descom Oyj

Abstract

 The main objective of this project was to design and implement a performance test which can
provide relevant information for stakeholders. The test was designed for testing the performance of
newly developed store which can be improved in the future. An implementation of the new store
was based on IBM WebSphere Commerce that is a software platform for cross-channel commerce.
E-commerce is a general concept of covering business transaction between organizations of various
types.

The implementation of designed test is a process which depends on used software tools. The test
was created with an open source application Apache JMeter which is able to measure performance
of the web application. One of the main goals of this thesis was to design a testing scenario which is
able to simulate a flow of customer behavior on the store web pages. Subsequently implement the
designed test via Apache JMeter, execute it and provide desired data.

Results of the thesis are managed by Jenkins CI that is an integration server which accelerates the
software development process through automation. In the future the test can be extended with
parts that will be considered for testing the performance.

Keywords/tags
Performance testing, web, JMeter, IBM Websphere

Miscellaneous

Contents
1 Introduction ..1

2 Software testing ..3

2.1 Overview..3

2.2 Static and dynamic testing...3

2.2.1 Static testing ..3

2.2.2 Dynamic testing ...5

2.3 The box approach ..6

2.3.1 White box ...6

2.3.2 Black box ..7

2.3.3 Gray box ...8

3 IBM WebSphere Commerce ..9

3.1 Introduction into e-commerce ..9

3.2 IBM WebSphere Commerce ..9

3.2.1 Architecture ...9

3.2.2 Application layer ..10

4 Web application performance testing ...13

4.1 Introduction to web performance testing ...13

4.2 Activities of performance testing ..14

4.2.1 Identify Test Environment..14

4.2.2 Identify Performance Acceptance Criteria ...15

4.2.3 Plan and Design Tests ..15

4.2.4 Configure Test Environment ..16

4.2.5 Implement Test Design ..16

4.2.6 Execute Tests ...16

4.2.7 Analyze, Report and Retest ..17

4.3 Performance Testing Techniques ..17

4.3.1 Load testing..17

4.3.2 Stress testing ..18

5 Implementation...19

5.1 Apache JMeter ...19

5.2 Web Test Plan ..19

5.2.1 Preparing test scenario ..20

5.2.2 User defined scenario ..22

6 Results ...34

7 Discussion ..38

8 References...39

Figures

Figure 1 White box testing .. 7

Figure 2 Black box testing .. 7

Figure 3 IBM WebSphere Software components ... 10

Figure 4 WebSphere Commerce application layers .. 11

Figure 5 Architecture .. 13

Figure 6 Activities of performance testing ... 14

Figure 7 User Defined Variables .. 21

Figure 8 HTTP Cookie Manager .. 22

Figure 9 Thread Group ... 23

Figure 10 Gaussian Random Timer .. 23

Figure 11 Response Assertion .. 24

Figure 12 If Controller .. 25

Figure 13 BeanShell Sampler ... 25

Figure 14 Test Action ... 26

Figure 15 Simple Controller ... 26

Figure 16 HTTP Request .. 27

Figure 17 HTTP Header Manager .. 28

Figure 18 Regular Expression Extractor ... 28

Figure 19 Front page step ... 29

Figure 20 Logon step .. 30

Figure 21 Extracting product keyword ... 30

Figure 22 Shopping process .. 31

Figure 23 Remove product from order ... 32

Figure 24 Search and shopping cart controller ... 33

Figure 25 Log off action ... 33

Figure 26 Apache JMeter Summary Report ... 34

Figure 27 Hits per second ... 36

Figure 28 Overall Response Times ... 37

Tables

Table 1 Testing parameters ... 34

Table 2 Table of results .. 35

Acronyms and abbreviations

B2C business-to-customer

B2G business-to-government

C2C customer-to-customer

CPU Central Processing Unit

DNS Domain Name System

E-commerce Electronic commerce

EJB Enterprise JavaBeans

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

I/O Input/output

Java EE Java Enterprise Edition

JSP JavaServer Pages

RAM Random-access memory

SQL Structured Query Language

1

1 Introduction

Today most services have become a part of web environment. In the past, the internet

did not cover such a huge amount of population as presently. It is possible to process

nearly every kind of service easily via an internet browser. Customers increasingly get

used to finding their requests over the internet. At present every seller tries to extend

his business to this sphere. The outcome of this compromise is called e-commerce.

E-commerce - commonly known as electronic commerce - refers to buying and selling

of goods over the internet. Nowadays, a web transaction increases in many countries

proportionally, which causes an enhancement of internet services. This form of

trading usually involves transportation of physical items. It is also referred to as

business-to-customer, or B2C. There are other known forms such as customer-to-

customer (C2C), business-to-business (B2C), and business-to-government (B2G).

(Java EE & Java Web Learning, 2015)

Because of increasing the e-commerce all businesses or sellers want to produce the

best offer that should increase their revenues. There are many methods which can

improve their web solution. For example, a user-friendly design, search engine

optimization, advertising etc. Also what is really important is the ability to keep

customers for future purchases. A web solution for e-commerce is usually a complex

process which consists of requests and responses handled by a server. One of the key

improvements which increases shop value is performance. Usually a basic action such

as adding a product to shopping cart covers a comprehensive functionality.

Developers try to create the best solution that uses optional resources, and the

response time is as quick as possible.

In Descom that is a company which provides an ecommerce solutions for customers,

testing the performance of an application is done for almost every project with the aim

of comparing performance during development process and after finalizing.

The way how to measure the performance of an application is called performance

testing. It is a process that sends requests over the internet protocol, receiving

2

responses and evaluating focused parameters. Testing can be based on testing

response time, controlling response text, also exploiting software bugs etc.

This thesis focuses on web performance testing where the objectives can be divided

into following subtasks:

 purpose of software testing,

 description of e-commerce application,

 performance testing regarding web application,

 implementation of web performance testing and representation of

results.

3

2 Software testing

2.1 Overview

Software testing is a process of executing an application with the intent of finding

software bugs. Testing can also provide information about system quality or an

independent view of software to understand risks of software implementation.

(Software testing, 2015)

There are two different types of activity, testing and debugging, which are often

mistaken with each other. Debugging is a process when developers go through

application and try to identify the cause of bugs or defects in code and undertake

corrections. Testing, on the other hand, is a systematic exploration of system

components with main aim of uncovering and reporting defects. The main difference

between testing and debugging is that testing process does not include correction of

defects – these are passed on the developer to correct. Therefore, both activities are

needed to achieve a quantity result. (Hambling, Morgan, Samaroo, Thompson, &

Williams, 2007)

2.2 Static and dynamic testing

2.2.1 Static testing

Test cases are developed using various test techniques for achieving more effective

results. Each tester should consider, which method or test techniques is best choice for

developed system. Static testing is a method which is used while the code is not yet

performed. Failures of designed systems that are tested in a static test are often caused

by a human error, namely a mistake in a document such as a specification. Errors are

much cheaper to fix than defects or failures. Because of that testing should start as

early as possible. Static testing involves techniques such as reviews, which can be

effective in preventing defects, e.g. be removing ambiguities and errors from

specification documents. Another static technique is known as static analysis which

4

focuses on structural defects or systematic programming weaknesses that may lead to

defects. (Hambling, Morgan, Samaroo, Thompson, & Williams, 2007)

Review technique is exercised manually, whereas static analysis is usually performed

automatically using various tools.

A review technique is a systematic examination which is realized by one on more

people who try to find and remove errors. Giving a draft document to a colleague to

read is the simplest example of a review. This attempt can provide uncovering of

errors which can be easily resolved. (Ibid)

Reviews can be used to test everything that is written or typed; this can include

documents such as requirement specifications, code, system design, test plans and test

cases. The practice of testing specification documents by reviewing them early on in

the life cycle helps to identify defects before code implementation which can

significantly save resources such as money and time. If the same defects are found in

dynamic testing which is performed on a running system, extra cost of initially

creating and testing the defective code, diagnosing the source of defect, correcting the

problem and rewriting the code to eliminate the defect would incur. (Ibid)

Like reviews, static analysis is a testing technique which finds defects before

executing the code. The difference between review and static analysis is that static

analysis is carried out on written code. The main aim is to find a defect in application

source code and software models. A software model is an image of the final solution

which is developed by using techniques such as Unified Modeling Language; it is

usually generated by the software designer. (Ibid)

Static analysis can find defects that are hard to find during the test execution by

analyzing the program code e.g. instructions to the computer can be in the form of

control flow graphs and data flows. (Ibid)

5

2.2.2 Dynamic testing

Dynamic testing is the kind of testing that exercises the program under test with some

data. This method involves working with tools where requests are given with inputs

and results of responses are checked and compered with the expected values.

(Hambling, Morgan, Samaroo, Thompson, & Williams, 2007) Dynamic testing is

performed on software that is compiled and executed with parameters such as memory

usage. (Dynamic Testing, 2015)

Dynamic testing can be divided into four levels:

 unit testing,

 integration testing,

 system testing,

 acceptance testing.

Unit testing is a method which can test an individual unit of application. In unit

testing, a unit can be named as a small testable part of an application. In procedural

programming, a unit can be an entire module. In object orientated programming, a unit

is often an entire interface such as class; however, it can also be an individual method.

Unit testing is usually formed as small code fragment. (Unit testing, 2015) Typically

this code can have one or more inputs and often a single output. Unit testing uses

white-box testing method which will be more detailed in the following section. (Unit

testing, 2015)

Integration testing is the second level of dynamic testing. It occurs after unit testing

where units are combined into a group and tested together. The main aim of

integration testing is to test the interaction between units and find faults. Integration

testing can be divided into testing types by approaches (Integration testing, 2015):

 Big bang is a type of integration testing where all or major units are

tested together. This test is aimed at testing whole functionality in a

6

bundle. The advantage of this approach is saving time in integration

testing.

 Top down is used when top level units of software are tested first and

lower level units are tested after that.

 Bottom up is almost the same as top down approach but first lower

level units are tested and top level units later.

 Sandwich testing approach is a combination of top down and bottom

up testing.

System testing is testing based on an integrated system where the purpose is to

evaluate the system´s compliance with specific parameters. The condition for system

testing is to pass integration testing. This approach of testing falls within the scope of

black-box testing. (System testing, 2015)

Acceptance testing is a part of dynamic testing where it is determined if specified

business requirements are acceptable for delivery. (Integration testing, 2015)

2.3 The box approach

2.3.1 White box

White box testing (also known as Clear Box Testing, Open Box Testing, Glass Box

Testing, Transparent Box Testing, Code-Based Testing or Structural Testing) is a

software testing method in which the internal structure is known to the tester. The

tester chooses inputs for a known implementation to exercise paths through code and

determine appropriate outputs. White box testing can be used on the previous testing

methods i.e. unit, integration and system testing. (White box testing, 2015)

7

Figure 1 White box testing

White box testing (Figure 1) is a testing at the level of source code. Because of that

the tester has to have a deep understanding of code. This method is named so because

from the point view of a tester it is like a transparent box inside which one clearly

sees. (White box testing, 2015)

2.3.2 Black box

On the other hand, black box is known as Behavioral Testing, where the internal

structure or implementation of software is unknown for the tester. These tests can be

functional or non-functional.

Figure 2 Black box testing

Black box (Figure 2) means that from the point view of the tester it is not possible to

look inside. In that case tester does not know, what the implementation on system is.

The test is performed by inputs where the system produces outputs which are

compared to the required values.

8

2.3.3 Gray box

Gray box is a testing method which is a combination of both box methods – white and

black. In the gray box, the internal structure of a system is partially known. This

involves having access to internal data structures and algorithms for purposes of

designing the test cases, however, testing at the user, or black-box level.

9

3 IBM WebSphere Commerce

3.1 Introduction into e-commerce

E-commerce or electronic commerce is defined as buying and selling of products and

services where transactions are processed over an electronic network, mainly the

internet. Well-known forms of e-commerce forms include (Java EE & Java Web

Learning, 2015):

 C2C where transaction takes place between individuals, usually through third-

party side such as online auction. A typical example of C2C e-commerce is

eBay.

 B2C indicates transactions between businesses and customer.

 B2B is known as trading between businesses and manufacturer.

 B2G is trading between businesses and government.

3.2 IBM WebSphere Commerce

IBM WebSphere Commerce provides a powerful cross-channel commerce platform

that can be used by companies of all sizes, small businesses, large enterprises and

many different businesses. It is a system where business user can produce and manage

precision marketing campaigns, promotions, catalogs and merchandising across all

sales channels. IBM WebSphere Commerce can be named also omni-channel e-

commerce platform that enables business-to-consumer and business-to-business sales

to customers across channels. (WebSphere Commerce product overview, 2015)

3.2.1 Architecture

The following figure (Figure 3) is a simplified view of software components that are

related with WebSphere Commerce.

10

Figure 3 IBM WebSphere Software components

The first contact with WebSphere Commerce comes through Web server as an HTTP

request. The connection between Web server and WebSphere application server is

ensured via WebSphere Application Server Plug-in. The database server holds most of

application data which include products and customer data. (WebSphere Commerce

common architecture, 2015)

Developers use Rational Application Developer to perform the following tasks:

 create and customize storefront assets such as JSP and HTML pages,

 create and modify business logic in Java,

 create and modify access beans and EJB entity beans,

 test code and storefront assets,

 create and modify Web services.

3.2.2 Application layer

The following diagram (Figure 4) shows application layers that compose the

application architecture:

11

Figure 4 WebSphere Commerce application layers

Business models describe a scenario which various parties use to achieve their needs.

Business models which are provided by WebSphere commerce are:

 B2B direct,

 consumer direct,

 demand chain,

 hosting,

 supply chain.

Business processes are represented by processes which are available in WebSphere

Commerce divided by the business model. (WebSphere Commerce application layers,

2015)

Presentation layer is responsible for displaying results. There are two types for

presenting results - web and rich client. For web presentation the display is rendering

JSP files, for client the presentation is rendered with Eclipse view. (Ibid)

12

Service layer is a mechanism that can access WebSphere Commerce business logic.

Two mechanism are supported (WebSphere Commerce application layers, 2015):

 local Java binding,

 web services.

Business logic is presented by a command pattern. There are two types of

implemented commands (WebSphere Commerce application layers, 2015):

 controller commands - accessible by the presentation layer and used as a

coordinator of tasks,

 task commands - not accessible by the presentation layer but called from the

controller commands. This command type is used to implement business rules.

Persistence layer is used for recording data and operations of the WebSphere

Commerce. (WebSphere Commerce application layers, 2015)

Database schema is designed especially for WebSphere Commerce which includes

over 600 tables and covers required data. The schema supports persistence

requirements for WebSphere Commerce subsystems such as Order, Catalog, Member,

Marketing, Trading etc. WebSphere commerce supports both DB2 and Oracle relation

databases. (WebSphere Commerce application layers, 2015)

13

4 Web application performance testing

4.1 Introduction to web performance testing

The main aim of Web Performance Testing is to measure the actual performance of a

web application and evaluate performance that the application could provide,

identifying, moreover, possible bottlenecks and providing useful advice for fixing the

problem (tuning of hardware components, modification of software or tuning system

parameters). (Cassone, Elia, Gotta, Mola, & Pinnola)

Before start to measure web performance effectively quite important is to know the

architecture (Figure 5). This architecture includes (Ibid) :

 web browser as software client where an application runs,

 internet service providers that affect internet access,

 web servers which are applications that are able to meet requests from client

(browser). Subsequently requests are forwarded to a web application which

can be on the same machine or on another server,

 application server is a place where the code of the application runs. Requests

come there from web servers where are handled and provide responses,

 database persists data of the application. Accessing the data can be difficult

and because of that the access time can be too high.

Figure 5 Web application architecture

14

4.2 Activities of performance testing

The following section discusses seven activities (Figure 6) that most commonly occur

across successful performance testing.

Figure 6 Activities of performance testing

4.2.1 Identify Test Environment

The aim of system evaluation is to gather information about the whole project, the

functions of the system, the expected user activities, the system architecture and other

details which can be conducive for performance testing to achieve specific needs of

the project. This information offers a fundamentals for collecting performance

requirements and goals, workload characterizing, creating strategies and plans for

performance testing. This process provides a base for determining acceptable

performance; defining performance requirements of the software or components;

identifying any risks to the effort before testing even begins. (Meier, Farre, Bansode,

Barber, & Rea, 2007)

15

An environment where performance tests are realized with all tools and hardware

represents test environment. There is also important to mention that it is not only the

software and physical environment that influence performance testing; however,

objectives of test itself too. Some critical factors to consider are listed below (Ibid):

 hardware – configuration, machine hardware (processor, RAM, etc.),

 network – network architecture, load balancing, cluster and DNS

configurations,

 software – other software installed in environment, logging levels,

 external factors – interaction with other systems, volume and type of additional

traffic, scheduled processes, updates.

4.2.2 Identify Performance Acceptance Criteria

The effort of performance testing is to determine the objectives for identifying

potential risks, changes and opportunities for improvements. That means start or at

least estimate identifying desired characteristics in performance testing of the

application early in development cycle. Desired characteristics are meant as results

that are evaluated and accepted as good performance by users and stakeholders. These

characteristics which often correlate to user and stakeholder satisfaction are usually

classified into following criteria (Meier, Farre, Bansode, Barber, & Rea, 2007):

 Response time which means the time taken from one system node to respond

to the request of another. For example, opening and displaying catalog pages

should not take more than two seconds.

 Throughput is considered as number of units which can be handled per

specific time. It could be for example requests per second.

 Resource utilization that is the cost of the project in terms of system

resources. These resources could be processor, memory, disk I/O, network I/O

4.2.3 Plan and Design Tests

The most common purpose of web performance testing is to simulate user scenarios as

realistically as possible. It means to reproduce user behavior while using web

16

interface. The tested workloads have to present real-world scenarios. For creating a

reasonably accurate representation of reality, understanding business context of

application which is used is needed. (Meier, Farre, Bansode, Barber, & Rea, 2007)

Design performance testing is usually a difficult process where the tester tries to

reproduce user way of application using. The tester should consider behaving of the

single user or group, what is the most interesting for them, how long takes action

which can be inspecting of products, reading text information, etc. It is really

important to design the most common test to reality for simulating processing which

can lead to performance improvements. In addition, metrics can help to identify

problem areas and bottlenecks in the tested application.

4.2.4 Configure Test Environment

Configuring the test environment, tools, and resources are necessary to achieve the

planned scenario. It is important to ensure that the test environment is instrumented

for resource monitoring to be helpful with the more efficient analysis of the results.

Depending on the company, a separate team can be responsible for setting up the test

tools, while another one may be responsible for configuring other aspects such as

resource monitoring. In other organizations, a single team can be responsible for

setting up all aspects. (Erinle, 2013)

4.2.5 Implement Test Design

Implementation and execution of performance testing is extremely tool specific.

Regardless of the chosen tool, creating performance testing usually involves scripting

designed scenario and also enhances it combining with others scenarios for producing

a complete workload model. There are numerous available tools intended for

performance testing, both free and commercial. (Meier, Farre, Bansode, Barber, &

Rea, 2007)

4.2.6 Execute Tests

Executing tests is the phase when the implemented test are run. The tests are executed

by a tool which was chosen as the best possibility for this purpose. Executing tests

17

often takes quite enough time needed for reaching reliable results that could be helpful

for improving the application performance.

The first step for executing the test is verifying prepared scenario, which can be

prepared as a script or other resource. This process is done by a tool that produces

results from measuring. If everything is all right, the test is executed and subsequently

provides data from testing. It is a good practice to print the process, for example, log

files, console output, where the tester can check the progress of testing or inspect

ongoing tasks. This can be useful for fixing the test, if something is not working well.

4.2.7 Analyze, Report and Retest

This process is exercised by reviewing each successful test and identifying the

bottleneck areas. The bottlenecks can be application, database or system related.

System-related bottlenecks may conduct to some infrastructure changes which can

increase available memory for application, reduce consumption of CPU, increasing or

decreasing thread pool size, reconfiguring network setting etc. Database-related

bottlenecks may lead to analyzing database I/O operations, profiling SQL queries,

introducing additional indexes, changing table page size and a great deal more.

Application related bottlenecks may be conducted to activities such as refactoring

application components, reducing memory consumption of application, etc. If the

identified bottlenecks are addressed, the test should be executed again and compared

with the previous testing. For getting relevant results, the test has to be planned with

the same parameters, also it is good to run it in the same time. For example, if you are

running one test in the evening and during the day with the same parameters, the

results might be influenced by traffic. This process repeats until the performance goals

of the project have been met. (Meier, Farre, Bansode, Barber, & Rea, 2007)

4.3 Performance Testing Techniques

4.3.1 Load testing

The one of the most used techniques for measuring performance is called load testing.

The main aim of this method is to determine web application’s behavior under normal

18

and anticipated peak load condition. The process of this testing is based on gradual

increasing of resources. It means that a test usually begins to load with a small number

of virtual users and the incrementally increases from normal to peak. Using this

process it is possible to observe how the application during this gradually increasing

load testing performs. For example if the testing purpose is to find the point when the

response time is lower than five seconds the resources are incremented while this

point has been crossed. (Ibid)

4.3.2 Stress testing

Stress test is a kind of test where the tested environment is exposed under an extreme

condition. This test is performed because of determining the application reliability,

robustness, availability and identify application problems that arise under extreme

conditions. It can includes heavy loads, high concurrency and hardware resources.

Proper stress testing is useful in finding synchronization and timing bugs, interlock

problems, priority problems, and resource loss bugs. The main aim of exercising stress

test to the point of maximum load is to find issues that can be potentially harmful.

Stress test usually involves one or more production scenarios which are run in various

stress conditions. For example running application on machine where some other

application consume considerable amount of resources. (Ibid)

19

5 Implementation

5.1 Apache JMeter

The previous chapter covered the fundamentals of performance testing. One of the

core activities was the implementation of defined testing scenarios which is extremely

tool specific, from free to commercial. This solution is provided by free, open source

cross platform desktop application Apache JMeter developed by The Apache Software

foundation. JMeter allows to simulate various scenarios with multiple concurrent

users with goals such as identifying the system bottleneck, resources problem etc. The

way of performance testing is using dynamic type of testing with a black box

approach. It means that tests are provided on the deployed application, however, the

tester does not know, how the code is handled.

This tool simulates the user activity, however, it should not be misguided with

browsers. It does not support all browsers operation as executing JavaScript in HTML

pages, render HTML pages. It provides opportunity to process requests and responses

and then collect aimed results. Also there is a limitation how many users can run on a

single machine. It depends on the environment specification and the tested scenario.

For example a single machine with 2.2GHz processor and 8GB of RAM can handle

about 250-450 users. (Erinle, 2013)

5.2 Web Test Plan

There are many possibilities how to create a scenario for performance testing

purposes. It can be testing only a unit, integration or the whole system. This sample

tests the usual user activities on web page. The responsible system that operates web

and application server is IBM WebSphere Commerce, so the aim of the testing is to

find a point where the application becomes fragile, for example when the response

time crosses the maximum allowed value, when it provides some errors and so on.

The following sample demonstrates the used approach which consists of two parts:

20

 Crawling phase that is used for collecting data and processing scenario too.

The process starts at the front page and subsequently continue on the process

that depends on the previous steps. Dependency because of extracting words

which forms a path for HTTP requests.

 Execution in random order that follows the first phase. HTTP requests are now

possible to handle in random order, because all needed expressions for

building a path of requests are extracted. For example, request for handling

specific product does not need open category of product first, however, it can

be tested directly.

All domain names are changed in order to keep the company customers unknown.

5.2.1 Preparing test scenario

Apache JMeter provides a bundle of components that can properly handle a specific

user scenario. It is a good manner to prepare some variables that are used many times

in various components. The tester does not have to use particular values in each

component independently, just parametrize them once with the predefined values from

User Defined Variables component which is shown in Figure 7.

21

Figure 7 User Defined Variables

In this component there are two important parameters:

 name – used as a reference for defined value that can be used in any

component,

 value – set the value for name. In this field the function __P(property, default

value) can be used. It returns the value of property, however, if property is not

defined, it uses the default value.

If the HTTP request, and the response contains a cookie, HTTP Cookie Manager

(Figure 8) automatically stores it and uses for the future requests to the particular web

site. Every thread has its own cookie storage area.

22

Figure 8 HTTP Cookie Manager

5.2.2 User defined scenario

Every user is represented as a thread. The scenario for every thread is defined in the

component called Thread Group (Figure 9). There are three thread properties that

were set for this scenario:

 number of threads that represents number of simulated “users”,

 ramp-up period that set the time to start all threads,

 loop count which is the number of times to performing the test.

All these fields use defined parameters or variables. These three variables are taken

from User Defined Variables component.

23

Figure 9 Thread Group

Another component used in this scenario is Gaussian Random Timer (Figure 10). If

the test should perform a real world scenario it has to behave like a real user. This

component causes a delay between particular actions, which means that if a user opens

a page on web he/she checks for relevant data for him/her which usually takes a time.

How long it takes can be defined by deviation and offset properties. According to the

analytics, the average delay between clicks (actions/ navigations) takes 45 seconds.

Figure 10 Gaussian Random Timer

To check the response status Response Assertion component is used (Figure 11). This

component is important because it produces overview about successful responses for

sample.

24

In this case two response assertion controllers are used:

 the first is for handling responses with HTTP code 200 or 302 which means

that the request was OK or FOUND. For this test it means successful response.

 The second one is for handling unsuccessful response, however, the

implemented system provides only successful responses. Unsuccessful

responses show generic error on pages that is handled by searching

“errorCode” keyword in response body.

This component provides opportunity to select where the response pattern is checked

(text response, response code, response headers etc.).

Figure 11 Response Assertion

After preparing all important components for threads the flow of actions can start.

This scenario considers that firstly data will be extracted by passing the web as a real

user. After that, when all data will be prepared for next step, the test can start to

perform executing in random order. The component that is responsible for checking

this condition is If Controller (Figure 12).

This controller can be considered as a container for other actions. It involves many

other components which can be processed only if the condition passes.

25

Figure 12 If Controller

The firstrun variable is defined in User Defined Variables component and this

condition which is default JavaScript syntax compares this defined variable with value

0. In this test value 0 means that the test is performed for the first time. If the values

are equal the following components in order are performed.

Very useful component that can be used for scripting is a BeanShell Sampler (Figure

13). For example, via this sampler the tester can set variables, also use it as log and

prints actual progress etc. In actual test step the firstrun variable is set to 1 that means

the next loop fails this container. Also, it sets the parameter that is intended for

registration action and prints timestamp about user and timing.

Figure 13 BeanShell Sampler

The test action controller is used for sleeping predefined randomized time to add users

to the test gradually (Figure 14). It is a kind of sampler that can do actions such as

26

pause, stop and move to next iteration. Also, there is a possibility to choose the target

for this test action. It can be a single current thread or the whole thread group. The

time while the thread is paused is set by the duration parameter.

Figure 14 Test Action

The next step of this flow is action for registration new user. It is the same as real user

opens web page, chooses registration of new user and fills all required field, however,

the first step is to check if the registration action is allowed in test scenario. It can be

disabled because if the test was already performed registration, there is not needed to

create new users. It fails for sure, because the users with created username already

exist in the tested system. Simple Controller is used for every action (Figure 15). It is

a common container that is good to use for keeping all requests in one logical area.

Figure 15 Simple Controller

In this controller a HTTP Request is set. This component is responsible for handling

request and works with the responses. Basically this component is processing actions

that are started after user clicks on any web page action. It can be opening categories,

products, adding products to cart etc.

27

Figure 16 HTTP Request

In this case HTTP Request sampler is required to complete a few parameters in

configuration view:

 Web server, where the server name is set (comes from defined values). Port is

set also, because value 80 is set as default and the server uses secured

protocol which is 443.

 Http request, where there is a need to set the path of request. This path can be

easily reached by some web tools such as Firebug that monitors the activity

in the browser. Selected field Follow Redirects checks if the response is

redirect and follows it. Use KeepAlive sets the keep alive header.

HTTP Request can have an additional components that help to pass a request or

process another functionality. Every HTTP request uses HTTP Header Manager

(Figure 17) that adds or overrides HTTP request header.

28

Figure 17 HTTP Header Manager

For retrieving data for the following request is used Regular Expression Extractor.

All next requests depend on the previous ones because through this component

extracted keywords are used in HTTP request.

Figure 18 Regular Expression Extractor

The tester chooses for which sample is extracted value applied, select field that is

checked and set required following 5 fields:

 reference name that can be used in other component as a reference,

 regular expression which is expression for parsing response data,

 template that selects group from expression that is used (1 refers to group 1),

 match number where value 0 means, if there are more results from parsed data

take random one,

 default value that sets the defined value if there are no matches with regular

expression.

A best practice is to print the results while the test is running to be sure that all data

are passing right, regular expressions are parsing responses with proper expression

etc. A component that is used for this action is called BeanShell PostProcessor. It is

29

the same as BeanShell Sampler shown in Figure 13. The difference between these two

samplers is in the execution order. BeanShell Sampler is executed in order of flow,

however, BeanShell PostProcessor is executed after a specific request.

The next step after registration is the crawling phase where the scenario starts on the

front page and subsequently follows logical flow of user activity on the web.

The front page activity (Figure 19) consists of the following components:

 HTTP Request,

 HTTP Header Manager,

 Regular expression Extractor,

 BeanShell PostProcessor.

In this request are extracted multiple values such as department, category and

subcategory keyword. Also there are two if controllers, because department keyword

can parse also value for cart and login. This keywords have the same structure in

response text, therefore they are set to static value if they are selected.

Figure 19 Front page step

The logon page step tests attempt to log in (Figure 20). This step contains two HTTP

requests. The first opens the login page and the second one signs up. From the login

page authorization token is extracted via regular expression extractor that is needed

for sign up. Username and password used in this request were set in BeanShell

30

Sampler (Figure 13). Logon request has its own Response Assertion for handling

unsuccessful logon.

Figure 20 Logon step

After extracting the keyword from the front page the department page is executed the

first in order. This action does not extract anything. It is only an HTTP request that

simulates the opening of the department page. Category and subcategory are different.

In those views the keyword for the product is extracted. In subcategory view also the

product availability for shopping action is checked.

For the purpose of check the product availability While Controller is used (Figure 21).

This controller has same structure as If Controller, however, it is performed while the

condition is applied.

Figure 21 Extracting product keyword

31

Inside While Controller the subcategory view is performing where the products are

extracted. Subsequently If Controller checks if the product is extracted and starts

executing the product page and availability action. After executing these two requests

via BeanShell Sampler it is checked if the available product was found and the loop

value is incremented. The While controller repeats maximum nine times or lower if

the available product was found.

If the available product was extracted the shopping process can start (Figure 22). This

process consists of controllers that handle adding the extracted product to the

shopping cart, user shopping process and removing the order.

Figure 22 Shopping process

Add to cart action has two requests:

 the first one adds the product to the order and subsequently order id and order

item id is extracted via regular expression extractor,

 the second is a simple request for refreshing the mini shopping cart.

If the order id is extracted the shopping process can start. This process is basically set

of five actions:

32

 This process starts with checkout where two requests are measured –

ProceedWithCart and CheckoutShippingBilling. From the second mentioned

request user data such as name, shipping address are extracted.

 After the checkout view the delivery method view is executed. There are also

two similar requests as in the checkout view.

 The third method has the same scenario as the previous two views. All

requests that are passing these views were collected via the browser tool that

can catch requests and then were used for the shopping process.

 Even this process has five actions, the last one is disabled because it cause a

real order that was not possible for this test. Because of that the test ends in

this fourth step which opens the payment view.

When the shopping process is over, afterwards the test removes the product from

order if it is available (Figure 23). Firstly If Controller checks if an order exists and if

so the flow of removing the product can start. This action is provided by three

requests that remove the product from the order in the system, the shopping cart and

the mini shopping cart.

Figure 23 Remove product from order

In the phase of executing in random order the same controllers that are in crawling

phase are used, however, the crawling phase was performed mainly because of

extracting keywords of this phase. In the thread loop count it was defined how many

times a thread is executed. The crawling phase is exercised only in the first loop

because of extracting keywords purpose. In executing in random order phase are two

additional controllers (Figure 24):

33

 controller for searching a term,

 controller for opening shopping cart view.

Both of them are simple HTTP requests, however, the controller for searching has If

Controller that checks if the search term was extracted via regular expression

extractor.

Figure 24 Search and shopping cart controller

The last step of this scenario is logout (Figure 25). For this purpose is used If

Controller that checks if the count of the loop is equal to the value set in the Thread

Group component. If this values are equal the HTTP request for log off is executed.

Figure 25 Log off action

34

6 Results

There are multiple ways how the results from the implemented test can be presented.

It can be in the form of table or graphical representation. However, it is important to

know, what the numbers of the table or curves in graph mean. Apache JMeter can

provide both forms. For this approach these resources are good for checking the

progress of the designed test (Figure 26).

Figure 26 Apache JMeter Summary Report

However, the implemented testing scenario was executed in Apache JMeter

environment. For this approach Jenkins CI server was used. It is an open-source

integration server that accelerates the software development process through

automation. This server is able to manage and control the development process such

as deployment, build, test, package etc. The following tested sample was executed

with parameters shown in Table 1.

Table 1 Testing parameters

Name Value Description

Loop count 50 Total loop number of user thread

User count 300 Simulated number of users

Delay 7500ms Delay value for gauss random timer

Deviation 2500ms Deviation value for gauss random time

Step up time 60 Value that sleeps thread for predefined time to add users gradually

35

Results from the sample test that were performed in Jenkins CI server are shown in

Table 2.

Table 2 Table of results

Request name count

average

[ms]

median

[ms] 90% line

min

[ms]

max

[ms]

error

[%]

Logon page 300 137 107 179 72 3044 0.00

Logon 300 976 692 1693 173 6625 0.01

Frontpage 15300 348 218 786 46 6071 0.00

Department page 15300 453 241 1151 47 5835 0.00

Category page - brand 8683 428 223 1109 43 5520 0.00

ShoppingCart 15300 1094 816 2408 83 7352 0.00

Product page 5428 2316 1776 4316 166 11894 0.00

Add to cart -

AjaxOrderChangeServiceItemAdd 53 562 294 1455 79 2336 0.43

Search 5883 619 255 1729 65 6375 0.00

AjaxMiniShoppingCartRefresh 53 724 326 2293 104 3027 0.00

Shopping process 1/5 -

ProceedWithCart 26 469 255 1022 102 2803 0.00

Shopping process 1/5 -

CheckoutShippingBilling 26 399 214 636 97 1767 0.00

Shopping process 2/5 -

ProceedWithShippingBilling 26 377 243 661 99 1544 0.00

Shopping process 2/5 -

CheckoutShippingMode 26 530 196 1463 100 2175 0.00

Refresh mini shopping cart-

AjaxMiniShoppingCartRefresh 7521 582 342 1513 71 6240 0.00

Shopping process 3/5 -

ProceedWithShippingMethod 26 544 251 1588 97 2003 0.00

Shopping process 3/5 -

CheckoutOrderSummary 26 404 242 881 97 1563 0.00

Shopping process 4/5 -

CheckoutPayment 26 405 193 1140 96 2226 0.00

Remove from cart -

AjaxOrderChangeServiceItemDelete 26 136 119 214 40 408 0.00

Refresh shopping cart-

AjaxShoppingCartRefresh 26 391 211 828 97 1609 0.00

Logoff 300 239 201 342 105 2874 0.00

TOTAL 94292 665 308 1609 40 17275 0.00

In Table 2 the values that are useful for understanding how long requests taken are

displayed. In this result table are also numbers of processing specific request and error

rate that means unsuccessful perform of action. This interpretation of table is more

36

advance because exact numbers of duration, error and threads are shown there. The

test produces also the graphical view which is easier for understanding and also

explanation for customers. The test provides more graphs such as throughput, latency,

number of transactions etc. However, usually for customers the most interesting

results are these two graphs (Figure 27, Figure 28).

Figure 27 Hits per second

37

Figure 28 Overall Response Times

In comparing these two graphs it is possible to check multiple results:

 what was the maximum response time in the tested scenario,

 what was the maximum number of the executed requests in one time,

 how long took executing the particular number of responses.

This results can answer also on customer question if the response time does not take

longer that was expected. According analysis mentioned in the implementation the

time for decision of user is approximately 45 seconds. Test was performed with delay

time 7.5 seconds that is six time less. The reason of this reduction is aimed to save

testing environment resources. Consideration of using this reduction means six times

more users. So if the test processes 300 users (threads), in results it represent 1800

users. This way can save testing cost (additional processor and memory).

38

7 Discussion

The main objective of this thesis was to design and implement performance test and

execute it against an application based on IBM WebSphere Commerce. The test was

implemented using performance testing tool Apache JMeter which is a free solution

for this approach. The process of creating performance testing can be divided into two

parts that are using components provided by testing tools and design specific test

scenario. In this thesis were realized both of this part successfully. Designed scenario

uses the most common flow where user crawls through web pages, does shopping

action and finds product in categories.

This testing was run against application built on IBM WebSphere Commerce system.

This is very huge system that is able to process a lot of actions effectively but it has to

be well designed. There is a lot of pages caching that enhance performance, shorten

response time so doing performance testing can find issues in this sphere too.

Creating a test scenario is not a simply operation. The test should be based on a real

user behavior for producing relevant data. Observation of user behaviors and analyzes

can improve results from testing. For example that can be decision specified by

percentual distribution, most visited parts of web etc. This attempt can be added to

future implementation for representing the results more rigorously.

39

8 References

Cassone, G., Elia, G., Gotta, D., Mola, F., & Pinnola , A. (n.d.). Web Performance Testing

and Measurement.

Dynamic Testing. Accessed on 2015, April 28. Retrieved from Dynamic Testing:

http://www.tutorialspoint.com/software_testing_dictionary/dynamic_testing.htm

Erinle, B. (2013). Performance Testing with JMeter 2.9. Birmingham: Packt Publishing Ltd.

Hambling, B., Morgan, P., Samaroo, A., Thompson, G., & Williams, P. (2007). Software

Testing. Swindon: BCS.

Integration testing. Accessed on 2015, April 28. Retrieved from Integration testing:

http://softwaretestingfundamentals.com/integration-testing/

Integration testing. Accessed on 2015, April 28. Retrieved from Integration testing:

http://softwaretestingfundamentals.com/integration-testing/

Java EE & Java Web Learning. Accessed on 2015, April 28. Retrieved from Java EE & Java

Web Learning: https://netbeans.org

Meier, J., Farre, C., Bansode, P., Barber, S., & Rea, D. (2007). Performance Testing Guidance

for Web Applications. Microsoft Corporation.

Software testing. Accessed on 2015, April 28. Retrieved from Software testing:

http://en.wikipedia.org/wiki/Software_testing

System testing. Accessed on 2015, April 28. Retrieved from System testing:

http://softwaretestingfundamentals.com/system-testing/

Unit testing. Accessed on 2015, April 28. Retrieved from Unit testing:

http://en.wikipedia.org/wiki/Unit_testing

Unit testing. Accessed on 2015, April 28. Retrieved from Unit testing:

http://softwaretestingfundamentals.com/unit-testing/

40

WebSphere Commerce application layers. Accessed on 2015, April 28. Retrieved from

WebSphere Commerce application layers: http://www-

01.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.developer.d

oc/concepts/csdapplication.htm

WebSphere Commerce common architecture. Accessed on 2015, April 28. Retrieved from

WebSphere Commerce common architecture: http://www-

01.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.developer.d

oc/concepts/csdsoftwarecomp.htm

WebSphere Commerce product overview. Accessed on 2015, April 28. Retrieved from

WebSphere Commerce product overview: http://www-

01.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/

concepts/covoverall.htm

White box testing. Accessed on 2015, April 28. Retrieved from White box testing:

http://softwaretestingfundamentals.com/white-box-testing/

